

UNIVERSITY OF ŽILINA

FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

DIPLOMA THESIS

FIELD OF STUDY: INFORMATION SYSTEMS –

DATA PROCESSING

VOLODYMYR PONOMARENKO

Development of Expert System component for medical

data analysis based on clustering

Supervisor: Prof., Dr. Paul Barach, MD, MPH

Tutor: prof. Ing. Vitaly Levashenko, PhD.

Registration number: 131/2017

Žilina, 2018

Čestné vyhlásenie

Čestne prehlasujem, že som prácu vypracoval samostatne s využitím dostupnej

literatúry a vlastných vedomostí. Všetky zdroje použité v diplomovej práci som uviedol v

súlade s predpismi.

Honorable statement

I honestly declare that I have done the work independently using the available

literature and my own knowledge. All the resources used in my thesis were stated in

accordance with the regulations.

Žilina, _______________ Volodymyr Ponomarenko

Poďakovanie

V prvom rade by som chcel poďakovať Pánu Bohu za rozum, zdravie a silu, ktoré mi

dal pre napísanie tejto diplomovej práce, a tiež za mojich tútora a vedúceho, pod múdrym

vedením ktorých táto práca bola úspešne dokončená.

Obrovská vďaka patri tútorovi diplomovej práce prof. Ing. Vitalymu Levashenkovi,

PhD. za cenné rady, poskytnuté materiály, množstvo času venovaného konzultáciám, a za

jeho trpezlivosť na všetkých etapách vypracovania tejto práce.

Chcem taktiež poďakovať všetkým kto sa modlil za mňa a veril že zvládnem nielen

túto prácu ale aj celé inžinierske štúdium, hlavne mojej mame.

Thanks

First of all, I would like to thank the Lord God for the intellect, health and strength

that He has given me to write my diploma thesis, as well as for my tutor and supervisor,

under whose wise leadership this work was successfully completed.

Huge thanks belong to the tutor of the diploma thesis prof. Ing. Vitaly Levashenko,

PhD. for valuable advices, provided materials, plenty of time spent on consultations, as well

as for his patience during all stages of this work.

I also want to thank all who prayed for me and believed that I would be able to handle

not only this work but also the whole study at master's degree level, especially I am grateful

to my mom.

Abstrakt

PONOMARENKO, Volodymyr: Vývoj komponentu expertného systému pre

analýzu lekárskych údajov s využitím zhlukovania. [Diplomová práca] – Žilinská univerzita

v Žiline, Fakulta riadenia a informatiky, Katedra informatiky. – Vedúci: Prof., Dr. Paul

Barach, MD, MPH. – Tútor: prof. Ing. Vitaly Levashenko, PhD. – Stupeň odbornej

kvalifikácie: Inžinier v odbore Informatika. – Žilina: FRI ŽU v Žiline, 2018. – 112 s.

Diplomová práca sa zaoberá transformáciou numerických hodnôt na lingvistické

v oblasti analýzy lekárskych údajov. Skúmajú sa rôzne algoritmy zhlukovania pre vykonanie

tejto transformácie. Cieľom prace je vyvinúť softvérový komponent expertného systému

založený na zhlukovaní.

Kľúčové slová: algoritmy zhlukovania, analýza lekárskych údajov, fuzzifikácia,

fuzzy zhlukovanie, indexy platnosti klastrov.

Abstract

PONOMARENKO, Volodymyr: Development of Expert System component for

medical data analysis based on clustering. [Diploma thesis] – University of Žilina, Faculty

of Management Science and Informatics, Department of informatics. – Supervisor: Prof.,

Dr. Paul Barach, MD, MPH. – Tutor: prof. Ing. Vitaly Levashenko, PhD. – Qualification

level: Master of Computer Science. – Žilina: FRI ŽU in Žilina, 2018. – 112 p.

The diploma thesis is devoted to the transformation of numerical values into

linguistic values in medical data analysis. Different clustering algorithms are considered to

perform the transformation. The goal of the work is to develop a software component of the

Expert System based on clustering.

Key words: clustering algorithms, cluster validity indices, fuzzification, fuzzy

clustering, medical data analysis.

FRI DIPLOMOVÁ PRÁCA

6

CONTENTS

List of Figures .. 8

List of Tables ... 12

List of Abbreviations ... 13

INTRODUCTION ... 14

CHAPTER 1. THEORETICAL ASPECTS OF CLUSTERING... 16

1.1. Fundamentals of clustering ... 16

1.1.1. Definition of the clustering problem .. 16

1.1.2. Data types ... 19

1.1.3. Similarity Measuring .. 20

1.2. Clustering in medical data analysis ... 24

1.3. Fuzzy clustering .. 26

CHAPTER 2. CLUSTERING ALGORITHMS .. 30

2.1. Fundamentals of clustering algorithms ... 30

2.2. Classical fuzzy clustering algorithms .. 34

2.2.1. Fuzzy c-Means Clustering .. 34

2.2.2. Gustafson-Kessel Clustering Algorithm ... 35

2.2.3. Gath-Geva Clustering Algorithm ... 37

2.2.4. Determining the optimal number of clusters .. 39

2.3. Multi-Interval Discretization ... 41

2.4. Fuzzy Entropy Based Fuzzy Classifier ... 46

2.5. Fuzzy Information Density Based Fuzzy Classifier .. 51

CHAPTER 3. A SOFTWARE TOOL FOR DATA ANALYSIS BASED ON

CLUSTERING ... 54

3.1. Design of the Fuzzy Clustering Tool .. 54

3.2. Core module implementation .. 56

3.3. Graphical user interface implementation .. 72

CHAPTER 4. EXPERIMENTAL STUDY WITH THE IMPLEMENTED

SOLUTION .. 77

4.1. Fuzzy clustering accuracy evaluation ... 77

4.2. Comparison of the fuzzy clustering algorithms on medical data 79

FRI DIPLOMOVÁ PRÁCA

7

4.2.1. Pima Indians Diabetes .. 79

4.2.2. Heart Disease .. 84

4.2.3. Breast Cancer Wisconsin .. 88

4.2.4. Indian Liver Patient Records .. 94

4.2.5. Chronic Kidney Disease ... 98

CONCLUSION .. 104

BIBLIOGRAPHY .. 106

List of Appendices ... 109

APPENDICES ... 110

Appendix 1: UML Class diagram of the Fuzzy Clustering Tool 111

Appendix 2: Contents of the CD .. 112

FRI DIPLOMOVÁ PRÁCA

8

List of Figures

Figure 1.1. Data mining tasks .. 16

Figure 1.2. Simple example of clustering ... 18

Figure 1.3. Diagram of data types ... 19

Figure 1.4. Examples of distance functions – three-dimensional and contour plots 23

Figure 1.5. A set of two-dimensional patterns, that contains three clusters. The patterns,

which can belong to more than one cluster are pointed to by the arrows 26

Figure 1.6. Classification of approaches for cluster analysis .. 27

Figure 2.1. Phases of a clustering algorithm ... 30

Figure 2.2. Criterion function impact on a clustering quality ... 31

Figure 2.3. Example of the MID clustering algorithm, given by Popel 44

Figure 2.4. The fuzzy membership function with boundaries and centers of clusters 45

Figure 2.5. Example of a distribution of 3 classes of objects with corresponding

membership functions .. 49

Figure 3.1. The Use Case diagram of the Fuzzy Clustering Tool 55

Figure 3.2. A structure of the Fuzzy Clustering Tool implementation as a “solution” in

Visual Studio 2017 ... 56

Figure 3.3. A Solver class view .. 57

Figure 3.4. Enumerators in the core module ... 59

Figure 3.5. A Dataset class view ... 60

Figure 3.6. A DatasetDescription class view .. 61

Figure 3.7. An Attribute class view .. 62

Figure 3.8. An AttributeHeader class view ... 63

Figure 3.9. A NumericAttribute class view .. 64

Figure 3.10. A NominalAttribute class view .. 65

Figure 3.11. An AttributeData abstract class with derived classes 67

Figure 3.12. A Fuzzification class view .. 68

Figure 3.13. A FuzzyClusteringAlgorithm abstract class view .. 68

Figure 3.14. Classes, that implement FCM and its modifications 69

Figure 3.15. A MID class view ... 70

Figure 3.16. Classes, implementing FEBFC algorithm and its modification FIDBFC 71

FRI DIPLOMOVÁ PRÁCA

9

Figure 3.17. A FuzzyClustersImporter class view .. 72

Figure 3.18. The main window of the Fuzzy Clustering Tool .. 73

Figure 3.19. The Dataset menu ... 74

Figure 3.20. The Fuzzy menu .. 74

Figure 3.21. “Current dataset” section of the main window of the tool 75

Figure 3.22. “Attributes” section of the main window of the tool 75

Figure 3.23. “Selected attribute” section of the main window of the tool 75

Figure 3.24. “Clusters” section of the main window of the tool ... 76

Figure 3.25. “Visualization” section of the main window of the tool 76

Figure 4.1. Membership functions of attributes A1 – A8 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 80

Figure 4.2. Membership functions of attributes A1 – A8 obtained using the GK algorithm

with Pairing Frequency index for getting the optimal number of clusters 80

Figure 4.3. Membership functions of attributes A1 – A8 obtained using the GG algorithm

with Pairing Frequency index for getting the optimal number of clusters 81

Figure 4.4. Membership functions of attributes A1 – A8 obtained using the MID

algorithm ... 81

Figure 4.5. Membership functions of attributes A1 – A8 obtained using the FEBFC

algorithm ... 82

Figure 4.6. Membership functions of attributes A1 – A8 obtained using the FIDBFC

algorithm ... 82

Figure 4.7. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FCM algorithm with Pairing Frequency index for getting the optimal number

of clusters .. 85

Figure 4.8. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

GK algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 86

Figure 4.9. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

GG algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 86

Figure 4.10. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

MID algorithm .. 86

FRI DIPLOMOVÁ PRÁCA

10

Figure 4.11. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FEBFC algorithm ... 87

Figure 4.12. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FIDBFC algorithm .. 87

Figure 4.13. Membership functions of attributes A1 – A10 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 90

Figure 4.14. Membership functions of attributes A1 – A10 obtained using the GK algorithm

with Pairing Frequency index for getting the optimal number of clusters 90

Figure 4.15. Membership functions of attributes A1 – A10 obtained using the GG algorithm

with Pairing Frequency index for getting the optimal number of clusters 91

Figure 4.16. Membership functions of attributes A1 – A10 obtained using the MID

algorithm ... 91

Figure 4.17. Membership functions of attributes A1 – A10 obtained using the FEBFC

algorithm ... 92

Figure 4.18. Membership functions of attributes A1 – A10 obtained using the FIDBFC

algorithm ... 92

Figure 4.19. Membership functions of attributes A1, A3 – A10 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 95

Figure 4.20. Membership functions of attributes A1, A3 – A10 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 95

Figure 4.21. Membership functions of attributes A1, A3 – A10 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 96

Figure 4.22. Membership functions of attributes A1, A3 – A10 obtained using the MID

algorithm ... 96

Figure 4.23. Membership functions of attributes A1, A3 – A10 obtained using the FEBFC

algorithm ... 97

Figure 4.24. Membership functions of attributes A1, A3 – A10 obtained using the FIDBFC

algorithm ... 97

FRI DIPLOMOVÁ PRÁCA

11

Figure 4.25. Membership functions of attributes A1, A2, A10 – A18 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 100

Figure 4.26. Membership functions of attributes A1, A2, A10 – A18 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 100

Figure 4.27. Membership functions of attributes A1, A2, A10 – A18 obtained using the GG

algorithm with Pairing Frequency index for getting the optimal number of

clusters .. 101

Figure 4.28. Membership functions of attributes A1, A2, A10 – A18 obtained using the MID

algorithm ... 101

Figure 4.29. Membership functions of attributes A1, A2, A10 – A18 obtained using the

FEBFC algorithm ... 102

Figure 4.30. Membership functions of attributes A1, A2, A10 – A18 obtained using the

FIDBFC algorithm .. 102

FRI DIPLOMOVÁ PRÁCA

12

List of Tables

Table 1.1. Comparison of different definitions of the term “clustering” by key

characteristics .. 18

Table 1.2. The most common indices of similarity between patterns 𝐱 and 𝐲 depending on

values of 𝑎, 𝑏, 𝑐 and 𝑑 entries ... 22

Table 1.3. The most common distance functions between patterns 𝐱 and 𝐲...................... 22

Table 2.1. Optimality criterions of fuzzy clustering (Cluster Validity Indices) 32

Table 4.1. Attributes of the Pima Indians Diabetes data set: A1-A8 are input attributes and

C is an output attribute .. 79

Table 4.2. Clustering Accuracy Indices calculated for the fuzzification performed on the

Pima Indians Diabetes Dataset .. 83

Table 4.3. Attributes of the Cleveland Heart Disease data set: A1-A13 are input attributes

and C is an output attribute ... 84

Table 4.4. Clustering Accuracy Indices calculated for the fuzzification performed on the

Cleveland Heart Disease data set .. 88

Table 4.5. Attributes of the Breast Cancer Wisconsin data set: A1-A10 are input attributes

and C is an output attribute ... 89

Table 4.6. Clustering Accuracy Indices calculated for the fuzzification performed on the

Breast Cancer Wisconsin data set ... 93

Table 4.7. Attributes of the Liver Patient Records data set: A1-A10 are input attributes and

C is an output attribute .. 94

Table 4.8. Clustering Accuracy Indices calculated for the fuzzification performed on the

Indian Liver Patient Records data set ... 98

Table 4.9. Attributes of the Chronic Kidney Disease data set: A1-A24 are input attributes

and C is an output attribute ... 99

Table 4.10. Clustering Accuracy Indices calculated for the fuzzification performed on the

Chronic Kidney Disease data set .. 103

FRI DIPLOMOVÁ PRÁCA

13

List of Abbreviations

CVI Cluster Validity Index

EU European Union

FCM Fuzzy c-Means

FEBFC Fuzzy Entropy Based Fuzzy Classifier

FIDBFC Fuzzy Information Density Based Fuzzy Classifier

FMLE Fuzzy Maximum Likelihood Estimation

GG Gath-Geva

GK Gustafson-Kessel

GUI Graphical User Interface

HIPAA Health Insurance Portability and Accountability Act

IDE Integrated Development Environment

ISODATA Iterative Self-Organizing Data Analysis Technique

MID Multi-Interval Discretization

MVC Model-View-Controller

NMI Normalized Mutual Information

PBMF Pakhira-Bandyopadhyay-Maulik Fuzzy

FRI DIPLOMOVÁ PRÁCA

14

INTRODUCTION

During the last few decades, the face of the modern world was qualitatively changed

by information technologies. Various technical means and information delivery channels,

based on progressive information and communication systems, have revolutionized human

life, that nowadays is inseparably associated with huge flows of data. These data are involved

in all spheres of human activity – social, economic, political, spiritual. However, the

information contained in such data can be whether very valuable or completely useless.

Extracting various kinds of useful information from the data sets is one of the main tasks of

the modern science called data mining.

Data mining proposes methods, that today are widely used in healthcare, which is in

one of the fundamental fields of the social sphere of modern life. Such popularity of the data

mining methods was formed mainly due to the rapid development of medical devices and

therapy technologies, that allow to produce and to store large amount of data. Producing of

new data is mostly achieved in a process of providing medical services. For example,

imagine a patient who came to a polyclinic to examine his digestive system. A medical

worker, using a special probe or ultrasound device, measures necessary medical indicators

and records them in a medical report. Obtained in a such way medical data are usually

persisted in some database for possible using in future. Therefore, storing medical data is

achieved through the use of various database systems.

The information contained in medical data is extremely important for solving

diagnostic, therapeutic, statistical, administrative and other tasks in the field of medicine,

e.g. determination of a correct treatment, definition of a patient's group of risk and prevention

of diseases. Solving of these tasks has a huge impact on a quality of medical services, life

expectancy, mortality and time of illnesses of population.

In the field of medicine, both numeric (continuous) and nominal (linguistic) types of

data are used. The numeric data type is used for representing value of a continuous medical

indicator, e.g. age of a patient, body mass index, resting blood pressure, albumin and

globulin ratio. Variables of the nominal data type usually keep a name of some state of a

categorical medical indicator, e.g. a patient's appetite can be good or poor, a tumor can be

malignant or benign. In medical data analysis obtaining a continuous value is often not

enough informative to make a conclusion about patient's state for determining necessary

FRI DIPLOMOVÁ PRÁCA

15

treatment, so the medical worker has to associate this value with an appropriate nominal

value. This is a typical situation when a transformation from numeric into linguistic values

comes into play. The numeric values of an attribute obtained as a result of the transformation

can be relatively easy converted into fuzzy data specified by a membership function. The

whole process of obtaining fuzzy values from numeric values is called fuzzification.

Fuzzy medical data, obtained as a result of fuzzification, are very valuable. They can

be used, in particular, for increasing the healthcare system reliability through the reducing

potential medical failures, that is discussed in papers [1]-[2].

The process of transformation from numeric into linguistic values, that is based on

cluster analysis, is the subject of study in this diploma thesis. The Expert System for medical

data analysis is the object of study. The work's goal is development of a software, that should

be able to transform values of any numeric attribute of the medical data set into fuzzy values.

It must be possible to use this software, based on clustering algorithms, as a computational

component of Expert System for medical data analysis. The information, containing in the

resulting fuzzy data sets, is very valuable, because can be used in constructing predictive

components of the Expert System, e.g. decision trees.

The diploma thesis consists of four chapters. In Chapter 1 theoretical aspects of

clustering problem is considered, that include describing a place of cluster analysis in the

data mining science and its usage for medical data analysis, definition of the term

“clustering” and formulation the clustering goals, familiarizing with different data types and

measures of similarity and dissimilarity, and explanation differences between hard clustering

and fuzzy clustering.

Chapter 2 is devoted to describing Cluster Validity Indices and following clustering

algorithms: Fuzzy c-Means, Gustafson-Kessel algorithm, Gath-Geva algorithm, Multi-

Interval Discretization and Fuzzy Entropy Based Fuzzy Classifier. Additionally, this chapter

includes a modification of the Fuzzy Entropy Based Fuzzy Classifier, proposed by the author

of this thesis.

Chapter 3 describes a design and implementation of a software tool for

transformation numeric values into fuzzy values based on clustering. This software is called

Fuzzy Clustering Tool. Chapter 4 contains experimental study on medical data sets. In this

study the implemented in the tool clustering algorithms are evaluated and compared using

the Clustering Accuracy Indices.

FRI DIPLOMOVÁ PRÁCA

16

CHAPTER 1. THEORETICAL ASPECTS OF CLUSTERING

1.1. Fundamentals of clustering

1.1.1. Definition of the clustering problem

According to L. Rokach and O. Maimon, data mining can be defined as “the science

and technology of exploring data in order to discover previously unknown patterns” [3]. One

of the fundamental problems in data mining is clustering (also called cluster analysis). Its

role in data mining can be illustrated with the schema on Figure 1.1. Clustering belongs to

indirect or unsupervised data mining, since we do not know anything about clusters we are

looking for. Moreover, the purpose of cluster analysis is to determine the set of clusters for

dividing an initial data set into.

