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Abstract
The goal was to research model-based clustering methods, notably the Dis-
tance Dependent Chinese Restaurant Process (ddCRP), and propose an
incremental clustering system which would be capable of maintaining the
growing number of topic clusters of news articles coming online from a crawler.
LDA, LSA, and doc2vec methods were used to represent a document as a
fixed-length numeric vector. Cluster assignments given by a proof-of-concept
implementation of such a system were evaluated using various metrics, not-
ably purity, F-measure and V-measure. A modification of V-measure – NV-
measure – was introduced in order to penalize an excessive or insufficient
number of clusters. The best results were achieved with doc2vec and ddCRP.

Abstrakt
Cílem práce bylo prozkoumat možnosti shlukovacích metod založených na
statistických modelech, zejména metodu založenou na Distance Dependent
Chinese Restaurant Process (ddCRP), a navrhnout shlukovací systém, který
bude schopný udržovat tematické shluky zpravodajských textů, které budou
postupně přicházet z crawleru. Metody LDA, LSA a doc2vec byly použity
k reprezentaci dokumentu jako číselný vektor fixní délky. Výsledné shluky
odhalené proof-of-concept implementací takového systému byly vyhodno-
ceny zejména pomocí purity, F-measure a V-measure. Dále byla představena
evaluační metrika NV-measure vycházející z V-measure, které penalizuje
nadměrné či naopak nedostatečné množství shluků. Nejlepších výsledků bylo
dosaženo pomocí doc2vec a ddCRP.
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1 Introduction

Every day millions of news articles and blog posts are written. It is not
even remotely possible to read, understand and manually categorize such
amounts of data. Because the internet is a rapidly growing medium, an
incremental approach is needed. The number of topic clusters is continuously
growing because it would be very difficult to argue that the number of topics
eventually runs up against a finite bound and remains fixed.

The goal is to research model-based clustering methods, notably the
Distance Dependent Chinese Restaurant Process (ddCRP), and propose an
incremental clustering system which would be capable of maintaining growing
number of topic clusters of news articles coming online from a crawler.

Initially, the necessary mathematics and statistics are defined. Latent
Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and doc2vec
methods are used to represent a document as a fixed-length numeric vector.
Both finite and infinite model-based clustering methods are covered. The
focus is on the most common variant of Latent Variable Model (LVM) – the
Gaussian mixture model (GMM). Various criteria evaluating the quality of
a clustering are described.

The practical part focuses on the architecture and implementation of
the incremental clustering system. Finally, the experiments with clustering
system are performed on real data.
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2 Functions useful in
Multivariate Statistics

Later in the text few non-trivial functions which deserve detailed description
appear.

2.1 Gamma Function
The gamma function [14, p. 42] is a generalization of the factorial function
to real and complex numbers, and is defined via an improper integral:

Γ(x) =
∫ ∞

0
ux−1e−udu (2.1)

Figure 2.1 shows that for x ∈ Z+, the gamma function is equivalent to the
factorial function with the argument decremented by 1:

Γ(x) = (x − 1)! (2.2)
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Figure 2.1: Gamma function
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2.2 Multivariate Gamma Function
The multivariate gamma function [14, p. 126] is a generalization of the gamma
function to higher dimensions. It is widely used in multivariate statistics and
is defined as:

ΓD(x) = π
D(D−1)

4

D∏
i=1

Γ
(

x + 1 − i

2

)
(2.3)

For D = 1 it holds that Γ1(x) = Γ(x).
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3 Selected Probability
Distributions

The probability distributions described in this chapter are essential for un-
derstanding the statistical models and clustering methods described later.

3.1 Multinomial Distribution
The multinomial distribution [14, p. 35] is a discrete probability distribu-
tion which generalizes the binomial distribution for multiple outcomes of
n independent experiments.

Let x = (x1, . . . , xK) be a random vector, where xi is a number of times we
observe an outcome i. Then the probability mass function of the multinomial
distribution is:

Mu (x |n, θ) =
(

n

x1 . . . xK

)
K∏

i=1
θxi

i (3.1)

where θi is the probability that we observe an outcome i, and

(
n

x1 . . . xK

)
= n!

x1!x2! . . . xK ! = Γ(n + 1)∏K
i=1 Γ(xi + 1)

(3.2)

is the multinomial coefficient (the number of ways to divide a set of size
n = ∑K

i=1 xi into subsets with sizes x1, . . . , xK).

3.2 Categorical Distribution
The categorical distribution [14, pp. 35–36] (a.k.a. discrete or multinoulli
distribution) is a special case of the multinomial distribution, where n = 1.
In this case, we can think of x as being a scalar categorical random variable
with K states (values), and x is its dummy (one-hot) encoding, that is,
x = (I(x = 1), . . . , I(x = K)).

Cat (x | θ) = Mu (x |1, θ) =
K∏

i=1
θ
I(xi=1)
i (3.3)

In other words, if x ∼ Cat (θ), then p(x = j| θ) = θj.
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3.3 Dirichlet Distribution
The Dirichlet distribution [14, p. 47] is a continuous multivariate probability
distribution widely used as a prior distribution in Bayesian statistics. It is a
multivariate generalization of the beta distribution, which has support over
the probability simplex1:

SK = {x : 0 ≤ xk ≤ 1,
K∑

k=1
xk = 1} (3.4)

The figure 3.1 shows the probability density function which is defined as
follows:

Dir (x |α) = 1
B (α)

K∏
k=1

xαk−1
k I(x ∈ SK) (3.5)

where B (α) is a natural generalization of the beta function to K variables:

B (α) =
∏K

k=1 Γ(αk)
Γ(α0)

(3.6)

where α0 = ∑K
k=1 αk. A special case of the Dirichlet distribution is a sym-

metric Dirichlet distribution, where αk = α
K

.

3.4 Multivariate Normal Distribution
The Multivariate normal distribution (MVN) [14, p. 46] or multivariate Gaus-
sian is the most widely used multivariate continuous probability distribution
which generalize normal distribution to higher dimensions.

The probability density function of the MVN in D dimensions is defined
as follows:

N (x| µ, Σ) = 1
(2π)D

2 | Σ | 1
2

exp
(

−1
2(x − µ)T Σ−1(x − µ)

)
(3.7)

where µ = E [x] ∈ RD is the mean vector, and Σ = cov [x] is the D × D

covariance matrix.
1Simplex is a generalized notion of a triangle to arbitrary dimension.
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 = (0.999, 0.999, 0.999)  = (5.000, 5.000, 5.000)  = (2.000, 5.000, 15.000)

Figure 3.1: Dirichlet distribution for various parameters α when K = 3

3.4.1 MLE for an MVN
We can estimate the parameters of an MVN using Maximum likelihood estim-
ation (MLE) [14, p. 99] for N i.i.d. (independent and identically distributed)
samples xi ∼ N (µ, Σ). The empirical mean is defined as:

µ̂mle = 1
N

N∑
i=1

xi

= 1
N

XT 1N

= x̄ (3.8)

The scatter matrix, used to make estimates of the empirical covariance matrix,
is the D × D positive semi-definite matrix (Sx̄ ≻ 0):

Sx̄ =
N∑

i=1
(xi − x̄)(xi − x̄)T

=
N∑

i=1
xi xT

i − N x̄ x̄T

= XT X −N x̄ x̄T (3.9)
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The MLE estimate of the covariance is:

Σ̂mle = 1
N

Sx̄

= 1
N

N∑
i=1

(xi − x̄)(xi − x̄)T

= 1
N

(
N∑

i=1
xi xT

i

)
− x̄ x̄T

= 1
N

XT X − x̄ x̄T (3.10)

After application of Bessel’s correction [8], an unbiased estimation of the
empirical covariance is:

Σ̂ = 1
N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T

= N

N − 1Σ̂mle

= XT X −N x̄ x̄T

N − 1 (3.11)

3.4.2 Inferring the Parameters of an MVN
Assume we observe data X = {xi : xi ∼ N (µ, Σ)}N

i=1 drawn from an MVN
and we want to infer the unknown parameters θ = (µ, Σ).

Likelihood

The likelihood [14, p. 132] says how probable is it to see the observed data X
given parameters θ, and is given by:

p(X | µ, Σ) =
N∏

i=1
N (xi | µ, Σ) (3.12)

= 1
(2π)ND

2
| Σ |−

N
2 exp

(
−1

2

N∑
i=1

(xi − µ)T Σ−1(xi − µ)
)

(3.13)

= 1
(2π)ND

2
| Σ |−

N
2

× exp
(

−N

2 (µ − x̄)T Σ−1(µ − x̄) − 1
2 tr

(
Σ−1 Sx̄

))
(3.14)
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Prior

A prior probability is our belief (e.g. in parameters θ) before we observe
data X. A fully conjugate prior [14, p. 132] for the MVN has a form of joint
distribution of the form:

p(µ, Σ) = p(µ | Σ) p(Σ) (3.15)

Specifically, it is defined [14, p. 133] as the Normal-inverse-Wishart distribu-
tion (NIW):

NIW (µ, Σ | m0, κ0, ν0, S0) =

N (µ | m0,
1
κ0

Σ) × IW (Σ | S0, ν0) (3.16)

= 1
ZNIW

| Σ |−
1
2 exp

(
−κ0

2 (µ − m0)T Σ−1(µ − m0)
)

× | Σ |−
ν0+D+1

2 exp
(

−1
2 tr

(
Σ−1 S0

))
(3.17)

= 1
ZNIW

| Σ |−
ν0+D+2

2

× exp
(

−κ0

2 (µ − m0)T Σ−1(µ − m0) − 1
2 tr

(
Σ−1 S0

))
(3.18)

ZNIW (D, κ0, ν0, S0) = 2
ν0D

2 ΓD

(
ν0

2

)(2π

κ0

)D
2

| S0 |−
ν0
2 (3.19)

The parameters of the NIW can be interpreted as follows:

• m0 is our prior mean for µ.

