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Abstract

Reflectional symmetry is a potentially very useful feature which many real

world objects exhibit. Its knowledge can be used in variety of applications

such as object alignment, compression, symmetrical editing or reconstruc-

tion of incomplete objects. To acquire the symmetry information usable in

such applications, often a robust symmetry detection algorithm needs to be

used since most objects are not perfectly symmetrical and exhibit only ap-

proximate symmetry. In this thesis a new method for detecting the plane of

reflectional symmetry for 3D objects is proposed which works on perfectly

as well as approximately symmetrical objects. Furthermore, the proposed

method works on point clouds and therefore puts virtually no constraints on

the input data.

Abstrakt

Zrcadlová symetrie je vlastnost, která se vyskytuje u mnoha reálných ob-

jektů. Její znalost může být velice užitečná v mnoha aplikacích, jako za-

rovnání objektů, komprese, symetrická editace nebo rekonstrukce neúplných

objektů. K získání znalosti o symetrii, která je použitelná v podobných apli-

kacích, je často zapotřebí použití robustního algoritmu pro detekci symetrie,

jelikož mnoho objektů nevykazuje perfektní symetrii, ale pouze přibližnou.

V tomto textu bude popsána nová metoda pro detekci roviny zrcadlové syme-

trie pro 3D objekty, která je použitelná jak pro perfektně, tak pro přibližně

symetrické objekty. Tato metoda navíc funguje na objektech reprezentova-

ných pouze množinou bodů, a tudíž neklade prakticky žádné požadavky na

vstupní data.
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1 Introduction

Many real world objects exhibit some kind of symmetry. There are many

types of symmetry such as reflectional symmetry with respect to a plane, to

a line or to a point, rotational symmetry or some more general symmetry. In

this thesis we will mainly address the reflectional symmetry of a 3D object

with respect to a plane. A 3D object X is reflectionally symmetrical with

respect to a plane P if the object X stays the same when it is reflected over

the plane P . In such a case we can call P the plane of symmetry, or the

symmetry plane, of the object X. Some other types of symmetry will be

briefly discussed in Chapter 5.

In some cases only parts of an object are symmetrical but the whole

object is not, we call such symmetries local symmetries. When the whole

object is symmetrical then we call such a symmetry a global symmetry. In

this thesis we will only consider global symmetry, with the exception of a

few of the existing symmetry detection methods described in Chapter 2 that

can be used to detect local symmetries.

In most cases the reflectional symmetry is not perfect but only approx-

imate, for example, see Figure 1.1a which depicts a real 3D-scanned human

face. We can see that the face is symmetrical with respect to a plane that

passes between the eyes and through the nose and the mouth (such a plane is

also shown in the figure), but since it is a real human face it is certainly not

perfectly symmetrical. Finding the plane that captures such approximate

symmetry automatically is often not a simple task.

In computer graphics, the information about reflectional symmetry in 3D

objects has various applications, such as object alignment [17], compression

[20], symmetrical editing [14] or reconstruction of incomplete objects [24]

[21] [19]. The last application is especially interesting because it requires

the symmetry detection to work on incomplete objects, i.e. objects with

some missing parts, such as the clipped face depicted in Figure 1.1b. Even

though the face is incomplete, there is still some symmetry remaining in it

which a human observer can see.

1



(a) 3D-scanned face (b) Incomplete 3D-scanned face

Figure 1.1: 3D-scanned human face - (a) and its incomplete version damaged

by clipping - (b) with planes that capture their approximate reflectional

symmetry.

Finding such a symmetry in objects with missing parts seems to be the

major challenge in the field of symmetry detection. Therefore, the main goal

of this work was to design a method that would be capable of detecting the

plane of symmetry (global) of perfectly as well as approximately symmetrical

3D objects and possibly even objects with some missing parts.

In the following text, we will describe several existing methods usable for

symmetry plane detection on 3D objects and discuss their advantages and

disadvantages. After that, we will describe a new global symmetry plane

detection method that was designed as part of this work and we will show

its results. In the end, we will propose several ways how this method could

be extended or generalized for detecting symmetries of different types.

2



2 Related Work

This chapter provides a brief description and subjective evaluation of number

of available methods that can be used for detecting a plane of reflectional

symmetry of 3D objects. Each section in this chapter corresponds with a

single publication in which one or more symmetry plane detection methods

are presented. The sections are named after the authors of the corresponding

publications and also contain the publication year by which the sections are

sorted. The publication titles and other information can be found in the

bibliography at the end of the thesis.

All the methods described in this chapter can be divided into two groups

according to whether they can be used on point clouds or whether they

require a surface to work on. The methods described in Sections 2.3, 2.7,

2.8, 2.9, 2.10 and 2.15 seem to be usable on point clouds, meaning they do

not require any information on the input other than the point positions. In

addition, the method described in Section 2.2 seems to work with various

object representations, point clouds included. All the other methods are

designed to work on surfaces and all of them seem to be usable on triangle

meshes, which is probably the most common surface representation. An

exception is the method described in section 2.5 which works not just with

a surface but also with volumetric data.

Not all the described methods were specifically designed for detecting a

plane of reflectional symmetry, some are more general and were designed for

detecting more types of symmetry, but all of them can, in some way, be used

for symmetry plane detection or can be modified to do so. At the end of this

chapter a brief summary and overall subjective evaluation of the described

methods are provided.

2.1 Zabrodsky et al. (1995)

This article [28] presents a symmetry measure called Symmetry Distance

(SD) and its uses in detection of reflectional or rotational symmetry. The

measure is originally designed for 2D shapes represented by a sequence of

points (basically polygons) and can be used for symmetry detection in 2D

images (grayscale bitmap pictures) which are first transformed into contours

and the contours are then sampled to create the sequences of points. The

Symmetry Distance is a quantifier of the minimum effort required to trans-

form a given shape into a symmetric shape and is based on squared distances
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between the points of the two shapes. The authors also present a way to

use this approach to detect reflectional symmetry in 3D shapes represented

by a set of points. For a given candidate plane a perpendicular plane is

created and sampled and each sampled point is projected onto the 3D ob-

ject. For every projected point its elevation is calculated relatively to the

sampled plane and the symmetry value of the candidate plane is evaluated

using the projected sampling points. As candidate planes, only planes that

pass through the object are taken.

The authors only show the result of the reflectional symmetry detection

on one 3D object (see Figure 2.1) which seems to be perfectly or almost

perfectly symmetrical. Furthermore the method requires the 3D object to

be represented by a surface onto which points can be projected which ex-

cludes point clouds. Also since the symmetry measure uses squared distances

between points, it would probably have problems with objects that exhibit

missing parts or have outliers.

Figure 2.1: Result of the symmetry plane detection using the method by

Zabrodsky et al. The symmetry plane was detected on the original object

(left) and used for alignment. Specifically the object was rotated to a frontal

vertical view (right). The symmetry plane itself is not shown in the figure.

(Figure taken from [28].)

2.2 Sun, Sherrah (1997)

This article [23] presents a method which can be used to detect reflectional

and rotational symmetry of 3D shapes. The method uses the discrete version

of the extended Gaussian image called orientation histogram which can be

obtained by dividing a unit sphere into hexagonal bins with values assigned

according to the number of normal vectors facing in the given bin’s direction

(see Figure 2.2). Detection of the reflectional symmetry is then done by
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choosing a few candidate planes passing through the center of the orientation

histogram’s sphere. For each candidate plane the histogram is reflected over

the given plane and a correlation of the reflected histogram with the original

one is calculated. The plane with the highest correlation is then declared

the plane with the strongest reflectional symmetry.

Figure 2.2: Model of a human head (left) and its orientation histogram

(right). (Figure taken from [23].)

The authors state they only choose candidate planes with normal vectors

facing in directions of the three principle axes and 5 or 6 of their neighbors

which makes 8 or 9 candidate planes in total. This, together with the fact

that the method expects the symmetry plane to pass through the center

of the orientation histogram’s sphere, implies that this method probably

would not work very well with shapes that have some missing parts. Also

the authors mostly show the results of their method on very simple objects

which seem to be perfectly or nearly perfectly symmetrical (see Figure 2.3).

An advantage of this approach is that it can be used to detect the rotational

symmetry as well but the specific algorithm is a little different. Also it seems

to work with various object representations such as a surface representation

(e.g. triangle mesh), 2D range image, volumetric representation or a point

cloud.
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Figure 2.3: Results of the symmetry plane detection using the method by

Sun and Sherrah. (Figure taken from [23].)

2.3 Thrun, Wegbreit (2005)

This paper [24] presents a method for detecting local symmetries of various

types in partial point clouds and their use for completing partial 3D objects.

Apart from the point cloud representing the object the method also needs

to know the position from which the points were scanned to determine what

places of the space are occluded. The authors propose a probabilistic model

to score symmetries and they use this model to detect the correct symmetry

type and the symmetry parameters. The algorithm consists of three nested

loops where the outer loop searches for appropriate symmetry types, the

middle loop identifies which points are actually symmetric with respect to

the given symmetry type and the inner loop determines the parameters of

the final symmetry.

Judging by the results shown in the paper the algorithm seems to work

only on quite simple 3D objects, such as a ball, torus or a box. An advantage

of this method is that it works on point clouds representing partial objects

and it seems to be able to detect the symmetries even on point clouds where

most of the original object is missing (see Figure 2.4). The authors also

show how these objects are reconstructed using the symmetry information.

A disadvantage of this method is the fact that it needs to know the scanner

position.
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Figure 2.4: Results of the symmetry detection and object reconstruction

using the method by Thrun and Wegbreit. Blue points are the original

points and green points are the reconstructed points. (Figure taken from

[24].)

2.4 Simari et al. (2006)

This paper [20] presents an algorithm for detecting local reflectional sym-

metries of 3D triangle meshes but seems to be usable for global reflectional

symmetry detection as well. The authors propose a distance function which

for a vertex vi gives a distance of this vertex reflected over a given plane from

the triangle mesh, this distance is denoted di. They use weighted covariance

matrix C calculated as follows:

C =
1

s

n
∑

i=1

wi(vi − m)(vi − m)T

where n is the vertex count of the mesh, vi is the i-th vertex of the mesh,

m is the center of mass of the mesh, wi is the weight of i-th vertex and s is

the sum of all weights. The weights are calculated as

wi =
2σ

(σ2 + d2
i )

2
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where σ is an optional parameter. Also for each vertex vi its cost ρi is

defined as

ρi =
d2

i

σ2 + d2
i

.

The weights are actually derived from the costs so that

wi =
1

di

∂ρi

∂di

.

Eigenvectors of the matrix C are computed and used to create three planes

so that these vectors are the normal vectors of the planes and the planes pass

through m. For these planes the sum of costs of all vertices is computed and

only the plane with the lowest cost sum is kept. The authors define a support

face as the mesh face whose all vertices vi reflected over the given plane have

di ≤ 2σ. They also define a support region as the largest connected region

of support faces. For the plane acquired in the previous step the support

region is computed and weights of all vertices outside the support region are

set to 0. These plane creation and region finding steps are iterated until

convergence is achieved.

When the final support region is removed from the mesh the algorithm

can be used on the remaining components to find more local symmetries.

This way a tree structure can be created called a folding tree. The authors

propose to use this structure for mesh compression.

Results of the symmetry plane detection are shown on several objects

which mostly seem to be quite simple and perfectly or almost perfectly sym-

metrical. For these objects also the reconstructed meshes from their folding

trees are shown (see Figure 2.5). Few results of the symmetry detection are

also shown on objects which are not perfectly symmetrical but none of these

objects seem to miss parts and they also mostly exhibit only local symmet-

ries (see Figure 2.6). The biggest disadvantage of this algorithm is the fact

that it only works on triangle meshes. Also, since the algorithm seems to

be more designed for local symmetry detection, it would most likely fail to

detect a global reflectional symmetry of an object with significant missing

parts.
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Figure 2.5: Results of the local symmetry plane detection using the method

by Simari et al. The figure shows the original objects (left), their detected

symmetry planes (center) and the objects reconstructed from their folding

trees (right). (Figure taken from [20].)

Figure 2.6: Results of the local symmetry plane detection using the method

by Simari et al. on imperfectly symmetrical objects. (Figure taken from

[20].)

2.5 Podolak et al. (2006)

This article [17] presents a method for detecting symmetry planes of volumet-

ric functions. The authors define a Planar Reflective Symmetry Transform

(PRST ) which represents a measure of how symmetrical a given volumetric

function is with respect to a given plane and they use its square (PRST 2)
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to find the best symmetry plane. The brute force approach to find such a

plane has time complexity O(n6) on the n × n × n grid of voxels but the

authors also propose a method to find the plane with the highest PRST 2

which seems to have time complexity O(n4log(n)).