Figure 1.1. Data mining tasks [4].

The history of clustering goes back to Aristotle's attempt to classify living

organisms [8]. Nowadays, cluster analysis has a wide range of fields of application, e.g. text

mining, market research, business failure categorization, grouping of shopping items, credit

DATA MINING

Indirect (unsupervised)

data mining

Direct (supervised)

data mining

Classification

Estimation

Prediction

Clustering

Association rules

Description and visualization

FRI DIPLOMOVÁ PRÁCA

17

evaluation, social network analysis, human gene analysis, anomaly detection, crime analysis,

image processing as well as medical data analysis.

For moving deeper in this diploma thesis, we need to formalize, what the clustering

is. L. Rokach and O. Maimon note about what clustering actually does, that it “groups the

data instances into subsets in such a manner that similar instances are grouped together;

different instances belong to different groups” [3]. According to G. Gan, M. Chaoqun and

W. Jianhong, clustering “is a method of creating groups of objects, or clusters, in such a way

that objects in one cluster are very similar and objects in different clusters are quite

distinct” [4]. J. Abonyi and B. Feil define clustering as “the classification of similar objects

into different groups, or more precisely, the partitioning of a data set into subsets (clusters),

so that the data in each subset (ideally) share some common trait – often proximity according

to some defined distance measure” [5]. Rui Xu and Donald C. Wunsch II explain the term

of “clustering” as an “unsupervised classification” the goal of which is “to separate a finite,

unlabeled data set into a finite and discrete set of “natural”, hidden data structures, rather

than to provide an accurate characterization of unobserved samples generated from the same

probability distribution” [6]. Another definition of the term of “clustering” is based on

understanding clustering problem as “categorizing or segmenting observations into groups

or clusters such that each cluster is as homogeneous as possible”, where the mentioned

groups (clusters) “are usually unknown to or not predetermined by data miners” [7].

Analysis of the definitions of the term “clustering” in the previous paragraph leads

us to extract key characteristics of clustering. Comparison of different definitions of the term

is shown on Table 1.1. This is a process of partitioning a data set into groups (clusters), finite

number of clusters, clustering is a type of classification, unsupervised learning, similarity is

based on distance measure. We cannot agree with definitions, that explain clustering as some

type of classification, because clustering belongs to indirect data mining while classification

belongs to direct one. Unfortunately, none of the analyzed definitions include all mentioned

characteristics except “clustering is a type of classification”. This is the reason to make our

own definition of clustering, which would improve the situation. We can define the

clustering as the unsupervised learning method of partitioning a data set into a finite number

of discrete groups (clusters) such that each group consists of similar objects according to

some defined distance measure.

FRI DIPLOMOVÁ PRÁCA

18

Table 1.1. Comparison of different definitions of the term “clustering” by key
characteristics

Characteristic [3] [4] [5] [6] [7]
Own

definition

Partitioning a data set into groups (clusters) + + + + + +
Finite number of clusters – – – + – +
Discrete clusters – – – + – +
Clustering is a type of classification – – + + + –
Unsupervised learning – – – + + +
Similarity is based on distance measure – – + – – +

The cluster analysis principle can be demonstrated graphically in Figure 1.2, where

(a) – the initial data set of objects (patterns, entities, instances) and (b) – a set of clusters into

which the data set can be divided.

Figure 1.2. Simple example of clustering.

It was mentioned above, that clustering belongs to unsupervised learning. The reason

for this lays in a lack of prior information in the initial data sets. For example, disease

diagnosis and treatment in clinics, where several unknown subtypes for each type of disease

may exist, can be considered. Even if they all have similar morphological appearances,

responding to the same therapy may differ. Clustering with gene expression data that

measure the activities of genes can be used to solve this problem. It provides a promising

Cluster 1

Cluster 2

Cluster 3

(a) (b)

FRI DIPLOMOVÁ PRÁCA

19

method to uncover the previously unknown subtypes of disease that will allow to determine

the most appropriate therapies [6].

Clustering has four major goals, which cover all major aspects of analysis:

• development of a classification;

• investigation of useful conceptual schemes for grouping entities;

• hypothesis generation through data exploration;

• hypothesis testing or the attempt to determine if types defined through other

procedures are in fact present in a data set [6].

Cluster analysis is realized through clustering algorithms, which will be discussed in

Chapter 2.

1.1.2. Data types

Understanding of data types is obligatory for interpreting the results of cluster

analysis, because each data type has its own field of usage depending on information that an

attribute can contains. The most commonly used data types in clustering are discrete and

continuous types. The discrete data type aggregates nominal and binary (symmetrical as well

as asymmetrical) types (see Figure 1.3).

Figure 1.3. Diagram of data types [4].

DATA TYPES

Discrete Continuous

Nominal Binary

Symmetrical Asymmetrical

FRI DIPLOMOVÁ PRÁCA

20

The discrete data type is used for representing value of a discrete attribute. Number

of possible values of such variable is finite. Similarly, the continuous data type is used for

representing value of a continuous (numeric) attribute that can assume any value in ℝ.

A nominal (categorical) variable usually keeps a name of some object's state. For

example, notebook manufacturer name is the nominal attribute of the notebook object. The

categorical attribute assumes a finite number of values (as categorical data type belongs to

discrete type), but nothing can be said about closeness of such values.

Binary variables keep one of two possible values (e.g. “true” or “false”). Depending

on information importance of each value, a binary attribute can be symmetric or asymmetric.

In a symmetric binary variable the importance of both possible values is the same (e.g.

“black” or “white”), while in an asymmetric variable one value is more important than the

other (e.g. “yes” stands for the presence and “no” stands for the absence of a certain

attribute) [4].

1.1.3. Similarity Measuring

In Section 1.1.2 it was mentioned, that the result of clustering is a set of partitions

(clusters) with following characteristics:

• patterns, that belongs to the same partition are homogeneous (as similar as

possible);

• patterns, that belongs to different partitions are heterogeneous (as different as

possible) [9].

Since we use a term of similarity here, it should be specified what the similarity is

and how it can be measured. In the literature of clustering, under the concept of similarity is

understood a presence of similar attributes in analyzed objects. The greater the similarity

measure, the more similar two objects are [4].

For any objects 𝐱 and 𝐲 the similarity measure is a function, that satisfies following

conditions:

• Positivity: 0 ≤ 𝑠(𝐱, 𝐲) ≤ 1 (1.1)

• Symmetry: 𝑠(𝐱, 𝐲) = 𝑠(𝐲, 𝐱) (1.2)

FRI DIPLOMOVÁ PRÁCA

21

The function is called a similarity metric if it also satisfies the following additional

conditions for any objects 𝐱, 𝐲 and 𝐳 [6]:

• 𝑠(𝐱, 𝐲) × 𝑠(𝐲, 𝐳) ≤ (𝑠(𝐱, 𝐲) + 𝑠(𝐲, 𝐳)) × 𝑠(𝐱, 𝐳) (1.3)

• 𝑠(𝐱, 𝐱) = 1 (1.4)

Mostly the similarity measure is used with binary variables. Consider two vectors of

binary data 𝐱 and 𝐲 (patterns, that have binary attributes). Let designate a number of

occurrences when 𝑥𝑖 and 𝑦𝑖 are both equal to 1 as “𝑎”; a number of occurrences when 𝑥𝑖 =0 and 𝑦𝑖 = 1 as “𝑏”; a number of occurrences when 𝑥𝑖 = 1 and 𝑦𝑖 = 0 as “𝑐”; a number of

occurrences when 𝑥𝑖 and 𝑦𝑖 are both equal to 0 as “𝑑”. Then these four numbers can be

organized into a 2 by 2 co-occurrence matrix (contingency table) that visualizes how “close”

these two objects are to each other [10]:

 𝑥𝑖
 1 0 𝑦𝑖 1 𝑎 𝑏

0 𝑐 𝑑

(1.5)

The highest similarity is in case of nondiagonal elements of matrix (1.5) are equal to

zero. For measuring similarity depending on values of 𝑎, 𝑏, 𝑐 and 𝑑 entries, indices of

similarity can be used. The most common indices are listed in Table 1.2.

For measuring similarity between continuous variables, the most appropriate

measure is distance. To be more precise, distance is a measure of dissimilarity and can be

defined by the following relation:

 𝑑(𝐱, 𝐲) = 1 − 𝑠(𝐱, 𝐲) (1.10)

For any objects 𝐱, 𝐲 and 𝐳, distance is a function, that satisfies following conditions:

• Positivity: 𝑑(𝐱, 𝐲) ≥ 0 (1.11)

• Reflexivity: 𝑑(𝐱, 𝐱) = 0 (1.12)

• Symmetry: 𝑑(𝐱, 𝐲) = 𝑑(𝐲, 𝐱) (1.13)

• Triangle inequality: 𝑑(𝐱, 𝐲) + 𝑑(𝐲, 𝐳) ≥ 𝑑(𝐱, 𝐳) (1.14)

FRI DIPLOMOVÁ PRÁCA

22

Table 1.2. The most common indices of similarity between patterns 𝐱 and 𝐲 depending on
values of 𝑎, 𝑏, 𝑐 and 𝑑 entries (𝑎 – number of occurrences when 𝑥𝑖 and 𝑦𝑖 are
both equal to 1; 𝑏 – number of occurrences when 𝑥𝑖 = 0 and 𝑦𝑖 = 1; 𝑐 – number
of occurrences when 𝑥𝑖 = 1 and 𝑦𝑖 = 0; 𝑑 – number of occurrences when 𝑥𝑖
and 𝑦𝑖 are both equal to 0)

Index of similarity Formula

Russel and Rao index 𝑠(𝐱, 𝐲) = 𝑎𝑎 + 𝑏 + 𝑐 + 𝑑 (1.6)

Sokal index 𝑠(𝐱, 𝐲) = 𝑎 + 𝑑𝑎 + 𝑏 + 𝑐 + 𝑑 (1.7)

Jaccard index 𝑠(𝐱, 𝐲) = 𝑎𝑎 + 𝑏 + 𝑐 (1.8)

Czekanowski index 𝑠(𝐱, 𝐲) = 2𝑎2𝑎 + 𝑏 + 𝑐 (1.9)

Calculating distance gives us enough information to conclude how close objects are

and depending on this closeness decide about their belonging to the appropriate clusters. The

most common approaches for distance measuring are listed in Table 1.3.

Table 1.3. The most common distance functions between patterns 𝐱 and 𝐲 [10]

Distance function Formula

Euclidean distance 𝑑(𝐱, 𝐲) = √∑(𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (1.15)

Hamming distance 𝑑(𝐱, 𝐲) =∑|𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1 (1.16)

Tchebyschev distance 𝑑(𝐱, 𝐲) = max𝑖=1,2,...,𝑛|𝑥𝑖 − 𝑦𝑖| (1.17)

Minkowski distance 𝑑(𝐱, 𝐲) = √∑(𝑥𝑖 − 𝑦𝑖)𝑝𝑛
𝑖=1

𝑝 , 𝑝 > 0 (1.18)

Canberra distance 𝑑(𝐱, 𝐲) =∑|𝑥𝑖 − 𝑦𝑖|𝑥𝑖 + 𝑦𝑖𝑛
𝑖=1 , 𝑥𝑖 > 0, 𝑦𝑖 > 0 (1.19)

Mahalanobis distance
𝑑(𝐱, 𝐲) = 𝐱𝑇𝐴−1𝐲,
where 𝐴 is a positive definite matrix

(1.20)

FRI DIPLOMOVÁ PRÁCA

23

Approaches listed above in Table 1.3 assumes different data representation, that can

be found in their geometric constructs, which are the contours of the constant distances

between any two objects [10]. Examples of the geometric constructs for Euclidean,

Hamming and Tchebyschev distances are shown in Figure 1.4.

Figure 1.4. Examples of distance functions – three-dimensional and contour plots: (a)

Euclidean, (b) Hamming (city block), (c) Tchebyschev [10]

(a) (b)

(c)

FRI DIPLOMOVÁ PRÁCA

24

1.2. Clustering in medical data analysis

Healthcare today is in one of the fundamental fields of the social sphere of human

life. Over the last few decades, medical devices and therapy technologies has developed

rapidly and nowadays they allow to produce and to store large amount of data. Producing of

new data is mainly achieved in a process of providing medical services. For example,

imagine a patient who came to a polyclinic to examine his digestive system. A medical

worker, using a special probe or ultrasound device, measures necessary medical indicators

and records them in a medical report. Obtained in a such way medical data are usually

persisted in some database for possible using in future. Therefore, storing medical data is

achieved through the use of various database systems.

All biologically active processes in a human organism are related with producing of

various signal – electromagnetic, sonic, and mechanical. Mentioned above medical

indicators of the human condition can be considered as signals (for example, growth, body

weight, composition of blood and other biological fluids). Any objective or subjective sign

of a disease is also a signal (e.g. patient complaints, fever, jaundice, results of physical

survey) [11].

Some changes of properties of the latter can occur, as a result of interaction of

biological signals, generated by the human body, with physical bodies (detectors). These

changes are then registered by special medical devices as signals. In computer science such

registered signals are known as medical data [11].

The information contained in medical data is extremely important for solving

diagnostic, therapeutic, statistical, administrative and other tasks in the field of medicine,

e.g. determination of a correct treatment, definition of a patient's group of risk and prevention

of diseases. Solving of these tasks has a huge impact on a quality of medical services, life

expectancy, mortality and time of illnesses of population.

In the field of medicine, both numeric (continuous) and nominal (linguistic) types of

data are used. The numeric data type is used for representing value of a continuous medical

indicator, e.g. age of a patient, body mass index, resting blood pressure, albumin and

globulin ratio. Variables of the nominal data type usually keep a name of some state of a

categorical medical indicator, e.g. a patient's appetite can be good or poor, a tumor can be

malignant or benign. In medical data analysis obtaining a continuous value is often not

enough informative to make a conclusion about patient's state for determining necessary

FRI DIPLOMOVÁ PRÁCA

25

treatment, so the medical worker has to associate this value with an appropriate nominal

value. This is a typical situation when clustering of medical data, that results in

transformation from numeric into linguistic values, comes into play.

The main problem of medical data analysis is providing a decision support system

for medical predictions, that would be efficient in determining of disease diagnosis and

following treatment of a patient. Nowadays, the most promising methods of solving the

mentioned problem are fuzzy logic, neural network, and machine learning algorithms [12].

All of them are based on clustering, that has become probably the most widely used data

mining technique for medical data [13].

Numerous specific examples of the use of clustering in medical data analysis can be

found in the literature. For example, clustering is used for identifying groups of genes that

have similar biological functions, cancer class discovery and prediction, characterizing of

psychiatric patients on the basis of clusters of symptoms, identifying medical patient groups

that need specific targeted interventions, analyzing various signals and their relationships

with particular diseases or symptoms [13, 14].

Medical data often contains confidential information relating to patients. The use of

this information is governed by regulations, such as the EU Data Protection Directive (in the

EU) or the 1996 Health Insurance Portability and Accountability Act (HIPAA) (in the United

States). Therefore, before starting analysis, the data must be transformed so that the patient's

personal information is not individually identifiable, that is, record should not contain

sufficient data to identify the person associated with the record. Thus, cluster analysis is

allowed only on the following types of medical data: anonymous data (data collected without

patient-identification information), anonymized data (data collected with patient-

identification information which is removed later), or de-identified data (data with patient-

identification information encoded or encrypted) [13].

FRI DIPLOMOVÁ PRÁCA

26

1.3. Fuzzy clustering

Initially, the cluster analysis was based on the classical set theory and implied an

unambiguous separation of the entire data set into mutually exclusive clusters. It means that

each object has a clearly defined membership in one and only one of the clusters based on a

certain similarity or dissimilarity measure (discussed earlier in Section 1.1.3) [15]. But in

practice in many cases an object can belong to several strictly defined clusters. For example,

consider a set of two-dimensional patterns that contains three clusters (see Figure 1.5).

Figure 1.5. A set of two-dimensional patterns, that contains three clusters. The patterns,

which can belong to more than one cluster are pointed to by the arrows [10].

As can be seen in Figure 1.5, although most patterns have an obvious belonging to

only one of the clusters, two of them are on the boundary between two clusters and thus can

be assigned to any of them. Such situations occur quite often while processing real data. The

possible reason for this can be noise or lack of discriminatory power of the feature space, in

which the patterns are represented [10].

Understanding of the described problem was a driving force for theoretical research

in the field of clustering and eventually has led to the formalization of two main branches of

cluster analysis: hard clustering and fuzzy clustering (see Figure 1.6).

FRI DIPLOMOVÁ PRÁCA

27

Figure 1.6. Classification of approaches for cluster analysis

Hard clustering (also crisp clustering) is a type of cluster analysis, that requires

belonging of an object to one and only one cluster. It represents the classic approach that

was described at the beginning of this section.

Mathematically, the result of hard clustering can be represented by a k × n matrix,

that is called a hard 𝑘-partition of the data set 𝐷 [4]:

𝑈 = (𝑢11 𝑢12 ⋯ 𝑢1𝑛𝑢21 𝑢22 ⋯ 𝑢2𝑛⋮ ⋮ ⋱ ⋮𝑢𝑘2 𝑢𝑘2 ⋯ 𝑢𝑘𝑛), (1.21)

where 𝑛 denotes the number of patterns in the data set 𝐷, 𝑘 denotes the number of clusters,

and 𝑢𝑗𝑖 satisfies

 𝑢𝑗𝑖 = {0, 1}, 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛,
∑𝑢𝑗𝑖𝑘
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑛,
∑𝑢𝑗𝑖𝑛
𝑖=1 > 0, 1 ≤ 𝑗 ≤ 𝑘.

Fuzzy clustering (or soft clustering) is a type of cluster analysis, that implies

belonging of an object to several clusters simultaneously, with different degrees of

membership between 0 and 1 indicating their partial memberships [15].

Cluster analysis

Hard clustering Fuzzy clustering

FRI DIPLOMOVÁ PRÁCA

28

The result of fuzzy clustering can be also represented by a 𝑘 × 𝑛 matrix, that is called

a fuzzy 𝑘-partition of the data set 𝐷 [4]:

𝛭 = (𝜇11 𝜇12 ⋯ 𝜇1𝑛𝜇21 𝜇22 ⋯ 𝜇2𝑛⋮ ⋮ ⋱ ⋮𝜇𝑘2 𝜇𝑘2 ⋯ 𝜇𝑘𝑛), (1.22)

where 𝑛 denotes the number of patterns in the data set 𝐷, 𝑘 denotes the number of clusters,

and 𝜇𝑗𝑖 denotes the degree of membership and satisfies

 𝜇𝑗𝑖 = [0, 1], 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛,
∑𝜇𝑗𝑖𝑘
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑛,
∑𝜇𝑗𝑖𝑛
𝑖=1 > 0, 1 ≤ 𝑗 ≤ 𝑘.

Formulas (1.21)-(1.22) tell us only how to interpret the result of clustering, but we

also need a mathematical description of clustering as a process. Clustering of a given data

set 𝐷 can be represented by an assignment function 𝑓: 𝐷 → [0, 1]𝑘, 𝐱 → 𝑓(𝐱), defined as

follows:

𝑓(𝑥) = (𝑓1(𝐱)𝑓2(𝐱)⋮𝑓𝑘(𝐱)), (1.23)

where 𝑓𝑖(𝐱) ∈ [0, 1] for 𝑖 = 1, 2, . . . , 𝑘 and 𝐱 ∈ 𝐷, and

∑𝑓𝑖(𝑥)𝑘
𝑖=1 = 1 ∀𝐱 ∈ 𝐷.