• κ0 exhibits how strongly we believe the prior m0.

• S0 is (proportional to) our prior mean for Σ.

• ν0 exhibits how strongly we believe the prior S0.

Posterior

The posterior probability states a probability conditional on the observed
evidence X. In our case, it can be shown [14, p. 134] that the posterior
probability is NIW with updated parameters:
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p(µ, Σ | X) = NIW (µ, Σ | mN , κN , νN , SN) (3.20)

mN = κ0 m0 +N x̄
κN

= κ0

κ0 + N
m0 + N

κ0 + N
x̄ (3.21)

κN = κ0 + N (3.22)
νN = ν0 + N (3.23)

SN = S0 + Sx̄ + κ0N

κ0 + N
(x̄ − m0)(x̄ − m0)T (3.24)

= S0 + S +κ0 m0 mT
0 −κN mN mT

N (3.25)

where S = ∑N
i=1 xi xT

i is the uncentered sum-of-squares matrix also known
as the scatter matrix.

The posterior probability can be used to calculate Maximum a posteriori
estimation (MAP):

θMAP = arg max
θ

p(θ | X) (3.26)

= arg max
θ

p(X | θ) p(θ)
p(X) (3.27)

= arg max
θ

p(X | θ) p(θ) (3.28)

MAP estimate for MVN [14, p. 134] is:

µ̂MAP = mN (3.29)

Σ̂MAP = SN

νN + D + 2 (3.30)

Posterior predictive

The posterior predictive probability gives information about a new value x∗

before being observed:

p(x∗ | X) = p(x∗, X)
p(X) (3.31)

In our case, it has the form of multivariate Student t distribution [14, p. 135]:

p(x∗ | X) =
∫ ∫

N (x∗ | µ, Σ) NIW (µ, Σ | mN , κN , νN , SN)d µ d Σ (3.32)

= T
(

x∗ | mN ,
κN + 1

κN(νN − D + 1) SN , νN − D + 1
)

(3.33)

10



Prior predictive

The prior predictive probability is a special case of the posterior predictive
probability, when no data X are observed:

p(x∗ |∅) = T
(

x∗ | m0,
κ0 + 1

κ0(ν0 − D + 1) S0, ν0 − D + 1
)

(3.34)

Marginal likelihood

The marginal likelihood p(X) [14, pp. 160–161] tells us how probable are the
observed data X regardless of the parameters θ:

p(X) = (2π)− ND
2

ZNIW (D, κN , νN , SN)
ZNIW (D, κ0, ν0, S0)

(3.35)

= π− ND
2

(
κ0

κN

)D
2 | S0 |

ν0
2

| SN |
νN

2

ΓD

(
νN

2

)
ΓD

(
ν0
2

) (3.36)

= π− ND
2

(
κ0

κN

)D
2 | S0 |

ν0
2

| SN |
νN

2

D∏
i=1

Γ
(

νN +1−i
2

)
Γ
(

ν0+1−i
2

) (3.37)

3.5 Multivariate Student t Distribution
The multivariate Student t distribution [14, p. 46] is a continuous probability
distribution which generalizes the Student t distribution to higher dimensions.
It is useful when we try to estimate the mean of a normally distributed
population2, the sample size is small, and the covariance matrix is unknown.

The probability density function is given by:

T (x| µ, Σ, ν) =
Γ
(

ν
2 + D

2

)
Γ
(

ν
2

) | Σ |− 1
2

ν
D
2 π

D
2

(
1 + 1

ν
(x − µ)T Σ−1(x − µ)

)− ν+D
2

(3.38)

where µ is the mean vector, ν > 2 is the degrees of freedom, and Σ is the
scale matrix (since it is not exactly the covariance matrix).

This distribution has fatter tails than an MVN; and as ν → ∞, the
distribution tends towards the MVN.

2A population has the (multivariate) normal distribution.
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3.6 Wischart Distribution
The Wishart distribution [14, p. 125] is the distribution of the covariance
matrix of independent samples drawn from MVN. It is a generalization of
the X 2 distribution (a special case of the gamma distribution) to multiple
dimensions.

It is used to model our uncertainty in covariance matrices, Σ, or their
inverses, Λ = Σ−1. The probability density function is defined as follows, for
ν > D − 1 and S ≻ 0:

Wi (Λ | S, ν) = 1
ZWi

| Λ |
ν−D−1

2 exp
(

−1
2 tr(Λ S−1)

)
(3.39)

ZWi = 2 νD
2 ΓD

(
ν

2

)
| S |

ν
2 (3.40)

where ν is degrees of freedom and S is the scatter matrix.
There is a connection between the Wishart distribution and the MVN.

In particular, let xi ∼ N (0, Σ). Then the scatter matrix of N independent
draws S = ∑N

i=1 xi xT
i has a Wishart distribution S ∼ Wi (Σ, N).

3.7 Inverse Wishart Distribution
The inverse Wishart distribution [14, p. 126] is a probability distribution
defined on real-valued positive-definite matrices. It is a generalization of the
inverse X 2 distribution to multiple dimensions. It is used as the conjugate
prior for the covariance matrix of an MVN in Bayesian statistics, and the
probability density function is defined as follows, for ν > D − 1 and S ≻ 0:

IW (Σ | S, ν) = 1
ZIW

| Σ |−
ν+D+1

2 exp
(

−1
2 tr

(
S−1 Σ−1

))
(3.41)

ZIW = 2 νD
2 ΓD

(
ν

2

)
| S |−

ν
2 (3.42)

where ν is degrees of freedom and S is the scatter matrix.
It is a fact that if Σ−1 ∼ Wi (S, ν) then Σ ∼ IW (S−1, ν + D + 1).
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4 Vector Representation for
News Articles

Text unlike image (raw pixel-intensities) and audio (power spectral density
coefficients) does not have a natural way of vector representation. For Natural
language processing (NLP), methods for text encoding have been invented.
Three semantic methods (LSA, LDA, and doc2vec) are described in this
chapter, sorted by date of publication.

4.1 Latent Semantic Analysis

One of the oldest methods for term representation is one-hot representation.
Initially, a dictionary (e.g. 100, 000 entries) is created, and each term is
assigned a unique identifier (e.g. 123). This dummy variable can be thought
of as a vector of length N equal to the size of the dictionary with exactly
one 1 at position 123. This term representation, however, does not have
any semantical information since we have no way of comparing any two
terms with regard to similarity because the term representation is assigned
arbitrarily.

For a given list of terms (a document), we can create a vector which
combines vectors for each term into one (using weighting). This technique
is known as Vector Space Model (VSM) (for more details see [11]) and it
is based on bag-of-words (BoW)1 hypothesis. Resulting term-by-document
matrix M is huge and sparse. It is a N × D matrix where N is the number
of terms and D is the number of documents. For that reason, the following
method was invented.

Latent Semantic Analysis (LSA) [6], also known as Latent Semantic In-
dexing (LSI) is exactly equivalent to applying Principal Component Ana-
lysis (PCA) to the term-by-document matrix ([14, p. 947]). Singular Value
Decomposition (SVD) [14, p. 392] is applied to VSM term-document matrix
M in order to reduce its dimensionality:

1A text (a document) is represented as the bag (multiset) of its terms. In other words,
it does not take a term order into account.
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M( m1,1 ··· m1,D

... ... ...
mN,1 ··· mN,D

)
N × D

=

U( u1,1 ··· u1,D

... ... ...
uN,1 ··· uN,D

)
N × D

Σ( σ1
...

σD

)
D × D

V T( v1,1 ··· v1,D

... ... ...
vD,1 ··· vD,D

)
D × D

(4.1)

≃

UK( u1,1 ··· u1,K

... ... ...
uN,1 ··· uN,K

)
N × K

ΣK( σ1
...

σK

)
K × K

V T
K( v1,1 ··· v1,D

... ... ...
vK,1 ··· vK,D

)
K × D

(4.2)

=

MK⎛⎝ m̂1,1 ··· m̂1,D

... ... ...
m̂N,1 ··· m̂N,D

⎞⎠
N × D

(4.3)

If we select K < D largest singular values and corresponding singular vectors
from U and V , we get an approximation to M with the smallest error
measured by Frobenius norm:

∥M − MK∥F =

√ N∑
i=1

D∑
j=1

|mij − m̂ij|2 (4.4)

After the decomposition, it has the following properties:

• Rows in Uk represent term semantics in a lower-dimensional space.

• Columns in Vk represent document semantics in a lower-dimensional
space.

• New document can be mapped to lower-dimensional space using the
formula d̂ = Σ−1

K UT
Kd.