In order to use this approach on 3D surfaces the authors propose using the

Gaussian Euclidean Distance Transform to convert a surface to a volumetric

function. Since such a function is usually very sparse, the authors propose

a Monte Carlo algorithm which seems to be able to find its symmetry plane

with time complexity only O(n4). The authors also propose an iterative

approach to find local maxima of the PRST to detect local symmetries.

Results of the symmetry detection on 3D surfaces are only shown on one

3D object which seems quite asymmetrical (see Figure 2.7). Specifically four

strongest local symmetries are shown on it but none of them seems to capture

the whole object’s symmetry very well. Also it seems doubtful whether this

method is able to detect a global reflectional symmetry of an object with

significant missing parts. The authors also show how their method can be

used for segmentation of 3D objects the results of which are shown and seem

to be good.

Figure 2.7: Several symmetry planes detected using the method by Podolak

et al. on a single object. (Figure taken from [17].)
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2.6 Martinet et al. (2006)

This article [14] presents a method for detection of rotational and reflectional

symmetries of a 3D surface. The symmetry is defined by a symmetry axis,

rotation angle α and a value λ which equals either 1 or −1 and determines

whether the symmetry contains reflection. The authors propose functions

called generalized moments of a shape and claim that these functions have

the same symmetries as the shape itself. They also show that finding the

symmetries comes down to determining where the generalized moments have

zero gradient. Several candidate axes are created by refining a sphere from

an icosahedron and the steepest descent minimization is performed on the

norm of the moment function’s gradient from these candidates. Finding

the α and λ is done deterministically by examining the moment function’s

spherical harmonics.

Results of the symmetry detection are shown on objects which mostly

exhibit quite strong symmetries (see Figure 2.8). The main disadvantage of

this method is probably the fact that the detected symmetry axes must pass

through the object’s center of mass. This implies that it most likely would

not work on objects exhibiting missing parts or imperfect symmetries. Also

it does not work on point clouds since it needs a surface to work on.

Figure 2.8: Results of the symmetry plane detection using the method by

Martinet et al. (Figure taken from [14].)

2.7 Mitra et al. (2006)

This paper [15] presents a method for detecting various types of local sym-

metries of 3D shapes. The detected symmetry transformations can contain

reflection, rotation, translation and even scaling. In each sampled point of

the input shape, principal curvatures and principle directions are computed.

Pairs of the sampled points are then selected and used to create candidate
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transformations by transforming one point of the given pair to align its pos-

ition, its principal directions and its normal direction with the second point

in the pair. The scale component of the transformation is estimated from

the ratio of principle curvatures in the two points. The candidate transform-

ations represent points in the transformation space. Clustering is performed

on these points to detect the final symmetries.

The proposed method, as it is, does not serve the purpose of detecting

a global plane of symmetry of a 3D shape but could very likely be modified

to do so. The great advantage of this method is that it seems to be very

general in the symmetry types it is able to detect.

2.8 Combès et al. (2008)

This paper [7] presents an ICP-like [6] iterative approach for finding a sym-

metry plane of a 3D point cloud. The first step is to choose an initial plane

P . The second step is to reflect each point xi in the point cloud over the

plane P and for each reflected point SP (xi) find the closest point yi in the

point cloud where the function SP (x) reflects a point x over a plane P . The

third step is to minimize the following function:

f(P ) =
n

∑

i=1

||yi − SP (xi)||2

where n is the number of points in the point cloud. The authors claim a

closed form solution exists for the minimization problem. The fourth step is

to determine whether the new plane P differs from the previous one and if

so the algorithm returns to the second step.

As the authors themselves point out, this approach is not robust to out-

liers and often converges to only a local optimum. Therefore, the authors also

propose a probabilistic approach to find the symmetry plane which is just a

generalized version of the above described algorithm. In this approach the

point cloud is considered to be noised with the noise being isotropic Gaus-

sian with variance σ. Convergence of this method seems to depend hardly

on the σ value so the authors use a multiscale scheme where they start with

a large value of σ and they let it decrease gradually. Also they decimate the

point cloud for larger values of σ and refine it progressively as σ decreases.

In the end the authors propose a simple method for outlier rejection for the

cases when the closest point to SP (xi) is too far from it.

The authors show the results of their symmetry plane detection method

on several objects containing scanned human faces, the Stanford bunny [5]

and a chair with a missing leg (see Figure 2.9). None of the tested objects
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seems to exhibit perfect symmetries and apart from the Stanford bunny all

of them have some missing parts although not very significant. Overall, the

results seem to be good. The greatest advantage of this method is probably

the fact that it works on point clouds so no other information besides the

point positions is needed. The biggest disadvantage is probably the fact that

the result of the method seems to depend on quite many parameters (6 in

total) but the authors proposed their default values. Whether these values

are universally optimal is unclear. Also each step of this iterative method

seems to have time complexity O(n2) which raises a question whether this

method is computable for large point clouds (with hundreds of thousands of

points or more).

Figure 2.9: Results of the symmetry plane detection using the method by

Combès et al. (Figure taken from [7].)

2.9 Lipman et al. (2010)

This article [13] presents a method for detecting various types of symmetries

in 3D objects represented by sets of points. It uses symmetry correspondence

matrix and its spectral analysis. The symmetry correspondence matrix is

derived from a dissimilarity matrix S which is built in a way that value

Sij should represent a minimal distance between the original shape and the

shape which is transformed by such a transform g that the point xi ends up

in the point xj. The transform g is from a given group of transformations

such as rigid transformations.

The method seems to be able to detect the global plane of symmetry

of a 3D shape as well but it does not seem to be its main purpose. The

symmetry plane detection is shown on a few objects which mostly are not
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perfectly symmetrical but also do not exhibit any missing parts (see Figure

2.10). An advantage of this method is the fact that it works on point clouds

and it also seems to be quite general. Overall the presented results are good,

but the method’s running time seems to be rather high. The results shown

in the paper reveal that the running times on objects consisting of 1000

points are in matters of minutes.

Figure 2.10: Results of the symmetry plane detection using the method by

Lipman et al. (Figure taken from [13].)

2.10 Kakarala et al. (2013)

This paper [9] presents a method for detecting a plane of symmetry of objects

represented by a triangle mesh but it seems usable for objects represented by

a point cloud as well. In this method the shape is approximated with spher-

ical harmonics creating a star-shaped surface and the symmetry estimation is

then done on this shape. The authors mention an observation that if a real-

valued function has symmetry across the origin then its Fourier transform is

real-valued. They apply this observation on the spherical harmonics to de-

rive an error function whose optimization leads to the symmetry plane. The

authors also mention that the input surface should be uniformly sampled

before applying their method because it helps the symmetry estimation.

The paper presents several results of the proposed method but all of them

seem to be on objects which are perfectly or nearly perfectly symmetrical.

Also all of these objects seem to be very simple having quite a low vertex

count (see Figure 2.11). The fact that this method is theoretically usable on

point clouds as well as on triangle meshes can be considered its advantage.

Its disadvantage is the fact that only symmetry planes passing through the

origin seem to be detected since the detection is done on a shape created
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by the spherical harmonics. Also it is quite doubtful whether this approach

would succeed on an object with missing parts.

Figure 2.11: Results of the symmetry plane detection using the method by

Kakarala et al. (Figure taken from [9].)

2.11 Sipiran et al. (2014)

The method presented by this paper [21] aims to detect a reflectional sym-

metry of 3D shapes exhibiting missing parts which are represented by tri-

angle meshes. First step of this method is to detect local features of the

given 3D shape. This is done using the theory of heat diffusion on mani-

folds. A function is defined which associates the accumulation of heat up

to time t to each point on the surface x. This function is calculated using

the eigenvalues and eigenvectors of the Laplace-Beltrami operator. As the

feature points, local maxima of the heat accumulation function are taken

(see Figure 2.12). Pairs of the feature points then generate the candidate

symmetry planes but only pairs of points which have a similar value of the

heat accumulation function are considered. The last stage of this algorithm

is a voting process where other pairs of points are tested against the plane

and the more pairs of points are considered to be symmetrical with respect

to the given plane the more votes the plane gets. There are several criteria

designed to decide whether or not a plane is considered a plane of symmetry

of a given pair of points. Also only points in which the mean curvature is

higher than some threshold are used in the voting process. In the end the

plane with the highest vote count can be declared the resulting plane of

symmetry. In some cases a set of more than one plane is taken as a result.
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Figure 2.12: The heat accumulation function (left) (the function values in-

crease as the color goes from blue to yellow and to red) and the feature points

identified as local maxima of this function (right). (Figure taken from [21].)

This method seems to give very good results even when used on objects

with very high level of missing parts (see Figure 2.13). It also seems to be

able to detect more than one plane of symmetry in case of objects which

are symmetrical with respect to more planes. One of the disadvantages

of this method is the fact that it only works on manifold triangle meshes.

Also it uses local features to create the candidate planes which seems to be

a little limiting since there can be objects which do not have any feature

points. Apart from this the feature points are located using eigenvectors

and eigenvalues of the Laplace-Beltrami operator which is a matrix of size

v × v where v is the number of the mesh vertices. This raises a question

whether this method is computable for larger meshes (with tens of thousands

of vertices or more).

Figure 2.13: Results of the symmetry plane detection using the method by

Sipiran et al. (Figure taken from [21].)
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2.12 Korman et al. (2015)

This article [10] presents a method for detecting rigid symmetries (combin-

ations of rotational and reflectional symmetries) of 3D shapes. The shape is

represented by a binary function which has a value of 1 for all points inside

the shape and 0 for all points outside the shape. The authors propose a dis-

tortion measure which is the total amount of mismatched volume between

the original shape and the transformed shape. They also propose a sampling

of the transformation space and a quick approximation of the distortion

which gives approximately the correct distortion value with overwhelmingly

high probability. The distortion and transformation space sampling are used

to detect all approximate symmetries of the shape. How approximate the

symmetries should be is defined by the method’s parameter. The authors

also propose smoothing the shape in advance to decrease their method’s

running time.

The proposed method seems to be usable for detection of a symmetry

plane of a given 3D shape. The results are mostly presented on perfectly or

almost perfectly symmetrical shapes, most likely represented by polygonal

meshes, but there are a few results shown on imperfectly symmetrical shapes

where the detected symmetry is really approximate (see Figure 2.14). No

results on objects with missing parts are shown. Disadvantage of this method

is the fact that it does not consider translation in the symmetry transform-

ations, only rotation and reflection, which means the detected plane or axis

of symmetry must pass through the origin. Also it does not seem to work

on point clouds since in order to decide which points are outside and which

are inside a given shape, surface representation is needed.

Figure 2.14: Results of the symmetry plane detection using the method by

Korman et al. (Figure taken from [10].)

17



2.13 Stephenson et al. (2015)

This paper [22] proposes two methods for detection of symmetry plane of

3D triangle meshes. The first step is common for both methods and it

is the candidate plane creation. Only three candidate planes are created

using PCA [27], specifically using the PCA’s two eigenvectors and their

cross product.

The first method uses a variation of Hausdorff distance which is applied

to measure distance between the original mesh and the mesh created by

reflecting the original mesh over the candidate plane. This measure is applied

on each of the three candidate planes to determine whether or not it is the

plane of symmetry.

The second method uses ray casting. Number of rays perpendicular to

the candidate plane are casted at the triangle mesh and the intersections of

each ray with the mesh are recorded. The distances between the intersections

on one side of the candidate plane and intersections on the other side of the

plane are used to form a symmetry measure of the given plane. This measure

is then used in the same way as the Hausdorff distance measure in the first

method.

The authors also suggest simplifying the triangle mesh to decrease the

runtime of their methods and using a k-d tree to decrease the runtime of the

ray casting method.

There are no visual results shown in the paper. The authors only state

that both methods demonstrated 100% accuracy when used on perfectly

symmetrical models and that the accuracy for approximate symmetry detec-

tion is more difficult to quantify. There are two quite obvious disadvantages

of both proposed methods. The first one is the fact that they both only

work on triangle meshes, although the first one could probably be modified

to work on point clouds as well. The second disadvantage is the fact that

the resulting plane has to pass through the origin since the candidate planes

are created using PCA. Also it is questionable whether for models with sig-

nificant missing parts the PCA-based candidate plane creation would detect

the correct candidate planes at all.