If for every 𝐱 ∈ 𝐷, 𝑓𝑖(𝐱) ∈ {0, 1}, then the clustering that is represented by 𝑓 is a hard

clustering; otherwise, it is a fuzzy clustering [4].

FRI DIPLOMOVÁ PRÁCA

29

It should be noted that in the context of medical data even small deviations in the

values of variables can be very important. Therefore, the threshold of sensitivity to the values

deviations in the medical data analysis system should be as low as possible. For this reason,

fuzzy clustering is preferable than hard clustering, due to the presence of membership degree

of a pattern. Further in this diploma thesis we will focuses on fuzzy clustering.

FRI DIPLOMOVÁ PRÁCA

30

CHAPTER 2. CLUSTERING ALGORITHMS

2.1. Fundamentals of clustering algorithms

In the previous chapter the goal of clustering was discussed in the context of

partitioning a data set. Achieving of this goal is realized through a clustering algorithm – a

process that usually consists of four sequential phases: data representation, constructing a

criterion function, partitioning and assessment of output (Figure 2.1).

Figure 2.1. Phases of a clustering algorithm

During the data representation phase, information about the data set is clarified:

number of initial patterns, data type, scale of data, and, optionally, number of classes or

structure of clusters. This phase can involve either or both of feature selection and feature

extraction to obtain an appropriate set of features. The feature selection is the process of

identifying the most effective subset of the original features to use in clustering. The feature

extraction is the use of one or more transformations of the input features to produce new

salient features [5].

The constructing a criterion function phase is based on determining an appropriate

similarity or dissimilarity measure for each attribute. The similarity (dissimilarity) measure

Data representation

Constructing a criterion
function

Partitioning

Assessment of output

FRI DIPLOMOVÁ PRÁCA

31

must be connected to the clustering algorithm either explicitly or implicitly. For the

determined similarity measure clustering process can be understood as an optimization

problem with a specific criterion function [6]. The criterion function determines a clustering

quality (see Figure 2.2).

Figure 2.2. Criterion function impact on a clustering quality

During the partitioning phase the initial data set is partitioned into clusters. Each

clustering algorithm defines its own way for performing partitioning. This way depends on

a criterion function, constructed in the previous phase. In this phase the most of calculation,

related to a clustering algorithm, is performed.

The assessment of output phase is the most important in a clustering algorithm,

because in this phase an assessment of achieving a clustering goal and clustering accuracy

is performed. The accuracy of clustering is usually assessed through the calculation of

optimality criterions, or simply by comparing obtained clusters with classes of the data set,

if they are known.

In the literature of cluster analysis, a plenty of optimality criterions, that are also

called cluster validity indices, can be found. Some of them are listed in the Table 2.1.

Good clustering Bad clustering

FRI DIPLOMOVÁ PRÁCA

32

Table 2.1. Optimality criterions of fuzzy clustering (Cluster Validity Indices)

Name Formula Description

Partition
coefficient
index (𝐼𝑃𝐶) [16]

𝐼𝑃𝐶 = 1𝑛∑∑𝜇𝑗𝑖𝑚𝑛
𝑖=1

𝑘
𝑗=1

where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The index value is in the

range [1𝑘 , 1].
The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝑃𝐶(𝑘∗) = max2≤𝑘≤𝑛−1 𝐼𝑃𝐶(𝑘).

Partition
entropy index
(𝐼𝑃𝐸) [17]

𝐼𝑃𝐸 = −1𝑛∑∑𝜇𝑗𝑖 log𝑎(𝜇𝑗𝑖)𝑛
𝑖=1

𝑘
𝑗=1

where 𝑎 – the base of the logarithm; 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The index value is in the
range [0, log𝑎 𝑘].
The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝑃𝐸(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝑃𝐸(𝑘).

Fukuyama-
Sugeno index
(𝐼𝐹𝑆) [18]

𝐼𝐹𝑆 =∑∑𝜇𝑗𝑖𝑚 (‖𝐱𝑖 − 𝐳𝑗‖2 − ‖𝐳𝑗 − 𝐳‖2)𝑛
𝑖=1

𝑘
𝑗=1

where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳 – the mean of the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝐹𝑆(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝑆(𝑘)

Xie-Beni index
(𝐼𝑋𝐵) [5, 19] 𝐼𝑋𝐵 = ∑ ∑ 𝜇𝑗𝑖𝑚‖𝐱𝑖 − 𝐳𝑗‖2𝑛𝑖=1𝑘𝑗=1𝑛 ⋅min 𝑞≠𝑗 ‖𝐳𝑞 − 𝐳𝑗‖2

where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝑋𝐵(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝑋𝐵(𝑘)

 (continued)

FRI DIPLOMOVÁ PRÁCA

33

Name Formula Description

PBMF index
(𝐼𝑃𝐵𝑀𝐹) [20,
21]

𝐼𝑃𝐵𝑀𝐹 = (1𝑘 × 𝐸̃𝐸𝑘 × 𝐷𝑘)2

where 𝐸𝑘 = ∑ ∑ 𝜇𝑗𝑖𝑑(𝐱𝑖, 𝐳𝑗)𝑛𝑖=1𝑘𝑗=1 ; 𝐸̃ = ∑ 𝑑(𝐱𝑖 , 𝐳)𝑛𝑖=1 ; 𝐷𝑘 = max1≤𝑖<𝑗≤𝑘 𝑑(𝐳𝑖, 𝐳𝑗); 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳 – the mean of the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝑃𝐵𝑀𝐹(𝑘∗) =max2≤𝑘≤𝑛−1 𝐼𝑃𝐵𝑀𝐹(𝑘).

Fuzzy hyper
volume index
(𝐼𝐹𝐻𝑉) [5]

𝐼𝐹𝐻𝑉 =∑√𝑑𝑒𝑡(𝐹𝑗)𝑘
𝑗=1

where 𝐹𝑗 = ∑ 𝜇𝑗𝑖𝑚(𝐱𝑖−𝐳𝑗)(𝐱𝑖−𝐳𝑗)𝑇𝑛𝑖=1 ∑ 𝜇𝑗𝑖𝑚𝑛𝑖=1 is the fuzzy

covariance matrix of the 𝑗-th cluster; 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters.

The optimal number of
clusters 𝑘∗ is calculated as 𝐼𝐹𝐻𝑉(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐻𝑉(𝑘)

Most of clustering algorithms define different approach to assessment of their output,

which can be based on the calculation of some cluster validity index as well as a combination

of several indices.

In the next sections we will make an overview of some existing clustering algorithms.

Section 2.2 is dedicated to classical fuzzy clustering algorithms, the history of which was

started with publication of a Fuzzy c-Means Clustering algorithm by Bezdek in 1981 (see

Section 2.2.1). This algorithm has a variety of improvements and modifications for different

fields of study, but we will consider only the two most well-known of them: a Gustafson-

Kessel algorithm (Section 2.2.2) and a Gath-Geva clustering algorithm (Section 2.2.3). The

significant limitation of all classical fuzzy clustering algorithms from the Fuzzy c-Means

family is that they all assume the number of clustering to be previously known. In the Section

2.2.4 we propose a way of elimination of this limitation.

FRI DIPLOMOVÁ PRÁCA

34

In Section 2.3 a Multi-Interval Discretization algorithm is described. It was originally

proposed for performing a hard clustering, but a way to extend it to fuzzy clustering and

author of this thesis describes it at the end of the Section.

A Fuzzy Entropy Based Fuzzy Classifier algorithm, described in Section 2.4, is

promising, but it has some significant drawbacks, that should be eliminated. Author of this

work proposes a way of eliminating mentioned drawbacks which are mentioned in

Section 2.5.

2.2. Classical fuzzy clustering algorithms

2.2.1. Fuzzy c-Means Clustering

The Fuzzy c-Means (FCM) clustering algorithm was proposed by Bezdek [22] and

can be considered as a generalization of ISODATA [23]. In this algorithm the number of

clusters 𝑘, into which the initial data set is partitioned, assumed to be known. The goal of

the FCM is to find an optimal fuzzy 𝑘-partition of the data set (1.22). For achieving this goal,

the cost function is defined:

𝐽𝐹𝐶𝑀 =∑∑ 𝜇𝑗𝑖𝑚‖𝐱𝑖 − 𝐳𝑗‖2𝑛
𝑖=1

𝑘
𝑗=1 (2.1)

where 𝜇𝑗𝑖 – the membership degree; 𝑚 ∈ [1,∞) – the fuzzifier, that is usually set to 2 (lager

values of the fuzzifier favors fuzzier clusters); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number

of clusters.

The means of clusters and the membership degrees are iteratively updated until the

cost function reaches its local minimum. Then the fuzzy 𝑘-partition of the data set is

considered optimal.

FRI DIPLOMOVÁ PRÁCA

35

The FCM algorithm determines following steps [6]:

Step 1. Set appropriate values for 𝑘, 𝑚 > 1, 𝜀 > 0 (a threshold) and variable 𝑡 ≔ 0.

Randomly initialize the cluster mean matrix 𝑍 = [𝐳1, 𝐳2, … , 𝐳𝑘].
Step 2. Recalculate the membership degrees (elements of the fuzzy 𝑘-partition

matrix 𝛭) for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛:

𝜇𝑗𝑖(𝑡+1) = {
 1 (∑(‖𝐱𝑖 − 𝐳𝑗‖‖𝐱𝑖 − 𝐳𝑞‖)2 (𝑚−1)⁄𝑘

𝑞=1)⁄ , 𝑖𝑓 𝐸𝑖 = ∅1 |𝐸𝑖|⁄ , 𝑖𝑓 𝐸𝑖 ≠ ∅, 𝑗 ∈ 𝐸𝑖0, 𝑖𝑓 𝐸𝑖 ≠ ∅, 𝑗 ∉ 𝐸𝑖

where 𝐸𝑖 = {𝑗|𝑗 ∈ [1, 𝑘], 𝐱𝑖 = 𝐳𝑗}.
Step 3. Update the cluster mean matrix 𝑍 for 𝑗 = 1,2, . . . , 𝑘: 𝐳𝑗(𝑡+1) = (∑ (𝜇𝑗𝑖(𝑡+1))𝑚 𝐱𝑖𝑛

𝑖=1) (∑(𝜇𝑗𝑖(𝑡+1))𝑚𝑛
𝑖=1)⁄

Step 4. If ‖𝑍(𝑡+1) − 𝑍(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1 and go to Step 2. Otherwise, the

fuzzy 𝑘-partition 𝛭(𝑡) is optimal.

The FCM algorithm has several significant drawbacks: convergence to an optimal

solution is not ensured because the cluster mean matrix is initialized randomly [12];

sensitivity to noise and outliers that are forced into a cluster and used to calculate the cluster

mean matrix [6]; the algorithm does not suppose a looking for the optimal number of clusters,

moreover, the number of clusters must be previously known.

2.2.2. Gustafson-Kessel Clustering Algorithm

The Gustafson-Kessel (GK) clustering algorithm was proposed as an extension to the

standard fuzzy c-means algorithm [24]. The algorithm is based on an adaptive distance

measure, which makes possible a detection of clusters. It represented by different

geometrical shapes. Detection of such clusters in one data set is not possible in the standard

FCM, as it has predefined fixed topological structure and searches for clusters of only that

shape in the data set. To provide an adaptive distance measure, in the GK algorithm the

following inner-product norm is defined as [5]:

FRI DIPLOMOVÁ PRÁCA

36

𝐷𝐺𝐾𝑗𝑖2 = (𝐱𝑖 − 𝐳𝑗)𝑇𝐴𝑗(𝐱𝑖 − 𝐳𝑗), 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛, (2.2)

where 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the

number of patterns in the data set; 𝑘 – the number of clusters; 𝐴𝑗 – the norm-inducing matrix

of the 𝑗-th cluster, calculated as

 𝐴𝑗 = [𝜌𝑗𝑑𝑒𝑡(𝐹𝑗)]1 𝑛⁄ 𝐹𝑗−1, (2.3)

where 𝜌𝑗 – the volume of the 𝑗-th cluster; 𝐹𝑗 – the fuzzy covariance matrix of the 𝑗-th cluster,

defined as:

𝐹𝑗 = ∑ 𝜇𝑗𝑖𝑚(𝐱𝑖 − 𝐳𝑗)(𝐱𝑖 − 𝐳𝑗)𝑇𝑛𝑖=1 ∑ 𝜇𝑗𝑖𝑚𝑛𝑖=1 (2.4)

where 𝜇𝑗𝑖 – the membership degree; 𝑚 ∈ [1,∞) – the fuzzifier (also called the weighting

exponent), that is usually set to 2.

The cost function for the GK algorithm is similar as for the FCM except replacing a

simple distance measure with the inner-product norm:

𝐽𝐺𝐾 =∑∑ 𝜇𝑗𝑖𝑚𝐷𝐺𝐾𝑗𝑖2𝑛
𝑖=1

𝑘
𝑗=1 (2.5)

The GK algorithm determines following steps [5]:

Step 1. Set appropriate values for the number of clusters 2 ≤ 𝑘 ≤ 𝑛 − 1, the

weighting exponent 𝑚 > 1, the threshold 𝜀 > 0 and variable 𝑡 ≔ 0.

Randomly initialize the fuzzy 𝑘-partition (also called the partition matrix) 𝛭(𝑡) = [𝜇𝑗𝑖(𝑡)] for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛 satisfying the conditions

for (1.22).

Step 2. Calculate the cluster mean matrix 𝑍(𝑡+1) = [𝐳1(𝑡+1), 𝐳2(𝑡+1), … , 𝐳𝑘(𝑡+1)]: 𝐳𝑗(𝑡+1) = (∑ (𝜇𝑗𝑖(𝑡))𝑚 𝐱𝑖𝑛
𝑖=1) (∑(𝜇𝑗𝑖(𝑡))𝑚𝑛

𝑖=1)⁄ , 1 ≤ 𝑗 ≤ 𝑘.

FRI DIPLOMOVÁ PRÁCA

37

Step 3. Compute the cluster covariance matrices 𝐹𝑗(𝑡+1) for 𝑗 = 1,2, . . . , 𝑘:

𝐹𝑗(𝑡+1) = ∑ (𝜇𝑗𝑖(𝑡))𝑚 (𝐱𝑖 − 𝐳𝑗(𝑡+1))(𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇𝑛𝑖=1 ∑ (𝜇𝑗𝑖(𝑡))𝑚𝑛𝑖=1

Step 4. Compute the inner-product norms for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛: (𝐷𝐺𝐾𝑗𝑖(𝑡+1))2 = (𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇 [𝜌𝑗𝑑𝑒𝑡(𝐹𝑗(𝑡+1))]1 𝑛⁄ (𝐹𝑗(𝑡+1))−1(𝐱𝑖 − 𝐳𝑗(𝑡+1)).
Step 5. Calculate the updated partition matrix 𝛭(𝑡+1):

𝜇𝑗𝑖(𝑡+1) = 1 (∑(𝐷𝐺𝐾𝑗𝑖(𝑡+1)𝐷𝐺𝐾𝑞𝑖(𝑡+1))
2 (𝑚−1)⁄𝑘

𝑞=1)⁄ , 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛.
Step 6. If ‖𝛭(𝑡+1) −𝛭(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1, 𝛭(𝑡) ≔ 𝛭(𝑡+1) and go to Step

2. Otherwise, the partition matrix 𝛭(𝑡) is optimal.

In general, the GK algorithm has the same drawbacks as the FCM, except the

sensitivity to noise and outliers, which is less in the GK thanks to the adaptive distance

measure.

2.2.3. Gath-Geva Clustering Algorithm

The Gath-Geva (GG) clustering algorithm, also known as the fuzzy maximum

likelihood estimation (FMLE) algorithm, was proposed as an extension to the Gustafson-

Kessel clustering algorithm [25]. Like the GK algorithm, the GG algorithm is based on an

adaptive distance measure, but, instead of the inner-product norm, the distance norm, based

on the fuzzy maximum likelihood estimates, is used [5]:

𝐷𝐺𝐺𝑗𝑖2 = (2𝜋)(𝑛2)√𝑑𝑒𝑡(𝐹𝑗)𝛼𝑗 ∙ 𝑒(12(𝐱𝑖−𝐳𝑗)𝑇𝐹𝑗−1(𝐱𝑖−𝐳𝑗)), 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛 (2.6)

where 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the

number of patterns in the data set; 𝑘 – the number of clusters; 𝐹𝑗 – the fuzzy covariance

matrix of the 𝑗-th cluster; 𝛼𝑗 – the prior probability of selecting the 𝑗-th cluster, defined as:

FRI DIPLOMOVÁ PRÁCA

38

 𝛼𝑗 = 1𝑛∑𝜇𝑗𝑖𝑛
𝑖=1 (2.7)

where 𝜇𝑗𝑖 – the membership degree.

The Gath–Geva clustering algorithm determines following steps [5]:

Step 1. Set appropriate values for the number of clusters 2 ≤ 𝑘 ≤ 𝑛 − 1, the

weighting exponent 𝑚 > 1, the threshold 𝜀 > 0 and variable 𝑡 ≔ 0.

Randomly initialize the fuzzy 𝑘-partition (also called the partition matrix) 𝛭(𝑡) = [𝜇𝑗𝑖(𝑡)] for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛 satisfying the conditions

for (1.22).

Step 2. Calculate the cluster mean matrix 𝑍(𝑡+1) = [𝐳1(𝑡+1), 𝐳2(𝑡+1), … , 𝐳𝑘(𝑡+1)]:
𝐳𝑗(𝑡+1) = (∑ (𝜇𝑗𝑖(𝑡))𝑚 𝐱𝑖𝑛

𝑖=1) (∑(𝜇𝑗𝑖(𝑡))𝑚𝑛
𝑖=1)⁄ , 1 ≤ 𝑗 ≤ 𝑘.

Step 3. Compute the cluster covariance matrices 𝐹𝑗(𝑡+1) for 𝑗 = 1,2, . . . , 𝑘:

𝐹𝑗(𝑡+1) = ∑ (𝜇𝑗𝑖(𝑡))𝑚 (𝐱𝑖 − 𝐳𝑗(𝑡+1))(𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇𝑛𝑖=1 ∑ (𝜇𝑗𝑖(𝑡))𝑚𝑛𝑖=1

Step 4. Compute the distance norm for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛:

(𝐷𝐺𝐺𝑗𝑖(𝑡+1))2 = (2𝜋)(𝑛2)√𝑑𝑒𝑡 (𝐹𝑗(𝑡+1))𝛼𝑗(𝑡) ∙ 𝑒(12(𝐱𝑖−𝐳𝑗(𝑡+1))𝑇(𝐹𝑗(𝑡+1))−1(𝐱𝑖−𝐳𝑗(𝑡+1)))

where 𝛼𝑗(𝑡) = 1𝑛∑ 𝜇𝑗𝑖(𝑡)𝑛𝑖=1 .

