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Abstrakt 

PONOMARENKO, Volodymyr: Vývoj komponentu expertného systému pre 

analýzu lekárskych údajov s využitím zhlukovania. [Diplomová práca] – Žilinská univerzita 

v Žiline, Fakulta riadenia a informatiky, Katedra informatiky. – Vedúci: Prof., Dr. Paul 

Barach, MD, MPH. – Tútor: prof. Ing. Vitaly Levashenko, PhD. – Stupeň odbornej 

kvalifikácie: Inžinier v odbore Informatika. – Žilina: FRI ŽU v Žiline, 2018. – 112 s. 

 

Diplomová práca sa zaoberá transformáciou numerických hodnôt na lingvistické 

v oblasti analýzy lekárskych údajov. Skúmajú sa rôzne algoritmy zhlukovania pre vykonanie 

tejto transformácie. Cieľom prace je vyvinúť softvérový komponent expertného systému 

založený na zhlukovaní. 

 

Kľúčové slová: algoritmy zhlukovania, analýza lekárskych údajov, fuzzifikácia, 

fuzzy zhlukovanie, indexy platnosti klastrov. 

 

 

 

 

 

Abstract 

PONOMARENKO, Volodymyr: Development of Expert System component for 

medical data analysis based on clustering. [Diploma thesis] – University of Žilina, Faculty 

of Management Science and Informatics, Department of informatics. – Supervisor: Prof., 

Dr. Paul Barach, MD, MPH. – Tutor: prof. Ing. Vitaly Levashenko, PhD. – Qualification 

level: Master of Computer Science. – Žilina: FRI ŽU in Žilina, 2018. – 112 p. 

 

The diploma thesis is devoted to the transformation of numerical values into 

linguistic values in medical data analysis. Different clustering algorithms are considered to 

perform the transformation. The goal of the work is to develop a software component of the 

Expert System based on clustering. 

 

Key words: clustering algorithms, cluster validity indices, fuzzification, fuzzy 

clustering, medical data analysis. 
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INTRODUCTION 

During the last few decades, the face of the modern world was qualitatively changed 

by information technologies. Various technical means and information delivery channels, 

based on progressive information and communication systems, have revolutionized human 

life, that nowadays is inseparably associated with huge flows of data. These data are involved 

in all spheres of human activity – social, economic, political, spiritual. However, the 

information contained in such data can be whether very valuable or completely useless. 

Extracting various kinds of useful information from the data sets is one of the main tasks of 

the modern science called data mining. 

Data mining proposes methods, that today are widely used in healthcare, which is in 

one of the fundamental fields of the social sphere of modern life. Such popularity of the data 

mining methods was formed mainly due to the rapid development of medical devices and 

therapy technologies, that allow to produce and to store large amount of data. Producing of 

new data is mostly achieved in a process of providing medical services. For example, 

imagine a patient who came to a polyclinic to examine his digestive system. A medical 

worker, using a special probe or ultrasound device, measures necessary medical indicators 

and records them in a medical report. Obtained in a such way medical data are usually 

persisted in some database for possible using in future. Therefore, storing medical data is 

achieved through the use of various database systems. 

The information contained in medical data is extremely important for solving 

diagnostic, therapeutic, statistical, administrative and other tasks in the field of medicine, 

e.g. determination of a correct treatment, definition of a patient's group of risk and prevention 

of diseases. Solving of these tasks has a huge impact on a quality of medical services, life 

expectancy, mortality and time of illnesses of population. 

In the field of medicine, both numeric (continuous) and nominal (linguistic) types of 

data are used. The numeric data type is used for representing value of a continuous medical 

indicator, e.g. age of a patient, body mass index, resting blood pressure, albumin and 

globulin ratio. Variables of the nominal data type usually keep a name of some state of a 

categorical medical indicator, e.g. a patient's appetite can be good or poor, a tumor can be 

malignant or benign. In medical data analysis obtaining a continuous value is often not 

enough informative to make a conclusion about patient's state for determining necessary 
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treatment, so the medical worker has to associate this value with an appropriate nominal 

value. This is a typical situation when a transformation from numeric into linguistic values 

comes into play. The numeric values of an attribute obtained as a result of the transformation 

can be relatively easy converted into fuzzy data specified by a membership function. The 

whole process of obtaining fuzzy values from numeric values is called fuzzification. 

Fuzzy medical data, obtained as a result of fuzzification, are very valuable. They can 

be used, in particular, for increasing the healthcare system reliability through the reducing 

potential medical failures, that is discussed in papers [1]-[2].  

The process of transformation from numeric into linguistic values, that is based on 

cluster analysis, is the subject of study in this diploma thesis. The Expert System for medical 

data analysis is the object of study. The work's goal is development of a software, that should 

be able to transform values of any numeric attribute of the medical data set into fuzzy values. 

It must be possible to use this software, based on clustering algorithms, as a computational 

component of Expert System for medical data analysis. The information, containing in the 

resulting fuzzy data sets, is very valuable, because can be used in constructing predictive 

components of the Expert System, e.g. decision trees. 

The diploma thesis consists of four chapters. In Chapter 1 theoretical aspects of 

clustering problem is considered, that include describing a place of cluster analysis in the 

data mining science and its usage for medical data analysis, definition of the term 

“clustering” and formulation the clustering goals, familiarizing with different data types and 

measures of similarity and dissimilarity, and explanation differences between hard clustering 

and fuzzy clustering. 

Chapter 2 is devoted to describing Cluster Validity Indices and following clustering 

algorithms: Fuzzy c-Means, Gustafson-Kessel algorithm, Gath-Geva algorithm, Multi-

Interval Discretization and Fuzzy Entropy Based Fuzzy Classifier. Additionally, this chapter 

includes a modification of the Fuzzy Entropy Based Fuzzy Classifier, proposed by the author 

of this thesis. 

Chapter 3 describes a design and implementation of a software tool for 

transformation numeric values into fuzzy values based on clustering. This software is called 

Fuzzy Clustering Tool. Chapter 4 contains experimental study on medical data sets. In this 

study the implemented in the tool clustering algorithms are evaluated and compared using 

the Clustering Accuracy Indices. 
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CHAPTER 1. THEORETICAL ASPECTS OF CLUSTERING 

1.1. Fundamentals of clustering 

1.1.1. Definition of the clustering problem 

According to L. Rokach and O. Maimon, data mining can be defined as “the science 

and technology of exploring data in order to discover previously unknown patterns” [3]. One 

of the fundamental problems in data mining is clustering (also called cluster analysis). Its 

role in data mining can be illustrated with the schema on Figure 1.1. Clustering belongs to 

indirect or unsupervised data mining, since we do not know anything about clusters we are 

looking for. Moreover, the purpose of cluster analysis is to determine the set of clusters for 

dividing an initial data set into. 

 

 

 

Figure 1.1. Data mining tasks [4]. 

 

 

The history of clustering goes back to Aristotle's attempt to classify living 

organisms [8]. Nowadays, cluster analysis has a wide range of fields of application, e.g. text 

mining, market research, business failure categorization, grouping of shopping items, credit 

DATA MINING 
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data mining 
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evaluation, social network analysis, human gene analysis, anomaly detection, crime analysis, 

image processing as well as medical data analysis. 

For moving deeper in this diploma thesis, we need to formalize, what the clustering 

is. L. Rokach and O. Maimon note about what clustering actually does, that it “groups the 

data instances into subsets in such a manner that similar instances are grouped together; 

different instances belong to different groups” [3]. According to G. Gan, M. Chaoqun and 

W. Jianhong, clustering “is a method of creating groups of objects, or clusters, in such a way 

that objects in one cluster are very similar and objects in different clusters are quite 

distinct” [4]. J. Abonyi and B. Feil define clustering as “the classification of similar objects 

into different groups, or more precisely, the partitioning of a data set into subsets (clusters), 

so that the data in each subset (ideally) share some common trait – often proximity according 

to some defined distance measure” [5]. Rui Xu and Donald C. Wunsch II explain the term 

of “clustering” as an “unsupervised classification” the goal of which is “to separate a finite, 

unlabeled data set into a finite and discrete set of “natural”, hidden data structures, rather 

than to provide an accurate characterization of unobserved samples generated from the same 

probability distribution” [6]. Another definition of the term of “clustering” is based on 

understanding clustering problem as “categorizing or segmenting observations into groups 

or clusters such that each cluster is as homogeneous as possible”, where the mentioned 

groups (clusters) “are usually unknown to or not predetermined by data miners” [7]. 

Analysis of the definitions of the term “clustering” in the previous paragraph leads 

us to extract key characteristics of clustering. Comparison of different definitions of the term 

is shown on Table 1.1. This is a process of partitioning a data set into groups (clusters), finite 

number of clusters, clustering is a type of classification, unsupervised learning, similarity is 

based on distance measure. We cannot agree with definitions, that explain clustering as some 

type of classification, because clustering belongs to indirect data mining while classification 

belongs to direct one. Unfortunately, none of the analyzed definitions include all mentioned 

characteristics except “clustering is a type of classification”. This is the reason to make our 

own definition of clustering, which would improve the situation. We can define the 

clustering as the unsupervised learning method of partitioning a data set into a finite number 

of discrete groups (clusters) such that each group consists of similar objects according to 

some defined distance measure. 
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Table 1.1. Comparison of different definitions of the term “clustering” by key 
characteristics 

Characteristic [3] [4] [5] [6] [7] 
Own 

definition 

Partitioning a data set into groups (clusters) + + + + + + 
Finite number of clusters – – – + – + 
Discrete clusters – – – + – + 
Clustering is a type of classification – – + + + – 
Unsupervised learning – – – + + + 
Similarity is based on distance measure – – + – – + 

 

 

The cluster analysis principle can be demonstrated graphically in Figure 1.2, where 

(a) – the initial data set of objects (patterns, entities, instances) and (b) – a set of clusters into 

which the data set can be divided. 

 

 

 

Figure 1.2. Simple example of clustering. 

 

 

It was mentioned above, that clustering belongs to unsupervised learning. The reason 

for this lays in a lack of prior information in the initial data sets. For example, disease 

diagnosis and treatment in clinics, where several unknown subtypes for each type of disease 

may exist, can be considered. Even if they all have similar morphological appearances, 

responding to the same therapy may differ. Clustering with gene expression data that 

measure the activities of genes can be used to solve this problem. It provides a promising 

Cluster 1 

Cluster 2 

Cluster 3 

(a) (b) 
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method to uncover the previously unknown subtypes of disease that will allow to determine 

the most appropriate therapies [6]. 

Clustering has four major goals, which cover all major aspects of analysis: 

• development of a classification; 

• investigation of useful conceptual schemes for grouping entities; 

• hypothesis generation through data exploration; 

• hypothesis testing or the attempt to determine if types defined through other 

procedures are in fact present in a data set [6]. 

Cluster analysis is realized through clustering algorithms, which will be discussed in 

Chapter 2. 

 

 

1.1.2. Data types 

Understanding of data types is obligatory for interpreting the results of cluster 

analysis, because each data type has its own field of usage depending on information that an 

attribute can contains. The most commonly used data types in clustering are discrete and 

continuous types. The discrete data type aggregates nominal and binary (symmetrical as well 

as asymmetrical) types (see Figure 1.3). 

 

 

 

Figure 1.3. Diagram of data types [4]. 

 

DATA TYPES 

Discrete Continuous 

Nominal Binary 

Symmetrical Asymmetrical 
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The discrete data type is used for representing value of a discrete attribute. Number 

of possible values of such variable is finite. Similarly, the continuous data type is used for 

representing value of a continuous (numeric) attribute that can assume any value in ℝ. 

A nominal (categorical) variable usually keeps a name of some object's state. For 

example, notebook manufacturer name is the nominal attribute of the notebook object. The 

categorical attribute assumes a finite number of values (as categorical data type belongs to 

discrete type), but nothing can be said about closeness of such values. 

Binary variables keep one of two possible values (e.g. “true” or “false”). Depending 

on information importance of each value, a binary attribute can be symmetric or asymmetric. 

In a symmetric binary variable the importance of both possible values is the same (e.g. 

“black” or “white”), while in an asymmetric variable one value is more important than the 

other (e.g. “yes” stands for the presence and “no” stands for the absence of a certain 

attribute) [4]. 

 

 

1.1.3. Similarity Measuring 

In Section 1.1.2 it was mentioned, that the result of clustering is a set of partitions 

(clusters) with following characteristics: 

• patterns, that belongs to the same partition are homogeneous (as similar as 

possible); 

• patterns, that belongs to different partitions are heterogeneous (as different as 

possible) [9]. 

 

Since we use a term of similarity here, it should be specified what the similarity is 

and how it can be measured. In the literature of clustering, under the concept of similarity is 

understood a presence of similar attributes in analyzed objects. The greater the similarity 

measure, the more similar two objects are [4]. 

For any objects 𝐱 and 𝐲 the similarity measure is a function, that satisfies following 

conditions: 

• Positivity: 0 ≤ 𝑠(𝐱, 𝐲) ≤ 1 (1.1) 

• Symmetry: 𝑠(𝐱, 𝐲) = 𝑠(𝐲, 𝐱) (1.2) 
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The function is called a similarity metric if it also satisfies the following additional 

conditions for any objects 𝐱, 𝐲 and 𝐳 [6]: 

• 𝑠(𝐱, 𝐲) × 𝑠(𝐲, 𝐳) ≤ (𝑠(𝐱, 𝐲) + 𝑠(𝐲, 𝐳)) × 𝑠(𝐱, 𝐳) (1.3) 

• 𝑠(𝐱, 𝐱) = 1 (1.4) 

 

Mostly the similarity measure is used with binary variables. Consider two vectors of 

binary data 𝐱 and 𝐲 (patterns, that have binary attributes). Let designate a number of 

occurrences when 𝑥𝑖 and 𝑦𝑖 are both equal to 1 as “𝑎”; a number of occurrences when 𝑥𝑖 =0 and 𝑦𝑖 = 1 as “𝑏”; a number of occurrences when 𝑥𝑖 = 1 and 𝑦𝑖 = 0 as “𝑐”; a number of 

occurrences when 𝑥𝑖 and 𝑦𝑖 are both equal to 0 as “𝑑”. Then these four numbers can be 

organized into a 2 by 2 co-occurrence matrix (contingency table) that visualizes how “close” 

these two objects are to each other [10]: 

 

  𝑥𝑖 
  1 0 𝑦𝑖 1 𝑎 𝑏 

0 𝑐 𝑑 
 

(1.5) 

 

The highest similarity is in case of nondiagonal elements of matrix (1.5) are equal to 

zero. For measuring similarity depending on values of 𝑎, 𝑏, 𝑐 and 𝑑 entries, indices of 

similarity can be used. The most common indices are listed in Table 1.2. 