4.2 Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) [5] is a generative probabilistic model
of a text corpus. Each document is represented as a random mixture of latent
topics where each topic is characterized by a distribution over words.
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The LDA assumes the following generative process for each document d in
the corpus of N documents as visualized in figure 4.1:

1. Choose the number of words M ∼ Poisson (ξ).

2. Choose topic probabilities θd ∼ Dir (α).

3. For each of M words wd,i:

(a) Choose a topic zd,i ∼ Cat (θd).
(b) Choose a word wd,i ∼ Cat (ϕzd,i

).

wd,i

zd,i

θd

α

ϕk

β

Cat (θd)

Cat (ϕzd,i
)

Dir (α)

Dir (β)

M

N

K

Figure 4.1: LDA model

where:

• N is the number of documents in a text corpus.

• M is the number of words in document d.

• α is hyperparameter of a random mixture of latent topics.

• β is hyperparameter of a distribution over words.

• θd are topic probabilities for a given document d.

• ϕk are word probabilities for a given topic k.

• zd,i is the topic of word i in document d.

• wd,i is an observed word i in document d.
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4.3 doc2vec
A doc2vec model [10] is used to represent a variable length document as a
fixed-length numeric vector in a way that related documents are close in a
result vector space. This method is an extension of an existing technique
word2vec [12] by adding a document unique feature vector (Paragraph id).

As you can see in figure 4.2, it is an extension of a Continuous Bag-of-
Words (CBOW) model. In addition to word vector matrix W it also trains
a document vector matrix D which contains a numeric representation of the
document. In this model, the concatenation or average of paragraph vector
with a context of three words is used to predict the fourth word.

The model is called Distributed Memory version of Paragraph Vector
(PV-DM). Matrix D contains vectors representing a document context – the
topic of the document, while the vectors in matrix W contain the concept
of a word.

Alternatively, we could ignore word context and let the model predict
words randomly sampled from the paragraph. This technique, which is similar
to skip-gram model [12], is shown in figure 4.3 and it is called Distributed
Bag of Words version of Paragraph Vector (PV-DBOW).

The authors recommend using a combination of both algorithms in order
to achieve more consistent results.
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D

Paragraph
id

W

the

W

cat

W

sat

on

Figure 4.2: doc2vec PV-DM model

D

Paragraph
id

the cat sat on

Figure 4.3: doc2vec PV-DBOW model
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5 Model-based Clustering

Model-based clustering methods assume that the observed data X are a result
of a generative process. These models which have hidden (latent) variables
are called Latent Variable Models (LVMs) [14, p. 337].

The simplest form of LVM is a mixture model, which has discrete latent
state zi ∈ {1, . . . , K}, discrete prior p(zi) = Cat (π), and likelihood in form
p(xi |zi = k, θk) = pk(xi | θk) where pk is the k-th base distribution for the
observations.

The overall model, which mixes (convex combination1 of pk’s) K base
distributions, is defined as follows:

p(xi | θ) =
K∑

k=1
p(zi = k|π) p(xi |zi = k, θk) (5.1)

=
K∑

k=1
πk pk(xi | θk) (5.2)

The most widely used mixture model, despite the fact that it might be
an oversimplification of reality, is the Gaussian mixture model (GMM) [14,
p. 339]. In this model, each base distribution belonging to a certain cluster is
the multivariate Gaussian (MVN) with mean µk and covariance matrix Σk:

p(xi | θ) =
K∑

k=1
πk N (xi | µk, Σk) (5.3)

This model is also known as Finite Gaussian Mixture Model (FGMM) whose
graphical model is in figure 5.1.

The likelihood [3, p. 433] of GMM for N observations in dataset X ex-
presses how well the model with given parameters matches the observed data.
Often its logarithm is used. It is defined as follows:

p(X |π, µ, Σ) =
N∏

i=1

K∑
k=1

πk N (xi | µk, Σk) (5.4)

log p(X |π, µ, Σ) =
N∑

i=1
log

(
K∑

k=1
πk N (xi | µk, Σk)

)
(5.5)

1Convex combination is a linear combination of mixing weights πk where
∑K

i=1 πk = 1
and 0 ≤ πk ≤ 1.
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Figure 5.1: A graphical model of Finite Gaussian Mixture model

Gibbs sampling

The Gibbs sampling [14, p. 838] is a method often used to find an estimate
of the model parameters. As opposed to using an expectation–maximization
(EM) algorithm, which is a simple deterministic iterative algorithm, often
with closed-form updates at each step, the Gibbs sampling is a stochastic
iterative algorithm. It is one of the most popular Markov Chain Monte
Carlo (MCMC) algorithms.

The basic idea behind MCMC is to construct a Markov chain on the
state space X whose stationary distribution is the target density p∗(x). We
perform a random walk in such a way making the fraction of time spend in
each state x is proportional to p∗.

During the Gibbs sampling, we sample each variable in turn, conditional
on the values of all other variables, and based on the most recent values of
the other variables. For example, for D = 3 we use:

xs+1
1 ∼ p(x1|xs

2, xs
3)

xs+1
2 ∼ p(x2|xs+1

1 , xs
3)

xs+1
3 ∼ p(x3|xs+1

1 , xs+1
2 ) (5.6)

If xi is an observed variable, we do not sample it, since its value is already
known. The p(xi| x−i) is full conditional for variable i.

Since we can start the algorithm from an arbitrary initial state, the
beginning of the chain should be thrown away [14, p. 856] because it is not
sampled from a stationary distribution. It is, however, difficult to diagnose
when the chain has burned in. It is one of the fundamental weaknesses of
MCMC methods. As presented by Morris, Descombes, and Zerubia [13], the
sampling before reaching convergence can lead to misleading conclusions.
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5.1 Bayesian Gaussian Mixture Model

The Bayesian Gaussian Mixture Model (BGMM) use Bayesian inference to
estimate the model parameters which are modelled as a random variable
since a basic principle of Bayesian statistics is that all forms of uncertainty
should be expressed as randomness.

The uncertainty of parameters is modelled by a prior. The difference
between FGMM and BGMM can be seen in figures 5.1 and 5.2, respectively.

xi

zi

π

α

β

θk

Dir (α)

Cat (π) H(β)

F (θzi)

N

K

Figure 5.2: A graphical model of Bayesian Gaussian Mixture model

where:

• K is the number of clusters.

• N is the number of observations.

• π ∼ Dir (α) = Dir ( α
K

1K) are prior cluster probabilities.

• zi is cluster assignment of observation i.

• θk are latent cluster parameters which we are looking for.

• θk ∼ H(β) = NIW is parameters prior.

• xi ∼ F (θzi
) = N is base cluster distribution.

• xi is i-th observation.
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5.1.1 Collapsed Gibbs Sampling for GMM
Consider a GMM with a fully conjugate prior (eq. 3.15). A collapsed Gibbs
sampler [14, p. 842] has analytically integrated out the model parameters
µk, Σk, and π. Then we sample just cluster assignments z.

Then, the full conditional can be derived as follows:

p(zi = k| z−i, X, α, β) ∝ p(zi = k| z−i, α,��β) p(X |zi = k, z−i,��α , β) (5.7)
∝ p(zi = k| z−i, α) p(xi | X−i, zi = k, z−i, β) (5.8)

p(X−i |����zi = k, z−i, β) (5.9)
∝ p(zi = k| z−i, α) p(xi | X−i, zi = k, z−i, β) (5.10)

where β = (m0, κ0, ν0, S0) is the hyper-parameter of cluster prior. Cluster
assignment prior is symmetric π ∼ Dir (α) where αk = α

K
.

Term p(zi = k| z−i, α)

The first term in the equation 5.10 is a mixture probability. It can be shown
that it is a marginal likelihood for Dirichlet-multinoulli model [14, p. 160]:

p(z |α) = p(z1, . . . , zN |α) (5.11)

= Γ(α)
Γ(N + α)

K∏
k=1

Γ
(
Nk + α

K

)
Γ
(

α
K

) (5.12)

Thus from conditional probability, we can derive an expression for the desired
term:

p(zi = k| z−i, α) = p(zi = k, z−i |α)
p(z−i |α) (5.13)

= p(z |α)
p(z−i |α) (5.14)

= Γ(N + α − 1)
Γ(N + α)

Γ
(
Nk + α

K

)
Γ
(
Nk,−i + α

K

) (5.15)

= Γ(N + α − 1)
Γ(N + α)

Γ
(
Nk,−i + 1 + α

K

)
Γ
(
Nk,−i + α

K

) (5.16)

=
Nk,−i + α

K

N + α − 1 (5.17)

where we exploited the fact that Γ(x + 1) = xΓ(x) and Nk,−i = ∑
n ̸=i I(zn =

k) = Nk − 1.
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Term p(xi | X−i, zi = k, z−i, β)

The second term in the equation 5.10 is a posterior predictive dictistribution
[14, p. 843]:

p(xi | X−i, zi = k, z−i, β) = p(xi | X−i,k) (5.18)

where X−i,k = {xj : zj = k, j ≠ i} are the observations without taking a
observation xi in account.

For GMM we use equation 3.33.

Pseudocode

Pseudo code for the collapsed Gibbs sampler for BGMM is given in al-
gorithm 1:

Algorithm 1 Collapsed Gibbs sampler for BGMM
1: Choose initial cluster assignments z
2: for T iterations do
3: for each observation xi i = 1 : N in random order do
4: Remove xi’s sufficient statistics from old cluster zi

5: If any cluster is empty, remove it and decrease K

6: for each cluster k = 1 : K do
7: Calculate p(zi = k| z−i, X, α, β)
8: end for
9: Normalize p(zi| z−i, X, α, β)
10: Sample zi ∼ Cat (p(zi| z−i, X, α, β))
11: Add xi’s sufficient statistics to new cluster zi

12: end for
13: end for

where sampled expression is a full conditional from equation 5.10:

p(zi = k| z−i, X, α, β) ∝ p(zi = k| z−i, α) p(xi | X−i, zi = k, z−i, β) (5.19)

∝
Nk,−i + α

K

N + α − 1 p(xi | X−i,k) (5.20)

∝
(

Nk,−i + α

K

)
p(xi | X−i,k) (5.21)
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5.2 Infinite Gaussian Mixture Model
The Infinite Gaussian Mixture Model (IGMM) is a nonparametric Bayesian
model whose parameter space has infinite dimension.