Step 5. Calculate the updated partition matrix 𝛭(𝑡+1):
𝜇𝑗𝑖(𝑡+1) = 1 (∑(𝐷𝐺𝐺𝑗𝑖(𝑡+1)𝐷𝐺𝐺𝑞𝑖(𝑡+1))

2 (𝑚−1)⁄𝑘
𝑞=1)⁄ , 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛.

Step 6. If ‖𝛭(𝑡+1) −𝛭(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1, 𝛭(𝑡) ≔ 𝛭(𝑡+1) and go to Step

2. Otherwise, the partition matrix 𝛭(𝑡) is optimal.

FRI DIPLOMOVÁ PRÁCA

39

The GG algorithm can detect clusters of varying shapes, sizes and densities. This is

because the cluster volumes are not predefined, and the cluster covariance matrix is used in

conjunction with a distance norm, that involves an exponential term. The main drawback of

the clustering algorithm is following: it converges to a near local optimum because of the

exponential distance norm, thus the result of clustering depends on the initialization

method [5].

2.2.4. Determining the optimal number of clusters

As were mentioned above, the significant limitation of all classical fuzzy clustering

algorithms from the Fuzzy c-Means family is that they all assume the number of clustering

to be previously known. But in most cases, we do not know this information when we get a

data set. Therefore, the good idea is to determine the optimal number of clusters during the

clustering process by selecting one among the set of possible numbers of clusters. Such

functionality can be provided by employing some cluster validity index to a clustering

algorithm.

Several well-known CVIs are listed above in the Table 2.1. In addition to them, very

promising is the Pairing Frequency cluster validity index (𝐼𝑃𝐹), proposed by Hongyan Cui,

Kuo Zhang et al. [26]. The index is based on the analysis of a pairing frequency – the

phenomenon, when a pair of patterns in the initial datasets always belongs to the same cluster

regardless of the number of clusters. Let us describe the procedure of calculating 𝐼𝑃𝐹,

proposed in [26], in more details. At first, we need to obtain a fuzzy 𝑘-partition of the initial

data set of 𝑛 patterns (see Formula 1.22):

 𝛭 = [𝜇𝑗𝑖], 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛 (2.8)

The value of 𝑗 when 𝜇𝑗𝑖 reaches its maximum for the 𝑖-th pattern is assigned as 𝑝𝑖.
For any pair of patterns 𝐱𝑠, 𝐱𝑡 (1 ≤ 𝑠, 𝑡 ≤ 𝑛), if 𝑝𝑠 = 𝑝𝑡 = 𝑐, then both 𝐱𝑠 and 𝐱𝑡 belongs to

the same cluster 𝑐.

At second, we define a pattern matrix 𝐹𝑘 for 𝑘 clusters:

FRI DIPLOMOVÁ PRÁCA

40

𝐹𝑘 = [𝑓11 𝑓12 ⋯ 𝑓1𝑛𝑓21 𝑓22 ⋯ 𝑓2𝑛⋮ ⋮ ⋮ ⋮𝑓𝑛1 𝑓𝑛2 ⋯ 𝑓𝑛𝑛] (2.9)

An element 𝑓𝑠𝑡 of the pattern matrix 𝐹𝑘 indicates a degree of belonging of 𝐱𝑠 and 𝐱𝑡
patterns to the same cluster or different clusters:

𝑓𝑠𝑡 = {1 − 𝑘𝑘 − 1 × |max𝛍𝑠 −max𝛍𝑡| 𝑖𝑓 𝑝𝑠 = 𝑝𝑡− 𝑘2𝑘 − 2 × |max𝛍𝑠 +max𝛍𝑡 − 2𝑘| 𝑖𝑓 𝑝𝑠 ≠ 𝑝𝑡 (2.10)

where max𝛍𝑠 = max{𝜇𝑗𝑠: 1 ≤ 𝑗 ≤ 𝑘}; max𝛍𝑡 = max{𝜇𝑗𝑡: 1 ≤ 𝑗 ≤ 𝑘}.
In case 0 < 𝑓𝑠𝑡 ≤ 1, most of membership of 𝐱𝑠 and 𝐱𝑡 should be placed in the same

cluster. The closer the value of 𝑓𝑠𝑡 to 1, the greater the degree of belonging of the patterns

to the same cluster. In case −1 ≤ 𝑓𝑠𝑡 < 0, least of membership of 𝐱𝑠 and 𝐱𝑡 should be placed

in the same cluster. The closer the value of 𝑓𝑠𝑡 to −1, the greater the degree of belonging of

the patterns to different clusters.

Next, we calculate the final global pairwise pattern matrix 𝑄:

𝑄 = ∑ 𝐹𝑘𝑘𝑢𝑝𝑝𝑒𝑟𝑘=2𝑘𝑢𝑝𝑝𝑒𝑟 − 1 (2.11)

where 𝑘𝑢𝑝𝑝𝑒𝑟 = max(𝑘𝑚𝑎𝑥, ⌊0.5√𝑛⌋), 𝑘𝑚𝑎𝑥 – the maximal number of clusters into which

the initial data set can be partitioned.

The matrix 𝑄 indicates a degree of belonging of any two patterns to the same cluster

or different clusters regardless of the number of clusters.

Finally, the pairing frequency index 𝐼𝑃𝐹, proposed in [26], is defined as:

 𝐼𝑃𝐹 = 𝑆(𝑄 ∘ 𝐹𝑘) (2.12)

where ‘∘’ represents the Hadamard product and 𝑆 represents the sum of all elements of

matrix 𝑄 ∘ 𝐹𝑘.

FRI DIPLOMOVÁ PRÁCA

41

The optimal number of clusters 𝑘∗ is calculated as

 𝐼𝑃𝐹(𝑘∗) = max2≤𝑘≤𝑘𝑚𝑎𝑥 𝐼𝑃𝐹(𝑘). (2.13)

The considered cluster validity index, based on the pairing frequency, in comparison

with the most of well-known indices gives more accurate results [26], because of avoiding

of using compactness-to-separation ratio criteria and using information from several

clustering processes (2.11) to compute the value of 𝐼𝑃𝐹.

2.3. Multi-Interval Discretization

The Multi-Interval Discretization (MID) algorithm, proposed by Denis V. Popel [27],

is based on an information density concept. The author defines a discretization as “a process

of transforming values of a continuous variable into a finite number of intervals and

associating with each interval a discrete numerical value”. Obviously, the discretization in

this context is the same as the clustering.

The MID algorithm divides the data set into clusters, depending on values of a

specific attribute of each pattern. A continuous variable, that represents this specific

attribute, is denoted by 𝑠. It can take values from the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} in the range 𝑇 =[𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], where 𝑛 – the number of patterns represented in the set 𝑆, 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑎𝑥 and ∆𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛. A partition 𝒫 of the set 𝑆 into 𝑘 intervals (clusters) can be defined

as [27]:

{
 𝒫 =⋃ 𝒫𝑗𝑘𝑗=1 𝒫𝑗 ≠ ∅ 𝑓𝑜𝑟 𝑗 = 1,2, . . . , 𝑘𝑠𝑖 ∉ 𝒫𝑔 𝑖𝑓 𝑠𝑖 ∈ 𝒫𝑗 𝑓𝑜𝑟 𝑗 ≠ 𝑔 (2.14)

where 𝒫𝑗 = [𝒫𝑗𝑚𝑖𝑛, 𝒫𝑗𝑚𝑎𝑥] is the partition of the 𝑗-th cluster, that can be described by taking 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 into consideration:

FRI DIPLOMOVÁ PRÁCA

42

{
 𝒫1𝑚𝑖𝑛 = 𝑇𝑚𝑖𝑛𝒫𝑗𝑚𝑖𝑛 > 𝑇𝑚𝑖𝑛 𝑗 = 2,3, . . . , 𝑘 − 1𝒫𝑗𝑚𝑎𝑥 < 𝑇𝑚𝑎𝑥 𝑗 = 2,3, . . . , 𝑘 − 1𝒫𝑗+1𝑚𝑖𝑛 = 𝒫𝑗𝑚𝑎𝑥 𝑗 = 1,2, . . . , 𝑘 − 1𝒫𝑘𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥

 (2.15)

The information measures defined in [27] are represented by the entropy 𝐻(𝑇, 𝑆) and

the information density 𝐷(𝑇, 𝑆) of the partition 𝒫:

𝐻(𝑇, 𝑆) = −∑𝛿𝑖 ∙ log 𝛿𝑖𝑛
𝑖=0 , (2.16)

 𝐷(𝑇, 𝑆) = {𝐻(𝑇, 𝑆) log(𝑛 + 1),⁄ 𝑖𝑓 𝑛 > 00, 𝑖𝑓 𝑛 = 0 (2.17)

where 𝛿𝑖 the probabilities, calculated as

𝛿𝑖 = {(𝑠1 − 𝑇𝑚𝑖𝑛) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 0,(𝑠𝑖+1 − 𝑠𝑖) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 1,2, . . . , 𝑛 − 1,(𝑇𝑚𝑎𝑥 − 𝑠𝑛) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 𝑛. (2.18)

Next, the MID algorithm employs the conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡)
of the partition 𝒫, given by the cut point 𝑇𝑐𝑢𝑡 that splits the partition 𝒫 into two partitions 𝒫1 and 𝒫2:

 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) = 𝑝1 ∙ 𝐷(𝑇1, 𝑆1) + 𝑝2 ∙ 𝐷(𝑇2, 𝑆2), (2.19)

where 𝐷(𝑇1, 𝑆1) – the information density of the partition 𝒫1; 𝐷(𝑇2, 𝑆2) – the information

density of the partition 𝒫2; 𝑝1 = (𝑇𝑐𝑢𝑡 − 𝑇𝑚𝑖𝑛) ∆𝑇⁄ ; 𝑝2 = (𝑇𝑚𝑎𝑥 − 𝑇𝑐𝑢𝑡) ∆𝑇⁄ .

The cut points are determined according to the information density optimization

criterion:

 𝑇𝑐𝑢𝑡 = argmax{𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) − 𝐷(𝑇, 𝑆)} (2.20)

FRI DIPLOMOVÁ PRÁCA

43

The MID clustering algorithm starts with the single initial partition 𝒫 and splits it

recursively. The result of clustering is a set of clusters, boundaries of which are

unambiguously defined by a set of accepted cut points.

The Multi-Interval Discretization algorithm determines following steps [27]:

Step 1. Sort all values from the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} in ascending order. Define

boundaries 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 of the initial partition 𝒫.

Step 2. Generate a set of possible cut points with a kernel ∆𝑇 100⁄ for the current

partition 𝒫. Calculate the information density 𝐷(𝑇, 𝑆) according to formula

(2.17).

Step 3. Form combinations of partitions 𝒫1 and 𝒫2 for all possible cut points and

calculate the resulting conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡)
according to (2.19).

Step 4. Find a potential optimal cut point 𝑇𝑐𝑢𝑡 according to the information density

optimization criterion, defined in formula (2.20).

Step 5. If the resulting conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡), calculated for

potential optimal cut point 𝑇𝑐𝑢𝑡, is greater than the information density 𝐷(𝑇, 𝑆) of the current partition 𝒫, then accept the cut point 𝑇𝑐𝑢𝑡 and continue

with Step 6. Otherwise, terminate the recursion and go to Step 7.

Step 6. Execute Steps 2-5 for both 𝒫1 and 𝒫2 recursively.

Step 7. Sort all cut points, which are boundaries between clusters. Let the number of

cut points be denoted by 𝑚, then 𝑘∗ = 𝑚 + 1 is the optimal number of

clusters.

In his paper [27] Popel illustrates the above algorithm with the following example.

The initial data set to be clustered is 𝑆 = {0.022, 0.376, 0.443, 0.519, 0.598, 0.704, 0.837, 0.841, 0.899, 0.953, 0.954}.
All values from the set are in the range 𝑇 = [0, 1]. In Figure 2.3 two steps of

clustering are shown. On the left part of the Figure 2.3 the distributions of the information

density gain (𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) − 𝐷(𝑇, 𝑆)) for different cut points are depicted. The right part

illustrates the final cut points 𝑇𝑐𝑢𝑡 = {0.080, 0.807} according to the optimization criterion,

defined in (2.20) [27].

FRI DIPLOMOVÁ PRÁCA

44

Figure 2.3. Example of the MID clustering algorithm, given by Popel [27]

The main drawback of the algorithm is that a calculation of the kernel ∆𝑇 100⁄ does

not involve a scale of data, that can lead to inaccurate results. For example, if attribute values

are in the range [1, 500] our cut point step (the kernel) is (500 − 1) 100⁄ = 4.99, and if the

optimal cut point equals to 𝑇𝑐𝑢𝑡 = 13, we will not be able to discover it, because the nearest

considered possible cut points are 10.98 and 15.97.

Originally the Multi-Interval Discretization algorithm was proposed as a hard-

clustering algorithm, but it can be extended to provide fuzzy clustering through several

additional computations, described below.

The MID algorithm returns the optimal set of clusters, defined by their boundaries.

Let this set of boundaries be denoted by 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘, 𝑏𝑘+1}, where 𝑘 is the number of

clusters; 𝑏1 = 𝑇𝑚𝑖𝑛; 𝑏𝑘+1 = 𝑇𝑚𝑎𝑥; 𝑏𝑗 ∈ 𝑇𝑐𝑢𝑡 for 𝑗 = 2,3, . . . 𝑘. Next, to be able to compute

the fuzzy 𝑘-partition, we need to compute a set of cluster centers 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑤} (see

Figure 2.4), where 𝑘 ≤ 𝑤 ≤ 2𝑘 − 2 is the number of cluster centers.

FRI DIPLOMOVÁ PRÁCA

45

Figure 2.4. The fuzzy membership function with boundaries and centers of clusters

Cluster centers are such values, the defines a space, where patterns fully belong to

some cluster. Many ways for defining cluster centers can be found, but in this diploma thesis

we propose a one simple method, that allows to compute a set of cluster centers with a

maximal possible cardinality |𝐶| = 2𝑘 − 2. This approach assumes, that the set can contain

duplicates 𝑐2𝑙 = 𝑐2𝑙+1 for 1 ≤ 𝑙 ≤ 𝑘 − 2, that is possible if some cluster have only one

cluster center (for example, a cluster represented by the green chart in Figure 2.4, i.e. the 𝑐4

value is present in the 𝐶 twice). A cluster center for 1 ≤ 𝑗 ≤ 𝑘 − 1 is defined by:

 𝑐2𝑗−1 = 𝑏𝑗+1 − ∆𝑟𝑗, 𝑐2𝑗 = 𝑏𝑗+1 + ∆𝑟𝑗 (2.21)

where ∆𝑟𝑗 = min (𝑏𝑗+1−𝑏𝑗2 , 𝑏𝑗+2−𝑏𝑗+12).
The membership function (shown in Figure 2.4) for converting a continuous value of

the variable 𝑠 to fuzzy values is defined for each of 𝑘 clusters by [28]:

• for the first (left-most) cluster and for the 𝑘-th (right-most) cluster

𝜇1 = {1, for 𝑥 ≤ 𝑐1𝑐2 − 𝑥𝑐2 − 𝑐1 , for 𝑐1 < 𝑥 ≤ 𝑐20, otherwise (2.22)

𝜇𝑘 = {0, for 𝑥 < 𝑐2𝑘−3𝑥 − 𝑐2𝑘−3𝑐2𝑘−2 − 𝑐2𝑘−3 , for 𝑐2𝑘−3 ≤ 𝑥 < 𝑐2𝑘−21, otherwise (2.23)

𝑏1 𝑏2 𝑏3 𝑏4 𝑏𝑘 𝑏𝑘+1 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐𝑤−1 𝑐𝑤

FRI DIPLOMOVÁ PRÁCA

46

• for the 𝑞-th cluster, where 𝑞 = 2,3, . . . , 𝑘 − 1

𝜇𝑞 =
{

 0, for 𝑥 ≤ 𝑐2𝑞−3𝑥 − 𝑐2𝑞−3𝑐2𝑞−2 − 𝑐2𝑞−3 , for 𝑐2𝑞−3 < 𝑥 ≤ 𝑐2𝑞−21, for 𝑐2𝑞−2 < 𝑥 ≤ 𝑐2𝑞−1𝑐2𝑞 − 𝑥𝑐2𝑞 − 𝑐2𝑞−1 , for 𝑐2𝑞−1 < 𝑥 ≤ 𝑐2𝑞0, otherwise

 (2.24)

Using the membership function, defined above (2.22) – (2.24), for the initial 𝑆 we

are able to calculate the fuzzy 𝑘-partition 𝛭 = [𝜇𝑗𝑖], 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛. Thus, with the

described computation we can force the MID algorithm to make fuzzy clustering.

2.4. Fuzzy Entropy Based Fuzzy Classifier

The Fuzzy Entropy Based Fuzzy Classifier (FEBFC) algorithm with Feature

Selection was proposed by Hahn-Ming Lee, Chih-Ming Chen et al. [29]. This algorithm uses

fuzzy entropy, based on Shannon's entropy, as a criterion of optimality. According to the

proposed approach, the fuzzy entropy 𝐹𝐸(𝐴̃) is defined on the universal set 𝑋 ={𝑟1, 𝑟2, … , 𝑟𝑛}, where 𝑖 = 1, 2, … , 𝑛, for the elements within an interval (cluster) in a non-

probabilistic way:

𝐹𝐸(𝐴̃) =∑𝐹𝐸𝐶𝑗(𝐴̃)𝑚
𝑗=1 =∑−𝐷𝑗 log2 𝐷𝑗𝑚

𝑗=1 (2.25)

where 𝐴̃ is a fuzzy set defined on an interval of pattern space which contains 𝑘 elements

(𝑘 < 𝑛); 𝐶1, 𝐶2, … , 𝐶𝑚 represent 𝑚 classes into which the 𝑛 elements are divided; 𝐹𝐸𝐶𝑗(𝐴̃)
is the fuzzy entropy of the elements of class 𝑗 in an interval, defined as 𝐹𝐸𝐶𝑗(𝐴̃) =−𝐷𝑗 log2 𝐷𝑗; 𝐷𝑗 is the match degree with fuzzy set 𝐴̃ for the elements of class 𝑗 in an interval,

FRI DIPLOMOVÁ PRÁCA

47

where 𝑗 = 1, 2, … ,𝑚, defined as 𝐷𝑗 = ∑ 𝜇𝐴̃(𝑟)𝑟∈𝑆𝐶𝑗(𝑟𝑛)∑ 𝜇𝐴̃(𝑟)𝑟∈𝑋 ; 𝜇𝐴̃(𝑟𝑖) is the mapped membership

degree of the element 𝑟𝑖 with the fuzzy set 𝐴̃; 𝑆𝐶𝑗(𝑟𝑛) is a set of elements of class 𝑗 on the

universal set 𝑋 (subset of the universal set 𝑋).