For measuring similarity between continuous variables, the most appropriate 

measure is distance. To be more precise, distance is a measure of dissimilarity and can be 

defined by the following relation: 

 𝑑(𝐱, 𝐲) = 1 − 𝑠(𝐱, 𝐲) (1.10) 

 

For any objects 𝐱, 𝐲 and 𝐳, distance is a function, that satisfies following conditions: 

• Positivity: 𝑑(𝐱, 𝐲) ≥ 0 (1.11) 

• Reflexivity: 𝑑(𝐱, 𝐱) = 0 (1.12) 

• Symmetry: 𝑑(𝐱, 𝐲) = 𝑑(𝐲, 𝐱) (1.13) 

• Triangle inequality: 𝑑(𝐱, 𝐲) + 𝑑(𝐲, 𝐳) ≥ 𝑑(𝐱, 𝐳) (1.14) 
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Table 1.2. The most common indices of similarity between patterns 𝐱 and 𝐲 depending on 
values of 𝑎, 𝑏, 𝑐 and 𝑑 entries (𝑎 – number of occurrences when 𝑥𝑖 and 𝑦𝑖 are 
both equal to 1; 𝑏 – number of occurrences when 𝑥𝑖 = 0 and 𝑦𝑖 = 1; 𝑐 – number 
of occurrences when 𝑥𝑖 = 1 and 𝑦𝑖 = 0; 𝑑 – number of occurrences when 𝑥𝑖 
and 𝑦𝑖 are both equal to 0) 

Index of similarity Formula 

Russel and Rao index 𝑠(𝐱, 𝐲) = 𝑎𝑎 + 𝑏 + 𝑐 + 𝑑 (1.6) 

Sokal index 𝑠(𝐱, 𝐲) = 𝑎 + 𝑑𝑎 + 𝑏 + 𝑐 + 𝑑  (1.7) 

Jaccard index 𝑠(𝐱, 𝐲) = 𝑎𝑎 + 𝑏 + 𝑐 (1.8) 

Czekanowski index 𝑠(𝐱, 𝐲) = 2𝑎2𝑎 + 𝑏 + 𝑐 (1.9) 

 

 

Calculating distance gives us enough information to conclude how close objects are 

and depending on this closeness decide about their belonging to the appropriate clusters. The 

most common approaches for distance measuring are listed in Table 1.3. 

 

 

Table 1.3. The most common distance functions between patterns 𝐱 and 𝐲 [10] 

Distance function Formula 

Euclidean distance 𝑑(𝐱, 𝐲) = √∑(𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1  (1.15) 

Hamming distance 𝑑(𝐱, 𝐲) =∑|𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1  (1.16) 

Tchebyschev distance 𝑑(𝐱, 𝐲) = max𝑖=1,2,...,𝑛|𝑥𝑖 − 𝑦𝑖| (1.17) 

Minkowski distance 𝑑(𝐱, 𝐲) = √∑(𝑥𝑖 − 𝑦𝑖)𝑝𝑛
𝑖=1

𝑝 , 𝑝 > 0 (1.18) 

Canberra distance 𝑑(𝐱, 𝐲) =∑|𝑥𝑖 − 𝑦𝑖|𝑥𝑖 + 𝑦𝑖𝑛
𝑖=1 , 𝑥𝑖 > 0, 𝑦𝑖 > 0 (1.19) 

Mahalanobis distance 
𝑑(𝐱, 𝐲) = 𝐱𝑇𝐴−1𝐲, 
where 𝐴 is a positive definite matrix 

(1.20) 
 



FRI  DIPLOMOVÁ PRÁCA 

23 

Approaches listed above in Table 1.3 assumes different data representation, that can 

be found in their geometric constructs, which are the contours of the constant distances 

between any two objects [10]. Examples of the geometric constructs for Euclidean, 

Hamming and Tchebyschev distances are shown in Figure 1.4. 

 

 

 

Figure 1.4. Examples of distance functions – three-dimensional and contour plots: (a) 

Euclidean, (b) Hamming (city block), (c) Tchebyschev [10] 

 

 

 

 

(a) (b) 

(c) 
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1.2. Clustering in medical data analysis 

Healthcare today is in one of the fundamental fields of the social sphere of human 

life. Over the last few decades, medical devices and therapy technologies has developed 

rapidly and nowadays they allow to produce and to store large amount of data. Producing of 

new data is mainly achieved in a process of providing medical services. For example, 

imagine a patient who came to a polyclinic to examine his digestive system. A medical 

worker, using a special probe or ultrasound device, measures necessary medical indicators 

and records them in a medical report. Obtained in a such way medical data are usually 

persisted in some database for possible using in future. Therefore, storing medical data is 

achieved through the use of various database systems. 

All biologically active processes in a human organism are related with producing of 

various signal – electromagnetic, sonic, and mechanical. Mentioned above medical 

indicators of the human condition can be considered as signals (for example, growth, body 

weight, composition of blood and other biological fluids). Any objective or subjective sign 

of a disease is also a signal (e.g. patient complaints, fever, jaundice, results of physical 

survey) [11]. 

Some changes of properties of the latter can occur, as a result of interaction of 

biological signals, generated by the human body, with physical bodies (detectors). These 

changes are then registered by special medical devices as signals. In computer science such 

registered signals are known as medical data [11]. 

The information contained in medical data is extremely important for solving 

diagnostic, therapeutic, statistical, administrative and other tasks in the field of medicine, 

e.g. determination of a correct treatment, definition of a patient's group of risk and prevention 

of diseases. Solving of these tasks has a huge impact on a quality of medical services, life 

expectancy, mortality and time of illnesses of population. 

In the field of medicine, both numeric (continuous) and nominal (linguistic) types of 

data are used. The numeric data type is used for representing value of a continuous medical 

indicator, e.g. age of a patient, body mass index, resting blood pressure, albumin and 

globulin ratio. Variables of the nominal data type usually keep a name of some state of a 

categorical medical indicator, e.g. a patient's appetite can be good or poor, a tumor can be 

malignant or benign. In medical data analysis obtaining a continuous value is often not 

enough informative to make a conclusion about patient's state for determining necessary 
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treatment, so the medical worker has to associate this value with an appropriate nominal 

value. This is a typical situation when clustering of medical data, that results in 

transformation from numeric into linguistic values, comes into play. 

The main problem of medical data analysis is providing a decision support system 

for medical predictions, that would be efficient in determining of disease diagnosis and 

following treatment of a patient. Nowadays, the most promising methods of solving the 

mentioned problem are fuzzy logic, neural network, and machine learning algorithms [12]. 

All of them are based on clustering, that has become probably the most widely used data 

mining technique for medical data [13]. 

Numerous specific examples of the use of clustering in medical data analysis can be 

found in the literature. For example, clustering is used for identifying groups of genes that 

have similar biological functions, cancer class discovery and prediction, characterizing of 

psychiatric patients on the basis of clusters of symptoms, identifying medical patient groups 

that need specific targeted interventions, analyzing various signals and their relationships 

with particular diseases or symptoms [13, 14]. 

Medical data often contains confidential information relating to patients. The use of 

this information is governed by regulations, such as the EU Data Protection Directive (in the 

EU) or the 1996 Health Insurance Portability and Accountability Act (HIPAA) (in the United 

States). Therefore, before starting analysis, the data must be transformed so that the patient's 

personal information is not individually identifiable, that is, record should not contain 

sufficient data to identify the person associated with the record. Thus, cluster analysis is 

allowed only on the following types of medical data: anonymous data (data collected without 

patient-identification information), anonymized data (data collected with patient-

identification information which is removed later), or de-identified data (data with patient-

identification information encoded or encrypted) [13]. 
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1.3. Fuzzy clustering 

Initially, the cluster analysis was based on the classical set theory and implied an 

unambiguous separation of the entire data set into mutually exclusive clusters. It means that 

each object has a clearly defined membership in one and only one of the clusters based on a 

certain similarity or dissimilarity measure (discussed earlier in Section 1.1.3) [15]. But in 

practice in many cases an object can belong to several strictly defined clusters. For example, 

consider a set of two-dimensional patterns that contains three clusters (see Figure 1.5). 

 

 

 

Figure 1.5. A set of two-dimensional patterns, that contains three clusters. The patterns, 

which can belong to more than one cluster are pointed to by the arrows [10]. 

 

 

As can be seen in Figure 1.5, although most patterns have an obvious belonging to 

only one of the clusters, two of them are on the boundary between two clusters and thus can 

be assigned to any of them. Such situations occur quite often while processing real data. The 

possible reason for this can be noise or lack of discriminatory power of the feature space, in 

which the patterns are represented [10]. 

Understanding of the described problem was a driving force for theoretical research 

in the field of clustering and eventually has led to the formalization of two main branches of 

cluster analysis: hard clustering and fuzzy clustering (see Figure 1.6). 
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Figure 1.6. Classification of approaches for cluster analysis 

 

 

Hard clustering (also crisp clustering) is a type of cluster analysis, that requires 

belonging of an object to one and only one cluster. It represents the classic approach that 

was described at the beginning of this section. 

Mathematically, the result of hard clustering can be represented by a k × n matrix, 

that is called a hard 𝑘-partition of the data set 𝐷 [4]: 

 

𝑈 = (𝑢11 𝑢12 ⋯ 𝑢1𝑛𝑢21 𝑢22 ⋯ 𝑢2𝑛⋮ ⋮ ⋱ ⋮𝑢𝑘2 𝑢𝑘2 ⋯ 𝑢𝑘𝑛), (1.21) 

 

where 𝑛 denotes the number of patterns in the data set 𝐷, 𝑘 denotes the number of clusters, 

and 𝑢𝑗𝑖 satisfies 

 𝑢𝑗𝑖 = {0, 1},   1 ≤ 𝑗 ≤ 𝑘,   1 ≤ 𝑖 ≤ 𝑛, 
∑𝑢𝑗𝑖𝑘
𝑗=1 = 1,   1 ≤ 𝑖 ≤ 𝑛, 
∑𝑢𝑗𝑖𝑛
𝑖=1 > 0,   1 ≤ 𝑗 ≤ 𝑘. 

 

Fuzzy clustering (or soft clustering) is a type of cluster analysis, that implies 

belonging of an object to several clusters simultaneously, with different degrees of 

membership between 0 and 1 indicating their partial memberships [15]. 

Cluster analysis 

Hard clustering Fuzzy clustering 
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The result of fuzzy clustering can be also represented by a 𝑘 × 𝑛 matrix, that is called 

a fuzzy 𝑘-partition of the data set 𝐷 [4]: 

 

𝛭 = (𝜇11 𝜇12 ⋯ 𝜇1𝑛𝜇21 𝜇22 ⋯ 𝜇2𝑛⋮ ⋮ ⋱ ⋮𝜇𝑘2 𝜇𝑘2 ⋯ 𝜇𝑘𝑛), (1.22) 

 

where 𝑛 denotes the number of patterns in the data set 𝐷, 𝑘 denotes the number of clusters, 

and 𝜇𝑗𝑖 denotes the degree of membership and satisfies 

 𝜇𝑗𝑖 = [0, 1],   1 ≤ 𝑗 ≤ 𝑘,   1 ≤ 𝑖 ≤ 𝑛, 
∑𝜇𝑗𝑖𝑘
𝑗=1 = 1,   1 ≤ 𝑖 ≤ 𝑛, 
∑𝜇𝑗𝑖𝑛
𝑖=1 > 0,   1 ≤ 𝑗 ≤ 𝑘. 

 

Formulas (1.21)-(1.22) tell us only how to interpret the result of clustering, but we 

also need a mathematical description of clustering as a process. Clustering of a given data 

set 𝐷 can be represented by an assignment function 𝑓: 𝐷 → [0, 1]𝑘, 𝐱 → 𝑓(𝐱), defined as 

follows: 

 

𝑓(𝑥) = (𝑓1(𝐱)𝑓2(𝐱)⋮𝑓𝑘(𝐱)), (1.23) 

 

where 𝑓𝑖(𝐱) ∈ [0, 1] for 𝑖 = 1, 2, . . . , 𝑘 and 𝐱 ∈ 𝐷, and 

 

∑𝑓𝑖(𝑥)𝑘
𝑖=1 = 1   ∀𝐱 ∈ 𝐷. 

 

If for every 𝐱 ∈ 𝐷, 𝑓𝑖(𝐱) ∈ {0, 1}, then the clustering that is represented by 𝑓 is a hard 

clustering; otherwise, it is a fuzzy clustering [4]. 
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It should be noted that in the context of medical data even small deviations in the 

values of variables can be very important. Therefore, the threshold of sensitivity to the values 

deviations in the medical data analysis system should be as low as possible. For this reason, 

fuzzy clustering is preferable than hard clustering, due to the presence of membership degree 

of a pattern. Further in this diploma thesis we will focuses on fuzzy clustering. 
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CHAPTER 2. CLUSTERING ALGORITHMS 

2.1. Fundamentals of clustering algorithms 

In the previous chapter the goal of clustering was discussed in the context of 

partitioning a data set. Achieving of this goal is realized through a clustering algorithm – a 

process that usually consists of four sequential phases: data representation, constructing a 

criterion function, partitioning and assessment of output (Figure 2.1). 

 

 

 

Figure 2.1. Phases of a clustering algorithm 

 

 

During the data representation phase, information about the data set is clarified: 

number of initial patterns, data type, scale of data, and, optionally, number of classes or 

structure of clusters. This phase can involve either or both of feature selection and feature 

extraction to obtain an appropriate set of features. The feature selection is the process of 

identifying the most effective subset of the original features to use in clustering. The feature 

extraction is the use of one or more transformations of the input features to produce new 

salient features [5]. 

The constructing a criterion function phase is based on determining an appropriate 

similarity or dissimilarity measure for each attribute. The similarity (dissimilarity) measure 

Data representation 

Constructing a criterion 
function 

Partitioning 

Assessment of output 
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must be connected to the clustering algorithm either explicitly or implicitly. For the 

determined similarity measure clustering process can be understood as an optimization 

problem with a specific criterion function [6]. The criterion function determines a clustering 

quality (see Figure 2.2). 

 

 

 

Figure 2.2. Criterion function impact on a clustering quality 

 

 

During the partitioning phase the initial data set is partitioned into clusters. Each 

clustering algorithm defines its own way for performing partitioning. This way depends on 

a criterion function, constructed in the previous phase. In this phase the most of calculation, 

related to a clustering algorithm, is performed. 

The assessment of output phase is the most important in a clustering algorithm, 

because in this phase an assessment of achieving a clustering goal and clustering accuracy 

is performed. The accuracy of clustering is usually assessed through the calculation of 

optimality criterions, or simply by comparing obtained clusters with classes of the data set, 

if they are known. 

In the literature of cluster analysis, a plenty of optimality criterions, that are also 

called cluster validity indices, can be found. Some of them are listed in the Table 2.1. 

 

 

 

 

 

Good clustering Bad clustering 
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Table 2.1. Optimality criterions of fuzzy clustering (Cluster Validity Indices) 

Name Formula Description 

Partition 
coefficient 
index (𝐼𝑃𝐶) [16] 

𝐼𝑃𝐶 = 1𝑛∑∑𝜇𝑗𝑖𝑚𝑛
𝑖=1

𝑘
𝑗=1  

 
where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The index value is in the 

range [1𝑘 , 1]. 
The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝑃𝐶(𝑘∗) = max2≤𝑘≤𝑛−1 𝐼𝑃𝐶(𝑘). 

Partition 
entropy index 
(𝐼𝑃𝐸) [17] 

𝐼𝑃𝐸 = −1𝑛∑∑𝜇𝑗𝑖 log𝑎(𝜇𝑗𝑖)𝑛
𝑖=1

𝑘
𝑗=1  

 
where 𝑎 – the base of the logarithm; 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The index value is in the 
range [0, log𝑎 𝑘].  
The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝑃𝐸(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝑃𝐸(𝑘). 