2.14 Li et al. (2016)

This article [12] proposes a method for detection of symmetry plane of 3D

triangle meshes. It first uses CPCA (continuous PCA) to align the model

and then the model is translated so that the center of its bounding sphere is

at the origin. Also the model is scaled so that the bounding sphere’s radius
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is 1. Next a set of viewpoints is sampled on a sphere around the model

and in each viewpoint a camera is set to look at the origin. Using these

cameras the model is rendered from each viewpoint using an orthogonal

projection. The authors use a viewpoint entropy which depends on the

areas of the rendered faces. This entropy is computed for each viewpoint

which creates a viewpoint entropy distribution sphere. Since the symmetry

planes of the model and of the viewpoint entropy distribution sphere are the

same the symmetry plane detection is performed on the viewpoint entropy

distribution sphere. Candidate planes are created using pairs of viewpoints

with matching values of the viewpoint entropy and for each plane the rest

of all pairs of viewpoints with matching entropy are verified to see whether

they are symmetric with respect to the given candidate plane. If the number

of symmetric pairs is great enough the given candidate plane is declared a

symmetry plane.

The article shows results of the symmetry plane detection on quite many

objects but all of them are perfectly or almost perfectly symmetrical and

most of them seem to be quite simple (see Figure 2.15). The greatest disad-

vantage of this method is probably the fact that it only detects symmetry

planes passing through the center of the model’s bounding sphere. Also the

method only works on triangle meshes and it is very unlikely that it would

work on models with missing parts.

Figure 2.15: Results of the symmetry plane detection using the method by

Li et al. (Figure taken from [12].)

2.15 Schiebener et al. (2016)

This paper [19] presents a method for detecting the plane of symmetry of

an object represented by a point cloud and its use for incomplete object

completion. Apart from the point cloud representing the input object, the

method also needs a point cloud representing the object’s surrounding and
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position from where the points were scanned. It relies on the fact that a

3D object usually stands on some kind of supporting structure, such as the

ground, and the first step is detecting the supporting plane which represents

such a structure. Candidates for the supporting planes are generated from

the object’s surrounding using the RANSAC algorithm and only 10 best

candidates are kept. Which supporting plane candidates are the best is

determined using a simple rating defined by the authors. For each supporting

plane candidate several symmetry plane candidates are created by sampling

the space of planes orthogonal to the given supporting plane. The authors

define rating of the candidate symmetry planes which uses the supporting

plane and the scanner position to evaluate whether a given point reflected

over a given plane ends up in a plausible location. The plane with the highest

rating is declared the object’s plane of symmetry.

Results of the symmetry detection and symmetry-based object comple-

tion are shown on a few quite simple objects (see Figure 2.16). An advant-

age of this method is the fact that it works on point clouds representing

incomplete objects. Its main disadvantage is that it needs the object’s sur-

rounding and the scanner position to work. Also it only detects symmetry

planes which are orthogonal to the supporting surface.

Figure 2.16: Results of the symmetry-based object completion using the

method by Schiebener et al. The original points are red, the points generated

by reflection over the detected symmetry plane are green, dark blue are the

points on the sides and light blue are the bottom points. (Figure taken from

[19].)

2.16 Hruda, Dvořák (2017)

In this paper [8] a method for detecting a symmetry plane of 3D triangle

meshes is presented which is in many ways a simplified version of the method
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described in Section 2.11. In the first step a given number of vertices with

the highest Gaussian curvature are extracted as feature points. Pairs of

these points which satisfy certain criteria are then used to create the can-

didate symmetry planes. Next a voting process is deployed to find the best

symmetry plane. For each candidate plane all pairs of the feature points are

tested against the given plane and if the given pair of points together with

the plane satisfy certain criteria, the plane gets a vote. In the end the plane

with the highest vote count is declared the resulting symmetry plane.

Results of this method are shown on several objects, also on some objects

exhibiting missing parts and imperfect symmetries (see Figure 2.17). Most

of these objects represent human faces or human heads but there are a

few others as well. Overall the results seem to be good. An advantage of

this method is that it appears to be quite simple. One of this method’s

disadvantages is the fact that it only works on triangle meshes. Also it

seemingly does not work well with triangle meshes with a high number of

vertices (tens of thousands or more) but this problem can be solved with

mesh simplification. On the other side it seems to work well with meshes with

very low vertex count which can be considered an advantage. The greatest

disadvantage of this method is that it relies on quite many parameters (5 in

total). Default values of these parameters are proposed but it is shown in

the paper that these values are not universally optimal and that for some

objects they do not ensure satisfying results.

Figure 2.17: Results of the symmetry plane detection using the method by

Hruda and Dvořák. (Figure taken from [8].)

2.17 Summary

Several methods for symmetry plane detection were described in this section

and a subjective evaluation of each one of them was provided by the author
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of this thesis. One important aspect of each method is what type of input

data it works on, overall evaluation of this aspect was already provided at

the beginning of this chapter.

Another important aspect is whether the given method puts any con-

strains on the planes it detects. Some of the described methods (specifically

those described in Sections 2.2, 2.6, 2.10, 2.12, 2.13 and 2.14) only detect

planes which pass through some reference point such as the origin, centroid

or the center of mass.

These constrains are also related to whether the given method is able

to detect approximate symmetries and symmetries on objects with miss-

ing parts. The methods described in Sections 2.3, 2.7, 2.8, 2.9, 2.12 and

2.15 seem to be usable (at least to some level) for approximate symmetry

detection and some of them even seem to work on objects which exhibit

some missing parts, although usually the missing parts are not so signific-

ant. Also two of these methods, specifically those from Sections 2.3 and

2.15, need some additional information to work, such as the scanner posi-

tion. The only method which seems to be specifically designed for global

symmetry plane detection on objects with significant missing parts is the

one described in Section 2.11. The method described in Section 2.16 seems

usable for detecting symmetry planes of objects with quite significant miss-

ing parts as well but this method is not of such importance since it is in

many ways just a simplified version of the method from Section 2.11 and

also its results seem to depend quite strongly on its parameter configuration.
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3 Proposed Method

The goal of this work was to design a method which could be used to detect

the plane of global reflectional symmetry of a given 3D object and would

possibly be able to detect also an approximate symmetry and symmetry of

an object with missing parts. In this chapter a new method is proposed

which seems to, more or less, fulfill the above mentioned requirements. The

general method can be used on objects represented by only a set of points

(a point cloud) but when more information about the object is available the

method can be further extended to use this information in its favor.

The proposed method is based on maximizing a specific symmetry meas-

ure which is continuous and even differentiable. The input point cloud is

simplified to a very low number of points and pairs of points of this sim-

plified point cloud are used to create a number of candidate planes. From

these candidate planes the one with the highest symmetry measure is chosen.

For time reasons, the symmetry measure is computed on another simplified

version of the input point cloud. In the end a local optimization is per-

formed to find the final plane of symmetry. The symmetry measure also

contains weights which allow using some additional information about the

input object.

The detailed description of the proposed symmetry detection method is

given in the rest of this chapter.

3.1 Background

In order to describe the method itself, a few terms have to be defined first.

The goal of the proposed method is to detect the plane which best captures

the reflectional symmetry of a given 3D object. Let us define a general plane

P by its implicit equation P : ax + by + cz + d = 0 or in the vector notation

[a, b, c, d][x, y, z, 1]T = 0 where [a, b, c, d]T = p is a four-dimensional vector

of the plane coefficients. Therefore we are searching for such a vector p

which represents the plane of symmetry of the given object. We also need to

define a function r(p, x) = [rx(p, x), ry(p, x), rz(p, x)]T ∈ E3 which reflects

a point x = [x, y, z]T ∈ E3 over a plane P represented by p. This function
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can be defined as shown in Equation 3.1.

r(p, x) = r([a, b, c, d]T , [x, y, z]T ) =

[x, y, z]T − 2
ax + by + cz + d√

a2 + b2 + c2
· [a, b, c]T√

a2 + b2 + c2

(3.1)

The expression ax+by+cz+d√
a2+b2+c2

represents the signed distance of x from P and
[a,b,c]T√
a2+b2+c2

is the normalized normal vector of P . The function can be further

simplified as shown in Equation 3.2 and rewritten as shown in Equation 3.3.

r(p, x) = [x, y, z]T − 2
ax + by + cz + d

a2 + b2 + c2
[a, b, c]T (3.2)

r(p, x) =

[x − 2a
ax + by + cz + d

a2 + b2 + c2
, y − 2b

ax + by + cz + d

a2 + b2 + c2
, z − 2c

ax + by + cz + d

a2 + b2 + c2
]T

(3.3)

The ax+ by + cz expression can be replaced with [a, b, c]x and since [a, b, c]T

is the normal vector of the plane P , we can let np denote it and use nT
p x

instead. It can also be noticed that a2 + b2 + c2 = nT
p np. This gives us the

form shown in Equation 3.4.

r(p, x) = [x − 2a
nT

p x + d

nT
p np

, y − 2b
nT

p x + d

nT
p np

, z − 2c
nT

p x + d

nT
p np

]T =

x − 2
nT

p x + d

nT
p np

np

(3.4)

It should be noted that from Equation 3.3 it is obvious that when x is

constant, all three function rx, ry and rz, which represent the components

of r, are continuous and differentiable except for p = [0, 0, 0, d]T which does

not represent a valid plane.

3.2 Symmetry Measure

Let us consider a perfectly reflectionally symmetrical 3D object sampled

with n points, which form a point cloud X = {x1, x2, ..., xn}, in such a way

that the point cloud is perfectly symmetrical as well. This means that such

a plane P represented by p = [a, b, c, d]T exists where for any xi ∈ X there

is xj ∈ X such that r(p, xi) = xj. In other words any point in the point

cloud X, after it gets reflected over the plane P , ends up in another point of

the point cloud X or in itself. Detection of the symmetry plane P of such
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an object could probably be done by computing distances between r(p, xi)

and xj for all possible pairs of points xi, xj ∈ X and minimizing their sum.

Formally this can be expressed as minimizing the error function shown in

Equation 3.5 for p or the one shown in Equation 3.6 when the minimization

is considered in the least square sense.

e1
X(p) =

n
∑

i=1

n
∑

j=1

||r(p, xi) − xj|| (3.5)

e2
X(p) =

n
∑

i=1

n
∑

j=1

||r(p, xi) − xj||2 =
n

∑

i=1

n
∑

j=1

(r(p, xi) − xj)
T (r(p, xi) − xj)

(3.6)

The problem with such an error function is that it considers the point

cloud to be perfectly or almost perfectly symmetrical. If the point cloud

exhibits imperfect symmetry, has outliers or represents an object with sig-

nificant missing parts, minimizing this error function would fail to detect

the desired plane of symmetry, since such a plane does not represent its

minimum. This is because, even if the plane visually correctly captures the

object’s symmetry, some points in the point cloud, when they get reflected

over this plane, can end up in locations where there are no other close points

of the point cloud which results in a higher value of the error function. It can

also be explained in the way that minimizing the error function for p does

not force the points in the point cloud to end up close to other points of the

point cloud when reflected over the plane, it only minimizes the overall error

sum. This behavior is very undesirable since the method should be able to

detect not just perfect, but also imperfect and approximate symmetries and

possibly symmetries on objects with significant missing parts.

This problem can be solved by using the opposite approach. Instead

of computing and summing distances of reflected points from other points

we can compute their similarities. For each pair of points xi, xj ∈ X we

will compute the distance between r(p, xi) and xj but instead of using

the distance directly we will transform it into similarity using a similarity

function which will have a maximum value in the case r(p, xi) = xj and

its value will approach zero with the increasing distance between r(p, xi)

and xj. We can sum these similarities of all possible pairs r(p, xi), xj,

where xi, xj ∈ X, and try to find a plane that maximizes this sum which

can be called a symmetry measure. Maximizing such measure will basically

force the maximum of the points in the point cloud to reflect as close as

possible to other points of the point cloud. This can formally be expressed
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as maximizing the symmetry measure function shown in Equation 3.7.

sX(p) =
n

∑

i=1

n
∑

j=1

wijϕ(||r(p, xi) − xj||) (3.7)

The similarity function ϕ(l) is some radial function which equals 1 for l = 0

and its value is decreasing and approaching 0 as l increases, wij are weights

of given pairs of points and will be discussed later, for now we will consider

all the weights to have the value of 1.