The fuzzy entropy cluster validity index (𝐼𝐹𝐸), also known as the total fuzzy entropy,

is defined as a sum of fuzzy entropies of all clusters:

𝐼𝐹𝐸 =∑𝐹𝐸𝑖∗𝑘
𝑖=1 (2.26)

where 𝑘 – the number of clusters; 𝐹𝐸𝑖∗ – the fuzzy entropy of the 𝑖-th cluster, calculated as

a sum of fuzzy entropies of all fuzzy sets on the 𝑖-th interval. Then the optimal number of

clusters 𝑘∗ is calculated as

 𝐼𝐹𝐸(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐸(𝑘) (2.27)

The proposed fuzzy entropy measure [29] satisfies following four De Luca-Termini

axioms, generalized by Kosko [30]. Therefore, it can be considered as well-defined:

1) 𝐸(𝐴) = 0 if and only if 𝐴 ∈ 2𝑋 (𝐴 is a nonfuzzy set; 𝐸 is an entropy measure);

2) 𝐸(𝐴) = 1 if and only if 𝑚𝐴(𝑥𝑖) = 0.5 for all 𝑖 (𝑚𝐴(𝑥𝑖) is a membership degree

of 𝑥𝑖);
3) 𝐸(𝐴) ≤ 𝐸(𝐵) if 𝐴 is less fuzzy then 𝐵, i.e., if 𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥) when 𝑚𝐵(𝑥) ≤0.5 and 𝑚𝐴(𝑥) ≥ 𝑚𝐵(𝑥) when 𝑚𝐵(𝑥) ≥ 0.5;

4) 𝐸(𝐴) = 𝐸(𝐴𝑐).

The FEBFC algorithm includes following steps [29]:

Step 1. Set the initial numbers of intervals (clusters) 𝑘 ≔ 2.

Step 2. Locate the centers of intervals:

 2A. Set initial cluster centers 𝑐1, 𝑐2, … 𝑐𝑘. (each cluster has only one cluster

center in the FEBFC). They can be randomly selected from 𝑥𝑖, 𝑖 = 1,2, … 𝑛,

or 𝑐𝑞 = 𝑞−1𝑘−1, 𝑞 = 1,2, … 𝑘.

 2B. Assign a cluster label to each element (the smallest Euclidean distance):

FRI DIPLOMOVÁ PRÁCA

48

|𝑥𝑖 − 𝑐𝑞∗| = min1≤𝑞≤𝑘|𝑥𝑖 − 𝑐𝑞|
 2C. Recompute the cluster centers. 𝑐𝑞 = ∑ 𝑥𝑖𝑞𝑛𝑞𝑖=1𝑛𝑞

where 𝑛𝑞 is the total number of patterns 𝑥𝑖𝑞, that belong to 𝑞-th cluster.

 2D. Compare recomputed cluster centers with previous. If any center was

changed then go to Step 2B. Otherwise, go to Step 3.

Step 3. Assign the membership function for each interval according to:

𝜇1 = {1, for 𝑥 ≤ 𝑐1𝑐2−𝑥𝑐2−𝑐1 , for 𝑐1 < 𝑥 ≤ 𝑐20, otherwise 𝜇𝑞 = {
 0, for 𝑥 ≤ 𝑐𝑞−1𝑥−𝑐𝑞−1𝑐𝑞−𝑐𝑞−1 , for 𝑐𝑞−1 < 𝑥 ≤ 𝑐𝑞𝑐𝑞+1−𝑥𝑐𝑞+1−𝑐𝑞 , for 𝑐𝑞 < 𝑥 ≤ 𝑐𝑞+10, otherwise

𝜇𝑘 = {0, for 𝑥 < 𝑐𝑘−1𝑥−𝑐𝑘−1𝑐𝑘−𝑐𝑘−1 , for 𝑐𝑘−1 ≤ 𝑥 < 𝑐𝑘1, otherwise

where 𝑞 = 2,3, . . . , 𝑘 − 1.

Step 4. Compute the index 𝐼𝐹𝐸 for 𝑘 clusters and 𝑘 − 1 clusters.

Step 5. If 𝐼𝐹𝐸(𝑘) < 𝐼𝐹𝐸(𝑘 − 1), then partition again (𝑘 ≔ 𝑘 + 1) and go to Step 2;

otherwise, 𝑘 − 1 is the optimal number of clusters.

For illustrating the FEBFC algorithm, we use the following example. Let 𝑋 be a

distribution of three classes of objects represented by values of some attribute of these

objects. The distribution divided into three and four intervals is shown in Figure 2.5 (a) and

(b) respectively as a set of objects △, □ and ○, placed on 𝑥 axis. Position on the axis

corresponds with a value of the attribute.

FRI DIPLOMOVÁ PRÁCA

49

Figure 2.5. Example of a distribution of 3 classes of objects (△, □ and ○ denote class 1,

class 2 and class 3 respectively) with corresponding membership functions

In the first considered case (Figure 2.5 (a)), the distribution is divided into three

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2) and [𝑗2;∞). On these intervals fuzzy sets 𝐴̃1, 𝐴̃2 and 𝐴̃3

are obtained using a membership function. The centers of fuzzy sets are denoted as 𝑐1, 𝑐2, 𝑐3.

Let us introduce a calculation process of the total fuzzy entropy of the distribution with

mentioned dividing.

In the below paragraphs the sequence of steps needed to calculate the fuzzy entropy

measure of the interval (−∞; 𝑗1) is detailly described. The measure calculation process for

other intervals is skipped, because the same method is used.

At first, we find a total membership degree for each class on values of the fuzzy set 𝐴̃1 from the interval:

• total membership degree of “△” is 0.9;

• total membership degree of “□” is 1 + 0.58 = 1.58;

• total membership degree of “○” is 1.

Then we calculate match degrees:

• 𝐷△ = 0.9 (0.9 + 1.58 + 1)⁄ = 0.9 3.48⁄ = 0.25862;

• 𝐷□ = 1.58 3.48⁄ = 0.45402;

• 𝐷○ = 1 3.48⁄ = 0.28736.

In the next step we calculate fuzzy entropies of 𝐴̃1 on (−∞; 𝑗1):

𝑗1 𝑗1

𝑗1 𝑗1 𝑗2 𝑗3

𝑗2 𝑗3

𝑥

𝑥

𝑥

𝑥

1 1

0.5 0.5

0 0

0.9

0.58

0.8

𝜇(𝑥) 𝜇(𝑥)

(a) (b)

0.1

0.42
0.38

0.2

𝐴̃1 𝐴̃2 𝐴̃3 𝐴̃1 𝐴̃2 𝐴̃4

𝑐2 𝑐1 𝑐3 𝑐1 𝑐2 𝑐4

𝑗2

𝑗2

𝐴̃3

𝑐3

FRI DIPLOMOVÁ PRÁCA

50

• 𝐹𝐸△(𝐴̃1) = −0.25862 × log2 0.25862 = 0.50459;

• 𝐹𝐸□(𝐴̃1) = −0.45402 × log2 0.45402 = 0.51721;

• 𝐹𝐸○(𝐴̃1) = −0.28736 × log2 0.28736 = 0.51698;

• 𝐹𝐸1(𝐴̃1) = 𝐹𝐸△(𝐴̃1) + 𝐹𝐸□(𝐴̃1) + 𝐹𝐸○(𝐴̃1) = 1.53878.

Similarly, the fuzzy entropies of 𝐴̃2 and 𝐴̃3 on (−∞; 𝑗1) are calculated:

• 𝐹𝐸1(𝐴̃2) = 𝐹𝐸△(𝐴̃2) + 𝐹𝐸□(𝐴̃2) + 𝐹𝐸○(𝐴̃2) = 0.70627;

• 𝐹𝐸1(𝐴̃3) = 𝐹𝐸△(𝐴̃3) + 𝐹𝐸□(𝐴̃3) + 𝐹𝐸○(𝐴̃3) = 0.

The fuzzy entropy of the interval (−∞; 𝑗1) equals:

 𝐹𝐸1∗ = 𝐹𝐸1(𝐴̃1) + 𝐹𝐸1(𝐴̃2) + 𝐹𝐸1(𝐴̃3) = 2.24505.

Similarly, the fuzzy entropies 𝐹𝐸2∗ and 𝐹𝐸3∗ of the corresponding intervals [𝑗1; 𝑗2) and [𝑗2;∞) can be obtained:

 𝐹𝐸2∗ = 𝐹𝐸2(𝐴̃1) + 𝐹𝐸2(𝐴̃2) + 𝐹𝐸2(𝐴̃3) = 3.67795;

 𝐹𝐸3∗ = 𝐹𝐸3(𝐴̃1) + 𝐹𝐸3(𝐴̃2) + 𝐹𝐸3(𝐴̃3) = 0.95096.

Finally, the total fuzzy entropy of the distribution (a) is calculated in the following

way:

 𝐼𝐹𝐸(𝑎) = 𝐹𝐸1∗ + 𝐹𝐸2∗ + 𝐹𝐸3∗ = 2.24505 + 3.67795 + 0.95096 = 6.87396.

In the second considered case (Figure 2.5 (b)), the distribution is divided into four

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2), [𝑗2; 𝑗3) and [𝑗3;∞). Using the method, gradually

described before, we calculate the total fuzzy entropy measure for this case of dividing of

the distribution:

 𝐼𝐹𝐸(𝑏) = 1.56636 + 2.30609 + 1.43211 + 0.94244 = 6.247.

According to obtained results (𝐼𝐹𝐸(𝑏) < 𝐼𝐹𝐸(𝑎)), dividing the distribution into four

intervals is preferable, that is obvious from the Figure 2.5.

The proposed clustering algorithm [29] has significant drawback: the cluster validity

index is calculated as a simple summation of the fuzzy entropy measures of all intervals, into

which the set is divided. This solution would be perfect if all intervals had equal length and

quantity of patterns on them. But usually there are several clusters of different size among

one set. Distances between the patterns are also different. Thus, a simple addition of fuzzy

entropy values of intervals may lead to inaccurate results.

FRI DIPLOMOVÁ PRÁCA

51

2.5. Fuzzy Information Density Based Fuzzy Classifier

For eliminating the drawback, described in Section 2.4., the author of this thesis

proposes to use the information density measure, mentioned in Section 2.3, for estimating of

classification instead of the fuzzy entropy measure. This approach brings to consideration

distances between different patterns. Replacing the entropy measure by the fuzzy entropy

measure in formula (2.17), we obtain the following definition of the fuzzy information

density 𝐹𝐷𝑞 of the 𝑞-th cluster (𝑞 = 1,2, . . . , 𝑘):

 𝐹𝐷𝑞 = {𝐹𝐸𝑞 log2(𝑛𝑞 + 1)⁄ , if 𝑛𝑞 > 00, if 𝑛𝑞 = 0 (2.28)

where 𝐹𝐸𝑞 – the fuzzy entropy on the 𝑞-th interval; 𝑛𝑞 – the number of patterns on the 𝑞-th

interval.

The fuzzy entropy cluster validity index (𝐼𝐹𝐸) should be then replaced by the fuzzy

information density cluster validity index (𝐼𝐹𝐷), that is also called the total information

density, defined as

𝐼𝐹𝐷 =∑𝜔𝑞 × 𝐹𝐷𝑞𝑘
𝑞=1 (2.29)

where 𝐹𝐷𝑞 – the fuzzy information density on the 𝑞-th interval; 𝜔𝑞 = 𝑛𝑞𝑛 is a weight

coefficient; 𝑛 – the number of patterns in the data set; 𝑛𝑞 – the number of patterns on the 𝑞-

th interval. Then the optimal number of clusters 𝑘∗ is calculated as

 𝐼𝐹𝐷(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐷(𝑘) (2.30)

A new clustering algorithm was obtained as a result of applying the proposed

changes. Author of the thesis has called it a Fuzzy Information Density Based Fuzzy

Classifier (FIDBFC).

FRI DIPLOMOVÁ PRÁCA

52

The FIDBFC algorithm (modification of [29]) determines following steps:

Step 1. Set the initial number of clusters (intervals) 𝑘 ≔ 2.

Step 2. Locate the centers of intervals using following subsequence of steps:

 2A. Find the initial centers of intervals 𝑐1, 𝑐2, … , 𝑐𝑘 using formula: 𝑐𝑞 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) × 𝑞 − 1𝑘 − 1 , 𝑞 = 1,2, … , 𝑘.
 2B. Assign each element of the distribution to a corresponding interval with the

smallest Euclidian distance to the interval center: |𝑥𝑖 − 𝑐𝑞∗| = min1≤𝑞≤𝑘|𝑥𝑖 − 𝑐𝑞|
where 𝑐𝑞∗ is the closest center to the element 𝑥𝑖.

 2C. Recompute the cluster centers. 𝑐𝑞 = ∑ 𝑥𝑖𝑞𝑛𝑞𝑖=1𝑛𝑞

where 𝑛𝑞 is the total number of patterns 𝑥𝑖𝑞, that belong to 𝑞-th cluster.

 2D. Compare recomputed cluster centers with previous. If any center was

changed then go to Step 2B. Otherwise, go to Step 3.

Step 3. Assign the membership function for each interval according to:

𝜇1 = {1, for 𝑥 ≤ 𝑐1𝑐2−𝑥𝑐2−𝑐1 , for 𝑐1 < 𝑥 ≤ 𝑐20, otherwise 𝜇𝑞 = {
 0, for 𝑥 ≤ 𝑐𝑞−1𝑥−𝑐𝑞−1𝑐𝑞−𝑐𝑞−1 , for 𝑐𝑞−1 < 𝑥 ≤ 𝑐𝑞𝑐𝑞+1−𝑥𝑐𝑞+1−𝑐𝑞 , for 𝑐𝑞 < 𝑥 ≤ 𝑐𝑞+10, otherwise

𝜇𝑘 = {0, for 𝑥 < 𝑐𝑘−1𝑥−𝑐𝑘−1𝑐𝑘−𝑐𝑘−1 , for 𝑐𝑘−1 ≤ 𝑥 < 𝑐𝑘1, otherwise

where 𝑞 = 2,3, . . . , 𝑘 − 1.

Step 4. Compute the 𝐼𝐹𝐷(𝑘) for 𝑘 clusters and 𝐼𝐹𝐷(𝑘 − 1) for 𝑘 − 1 clusters

according to formula (2.29).

Step 5. If 𝐼𝐹𝐷(𝑘) < 𝐼𝐹𝐷(𝑘 − 1), then partition again (𝑘 ≔ 𝑘 + 1) and go to Step 2;

otherwise, 𝑘 − 1 is the optimal number of clusters.

For illustrating this approach, the example from Section 2.4 can be used. After

obtaining the fuzzy entropy value of the interval (−∞; 𝑗1), we are able to calculate the

information density measure:

FRI DIPLOMOVÁ PRÁCA

53

 𝐹𝐷1 = 𝐹𝐸1∗ log2(𝑘 + 1)⁄ = 2.24505 log2 5⁄ = 0.96689.

The information density measures of the intervals [𝑗1; 𝑗2) and [𝑗2;∞) are calculated

in a same way:

 𝐹𝐷2 = 𝐹𝐸2∗ log2(𝑘 + 1)⁄ = 3.67795 log2 6⁄ = 1.42283;

 𝐹𝐷3 = 𝐹𝐸3∗ log2(𝑘 + 1)⁄ = 0.95096 log2 4⁄ = 0.47548.

Finally, according to (2.29) the total fuzzy information density measure of the

distribution (a) is calculated in the following way:

 𝐼𝐹𝐷(𝑎) = (4 12⁄) × 0.96689 + (5 12⁄) × 1.42283 + (3 12⁄) × 0.47548 = = 1.03401.

In the second considered case (Figure 2.5 (b)), the distribution is divided into four

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2), [𝑗2; 𝑗3) and [𝑗3;∞). Using the same method, as described

before, the total fuzzy information density measure for this case of dividing of the

distribution:

 𝐼𝐹𝐷(𝑏) = (3 12⁄) × 0.78318 + (4 12⁄) × 0.99318 + (2 12⁄) × 0.90356 + + (3 12⁄) × 0.47122 = 0.79526.

According to obtained results (𝐼𝐹𝐷(𝑏) < 𝐼𝐹𝐷(𝑎)), dividing the distribution into four

intervals is preferable, like according to the FEBFC algorithm. To approve the advantages

of FIDBFC algorithm, a comparation of algorithms on medical data will be described in

Chapter 4.

FRI DIPLOMOVÁ PRÁCA

54

CHAPTER 3. A SOFTWARE TOOL FOR DATA ANALYSIS

BASED ON CLUSTERING

3.1. Design of the Fuzzy Clustering Tool

Achieving the goal of this thesis involves development of a software tool that would

be able to make transformation of values of any numeric attribute of the medical data set

into fuzzy values. The main requirement for the tool is the ability of integration into an expert

system for medical data analysis, in a way that it could be considered as a computational

component of the system.

The functional requirements can be summarized in the following list:

• reading data set from a file;

• basic analysis of the initial data set;

• graphical visualization of basic analysis results;

• fuzzy clustering using algorithms from Chapter 2;

• importing clustering results from external software;

• graphical visualization of clustering results;

• fuzzification of the initial data set depending on clustering results;

• write fuzzification result to a file.

According to the above list, the most of functionality of the tool is related to fuzzy

clustering. Therefore, it was decided that the name of the developed tool will be a Fuzzy

Clustering Tool.

A Use Case diagram of the Fuzzy Clustering Tool, based on the above list of

functional requirements, is shown in Figure 3.1. According to the Use Case diagram, a Class

diagram for the Fuzzy Clustering Tool was designed, that can be found in Appendix 1. Each

class will be described in detail in the following sections.

FRI DIPLOMOVÁ PRÁCA

55

Figure 3.1. The Use Case diagram of the Fuzzy Clustering Tool.

It was decided to separate a GUI from core of application to the tool more flexible

for changes. It gives a possibility to easily replace the GUI implementation by any other or

use an application core as an external library in other applications. Thus, the Fuzzy

Clustering Tool consists of two logical modules, implementation details of which described

in Sections 3.2 – 3.3:

• core module: contains business logic of the application, all core functionality

of the application; represents Model and Controller layers according to MVC

pattern;

• GUI module: allows an analyst (a user) to use features of the tool; represents

View layer according to MVC pattern.

FRI DIPLOMOVÁ PRÁCA

56

3.2. Core module implementation

The core module was implemented in C++ programming language (ISO/IEC

14882:2017). Visual Studio 2017 was used as an IDE. Git was used as a version control

system.

A structure of a FuzzyClusteringTool “solution” is shown in Figure 3.2. This

“solution” consists of two projects, representing the logical modules, mentioned in

Section 3.1.1. The CoreFuzzyClustering project here is an implementation of the core

module.

Figure 3.2. A structure of the Fuzzy Clustering Tool implementation as a “solution”

in Visual Studio 2017.

Two external libraries were required for implementing the Fuzzy Clustering Tool:

one for parsing .xml files and one for logging. A lot of C++ libraries for these purposes can

be found on the Internet, so few requirements were specified to select appropriate solutions:

free, open-source, lightweight, easy to use, cross-platform. Depending on mentioned criteria

a selection was made and following libraries were chosen: tinyxml2 for parsing .xml files

FRI DIPLOMOVÁ PRÁCA

57

and easylogging++ for logging in application. The source code of the mentioned libraries

was included into the CoreFuzzyClustering project under the libraries directory.

Describing of the implementation details of the CoreFuzzyClustering project should

be started from a Solver class (see Figure 3.3). This class provides an access to all

functionality of the core module and plays a role of Controller according to MVC pattern.