Fukuyama-
Sugeno index 
(𝐼𝐹𝑆) [18] 

𝐼𝐹𝑆 =∑∑𝜇𝑗𝑖𝑚 (‖𝐱𝑖 − 𝐳𝑗‖2 − ‖𝐳𝑗 − 𝐳‖2)𝑛
𝑖=1

𝑘
𝑗=1  

 
where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳 – the mean of the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝐹𝑆(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝑆(𝑘) 

Xie-Beni index 
(𝐼𝑋𝐵) [5, 19] 𝐼𝑋𝐵 = ∑ ∑ 𝜇𝑗𝑖𝑚‖𝐱𝑖 − 𝐳𝑗‖2𝑛𝑖=1𝑘𝑗=1𝑛 ⋅min 𝑞≠𝑗 ‖𝐳𝑞 − 𝐳𝑗‖2  

 
where 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝑚 – the fuzzifier; 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝑋𝐵(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝑋𝐵(𝑘) 

  (continued) 

   

   

   



FRI  DIPLOMOVÁ PRÁCA 

33 

Name Formula Description 

PBMF index 
(𝐼𝑃𝐵𝑀𝐹) [20, 
21] 

𝐼𝑃𝐵𝑀𝐹 = (1𝑘 × 𝐸̃𝐸𝑘 × 𝐷𝑘)2 

 
where 𝐸𝑘 = ∑ ∑ 𝜇𝑗𝑖𝑑(𝐱𝑖, 𝐳𝑗)𝑛𝑖=1𝑘𝑗=1 ; 𝐸̃ = ∑ 𝑑(𝐱𝑖 , 𝐳)𝑛𝑖=1 ; 𝐷𝑘 = max1≤𝑖<𝑗≤𝑘 𝑑(𝐳𝑖, 𝐳𝑗); 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳 – the mean of the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝑃𝐵𝑀𝐹(𝑘∗) =max2≤𝑘≤𝑛−1 𝐼𝑃𝐵𝑀𝐹(𝑘). 

Fuzzy hyper 
volume index 
(𝐼𝐹𝐻𝑉) [5] 

𝐼𝐹𝐻𝑉 =∑√𝑑𝑒𝑡(𝐹𝑗)𝑘
𝑗=1  

 
where 𝐹𝑗 = ∑ 𝜇𝑗𝑖𝑚(𝐱𝑖−𝐳𝑗)(𝐱𝑖−𝐳𝑗)𝑇𝑛𝑖=1 ∑ 𝜇𝑗𝑖𝑚𝑛𝑖=1  is the fuzzy 

covariance matrix of the 𝑗-th cluster; 𝜇𝑗𝑖 – the membership degree, see (1.22); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗 – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number of clusters. 

The optimal number of 
clusters 𝑘∗ is calculated as 𝐼𝐹𝐻𝑉(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐻𝑉(𝑘) 

 

 

Most of clustering algorithms define different approach to assessment of their output, 

which can be based on the calculation of some cluster validity index as well as a combination 

of several indices. 

In the next sections we will make an overview of some existing clustering algorithms. 

Section 2.2 is dedicated to classical fuzzy clustering algorithms, the history of which was 

started with publication of a Fuzzy c-Means Clustering algorithm by Bezdek in 1981 (see 

Section 2.2.1). This algorithm has a variety of improvements and modifications for different 

fields of study, but we will consider only the two most well-known of them: a Gustafson-

Kessel algorithm (Section 2.2.2) and a Gath-Geva clustering algorithm (Section 2.2.3). The 

significant limitation of all classical fuzzy clustering algorithms from the Fuzzy c-Means 

family is that they all assume the number of clustering to be previously known. In the Section 

2.2.4 we propose a way of elimination of this limitation. 
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In Section 2.3 a Multi-Interval Discretization algorithm is described. It was originally 

proposed for performing a hard clustering, but a way to extend it to fuzzy clustering and 

author of this thesis describes it at the end of the Section. 

A Fuzzy Entropy Based Fuzzy Classifier algorithm, described in Section 2.4, is 

promising, but it has some significant drawbacks, that should be eliminated. Author of this 

work proposes a way of eliminating mentioned drawbacks which are mentioned in 

Section 2.5. 

 

 

 

 

2.2. Classical fuzzy clustering algorithms 

2.2.1. Fuzzy c-Means Clustering 

The Fuzzy c-Means (FCM) clustering algorithm was proposed by Bezdek [22] and 

can be considered as a generalization of ISODATA [23]. In this algorithm the number of 

clusters 𝑘, into which the initial data set is partitioned, assumed to be known. The goal of 

the FCM is to find an optimal fuzzy 𝑘-partition of the data set (1.22). For achieving this goal, 

the cost function is defined: 

 

𝐽𝐹𝐶𝑀 =∑∑ 𝜇𝑗𝑖𝑚‖𝐱𝑖 − 𝐳𝑗‖2𝑛
𝑖=1

𝑘
𝑗=1  (2.1) 

 

where 𝜇𝑗𝑖 – the membership degree; 𝑚 ∈ [1,∞) – the fuzzifier, that is usually set to 2 (lager 

values of the fuzzifier favors fuzzier clusters); 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗  – the mean of the 𝑗-th cluster; 𝑛 – the number of patterns in the data set; 𝑘 – the number 

of clusters. 

The means of clusters and the membership degrees are iteratively updated until the 

cost function reaches its local minimum. Then the fuzzy 𝑘-partition of the data set is 

considered optimal. 
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The FCM algorithm determines following steps [6]: 

Step 1. Set appropriate values for 𝑘, 𝑚 > 1, 𝜀 > 0 (a threshold) and variable 𝑡 ≔ 0. 

Randomly initialize the cluster mean matrix 𝑍 = [𝐳1, 𝐳2, … , 𝐳𝑘]. 
Step 2. Recalculate the membership degrees (elements of the fuzzy 𝑘-partition 

matrix 𝛭) for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛: 

𝜇𝑗𝑖(𝑡+1) = {  
  1 (∑(‖𝐱𝑖 − 𝐳𝑗‖‖𝐱𝑖 − 𝐳𝑞‖)2 (𝑚−1)⁄𝑘

𝑞=1 )⁄ , 𝑖𝑓 𝐸𝑖 = ∅1 |𝐸𝑖|⁄ , 𝑖𝑓 𝐸𝑖 ≠ ∅, 𝑗 ∈ 𝐸𝑖0, 𝑖𝑓 𝐸𝑖 ≠ ∅, 𝑗 ∉ 𝐸𝑖
 

where 𝐸𝑖 = {𝑗|𝑗 ∈ [1, 𝑘], 𝐱𝑖 = 𝐳𝑗}. 
Step 3. Update the cluster mean matrix 𝑍 for 𝑗 = 1,2, . . . , 𝑘: 𝐳𝑗(𝑡+1) = (∑  (𝜇𝑗𝑖(𝑡+1))𝑚 𝐱𝑖𝑛

𝑖=1 ) (∑(𝜇𝑗𝑖(𝑡+1))𝑚𝑛
𝑖=1 )⁄  

Step 4. If ‖𝑍(𝑡+1) − 𝑍(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1 and go to Step 2. Otherwise, the 

fuzzy 𝑘-partition 𝛭(𝑡) is optimal. 

The FCM algorithm has several significant drawbacks: convergence to an optimal 

solution is not ensured because the cluster mean matrix is initialized randomly [12]; 

sensitivity to noise and outliers that are forced into a cluster and used to calculate the cluster 

mean matrix [6]; the algorithm does not suppose a looking for the optimal number of clusters, 

moreover, the number of clusters must be previously known. 

 

 

2.2.2. Gustafson-Kessel Clustering Algorithm 

The Gustafson-Kessel (GK) clustering algorithm was proposed as an extension to the 

standard fuzzy c-means algorithm [24]. The algorithm is based on an adaptive distance 

measure, which makes possible a detection of clusters. It represented by different 

geometrical shapes. Detection of such clusters in one data set is not possible in the standard 

FCM, as it has predefined fixed topological structure and searches for clusters of only that 

shape in the data set. To provide an adaptive distance measure, in the GK algorithm the 

following inner-product norm is defined as [5]: 
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𝐷𝐺𝐾𝑗𝑖2 = (𝐱𝑖 − 𝐳𝑗)𝑇𝐴𝑗(𝐱𝑖 − 𝐳𝑗),   1 ≤ 𝑗 ≤ 𝑘,   1 ≤ 𝑖 ≤ 𝑛, (2.2) 

 

where 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗  – the mean of the 𝑗-th cluster; 𝑛 – the 

number of patterns in the data set; 𝑘 – the number of clusters; 𝐴𝑗 – the norm-inducing matrix 

of the 𝑗-th cluster, calculated as 

 𝐴𝑗 = [𝜌𝑗𝑑𝑒𝑡(𝐹𝑗)]1 𝑛⁄ 𝐹𝑗−1, (2.3) 

 

where 𝜌𝑗 – the volume of the 𝑗-th cluster; 𝐹𝑗 – the fuzzy covariance matrix of the 𝑗-th cluster, 

defined as: 

 

𝐹𝑗 = ∑ 𝜇𝑗𝑖𝑚(𝐱𝑖 − 𝐳𝑗)(𝐱𝑖 − 𝐳𝑗)𝑇𝑛𝑖=1 ∑ 𝜇𝑗𝑖𝑚𝑛𝑖=1  (2.4) 

 

where 𝜇𝑗𝑖 – the membership degree; 𝑚 ∈ [1,∞) – the fuzzifier (also called the weighting 

exponent), that is usually set to 2. 

The cost function for the GK algorithm is similar as for the FCM except replacing a 

simple distance measure with the inner-product norm: 

 

𝐽𝐺𝐾 =∑∑ 𝜇𝑗𝑖𝑚𝐷𝐺𝐾𝑗𝑖2𝑛
𝑖=1

𝑘
𝑗=1  (2.5) 

 

The GK algorithm determines following steps [5]: 

Step 1. Set appropriate values for the number of clusters 2 ≤ 𝑘 ≤ 𝑛 − 1, the 

weighting exponent 𝑚 > 1, the threshold 𝜀 > 0 and variable 𝑡 ≔ 0. 

Randomly initialize the fuzzy 𝑘-partition (also called the partition matrix) 𝛭(𝑡) = [𝜇𝑗𝑖(𝑡)] for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛 satisfying the conditions 

for (1.22). 

Step 2. Calculate the cluster mean matrix 𝑍(𝑡+1) = [𝐳1(𝑡+1), 𝐳2(𝑡+1), … , 𝐳𝑘(𝑡+1)]: 𝐳𝑗(𝑡+1) = (∑  (𝜇𝑗𝑖(𝑡))𝑚 𝐱𝑖𝑛
𝑖=1 ) (∑(𝜇𝑗𝑖(𝑡))𝑚𝑛

𝑖=1 )⁄ , 1 ≤  𝑗 ≤ 𝑘. 
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Step 3. Compute the cluster covariance matrices 𝐹𝑗(𝑡+1) for 𝑗 = 1,2, . . . , 𝑘: 

𝐹𝑗(𝑡+1) = ∑ (𝜇𝑗𝑖(𝑡))𝑚 (𝐱𝑖 − 𝐳𝑗(𝑡+1))(𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇𝑛𝑖=1 ∑ (𝜇𝑗𝑖(𝑡))𝑚𝑛𝑖=1  

Step 4. Compute the inner-product norms for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛: (𝐷𝐺𝐾𝑗𝑖(𝑡+1))2 = (𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇 [𝜌𝑗𝑑𝑒𝑡(𝐹𝑗(𝑡+1))]1 𝑛⁄ (𝐹𝑗(𝑡+1))−1(𝐱𝑖 − 𝐳𝑗(𝑡+1)). 
Step 5. Calculate the updated partition matrix 𝛭(𝑡+1): 

𝜇𝑗𝑖(𝑡+1) = 1 (∑(𝐷𝐺𝐾𝑗𝑖(𝑡+1)𝐷𝐺𝐾𝑞𝑖(𝑡+1))
2 (𝑚−1)⁄𝑘

𝑞=1 )⁄ ,    1 ≤  𝑗 ≤ 𝑘,    1 ≤ 𝑖 ≤ 𝑛. 
Step 6. If ‖𝛭(𝑡+1) −𝛭(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1, 𝛭(𝑡) ≔ 𝛭(𝑡+1) and go to Step 

2. Otherwise, the partition matrix 𝛭(𝑡) is optimal. 

 

In general, the GK algorithm has the same drawbacks as the FCM, except the 

sensitivity to noise and outliers, which is less in the GK thanks to the adaptive distance 

measure. 

 

 

2.2.3. Gath-Geva Clustering Algorithm 

The Gath-Geva (GG) clustering algorithm, also known as the fuzzy maximum 

likelihood estimation (FMLE) algorithm, was proposed as an extension to the Gustafson-

Kessel clustering algorithm [25]. Like the GK algorithm, the GG algorithm is based on an 

adaptive distance measure, but, instead of the inner-product norm, the distance norm, based 

on the fuzzy maximum likelihood estimates, is used [5]: 

 

𝐷𝐺𝐺𝑗𝑖2 = (2𝜋)(𝑛2)√𝑑𝑒𝑡(𝐹𝑗)𝛼𝑗 ∙ 𝑒(12(𝐱𝑖−𝐳𝑗)𝑇𝐹𝑗−1(𝐱𝑖−𝐳𝑗)),   1 ≤ 𝑗 ≤ 𝑘,   1 ≤ 𝑖 ≤ 𝑛 (2.6) 

 

where 𝐱𝑖 – the 𝑖-th pattern from the initial data set; 𝐳𝑗  – the mean of the 𝑗-th cluster; 𝑛 – the 

number of patterns in the data set; 𝑘 – the number of clusters; 𝐹𝑗 – the fuzzy covariance 

matrix of the 𝑗-th cluster; 𝛼𝑗 – the prior probability of selecting the 𝑗-th cluster, defined as: 
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 𝛼𝑗 = 1𝑛∑𝜇𝑗𝑖𝑛
𝑖=1  (2.7) 

 

where 𝜇𝑗𝑖 – the membership degree. 

 

The Gath–Geva clustering algorithm determines following steps [5]: 

Step 1. Set appropriate values for the number of clusters 2 ≤ 𝑘 ≤ 𝑛 − 1, the 

weighting exponent 𝑚 > 1, the threshold 𝜀 > 0 and variable 𝑡 ≔ 0. 

Randomly initialize the fuzzy 𝑘-partition (also called the partition matrix) 𝛭(𝑡) = [𝜇𝑗𝑖(𝑡)] for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛 satisfying the conditions 

for (1.22). 

Step 2. Calculate the cluster mean matrix 𝑍(𝑡+1) = [𝐳1(𝑡+1), 𝐳2(𝑡+1), … , 𝐳𝑘(𝑡+1)]: 
𝐳𝑗(𝑡+1) = (∑  (𝜇𝑗𝑖(𝑡))𝑚 𝐱𝑖𝑛

𝑖=1 ) (∑(𝜇𝑗𝑖(𝑡))𝑚𝑛
𝑖=1 )⁄ , 1 ≤  𝑗 ≤ 𝑘. 