5.2.1 The Chinese Restaurant Process
The Chinese Restaurant Process (CRP) [14, p. 884] is a stochastic process
analogous to seating customers at tables in a Chinese restaurant, as shown
in figure 5.3: The tables represent clusters, customers are observations. A
customer enters the restaurant and has two options. Either he joins an
existing table with probability proportional to the number of people already
sitting at this table (Nk), or he sits at the new table with a probability which
diminishes as more customers enter the restaurant.

1

3

8

4

2

5 10

6
7

9

Figure 5.3: An illustration of the table assignments z in the CRP. The process
operates at the level of table assignments, where each customer chooses either
existing table or sits alone.

It can be shown [14, p. 886], that the CRP, as shown in figure 5.4, is a
modification of the Gibbs sampling for BGMM from section 5.1.1.

Term p(zi = k| z−i, α)

By exchangeability, we can assume that zi is the last customer to enter the
restaurant. The mixture probability is given by:

p(zi = k| z−i, α) =

⎧⎨⎩
Nk,−i

N+α−1 if k has been seen before
α

N+α−1 if k is a new cluster
(5.22)

It is equal to equation 5.17 for K → ∞.

Term p(xi | X−i, zi = k, z−i, β)

For an existing cluster, the posterior predictive is exactly the same as the
equation 5.18:
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Figure 5.4: The Chinese restaurant process model

p(xi | X−i, zi = k, z−i, β) = p(xi | X−i,k) (5.23)

For a new cluster, it is a prior predictive (eq. 3.34):

p(xi | X−i, zi = k(new), z−i, β) = p(xi |∅) (5.24)

Pseudocode

Pseudo code for the collapsed Gibbs sampler for CRP is given in algorithm 2
where full conditionals are:

p(zi = k| z−i, X, α, β) ∝ p(zi = k| z−i, α) p(xi | X−i, zi = k, z−i, β) (5.25)

∝ Nk,−i

N + α − 1 p(xi | X−i,k) (5.26)

∝ Nk,−i p(xi | X−i,k) (5.27)

p(zi = k(new)| z−i, X, α, β) ∝ p(zi = k(new)| z−i, α) (5.28)
p(xi | X−i, zi = k, z−i, β) (5.29)

∝ α

N + α − 1 p(xi |∅) (5.30)

∝ α p(xi |∅) (5.31)
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Algorithm 2 Collapsed Gibbs sampler for a CRP
1: Choose initial cluster assignments z
2: for T iterations do
3: for each observation xi i = 1 : N in random order do
4: Remove xi’s sufficient statistics from old cluster zi

5: If any cluster is empty, remove it and decrease K

6: for each cluster k = 1 : K do
7: Calculate p(zi = k| z−i, X, α, β)
8: end for
9: Calculate p(zi = k(new)| z−i, X, α, β)
10: Normalize p(zi| z−i, X, α, β)
11: Sample zi ∼ Cat (p(zi| z−i, X, α, β))
12: Add xi’s sufficient statistics to new cluster zi

13: end for
14: end for

5.2.2 The Distance Dependent Chinese Restaurant
Process

The Distance Dependent Chinese Restaurant Process (ddCRP) [4] is a
stochastic process analogous to seating customers at tables in a restaur-
ant, as shown in figure 5.5: The tables represent clusters, customers are
observations. The main difference to the CRP is that a customer entering
the restaurant does not join a table but sits next to one of the customers
who is already in the restaurant or he sits by himself. The table allocation
z(c) is a by-product of this representation. If two customers are reachable by
a sequence of interim customer assignments, then they sit at the same table.

The Gibbs sampler for the ddCRP is:

p(ci = j| c−i, X, η) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α a)
f(dij) b)

f(dij)
p(X

zk(c−i)∪zl(c−i) |G0)
p(X

zk(c−i) |G0) p(X
zl(c−i) |G0) c)

(5.32)

where

a) if ci is equal to i

b) if ci = j does not join two tables

c) if ci = j joins tables k and l
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z(c)

Figure 5.5: An illustration of the customer assignments c and table assign-
ments z(c) in the ddCRP. The process operates at the level of customer
assignments, where each customer chooses either another customer or him-
self (self link). The table assignments are given by z(c).

and where η = {D, α, f, G0} is set of hyperparameters, G0 is base measure,
ci denote the i-th customer assignment, dij denote the distance measurement
between customers i and j, f(dij) is a decay function influencing the willing-
ness of customer i to sit next to customer j, and p(Xzk(c) |G0) is marginal
likelihood:

p(Xzk(c) |G0) =
∫

p(Xzk(c) |θ) p(θ|G0)dθ (5.33)

=
∫ ⎛⎝ ∏

i∈zk(c)
p(xi |θ)

⎞⎠ p(θ|G0)dθ (5.34)

where we use equation 3.37 for GMM.
Pseudo code for the collapsed Gibbs sampler for ddCRP is given in al-

gorithm 3:
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Algorithm 3 Collapsed Gibbs sampler for a ddCRP
1: Choose initial customer assignments c
2: for T iterations do
3: for each observation xi i = 1 : N in random order do
4: Remove customer assignment ci (may split tables)
5: for each observation xj j = 1 : N do
6: Calculate p(ci = j| c−i, X, η)
7: end for
8: Normalize p(ci| c−i, X, η)
9: Sample ci ∼ Cat (p(ci| c−i, X, η))
10: Add new customer assignment ci (may join tables)
11: end for
12: end for

28



6 Evaluation of Clustering

The evaluation of clustering is the most difficult part of cluster analysis.
Clustering is an unsupervised learning technique, therefore it is hard to
evaluate the quality of the output of given methods.

Intuitively, the goal of clustering is to assign similar observations to
the same cluster, and to ensure that dissimilar observations are in differ-
ent clusters.

There are several groups we can divide the evaluating techniques into:

• Internal criteria measure the validity of clustering without external
information.

• External criteria measure the validity of clustering with external
information (the ground truth), as depicted in figure 6.1.

• Information criteria measure the validity of clustering if a statistical
model was used.

• Manual criteria measure the validity of clustering using an expert
opinion.

AAA
AAB

cluster 1

ABB
BBC

cluster 2

AA
CCC

cluster 3

Figure 6.1: Labeled clustering example [11]
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6.1 Internal Criteria

6.1.1 Likelihood

The likelihood of N observations in dataset X expresses how well the model
with given parameters matches the observed data. Often its logarithm is
used. It is defined as follows:

p(X | θ) =
N∏

i=1
p(xi | θ) (6.1)

log p(X | θ) =
N∑

i=1
log p(xi | θ) (6.2)

The likelihood of the GMM follows equations 5.4 and 5.5:

p(X |π, µ, Σ) =
N∏

i=1

K∑
k=1

πk N (xi | µk, Σk) (6.3)

log p(X |π, µ, Σ) =
N∑

i=1
log

(
K∑

k=1
πk N (xi | µk, Σk)

)
(6.4)

6.1.2 Entropy

The entropy [14, p. 56] of a random variable Ω (cluster assignments) with
distribution p is a measure of uncertainty, and is defined as follows using an
MLE of the probabilities [11]:

H (Ω) = −
K∑

i=1
p(ωi) log p(ωi) (6.5)

= −
K∑

i=1

|ωi|
N

log |ωi|
N

(6.6)

If logarithm base 2 is used the units are called bits, if logarithm base e is
used the units are called nats.

30



6.2 External Criteria

6.2.1 Conditional Entropy

The conditional entropy on true class labels C and vice versa is sometimes
needed [17]:

H (Ω | C) = −
C∑

j=1

K∑
i=1

pΩ C(i, j) log pΩ C(i, j)
pC(j) (6.7)

= −
C∑

j=1

K∑
i=1

|ωi ∩ cj|
N

log |ωi ∩ cj|
|cj|

(6.8)

H (C | Ω) = −
C∑

j=1

K∑
i=1

pΩ C(i, j) log pΩ C(i, j)
pΩ(j) (6.9)

= −
C∑

j=1

K∑
i=1

|ωi ∩ cj|
N

log |ωi ∩ cj|
|ωi|

(6.10)

where:

• pΩ C(i, j) = |ωi∩cj |
N

is the probability that a randomly chosen object
belongs to cluster ωi in Ω and class cj in C (class labels).

• pΩ(i) = |ωi|
N

is the probability that a randomly chosen object belongs
to cluster ωi in Ω.

• pC(j) = |cj |
N

is the probability that a randomly chosen object belongs
to class cj in C.

6.2.2 Purity

One of the favourite cluster evaluating measures is purity [14, p. 877]. It
says how "pure" the clusters are. In other words, it penalizes clusters which
contains observations not belonging to this cluster.

purity (Ω, C) =
K∑

i=1

Ni

N
pi (6.11)

=
K∑

i=1

Ni

N
max

j

Nij

Ni

(6.12)

= 1
N

K∑
i=1

max
j

Nij (6.13)
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where:

• Ω = {ω1, . . . , ωK} is set of clusters.