The Solver class has only one field _dataset, which is a pointer to an object of type Dataset

(will be described later). The object is created in a default constructor and deleted in a default

destructor.

Figure 3.3. A Solver class view.

FRI DIPLOMOVÁ PRÁCA

58

The Solver class contains following methods:

• readInitialDataset() – reads the data set, described in the .xml file, path to

which is given as a parameter of the method;

• makeClustering() – runs a clustering algorithm, defined by the parameter;

• makeImportClustersDetails() – imports clustering results, obtained from an

external tool, from .xml file with appropriate structure;

• makeFuzzification() – runs fuzzification using current values of borders and

centers of clusters;

• writeFuzzyDataToFile() – writes fuzzy data set to specified file;

• isAttrNumeric() – checks if the attribute with given index is numeric;

• getAttrCount() – gets the total number of attributes;

• getInputAttrCount() – gets the number of input attributes;

• getOutputAttrCount() – gets the number of output attributes;

• getAttrId() – gets an id of the attribute with given index;

• getAttrMode() – gets a mode (input or output) of the attribute with given index;

• getAttrType() – gets a type (numeric or nominal) of the attribute with given

index;

• getAttrTitle() – gets a title of the attribute with given index;

• getDatasetName() – gets a name of the data set;

• getInstancesCount() – gets the number of instances (patterns) in the dataset;

• getAttrDistinctCount() – gets the number of instances with distinct values of

attribute;

• getAttrUniqueCount() – gets the number of instances with unique values of

attribute;

• getAttrUniquePerc() – gets the percentage of instances with unique values of

attribute;

• getAttrMissingCount() – gets the number of instances with missing values of

attribute;

• getAttrMissingPerc() – gets the percentage of instances with missing values of

attribute;

• getAttrClustersCount() – gets the number of clusters of the attribute;

• getAttrBordersInString() – gets a string containing all borders values;

• getNumericAttrCount() – gets the number of numeric attributes;

• getNumericAttrMinValue() – gets minimal value of the numeric attribute;

FRI DIPLOMOVÁ PRÁCA

59

• getNumericAttrMaxValue() – gets maximal value of the numeric attribute;

• getNumericAttrAvgValue() – gets average value of the numeric attribute;

• getNumericAttrStdDevValue() – gets standard deviation for numeric attribute;

• getPossibleNominalAttrValuesList() – gets list of possible values of the

nominal attribute;

• getNominalAttrCountOfValues() – gets the number of duplicating of specified

value of the attribute in the data set;

• getNominalAttrPercOfValues() – gets the percentage of duplicating of

specified value of the attribute in the data set;

• getAttrClustersCentersById() – gets list of cluster centers of the attribute.

The Solver class uses three enumerators, shown in Figure 3.4: ClusteringAlgorithm

enumerates all implemented algorithms in the core module (these algorithms were described

in Chapter 2); Mode enumerates possible modes of attributes (an attribute can be either input

or output); Type enumerates possible types of attributes (an attribute can be either numeric

or nominal).

Figure 3.4. Enumerators in the core module.

The Solver class has an association relationship with a Dataset class, that is shown

in Appendix 1. The Dataset class represents a data set, analyzed in the Fuzzy Clustering

Tool. A diagram with the Dataset class description is shown in Figure 3.5. The following

methods in the Dataset class have the same name as mentioned above methods from the

Solver class have: readInitialDataset(), isAttrNumeric(), getAttrMode(), getAttrType(),

getNumericAttrCount(), getInputAttrCount(), getOutputAttrCount(), getDatasetName(),

FRI DIPLOMOVÁ PRÁCA

60

getAttrDistinctCount(), writeFuzzyDataToFile(), getAttrTitle(), getAttrUniqueCount(),

getAttrUniquePerc(), getAttrMissingCount(), getInstancesCount(), getAttrMissingPerc(),

getNumericAttrMinValue(), getNumericAttrMaxValue(), getNumericAttrAvgValue(),

getNumericAttrStdDevValue(), getAttrCount(), getPossibleNominalAttrValuesList(),

getAttrClustersCount(), getAttrBordersInString(), getNominalAttrCountOfValues(),

getNominalAttrPercOfValues(). The reason is that these methods are just invoked from the

Solver class (author of such design tried to separate interfaces from realizations), so their

functionality is the same and will not be described here again to avoid duplicity.

Figure 3.5. A Dataset class view.

FRI DIPLOMOVÁ PRÁCA

61

The Dataset class contains following fields: _datasetDescription – a pointer to an

object of type DatasetDescription, which contains information related to the data set;

_attributes – a list of pointers to objects of Attribute type, which contain data of a particular

attribute; _instancesCount – the number of instances (patterns) in the data set.

The Dataset class also contains following methods:

• getAttrIndexById() – gets index of the attribute by given id;

• getAttributeRef() – gets a reference on the attribute with given index;

• getNumericAttributePtr() – gets a pointer to the NumericAttribute object

(NumericAttribute class derives from Attribute class) if the attribute with given

index is numeric, or nullptr otherwise;

• getFirstOutputNominalAttributePtr() – gets a pointer to the first found in

_attributes list a NominalAttribute object (NominalAttribute class derives from

Attribute class), that is also output, or nullptr if no nominal output attribute is

found.

A DatasetDescription class provides a description for the dataset, represented by the

Dataset class (see Figure 3.6). It contains following fields: _dsName – a name of the data

set; _dsSourcePath – full path to the data file, from which the data set is read;

_inputAttrCount – the number of input attributes; _outputAttrCount – the number of output

attributes; _totalAttrCount – the total number of attributes in the data set. Also

DatasetDescription class has one public method readDatasetDescriptionXml(), that reads

the .xml file with data set description.

Figure 3.6. A DatasetDescription class view.

FRI DIPLOMOVÁ PRÁCA

62

An Attribute class is an abstract class and represents an attribute of any type. It has

two protected fields _attributeHeader and _attributeData, which are pointed to

corresponding objects with information, that describes an attribute. Also the Attribute class

includes 2 constructors, 1 virtual destructor, 13 defined public methods and 1 pure virtual

method to avoid instantiating of this class (see Figure 3.7).

Figure 3.7. An Attribute class view.

The methods getId(), getMode(), getType(), getTitlle() and getRequired() of the

Attribute class are getters for corresponding fields in AttributeHeader class, that are _id,

_mode, _type, _title and _required, as shown in Figure 3.8.

FRI DIPLOMOVÁ PRÁCA

63

Figure 3.8. An AttributeHeader class view.

The Attribute class also has following methods:

• setFuzzyData() – sets fuzzy data of this attribute for all patterns;

• getFuzzyRow() – gets fuzzy values of this attribute for given pattern;

• addAttributeInstanceValue() – adds value of this attribute to the data set;

• addAttributeFakeInstanceValue() – adds fake value of this attribute to the

data set (in case missing value in data file);

• replaceFakeInstances() – replaces fake values with some significant values

(defined in AttributeData realizations);

• getDistinctCount() – gets the number of distinct values;

• getUniqueCount() – gets the number of unique values;

• getMissingCount() – gets the number of missing values;

• getClustersCount() – gets the number of clusters (pure virtual method).

The Attribute class is extended by a NumericAttribute class and a

NominalAttribute class. The NumericAttribute class is shown in Figure 3.9. It has three

own fields, that are _clusterCount (the number of clusters), _clusterCenterList (the list of

centers of clusters) and _clusterBorderList (the list of borders of clusters).

FRI DIPLOMOVÁ PRÁCA

64

Figure 3.9. A NumericAttribute class view.

The NumericAttribute class also has following own methods:

• setClustersCount() – sets the number of clusters;

• setClustersCenters() – sets values of centers of clusters according to given list;

• setNormalizedCenters() – sets values of centers of clusters according to given

list of normalized values;

• setClustersBorders() – sets values of borders of clusters according to given list;

• setNormalizedBorders() – sets values of borders of clusters according to given

list of normalized values;

• normalize() – make normalization of attribute values;

• getBorderValue() – gets a border value by given index in list;

• getMinValue() – gets a minimal value of this attribute;

• getMaxValue() – gets a maximal value of this attribute;

• getAvgValue() – gets an average value of this attribute;

• getStdDev() – gets a standard deviation for this attribute;

• getValue() – gets an attribute value of the pattern with given index;

FRI DIPLOMOVÁ PRÁCA

65

• getNormalizedValue() – gets a normalized attribute value of the pattern with

given index;

• getBordersInString() – gets borders of this attribute in string;

• getClustersBorders() – gets list of borders of clusters;

• getClustersCenters() – gets list of centers of clusters;

• getNormalizedData() – gets list of normalized attribute values;

• getData() – gets list of attribute values;

• getNormalizedBorders() – gets list of normalized borders of clusters.

The NominalAttribute class is shown in Figure 3.10. It has only one own field

_possibleValuesList (the list of possible values of a nominal attribute). The

NominalAttribute class contains following own public methods:

• computePossibleValuesList() – fills _possibleValuesList container with

possible values of this nominal attribute;

• getCountOfValueUsage() – gets the number of repeating of given value among

all attribute values;

• getValue() – gets an attribute value of the pattern with given index;

• getPossibleValuesList() – gets the list of possible values of this attribute.

Figure 3.10. A NominalAttribute class view.

An AttributeData class aggregates all data (including data that were read from data

file as well as fuzzy data) of an attribute. This class has three protected fields, that are

_missingCount (the number of missing values of the attribute in the initial data set),

_fakeValuesIndexes (indices of such missing values, that need to be faked for correct data

FRI DIPLOMOVÁ PRÁCA

66

input) and _attributeFuzzyData (fuzzified data of the attribute). The AttributeData class

contains following methods:

• getDistinctCount() – functionality delegated from the method with the same

name in the Attribute class (pure virtual method);

• getUniqueCount() – functionality delegated from by the method with the same

name in the Attribute class (pure virtual method);

• addAttributeInstanceValue() – functionality delegated from by the method

with the same name in the Attribute class (pure virtual method);

• addAttributeFakeInstanceValue() – functionality delegated from by the

method with the same name in the Attribute class (pure virtual method);

• replaceFakeInstances() – functionality delegated from by the method with the

same name in the Attribute class (pure virtual method);

• getMissingCount() – functionality delegated from by the method with the same

name in the Attribute class.

The AttributeData class is the base class for an AttributeDataNumeric and an

AttributeDataNominal classes as shown in Figure 3.11. The AttributeDataNumeric class

has seven own field, that are _attributeData (list of numeric values of the attribute),

_normalizedData (list of normalized values of the attribute), _map (map container in which

the key is an attribute value converted to integer with some accuracy and the value is number

of repeating of this value in the set), _minValue (minimal value of the attribute), _maxValue

(maximal value of the attribute), _statSum (sum of all non-missed values of the attribute)

and _statCount (the number of all non-missed values of the attribute). The

AttributeDataNumeric class defines getMinValue(), getMaxValue(), getAvgValue(),

getStdDev() and getValue() methods with delegated functionalities from the methods with

the same names defined in the NumericAttribute class. In addition, the

AttributeDataNumeric class defines normalizeData() method, which functionality is

delegated from the normalize() method of the NumericAttribute class, and overrides virtual

methods of the base class.

FRI DIPLOMOVÁ PRÁCA

67

Figure 3.11. An AttributeData abstract class with derived classes.

The AttributeDataNominal class, that is also shown in Figure 3.11, has two own field,

that are _attributeData (list of nominal values of the attribute) and _map (map container in

which the key is a nominal attribute value and the value is number of repeating of this value

in the set). In addition to overriding virtual methods of the base class, the

AttributeDataNominal class also defines obtainPossibleValuesList() method, which

functionality is delegated from the getPossibleValuesList() method of the NominalAttribute

FRI DIPLOMOVÁ PRÁCA

68

class, and getCountOfValueUsage() method, which functionality is delegated from the

getCountOfValueUsage() method of the NominalAttribute class too.

The next significant class that should be described in this Section is a Fuzzification

class, that is responsible for data set fuzzification (see Figure 3.12). It has one field _dataset,

that is a pointer to the analyzed data set, and following methods:

• fuzzificateDataset() – forces fuzzification of whole data set;

• fuzzificateNumericAttribute() – makes fuzzification of a given numeric

attribute with a possibility of normalizing;

• fuzzificateNominalAttribute() – makes fuzzification of a given nominal

attribute.

Figure 3.12. A Fuzzification class view.

A FuzzyClusteringAlgorithm class is a base class for each algorithm implemented

in the tool (see Figure 3.13). It has one protected field _dataset, which is a pointer to the

analyzed data set, and one pure virtual method makeClustering(), which runs fuzzy

clustering algorithm.

Figure 3.13. A FuzzyClusteringAlgorithm abstract class view.

FRI DIPLOMOVÁ PRÁCA

69

The Fuzzy c-Means algorithm and its modifications Gustafson-Kessel and Gath-

Geva algorithms, which were described in Section 2.2, are implemented in FCM

GustafsonKesselClustering and GathGevaClustring classes correspondingly (see Figure

3.14).

Figure 3.14. Classes, that implement FCM and its modifications.

The FCM class has three protected fields, that are _fuzzification (a pointer to object

Fuzzification to provide the ability of calculating a pattern matrix), _m (a fuzzifier value),

_e (a threshold – small positive number). The makeClustering() method overrides the pure

virtual method from the base FuzzyClusteringAlgorithm class. The functionality after

overriding is following: iterate all possible values of number of clusters, for each of them

make fuzzy clustering and compute the pairing frequency CVI (see Section 2.2.4) and after

iterating define the optimal number of clusters. Performing a fuzzy clustering on each

iteration is done by invoking the makeCoreCalculations() method, which process all steps

FRI DIPLOMOVÁ PRÁCA

70

of an algorithm. Thus, implementation of any modified FCM clustering algorithms requires

only overriding of this method, that is the reason the GustafsonKesselClustering and the

GathGevaClustring classes in Figure 3.14 are depicted with only one virtual protected

method. Mentioned classes also contain additional private methods to make implementation

of algorithms more readable, but it is not necessary to describe them here, because all their

functionality can be moved to the makeCoreCalculations() method without any impact on

functionality or design of the application.

A MID class, that is shown in Figure3.15, is an implementation of the Multi-Interval

Discretization algorithm. It has only one own constant static field KERNEL_ACCURACY,

which equals to the denominator of the kernel relation ∆𝑇 100⁄ (see Section 2.3), and

overrides the makeClustering() method, where the algorithm steps are implemented.

Figure 3.15. A MID class view.

A FEBFC class, shown in Figure 3.16, is an implementation of the FEBFC

algorithm, described in Section 2.4. The class derives from the FuzzyClusteringAlgorithm

class and additionally contains two protected fields: _validityIndexValue – a map, where

key is an attribute index, and value is a total fuzzy entropy for this attribute; _fuzzification –

a pointer to object Fuzzification for classification purposes.

FRI DIPLOMOVÁ PRÁCA

71

Figure 3.16. Classes, implementing FEBFC algorithm and its modification FIDBFC.

The FEBFC class has several methods implemented:

• makeClustering() – overrides a corresponding virtual method from the base

class; purpose of this implementation is processing of all steps of the FEBFC

algorithm;

• calculateValidityIndex() – this method is invoked from the makeClustering()

method; it calculates a total fuzzy entropy of an attribute;

• proceedIterating() – this method is invoked from the makeClustering()

method; it compares current value of a total fuzzy entropy with a previous one

and return a decision: does it make sense to proceed iterating on not.

The calculateValidityIndex() and proceedIterating() methods are both virtual to

allow overriding their functionality in the modifications of the FEBFC algorithm. One of the

possible modifications, the FIDBFC algorithm, was proposed in this thesis in Section 2.5.

Implementation of this algorithm was realized in a derived FIDBFC class (see Figure 3.16).

This class uses _validityIndexValue field of its base class to store total fuzzy information

density values of attribute instead of total fuzzy entropy. The calculateValidityIndex() and

proceedIterating() methods are overridden to provide calculation and evaluation of the total

fuzzy information density instead of total fuzzy entropy correspondingly.

FRI DIPLOMOVÁ PRÁCA

72

As was mentioned in Section 3.1, the software tool must provide an ability of

importing clustering results from external software. To cover this requirement a

FuzzyClustersImporter class was implemented (see Figure 3.17).

Figure 3.17. A FuzzyClustersImporter class view.

The FuzzyClustersImporter class completes all required functionality of the core

module. It has one field (_dataset – a pointer to the analyzed data set) and one public method

(readClusterDetailsFromFile() – reads information about the number of clusters and

clusters borders for each attribute from .xml file and also calculates clusters centers to

convert hard clusters into fuzzy clusters).

3.3. Graphical user interface implementation

The GUI module of the Fuzzy Clustering Tool was also implemented in C++

programming language using Qt 5.10 framework. It was chosen because Qt is probably the

most popular cross-platform application framework for C++, which opens a possibility of

easy moving the application from Windows to Linux or Mac OS.

The module was developed inside of the FuzzyClusteringTool “solution” in Visual

Studio 2017 as a separate project QtGuiFuzzyClustering (see Figure 3.2).

This Section describes implementation of graphical user interface showing snapshots

of the running application rather than demonstrating code aspects, because the module's goal

is graphical interaction between a user and the application, so look and feel is more important

FRI DIPLOMOVÁ PRÁCA

73

than code behind. In addition, any interested reader of this thesis, can familiarize with code

of the Fuzzy Clustering Tool by himself, because it is enclosed to the diploma thesis on CD

as an Appendix 2.

In Figure 3.18 the main window of the Fuzzy Clustering Tool is shown. It consists

of six sections:

1. a menu bar, where user can choose a desired action;

2. a brief information about a loaded data set;

3. a list of attributes of the data set;

4. a detail information about a selected attribute;

5. a result of clustering;

6. a visualization of fuzzy clustering of the selected attribute.

Figure 3.18. The main window of the Fuzzy Clustering Tool.

The menu bar has two high-level options, that are Dataset and Fuzzy, as shown in

Figure 3.18. If a user clicks on Dataset option, a menu with Open... and Exit actions is shown

(see Figure 3.19).

FRI DIPLOMOVÁ PRÁCA

74

Figure 3.19. The Dataset menu.

Clicking on Open... action leads to opening a dialog window for selecting an .xml

file, describing a data set to be loaded (opened). Clicking on Exit action leads to shutting

down the application and closing the main window.

The other option that is located in the menu bar is Fuzzy. If the user clicks on it, the

following menu is displayed (see Figure 3.20).

Figure 3.20. The Fuzzy menu.

In the Fuzzy menu the user can select one of the fuzzy clustering algorithms by

clicking on its name, import clustering results from external .xml file by clicking on Import

clusters... action or make fuzzification by clicking on action with an appropriate label.

The section with a brief information about a loaded data set (see Figure 3.21) displays

to the user following information about the data set, that was opened by clicking on

Dataset/Open...: the name of the opened data set (Title), the total number of patterns in the

dataset (Instances), the number of input attributes (Input attributes) and the number of

output attributes (Output attributes).

FRI DIPLOMOVÁ PRÁCA

75

Figure 3.21. “Current dataset” section of the main window of the tool.

The section with a list of attributes of the data set is made in a form of table, where

columns indicates an id, a mode, a type and a name of each attribute (see Figure 3.22).