3.2.1 Similarity Function

As ϕ, for example the Gaussian function or one of the Wendland’s functions

[26] can be used. Whether the symmetry measure sX(p) is continuous and

differentiable depends on the choice of the ϕ function, specifically sX(p)

is continuous and differentiable (except for p = [0, 0, 0, d]T ) when ϕ(l) is

continuous and differentiable for l ∈ 〈0; ∞) and d
dl

ϕ(0) = 0. This holds,

of course, for the Gaussian function and also for most of the Wendland’s

functions. The continuity and differentiability of sX will be useful in the

last step of our method. Although the Gaussian function is simple, easy to

implement and could be chosen as ϕ without significant problems, we used

a modified Wendland’s function shown in Equation 3.8 instead. The reason

will be clear from the following text.

ϕ(l) =







(1 − 1
2.6

αl)5(8( 1
2.6

αl)2 + 5 1
2.6

αl + 1) αl ≤ 2.6

0 αl > 2.6
(3.8)

The value α is the shape parameter of the function. The multiplier 1
2.6

is

our modification which ensures that the function is similar to the Gaussian

function (e−(αl)2

), this can be useful because this way both our function and

the Gaussian function will give similar results for the same value of α. The

main difference between the Gaussian function and our Wendland’s function

is that the Wendland’s function is equal to 0 for αl > 2.6. Why this is useful

will be discussed later. Figures 3.1 and 3.2 provide a visual comparison of

the Gaussian function and our modified Wendland’s function for α = 1.

The shape parameter α can be set appropriately using the size of the

input point cloud. We set α as shown in Equation 3.9.

α =
15

lavrg

(3.9)

The value lavrg is the average distance of the point cloud points from its

centroid and the value 15 was chosen experimentally.
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Figure 3.1: Visual comparison of the Gaussian function (red) and our mod-

ified Wendland’s function (blue) for α = 1 and 0 ≤ l ≤ 3.
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Figure 3.2: Visual comparison of the Gaussian function (red) and our mod-

ified Wendland’s function (blue) for α = 1 and 2 ≤ l ≤ 2.8.
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3.2.2 Efficient Computation

It is obvious that the brute force computation of sX(p) for a given plane P

represented by p has time complexity of O(n2) but it can be noticed that for

many pairs xi, xj ∈ X the similarity ϕ(||r(p, xi) − xj||) is 0. Specifically

we only need to compute the similarities for such pairs xi, xj ∈ X for which

||r(p, xi) − xj|| ≤ 2.6
α

. Therefore, some auxiliary data structure can be used

to filter those pairs for which the similarity has to be computed. We use

a uniform grid with the cell size 2.6
α

× 2.6
α

× 2.6
α

which is implemented as a

hash table where the key is a triplet of the cell coordinates and the value

corresponding with a given key is a list of the point cloud points contained

in the given cell. During the computation of sX(p), after a point xi is

reflected over the given plane and ends up in a cell c, only points in c and

cells adjacent to c are considered for the symmetry measure computation.

Points in any cells which are farther from c have zero similarity with the

reflected point and do not have to be considered.

If the Gaussian function was used as ϕ instead of the modified Wend-

land’s function, even points in farther cells would have non-zero similarity

with the reflected point which would result in sX(p) being computed with

a small error. Although this error is quite insignificant when the symmetry

measure is computed for a given plane, it slightly disrupts the continuity

and differentiability of the function sX .

3.3 Point Cloud Simplification

The input point cloud can be simplified in order to compute the symmetry

measure faster. The acceleration is especially noticeable when the number

of points in the input point cloud is very high. The simplification is also

used during the candidate plane creation which will be described later.

Our simplification algorithm is very simple and considerably fast. It uses

the same kind of grid as used for the efficient computation of the symmetry

measure (see Section 3.2.2). The grid is created for the input point cloud

with the cell size 4·lavrg

k
× 4·lavrg

k
× 4·lavrg

k
and each occupied cell gives one

point of the simplified point cloud by averaging all points contained in the

cell. The constant 4 in the cell size was chosen so that for k = 1 the whole

point cloud could approximately fit into one cell. We want to simplify the

input point cloud to approximately a given number of points, let m denote

this number, so we first set k = 1 and we repeat the simplification of the

original point cloud with increasing value of k until the number of points of

the simplified point cloud reaches at least m. We increase k by 1 each time.
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3.4 Candidate Plane Creation

In order to find the symmetry plane of the given point cloud X as the plane

which maximizes the symmetry measure sX , we first have to create a set

of candidate symmetry planes where the best candidate for the symmetry

plane will be the one for which sX(p) is maximal. It would be convenient to

create only such candidate planes that pass through X and for which there

is at least some chance that they actually are the symmetry planes of X. We

can create the candidate planes by taking each pair of points xi, xj ∈ X,

i 6= j and create the plane of symmetry of these two points. Such a plane is

created by computing its normal vector as np = xi − xj and its d coefficient

as d = −nT
p (xi+xj

2
).

Problem is that creating the candidate planes this way directly on X

would result in an overwhelming number of planes, at least in such a case

when X consists of more than a few tens of points, which would be uncom-

putable. Therefore, we first simplify X using the simplification algorithm

described in Section 3.3 with m = 100, creating a new point cloud Xcand

consisting of approximately 100 to 110 points. The candidate plane creation

is then performed on Xcand creating approximately 5000 to 6000 candidate

planes. The value of m = 100 was chosen experimentally so that the simpli-

fication results in a reasonable number of candidate planes and Xcand is still

a sufficient, although very rough, approximation of X.

3.5 Selecting the Best Candidate

Once we have the candidate planes, we have to select the one with the highest

symmetry measure. If the input point cloud X consists of a large number

of points (tens of thousands or more), the symmetry measure computation

for all the candidate planes on X takes quite a lot of time. Therefore, we

first simplify X, using the simplification algorithm described in Section 3.3,

creating a new point cloud Xsimp consisting of approximately 1000 points (we

use m = 1000 for the simplification). The number 1000 was experimentally

chosen because with such a number of points Xsimp seems to represent the

input point cloud X sufficiently and the computational time is acceptable.

Now we compute the symmetry measure sXsimp
(p) for all candidate planes

P represented by p and we select the one for which the symmetry measure is

maximal. Such a plane now represents the best candidate for the symmetry

plane of Xsimp and, therefore, of the input point cloud X as well.
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3.6 Final Optimization

It is obvious that the best symmetry plane candidate selected in the previous

step is not in general the global maximum of sXsimp
(p), it is just very likely

close to it. So we can use some numerical optimization method, which starts

from the best candidate plane, in order to get from it to the actual global

maximum of sXsimp
(p). Since the numerical optimization methods usually

operate best on functions which are continuous and differentiable, this is

where the continuity and differentiability of sXsimp
(p) can be useful, it can,

for example, make the numerical method converge more quickly. We use

the Nelder-Mead optimization method [16] implemented in Microsoft Solver

Foundation [3].

Before the numerical optimization is run, the point cloud should be trans-

lated, together with the best candidate plane, so that the average of all points

in the point cloud is at the origin. This translation can as well be done at

the beginning of the whole algorithm with the input point cloud X, and the

whole algorithm can be performed on the translated point cloud, which is

what we do. We can define this translation as a translation by a vector t

which is defined as shown in Equation 3.10.

t = − 1

n

n
∑

i=1

xi (3.10)

The translation is important because if the point cloud was very far from the

origin then the best candidate plane would be very far from it as well. Then

even a slight change of its normal vector could cause quite a noticeable

change of the plane position which would be bad for the convergence of

the numerical method. After the numerical optimization is over we take

the plane which it converged to, we translate it by −t and we declare the

resulting plane the plane of symmetry of the point cloud X.

3.7 Weights

Until now we have been ignoring the weights wij in the symmetry measure

sX (see Equation 3.7) and considered all of them to equal to 1. Using

the weights the algorithm can be made to work even better or to work on

objects on which it does not work without the weights. The weight wij can

be written as wij = ws
ijw

d
ij(p) where ws

ij is a static weight and wd
ij(p) is a

dynamic weight. It can be noticed that the dynamic weight depends on the

plane P represented by p. Now the symmetry measure sX can be rewritten
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as shown in Equation 3.11.

sX(p) =
n

∑

i=1

n
∑

j=1

ws
ijw

d
ij(p)ϕ(||r(p, xi) − xj||) (3.11)

The dynamic weights can, for example, represent the symmetry of normal

vectors or directions of principle curvatures in corresponding pairs of points

with respect to a given plane. The static weights can be set to represent the

importance of given pairs of points. In other words, the more it is desired for

the point xi to end up in or near the point xj after reflecting it over the plane

of symmetry the higher the static weight ws
ij should be. The importance can

be set as a similarity of some kind of feature function values in the given

two points. As this feature function, for example, some type of curvature

can be used, since it can be expected that in two symmetrical points there

are similar curvature values.

In the rest of this section we give one possible way how the static and dy-

namic weights can be set. To set the dynamic weights we use the symmetry

of normal vectors and for the static weights we use the similarity of the val-

ues of Gaussian curvature. It should be noted that the Gaussian curvature

is not a universally optimal feature function to use but it has already proven

to be usable for quantifying point similarity in many cases [8]. How such

weighting can be useful will be shown in Chapter 4 and how both dynamic

and static weights are set exactly will be described in the following text.

Since a point cloud representation of an object does not implicitly give

enough information to set the weights (the normal vectors and the values of

Gaussian curvature), we will now consider the object to be represented by a

manifold triangle mesh. On such mesh the normal vectors and the values of

Gaussian curvature in all its vertices can be estimated in various ways. We

estimate the normal vectors of all vertices by summing the normal vectors of

triangles adjacent to the given vertex and normalizing the resulting vector.

The values of Gaussian curvature are estimated the same way as in [8].

Apart from the set of points X = {x1, x2, ..., xn} we now also have a set

of unit normal vectors N = {n1, n2, ..., nn} and a set of Gaussian curvatures

G = {g1, g2, ..., gn} where ni is the unit normal vector in the point xi and

gi is the Gaussian curvature in the point xi.

We also need to define how the normal vectors and the values of Gaussian

curvature will be determined when the simplification algorithm described in

Section 3.3 is applied. When a new point of the simplified point cloud is

created by averaging the points in a given cell of the simplification grid, its

normal vector is determined by averaging the normal vectors in all points

in the cell and normalizing the resulting vector. Its Gaussian curvature is
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taken from the point in the cell for which the absolute value of its Gaussian

curvature is the highest.

3.7.1 Computing the Dynamic Weights

In order to measure the reflectional symmetry of two unit normal vectors in

two points, we first have to define a function rn(p, n) which reflects a unit

normal vector n over the plane P represented by p. This function is almost

the same as the function r(p, x) (see Equation 3.4) that reflects a point x

over P , the only difference is that, when reflecting the normal vector, the

plane must be translated so that it passes through the origin. This can

be done simply by leaving out the d coefficient of the plane, therefore, the

function rn can be defined as shown in Equation 3.12.

rn(p, n) = n − 2
nT

p n

nT
p np

np (3.12)

The symmetry of two normals ni and nj is defined as the similarity of

rn(p, ni) and nj. To quantify such similarity we apply the similarity func-

tion ϕ(l) on the angle between rn(p, ni) and nj. As ϕ we use our Wendland’s

function (see Equation 3.8) with α = 4. This value of α was chosen so that

for angle π
16

(that is 11.25◦) the similarity is approximately 0.5 because it

seems reasonable that only for such low angle the similarity is significant

(close to 1). The dynamic weights wd
ij(p) are therefore defined as shown in

Equation 3.13.

wd
ij(p) = ϕ(arccos(rn(p, ni)

T nj)), with α = 4 (3.13)

Since ni and nj are normalized, the expression rn(p, ni)
T nj is the cosine of

the angle between rn(p, ni) and nj. It should be noted that the symmetry

measure remains continuous when such dynamic weighting is used. For the

symmetry measure to also stay differentiable we now need to fulfill another

condition which is d
dl

ϕ(π) = 0. Fortunately, this holds for α = 4 because

4π > 2.6 and for any αl > 2.6 it is that d
dl

ϕ(l) = 0.

3.7.2 Setting the Static Weights

As mentioned before, we use the similarity of Gaussian curvatures to set the

static weights, see Equation 3.14.

ws
ij =







min(|gi|,|gj |)
max(|gi|,|gj |) |gi| ≥ gavrg

h
∧ |gj| ≥ gavrg

h
∧ gigj > 0

0 otherwise
(3.14)
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The weight is non-zero only when both curvatures gi and gj have the same

sign and their absolute values are both greater than the threshold gavrg

h
where

gavrg is the average of absolute values of Gaussian curvatures in all points

and h is a constant which we set as h = 100. This ensures that Gaussian

curvatures with very small absolute values are not considered. The value

gavrg is computed as shown in Equation 3.15.

gavrg =
1

n

n
∑

i=1

|gi| (3.15)

3.7.3 Filtering the Candidate Planes

The weights do not have to be used only when computing the symmetry

measure, they can also be used to lower the number of candidate planes.