Step 3. Compute the cluster covariance matrices 𝐹𝑗(𝑡+1) for 𝑗 = 1,2, . . . , 𝑘: 

𝐹𝑗(𝑡+1) = ∑ (𝜇𝑗𝑖(𝑡))𝑚 (𝐱𝑖 − 𝐳𝑗(𝑡+1))(𝐱𝑖 − 𝐳𝑗(𝑡+1))𝑇𝑛𝑖=1 ∑ (𝜇𝑗𝑖(𝑡))𝑚𝑛𝑖=1  

 

Step 4. Compute the distance norm for 𝑗 = 1,2, . . . , 𝑘 and 𝑖 = 1,2, . . . , 𝑛: 

(𝐷𝐺𝐺𝑗𝑖(𝑡+1))2 = (2𝜋)(𝑛2)√𝑑𝑒𝑡 (𝐹𝑗(𝑡+1))𝛼𝑗(𝑡) ∙ 𝑒(12(𝐱𝑖−𝐳𝑗(𝑡+1))𝑇(𝐹𝑗(𝑡+1))−1(𝐱𝑖−𝐳𝑗(𝑡+1))) 

where 𝛼𝑗(𝑡) = 1𝑛∑ 𝜇𝑗𝑖(𝑡)𝑛𝑖=1 . 

Step 5. Calculate the updated partition matrix 𝛭(𝑡+1): 
𝜇𝑗𝑖(𝑡+1) = 1 (∑(𝐷𝐺𝐺𝑗𝑖(𝑡+1)𝐷𝐺𝐺𝑞𝑖(𝑡+1))

2 (𝑚−1)⁄𝑘
𝑞=1 )⁄ ,    1 ≤  𝑗 ≤ 𝑘,    1 ≤ 𝑖 ≤ 𝑛. 

Step 6. If ‖𝛭(𝑡+1) −𝛭(𝑡)‖ ≥ 𝜀 then put 𝑡 ≔ 𝑡 + 1, 𝛭(𝑡) ≔ 𝛭(𝑡+1) and go to Step 

2. Otherwise, the partition matrix 𝛭(𝑡) is optimal. 

 



FRI  DIPLOMOVÁ PRÁCA 

39 

The GG algorithm can detect clusters of varying shapes, sizes and densities. This is 

because the cluster volumes are not predefined, and the cluster covariance matrix is used in 

conjunction with a distance norm, that involves an exponential term. The main drawback of 

the clustering algorithm is following: it converges to a near local optimum because of the 

exponential distance norm, thus the result of clustering depends on the initialization 

method [5]. 

 

 

2.2.4. Determining the optimal number of clusters 

As were mentioned above, the significant limitation of all classical fuzzy clustering 

algorithms from the Fuzzy c-Means family is that they all assume the number of clustering 

to be previously known. But in most cases, we do not know this information when we get a 

data set. Therefore, the good idea is to determine the optimal number of clusters during the 

clustering process by selecting one among the set of possible numbers of clusters. Such 

functionality can be provided by employing some cluster validity index to a clustering 

algorithm. 

Several well-known CVIs are listed above in the Table 2.1. In addition to them, very 

promising is the Pairing Frequency cluster validity index (𝐼𝑃𝐹), proposed by Hongyan Cui, 

Kuo Zhang et al. [26]. The index is based on the analysis of a pairing frequency – the 

phenomenon, when a pair of patterns in the initial datasets always belongs to the same cluster 

regardless of the number of clusters. Let us describe the procedure of calculating 𝐼𝑃𝐹, 

proposed in [26], in more details. At first, we need to obtain a fuzzy 𝑘-partition of the initial 

data set of 𝑛 patterns (see Formula 1.22): 

 𝛭 = [𝜇𝑗𝑖],     1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛 (2.8) 

 

The value of 𝑗 when 𝜇𝑗𝑖 reaches its maximum for the 𝑖-th pattern is assigned as 𝑝𝑖. 
For any pair of patterns 𝐱𝑠, 𝐱𝑡 (1 ≤ 𝑠, 𝑡 ≤ 𝑛), if 𝑝𝑠 = 𝑝𝑡 = 𝑐, then both 𝐱𝑠 and 𝐱𝑡 belongs to 

the same cluster 𝑐. 

At second, we define a pattern matrix 𝐹𝑘 for 𝑘 clusters: 
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𝐹𝑘 = [𝑓11 𝑓12 ⋯ 𝑓1𝑛𝑓21 𝑓22 ⋯ 𝑓2𝑛⋮ ⋮ ⋮ ⋮𝑓𝑛1 𝑓𝑛2 ⋯ 𝑓𝑛𝑛] (2.9) 

 

An element 𝑓𝑠𝑡 of the pattern matrix 𝐹𝑘 indicates a degree of belonging of 𝐱𝑠 and 𝐱𝑡 
patterns to the same cluster or different clusters: 

 

𝑓𝑠𝑡 = {1 − 𝑘𝑘 − 1 × |max𝛍𝑠 −max𝛍𝑡|             𝑖𝑓  𝑝𝑠 = 𝑝𝑡− 𝑘2𝑘 − 2 × |max𝛍𝑠 +max𝛍𝑡 − 2𝑘|      𝑖𝑓  𝑝𝑠 ≠ 𝑝𝑡  (2.10) 

 

where max𝛍𝑠 = max{𝜇𝑗𝑠: 1 ≤ 𝑗 ≤ 𝑘}; max𝛍𝑡 = max{𝜇𝑗𝑡: 1 ≤ 𝑗 ≤ 𝑘}. 
In case 0 < 𝑓𝑠𝑡 ≤ 1, most of membership of 𝐱𝑠 and 𝐱𝑡 should be placed in the same 

cluster. The closer the value of 𝑓𝑠𝑡 to 1, the greater the degree of belonging of the patterns 

to the same cluster. In case −1 ≤ 𝑓𝑠𝑡 < 0, least of membership of 𝐱𝑠 and 𝐱𝑡 should be placed 

in the same cluster. The closer the value of 𝑓𝑠𝑡 to −1, the greater the degree of belonging of 

the patterns to different clusters. 

Next, we calculate the final global pairwise pattern matrix 𝑄: 

 

𝑄 = ∑ 𝐹𝑘𝑘𝑢𝑝𝑝𝑒𝑟𝑘=2𝑘𝑢𝑝𝑝𝑒𝑟 − 1 (2.11) 

 

where 𝑘𝑢𝑝𝑝𝑒𝑟 = max(𝑘𝑚𝑎𝑥, ⌊0.5√𝑛⌋), 𝑘𝑚𝑎𝑥 – the maximal number of clusters into which 

the initial data set can be partitioned. 

The matrix 𝑄 indicates a degree of belonging of any two patterns to the same cluster 

or different clusters regardless of the number of clusters. 

Finally, the pairing frequency index 𝐼𝑃𝐹, proposed in [26], is defined as: 

 𝐼𝑃𝐹 = 𝑆(𝑄 ∘ 𝐹𝑘) (2.12) 

 

where ‘∘’ represents the Hadamard product and 𝑆 represents the sum of all elements of 

matrix 𝑄 ∘ 𝐹𝑘. 
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The optimal number of clusters 𝑘∗ is calculated as 

 𝐼𝑃𝐹(𝑘∗) = max2≤𝑘≤𝑘𝑚𝑎𝑥 𝐼𝑃𝐹(𝑘). (2.13) 

 

The considered cluster validity index, based on the pairing frequency, in comparison 

with the most of well-known indices gives more accurate results [26], because of avoiding 

of using compactness-to-separation ratio criteria and using information from several 

clustering processes (2.11) to compute the value of 𝐼𝑃𝐹. 

 

 

 

 

2.3. Multi-Interval Discretization 

The Multi-Interval Discretization (MID) algorithm, proposed by Denis V. Popel [27], 

is based on an information density concept. The author defines a discretization as “a process 

of transforming values of a continuous variable into a finite number of intervals and 

associating with each interval a discrete numerical value”. Obviously, the discretization in 

this context is the same as the clustering. 

The MID algorithm divides the data set into clusters, depending on values of a 

specific attribute of each pattern. A continuous variable, that represents this specific 

attribute, is denoted by 𝑠. It can take values from the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} in the range 𝑇 =[𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], where 𝑛 – the number of patterns represented in the set 𝑆, 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑎𝑥 and ∆𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛. A partition 𝒫 of the set 𝑆 into 𝑘 intervals (clusters) can be defined 

as [27]: 

 

{  
  𝒫 =⋃ 𝒫𝑗𝑘𝑗=1  𝒫𝑗 ≠ ∅    𝑓𝑜𝑟 𝑗 = 1,2, . . . , 𝑘𝑠𝑖 ∉ 𝒫𝑔 𝑖𝑓 𝑠𝑖 ∈ 𝒫𝑗    𝑓𝑜𝑟  𝑗 ≠ 𝑔 (2.14) 

where 𝒫𝑗 = [𝒫𝑗𝑚𝑖𝑛, 𝒫𝑗𝑚𝑎𝑥] is the partition of the 𝑗-th cluster, that can be described by taking 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 into consideration: 
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{  
  𝒫1𝑚𝑖𝑛 = 𝑇𝑚𝑖𝑛𝒫𝑗𝑚𝑖𝑛 > 𝑇𝑚𝑖𝑛    𝑗 = 2,3, . . . , 𝑘 − 1𝒫𝑗𝑚𝑎𝑥 < 𝑇𝑚𝑎𝑥   𝑗 = 2,3, . . . , 𝑘 − 1𝒫𝑗+1𝑚𝑖𝑛 = 𝒫𝑗𝑚𝑎𝑥   𝑗 = 1,2, . . . , 𝑘 − 1𝒫𝑘𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥

 (2.15) 

 

The information measures defined in [27] are represented by the entropy 𝐻(𝑇, 𝑆) and 

the information density 𝐷(𝑇, 𝑆) of the partition 𝒫: 

 

𝐻(𝑇, 𝑆) = −∑𝛿𝑖 ∙ log 𝛿𝑖𝑛
𝑖=0  , (2.16) 

 𝐷(𝑇, 𝑆) = {𝐻(𝑇, 𝑆) log(𝑛 + 1),⁄ 𝑖𝑓 𝑛 > 00, 𝑖𝑓 𝑛 = 0 (2.17) 

 

where 𝛿𝑖 the probabilities, calculated as 

 

𝛿𝑖 = {(𝑠1 − 𝑇𝑚𝑖𝑛) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 0,(𝑠𝑖+1 − 𝑠𝑖) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 1,2, . . . , 𝑛 − 1,(𝑇𝑚𝑎𝑥 − 𝑠𝑛) ∆𝑇⁄ , 𝑖𝑓 𝑖 = 𝑛.  (2.18) 

 

Next, the MID algorithm employs the conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) 
of the partition 𝒫, given by the cut point 𝑇𝑐𝑢𝑡 that splits the partition 𝒫 into two partitions 𝒫1 and 𝒫2: 

 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) = 𝑝1 ∙ 𝐷(𝑇1, 𝑆1) + 𝑝2 ∙ 𝐷(𝑇2, 𝑆2), (2.19) 

 

where 𝐷(𝑇1, 𝑆1) – the information density of the partition 𝒫1; 𝐷(𝑇2, 𝑆2) – the information 

density of the partition 𝒫2; 𝑝1 = (𝑇𝑐𝑢𝑡 − 𝑇𝑚𝑖𝑛) ∆𝑇⁄ ; 𝑝2 = (𝑇𝑚𝑎𝑥 − 𝑇𝑐𝑢𝑡) ∆𝑇⁄ . 

The cut points are determined according to the information density optimization 

criterion: 

 𝑇𝑐𝑢𝑡 = argmax{𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) − 𝐷(𝑇, 𝑆)} (2.20) 

 



FRI  DIPLOMOVÁ PRÁCA 

43 

The MID clustering algorithm starts with the single initial partition 𝒫 and splits it 

recursively. The result of clustering is a set of clusters, boundaries of which are 

unambiguously defined by a set of accepted cut points. 

 

The Multi-Interval Discretization algorithm determines following steps [27]: 

Step 1. Sort all values from the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} in ascending order. Define 

boundaries 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 of the initial partition 𝒫. 

Step 2. Generate a set of possible cut points with a kernel ∆𝑇 100⁄  for the current 

partition 𝒫. Calculate the information density 𝐷(𝑇, 𝑆) according to formula 

(2.17). 

Step 3. Form combinations of partitions 𝒫1 and 𝒫2 for all possible cut points and 

calculate the resulting conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) 
according to (2.19). 

Step 4. Find a potential optimal cut point 𝑇𝑐𝑢𝑡 according to the information density 

optimization criterion, defined in formula (2.20). 

Step 5. If the resulting conditional information density 𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡), calculated for 

potential optimal cut point 𝑇𝑐𝑢𝑡, is greater than the information density 𝐷(𝑇, 𝑆) of the current partition 𝒫, then accept the cut point 𝑇𝑐𝑢𝑡 and continue 

with Step 6. Otherwise, terminate the recursion and go to Step 7. 

Step 6. Execute Steps 2-5 for both 𝒫1 and 𝒫2 recursively. 

Step 7. Sort all cut points, which are boundaries between clusters. Let the number of 

cut points be denoted by 𝑚, then 𝑘∗ = 𝑚 + 1 is the optimal number of 

clusters. 

 

In his paper [27] Popel illustrates the above algorithm with the following example. 

The initial data set to be clustered is  𝑆 = {0.022, 0.376, 0.443, 0.519, 0.598, 0.704, 0.837, 0.841, 0.899, 0.953, 0.954}. 
All values from the set are in the range 𝑇 = [0, 1]. In Figure 2.3 two steps of 

clustering are shown. On the left part of the Figure 2.3 the distributions of the information 

density gain (𝐷(𝑇, 𝑆|𝑇𝑐𝑢𝑡) − 𝐷(𝑇, 𝑆)) for different cut points are depicted. The right part 

illustrates the final cut points 𝑇𝑐𝑢𝑡 = {0.080, 0.807} according to the optimization criterion, 

defined in (2.20) [27]. 
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Figure 2.3. Example of the MID clustering algorithm, given by Popel [27] 

 

 

The main drawback of the algorithm is that a calculation of the kernel ∆𝑇 100⁄  does 

not involve a scale of data, that can lead to inaccurate results. For example, if attribute values 

are in the range [1, 500] our cut point step (the kernel) is (500 − 1) 100⁄ = 4.99, and if the 

optimal cut point equals to 𝑇𝑐𝑢𝑡 = 13, we will not be able to discover it, because the nearest 

considered possible cut points are 10.98 and 15.97. 

Originally the Multi-Interval Discretization algorithm was proposed as a hard-

clustering algorithm, but it can be extended to provide fuzzy clustering through several 

additional computations, described below. 

The MID algorithm returns the optimal set of clusters, defined by their boundaries. 