Figure 3.22. “Attributes” section of the main window of the tool.

If the user clicks on some attribute in the table above, the detailed information about

it will be displayed in the section “Selected attribute” (see Figure 3.23). There is such

information as minimum value of the attribute, maximum value, standard deviation, the

number of missing values etc.

Figure 3.23. “Selected attribute” section of the main window of the tool.

FRI DIPLOMOVÁ PRÁCA

76

After processing a clustering algorithm or importing a clustering result, the table of

the clustering result will be shown (see Figure 3.24). In this table the information about the

number of clusters and cluster borders can be found.

Figure 3.24. “Clusters” section of the main window of the tool.

Clicking on any row in the table in “Clusters” section leads to visualizing a fuzzy

clustering result of selected attribute on a chart (see Figure 3.25).

Figure 3.25. “Visualization” section of the main window of the tool.

FRI DIPLOMOVÁ PRÁCA

77

CHAPTER 4. EXPERIMENTAL STUDY WITH THE

IMPLEMENTED SOLUTION

4.1. Fuzzy clustering accuracy evaluation

After processing a clustering algorithm, the optimal number of clusters becomes

known as well as the partition matrix. But each algorithm may result in different partitioning

of the data set, i.e. different algorithms may return different values of the optimal number of

clusters or different partition matrices. In this case we need to determine, which clustering

result is accurate.

Evaluation of fuzzy clustering results can be made through the Clustering Accuracy

Indices, that can be divided into two groups: Internal indices (uses only input attributes data)

and External indices (uses information about belonging of a pattern to some class of

data) [31]. The Internal indices can be used in both supervised and unsupervised learning,

but the External indices can be used in case of supervised learning only.

In a literature of clustering a lot of various internal indices can be found, but the most

well-known of them are the following [32]:

• Partition Coefficient index;

• Partition Entropy index;

• Fukuyama-Sugeno index;

• Xie-Beni index.

The listed above indices were already mentioned in Section 2.1 in the context of

determining an optimal number of clusters. But the field of their usage is not limited by this

context, they can also be used for comparing of clustering results, obtained with different

algorithms. For comparing the index values with the aim of defining the most qualitative

clustering result, the appropriate optimality criterions, mentioned in Section 2.1, can be used.

Among the external indices the following can be highlighted [33, 34]:

• Purity index;

• Normalized Mutual Information index.

FRI DIPLOMOVÁ PRÁCA

78

Both of above external indices are based on contingency matrix, that can be defined

using following formula:

𝑉 = (𝑣11 𝑣12 … 𝑣1𝑐𝑣21 𝑣22 … 𝑣2𝑐⋯ ⋯ ⋱ ⋯𝑣𝑘1 𝑣𝑘2 … 𝑣𝑘𝑐) (4.1)

where 𝑣𝑖𝑗 is a sum of fuzzy values of an attribute, which are labeled to the 𝑗-th class and

belong to the 𝑖-th cluster simultaneously; 𝑐 is the number of classes of the data set; 𝑘 is the

number of clusters into which the attribute is divided.

The Purity index (𝐼𝑝𝑢𝑟𝑖𝑡𝑦) is a transparent measure for clustering result evaluation

calculated as:

𝐼𝑝𝑢𝑟𝑖𝑡𝑦 = 1𝑛∑ max1≤𝑗≤𝑐(𝑣𝑖𝑗)𝑘
𝑖=1

where 𝑛 – the number of patterns in the data set; 0 ≤ 𝐼𝑝𝑢𝑟𝑖𝑡𝑦 ≤ 1. The closer the value of

the Purity index to 1, the better the result of clustering.

The Normalized Mutual Information (NMI) index can be calculated according to the

following formula:

 𝐼𝑁𝑀𝐼 = 𝐼(𝐾; 𝐶)√𝐻(𝐾) ∙ 𝐻(𝐶)

where 𝐾 – the set of clusters; 𝐶 – the set of classes; 𝐼(𝐾; 𝐶) – the mutual information, 𝐼(𝐾; 𝐶) = ∑ ∑ (𝑣𝑖𝑗𝑛) log (𝑛∙𝑣𝑖𝑗∑ 𝑣𝑖𝑗𝑘𝑖=1 ∙∑ 𝑣𝑖𝑗𝑐𝑗=1)𝑐𝑗=1𝑘𝑖=1 ; 𝐻(𝐾) and 𝐻(𝐶) are entropies of cluster and

classes correspondingly 𝐻(𝐾) = ∑ ∑ 𝑣𝑖𝑗𝑐𝑗=1𝑛 log ∑ 𝑣𝑖𝑗𝑐𝑗=1𝑛𝑘𝑖=1 ; 𝐻(𝐶) = ∑ ∑ 𝑣𝑖𝑗𝑘𝑖=1𝑛 log ∑ 𝑣𝑖𝑗𝑘𝑖=1𝑛𝑐𝑗=1 .

In the next Section the clustering algorithms, described in Chapter 2, are evaluated

and compared using mentioned above internal and external indices calculated for the

following medical data sets: Pima Indians Diabetes, Heart Disease, Breast Cancer

Wisconsin, Indian Liver Patient Records and Chronic Kidney Disease.

FRI DIPLOMOVÁ PRÁCA

79

4.2. Comparison of the fuzzy clustering algorithms on

medical data

4.2.1. Pima Indians Diabetes

A data set of the Pima Indians Diabetes data set was taken from the Kaggle

repository. This data set can be used in machine learning to construct a prediction system

which would identify whether a patient has diabetes depending on certain diagnostic

measurements [35].

The data set contains 768 instances; 8 input attributes and 1 output. The attributes of

the Pima Indians Diabetes are described in the Table 4.1.

Table 4.1. Attributes of the Pima Indians Diabetes data set: A1-A8 are input attributes and
C is an output attribute

Attribute Type Description
Possible nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A1 numeric Number of times
pregnant

— 0 17 3.845 3.367

A2 numeric Plasma glucose
concentration a 2
hours in an oral
glucose tolerance
test

— 0 199 120.895 31.952

A3 numeric Diastolic blood
pressure (mm Hg)

— 0 122 69.106 19.343

A4 numeric Triceps skin fold
thickness (mm)

— 0 99 20.537 15.942

A5 numeric 2-Hour serum
insulin (mu U/ml)

— 0 846 79.799 115.169

A6 numeric Body mass index
(weight in
kg/(height in m)^2)

— 0 67.1 31.993 7.879

A7 numeric Diabetes pedigree
function

— 0.078 2.42 0.472 0.331

A8 numeric Age (years) — 21 81 33.241 11.753

C nominal Outcome 0 – a patient does not
have diabetes;
1 – a patient has
diabetes

— — — —

As a result of performing fuzzy clustering on the Pima Indians Diabetes data set using

the algorithms, described in Chapter 2, the membership functions, shown in Figures 4.1-4.6,

were obtained.

FRI DIPLOMOVÁ PRÁCA

80

Figure 4.1. Membership functions of attributes A1 – A8 obtained using the FCM algorithm

with Pairing Frequency index for getting the optimal number of clusters

Figure 4.2. Membership functions of attributes A1 – A8 obtained using the GK algorithm

with Pairing Frequency index for getting the optimal number of clusters

FRI DIPLOMOVÁ PRÁCA

81

Figure 4.3. Membership functions of attributes A1 – A8 obtained using the GG algorithm

with Pairing Frequency index for getting the optimal number of clusters

Figure 4.4. Membership functions of attributes A1 – A8 obtained using the MID algorithm

FRI DIPLOMOVÁ PRÁCA

82

Figure 4.5. Membership functions of attributes A1 – A8 obtained using the FEBFC

algorithm

Figure 4.6. Membership functions of attributes A1 – A8 obtained using the FIDBFC

algorithm

FRI DIPLOMOVÁ PRÁCA

83

Based on the obtained membership functions, fuzzification of the data set was made

for transforming crisp numerical values into fuzzy values. Then the evaluation indices,

described in the Section 4.1, were calculated to compare clustering accuracy of the

algorithms (see Table 4.2).

Table 4.2. Clustering Accuracy Indices calculated for the fuzzification performed on the
Pima Indians Diabetes Dataset

Algorithm

Partition

Coefficient

index

Partition

Entropy

index

Fukuyama-

Sugeno

index

Xie-Beni

index

Purity

index

Normalized

Mutual

Information

index

FCM 0.74530 0.55755 15.49595 0.13241 0.67337 0.04168
GK 0.81605 0.39656 9.10605 62.95703 0.66701 0.04180
GG 0.80680 0.42239 7.03228 129.22207 0.66321 0.03090
MID 0.96787 0.06993 9.38145 187.26315 0.65865 0.02023
FEBFC 0.84070 0.34661 5.35528 0.09274 0.65654 0.02903
FIDBFC 0.83577 0.35898 5.69637 0.09239 0.65654 0.02913

According to the obtained values of the Partition Coefficient and the Partition

Entropy indices, the most accurate is the MID algorithm. But on the other hand, this

algorithm gives us the worst membership functions of some attributes (see Figure 4.3). To

understand this contradiction we should consider, that the mentioned indices are the most

primitive in taking into account different characteristics of a partition. In this context, more

relevant is the second result, the FEBFC algorithm, which clustering results is close to the

original set of classes of the data set. The FEBFC algorithm is the most accurate according

to the Fukuyama-Sugeno index. The FIDBFC algorithm is the most accurate according to

the Xie-Beni index. But in general, among all indices, the results of the FIDBFC are quite

similar to the results of the FEBFC. The Purity and Normalized Mutual Information indices

identify the FCM as the most accurate algorithm.

Therefore, most of the indices shows that the FEBFC and FIDBFC algorithms are

the most accurate for the Pima Indians Diabetes Dataset and the FIDBFC, which is the

modification of the FEBFC, mentioned in Section 2.5, gives better results than the FEBFC

according to the Xie-Beni index.

FRI DIPLOMOVÁ PRÁCA

84

4.2.2. Heart Disease

The Heart Disease data sets are located in the UCI machine learning repository [36].

They contain data from the following locations: Cleveland Clinic Foundation, Hungarian

Institute of Cardiology (Budapest), V.A. Medical Center (Long Beach, CA), University

Hospital (Zurich, Switzerland). In this thesis data from Cleveland Clinic Foundation are used

only.

The Cleveland data set contains 303 patterns, that were originally represented by 76

attributes. David W. Aha, who uploaded this data set to UCI repository, extracted 14 the

most significant of them (13 input attributes and 1 output attribute), which are described in

Table 4.3.

Table 4.3. Attributes of the Cleveland Heart Disease data set: A1-A13 are input attributes
and C is an output attribute

Attribute Type Description
Possible nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A1 numeric Age of a patient in
years

— 29 77 54.439 9.024

A2 nominal Sex of a patient 0 – female;
1 – male

— — — —

A3 nominal Chest pain type 1 – typical angina;
2 – atypical angina;
3 – non-anginal pain;
4 – asymptomatic

— — — —

A4 numeric Resting blood
pressure (in mm
Hg on admission to
the hospital)

— 94 200 131.690 17.571

A5 numeric Serum cholesterol
in mg/dl

— 126 564 246.693 51.691

A6 nominal Fasting blood
sugar > 120 mg/dl

0 – false;
1 – true

— — — —

A7 nominal Resting
electrocardiographi
c results

0 – normal;
1 – having ST-T wave
abnormality (T wave
inversions and/or ST
elevation or depression
of > 0.05 mV);
2 – showing probable
or definite left
ventricular
hypertrophy by Estes'
criteria

— — — —

A8 numeric Maximum heart
rate achieved

— 71 202 149.607 22.837

A9 nominal Exercise induced
angina

0 – no;
1 – yes

— — — —

 (continued)

FRI DIPLOMOVÁ PRÁCA

85

Attribute Type Description
Possible nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A10 numeric ST depression
induced by
exercise relative to
rest

— 0 6.2 1.040 1.159

A11 nominal The slope of the
peak exercise ST
segment

1 – upsloping;
2 – flat;
3 – downsloping

— — — —

A12 nominal Number of major
vessels colored by
fluoroscopy

0; 1; 2; 3 — — — —

A13 nominal Thallium heart
scan

3 – normal;
6 – fixed defect;
7 – reversible defect

— — —

C nominal Diagnosis of heart
disease

0 – absent;
1 – class I of heart
failure;
2 – class II of heart
failure;
3 – class III of heart
failure;
4 – class IV of heart
failure

— — — —

In a result of fuzzy clustering using the algorithms described in Chapter 2,

membership functions were obtained for each numeric attribute of the Heart Disease data

set. They are grouped by the corresponding algorithms and shown in Figures 4.7-4.12.

Figure 4.7. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FCM algorithm with Pairing Frequency index for getting the optimal number of clusters

FRI DIPLOMOVÁ PRÁCA

86

Figure 4.8. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

GK algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.9. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

GG algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.10. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

MID algorithm

FRI DIPLOMOVÁ PRÁCA

87

Figure 4.11. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FEBFC algorithm

Figure 4.12. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the

FIDBFC algorithm

Based on the obtained membership functions, fuzzification of the data set was made

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The

results of calculation are shown in Table 4.4.

FRI DIPLOMOVÁ PRÁCA

88

Table 4.4. Clustering Accuracy Indices calculated for the fuzzification performed on the
Cleveland Heart Disease data set

Algorithm

Partition

Coefficient

index

Partition

Entropy

index

Fukuyama-

Sugeno

index

Xie-Beni

index

Purity

index

Normalized

Mutual

Information

index

FCM 0.74495 0.56002 5.92440 0.11528 0.54916 0.04926

GK 0.80537 0.42032 3.17181 9.16700 0.54603 0.05179

GG 0.73040 0.58724 5.84767 62.60825 0.55168 0.04751

MID 0.98750 0.02764 4.50228 313.08871 0.54940 0.06126

FEBFC 0.81525 0.40006 2.25668 0.10192 0.54125 0.03940

FIDBFC 0.82118 0.38605 2.00213 0.10587 0.54125 0.03905

As we can see in Table 4.4, the MID algorithm gives the most accurate clustering

results according to the Partition Coefficient, the Partition Entropy and the Normalized

Mutual Information indices. Clustering results of the GG algorithm are the most accurate

only according to the Purity index as well as clustering results of the FEBFC algorithm are

the most accurate according to the Xie-Beni index.

The FIDBFC algorithm is the most accurate according to the Fukuyama-Sugeno

index. It also better than the original FEBFC algorithm according to the Partition Coefficient

and the Partition Entropy indices, has the same accuracy according to the Purity index and a

bit worse according to other two indices. Thus, modification of the FEBFC algorithm,

proposed in this thesis, leads to better clustering results of the Heart Disease data set

according to at least half of considered indices.

4.2.3. Breast Cancer Wisconsin

The Breast Cancer Wisconsin data set was taken from the UCI machine learning

repository [36]. The data set contains 569 patterns, represented by 32 attributes, that were

computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. In this

experiment only 11 attributes (10 input attributes and 1 output), that describe mean values

of characteristics of the cell nuclei present in the image, are considered (see Table 4.5).

FRI DIPLOMOVÁ PRÁCA

89

Table 4.5. Attributes of the Breast Cancer Wisconsin data set: A1-A10 are input attributes
and C is an output attribute

Attribute Type Description

Possible

nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A1 numeric Radius (mean of
distances from center
to points on the
perimeter)

— 6.981 28.110 14.127 3.521

A2 numeric Texture (standard
deviation of gray-scale
values)

— 9.710 39.280 19.290 4.297

A3 numeric Perimeter — 43.790 188.500 91.969 24.278
A4 numeric Area — 143.500 2501 654.889 351.605
A5 numeric Smoothness (local

variation in radius
lengths)

— 0.053 0.163 0.096 0.014

A6 numeric Compactness
(perimeter^2 / area -
1.0)

— 0.019 0.345 0.104 0.053

A7 numeric Concavity (severity of
concave portions of
the contour)

— 0 0.427 0.089 0.080

A8 numeric Concave points
(number of concave
portions of the
contour)

— 0 0.201 0.049 0.039

A9 numeric Symmetry — 0.106 0.304 0.181 0.027

A10 numeric Fractal dimension
("coastline
approximation" - 1)

— 0.050 0.097 0.063 0.007

C nominal Diagnosis M – malignant;
B – benign

— — — —

The fuzzy clustering algorithms described in Chapter 2 were performed on each

numeric attribute of the Breast Cancer Wisconsin data set. As a result, the membership

functions, shown in Figures 4.13-4.18 were obtained.

FRI DIPLOMOVÁ PRÁCA

90

Figure 4.13. Membership functions of attributes A1 – A10 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.14. Membership functions of attributes A1 – A10 obtained using the GK algorithm

with Pairing Frequency index for getting the optimal number of clusters

FRI DIPLOMOVÁ PRÁCA

91

Figure 4.15. Membership functions of attributes A1 – A10 obtained using the GG algorithm

with Pairing Frequency index for getting the optimal number of clusters

Figure 4.16. Membership functions of attributes A1 – A10 obtained using the MID

algorithm

FRI DIPLOMOVÁ PRÁCA

92

Figure 4.17. Membership functions of attributes A1 – A10 obtained using the FEBFC

algorithm

Figure 4.18. Membership functions of attributes A1 – A10 obtained using the FIDBFC

algorithm

FRI DIPLOMOVÁ PRÁCA

93

Based on the obtained membership functions, fuzzification of the data set was made

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The

results of calculation are shown in Table 4.6.

Table 4.6. Clustering Accuracy Indices calculated for the fuzzification performed on the
Breast Cancer Wisconsin data set

Algorithm

Partition

Coefficient

index

Partition

Entropy

index

Fukuyama-

Sugeno

index

Xie-Beni

index

Purity

index

Normalized

Mutual

Information

index

FCM 0,70180 0,65043 9,97471 0,17636 0,78141 0,20863

GK 0,80869 0,41571 3,11619 136,80074 0,77748 0,19883

GG 0,71908 0,61341 8,52217 30,85465 0,78417 0,20820

MID 0,91949 0,17782 8,03281 243,40205 0,76021 0,19926

FEBFC 0,83261 0,36418 3,60073 0,09625 0,75014 0,19384

FIDBFC 0,78031 0,47621 6,69028 0,10761 0,76131 0,20961

As we can see in Table 4.6, the MID algorithm gives the most accurate clustering

results according to the Partition Coefficient and the Partition Entropy indices. According to

the Fukuyama-Sugeno, Xie-Beni and Purity indices, clustering results of the GK, FEBFC

and GG algorithms are the most accurate correspondingly.

The FIDBFC algorithm is the most accurate according to the Normalized Mutual

Information index. It also more accurate than the original FEBFC algorithm according to the

Purity index, but less accurate according to the other indices. Thus, for the Breast Cancer

Wisconsin data set the FEBFC algorithm in general gives better results than its modification

(the FIDBFC algorithm).

FRI DIPLOMOVÁ PRÁCA

94

4.2.4. Indian Liver Patient Records

The Indian Liver Patient Records data set is located in the Kaggle machine learning

repository [35]. The data set contains patient records consisting of some measurements and

information whether a patient has liver disease. The records were collected from North East

of Andhra Pradesh, India and can be used to construct a liver disease prediction system.