Suppose we have the input object defined by the point cloud X, the set of

normal vectors N and the set of Gaussian curvatures G and we simplify it

for the candidate plane creation (see Section 3.4) creating the point cloud

Xcand, a new set of normal vectors Ncand and a new set of Gaussian curvatures

Gcand. When creating a candidate plane P , represented by p, as a symmetry

plane of xi ∈ Xcand and xj ∈ Xcand, we can test whether the weights ws
ij

and wd
ij(p), computed on Ncand and Gcand, are high enough and if not, we

will not consider the given plane a candidate plane anymore and will not

compute its symmetry measure. It should be noted that the normal vector

information and Gaussian curvature information are quite damaged by the

simplification process and therefore we should not set the conditions for the

weights too constraining. Specifically we consider the plane P , created as a

symmetry plane of xi ∈ Xcand and xj ∈ Xcand, a candidate plane if ws
ij > 0

and wd
ij(p) > 0.25. These thresholds were chosen experimentally.

3.7.4 Additional Notes

There are numerous ways how both the static and dynamic weights can be

set and each of them can be suitable for different types of input data. In

addition, using the weights can also have influence on the numerical optim-

ization which we use as the final step of our algorithm (see Section 3.6).

When no weights are used, the symmetry measure sX has non-negligible

value for almost any plane which passes through the object. This is be-

cause, even when the given plane is not the plane of symmetry of the point

cloud, at least some points, when they get reflected over this plane, will end

up somewhere near other points of the point cloud increasing the symmetry
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measure. This probably also causes the symmetry measure to have plenty

of local extrema.

When the weights are used, they set more constrains on the symmetry

measure. For example, for a given random plane passing through the point

cloud, which is not its symmetry plane, it is quite likely that there will

be some pairs of points which are symmetrical with respect to this plane,

but it is not that likely that all these pairs will also have symmetrical nor-

mal vectors and it is even less likely that the points in all these pairs will

also have similar Gaussian curvatures. It can be expected that this causes

the symmetry measure to have non-negligible or even non-zero values only

for planes which are considerably close to the symmetry plane being more

smooth and having less significant local extrema. These observations could

be useful not just for deciding how to set the weights but also for choosing

the right numerical optimization method for the last step.

It should be noted that these are just theoretical notes and that we

neither used these observations in practice nor deeper tested their validity.

34



4 Results

The designed method was tested on a computer with CPU Intel R© Pentium R©
Processor N3540 (clock rate 2.16 GHz, 4 cores, L1 cache 224 kB, L2 cache 2

MB) and 4GB of memory with clock rate of 666MHz and it was implemented

in C#. We used the mesh processing framework provided by Doc. Ing.

Libor Váša, Ph.D. (which is the same framework as used for [25]) for input

data loading and processing and for visualization of the results. Also, some

parts of the testing application, mainly related to the visualization, were

implemented previously by, or in cooperation with, Bc. Jan Dvořák when

working on [8]. The implementation is available on the DVD.

For testing we used several artificial objects which are strongly symmet-

rical and several real 3D-scanned objects. The artificial objects are depicted

in Figure 4.1. The Ant, the Starship and the Formula (Figures 4.1b, 4.1c

and 4.1d) are part of The Princeton Shape Benchmark [4].

(a) Lion (2213 points) (b) Ant (3495 points)

(c) Starship (3099 points) (d) Formula (10969 points)

Figure 4.1: Strongly symmetrical artificial 3D objects.

Figure 4.2 shows four 3D-scanned human faces provided by the authors

of the Fidentis Project [2]. Other real 3D-scanned objects are depicted in

Figure 4.3. The Armadillo (Figure 4.3a) was acquired from The Stanford

3D Scanning Repository [5], the Embrasure and Column base (Figures 4.3b

and 4.3c) are 3D-scanned pieces of architecture taken from PRESIOUS 3D

Data Sets [1]. These three objects (Armadillo, Embrasure and Column base)

were specifically selected for comparison of our method with the method by

Sipiran et al. [21] (see Section 2.11) because the authors of this method used
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these three objects for testing as well. The reason why we chose the method

by Sipiran et al. for comparison will be given in Section 4.1.4.

(a) Face 1 (2500 points) (b) Face 2 (2500 points)

(c) Face 3 (2500 points) (d) Face 4 (2500 points)

Figure 4.2: 3D-scanned human faces.

(a) Armadillo (172974 points) (b) Embrasure (117535 points)

(c) Column base (69512 points)

Figure 4.3: 3D-scanned objects selected for comparison with Sipiran et al.

We also artificially created several perfectly symmetrical objects. We

took some of the previously shown objects and we used our symmetry de-

tection method to find the best symmetry plane of each one of them. After

that, for each object, we removed all the points on one side of the plane and

we reflected all the remaining points over the plane creating a perfectly sym-

metrical object with known symmetry plane - the ground truth symmetry

plane. Each object was randomly rotated to prevent the symmetry plane
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from being axis aligned. These perfectly symmetrical objects, together with

their ground truth symmetry planes, are depicted in Figure 4.4.

(a) Lion PS (2376 points) (b) Ant PS (3808 points)

(c) Armadillo PS (108266 points) (d) Embrasure PS (138998 points)

Figure 4.4: Perfectly symmetrical objects with their ground truth symmetry

planes. (The letters PS stand for perfectly symmetrical.)

In the following text we show the results achieved using the basic method,

which uses neither weights (wij = 1) nor any candidate plane filtering, and

at the end of this chapter we also show several results of the modified version

which uses the weighting and candidate plane filtering described in Section

3.7.

For the sake of visualization simplicity all the test objects shown above

are represented by triangle meshes but it should be noted that for the basic

version of our method only vertex positions were used.

4.1 Results of the Basic Method

The basic method, which does not use the weights, was tested on all the

objects shown above and also on several damaged versions of these objects.

We also tried adding noise to some of these objects to test how our method

performs on noisy shapes. This section presents the results of all these tests
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including a comparison with another existing method, the method by Sipiran

et al. [21] (see Section 2.11).

For the perfectly symmetrical objects we provide a numerical quantific-

ation of our method’s error, for the other objects we provide visual results.

4.1.1 Perfectly Symmetrical Objects

Evaluation of the symmetry detection results on approximately symmetrical

objects can only be done visually, not numerically, because for such objects

there is no correct symmetry plane and therefore no ground truth to com-

pare the detected plane with. On the other side any perfectly reflectionally

symmetrical object has at least one correct symmetry plane. If we take the

artificially created perfectly symmetrical objects from Figure 4.4, it is quite

obvious that all these objects are precisely symmetrical with respect to only

a single plane which is known. This gives us the ground truth with which

the symmetry detection results can be compared in order to quantify the

precision of our method.

In order to quantify the precision or the error of a given plane we need

a way to quantify the difference between two planes. We implemented and

used three difference measures denoted γ, D1 and D2, how they are computed

will be described in the following text.

Let us define two general planes P1 : a1x + b1y + c1z + d1 = 0 and

P2 : a2x + b2y + c2z + d2 = 0 represented by their coefficients vectors p1 =

[a1, b1, c1, d1]
T , p2 = [a2, b2, c2, d2]

T . We also denote np
1

= [a1, b1, c1]
T the

normal vector of the plane P1 and np
2

= [a2, b2, c2]
T the normal vector of

the plane P2.

Plane difference measure γ

The first plane difference measure, denoted γ(p1, p2), is just an angle between

the normal vectors of the two planes. The angle in degrees is computed as

shown in Equation 4.1.

γ(p1, p2) =
180

π
arccos(

|nT
p

1

np
2
|

||np
1
||||np

2
||) (4.1)

It can be noticed that this difference measure does not use the d coefficients

of the planes, ignoring their mutual position completely.

Plane difference measure D1

The second plane difference measure, denoted D1(p1, p2), is defined as the

distance between the coefficient vectors of the normalized planes. By nor-
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malized plane we understand a plane with a unit normal vector. The plane

difference measure D1(p1, p2) is computed as shown in Equation 4.2. The d

coefficients of the planes are normalized according to the object size determ-

ined by lavrg which is the average distance of the input point cloud points

from its centroid.

D1(p1, p2) =

√

√

√

√(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 + (
d1 − d2

lavrg

)2 (4.2)

The two planes must have the same orientation before this computation is

applied, i.e. nT
p

1

np
2

≥ 0. Otherwise, one of the plane vectors (p1 or p2) must

be multiplied by −1 before the computation. Also, as mentioned above, the

planes must both be normalized so that ||np
1
|| = ||np

2
|| = 1.

Plane difference measure D2

As the third plane difference measure, denoted D2(p1, p2), we use a nor-

malized version of the distance metric for transformations proposed in [18].

Since reflection of an object over a given plane can be understood as a trans-

formation, this distance metric is well adoptable for our case. The difference

measure D2(p1, p2) is computed as shown in Equation 4.3.

D2(p1, p2) =
1

lavrg

√

√

√

√

1

n

n
∑

i=1

||r(p1, xi) − r(p2, xi)||2 (4.3)

This measure expresses the distance of the point cloud X = {x1, x2, ..., xn}
reflected over the first plane from the same point cloud reflected over the

second plane.

The minimal possible value of all the three plane difference measures

γ(p1, p2), D1(p1, p2) and D2(p1, p2) is 0, which only occurs when the planes

P1 and P2, represented by p1 and p2, are the same. The maximum value of

γ(p1, p2) is 90◦. The maximum value of D1(p1, p2) and D2(p1, p2) is technic-

ally unlimited but for planes that pass through the object, their maximum

value is approximately 1, due to the normalization according to the object

size.

For better understanding how the difference measures γ, D1 and D2

behave, Figure 4.5 shows differerent planes represented by p with the Lion

PS object and for each of these planes the differences γ(p, pc), D1(p, pc) and

D2(p, pc) are shown where pc represents the correct symmetry plane of the

Lion PS. Figure 4.6 shows the same differences for other planes with the

Armadillo PS object.
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(a)
γ(p, pc) = 0◦

D1(p, pc) = 0

D2(p, pc) = 0

(b)
γ(p, pc) = 2.882◦

D1(p, pc) = 0.0597

D2(p, pc) = 0.0859

(c)
γ(p, pc) = 6.566◦

D1(p, pc) = 0.1218

D2(p, pc) = 0.1937

(d)
γ(p, pc) = 21.270◦

D1(p, pc) = 0.3813

D2(p, pc) = 0.6071

Figure 4.5: Different planes with the Lion PS object and their differences

γ, D1 and D2 from the correct symmetry plane of the Lion PS. The vector

p represents the plane depicted in the given figure and pc represents the

correct symmetry plane of the Lion PS. The correct symmetry plane is also

depicted in (a) for better visual comparison.

(a)
γ(p, pc) = 0◦

D1(p, pc) = 0

D2(p, pc) = 0

(b)
γ(p, pc) = 3.215◦

D1(p, pc) = 0.0597

D2(p, pc) = 0.1068

(c)
γ(p, pc) = 7.023◦

D1(p, pc) = 0.1305

D2(p, pc) = 0.2226

(d)
γ(p, pc) = 21.523◦

D1(p, pc) = 0.4093

D2(p, pc) = 0.6490

Figure 4.6: Different planes with the Armadillo PS object and their dif-

ferences γ, D1 and D2 from the correct symmetry plane of the Armadillo

PS. The vector p represents the plane depicted in the given figure and pc

represents the corrects symmetry plane of the Armadillo PS. The correct

symmetry plane is also depicted in (a) for better visual comparison.

It can be seen that the plane difference measures D1 and D2 give con-

siderably similar values when applied on the same two planes with the same

object. This implies that neither one of these measures is more important

than the other and that they both give us very similar information. But in
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the rest of this chapter we will use both these difference measures for com-

pleteness. The difference measure γ, on the other hand, gives very different

information than D1 and D2 because it measures the angle difference of the

planes and does not consider their position.

Table 4.1 shows the a, b, c and d coefficients of the symmetry planes

detected by our method on the perfectly symmetrical objects from Figure

4.4. For each object the correct symmetry plane is shown for comparison.

All the planes are normalized (their normal vectors have unit lengths). The

table also shows the differences between the corresponding coefficients of

the correct and the detected plane denoted ∆a, ∆b, ∆c and ∆d. If we

denote the normalized correct plane Pc, represented by pc = [ac, bc, cc, dc]
T ,

and the normalized detected plane Pd, represented by pd = [ad, bd, cd, dd]T ,

the coefficient differences are computed as ∆a = |ac − ad|, ∆b = |bc − bd|,
∆c = |cc − cd| and ∆d = |dc−dc|

lavrg
. The planes must have the same orientation,

i.e. if nT
pc

npd
< 0 then one of the plane vectors (pc or pd) is multiplied by

−1 before computing the coefficient differences.