Let this set of boundaries be denoted by 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘, 𝑏𝑘+1}, where 𝑘 is the number of 

clusters; 𝑏1 = 𝑇𝑚𝑖𝑛; 𝑏𝑘+1 = 𝑇𝑚𝑎𝑥; 𝑏𝑗 ∈ 𝑇𝑐𝑢𝑡 for 𝑗 = 2,3, . . . 𝑘. Next, to be able to compute 

the fuzzy 𝑘-partition, we need to compute a set of cluster centers 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑤} (see 

Figure 2.4), where 𝑘 ≤ 𝑤 ≤ 2𝑘 − 2 is the number of cluster centers. 
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Figure 2.4. The fuzzy membership function with boundaries and centers of clusters 

 

 

Cluster centers are such values, the defines a space, where patterns fully belong to 

some cluster. Many ways for defining cluster centers can be found, but in this diploma thesis 

we propose a one simple method, that allows to compute a set of cluster centers with a 

maximal possible cardinality |𝐶| = 2𝑘 − 2. This approach assumes, that the set can contain 

duplicates 𝑐2𝑙 = 𝑐2𝑙+1 for 1 ≤ 𝑙 ≤ 𝑘 − 2, that is possible if some cluster have only one 

cluster center (for example, a cluster represented by the green chart in Figure 2.4, i.e. the 𝑐4 

value is present in the 𝐶 twice). A cluster center for 1 ≤ 𝑗 ≤ 𝑘 − 1 is defined by: 

 𝑐2𝑗−1 = 𝑏𝑗+1 − ∆𝑟𝑗, 𝑐2𝑗 = 𝑏𝑗+1 + ∆𝑟𝑗 (2.21) 

 

where ∆𝑟𝑗 = min (𝑏𝑗+1−𝑏𝑗2 , 𝑏𝑗+2−𝑏𝑗+12 ). 
The membership function (shown in Figure 2.4) for converting a continuous value of 

the variable 𝑠 to fuzzy values is defined for each of 𝑘 clusters by [28]: 

• for the first (left-most) cluster and for the 𝑘-th (right-most) cluster 

 

𝜇1 = {1, for 𝑥 ≤ 𝑐1𝑐2 − 𝑥𝑐2 − 𝑐1 , for 𝑐1 < 𝑥 ≤ 𝑐20, otherwise  (2.22) 

 

𝜇𝑘 = {0, for 𝑥 < 𝑐2𝑘−3𝑥 − 𝑐2𝑘−3𝑐2𝑘−2 − 𝑐2𝑘−3 , for 𝑐2𝑘−3 ≤ 𝑥 < 𝑐2𝑘−21, otherwise  (2.23) 

 

 

𝑏1 𝑏2 𝑏3 𝑏4 𝑏𝑘  𝑏𝑘+1 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐𝑤−1 𝑐𝑤  
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• for the 𝑞-th cluster, where 𝑞 = 2,3, . . . , 𝑘 − 1 

 

𝜇𝑞 =
{  
  
  0, for 𝑥 ≤ 𝑐2𝑞−3𝑥 − 𝑐2𝑞−3𝑐2𝑞−2 − 𝑐2𝑞−3 , for 𝑐2𝑞−3 < 𝑥 ≤ 𝑐2𝑞−21, for 𝑐2𝑞−2 < 𝑥 ≤ 𝑐2𝑞−1𝑐2𝑞 − 𝑥𝑐2𝑞 − 𝑐2𝑞−1 , for 𝑐2𝑞−1 < 𝑥 ≤ 𝑐2𝑞0, otherwise

 (2.24) 

 

Using the membership function, defined above (2.22) – (2.24), for the initial 𝑆 we 

are able to calculate the fuzzy 𝑘-partition 𝛭 = [𝜇𝑗𝑖], 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛. Thus, with the 

described computation we can force the MID algorithm to make fuzzy clustering. 

 

 

 

 

2.4. Fuzzy Entropy Based Fuzzy Classifier 

The Fuzzy Entropy Based Fuzzy Classifier (FEBFC) algorithm with Feature 

Selection was proposed by Hahn-Ming Lee, Chih-Ming Chen et al. [29]. This algorithm uses 

fuzzy entropy, based on Shannon's entropy, as a criterion of optimality. According to the 

proposed approach, the fuzzy entropy 𝐹𝐸(𝐴̃) is defined on the universal set 𝑋 ={𝑟1, 𝑟2, … , 𝑟𝑛}, where 𝑖 = 1, 2, … , 𝑛, for the elements within an interval (cluster) in a non-

probabilistic way: 

 

𝐹𝐸(𝐴̃) =∑𝐹𝐸𝐶𝑗(𝐴̃)𝑚
𝑗=1 =∑−𝐷𝑗 log2 𝐷𝑗𝑚

𝑗=1  (2.25) 

 

where 𝐴̃ is a fuzzy set defined on an interval of pattern space which contains 𝑘 elements 

(𝑘 < 𝑛); 𝐶1,  𝐶2, … , 𝐶𝑚 represent 𝑚 classes into which the 𝑛 elements are divided; 𝐹𝐸𝐶𝑗(𝐴̃) 
is the fuzzy entropy of the elements of class 𝑗 in an interval, defined as 𝐹𝐸𝐶𝑗(𝐴̃) =−𝐷𝑗 log2 𝐷𝑗; 𝐷𝑗  is the match degree with fuzzy set 𝐴̃ for the elements of class 𝑗 in an interval, 
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where 𝑗 = 1, 2, … ,𝑚, defined as 𝐷𝑗 = ∑ 𝜇𝐴̃(𝑟)𝑟∈𝑆𝐶𝑗(𝑟𝑛)∑ 𝜇𝐴̃(𝑟)𝑟∈𝑋 ; 𝜇𝐴̃(𝑟𝑖) is the mapped membership 

degree of the element 𝑟𝑖 with the fuzzy set 𝐴̃; 𝑆𝐶𝑗(𝑟𝑛) is a set of elements of class 𝑗 on the 

universal set 𝑋 (subset of the universal set 𝑋). 

The fuzzy entropy cluster validity index (𝐼𝐹𝐸), also known as the total fuzzy entropy, 

is defined as a sum of fuzzy entropies of all clusters: 

 

𝐼𝐹𝐸 =∑𝐹𝐸𝑖∗𝑘
𝑖=1  (2.26) 

 

where 𝑘 – the number of clusters; 𝐹𝐸𝑖∗ – the fuzzy entropy of the 𝑖-th cluster, calculated as 

a sum of fuzzy entropies of all fuzzy sets on the 𝑖-th interval. Then the optimal number of 

clusters 𝑘∗ is calculated as 

 𝐼𝐹𝐸(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐸(𝑘) (2.27) 

 

The proposed fuzzy entropy measure [29] satisfies following four De Luca-Termini 

axioms, generalized by Kosko [30]. Therefore, it can be considered as well-defined: 

1) 𝐸(𝐴) = 0 if and only if 𝐴 ∈ 2𝑋 (𝐴 is a nonfuzzy set; 𝐸 is an entropy measure); 

2) 𝐸(𝐴) = 1 if and only if 𝑚𝐴(𝑥𝑖) = 0.5 for all 𝑖 (𝑚𝐴(𝑥𝑖) is a membership degree 

of 𝑥𝑖); 
3) 𝐸(𝐴) ≤ 𝐸(𝐵) if 𝐴 is less fuzzy then 𝐵, i.e., if 𝑚𝐴(𝑥) ≤ 𝑚𝐵(𝑥) when 𝑚𝐵(𝑥) ≤0.5 and 𝑚𝐴(𝑥) ≥ 𝑚𝐵(𝑥) when 𝑚𝐵(𝑥) ≥ 0.5; 

4) 𝐸(𝐴) = 𝐸(𝐴𝑐). 
 

The FEBFC algorithm includes following steps [29]: 

Step 1. Set the initial numbers of intervals (clusters) 𝑘 ≔ 2. 

Step 2. Locate the centers of intervals: 

 2A. Set initial cluster centers 𝑐1, 𝑐2, … 𝑐𝑘. (each cluster has only one cluster 

center in the FEBFC). They can be randomly selected from 𝑥𝑖, 𝑖 = 1,2, … 𝑛, 

or 𝑐𝑞 = 𝑞−1𝑘−1, 𝑞 = 1,2, … 𝑘. 

 2B. Assign a cluster label to each element (the smallest Euclidean distance): 
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|𝑥𝑖 − 𝑐𝑞∗| = min1≤𝑞≤𝑘|𝑥𝑖 − 𝑐𝑞| 
 2C. Recompute the cluster centers. 𝑐𝑞 = ∑ 𝑥𝑖𝑞𝑛𝑞𝑖=1𝑛𝑞  

where 𝑛𝑞 is the total number of patterns 𝑥𝑖𝑞, that belong to 𝑞-th cluster. 

 2D. Compare recomputed cluster centers with previous. If any center was 

changed then go to Step 2B. Otherwise, go to Step 3. 

Step 3. Assign the membership function for each interval according to: 

𝜇1 = {1,          for 𝑥 ≤ 𝑐1𝑐2−𝑥𝑐2−𝑐1 ,   for 𝑐1 < 𝑥 ≤ 𝑐20,          otherwise           𝜇𝑞 = {  
  0,             for 𝑥 ≤ 𝑐𝑞−1𝑥−𝑐𝑞−1𝑐𝑞−𝑐𝑞−1 , for 𝑐𝑞−1 < 𝑥 ≤ 𝑐𝑞𝑐𝑞+1−𝑥𝑐𝑞+1−𝑐𝑞 , for 𝑐𝑞 < 𝑥 ≤ 𝑐𝑞+10,             otherwise  

𝜇𝑘 = {0,              for 𝑥 < 𝑐𝑘−1𝑥−𝑐𝑘−1𝑐𝑘−𝑐𝑘−1 ,   for 𝑐𝑘−1 ≤ 𝑥 < 𝑐𝑘1,              otherwise   

where 𝑞 = 2,3, . . . , 𝑘 − 1. 

Step 4. Compute the index 𝐼𝐹𝐸  for 𝑘 clusters and 𝑘 − 1 clusters. 

Step 5. If 𝐼𝐹𝐸(𝑘) < 𝐼𝐹𝐸(𝑘 − 1), then partition again (𝑘 ≔ 𝑘 + 1) and go to Step 2; 

otherwise, 𝑘 − 1 is the optimal number of clusters. 

 

For illustrating the FEBFC algorithm, we use the following example. Let 𝑋 be a 

distribution of three classes of objects represented by values of some attribute of these 

objects. The distribution divided into three and four intervals is shown in Figure 2.5 (a) and 

(b) respectively as a set of objects △, □ and ○, placed on 𝑥 axis. Position on the axis 

corresponds with a value of the attribute. 
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Figure 2.5. Example of a distribution of 3 classes of objects (△, □ and ○ denote class 1, 

class 2 and class 3 respectively) with corresponding membership functions 

 

 

In the first considered case (Figure 2.5 (a)), the distribution is divided into three 

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2) and [𝑗2;∞). On these intervals fuzzy sets 𝐴̃1, 𝐴̃2 and 𝐴̃3 

are obtained using a membership function. The centers of fuzzy sets are denoted as 𝑐1, 𝑐2, 𝑐3. 

Let us introduce a calculation process of the total fuzzy entropy of the distribution with 

mentioned dividing.  

In the below paragraphs the sequence of steps needed to calculate the fuzzy entropy 

measure of the interval (−∞; 𝑗1) is detailly described. The measure calculation process for 

other intervals is skipped, because the same method is used. 

At first, we find a total membership degree for each class on values of the fuzzy set 𝐴̃1 from the interval: 

• total membership degree of “△” is 0.9; 

• total membership degree of “□” is 1 + 0.58 = 1.58; 

• total membership degree of “○” is 1. 

Then we calculate match degrees: 

• 𝐷△ = 0.9 (0.9 + 1.58 + 1)⁄ = 0.9 3.48⁄ = 0.25862; 

• 𝐷□ = 1.58 3.48⁄ = 0.45402; 

• 𝐷○ = 1 3.48⁄ = 0.28736. 

In the next step we calculate fuzzy entropies of 𝐴̃1 on (−∞; 𝑗1): 

𝑗1 𝑗1 

𝑗1 𝑗1 𝑗2 𝑗3 

𝑗2 𝑗3 

𝑥 

𝑥 

𝑥 

𝑥 

1 1 

0.5 0.5 

0 0 

0.9 

0.58 

0.8 

𝜇(𝑥) 𝜇(𝑥) 

(a) (b) 

0.1 

0.42 
0.38 

0.2 

𝐴̃1 𝐴̃2 𝐴̃3 𝐴̃1 𝐴̃2 𝐴̃4 

𝑐2 𝑐1 𝑐3 𝑐1 𝑐2 𝑐4 

𝑗2 

𝑗2 

𝐴̃3 

𝑐3 
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• 𝐹𝐸△(𝐴̃1) = −0.25862 × log2 0.25862 = 0.50459; 

• 𝐹𝐸□(𝐴̃1) = −0.45402 × log2 0.45402 = 0.51721; 

• 𝐹𝐸○(𝐴̃1) = −0.28736 × log2 0.28736 = 0.51698; 

• 𝐹𝐸1(𝐴̃1) = 𝐹𝐸△(𝐴̃1) + 𝐹𝐸□(𝐴̃1) + 𝐹𝐸○(𝐴̃1) = 1.53878. 

Similarly, the fuzzy entropies of 𝐴̃2 and 𝐴̃3 on (−∞; 𝑗1) are calculated: 

• 𝐹𝐸1(𝐴̃2) = 𝐹𝐸△(𝐴̃2) + 𝐹𝐸□(𝐴̃2) + 𝐹𝐸○(𝐴̃2) = 0.70627; 

• 𝐹𝐸1(𝐴̃3) = 𝐹𝐸△(𝐴̃3) + 𝐹𝐸□(𝐴̃3) + 𝐹𝐸○(𝐴̃3) = 0. 

The fuzzy entropy of the interval (−∞; 𝑗1) equals: 

 𝐹𝐸1∗ = 𝐹𝐸1(𝐴̃1) + 𝐹𝐸1(𝐴̃2) + 𝐹𝐸1(𝐴̃3) = 2.24505. 

Similarly, the fuzzy entropies 𝐹𝐸2∗ and 𝐹𝐸3∗ of the corresponding intervals [𝑗1; 𝑗2) and [𝑗2;∞) can be obtained: 

 𝐹𝐸2∗ = 𝐹𝐸2(𝐴̃1) + 𝐹𝐸2(𝐴̃2) + 𝐹𝐸2(𝐴̃3) = 3.67795; 

 𝐹𝐸3∗ = 𝐹𝐸3(𝐴̃1) + 𝐹𝐸3(𝐴̃2) + 𝐹𝐸3(𝐴̃3) = 0.95096. 

Finally, the total fuzzy entropy of the distribution (a) is calculated in the following 

way: 

 𝐼𝐹𝐸(𝑎) = 𝐹𝐸1∗ + 𝐹𝐸2∗ + 𝐹𝐸3∗ = 2.24505 + 3.67795 + 0.95096 = 6.87396. 

In the second considered case (Figure 2.5 (b)), the distribution is divided into four 

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2), [𝑗2; 𝑗3) and [𝑗3;∞). Using the method, gradually 

described before, we calculate the total fuzzy entropy measure for this case of dividing of 

the distribution: 

 𝐼𝐹𝐸(𝑏) = 1.56636 + 2.30609 + 1.43211 + 0.94244 = 6.247. 

According to obtained results (𝐼𝐹𝐸(𝑏) < 𝐼𝐹𝐸(𝑎)), dividing the distribution into four 

intervals is preferable, that is obvious from the Figure 2.5. 