The data set contains 583 patterns, represented by 11 attributes (10 input attributes

and 1 output), which are described in Table 4.7

Table 4.7. Attributes of the Liver Patient Records data set: A1-A10 are input attributes and
C is an output attribute

Attribute Type Description

Possible

nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A1 numeric Age of the patient — 4 90 44.746 16.176

A2 nominal Gender of the patient Female;
Male

— — — —

A3 numeric Total Bilirubin (mg/dL) — 0.4 75 3.299 6.204

A4 numeric Direct Bilirubin (mg/dL) — 0.1 19.7 1.486 2.806

A5 numeric Alkaline Phosphotase
(IU/L)

— 63 2110 290.576 242.730

A6 numeric Alamine
Aminotransferase (IU/L)

— 10 2000 80.714 182.464

A7 numeric Aspartate
Aminotransferase (IU/L)

— 10 4929 109.911 288.671

A8 numeric Total Protiens (g/dL) — 2.7 9.6 6.483 1.085

A9 numeric Albumin (g/dL) — 0.9 5.5 3.142 0.795

A10 numeric Albumin and Globulin
Ratio

— 0.3 2.8 0.947 0.318

C nominal Dataset 1 – patient
with liver
disease;
2 – no
disease

— — — —

The fuzzy clustering algorithms described in Chapter 2 were performed on each

numeric attribute of the Liver Patient Records data set. As a result, the membership

functions, shown in Figures 4.19-4.24 were obtained.

FRI DIPLOMOVÁ PRÁCA

95

Figure 4.19. Membership functions of attributes A1, A3 – A10 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.20. Membership functions of attributes A1, A3 – A10 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of clusters

FRI DIPLOMOVÁ PRÁCA

96

Figure 4.21. Membership functions of attributes A1, A3 – A10 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.22. Membership functions of attributes A1, A3 – A10 obtained using the MID

algorithm

FRI DIPLOMOVÁ PRÁCA

97

Figure 4.23. Membership functions of attributes A1, A3 – A10 obtained using the FEBFC

algorithm

Figure 4.24. Membership functions of attributes A1, A3 – A10 obtained using the FIDBFC

algorithm

FRI DIPLOMOVÁ PRÁCA

98

Based on the obtained membership functions, fuzzification of the data set was made

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The

results of calculation are shown in Table 4.8.

Table 4.8. Clustering Accuracy Indices calculated for the fuzzification performed on the
Indian Liver Patient Records data set

Algorithm

Partition

Coefficient

index

Partition

Entropy

index

Fukuyama-

Sugeno

index

Xie-Beni

index

Purity

index

Normalized

Mutual

Information

index

FCM 0,76521 0,51781 7,31219 0,23369 0,71355 0,03833

GK 0,84262 0,33978 4,81232 235,85757 0,71355 0,03798

GG 0,80658 0,41956 6,89524 5,91104 0,71355 0,03553

MID 0,94466 0,12144 7,53296 150,68521 0,71520 0,04287

FEBFC 0,88244 0,25931 3,02895 0,06235 0,71355 0,02400

FIDBFC 0,87023 0,28597 3,33581 0,06514 0,71355 0,02874

As we can see in Table 4.8, the MID algorithm gives the most accurate clustering

results according to the Partition Coefficient, the Partition Entropy, the Purity and the

Normalized Mutual Information indices. According to the Fukuyama-Sugeno as well as the

Xie-Beni indices, clustering results of the FEBFC algorithm are the most accurate.

The FIDBFC algorithm is more accurate than the original FEBFC algorithm

according to the Normalized Mutual Information index, but less accurate or has the same

accuracy according to the other indices. Thus, for the Indian Liver Patient Records data set

the FEBFC algorithm in general gives better results than its modification (the FIDBFC

algorithm).

4.2.5. Chronic Kidney Disease

The Chronic Kidney Disease data set is located in the UCI machine learning

repository [36]. This data set contains information whether a patient has chronic kidney

disease and some additional measurements, that can be used to predict the disease.

FRI DIPLOMOVÁ PRÁCA

99

The data set contains 400 patterns, represented by 25 attributes (24 input attributes

and 1 output), which are described in Table 4.9

Table 4.9. Attributes of the Chronic Kidney Disease data set: A1-A24 are input attributes
and C is an output attribute

Attribute Type Description
Possible nominal

values

Min.

value

Max.

value

Mean

value

Standard

deviation

A1 numeric Age (years) — 2 90 51.483 16.954

A2 numeric Blood Pressure
(mm/Hg)

— 50 180 76.469 13.459

A3 nominal Specific Gravity 1.005; 1.010;
1.015; 1.020; 1.025

— — — —

A4 nominal Albumin 0; 1; 2; 3; 4; 5 — — — —

A5 nominal Sugar 0; 1; 2; 3; 4; 5 — — — —

A6 nominal Red Blood Cells normal; abnormal — — — —

A7 nominal Pus Cell normal; abnormal — — — —

A8 nominal Pus Cell clumps present; notpresent — — — —

A9 nominal Bacteria present; notpresent — — — —

A10 numeric Blood Glucose
Random (mgs/dl)

— 22 490 148.037 74.689

A11 numeric Blood Urea
(mgs/dl)

— 1.5 391 57.426 49.224

A12 numeric Serum Creatinine
(mgs/dl)

— 0.4 76 3.072 5.610

A13 numeric Sodium (mEq/L) — 4.5 163 137.529 9.193

A14 numeric Potassium (mEq/L) — 2.5 47 4.627 2.816

A15 numeric Hemoglobin (gms) — 3.1 17.8 12.526 2.713

A16 numeric Packed Cell
Volume

— 9 54 38.885 8.141

A17 numeric White Blood Cell
Count
(cells/cumm)

— 2200 26400 8406.12 2520.06

A18 numeric Red Blood Cell
Count
(millions/cmm)

— 2.1 8 4.707 0.839

A19 nominal Hypertension yes; no — — — —

A20 nominal Diabetes Mellitus yes; no — — — —

A21 nominal Coronary Artery
Disease

yes; no — — — —

A22 nominal Appetite good; poor — — — —

A23 nominal Pedal Edema yes; no — — — —

A24 nominal Anemia yes; no — — — —

C nominal Class ckd; notckd — — — —

The fuzzy clustering algorithms described in Chapter 2 were performed on each

numeric attribute of the Chronic Kidney Disease data set. As a result, the membership

functions, shown in Figures 4.25-4.30 were obtained.

FRI DIPLOMOVÁ PRÁCA

100

Figure 4.25. Membership functions of attributes A1, A2, A10 – A18 obtained using the FCM

algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.26. Membership functions of attributes A1, A2, A10 – A18 obtained using the GK

algorithm with Pairing Frequency index for getting the optimal number of clusters

FRI DIPLOMOVÁ PRÁCA

101

Figure 4.27. Membership functions of attributes A1, A2, A10 – A18 obtained using the GG

algorithm with Pairing Frequency index for getting the optimal number of clusters

Figure 4.28. Membership functions of attributes A1, A2, A10 – A18 obtained using the MID

algorithm

FRI DIPLOMOVÁ PRÁCA

102

Figure 4.29. Membership functions of attributes A1, A2, A10 – A18 obtained using the

FEBFC algorithm

Figure 4.30. Membership functions of attributes A1, A2, A10 – A18 obtained using the

FIDBFC algorithm

FRI DIPLOMOVÁ PRÁCA

103

Based on the obtained membership functions, fuzzification of the data set was made

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The

results of calculation are shown in Table 4.10.

Table 4.10. Clustering Accuracy Indices calculated for the fuzzification performed on the
Chronic Kidney Disease data set

Algorithm

Partition

Coefficient

index

Partition

Entropy

index

Fukuyama-

Sugeno

index

Xie-Beni

index

Purity

index

Normalized

Mutual

Information

index

FCM 0,77893 0,49223 5,33962 0,22215 0,74692 0,17449

GK 0,86890 0,28460 2,22786 169,93521 0,75999 0,19142

GG 0,79741 0,44822 4,80674 22,14820 0,68667 0,13921

MID 0,93745 0,13790 5,55817 301,79223 0,63449 0,07141

FEBFC 0,87330 0,28549 1,50738 0,06734 0,65568 0,09795

FIDBFC 0,82725 0,38268 3,01684 0,08254 0,67831 0,12089

As we can see in Table 4.10, the MID algorithm gives the most accurate clustering

results according to the Partition Coefficient and the Partition Entropy indices; the FEBFC

algorithm gives the most accurate clustering results according to the Fukuyama-Sugeno and

the Xie-Beni indices; the GK algorithm gives the most accurate clustering results according

to the Purity and the Normalized Mutual Information indices.

The FIDBFC algorithm is more accurate than the original FEBFC algorithm

according to the Purity and the Normalized Mutual Information indices, but less accurate

according to the other indices. Thus, for the Chronic Kidney Disease data set the FEBFC

algorithm in general gives better results than its modification (the FIDBFC algorithm).

FRI DIPLOMOVÁ PRÁCA

104

CONCLUSION

The diploma thesis was devoted to problematics of transformation from numeric into

linguistic values, that is based on clustering, in medical data analysis. A study of theoretical

aspects of cluster analysis was performed for understanding the problematics. In a process

of the study several definitions of the term “clustering” were considered and own definition

was proposed by the author of the thesis, according to which, clustering is an unsupervised

learning method of partitioning a data set into a finite number of discrete groups (clusters)

such that each group consists of similar objects according to some defined distance measure.

The most commonly used data types in clustering are discrete and continuous types. The

discrete data type aggregates nominal and binary (symmetrical as well as asymmetrical)

types. The study also has involved describing of similarity and dissimilarity measures and

explanation differences between hard clustering and fuzzy clustering.

The software tool, that is be able to make transformation of values of any numeric

attribute of a medical data set into fuzzy values, has been developed to achieve the goal of

this thesis. The main requirement for the tool was the ability of integration into an expert

system for medical data analysis, in a way that it could be considered as a computational

component of the system. This goal was achieved successfully by implementation of fully-

featured Fuzzy Clustering Tool. This tool has two basic functionalities: performing a cluster

analysis to transform numeric into linguistic values and fuzzification based on the calculated

membership functions to obtain a resulting fuzzy data set. In addition to these basic

functionalities, the Fuzzy Clustering Tool provides simple statistical analysis of a data set,

visualization of a membership function and a possibility to import external clustering results.

The following clustering algorithms were implemented in the Fuzzy Clustering Tool

to perform a clustering analysis: Fuzzy c-Means, Gustafson-Kessel algorithm, Gath-Geva

algorithm, Multi-Interval Discretization and Fuzzy Entropy Based Fuzzy Classifier.

Additionally, the author of the thesis proposed a modification of the Fuzzy Entropy Based

Fuzzy Classifier, that supposes using a fuzzy information density instead of fuzzy entropy.

He called this modification Fuzzy Information Density Based Fuzzy Classifier (FIDBFC).

The FIDBFC was formally described in Section 2.5 and its implementation was included

into the Fuzzy Clustering Tool.

FRI DIPLOMOVÁ PRÁCA

105

All implemented clustering algorithms were evaluated and compared on the

following medical data sets: Pima Indians Diabetes, Heart Disease, Breast Cancer

Wisconsin, Indian Liver Patient Records and Chronic Kidney Disease. In the first two of

them the proposed modification of the clustering algorithm (i.e. FIDBFC) gave more

accurate clustering results than the original FEBFC algorithm. Thus, we can state that on

some medical data set using the proposed FIDBFC for transformation from numeric into

linguistic and fuzzy values is preferable.

FRI DIPLOMOVÁ PRÁCA

106

BIBLIOGRAPHY

1. Zaitseva E., Levashenko V., Kvassay M., Barach P. Healthcare system reliability

analysis addressing uncertain and ambiguous data. 2017 International Conference on

Information and Digital Technologies (IDT), Žilina, 2017, pp. 442-451.

2. Barach P., Levashenko V., Zaitseva E. New Methods for Healthcare System

Evaluation Using Human Reliability Analysis. Proceedings of the Human Factors and

Ergonomics Society, vol. 61(1), 2017, pp. 583-587.

3. Rokach Lior, Maimon Oded. Data Mining with Decision Trees. Theory and

Applications (Series in Machine Perception and Artificial Intelligence: Volume 69).

World Scientific Publishing Co. Pte. Ltd., 2008, 263 pages.

4. Gan G., Chaoqun M., Jianhong W. Data Clustering: Theory, Algorithms, and

Applications. ASA-SIAM Series on Statistics and Applied Probability, SIAM,

Philadelphia, ASA, Alexandria, VA, 2007, 488 pages.

5. Abonyi J., Feil B. Cluster Analysis for Data Mining and System Identification.

Birkhäuser Verlag AG, 2007, 319 pages.

6. Xu Rui, Wunsch Donald C. II. Clustering. John Wiley & Sons, 2009, 358 pages.

7. Zhang G. P. Neural Networks for Data Mining. In: Maimon O., Rokach L. (eds) Data

Mining and Knowledge Discovery Handbook. Springer, Boston, MA, 2009,

pp. 17-44.

8. Pirim H., Eksioglu B., Perkins A., Yuceer C. Clustering of high throughput gene

expression data. Computers & Operations Research vol. 39, 2012, pp. 3046–3061.

9. Hopper F., Klawonn F., Kruse R., and Runkler T. Fuzzy Cluster Analysis: Methods for

Classification, Data Analysis, and Image Recognition. John Wiley & Sons, 1999,

289 pages.

10. Pedrycz Witold. Knowledge-based clustering: from data to information granules. John

Wiley & Sons, 2005, 316 pages.

11. Korolyuk I. P. Medical informatics [transl. from orig. rus. Медицинская

информатика]. Samara : Ofort Ltd., 2012, 244 pages.

12. Albayrak S., Armasyali F. Fuzzy C-Means Clustering on Medical Diagnostic Systems.

In International XII Turkish Symposium on Artificial Intelligence and Neural

Networks, 2003.

FRI DIPLOMOVÁ PRÁCA

107

13. Chen H., Fuller S. S., Friedman C., Hersh W. Knowledge Management, Data Mining,

and Text Mining in Medical Informatics. In: Chen H., Fuller S. S., Friedman C.,

Hersh W. (eds) Medical Informatics. Integrated Series in Information Systems, vol 8.

Springer, Boston, MA, 2005, pp. 3-33.

14. Liao M., Li Y., Kianifard F., Obi E., Arcona S. Cluster analysis and its application to

healthcare claims data: a study of end-stage renal disease patients who initiated

hemodialysis. BMC Nephrol. 2016, 17(4): 25.

15. Babuška Robert. Fuzzy Clustering Algorithms with Applications to Rule Extraction.

In: Szczepaniak P.S., Lisboa P.J.G., Kacprzyk J. (eds) Fuzzy Systems in Medicine.

Studies in Fuzziness and Soft Computing, vol 41. Physica, Heidelberg, 2000,

pp. 139-173.

16. Bezdek J. C. Cluster validity with fuzzy sets. Journal of Cybernetics, vol. 3(3), 1973,

pp. 58-72.

17. Bezdek J. C. Mathematical models for systematics and taxonomy. In: Proceedings 8th

International Conference in Numerical Taxonomy, Freeman, San Francisco, 1975,

pp. 143-166.

18. Fukuyama Y., Sugeno M. A new method of choosing the number of clusters for the

fuzzy C-means method. In Proc. 5th Fuzzy Syst. Symp., 1989, pp. 247-250.

19. Xie X. L., Beni G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal.

Mach. Intell., vol. 13, no. 8, Aug. 1991, pp. 841–847.

20. Zhou K., Ding S., Fu C., Yang S. Comparison and weighted summation type of fuzzy

cluster validity indices. Int J Comput Commun Control, vol. 9, 2014, pp. 370-378.

21. Pakhira M. K., Bandyopadhyay S., Maulik U. Validity Index for Crisp and Fuzzy

Clusters. In. Pattern Recognition, vol. 37(3), 2004, pp. 487-501.

22. Bezdek J. C. Pattern recognition with fuzzy objective function algorithms. New York,

NY: Plenum Press, 1981, 272 pages.

23. Dunn J. A fuzzy relative of the ISODATA process and its use in detecting compact well

separated clusters. Journal of Cybernetics, 3 (3), 1974, pp. 32-57.

24. Gustafson D. E., Kessel W. C. Fuzzy clustering with a fuzzy covariance matrix. Proc.

IEEE CDC, 1979, pp. 761-766.

25. Gath I., Geva A. B. Unsupervised optimal fuzzy clustering. IEEE Trans. Patt. Anal.

Machine Intell., vol. 11, no 7, 1989, pp. 773-780.

FRI DIPLOMOVÁ PRÁCA

108

26. Cui H., Zhang K., Fang Y., Sobolevsky S., Ratti C., Horn B. K. P. A Clustering

Validity Index Based on Pairing Frequency. In IEEE Access, vol. 5, 2017,

pp. 24884-24894.

27. Popel D. V. From continuous to multiple-valued data. In Proceedings IEEE

International Symposium on Multiple-Valued Logic, 2003, pp. 367-372.

28. Levashenko V., Zaitseva E., Kovalík Š., Projektovanie systémov pre podporu

rozhodovania na základe neurčitých dát. Žilina : Žilinská univerzita, 2013, 245 pages.

29. Lee H. M., Chen Ch. M., Chen J. M., Jou Y. L. An efficient fuzzy classifier with

feature selection based on fuzzy entropy. In IEEE Transactions on systems, Man, and

Cybernetics – Part B: Cybernetics, vol. 31, no. 3, 2001, pp. 426-432.

30. Kosko B. Fuzzy entropy and conditioning. Information sciences, vol. 40, 1986,

pp. 165-174.

31. Rendón E., Abundez I., Arizmendi A., Quiroz E. M. Internal versus external cluster

validation indexes. International Journal of Computers and Communications, vol. 5(1),

2011, pp. 27-34.

32. Rezaee M. R., Lelieveldt B. P. F., Reiber J. H. C. A new cluster validity index for the

fuzzy c-mean. Pattern Recognition Letters, vol. 19, 1998, pp. 237–246.

33. Sripada S. Ch., Rao M. S. Comparison of purity and entropy of K-means Clustering

and Fuzzy C means Clustering. Indian Journal of Computer Science and Engineering

(IJCSE), Vol. 2, No. 3, 2011, pp. 343-346.

34. Kvålseth T. O. On Normalized Mutual Information: Measure Derivations and

Properties. Entropy, vol. 19(11), 2017, 631 pages.

35. The Home of Data Science & Machine Learning, https://www.kaggle.com.

36. UCI Machine Learning Repository: Center for Machine Learning and Intelligent

Systems, https://archive.ics.uci.edu/ml/index.php.

FRI DIPLOMOVÁ PRÁCA

109

List of Appendices

Appendix 1 UML Class diagram of the Fuzzy Clustering Tool

Appendix 2 Contents of the CD

FRI DIPLOMOVÁ PRÁCA

110

Appendices

FRI DIPLOMOVÁ PRÁCA

111

Appendix 1: UML Class diagram of the Fuzzy Clustering Tool

FRI DIPLOMOVÁ PRÁCA

112

Appendix 2: Contents of the CD

The enclosed CD contains:

• the diploma thesis in electronic form (PDF format);

• the source code of the Fuzzy Clustering Tool.