It can be seen that the differences between the correct planes and the

detected planes are very small. We do not show the detected planes in any

figure because they differ from the correct planes so little that the difference

is visually unnoticeable and the detected planes appear the same as the

planes shown in Figure 4.4.

Object a b c d

Lion PS

Correct plane 0.19559 −0.71076 0.67569 17.60907

Detected plane 0.19552 −0.71015 0.67635 17.63777

Difference ∆ 0.00007 0.00061 0.00066 0.00083

Ant PS

Correct plane 0.35990 0.60887 −0.70692 −15.63888

Detected plane 0.35951 0.60896 −0.70704 −15.64079

Difference ∆ 0.00039 0.00009 0.00012 0.00028

Armadillo PS

Correct plane −0.33494 −0.75954 0.55759 21.99788

Detected plane −0.33318 −0.76143 0.55606 22.00152

Difference ∆ 0.00176 0.00189 0.00153 0.00013

Embrasure PS

Correct plane 0.84358 0.22679 −0.48674 −165.15484

Detected plane 0.84253 0.22662 −0.48865 −165.58402

Difference ∆ 0.00105 0.00017 0.00191 0.00154

Table 4.1: The a, b, c and d coefficients of the detected symmetry planes

and the correct symmetry planes of the perfectly symmetrical objects. Also

the differences ∆a, ∆b, ∆c and ∆d between the corresponding coefficients of

the correct and the detected planes are shown. The planes are normalized.
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Table 4.2 shows the differences γ, D1 and D2 of the detected planes (rep-

resented by pd) from the correct symmetry planes (represented by pc) and

the computation times of the detected planes for all the perfectly symmet-

rical objects from Figure 4.4. All three difference measures γ, D1 and D2

seem to be very small for all four objects, although for the Ant PS and the

Lion PS they seem to be slightly smaller than for the Armadillo PS and

the Embrasure PS. This is most likely caused by the larger point count of

the Armadillo PS and the Embrasure PS because they suffer more damage

by the simplification process performed at the beginning of our method.

Since for the symmetry measure computation we simplify the input object

to approximately 1000 points (see Section 3.5), the point count reduction is

approximately 1:4 for the Ant PS, 1:2 for the Lion PS and over 1:100 for the

Armadillo PS and the Embrasure PS. But even with such significant point

count reduction the precision of the symmetry detection seems to be very

high and does not differ so significantly from the precision achieved for the

objects with a lower point count.

On the other hand, the simplification ensures that the computation time

is very similar for all four objects even when their point counts differ signi-

ficantly. This means that the computation time of our method is not very

dependent on the input object’s point count. The only part of our method

whose computation time can be influenced by the point count is the simpli-

fication itself which is considerably fast.

Object Points γ(pd, pc) [◦] D1(pd, pc) D2(pd, pc) Time [s]

Lion PS 2376 0.0516 0.00123 0.00142 16.9

Ant PS 3808 0.0240 0.00050 0.00102 21.9

Armadillo PS 108266 0.1718 0.00300 0.00404 19.9

Embrasure PS 138998 0.1251 0.00267 0.00402 21.9

Table 4.2: The differences γ(pd, pc), D1(pd, pc) and D2(pd, pc) where pd rep-

resents the detected symmetry plane and pc represents the correct symmetry

plane of a given perfectly symmetrical object. Also the computation time of

each detected plane and the point count of each object are shown.

In order to quantify the precision of our method on objects with missing

parts, we damaged the Lion PS and the Armadillo PS by removing some of

their points. These two damaged objects are depicted in Figure 4.7 together

with their correct symmetry planes which are exactly the same as the correct

symmetry planes of their non-damaged versions.
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(a) Lion PS damaged

(1577 points)

(b) Armadillo PS damaged

(73712 points)

Figure 4.7: Damaged versions of two perfectly symmetrical objects with

their ground truth symmetry planes.

Table 4.3 shows the a, b, c and d coefficients of the symmetry planes

detected by our method on the two damaged perfectly symmetrical objects

from Figure 4.7 and on their non-damaged versions for comparison. For

each object also the correct symmetry plane and the differences ∆a, ∆b,

∆c and ∆d between the correct and the detected planes are shown. All the

planes are normalized. It can be seen that even on the damaged objects

the detected symmetry planes differ very little from the correct symmetry

planes. Even in this case the visual difference between the detected and the

correct planes is so insignificant that showing the detected planes in a figure

has no meaning since they appear the same as the planes depicted in Figure

4.7.

Table 4.4 shows the differences γ, D1 and D2 of the detected planes

(represented by pd) from the correct symmetry planes (represented by pc)

of the two damaged perfectly symmetrical objects from Figure 4.7 and their

non-damaged versions for comparison. The table also shows the computation

times of the detected planes. All three difference measures γ, D1 and D2

again seem to be very small for both objects. The differences γ and D1

for the damaged version of the Armadillo PS are even lower than for its

non-damaged version which may be caused by the lower point count of the

damaged version. For the Lion PS all three difference measures are higher,

but not very much, for its damaged version than for its non-damaged version.

Overall the precision of our method seems to be very good even when the

method is used on the damaged versions of the perfectly symmetrical objects

which exhibit missing parts.
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Object a b c d

Lion PS damaged

Correct pl. 0.19559 −0.71076 0.67569 17.60907

Detected pl. 0.19708 −0.71018 0.67586 17.55938

Difference ∆ 0.00149 0.00058 0.00017 0.00154

Lion PS

Correct pl. 0.19559 −0.71076 0.67569 17.60907

Detected pl. 0.19552 −0.71015 0.67635 17.63777

Difference ∆ 0.00007 0.00061 0.00066 0.00083

Armadillo PS damaged

Correct pl. −0.33494 −0.75954 0.55759 21.99788

Detected pl. −0.33577 −0.76033 0.55600 21.96320

Difference ∆ 0.00083 0.00079 0.00159 0.00143

Armadillo PS

Correct pl. −0.33494 −0.75954 0.55759 21.99788

Detected pl. −0.33318 −0.76143 0.55606 22.00152

Difference ∆ 0.00176 0.00189 0.00153 0.00013

Table 4.3: The a, b, c and d coefficients of the detected symmetry planes

and the correct symmetry planes of both the damaged and non-damaged

versions of Lion PS and Armadillo PS. Also the differences ∆a, ∆b, ∆c and

∆d between the corresponding coefficients of the correct and the detected

plane are shown. The planes are normalized.

Object Points γ(pd, pc) [◦] D1(pd, pc) D2(pd, pc) Time [s]

Lion PS damaged 1577 0.0918 0.00222 0.00476 17.5

Lion PS 2376 0.0516 0.00123 0.00142 16.9

Armadillo PS damaged 73712 0.1120 0.00242 0.00417 20.2

Armadillo PS 108266 0.1718 0.00300 0.00404 19.9

Table 4.4: The differences γ(pd, pc), D1(pd, pc) and D2(pd, pc) where pd rep-

resents the detected symmetry plane and pc represents the correct symmetry

plane of a given damaged or non-damaged version of a perfectly symmet-

rical object. Also the computation time of each detected plane and the point

count of each object are shown.

We already mentioned that we chose the method by Sipiran et al. for

comparison with our method. Unfortunately, the paper which presents this

method [21] does not give any numerical evaluation of its precision. There-

fore, we cannot compare our method with the method by Sipiran et al.

numerically.

4.1.2 Approximately Symmetrical Objects

In this section we show results of our method on several objects which are

not perfectly symmetrical and even exhibit missing parts. As already men-
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tioned, there is no absolutely correct plane of symmetry of an approximately

symmetrical object which means there is no ground truth symmetry plane

to compare the detected plane with. Therefore, the results of the symmetry

detection on such objects are presented visually showing that the detected

planes truly capture the reflectional symmetry of the given objects. Most

objects were randomly rotated before the symmetry detection to make sure

our method also works on non-aligned objects.

First, we show the detected symmetry planes of the four strongly (but

not perfectly) symmetrical artificial objects Lion, Ant, Starship and Formula

(from Figure 4.1). The symmetry planes of these four objects detected by

our method are depicted in Figure 4.8. It can be seen that the detected

planes really capture the reflectional symmetry of these objects.

(a) Computation time: 15.7 s (b) Computation time: 24.0 s

(c) Computation time: 19.3 s (d) Computation time: 33.2 s

Figure 4.8: Symmetry planes detected by our method on the four strongly

symmetrical objects (Lion - (a), Ant - (b), Starship - (c) and Formula -

(d)). For each object also the computation time of the symmetry detection

is shown.

We also created two damaged versions of the Ant and one damaged

version of the Lion by clipping off some of their parts. The damaged objects

together with their symmetry planes detected by our method are depicted in
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Figure 4.9. Even on these damaged objects, which exhibit quite significant

missing parts, the detected symmetry planes still seem to be visually correct

and seem to capture the symmetry which remains in them.

(a) 1952 points

Comp. time: 18.2 s

(b) 2945 points

Comp. time: 30.0 s

(c) 1284 points

Comp. time: 23.5 s

Figure 4.9: The symmetry planes detected by our method on the two dam-

aged versions of the Ant and on the damaged version of the Lion. For each

object also the computation time of the symmetry detection and the point

count are shown.

To test our method on more realistic objects we used it to detect the

symmetry planes of the four 3D-scanned human faces - Face 1, 2, 3 and 4

(from Figure 4.2). The symmetry planes of these objects detected by our

method are depicted in Figure 4.10. The figure shows that the detected

planes are visually correct and they capture the reflectional symmetry in

the faces.

(a)
Comp. time: 16.6 s

(b)
Comp. time: 19.9 s

(c)
Comp. time: 18.6 s

(d)
Comp. time: 15.4 s

Figure 4.10: Symmetry planes detected by our method on the four 3D-

scanned faces (Face 1 - (a), Face 2 - (b), Face 3 - (c) and Face 4 - (d)). For

each face also the computation time of the symmetry detection is shown.
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We clipped the four faces to create their damaged versions and we used

our method on them. The damaged faces and their symmetry planes detec-

ted by our method are depicted in Figure 4.11. The figure reveals that the

detected planes for the damaged faces are visually the same as (or at least

very similar to) the planes detected for their non-damaged versions. It can

be noticed that in most of the damaged faces, especially the one shown in

Figure 4.11c, quite little symmetry is preserved but our method is still able

to detect it.

(a) 2224 points

Comp. time: 18.3 s

(b) 1782 points

Comp. time: 18.6 s

(c) 1401 points

Comp. time: 28.8 s

(d) 1602 points

Comp. time: 20.9 s

Figure 4.11: Symmetry planes detected by our method on the four damaged

versions of the faces (Face 1 - (a), Face 2 - (b), Face 3 - (c) and damaged

Face 4 - (d)). For each face also the computation time of the symmetry

detection and the point count are shown.

Given the results shown in this section it can be stated that our method

is capable of finding a visually correct plane of reflectional symmetry, not

just in perfectly or strongly symmetrical objects, but also in approximately

symmetrical objects and in objects which exhibit significant missing parts.

Results of our method for some additional approximately symmetrical ob-

jects and objects with missing parts will be revealed in Section 4.1.4.

4.1.3 Objects with Noise

Apart from testing our method on objects with missing parts we tested it

on objects which are damaged in a different way. We took the strongly

symmetrical objects Lion, Ant, Starship and Formula (from Figure 4.1) and

we added artificial noise to them. The noise was created by adding a random

vector [randx, randy, randz]T · lavrg · q to each point of the given point cloud,

representing the input object, where randx, randy and randz are random

values from 〈−1; 1〉, lavrg is the average distance of the point cloud points
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from its centroid, and q is a constant which determines the noise magnitude.

Figure 4.12 shows the symmetry planes detected by our method on the four

objects with added noise with q = 0.1. Figure 4.13 shows the detected planes

on the same objects with q = 0.2.

It can be seen that for q = 0.1 the noise is noticeable in the objects

changing their shapes quite significantly. The symmetry planes detected

by our method on these noisy shapes seem to be visually correct and not

very much differing from the planes detected on the original shapes without

the noise. For q = 0.2 the objects are damaged even more, being barely

recognizable, but the symmetry planes detected on them still seem to be

visually correct and very similar to those detected on the original shapes.