The proposed clustering algorithm [29] has significant drawback: the cluster validity 

index is calculated as a simple summation of the fuzzy entropy measures of all intervals, into 

which the set is divided. This solution would be perfect if all intervals had equal length and 

quantity of patterns on them. But usually there are several clusters of different size among 

one set. Distances between the patterns are also different. Thus, a simple addition of fuzzy 

entropy values of intervals may lead to inaccurate results. 
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2.5. Fuzzy Information Density Based Fuzzy Classifier 

For eliminating the drawback, described in Section 2.4., the author of this thesis 

proposes to use the information density measure, mentioned in Section 2.3, for estimating of 

classification instead of the fuzzy entropy measure. This approach brings to consideration 

distances between different patterns. Replacing the entropy measure by the fuzzy entropy 

measure in formula (2.17), we obtain the following definition of the fuzzy information 

density 𝐹𝐷𝑞 of the 𝑞-th cluster (𝑞 = 1,2, . . . , 𝑘): 

 𝐹𝐷𝑞 = {𝐹𝐸𝑞 log2(𝑛𝑞 + 1)⁄ , if  𝑛𝑞 > 00, if  𝑛𝑞 = 0 (2.28) 

 

where 𝐹𝐸𝑞 – the fuzzy entropy on the 𝑞-th interval; 𝑛𝑞 – the number of patterns on the 𝑞-th 

interval. 

The fuzzy entropy cluster validity index (𝐼𝐹𝐸) should be then replaced by the fuzzy 

information density cluster validity index (𝐼𝐹𝐷), that is also called the total information 

density, defined as 

 

𝐼𝐹𝐷 =∑𝜔𝑞 × 𝐹𝐷𝑞𝑘
𝑞=1  (2.29) 

 

where 𝐹𝐷𝑞 – the fuzzy information density on the 𝑞-th interval; 𝜔𝑞 = 𝑛𝑞𝑛  is a weight 

coefficient; 𝑛 – the number of patterns in the data set; 𝑛𝑞 – the number of patterns on the 𝑞-

th interval. Then the optimal number of clusters 𝑘∗ is calculated as 

 𝐼𝐹𝐷(𝑘∗) = min2≤𝑘≤𝑛−1 𝐼𝐹𝐷(𝑘) (2.30) 

 

A new clustering algorithm was obtained as a result of applying the proposed 

changes. Author of the thesis has called it a Fuzzy Information Density Based Fuzzy 

Classifier (FIDBFC). 
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The FIDBFC algorithm (modification of [29]) determines following steps: 

Step 1. Set the initial number of clusters (intervals) 𝑘 ≔ 2. 

Step 2. Locate the centers of intervals using following subsequence of steps: 

 2A. Find the initial centers of intervals 𝑐1, 𝑐2, … , 𝑐𝑘 using formula: 𝑐𝑞 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) × 𝑞 − 1𝑘 − 1 , 𝑞 = 1,2, … , 𝑘. 
 2B. Assign each element of the distribution to a corresponding interval with the 

smallest Euclidian distance to the interval center: |𝑥𝑖 − 𝑐𝑞∗| = min1≤𝑞≤𝑘|𝑥𝑖 − 𝑐𝑞| 
where 𝑐𝑞∗ is the closest center to the element 𝑥𝑖. 

 2C. Recompute the cluster centers. 𝑐𝑞 = ∑ 𝑥𝑖𝑞𝑛𝑞𝑖=1𝑛𝑞  

where 𝑛𝑞 is the total number of patterns 𝑥𝑖𝑞, that belong to 𝑞-th cluster. 

 2D. Compare recomputed cluster centers with previous. If any center was 

changed then go to Step 2B. Otherwise, go to Step 3. 

Step 3. Assign the membership function for each interval according to: 

𝜇1 = {1,          for 𝑥 ≤ 𝑐1𝑐2−𝑥𝑐2−𝑐1 ,   for 𝑐1 < 𝑥 ≤ 𝑐20,          otherwise           𝜇𝑞 = {  
  0,             for 𝑥 ≤ 𝑐𝑞−1𝑥−𝑐𝑞−1𝑐𝑞−𝑐𝑞−1 , for 𝑐𝑞−1 < 𝑥 ≤ 𝑐𝑞𝑐𝑞+1−𝑥𝑐𝑞+1−𝑐𝑞 , for 𝑐𝑞 < 𝑥 ≤ 𝑐𝑞+10,             otherwise  

𝜇𝑘 = {0,              for 𝑥 < 𝑐𝑘−1𝑥−𝑐𝑘−1𝑐𝑘−𝑐𝑘−1 ,   for 𝑐𝑘−1 ≤ 𝑥 < 𝑐𝑘1,              otherwise   

where 𝑞 = 2,3, . . . , 𝑘 − 1. 

Step 4. Compute the 𝐼𝐹𝐷(𝑘) for 𝑘 clusters and 𝐼𝐹𝐷(𝑘 − 1) for 𝑘 − 1 clusters 

according to formula (2.29). 

Step 5. If 𝐼𝐹𝐷(𝑘) < 𝐼𝐹𝐷(𝑘 − 1), then partition again (𝑘 ≔ 𝑘 + 1) and go to Step 2; 

otherwise, 𝑘 − 1 is the optimal number of clusters. 

 

For illustrating this approach, the example from Section 2.4 can be used. After 

obtaining the fuzzy entropy value of the interval (−∞; 𝑗1), we are able to calculate the 

information density measure: 
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 𝐹𝐷1 = 𝐹𝐸1∗ log2(𝑘 + 1)⁄ = 2.24505 log2 5⁄ = 0.96689. 

 

The information density measures of the intervals [𝑗1; 𝑗2) and [𝑗2;∞) are calculated 

in a same way: 

 

 𝐹𝐷2 = 𝐹𝐸2∗ log2(𝑘 + 1)⁄ = 3.67795 log2 6⁄ = 1.42283; 

 𝐹𝐷3 = 𝐹𝐸3∗ log2(𝑘 + 1)⁄ = 0.95096 log2 4⁄ = 0.47548. 
 

Finally, according to (2.29) the total fuzzy information density measure of the 

distribution (a) is calculated in the following way: 

 

 𝐼𝐹𝐷(𝑎) = (4 12⁄ ) × 0.96689 + (5 12⁄ ) × 1.42283 + (3 12⁄ ) × 0.47548 = = 1.03401. 

 

In the second considered case (Figure 2.5 (b)), the distribution is divided into four 

intervals, that are (−∞; 𝑗1), [𝑗1; 𝑗2), [𝑗2; 𝑗3) and [𝑗3;∞). Using the same method, as described 

before, the total fuzzy information density measure for this case of dividing of the 

distribution: 

 

 𝐼𝐹𝐷(𝑏) = (3 12⁄ ) × 0.78318 + (4 12⁄ ) × 0.99318 + (2 12⁄ ) × 0.90356 + + (3 12⁄ ) × 0.47122 = 0.79526. 

 

According to obtained results (𝐼𝐹𝐷(𝑏) < 𝐼𝐹𝐷(𝑎)), dividing the distribution into four 

intervals is preferable, like according to the FEBFC algorithm. To approve the advantages 

of FIDBFC algorithm, a comparation of algorithms on medical data will be described in 

Chapter 4. 
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CHAPTER 3. A SOFTWARE TOOL FOR DATA ANALYSIS 

BASED ON CLUSTERING 

3.1. Design of the Fuzzy Clustering Tool 

Achieving the goal of this thesis involves development of a software tool that would 

be able to make transformation of values of any numeric attribute of the medical data set 

into fuzzy values. The main requirement for the tool is the ability of integration into an expert 

system for medical data analysis, in a way that it could be considered as a computational 

component of the system. 

The functional requirements can be summarized in the following list: 

• reading data set from a file; 

• basic analysis of the initial data set; 

• graphical visualization of basic analysis results; 

• fuzzy clustering using algorithms from Chapter 2; 

• importing clustering results from external software; 

• graphical visualization of clustering results; 

• fuzzification of the initial data set depending on clustering results; 

• write fuzzification result to a file. 

 

According to the above list, the most of functionality of the tool is related to fuzzy 

clustering. Therefore, it was decided that the name of the developed tool will be a Fuzzy 

Clustering Tool. 

A Use Case diagram of the Fuzzy Clustering Tool, based on the above list of 

functional requirements, is shown in Figure 3.1. According to the Use Case diagram, a Class 

diagram for the Fuzzy Clustering Tool was designed, that can be found in Appendix 1. Each 

class will be described in detail in the following sections. 
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Figure 3.1. The Use Case diagram of the Fuzzy Clustering Tool. 

 

 

It was decided to separate a GUI from core of application to the tool more flexible 

for changes. It gives a possibility to easily replace the GUI implementation by any other or 

use an application core as an external library in other applications. Thus, the Fuzzy 

Clustering Tool consists of two logical modules, implementation details of which described 

in Sections 3.2 – 3.3: 

• core module: contains business logic of the application, all core functionality 

of the application; represents Model and Controller layers according to MVC 

pattern; 

• GUI module: allows an analyst (a user) to use features of the tool; represents 

View layer according to MVC pattern. 
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3.2. Core module implementation 

The core module was implemented in C++ programming language (ISO/IEC 

14882:2017). Visual Studio 2017 was used as an IDE. Git was used as a version control 

system. 

A structure of a FuzzyClusteringTool “solution” is shown in Figure 3.2. This 

“solution” consists of two projects, representing the logical modules, mentioned in 

Section 3.1.1. The CoreFuzzyClustering project here is an implementation of the core 

module. 

 

 

 

Figure 3.2. A structure of the Fuzzy Clustering Tool implementation as a “solution” 

in Visual Studio 2017. 

 

 

Two external libraries were required for implementing the Fuzzy Clustering Tool: 

one for parsing .xml files and one for logging. A lot of C++ libraries for these purposes can 

be found on the Internet, so few requirements were specified to select appropriate solutions: 

free, open-source, lightweight, easy to use, cross-platform. Depending on mentioned criteria 

a selection was made and following libraries were chosen: tinyxml2 for parsing .xml files 
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and easylogging++ for logging in application. The source code of the mentioned libraries 

was included into the CoreFuzzyClustering project under the libraries directory. 

Describing of the implementation details of the CoreFuzzyClustering project should 

be started from a Solver class (see Figure 3.3). This class provides an access to all 

functionality of the core module and plays a role of Controller according to MVC pattern. 

The Solver class has only one field _dataset, which is a pointer to an object of type Dataset 

(will be described later). The object is created in a default constructor and deleted in a default 

destructor. 

 

 

 

Figure 3.3. A Solver class view. 
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The Solver class contains following methods: 

• readInitialDataset() – reads the data set, described in the .xml file, path to 

which is given as a parameter of the method; 

• makeClustering() – runs a clustering algorithm, defined by the parameter; 

• makeImportClustersDetails() – imports clustering results, obtained from an 

external tool, from .xml file with appropriate structure; 

• makeFuzzification() – runs fuzzification using current values of borders and 

centers of clusters; 

• writeFuzzyDataToFile() – writes fuzzy data set to specified file; 

• isAttrNumeric() – checks if the attribute with given index is numeric; 

• getAttrCount() – gets the total number of attributes; 

• getInputAttrCount() – gets the number of input attributes; 

• getOutputAttrCount() – gets the number of output attributes; 

• getAttrId() – gets an id of the attribute with given index; 

• getAttrMode() – gets a mode (input or output) of the attribute with given index; 

• getAttrType() – gets a type (numeric or nominal) of the attribute with given 

index; 

• getAttrTitle() – gets a title of the attribute with given index; 

• getDatasetName() – gets a name of the data set; 

• getInstancesCount() – gets the number of instances (patterns) in the dataset; 

• getAttrDistinctCount() – gets the number of instances with distinct values of 

attribute; 

• getAttrUniqueCount() – gets the number of instances with unique values of 

attribute; 

• getAttrUniquePerc() – gets the percentage of instances with unique values of 

attribute; 

• getAttrMissingCount() – gets the number of instances with missing values of 

attribute; 

• getAttrMissingPerc() – gets the percentage of instances with missing values of 

attribute; 

• getAttrClustersCount() – gets the number of clusters of the attribute; 

• getAttrBordersInString() – gets a string containing all borders values; 

• getNumericAttrCount() – gets the number of numeric attributes; 

• getNumericAttrMinValue() – gets minimal value of the numeric attribute; 
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• getNumericAttrMaxValue() – gets maximal value of the numeric attribute; 

• getNumericAttrAvgValue() – gets average value of the numeric attribute; 

• getNumericAttrStdDevValue() – gets standard deviation for numeric attribute; 

• getPossibleNominalAttrValuesList() – gets list of possible values of the 

nominal attribute; 

• getNominalAttrCountOfValues() – gets the number of duplicating of specified 

value of the attribute in the data set; 

• getNominalAttrPercOfValues() – gets the percentage of duplicating of 

specified value of the attribute in the data set; 

• getAttrClustersCentersById() – gets list of cluster centers of the attribute. 

 

The Solver class uses three enumerators, shown in Figure 3.4: ClusteringAlgorithm 

enumerates all implemented algorithms in the core module (these algorithms were described 

in Chapter 2); Mode enumerates possible modes of attributes (an attribute can be either input 

or output); Type enumerates possible types of attributes (an attribute can be either numeric 

or nominal). 

 

 

 

Figure 3.4. Enumerators in the core module. 

 

 

The Solver class has an association relationship with a Dataset class, that is shown 

in Appendix 1. The Dataset class represents a data set, analyzed in the Fuzzy Clustering 

Tool. A diagram with the Dataset class description is shown in Figure 3.5. The following 

methods in the Dataset class have the same name as mentioned above methods from the 

Solver class have: readInitialDataset(), isAttrNumeric(), getAttrMode(), getAttrType(), 

getNumericAttrCount(), getInputAttrCount(), getOutputAttrCount(), getDatasetName(), 
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getAttrDistinctCount(), writeFuzzyDataToFile(), getAttrTitle(), getAttrUniqueCount(), 

getAttrUniquePerc(), getAttrMissingCount(), getInstancesCount(), getAttrMissingPerc(), 

getNumericAttrMinValue(), getNumericAttrMaxValue(), getNumericAttrAvgValue(), 

getNumericAttrStdDevValue(), getAttrCount(), getPossibleNominalAttrValuesList(), 

getAttrClustersCount(), getAttrBordersInString(), getNominalAttrCountOfValues(), 

getNominalAttrPercOfValues(). The reason is that these methods are just invoked from the 

Solver class (author of such design tried to separate interfaces from realizations), so their 

functionality is the same and will not be described here again to avoid duplicity. 

 

 

 

Figure 3.5. A Dataset class view. 
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The Dataset class contains following fields: _datasetDescription – a pointer to an 

object of type DatasetDescription, which contains information related to the data set; 

_attributes – a list of pointers to objects of Attribute type, which contain data of a particular 

attribute; _instancesCount – the number of instances (patterns) in the data set. 

The Dataset class also contains following methods: 

• getAttrIndexById() – gets index of the attribute by given id; 

• getAttributeRef() – gets a reference on the attribute with given index; 

• getNumericAttributePtr() – gets a pointer to the NumericAttribute object 

(NumericAttribute class derives from Attribute class) if the attribute with given 

index is numeric, or nullptr otherwise; 

• getFirstOutputNominalAttributePtr() – gets a pointer to the first found in 

_attributes list a NominalAttribute object (NominalAttribute class derives from 

Attribute class), that is also output, or nullptr if no nominal output attribute is 

found. 

 

A DatasetDescription class provides a description for the dataset, represented by the 

Dataset class (see Figure 3.6). It contains following fields: _dsName – a name of the data 

set; _dsSourcePath – full path to the data file, from which the data set is read; 

_inputAttrCount – the number of input attributes; _outputAttrCount – the number of output 

attributes; _totalAttrCount – the total number of attributes in the data set. Also 

DatasetDescription class has one public method readDatasetDescriptionXml(), that reads 

the .xml file with data set description. 