• C = {ω1, . . . , ωC} is set of classes.

• N is the total number of objects.

• Nij is the number of objects in cluster i which belong to class j.

• Ni = ∑C
j=1 Nij is total number of objects in cluster i.

• pij = Nij

Ni
is empirical distribution over class labels for cluster i.

• pi = maxj pij is the purity of a cluster.

The purity of example clustering (fig. 6.1) is purity (Ω, C) = 5+4+3
17 ≈ 0.706.

6.2.3 Rand Index
Another technique for cluster evaluation is called the Rand index [14, p. 877].
It penalizes both false positive and false negative decisions during cluster-
ing [11].

RI (Ω, C) = TP + TN
TP + FP + FN + TN (6.14)

For an example clustering depicted in figure 6.1, the contingency table 6.1
is calculated using the following equations.

The number of pairs of objects put in the same cluster regardless of class
label is:

TP + FP =
(

6
2

)
+
(

6
2

)
+
(

5
2

)
= 40 (6.15)

The number of pairs of objects put in the same class regardless of cluster
label is:

TP + FN =
(

8
2

)
+
(

5
2

)
+
(

4
2

)
= 44 (6.16)

Table 6.1: Contingency table for example clustering (fig. 6.1)

True class
Same class Different classes

Predicted cluster Same cluster TP = 20 FP = 20
Different clusters FN = 24 TN = 72
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The number of pairs of objects put in the same class with the same cluster
label is:

TP =
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)
= 20 (6.17)

And the total number of pairs is:

TP + FP + FN + TN =
(

N

2

)
=
(

17
2

)
= 136 (6.18)

Then, the number of true negatives TN is:

TN = (TP + FP + FN + TN) − (TP + FP) − (TP + FN) + TP (6.19)
= 136 − 40 − 44 + 20 = 72 (6.20)

Finally, RI (Ω, C) = 20+72
136 ≈ 0.676 since there is no actual need for calculating

FP and FN.

6.2.4 F-measure
Having a contingency table 6.1, an F-measure [11] metrics for clustering,
which supports differential weighting of these two types of errors (false pos-
itive and false negative), can be calculated.

The precision is defined as follows:

P (Ω, C) = TP
TP + FP (6.21)

The recall is defined as follows:

R (Ω, C) = TP
TP + FN (6.22)

The F-measure is a weighted combination of precision and recall:

Fβ(Ω, C) = (1 + β2) P · R
β2 P + R (6.23)

= (1 + β2) TP
(1 + β2) TP +β2 FN + FP (6.24)

The F1-measure is a special, symmetrical, and widely used case of F-measure
with β = 1:

F1(Ω, C) = 2 P · R
P + R (6.25)

= 2 TP
2 TP + FN + FP (6.26)

For an example clustering in figure 6.1 we get F1(Ω, C) = 2·20
2·20+24+20 ≈ 0.476.
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6.2.5 Mutual Information
Another way to measure cluster quality is to compute the mutual inform-
ation [14, p. 878] between Ω and C. It can be information-theoretically
interpreted. The mutual information is defined as:

I (Ω, C) =
K∑

i=1

C∑
j=1

pΩ C(i, j) log pΩ C(i, j)
pΩ(i) pC(j) (6.27)

where we use MLE:

• pΩ C(i, j) = |ωi∩cj |
N

is the probability that a randomly chosen object
belongs to cluster ωi in Ω and class cj in C.

• pΩ(i) = |ωi|
N

is the probability that a randomly chosen object belongs
to cluster ωi in Ω.

• pC(j) = |cj |
N

is the probability that a randomly chosen object belongs
to class cj in C.

The mutual information has the following properties:

I (Ω, C) = H (Ω) + H (C) − H (C, Ω) (6.28)
= H (C) − H (C | Ω) (6.29)
= H (Ω) − H (Ω | C) (6.30)

6.2.6 Normalized Mutual Information
One disadvantage of the mutual information is that the maximum value
of I (sec. 6.2.5) can be achieved by using lots of small clusters, which have
low entropy. To compensate for this, the normalized mutual information [14,
p. 879] is used:

NMI (Ω, C) = I (Ω, C)
H (Ω)+H (C)

2

(6.31)

where H (Ω) is entropy described in section 6.1.2.
Alternatively, we could define the normalized mutual information [19] as:

NMI (Ω, C) = I (Ω, C)√
H (Ω) H (C)

(6.32)
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6.2.7 Homogeneity

A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class [17], and it is defined as follows:

h(Ω, C) =

⎧⎨⎩1 if H (C) = 0
1 − H (C | Ω)

H (C) = I (Ω,C)
H (C) else

(6.33)

6.2.8 Completeness

A clustering result satisfies completeness if all the data points which are
members of a given class are elements of the same cluster [17], and it is
defined as follows:

c(Ω, C) =

⎧⎨⎩1 if H (Ω) = 0
1 − H (Ω | C)

H (Ω) = I (Ω,C)
H (Ω) else

(6.34)

6.2.9 V-measure

V-measure [17] is an entropy-based measure similar to F-measure (see sec-
tion 6.2.4) which is computed as the (weighted) harmonic mean of distinct
homogeneity and completeness score.

V-measure is defined as follows:

Vβ(Ω, C) = (1 + β) h · c
β h + c (6.35)

(6.36)

Similarly to F1-measure (equation 6.25) we define V1-measure as a special
case of V-measure with β = 1:

V1(Ω, C) = 2 h · c
h + c (6.37)

(6.38)
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6.2.10 Normalized V-measure
V-measure values can be, to a certain extent, cheated using too many small
clusters when each observation is put in the separate cluster.

Let us imagine, ten clusters with six observations each. If we assign
each observation to its own cluster, we get sixty clusters with V-measure
V1(Ω, C) = 0.719903. That is too high. This problem is the more visible the
more clusters we have.

This is the reason why a Normalized V-measure (NV-measure) is intro-
duced. It penalizes difference between the true class labels C and the number
of clusters found K and is constructed in such a way giving the V-measure
values exactly when K = C. NV-measure is defined as follows:

NVp,β(Ω, C) =
⎛⎝1 −

(
1 −

(
min(K, C)
max(K, C)

)p) 1
p

⎞⎠Vβ(Ω, C) (6.39)

The normalization formula is derived from p-norm [9, p. 64]. Hence the
parameter p whose influence is depicted in figure 6.2. For the singular example
stated above, the NV-measure is NV1,1(Ω, C) = 0.119984.
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Figure 6.2: Function y =
(
1 − (1 − xp)

1
p

)
for various values p
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6.3 Information Criteria
Based on information criteria we can select the best statistical model from
a set of candidate models.

Since we are using a GMM with full covariance matrix, the number of
degrees of freedom for covariance matrix is D(D + 1)/2 [14, p. 46] and for
mean it is D. Having a K Gaussians we get k = KD + KD(D + 1)/2
parameters in total.

In this section, the following notation is used:

• M is a statistical model.

• θ is model parameters maximizing the likelihood function.

• L = p(X |θ, M) is likelihood.

• N is the number of observations.

• k is the number of parameters.

6.3.1 Akaike Information Criterion
The Akaike information criterion (AIC) [1] estimates the quality of the
statistical model relative to other models penalizing the number of parameters
needed by the model.

The AIC is given by:

AIC (θ) = 2k − 2 log(L) (6.40)

6.3.2 Bayesian Information Criterion
The Bayesian information criterion (BIC) [21] also estimates the quality
of the statistical model relative to other models penalizing the number of
parameters needed by the model, and it is closely related to AIC.

The BIC assumes that data distribution is in an exponential family1, and
it is given by:

BIC (θ) = log(N)k − 2 log(L) (6.41)

1The normal distribution belongs in the exponential family.
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7 Incremental News
Clustering System

The goal of this thesis is to propose a system which would be capable of main-
taining topic clusters of news coming online from a crawler and implement
a demonstrator.

In this setting, the corpus is continuously growing; therefore, it can be
safely assumed that new topics are going to emerge because it would be very
difficult to argue that the number of topics eventually runs up against a finite
bound and remains fixed.

7.1 Data Model

The data used for experiments come from a MediaGist1 analyser which is an
online system for cross-lingual analysis of aggregated news and commentaries
based on summarization and sentiment analysis technologies. It is designed to
assist journalists to detect and explore news topics which are controversially
reported or discussed in different countries [18].

The MediaGist analyser contains a crawler2 whose data can be exported
in Extensible Markup Language (XML) format. A structure of the data file
is illustrated in figure 7.1.

The root element of the document is element rss with nested element
channel which contains information about a news article, such as language
or publisher. The information about a certain news article is in an element
item which contains a title, link to the article, description, publication date,
Globally Unique Identifier (GUID), full text etc. It also contains information
about recognized entities and sentiment which is irrelevant for my use case.
From the data file, only article title, GUID, language, publication date and
full text are used.

1MediaGist is available at: http://mediagist.eu.
2A program which visits websites and reads their pages and other information in order

to create entries for a search engine index.
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<rss xmlns:emm="http://emm.jrc.it" xmlns:iso="http://www.iso.org/3166" version="2.0">
<channel>

<title>
The Guardian

</title>
<language>
en

</language>
<guid>
theguardian.com

</guid>
<pubDate>
2017−03−12 00:57:35 CET

</pubDate>
<item emm:id="7222ac5a7799574b1e98622f8671450d">

<title>
Two convicted of conspiracy in armed standoff at Oregon wildlife refuge

</title>
<link>
https://www.theguardian.com/us−news/...