(a) Computation time: 19.8 s (b) Computation time: 17.8 s

(c) Computation time: 17.5 s (d) Computation time: 27.6 s

Figure 4.12: Symmetry planes detected by our method on the four strongly

symmetrical objects with added noise with q = 0.1 (Lion - (a), Ant - (b),

Starship - (c) and Formula - (d)). For each object also the computation time

of the symmetry detection is shown.

48



(a) Computation time: 18.3 s (b) Computation time: 14.5 s

(c) Computation time: 15.9 s (d) Computation time: 19.5 s

Figure 4.13: Symmetry planes detected by our method on the four strongly

symmetrical objects with added noise with q = 0.2 (Lion - (a), Ant - (b),

Starship - (c) and Formula - (d)). For each object also the computation time

of the symmetry detection is shown.

Table 4.5 shows the differences ∆a, ∆b, ∆c and ∆d (their computation

is described in Section 4.1.1) between the coefficients of the detected planes

and the coefficients of the correct symmetry planes for each noisy object with

q = 0.1 and q = 0.2. As the correct symmetry planes we take the planes

detected by our method on the original versions (without the noise) of the

corresponding noisy objects. The correct planes are also shown in the table

to see the context of the coefficient differences. For better orientation in the

table, the coefficient values of the detected planes are not shown (otherwise

the table would be quite chaotic), to evaluate the differences these values

are not very important anyway.

Table 4.6 shows the differences γ, D1 and D2 of the planes detected

on the noisy objects (represented by pd), with q = 0.1 and q = 0.2, from

the correct symmetry planes detected on the corresponding original versions

(without the noise) of these objects (represented by pc).

49



Object a b c d

Lion

Correct plane 0.19433 −0.71064 0.67615 17.62341

Difference ∆ (q = 0.1) 0.00522 0.00494 0.00676 0.00106

Difference ∆ (q = 0.2) 0.01646 0.01579 0.01139 0.01318

Ant

Correct plane 0.35859 0.60929 −0.70722 −15.63798

Difference ∆ (q = 0.1) 0.00056 0.00068 0.00088 0.00284

Difference ∆ (q = 0.2) 0.02145 0.00193 0.01299 0.01193

Starship

Correct plane −0.99999 0.00030 −0.00346 0.01594

Difference ∆ (q = 0.1) 0.00000 0.00225 0.00047 0.00450

Difference ∆ (q = 0.2) 0.00000 0.00332 0.00303 0.00794

Formula

Correct plane 0.91000 −0.30611 0.27962 4.25174

Difference ∆ (q = 0.1) 0.00465 0.01269 0.00157 0.01048

Difference ∆ (q = 0.2) 0.01385 0.02702 0.01771 0.02825

Table 4.5: The ∆a, ∆b, ∆c and ∆d differences between the coefficients of

the planes detected on the noisy objects and the coefficients of the planes

(the correct planes) detected on their original versions (without the noise).

Object q γ(pd, pc) [◦] D1(pd, pc) D2(pd, pc)

Lion
0.1 0.5658 0.00993 0.02260

0.2 1.4611 0.02872 0.03990

Ant
0.1 0.0718 0.00311 0.00543

0.2 1.4417 0.02786 0.04306

Starship
0.1 0.1321 0.00506 0.00645

0.2 0.2580 0.00914 0.01135

Formula
0.1 0.7800 0.01718 0.01267

0.2 2.0144 0.04511 0.04795

Table 4.6: The differences γ(pd, pc), D1(pd, pc) and D2(pd, pc) where pd

represents the detected symmetry plane of the given noisy object and pc

represents the correct symmetry plane detected on the corresponding original

version (without the noise) of the object.

The tables reveal that for both q = 0.1 and q = 0.2 the differences

between the correct symmetry planes (the planes detected on the original

objects without the noise) and the planes detected on the noisy objects are

quite small. For example, the angle γ(pd, pc) is below 1◦ for q = 0.1 for all

four objects, and barely reaches 2◦ for q = 0.2, which is very low considering

how damaged the objects are by the noise. It is interesting that the values

γ(pd, pc), D1(pd, pc) and D2(pd, pc) are quite similar for q = 0.1 and q = 0.2

for all objects except for the Ant where the values are very low for q = 0.1

and increase significantly when q changes to 0.2.
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Overall, given the results presented in this section, it seems our method

performs well even on objects that contain noise. Even in the case the noise

is very significant and damages the object noticeably our method is still able

to detect a visually plausible symmetry plane.

4.1.4 Comparison with Sipiran et al.

In this section we provide a comparison of our method with the method by

Sipiran et al. [21] (see Section 2.11). We chose the method by Sipiran et

al. for comparison because it seems to be the only one, from the methods

described in Chapter 2, which is specifically designed to work on objects

with significant missing parts which was one of the major requirements for

our method. Also it seems to work very well and, judging by what is shown

in the paper, it gives very good results.

We will provide results of the method by Sipiran et al. for several objects,

where these results were gathered from the paper [21], and we will show the

results of our method for the same or very similar objects. At the end of this

section we will also discuss the advantages and disadvantages of the method

in comparison with our method.

Figure 4.14 shows the symmetry planes detected using the method by

Sipiran et al. on four differently damaged versions of the Armadillo. Sym-

metry plane detected on another very significantly damaged version of the

Armadillo is shown in Figure 4.15, in this case there are missing parts on

both sides of the object.

Figure 4.14: The symmetry planes detected on four differently damaged

versions of the Armadillo using the method by Sipiran et al. (Figure taken

from [21].)
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Figure 4.15: The symmetry plane detected on another very significantly

damaged version of the Armadillo using the method by Sipiran et al. (Figure

taken from [21].)

It can be seen that the symmetry planes detected using the method by

Sipiran et al. are visually correct for all the damaged versions of the Ar-

madillo. Figure 4.16 depicts several Armadillos, which are damaged in a

similar manner, and the non-damaged Armadillo, together with their sym-

metry planes detected using our method.

(a) 172974 points

Comp. time: 22.3 s

(b) 135601 points

Comp. time: 19.4 s

(c) 134989 points

Comp. time: 16.8 s

(d) 64647 points

Comp. time: 20.5 s

Figure 4.16: Symmetry planes detected by our method on the Armadillo

and on its damaged versions. For each Armadillo also the computation time

of the symmetry detection and the point count are shown.

The symmetry planes detected by our method on the Armadillos all

seem to be visually correct and the Armadillos exhibit very similar levels

of missing parts as the Armadillos used by Sipiran et al. for testing their

method (see Figures 4.14 and 4.15).

Another object used by Sipiran et al. is the 3D-scanned Embrasure.

This object is interesting because it is also damaged and exhibits missing

parts but it was not damaged artificially, the object was already broken in
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a natural way when it was scanned. The results of the symmetry detection

on the Embrasure using the method by Sipiran et al. are depicted in Figure

4.17. The figure actually shows the three best symmetry planes detected

on this object. We can now see one advantage of the method by Sipiran et

al. which is that it can be used to detect more then one symmetry plane in

the case the input object is symmetrical with respect to more planes. Our

method, as it is now, is only capable of detecting the one most significant

symmetry plane. Extending our method for detecting more symmetry planes

will be part of the future work and will be further discussed in Chapter 5.

Such an extension should not be very difficult to implement since it is just

a matter of selecting the right planes from the set of the candidate planes

(see Section 3.4) instead of selecting just the best one.

Figure 4.17: The three best symmetry planes detected on the Embrasure

using the method by Sipiran et al. (Figure taken from [21].)

The visually most intuitive symmetry plane of the Embrasure is probably

the one shown in the middle of the figure which appears the same as the one

detected by our method as can be seen in Figure 4.18.

Figure 4.18: The symmetry plane detected by our method on the Embrasure.

Computation time: 18.2 s.
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The last object that we used for comparison with the method by Sipiran

et al. is the 3D-scanned Column base. This object exhibits only a low level

of missing parts but it was damaged naturally as well as the Embrasure. The

two best symmetry planes detected on the Column base using the method by

Sipiran et al. are depicted in Figure 4.19. In this case the symmetry plane

on the right of the figure is probably the more intuitive one. Our method

detects visually the same symmetry plane, see Figure 4.20.

Figure 4.19: The two best symmetry planes detected on the Column base

using the method by Sipiran et al. (Figure taken from [21].)

Figure 4.20: The symmetry plane detected by our method on the Column

base. Computation time: 18.3 s.

It can be seen that our method can successfully detect visually correct

symmetry planes on the same or very similar objects, with the same or

similar levels of missing parts, as some of the objects on which the method

by Sipiran et al. was tested. This shows that our method is capable of

handling the same type of input objects with the same or similar level of

missing parts as the method by Sipiran et al. One of the disadvantages of

our method, which is the inability to detect more than one symmetry plane,

was already mentioned above and could be quite easily removed by a change
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in the implementation. Another small disadvantage can be the fact that our

method is not rotationally invariant due to the grid-based simplification (see

Sections 3.3, 3.4 and 3.5). But, since we successfully tested our method on

various randomly rotated objects, this does not seem to pose a problem.

On the other side, our method seems to have several advantages. Prob-

ably the biggest advantage of our method is that it works on point clouds

while the method by Sipiran et al. only works on manifold triangle meshes

which is quite a constraint. Representation of the input object by a tri-

angle mesh is not always available, let alone representation by a manifold

mesh. Another advantage of our method is its robustness to noise which was

demonstrated in Section 4.1.3. Although we do not have any results for com-

parison, we can assume that in this criterion our method would outperform

the method by Sipiran et al. because it relies on detection of features (see

Section 2.11) and the features get damaged by the noise. The feature-based

symmetry detection also implies, and the authors even mention it in their

paper, that the method by Sipiran et al. does not work on featureless objects

such as very smooth shapes. Our method, on the other side, does not need

to use any features (but it can if they are available - see below and Section

3.7) and overall puts virtually no constraints on the input object apart from

that it must be represented by a set of points. The last advantage of our

method is its extensibility granted by the weights in the symmetry measure

(see Section 3.2, Equation 3.7). If there is more information about the input

object than just the point positions, this information can be used to set the

weights and improve the performance of our method. Until now we have

been considering the basic method where the weights are not used (they all

equal to 1) but in Section 4.2 we will show a case where the weights can be

useful.

4.2 Results of the Modified Method

Curvatures in general seem to be very good for detecting local features of

3D models representing human faces or human heads [11] where the local

features mostly represent the eyes, the ears, the nose or the mouth. There-

fore, in the following text, we will show that the modified version of our

method, which uses the Gaussian curvature similarity and the normal vec-

tor symmetry to set the weights wij in the symmetry measure (see Section

3.7, especially 3.7.1 and 3.7.2), can be used to detect the symmetry plane

of very small parts of human faces as long as at least some local features

are preserved. This modified version also uses the candidate plane filtering
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described in Section 3.7.3.

Figures 4.21 and 4.22 show the symmetry planes detected on (by clipping)

heavily damaged versions of two of the scanned human faces (from Figure

4.2). Each figure also contains the corresponding original, non-damaged face

with its symmetry plane, detected by the basic method, for comparison.

(a) (b)

Figure 4.21: Small part of Face 2 with its symmetry plane detected using

the modified version of our method - (b) (980 points, computation time:

9.1 s) and the original Face 2 with its symmetry plane detected using the

basic method shown for comparison - (a).

(a) (b) (c)

Figure 4.22: Two small parts of Face 3 with their symmetry planes detected

using the modified version of our method - (b) (1026 points, computation

time: 9.4 s) and (c) (803 points, computation time: 8.3 s) and the original

Face 3 with its symmetry plane detected using the basic method shown for

comparison - (a).
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In all three cases the symmetry planes seem to be detected correctly des-

pite the fact that the input objects contain very little symmetry information.

This is because the symmetry detection was done using the similarity of local

features represented by the Gaussian curvatures and the features still seem

to be symmetrical even when the whole objects are not. On different types

of objects, other than human faces, different local feature representations

could probably be used to achieve similar results and on some object types

maybe even the Gaussian curvature would work the same way, but we have

not tested it. Also the normal vector symmetry weighting helps to make the

symmetry detection more accurate.

It can be noticed that the computation time of the modified method is

lower than that of the basic method, approximately by 50 %, despite the

fact that computing the weights adds overhead to the symmetry measure

computation and slows it down. This is due to the candidate plane filter-

ing (see Section 3.7.3) which ensures that only several candidate planes are

considered when selecting the best candidate which means the symmetry

measure is computed much fewer times.

When we used the basic method on these three objects, it failed com-

pletely in all three cases because, when ignoring the local features, the ob-

jects are really not symmetrical at all and therefore, there is no way the

basic method could detect a plausible symmetry plane. This suggests that

the weights in the symmetry measure can be very useful in some cases.