 

 

 

Figure 3.6. A DatasetDescription class view. 
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An Attribute class is an abstract class and represents an attribute of any type. It has 

two protected fields _attributeHeader and _attributeData, which are pointed to 

corresponding objects with information, that describes an attribute. Also the Attribute class 

includes 2 constructors, 1 virtual destructor, 13 defined public methods and 1 pure virtual 

method to avoid instantiating of this class (see Figure 3.7). 

 

 

 

Figure 3.7. An Attribute class view. 

 

 

The methods getId(), getMode(), getType(), getTitlle() and getRequired() of the 

Attribute class are getters for corresponding fields in AttributeHeader class, that are _id, 

_mode, _type, _title and _required, as shown in Figure 3.8. 
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Figure 3.8. An AttributeHeader class view. 

 

 

The Attribute class also has following methods: 

• setFuzzyData() – sets fuzzy data of this attribute for all patterns; 

• getFuzzyRow() – gets fuzzy values of this attribute for given pattern; 

• addAttributeInstanceValue() – adds value of this attribute to the data set; 

• addAttributeFakeInstanceValue() – adds fake value of this attribute to the 

data set (in case missing value in data file); 

• replaceFakeInstances() – replaces fake values with some significant values 

(defined in AttributeData realizations); 

• getDistinctCount() – gets the number of distinct values; 

• getUniqueCount() – gets the number of unique values; 

• getMissingCount() – gets the number of missing values; 

• getClustersCount() – gets the number of clusters (pure virtual method). 

 

The Attribute class is extended by a NumericAttribute class and a 

NominalAttribute class. The NumericAttribute class is shown in Figure 3.9. It has three 

own fields, that are _clusterCount (the number of clusters), _clusterCenterList (the list of 

centers of clusters) and _clusterBorderList (the list of borders of clusters). 
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Figure 3.9. A NumericAttribute class view. 

 

 

The NumericAttribute class also has following own methods: 

• setClustersCount() – sets the number of clusters; 

• setClustersCenters() – sets values of centers of clusters according to given list; 

• setNormalizedCenters() – sets values of centers of clusters according to given 

list of normalized values; 

• setClustersBorders() – sets values of borders of clusters according to given list; 

• setNormalizedBorders() – sets values of borders of clusters according to given 

list of normalized values; 

• normalize() – make normalization of attribute values; 

• getBorderValue() – gets a border value by given index in list; 

• getMinValue() – gets a minimal value of this attribute; 

• getMaxValue() – gets a maximal value of this attribute; 

• getAvgValue() – gets an average value of this attribute; 

• getStdDev() – gets a standard deviation for this attribute; 

• getValue() – gets an attribute value of the pattern with given index; 
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• getNormalizedValue() – gets a normalized attribute value of the pattern with 

given index; 

• getBordersInString() – gets borders of this attribute in string; 

• getClustersBorders() – gets list of borders of clusters; 

• getClustersCenters() – gets list of centers of clusters; 

• getNormalizedData() – gets list of normalized attribute values; 

• getData() – gets list of attribute values; 

• getNormalizedBorders() – gets list of normalized borders of clusters. 

 

The NominalAttribute class is shown in Figure 3.10. It has only one own field 

_possibleValuesList (the list of possible values of a nominal attribute). The 

NominalAttribute class contains following own public methods: 

• computePossibleValuesList() – fills _possibleValuesList container with 

possible values of this nominal attribute; 

• getCountOfValueUsage() – gets the number of repeating of given value among 

all attribute values; 

• getValue() – gets an attribute value of the pattern with given index; 

• getPossibleValuesList() – gets the list of possible values of this attribute. 

 

 

 

Figure 3.10. A NominalAttribute class view. 

 

 

An AttributeData class aggregates all data (including data that were read from data 

file as well as fuzzy data) of an attribute. This class has three protected fields, that are 

_missingCount (the number of missing values of the attribute in the initial data set), 

_fakeValuesIndexes (indices of such missing values, that need to be faked for correct data 
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input) and _attributeFuzzyData (fuzzified data of the attribute). The AttributeData class 

contains following methods: 

• getDistinctCount() – functionality delegated from the method with the same 

name in the Attribute class (pure virtual method); 

• getUniqueCount() – functionality delegated from by the method with the same 

name in the Attribute class (pure virtual method); 

• addAttributeInstanceValue() – functionality delegated from by the method 

with the same name in the Attribute class (pure virtual method); 

• addAttributeFakeInstanceValue() – functionality delegated from by the 

method with the same name in the Attribute class (pure virtual method); 

• replaceFakeInstances() – functionality delegated from by the method with the 

same name in the Attribute class (pure virtual method); 

• getMissingCount() – functionality delegated from by the method with the same 

name in the Attribute class. 

 

The AttributeData class is the base class for an AttributeDataNumeric and an 

AttributeDataNominal classes as shown in Figure 3.11. The AttributeDataNumeric class 

has seven own field, that are _attributeData (list of numeric values of the attribute), 

_normalizedData (list of normalized values of the attribute), _map (map container in which 

the key is an attribute value converted to integer with some accuracy and the value is number 

of repeating of this value in the set), _minValue (minimal value of the attribute), _maxValue 

(maximal value of the attribute), _statSum (sum of all non-missed values of the attribute) 

and _statCount (the number of all non-missed values of the attribute). The 

AttributeDataNumeric class defines getMinValue(), getMaxValue(), getAvgValue(), 

getStdDev() and getValue() methods with delegated functionalities from the methods with 

the same names defined in the NumericAttribute class. In addition, the 

AttributeDataNumeric class defines normalizeData() method, which functionality is 

delegated from the normalize() method of the NumericAttribute class, and overrides virtual 

methods of the base class. 
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Figure 3.11. An AttributeData abstract class with derived classes. 

 

 

The AttributeDataNominal class, that is also shown in Figure 3.11, has two own field, 

that are _attributeData (list of nominal values of the attribute) and _map (map container in 

which the key is a nominal attribute value and the value is number of repeating of this value 

in the set). In addition to overriding virtual methods of the base class, the 

AttributeDataNominal class also defines obtainPossibleValuesList() method, which 

functionality is delegated from the getPossibleValuesList() method of the NominalAttribute 
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class, and getCountOfValueUsage() method, which functionality is delegated from the 

getCountOfValueUsage() method of the NominalAttribute class too. 

The next significant class that should be described in this Section is a Fuzzification 

class, that is responsible for data set fuzzification (see Figure 3.12). It has one field _dataset, 

that is a pointer to the analyzed data set, and following methods: 

• fuzzificateDataset() – forces fuzzification of whole data set; 

• fuzzificateNumericAttribute() – makes fuzzification of a given numeric 

attribute with a possibility of normalizing; 

• fuzzificateNominalAttribute() – makes fuzzification of a given nominal 

attribute. 

 

 

 

Figure 3.12. A Fuzzification class view. 

 

 

A FuzzyClusteringAlgorithm class is a base class for each algorithm implemented 

in the tool (see Figure 3.13). It has one protected field _dataset, which is a pointer to the 

analyzed data set, and one pure virtual method makeClustering(), which runs fuzzy 

clustering algorithm. 

 

 

 

Figure 3.13. A FuzzyClusteringAlgorithm abstract class view. 
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The Fuzzy c-Means algorithm and its modifications Gustafson-Kessel and Gath-

Geva algorithms, which were described in Section 2.2, are implemented in FCM 

GustafsonKesselClustering and GathGevaClustring classes correspondingly (see Figure 

3.14). 

 

 

 

Figure 3.14. Classes, that implement FCM and its modifications. 

 

 

The FCM class has three protected fields, that are _fuzzification (a pointer to object 

Fuzzification to provide the ability of calculating a pattern matrix), _m (a fuzzifier value), 

_e (a threshold – small positive number). The makeClustering() method overrides the pure 

virtual method from the base FuzzyClusteringAlgorithm class. The functionality after 

overriding is following: iterate all possible values of number of clusters, for each of them 

make fuzzy clustering and compute the pairing frequency CVI (see Section 2.2.4) and after 

iterating define the optimal number of clusters. Performing a fuzzy clustering on each 

iteration is done by invoking the makeCoreCalculations() method, which process all steps 
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of an algorithm. Thus, implementation of any modified FCM clustering algorithms requires 

only overriding of this method, that is the reason the GustafsonKesselClustering and the 

GathGevaClustring classes in Figure 3.14 are depicted with only one virtual protected 

method. Mentioned classes also contain additional private methods to make implementation 

of algorithms more readable, but it is not necessary to describe them here, because all their 

functionality can be moved to the makeCoreCalculations() method without any impact on 

functionality or design of the application. 

A MID class, that is shown in Figure3.15, is an implementation of the Multi-Interval 

Discretization algorithm. It has only one own constant static field KERNEL_ACCURACY, 

which equals to the denominator of the kernel relation ∆𝑇 100⁄  (see Section 2.3), and 

overrides the makeClustering() method, where the algorithm steps are implemented. 

 

 

 

Figure 3.15. A MID class view. 

 

 

A FEBFC class, shown in Figure 3.16, is an implementation of the FEBFC 

algorithm, described in Section 2.4. The class derives from the FuzzyClusteringAlgorithm 

class and additionally contains two protected fields: _validityIndexValue – a map, where 

key is an attribute index, and value is a total fuzzy entropy for this attribute; _fuzzification – 

a pointer to object Fuzzification for classification purposes. 
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Figure 3.16. Classes, implementing FEBFC algorithm and its modification FIDBFC. 

 

 

The FEBFC class has several methods implemented: 

• makeClustering() – overrides a corresponding virtual method from the base 

class; purpose of this implementation is processing of all steps of the FEBFC 

algorithm; 

• calculateValidityIndex() – this method is invoked from the makeClustering() 

method; it calculates a total fuzzy entropy of an attribute; 

• proceedIterating() – this method is invoked from the makeClustering() 

method; it compares current value of a total fuzzy entropy with a previous one 

and return a decision: does it make sense to proceed iterating on not. 

 

The calculateValidityIndex() and proceedIterating() methods are both virtual to 

allow overriding their functionality in the modifications of the FEBFC algorithm. One of the 

possible modifications, the FIDBFC algorithm, was proposed in this thesis in Section 2.5. 

Implementation of this algorithm was realized in a derived FIDBFC class (see Figure 3.16). 

This class uses _validityIndexValue field of its base class to store total fuzzy information 

density values of attribute instead of total fuzzy entropy. The calculateValidityIndex() and 

proceedIterating() methods are overridden to provide calculation and evaluation of the total 

fuzzy information density instead of total fuzzy entropy correspondingly. 
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As was mentioned in Section 3.1, the software tool must provide an ability of 

importing clustering results from external software. To cover this requirement a 

FuzzyClustersImporter class was implemented (see Figure 3.17).  

 

 

 

Figure 3.17. A FuzzyClustersImporter class view. 

 

 

The FuzzyClustersImporter class completes all required functionality of the core 

module. It has one field (_dataset – a pointer to the analyzed data set) and one public method 

(readClusterDetailsFromFile() – reads information about the number of clusters and 

clusters borders for each attribute from .xml file and also calculates clusters centers to 

convert hard clusters into fuzzy clusters). 

 

 

 

 

3.3. Graphical user interface implementation 

The GUI module of the Fuzzy Clustering Tool was also implemented in C++ 

programming language using Qt 5.10 framework. It was chosen because Qt is probably the 

most popular cross-platform application framework for C++, which opens a possibility of 

easy moving the application from Windows to Linux or Mac OS. 

The module was developed inside of the FuzzyClusteringTool “solution” in Visual 

Studio 2017 as a separate project QtGuiFuzzyClustering (see Figure 3.2).  

This Section describes implementation of graphical user interface showing snapshots 

of the running application rather than demonstrating code aspects, because the module's goal 

is graphical interaction between a user and the application, so look and feel is more important 
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than code behind. In addition, any interested reader of this thesis, can familiarize with code 

of the Fuzzy Clustering Tool by himself, because it is enclosed to the diploma thesis on CD 

as an Appendix 2. 

In Figure 3.18 the main window of the Fuzzy Clustering Tool is shown. It consists 

of six sections:  

1. a menu bar, where user can choose a desired action; 

2. a brief information about a loaded data set; 

3. a list of attributes of the data set; 

4. a detail information about a selected attribute; 

5. a result of clustering; 

6. a visualization of fuzzy clustering of the selected attribute. 

 

 

 

Figure 3.18. The main window of the Fuzzy Clustering Tool. 

 

 

The menu bar has two high-level options, that are Dataset and Fuzzy, as shown in 

Figure 3.18. If a user clicks on Dataset option, a menu with Open... and Exit actions is shown 

(see Figure 3.19). 
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Figure 3.19. The Dataset menu. 

 

 

Clicking on Open... action leads to opening a dialog window for selecting an .xml 

file, describing a data set to be loaded (opened). Clicking on Exit action leads to shutting 

down the application and closing the main window. 

The other option that is located in the menu bar is Fuzzy. If the user clicks on it, the 

following menu is displayed (see Figure 3.20). 

 

 

 

Figure 3.20. The Fuzzy menu. 

 

 

In the Fuzzy menu the user can select one of the fuzzy clustering algorithms by 

clicking on its name, import clustering results from external .xml file by clicking on Import 

clusters... action or make fuzzification by clicking on action with an appropriate label. 

The section with a brief information about a loaded data set (see Figure 3.21) displays 

to the user following information about the data set, that was opened by clicking on 

Dataset/Open...: the name of the opened data set (Title), the total number of patterns in the 

dataset (Instances), the number of input attributes (Input attributes) and the number of 

output attributes (Output attributes). 
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Figure 3.21. “Current dataset” section of the main window of the tool. 

 

 

The section with a list of attributes of the data set is made in a form of table, where 

columns indicates an id, a mode, a type and a name of each attribute (see Figure 3.22). 

 

 

 

Figure 3.22. “Attributes” section of the main window of the tool. 

 

 

If the user clicks on some attribute in the table above, the detailed information about 

it will be displayed in the section “Selected attribute” (see Figure 3.23). There is such 

information as minimum value of the attribute, maximum value, standard deviation, the 

number of missing values etc. 

 

 

 

Figure 3.23. “Selected attribute” section of the main window of the tool. 
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After processing a clustering algorithm or importing a clustering result, the table of 

the clustering result will be shown (see Figure 3.24). In this table the information about the 

number of clusters and cluster borders can be found. 

 

 

 

Figure 3.24. “Clusters” section of the main window of the tool. 

 

 

Clicking on any row in the table in “Clusters” section leads to visualizing a fuzzy 

clustering result of selected attribute on a chart (see Figure 3.25). 

 

 

Figure 3.25. “Visualization” section of the main window of the tool. 
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CHAPTER 4. EXPERIMENTAL STUDY WITH THE 

IMPLEMENTED SOLUTION 

4.1. Fuzzy clustering accuracy evaluation 

After processing a clustering algorithm, the optimal number of clusters becomes 

known as well as the partition matrix. But each algorithm may result in different partitioning 

of the data set, i.e. different algorithms may return different values of the optimal number of 

clusters or different partition matrices. In this case we need to determine, which clustering 

result is accurate. 