</link>
<description>
Verdict handed prosecutors some redemption after they failed to convict ...

</description>
<emm:contentType>
text/html

</emm:contentType>
<pubDate>
2017−03−11 00:01:57 CET

</pubDate>
<iso:language>
en

</iso:language>
<guid>
7222ac5a7799574b1e98622f8671450d

</guid>
<emm:entity id="11001303" type="p" count="1" pos="512" name="Ryan␣Bundy" sentiment="−32[failed]">
Ryan Bundy

</emm:entity>
<emm:entity id="1923543" type="p" count="1" pos="2294" name="Ammon␣Bundy" sentiment="0">
Ammon Bundy

</emm:entity>
<emm:entity id="10011843" type="p" count="1" pos="994" name="Ruby␣Ridge" sentiment="0">
Ruby Ridge

</emm:entity>
<emm:entity id="197070" type="o" count="1" pos="3275" name="FBI" sentiment="−35[protection;feared]">
FBI

</emm:entity>
<emm:tonality>

−2
</emm:tonality>
<commentTonality pos="0" neut="0" neg="0">
0

</commentTonality>
<emm:entityRef id="11001303" type="npr" count="1" pos="1732" name="Ryan␣Bundy" sentiment="0">
Bundy

</emm:entityRef>
<emm:entityRef id="11001303" type="npr" count="1" pos="1335" name="Ryan␣Bundy"

sentiment="33[guilty(not);conspiracy(not)]">
Ryan

</emm:entityRef>
<emm:text wordCount="547">
Verdict handed prosecutors some redemption after they failed to convict ...

</emm:text>
</item>

</channel>
</rss>

Figure 7.1: The structure of an XML data file
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7.2 Architecture
The architecture of the system is rather simple because it is a data processing
program. In this case, a data flow diagram 7.2 illustrates the system best.

Initially, the raw historical XML data files are preprocessed and saved all
in a single file – a corpus – for efficient data processing. Then a model, which
is used to represent a variable length document as a fixed-length numeric
vector, is trained. Furthermore, the news articles coming from a crawler are
clustered. It is crutial to apply the same text preprocessing techniques which
were used during model training. It is important to note that each news
article can be seen only once. Finally, the clustering methods are evaluated
using various metrics.

Object-oriented design described in this section is used to provide function-
ality encapsulation, code reusability, and interface unification. Fast low-level
data structures are used instead of objects because the overhead of the broad
object-oriented design would be unfeasible. The Python naming convention
is used.

7.2.1 Preprocessor
There are thousands of articles on the input. The text of each article must
be preprocessed and for performance reasons, stored in a corpus.

The following text preprocessing techniques are used:

• Lower casing

• Converting to Unicode

• Deaccenting – The accents are removed from the text. Also known
as asciifolding.

• Punctuation removal – Punctuation characters are replaced with
spaces.

• Multiple whitespaces removal – Repeating whitespace characters
(spaces, tabs, line breaks) are converted to a single space character.

• Short token removal – Tokens shorter than 3 are removed.

• Stop words removal – The most common words (stop words) are
removed.

• Stemming – It is a process of reducing inflected words to their word
stem. For English language, the Porter stemmer [15] is used.
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Figure 7.2: Data flow diagram
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As a by-product, a dictionary of tokens is created. Infrequent tokens (with
less than five occurrences) and frequent tokens (appearing in more than half
of the documents) are removed.

In order to support text vectorization methods described in chapter 4,
both BoW and list-of-words (LoW) corpora are needed as depicted in fig-
ure 7.3.

<<Abstract>> 
NewsCorpusABC

BowNewsCorpus LineNewsCorpus 

Figure 7.3: Class diagram for BoW/LoW corpora

7.2.2 Models

Representing a variable length document as a fixed-length numeric vector is
quite tricky because the text does not have a natural way of doing so. Several
methods were proposed in chapter 4.

Figure 7.4 illustrates a class structure which is necessary in order to
achieve model interchangeability.

<<Abstract>> 
ModelABC

Lda

Doc2vec

Lsa

Random

Figure 7.4: Class diagram for text vectorization models
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• doc2vec is a neural network which produces document embeddings.
It uses LoW corpus.

• Latent Dirichlet Allocation (LDA) is a generative probabilistic
model based on BoW hypothesis.

• Latent Semantic Analysis (LSA) is model based on BoW hypo-
thesis.

• Random model gives a random vector for arbitrary input and is used
as a reference.

7.2.3 Clustering

Figure 7.5 shows a class diagram for clustering algorithms. In order to achieve
unified interface, an abstract class ClusteringABC is in place. Because all
clustering methods proposed in this thesis are going to be implemented using
Gibbs sampling but since in the future there might be a different method,
a special abstract class for Gibbs sampling based methods is introduced.
The FullGaussianMixture with its NormalInverseWishart prior is used.
This design is ready for future extensions to more constrained mixtures with
different priors.

Pseudo codes of clustering algorithms and corresponding equations are
defined in chapter 5.

<<Abstract>> 
GibbsClusteringABC CrpClustering

BgmmClustering

DdCrpClustering

<<Abstract>> 
ClusteringABC

<<Abstract>> 
GaussianMixtureABC

FullGaussianMixture

<<Abstract>> 
PriorABC

NormalInverseWishart

Figure 7.5: Class diagram for clustering algorithms
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7.2.4 Evaluator
The clustering methods are evaluated using the ground truth data and eval-
uation metrics introduced in chapter 6. The ground truth was created from
crawled news articles at the 10th week of the year 2017 using the following
guidelines:

• Make a list of the news topics of the current week. Consider the number
of articles and their internationality. The topic has to be mentioned in
at least two languages.

• Use English labels even if the topic was found only for other languages,
don’t use determiners, rather a keyword style.

• The topic should not be too wide, e.g. Politics or Sports, actually
it should not be a standard menu category found in news portals
(Champions League, Football, Home politics)

• The use case is to display the most important topics of the current
week (topics of the week).

• Tips:

– Event-centred topics – If an important accident, attack, a scandal,
an event happened, in general, make a separate topic for it. (e.g.
Hurricane Catrina)

– Entity-centred topics – If there was an entity discussed in a par-
ticular context, make a separate topic for it. (Trump and Putin)

• If it is the case that one topic is part of another one, use "other" to
distinguish them. E.g. "North Korean nuclear programme" vs "other
North Korea"

• The result will finally be hard clustering.

The ground truth used in this thesis is an English subset of multilingual
ground truth created for multilingual clustering research purposes.

The data are being clustered and evaluated day after day. The class dia-
gram for evaluator is displayed in figure 7.6. The abstract class EvaluatorABC
contains common logic such as export to CSV and chart creation. Charts
capture progress of evaluation metrics over time. Descendants of the abstract
class are responsible for loading the ground truth and assigning the true class
labels to documents.
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<<Abstract>> 
EvaluatorABC SupervisedEvaluation

Evaluator

EvaluationSummary

UnsupervisedEvaluation

*

Figure 7.6: Class diagram for evaluator

The UnsupervisedEvaluation and SupervisedEvaluation classes con-
tain unsupervised and supervised metrics, respectively.

The EvaluationSummary class takes evaluations from multiple clustering
runs and creates summarization charts.

7.2.5 Visualization
In order to visualize the clustering using existing tool, first, the clustering
results have to be saved in a machine-readable format. Graph Exchange
XML Format (GEXF)3 was chosen because it is a language for describing
complex network structures, their associated data and dynamics.

Therefore, it can be used to describe cluster assignments changing in time,
as shown in figure 7.7. The root element of the document is element gexf
with nested element graph with attributes defaultedgetype and mode set
to directed and dynamic, respectively, which indicates that it is a dynamic
directed graph.

Then there are definitions of node attributes in elements attributes.
A title is a static attribute. Its value does not change over time. A node’s
cluster assignment, on the other hand, is a dynamically changing attribute.

In element nodes, there are child elements node which are representa-
tions of documents. node’s attribute id is a document’s GUID, the attrib-
utes start and end describe a time interval during which a document was
clustered. Attribute label is useful during visualization and its value is equal
to the first seven characters of GUID.

Each node contains element viz:position whose attributes x, y and
z position the node during visualization. These coordinates are given by
incremental PCA transformation of document’s vector representation. In
element attvalues, there are elements attvalue which define the values of

3https://gephi.org/gexf/format/
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<?xml version=’1.0’ encoding=’utf−8’?>
<gexf xmlns:viz="http://www.gexf.net/1.2draft/viz" version="1.2" xmlns="http://www.gexf.net/1.2draft"

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi:schemaLocation="http://www.w3.org/2001/XMLSchema−instance">

<graph defaultedgetype="directed" mode="dynamic" name="">
<attributes class="node" mode="static">

<attribute id="1" title="title" type="string" />
</attributes>
<attributes class="node" mode="dynamic">

<attribute id="0" title="cluster" type="long" />
</attributes>
<nodes>

<node end="4" id="67ccf777b7719e99eaf4cc9de521d250" label="67ccf77" start="2">
<viz:position x="0.7456457461559365" y="0.5072068584528289" z="0" />
<attvalues>

<attvalue end="3" for="0" start="2" value="10" />
<attvalue end="4" for="0" start="3" value="0" />
<attvalue for="1" value="Lewis␣Hamilton␣questions␣F1’s␣new␣regulations␣before␣first␣test␣session" />

</attvalues>
</node>
<node end="4" id="c81c03a67f011097b8276be5b571a352" label="c81c03a" start="2">

<viz:position x="0.8512782228548975" y="0.18808625419599057" z="0" />
<attvalues>

<attvalue for="1" value="Lewis␣Hamilton␣not␣missing␣Rosberg␣as␣he␣looks␣ahead␣to␣new␣F1␣season" />
<attvalue end="3" for="0" start="2" value="10" />
<attvalue end="4" for="0" start="3" value="0" />

</attvalues>
</node>
...