Designing more ways to set the weights and finding more uses for them will

be a matter of future research.

4.3 Summary

In this chapter we have shown that our symmetry plane detection method

works very accurately on perfectly symmetrical objects (see Section 4.1.1), is

also able to detect a visually plausible symmetry plane of an approximately

symmetrical object and is robust to missing parts (see Sections 4.1.2 and

4.1.4) and even to noise (see Section 4.1.3). Furthermore, our method works

on point clouds which means it has basically no requirements on the input

data, it only needs the point positions. But when more information about

the input object is available, our method can take advantage of it and, in

some cases, can use it to improve its performance (see Section 4.2).

Also, the running time of our method is acceptable, although there are

methods which seem to be faster, at least in the case of objects with lower

point count (thousands of points), namely [10] (see Section 2.12), [22] (see
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Section 2.13), [12] (see Section 2.14) and [19] (see Section 2.15), whose run-

ning times are mostly in the order of few seconds or even under one second.

But our method seems to outperform all these methods in the robustness

and puts less requirements on the input data than most of these methods.

Furthermore, the running times of these methods usually depend on the

point count of the input object while the running time of our method al-

most does not depend on it. This means that for objects with higher point

count our method could actually be faster.
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5 Generalizations

The basic scheme of our method seems to be quite general which offers a

possibility to generalize the whole method to extend its usability. In this

chapter we give several possible ways how the method could be generalized

or modified. It should be noted that these generalizations have not been

implemented and therefore, everything described in this chapter is purely

theoretical.

5.1 Detecting More Planes of Symmetry

As was already mentioned above, there are objects that are more or less

symmetrical with respect to more than one plane, e.g. a cube. Our method,

as it is now, only detects one plane of symmetry, specifically the most sig-

nificant one, but it could possibly be extended to detect more than just one

plane. Such an extension could be done by selecting more than just one

best candidate plane in the best candidate selection step of our method (see

Section 3.5).

The problem is that when more candidates are selected, all of them, or

some of them, can be very close to each other resulting in several symmetry

planes that are either exactly the same or very similar. Therefore, some

metric for measuring plane distance, possibly one of those defined in Section

4.1.1, needs to be used and only planes with certain mutual distance need to

be selected. One possible way to do this efficiently is to use some clustering

algorithm in the plane space and allow to only select one candidate from

each cluster.

5.2 Detecting Symmetries of Different Types

If we replace the function r(p, x), which reflects a point x over a plane P

represented by p (see Equation 3.1), with a function that performs a different

transformation, the symmetry measure sX (see Equation 3.7) can possibly

be used to detect symmetries of different types. The symmetry measure is

not the only thing that needs to be modified, we also need to adjust the

candidate creation (see Section 3.4) according to the given symmetry type,

which for many symmetry types is not a simple task.
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5.2.1 Reflectional Symmetry w.r.t. a Point

Reflection of a point x ∈ E3 over a point q ∈ E3 can be defined as translating

x to the other side of q to the same distance from q as it was. A function

r(q, x) ∈ E3 that reflects a point x over a point q can therefore be defined

as shown in Equation 5.1.

r(q, x) = x + 2(q − x) = 2q − x (5.1)

An object X is reflectionally symmetrical (perfectly) with respect to a point

q when for every point xi ∈ X there is a point xj ∈ X for which it is

that r(q, xi) = xj. This definition is the same for all types of reflectional

symmetry, only the function r changes, so we will not repeat it for the other

types of reflectional symmetry.

The point of reflectional symmetry of a given 3D object could possibly

be found using our method after only a slight modification. Obviously, the

function r must be replaced in the symmetry measure sX and the candidate

creation needs to be modified to create candidate points instead of planes.

A candidate point of symmetry can be simply created by two points xi and

xj as xi+xj

2
. The rest of the method could remain the same.

5.2.2 Reflectional Symmetry w.r.t. a Line

Let us define a general line Q by its parametric equation as Q : q(t) =

qs + qdt, t ∈ R where qs is some point on the line and qd is its direction

vector. The function r(Q, x) ∈ E3, which reflects a general point x ∈ E3

over the line Q, can be defined as shown in Equation 5.2.

r(Q, x) = x + 2(q(tr) − x) = 2q(tr) − x (5.2)

The value tr is such a value of the parameter t for which the vector q(t) − x

is perpendicular to the line Q. Such a value of t can be found by solving

Equation 5.3 for t.

(q(t) − x)T qd = 0 (5.3)

This equation can be rewritten as shown in Equations 5.4 and 5.5. Its

solution is shown in Equation 5.6

(qs + qdt − x)T qd = 0 (5.4)

qT
s qd + qT

d qdt − xT qd = 0 (5.5)
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t =
xT qd − qT

s qd

qT
d qd

(5.6)

We can now set tr as this value of t. The reflection function r(Q, x) can

therefore be defined as shown in Equation 5.7.

r(Q, x) = 2q(
xT qd − qT

s qd

qT
d qd

) − x = 2(qs + qd

xT qd − qT
s qd

qT
d qd

) − x (5.7)

To detect a line of reflectional symmetry of a given 3D object we also

need to change the candidate creation, but this time it is not as simple

as for the point symmetry. A line in E3 cannot be defined as a line of

reflectional symmetry of two points because there is an additional degree of

freedom which is the rotation around the axis on which the two points lie.

This problem could possibly be resolved by taking a whole neighborhood of

one of the two points and trying to find such a line for which, when this

neighborhood is reflected over the line, it best fits onto the neighborhood of

the second point.

5.2.3 Reflectional Symmetry w.r.t. a Curve

Let us now suppose Q is not a line but a general curve in space whose para-

metric equation is a general vector function q(t) = [qx(t), qy(t), qz(t)]T , t ∈ R.

The function r(Q, x), which reflects the point x ∈ E3 over the curve

Q, can be defined in the same way as for the reflection over the line as

r(Q, x) = 2q(tr) − x (see Equation 5.2) where tr is such a value of t for

which the vector q(t)−x is perpendicular to the tangent vector of the curve

in the point q(t). If there are multiple values of t that satisfy this condi-

tion, the one for which the distance between q(t) and x is the smallest is

used as tr. The tangent vector of the curve Q in the point q(t) is defined

as [ d
dt

qx(t), d
dt

qy(t), d
dt

qz(t)]T . The value of tr can therefore be obtained by

solving Equation 5.8 for t.

(q(t) − x)T [
d

dt
qx(t),

d

dt
qy(t),

d

dt
qz(t)]T = 0 (5.8)

The concrete solution, and whether it can be obtained analytically, depends

on the type of the function q(t) which defines the curve Q.

Creating the candidate curves, for the symmetry curve detection, would

be even more problematic than creating the candidate lines. In this case,

probably some more global approach would have to be used and the curves

would have to be created using the whole object’s shape, not just two of its

points.
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5.2.4 Reflectional Symmetry w.r.t. a Surface

If a point in E3 can be reflected over a plane or over a curve, there is no reason

why it could not be reflected over a 3D surface. We can define a surface Q

by its parametric equation as Q : q(u, v) = [qx(u, v), qy(u, v), qz(u, v)]T , u ∈
R, v ∈ R. The function r(Q, x) ∈ E3, which reflects a point x ∈ E3 over

the surface Q, can be defined in a similar way as for the curve, as shown in

Equation 5.9.

r(Q, x) = x + 2(q(ur, vr) − x) = 2q(ur, vr) − x (5.9)

The values ur and vr are such values of the parameters u and v for which

the vector q(u, v) − x is perpendicular to the tangent plane of the surface

in the point q(u, v). If there are multiple values of u and v that satisfy this

condition, those for which the distance between q(u, v) and x is the smallest

are used. The values of ur and vr can be obtained by solving the system of

two equations shown in Equation 5.10 for u and v.

(q(u, v) − x)T [
∂

∂u
qx(u, v),

∂

∂u
qy(u, v),

∂

∂u
qz(u, v)]T = 0

(q(u, v) − x)T [
∂

∂v
qx(u, v),

∂

∂v
qy(u, v),

∂

∂v
qz(u, v)]T = 0

(5.10)

The concrete solution again depends on the type of the function q(u, v)

which defines the surface Q.

Creation of the candidate surfaces for the detection of the symmetry

surface would be as problematic as, or even more than, creation of the

candidate curves for the symmetry curve detection. Again, some global

approach would probably have to be used.

5.2.5 Rotational Symmetry

Let us now replace the reflection function r with function rot(Q, β, x) that

preforms a rotation of a point x ∈ E3 around an axis Q by an angle β.

We can define rotational symmetry in a very similar way as the reflectional

symmetry. We can say an object X is rotationally symmetrical (perfectly)

with respect to an axis Q when such an angle β 6= k · 360◦, k ∈ Z exists

that for every point xi ∈ X there is a point xj ∈ X for which it is that

rot(Q, β, xi) = xj. In order to detect such a symmetry, we need to find the

axis Q and also the angle β, which could possibly be done using our method

but the candidate creation would again need to be modified.

Instead of candidate planes we would now need to create candidate axes

together with candidate rotation angles. This could possibly be done using
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the same approach as suggested for the candidate line creation in the reflec-

tional symmetry line detection (see Section 5.2.2). Meaning, for each pair

of points we could take the neighborhood of one of the two points and try

to find such a rotation after which it best fits onto the neighborhood of the

second point.

5.2.6 General Affine Symmetry

We can further generalize the symmetry by replacing the rot function with

a function trans(T , t, x) which applies a general affine transformation on

a given point x ∈ E3. Such a transformation is defined by a transformation

matrix T and a translation vector t. The trans function is then defined as

shown in Equation 5.11.

trans(T , t, x) = T x + t (5.11)

We can say an object X has an affine symmetry (perfect) when such a

matrix T and such a vector t exist that for every point xi ∈ X there is a

point xj ∈ X for which it is that trans(T , t, xi) = xj, excluding the case

when T = I and t = [0, 0, 0]T where I is an identity matrix.

To detect such a symmetry we again need to change the candidate cre-

ation step to create general candidate affine transformations. This could

possibly be done using the same approach as suggested in the rotational

symmetry detection (see Section 5.2.5), only creating general affine trans-

formations instead of rotation transformations.

5.3 Registration

We can consider symmetry detection as a special case of registration, when

we try to find such a transformation of a given type which, after applied,

best fits an object onto itself. Let us now suppose we have two objects

represented by sets of points X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym}
and we want to find such a transformation that, after applied on X, best fits

X onto Y . Of course, the best fit can only include some of the points of X

and Y , not all of them. In general, we need to define which transformations

we allow, for example, we can only search for reflection transformations or

rigid transformations, but for the purpose of generality we will now consider

general affine transformations. We can now modify the symmetry measure

sX (see Equation 3.7) as shown in Equation 5.12.

sX,Y (T , t) =
n

∑

i=1

m
∑

j=1

wijϕ(||trans(T , t, xi) − yj||) (5.12)
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Using the function sX,Y we could possibly find the transformation, defined

by T and t, that best fits X onto Y in the same way as we use the symmetry

measure sX for symmetry detection. Creation of the candidate transforma-

tions would not be any different from how it would be defined for the affine

symmetry detection (see Section 5.2.6) only for each pair of points, one point

would be from X and the other from Y .
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6 Conclusion

In this thesis a new method for symmetry plane detection on 3D objects

represented by point clouds was described (see Chapter 3) and its results

were presented. The method seems to work very well on perfectly as well as

on approximately symmetrical objects and exhibits good results even when

used on objects with quite significant missing parts (see Chapter 4). It also

showed to be robust to quite noticeable noise.

Our method was also compared to another symmetry plane detection

method, specifically the method designed by Sipiran et al. [21]. It was

shown that our method can handle the same or very similar objects as the

method by Sipiran et al. and the advantages of our method in comparison

with this method were pointed out (see Section 4.1.4). The new method is

also easily extensible by additional information, if it is available, and it was

shown that this extensibility can be very useful in some cases (see Section

4.2).

In addition, a way to make the method detect more than one plane of

a given object was suggested and several ways to generalize the method

for detection of symmetries of different types were suggested as well (see

Chapter 5). In the future, we would like to deeper examine these possibilities

to further extend or generalize the method.

Furthermore, since the symmetry measure used by our method (see Sec-

tion 3.2) is differentiable, we can test various optimization methods for the

last step of our method (see Section 3.6) and find such that converges to

the global maximum more quickly or even from larger distance, possibly

allowing to use a lower number of candidate planes (see Section 3.4).
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