</nodes>
<edges>

<edge id="0" source="67ccf777b7719e99eaf4cc9de521d250" target="c81c03a67f011097b8276be5b571a352">
<spells>

<spell end="3" start="2" />
</spells>

</edge>
...

</edges>
</graph>

</gexf>

Figure 7.7: The structure of a GEXF data file
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static or dynamic node attributes which were defined at the beginning of
the file. The attributes start and end describe a time interval during the
node attribute given by attribute for is equal to the value given by attribute
value.

Nodes might be connected by an edge which represents the seating as-
signment in ddCRP. In element edges, there are nested elements edge with
attributes source and target containing node IDs. Edges are also dynamic
which is specified using spell attributes.

As a visualization tool, Gephi4 was chosen [2]. It is a free and open-source
tool for data analysis. It allows the user to explore and understand graphs
by manipulating the structures, shapes, and colours. Document data, such
as the title, can be viewed by clicking on a node.

7.3 Implementation
During the architectural design, it has been identified that a Command Line
Interface (CLI) data processing program is going to be implemented because
no Graphical User Interface (GUI) is needed. There are several languages or
tools commonly used for scientific computations such as Matlab, Octave, R,
Julia, and Python.

• Matlab5 is a commercial numerical computing environment and pro-
gramming language. There are many toolkits providing extra function-
ality which make it rather expensive.

• Octave6 is an open-source and multi-platform alternative to the Matlab.
Its language is largely compatible with Matlab; however, not fully.

• R7 is an open-source and multi-platform software environment for stat-
istical computing and graphics.

• Julia8 is relatively new, high-level, high-performance dynamic program-
ming language for numerical computing. It provides a sophisticated
compiler, distributed parallel execution, numerical accuracy, and an
extensive mathematical function library.

4https://gephi.org/
5https://www.mathworks.com/products/matlab.html
6https://www.gnu.org/software/octave/
7https://www.r-project.org/
8https://julialang.org/
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• Python9 is a high-level general purpose programming language. There
are many mature and free packages for scientific computing.

Because the goal of this thesis is not to strive for a fast and heavily optim-
ized code, other general purpose programming languages such as C or C++
were excluded. The speed and ease of the development was prefered during
prototyping.

After a thorough research the Python language was chosen because it has
surpassing packages for scientific computing such as gensim10 [16], NumPy11,
SciPy12, etc. Automated tests13 were automatically run in Continuous integ-
ration (CI)14 pipeline.

Having the data flow figure 7.2 in mind, the problem was split into several
scripts because some parts of the data flow are one-off calculations.

7.3.1 Dataset Transformation

The data exported from MediaGist analyzer in XML format contains articles
in all languages and file name for each article is not equal to its GUID. Hence
a script was written. It reads the publication date, language, and GUID, and
prepends it to the file name, because parsing an XML is a rather costly
operation.

It simplifies filtering and sorting which can be done just by looking at
articles’ file name.

7.3.2 Corpora Creation

The second script was used for preprocessing the news articles and for the
creation of BoW/LoW corpora and dictionary, as described in section 7.2.1.
The implementation of preprocessing and corpora is heavily based on the
gensim library.

Three files are created – BoW corpus, LoW corpus, and dictionary – which
are later used by other scripts.

9https://www.python.org/
10https://radimrehurek.com/gensim/
11http://www.numpy.org/
12https://www.scipy.org/
13https://pytest.org/
14https://travis-ci.org/
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7.3.3 Model Training
Another script is responsible for training text vectorization models imple-
mented according to the analysis made in section 7.2.2. The script creates
a pool of processes which are responsible for parallel model training with
various vector dimensions.

It postulates BoW corpus, LoW corpus, and dictionary created by pre-
vious script. For each model and for each dimension it trains and saves the
model. The models from the gensim library are used.

7.3.4 Clustering
In contrast to previous scripts, the clustering script is not a one-off calculation
but it is run multiple times with various parameters in order to achieve the
best results possible on held-out and test data. Figure 7.8 illustrates how the
script works.

Initially, the raw held-out/test data are preprocessed and stored in a
temporary corpus file. The documents grouped by day are then transformed
to its vector representation by a pre-trained model and passed to a selected
clustering algorithm. Several optimization techniques are in place in order not
to perform the same calculation all over again during clustering. Resulting
cluster assignments are evaluated and stored in files.

Even though the available data can easily fit in memory and the data
could be processed multiple times, each document can be "seen" only once
because the program acts as if the data were coming directly from a crawler.
An integration with existing crawler was not implemented because it would
bring unnecessary complexity and it would not change the results.
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Figure 7.8: Illustration of the clustering script behaviour
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8 Results and Discussion

The goal of experiments described in this chapter is to compare implemented
model-based clustering methods. The vector representation for news articles
was trained with dimension D = 50 and D = 100 using training dataset
consisting of 186 931 English news articles. The held-out and test data consists
of 197 news articles published in 4 days and 97 news articles published in
the next 3 days, respectively.

For each IGMM clustering method, the best hyperparameters were chosen
on held-out data. Then an experiment was run five times on held-out + test
data (7 days of data in total) in day after day manner. Then a median of
evaluation metrics was taken and a summary was generated.

Tables 8.1 and 8.2 show the most telling evaluation metrics for each
experiment. For full result tables see appendix D.

The ddCRP performed much better than the CRP. It converged in fewer
iterations and it was easier to find applicable hyperparameters. On the other
hand, the ddCRP is computationally more costly.

Because the incremental clustering system was implemented, a weakly
informative data-dependent prior presented in [14, p. 133] could not be used.
In the beginning, we have no observations to make assumptions about. There-
fore, a diagonal covariance prior was used. Further, the ddCRP used temporal
information (a difference of publication dates) as a prior in form of distance
matrix D.

Also, a choice of the vector representation of news articles had a huge
impact. Experiments show that doc2vec outperformed LSA and LDA in most
of the evaluation metrics.

Unfortunately, there are many criteria measuring the quality of clustering
and none of them can be used universally. The purity, F-measure, V-measure,
and NV-measure were selected because they evinced biggest changes depend-

Table 8.1: A brief result table for D = 50 on test data

CRP ddCRP
random LSA LDA doc2vec LSA LDA doc2vec

purity (Ω, C) 0.2415 0.3878 0.4864 0.5816 0.5340 0.6803 0.8061
F1(Ω, C) 0.0238 0.0695 0.2535 0.2327 0.2479 0.4937 0.5002
V1(Ω, C) 0.4929 0.5812 0.6484 0.6964 0.6757 0.7860 0.8506
NV1,1(Ω, C) 0.4378 0.4403 0.5187 0.5394 0.6740 0.7081 0.7445
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Table 8.2: A brief result table for D = 100 on test data

CRP ddCRP
random LSA LDA doc2vec LSA LDA doc2vec

purity (Ω, C) 0.2415 0.3673 0.5408 0.5000 0.5272 0.6565 0.7653
F1(Ω, C) 0.0238 0.0752 0.2506 0.2677 0.2315 0.4549 0.5316
V1(Ω, C) 0.4929 0.5540 0.6734 0.6509 0.6764 0.7938 0.8512
NV1,1(Ω, C) 0.4378 0.4858 0.5576 0.5678 0.6579 0.6870 0.8072

ing on the character of clustering. A multicriteria optimization of hyperpara-
meters was performed in order to achieve the best values as possible with
a reasonable number of clusters. Many criteria, such as Rand index or V-
measure, are sensitive to the number of clusters. For that reason, NV-measure
was introduced.

The small number of annotated data is a major drawback of performed
experiments. Also, the timespan of articles is too short for proper testing of
perquisites of ddCRP. Data annotation is a tedious and ambiguous process
and it is one of the biggest challenges of cluster analysis. Creation of larger
corpus is an ongoing effort of the NLP research group.
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9 Conclusion

The goal was to research model-based clustering methods, notably the Dis-
tance Dependent Chinese Restaurant Process (ddCRP), propose an incre-
mental clustering system which would be capable of maintaining growing
number of topic clusters of news articles coming online from a crawler, im-
plement proof-of-concept application, and evaluate formed clusters.

Initially, the necessary mathematics and statistics were defined. Then,
the problematics of the vector representation of text, namely LSA, LDA
and doc2vec, was discussed. Both finite and infinite model-based clustering
methods were covered. The focus was on the most common variant of Latent
Variable Model (LVM) – the Gaussian mixture model (GMM). The most
difficult part of cluster analysis is the evaluation of clustering. Various meas-
ures were discussed and a modification of V-measure – NV-measure – was
introduced in order to penalize an excessive or insufficient number of clusters.

The practical part focused on the architecture and implementation of the
incremental clustering system. The system is able to process news articles
coming in batches and assign them to (newly created) clusters. The program
acts as if the data were coming directly from a crawler. Therefore, each
document can be "seen" only once. An integration with existing crawler was
not implemented because it would bring unnecessary complexity and it would
not change the results.

The ddCRP performed much better than the CRP. It converged in fewer
iterations and it was easier to find applicable hyperparameters. On the other
hand, the ddCRP is computationally more costly.

A choice of the vector representation of news articles had a huge impact.
Experiments show that doc2vec outperformed LSA and LDA in most of the
evaluation metrics.

9.1 Future Work
The proof-of-concept of monolingual incremental clustering system was im-
plemented. A future research might consist of:

• carrying out experiments in other languages

• application of cross-lingual approach (documents describing the same
topic written in multiple languages belong to the same cluster)
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• experimenting with other distance priors in ddCRP

• constraining covariance matrices (e.q. diagonal, spherical, tied)

• removing obsolete data from clusters

• more advanced optimizations using Cholesky decomposition [20]

• compilation to C using Cython1

• integration inside the demo application (e.g. http://mediagist.eu)

• using deep auto-encoder for high-dimensional data reduction [7]

• using a mixture of auto-encoders for clustering [22]

1http://cython.org/
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A Notation

General math notation

Symbol Meaning
I(x) Indicator function,

∫
(x) = 1 if x is true, else

∫
(x) = 0

∞ Infinity
→ Tends towards, e.g., n → ∞
∝ Proportional to, so y = ax can be written as y ∝ x

|x| Absolute value
n! Factorial function
Z Integer
R Real number
1 : n Range (Matlab convention): 1 : n = {1, 2, . . . , n}
≈ Approximately equal to
arg maxx f(x) Argmax: the value x which maximizes f(

n
k

)
n choose k

exp(x) Exponential function ex

Linear algebra notation

We use boldface lowercase to denote vectors, such as a, and boldface upper-
case to denote matrices, such as A.

Symbol Meaning
A ≻ 0 A is a positive definite matrix
tr(A) Trace of a matrix
|A| Determinant of matrix A
A−1 Inverse of a matrix
AT Transpose of a matrix
aT Transpose of a vector
1 or 1d Vector of ones (of length d)
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Probability notation
Symbol Meaning
X ∼ p X is distributed according to distribution p

cov [x] Covariance of x
E [X] Expected value of X

H (X) Entropy of distribution p(X)
I (X, Y ) Mutual information between X and Y

Λ Precision matrix Λ = Σ−1

µ Mean of a multivariate distribution
p(x) Probability density or mass function
p(x|y) Conditional probability density of x given y

Σ Covariance matrix
ν Degrees of freedom parameter
Z Normalization constant of a probability distribution
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B Acronyms

AIC Akaike information criterion

BGMM Bayesian Gaussian Mixture Model

BIC Bayesian information criterion

BoW bag-of-words

CBOW Continuous Bag-of-Words

CI Continuous integration

CLI Command Line Interface

CRP Chinese Restaurant Process

CSV Comma-separated values

ddCRP Distance Dependent Chinese Restaurant Process

EM expectation–maximization

FGMM Finite Gaussian Mixture Model

GEXF Graph Exchange XML Format

GMM Gaussian mixture model

GUI Graphical User Interface

GUID Globally Unique Identifier

ID Identifier

IGMM Infinite Gaussian Mixture Model

LDA Latent Dirichlet Allocation

LoW list-of-words

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

LVM Latent Variable Model
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MAP Maximum a posteriori estimation

MCMC Markov Chain Monte Carlo

MLE Maximum likelihood estimation

MVN Multivariate normal distribution

NIW Normal-inverse-Wishart distribution

NLP Natural language processing

PCA Principal Component Analysis

PV-DBOW Distributed Bag of Words version of Paragraph Vector

PV-DM Distributed Memory version of Paragraph Vector

SVD Singular Value Decomposition

VSM Vector Space Model

XML Extensible Markup Language
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C User Manual

The demonstrator was implemented using the Python programming language
and its tools. Following text assumes GNU/Linux (specifically Debian deriv-
atives such as Ubuntu) operating system. On other operating systems, it is
analogous.

Prerequisites
In order to run the application, Python >=3.5 and the packaging system
pipenv is needed. It can be installed using the following commands:

$ sudo apt-get install python3 python3-tk python3-pip
$ pip3 install pipenv

Installation
With Python and pipenv in place, dependencies are installed automatically
using command:

$ pipenv install --dev

Then add the following line to ~/.bashrc file:

export PYTHONPATH=’.’

Usage
The application consists of multiple scripts1. Python scripts can be run using
the following command from project root directory:

$ ./run.sh <path-to-python-script>

Notable scripts are:

• data/genuine/training/create_training_corpora.py – Create a
dictionary, BoW and LoW corpora from training data files.

1The script’s arguments are described in a script command help

65



• data/genuine/training/train_models.py – Train the LSA, LDA,
doc2vec models for document vector representation.

• clustering_system/main.py – Cluster held-out/test documents and
evaluate results. The clustering artefacts appear in a temp folder.

• clustering_system/summary.py – Summarize evaluations from mul-
tiple runs of clustering.

• runner.sh – Run and evaluate clustering experiments with ease.

• test.sh – Run automated tests.
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D Experiments

The vector representation for news articles was trained with dimension D =
50 and D = 100 using training dataset consisting of 186 931 news articles.
The held-out and test data consists of 197 news articles published in 4 days
and 97 news articles published in next 3 days, respectively.

For each IGMM clustering method, the best hyperparameters were chosen
on held-out data. Then an experiment was run five times on held-out + test
data (7 days of data in total) in day after day manner. Then a median of
evaluation metrics was taken and a summary was generated.

Table D.1: Result table for D = 50 on test data

CRP ddCRP
random LSA LDA doc2vec LSA LDA doc2vec

N 294 294 294 294 294 294 294
K = | Ω | 51 66 40 63 50 56 57
C = | C | 50 50 50 50 50 50 50
purity (Ω, C) 0.2415 0.3878 0.4864 0.5816 0.5340 0.6803 0.8061
RI (Ω, C) 0.9427 0.9470 0.9454 0.9568 0.9443 0.9536 0.9691
H (Ω) 3.8537 4.0358 3.4656 4.0041 3.5257 3.3781 3.8015
H (C) 3.5127 3.5127 3.5127 3.5127 3.5127 3.5127 3.5127
P (Ω, C) 0.0365 0.1125 0.2812 0.3832 0.2597 0.4336 0.6969
R (Ω, C) 0.0176 0.0487 0.2519 0.1703 0.2325 0.6301 0.3840
F1(Ω, C) 0.0238 0.0695 0.2535 0.2327 0.2479 0.4937 0.5002
h(Ω, C) 0.5168 0.6245 0.6441 0.7504 0.6752 0.7703 0.8856
c(Ω, C) 0.4689 0.5435 0.6519 0.6519 0.6789 0.8172 0.8183
V1(Ω, C) 0.4929 0.5812 0.6484 0.6964 0.6757 0.7860 0.8506
NV1,1(Ω, C) 0.4378 0.4403 0.5187 0.5394 0.6740 0.7081 0.7445
I (Ω, C) 1.8155 2.1936 2.2624 2.6360 2.3717 2.7060 3.1108
NMI (Ω, C) 0.4934 0.5826 0.6484 0.6982 0.6757 0.7861 0.8513
AIC (θ) - 87426 -76123 139814 53112 15017 141155
BIC (θ) - 409795 118057 447529 297330 288542 419563
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Table D.2: Result table for D = 100 on test data

CRP ddCRP
random LSA LDA doc2vec LSA LDA doc2vec

N 294 294 294 294 294 294 294
K = | Ω | 41 54 60 44 50 57 53
C = | C | 50 50 50 50 50 50 50
purity (Ω, C) 0.2415 0.3673 0.5408 0.5000 0.5272 0.6565 0.7653
RI (Ω, C) 0.9427 0.9381 0.9524 0.9511 0.9477 0.9357 0.9687
H (Ω) 3.8537 3.7646 3.7833 3.5478 3.5981 3.1233 3.6558
H (C) 3.5127 3.5127 3.5127 3.5127 3.5127 3.5127 3.5127
P (Ω, C) 0.0365 0.0889 0.3340 0.3586 0.2755 0.3389 0.6488
R (Ω, C) 0.0176 0.0693 0.2049 0.2719 0.2043 0.7087 0.4392
F1(Ω, C) 0.0238 0.0752 0.2506 0.2677 0.2315 0.4549 0.5316
h(Ω, C) 0.5168 0.5760 0.6994 0.6547 0.6831 0.7545 0.8626
c(Ω, C) 0.4689 0.5337 0.6494 0.6441 0.6699 0.8407 0.8367
V1(Ω, C) 0.4929 0.5540 0.6734 0.6509 0.6764 0.7938 0.8512
NV1,1(Ω, C) 0.4378 0.4858 0.5576 0.5678 0.6579 0.6870 0.8072
I (Ω, C) 1.8155 2.0232 2.4567 2.2997 2.3995 2.6505 3.0300
NMI (Ω, C) 0.4934 0.5544 0.6739 0.6509 0.6764 0.7949 0.8513
AIC (θ) - 377836 309205 349203 334371 292320 501732
BIC (θ) - 1402435 1447649 1184061 1283073 1373841 1507356
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