Evaluation of fuzzy clustering results can be made through the Clustering Accuracy 

Indices, that can be divided into two groups: Internal indices (uses only input attributes data) 

and External indices (uses information about belonging of a pattern to some class of 

data) [31]. The Internal indices can be used in both supervised and unsupervised learning, 

but the External indices can be used in case of supervised learning only. 

In a literature of clustering a lot of various internal indices can be found, but the most 

well-known of them are the following [32]: 

• Partition Coefficient index; 

• Partition Entropy index; 

• Fukuyama-Sugeno index; 

• Xie-Beni index. 

 

The listed above indices were already mentioned in Section 2.1 in the context of 

determining an optimal number of clusters. But the field of their usage is not limited by this 

context, they can also be used for comparing of clustering results, obtained with different 

algorithms. For comparing the index values with the aim of defining the most qualitative 

clustering result, the appropriate optimality criterions, mentioned in Section 2.1, can be used. 

Among the external indices the following can be highlighted [33, 34]: 

• Purity index; 

• Normalized Mutual Information index. 
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Both of above external indices are based on contingency matrix, that can be defined 

using following formula: 

 

𝑉 = (𝑣11 𝑣12 … 𝑣1𝑐𝑣21 𝑣22 … 𝑣2𝑐⋯ ⋯ ⋱ ⋯𝑣𝑘1 𝑣𝑘2 … 𝑣𝑘𝑐) (4.1) 

 

where 𝑣𝑖𝑗 is a sum of fuzzy values of an attribute, which are labeled to the 𝑗-th class and 

belong to the 𝑖-th cluster simultaneously; 𝑐 is the number of classes of the data set; 𝑘 is the 

number of clusters into which the attribute is divided. 

The Purity index (𝐼𝑝𝑢𝑟𝑖𝑡𝑦) is a transparent measure for clustering result evaluation 

calculated as: 

 

𝐼𝑝𝑢𝑟𝑖𝑡𝑦 = 1𝑛∑ max1≤𝑗≤𝑐(𝑣𝑖𝑗)𝑘
𝑖=1  

 

where 𝑛 – the number of patterns in the data set; 0 ≤ 𝐼𝑝𝑢𝑟𝑖𝑡𝑦 ≤ 1. The closer the value of 

the Purity index to 1, the better the result of clustering. 

The Normalized Mutual Information (NMI) index can be calculated according to the 

following formula: 

 𝐼𝑁𝑀𝐼 = 𝐼(𝐾; 𝐶)√𝐻(𝐾) ∙ 𝐻(𝐶) 
 

where 𝐾 – the set of clusters; 𝐶 – the set of classes; 𝐼(𝐾; 𝐶) – the mutual information, 𝐼(𝐾; 𝐶) = ∑ ∑ (𝑣𝑖𝑗𝑛 ) log ( 𝑛∙𝑣𝑖𝑗∑ 𝑣𝑖𝑗𝑘𝑖=1 ∙∑ 𝑣𝑖𝑗𝑐𝑗=1 )𝑐𝑗=1𝑘𝑖=1 ; 𝐻(𝐾) and 𝐻(𝐶) are entropies of cluster and 

classes correspondingly 𝐻(𝐾) = ∑ ∑ 𝑣𝑖𝑗𝑐𝑗=1𝑛 log ∑ 𝑣𝑖𝑗𝑐𝑗=1𝑛𝑘𝑖=1 ; 𝐻(𝐶) = ∑ ∑ 𝑣𝑖𝑗𝑘𝑖=1𝑛 log ∑ 𝑣𝑖𝑗𝑘𝑖=1𝑛𝑐𝑗=1 . 

In the next Section the clustering algorithms, described in Chapter 2, are evaluated 

and compared using mentioned above internal and external indices calculated for the 

following medical data sets: Pima Indians Diabetes, Heart Disease, Breast Cancer 

Wisconsin, Indian Liver Patient Records and Chronic Kidney Disease. 
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4.2. Comparison of the fuzzy clustering algorithms on 

medical data 

4.2.1. Pima Indians Diabetes 

A data set of the Pima Indians Diabetes data set was taken from the Kaggle 

repository. This data set can be used in machine learning to construct a prediction system 

which would identify whether a patient has diabetes depending on certain diagnostic 

measurements [35]. 

The data set contains 768 instances; 8 input attributes and 1 output. The attributes of 

the Pima Indians Diabetes are described in the Table 4.1. 

 

 

Table 4.1. Attributes of the Pima Indians Diabetes data set: A1-A8 are input attributes and 
C is an output attribute 

Attribute Type Description 
Possible nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A1 numeric Number of times 
pregnant 

— 0 17 3.845 3.367 

A2 numeric Plasma glucose 
concentration a 2 
hours in an oral 
glucose tolerance 
test 

— 0 199 120.895 31.952 

A3 numeric Diastolic blood 
pressure (mm Hg) 

— 0 122 69.106 19.343 

A4 numeric Triceps skin fold 
thickness (mm) 

— 0 99 20.537 15.942 

A5 numeric 2-Hour serum 
insulin (mu U/ml) 

— 0 846 79.799 115.169 

A6 numeric Body mass index 
(weight in 
kg/(height in m)^2) 

— 0 67.1 31.993 7.879 

A7 numeric Diabetes pedigree 
function 

— 0.078 2.42 0.472 0.331 

A8 numeric Age (years) — 21 81 33.241 11.753 

C nominal Outcome 0 – a patient does not 
have diabetes; 
1 – a patient has 
diabetes 

— — — — 

 

 

As a result of performing fuzzy clustering on the Pima Indians Diabetes data set using 

the algorithms, described in Chapter 2, the membership functions, shown in Figures 4.1-4.6, 

were obtained. 
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Figure 4.1. Membership functions of attributes A1 – A8 obtained using the FCM algorithm 

with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

Figure 4.2. Membership functions of attributes A1 – A8 obtained using the GK algorithm 

with Pairing Frequency index for getting the optimal number of clusters 
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Figure 4.3. Membership functions of attributes A1 – A8 obtained using the GG algorithm 

with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

Figure 4.4. Membership functions of attributes A1 – A8 obtained using the MID algorithm 
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Figure 4.5. Membership functions of attributes A1 – A8 obtained using the FEBFC 

algorithm 

 

 

 

 

 

Figure 4.6. Membership functions of attributes A1 – A8 obtained using the FIDBFC 

algorithm 
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Based on the obtained membership functions, fuzzification of the data set was made 

for transforming crisp numerical values into fuzzy values. Then the evaluation indices, 

described in the Section 4.1, were calculated to compare clustering accuracy of the 

algorithms (see Table 4.2). 

 

 

Table 4.2. Clustering Accuracy Indices calculated for the fuzzification performed on the 
Pima Indians Diabetes Dataset 

Algorithm 

Partition 

Coefficient 

index 

Partition 

Entropy 

index 

Fukuyama-

Sugeno 

index 

Xie-Beni 

index 

Purity 

index 

Normalized 

Mutual 

Information 

index 

FCM 0.74530 0.55755 15.49595 0.13241 0.67337 0.04168 
GK 0.81605 0.39656 9.10605 62.95703 0.66701 0.04180 
GG 0.80680 0.42239 7.03228 129.22207 0.66321 0.03090 
MID 0.96787 0.06993 9.38145 187.26315 0.65865 0.02023 
FEBFC 0.84070 0.34661 5.35528 0.09274 0.65654 0.02903 
FIDBFC 0.83577 0.35898 5.69637 0.09239 0.65654 0.02913 

 

 

According to the obtained values of the Partition Coefficient and the Partition 

Entropy indices, the most accurate is the MID algorithm. But on the other hand, this 

algorithm gives us the worst membership functions of some attributes (see Figure 4.3). To 

understand this contradiction we should consider, that the mentioned indices are the most 

primitive in taking into account different characteristics of a partition. In this context, more 

relevant is the second result, the FEBFC algorithm, which clustering results is close to the 

original set of classes of the data set. The FEBFC algorithm is the most accurate according 

to the Fukuyama-Sugeno index. The FIDBFC algorithm is the most accurate according to 

the Xie-Beni index. But in general, among all indices, the results of the FIDBFC are quite 

similar to the results of the FEBFC. The Purity and Normalized Mutual Information indices 

identify the FCM as the most accurate algorithm. 

Therefore, most of the indices shows that the FEBFC and FIDBFC algorithms are 

the most accurate for the Pima Indians Diabetes Dataset and the FIDBFC, which is the 

modification of the FEBFC, mentioned in Section 2.5, gives better results than the FEBFC 

according to the Xie-Beni index. 
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4.2.2. Heart Disease 

The Heart Disease data sets are located in the UCI machine learning repository [36]. 

They contain data from the following locations: Cleveland Clinic Foundation, Hungarian 

Institute of Cardiology (Budapest), V.A. Medical Center (Long Beach, CA), University 

Hospital (Zurich, Switzerland). In this thesis data from Cleveland Clinic Foundation are used 

only. 

The Cleveland data set contains 303 patterns, that were originally represented by 76 

attributes. David W. Aha, who uploaded this data set to UCI repository, extracted 14 the 

most significant of them (13 input attributes and 1 output attribute), which are described in 

Table 4.3. 

 

 

Table 4.3. Attributes of the Cleveland Heart Disease data set: A1-A13 are input attributes 
and C is an output attribute 

Attribute Type Description 
Possible nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A1 numeric Age of a patient in 
years 

— 29 77 54.439 9.024 

A2 nominal Sex of a patient 0 – female; 
1 – male 

— — — — 

A3 nominal Chest pain type 1 – typical angina; 
2 – atypical angina; 
3 – non-anginal pain; 
4 – asymptomatic 

— — — — 

A4 numeric Resting blood 
pressure (in mm 
Hg on admission to 
the hospital) 

— 94 200 131.690 17.571 

A5 numeric Serum cholesterol 
in mg/dl 

— 126 564 246.693 51.691 

A6 nominal Fasting blood 
sugar > 120 mg/dl 

0 – false; 
1 – true 

— — — — 

A7 nominal Resting 
electrocardiographi
c results 

0 – normal; 
1 – having ST-T wave 
abnormality (T wave 
inversions and/or ST 
elevation or depression 
of > 0.05 mV); 
2 – showing probable 
or definite left 
ventricular 
hypertrophy by Estes' 
criteria 

— — — — 

A8 numeric Maximum heart 
rate achieved 

— 71 202 149.607 22.837 

A9 nominal Exercise induced 
angina 

0 – no; 
1 – yes 

— — — — 

      (continued) 
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Attribute Type Description 
Possible nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A10 numeric ST depression 
induced by 
exercise relative to 
rest 

— 0 6.2 1.040 1.159 

A11 nominal The slope of the 
peak exercise ST 
segment 

1 – upsloping; 
2 – flat; 
3 – downsloping 

— — — — 

A12 nominal Number of major 
vessels colored by 
fluoroscopy 

0; 1; 2; 3 — — — — 

A13 nominal Thallium heart 
scan 

3 – normal; 
6 – fixed defect; 
7 – reversible defect 

— —  — 

C nominal Diagnosis of heart 
disease 

0 – absent; 
1 – class I of heart 
failure; 
2 – class II of heart 
failure; 
3 – class III of heart 
failure; 
4 – class IV of heart 
failure 

— — — — 

 

 

In a result of fuzzy clustering using the algorithms described in Chapter 2, 

membership functions were obtained for each numeric attribute of the Heart Disease data 

set. They are grouped by the corresponding algorithms and shown in Figures 4.7-4.12. 

 

 

 

 

Figure 4.7. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

FCM algorithm with Pairing Frequency index for getting the optimal number of clusters 
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Figure 4.8. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

GK algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

Figure 4.9. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

GG algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

Figure 4.10. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

MID algorithm 
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Figure 4.11. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

FEBFC algorithm 

 

 

 

 

Figure 4.12. Membership functions of attributes A1, A4, A5, A8 and A10 obtained using the 

FIDBFC algorithm 

 

 

Based on the obtained membership functions, fuzzification of the data set was made 

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The 

results of calculation are shown in Table 4.4. 
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Table 4.4. Clustering Accuracy Indices calculated for the fuzzification performed on the 
Cleveland Heart Disease data set 

Algorithm 

Partition 

Coefficient 

index 

Partition 

Entropy 

index 

Fukuyama-

Sugeno 

index 

Xie-Beni 

index 

Purity 

index 

Normalized 

Mutual 

Information 

index 

FCM 0.74495 0.56002 5.92440 0.11528 0.54916 0.04926 

GK 0.80537 0.42032 3.17181 9.16700 0.54603 0.05179 

GG 0.73040 0.58724 5.84767 62.60825 0.55168 0.04751 

MID 0.98750 0.02764 4.50228 313.08871 0.54940 0.06126 

FEBFC 0.81525 0.40006 2.25668 0.10192 0.54125 0.03940 

FIDBFC 0.82118 0.38605 2.00213 0.10587 0.54125 0.03905 

 

 

As we can see in Table 4.4, the MID algorithm gives the most accurate clustering 

results according to the Partition Coefficient, the Partition Entropy and the Normalized 

Mutual Information indices. Clustering results of the GG algorithm are the most accurate 

only according to the Purity index as well as clustering results of the FEBFC algorithm are 

the most accurate according to the Xie-Beni index. 

The FIDBFC algorithm is the most accurate according to the Fukuyama-Sugeno 

index. It also better than the original FEBFC algorithm according to the Partition Coefficient 

and the Partition Entropy indices, has the same accuracy according to the Purity index and a 

bit worse according to other two indices. Thus, modification of the FEBFC algorithm, 

proposed in this thesis, leads to better clustering results of the Heart Disease data set 

according to at least half of considered indices. 

 

 

4.2.3. Breast Cancer Wisconsin 

The Breast Cancer Wisconsin data set was taken from the UCI machine learning 

repository [36]. The data set contains 569 patterns, represented by 32 attributes, that were 

computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. In this 

experiment only 11 attributes (10 input attributes and 1 output), that describe mean values 

of characteristics of the cell nuclei present in the image, are considered (see Table 4.5). 
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Table 4.5. Attributes of the Breast Cancer Wisconsin data set: A1-A10 are input attributes 
and C is an output attribute 

Attribute Type Description 

Possible 

nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A1 numeric Radius (mean of 
distances from center 
to points on the 
perimeter) 

— 6.981 28.110 14.127 3.521 

A2 numeric Texture (standard 
deviation of gray-scale 
values) 

— 9.710 39.280 19.290 4.297 

A3 numeric Perimeter — 43.790 188.500 91.969 24.278 
A4 numeric Area — 143.500 2501 654.889 351.605 
A5 numeric Smoothness (local 

variation in radius 
lengths) 

— 0.053 0.163 0.096 0.014 

A6 numeric Compactness 
(perimeter^2 / area - 
1.0) 

— 0.019 0.345 0.104 0.053 

A7 numeric Concavity (severity of 
concave portions of 
the contour) 

— 0 0.427 0.089 0.080 

A8 numeric Concave points 
(number of concave 
portions of the 
contour) 

— 0 0.201 0.049 0.039 

A9 numeric Symmetry — 0.106 0.304 0.181 0.027 

A10 numeric Fractal dimension 
("coastline 
approximation" - 1) 

— 0.050 0.097 0.063 0.007 

C nominal Diagnosis M – malignant; 
B – benign 

— — — — 

 

 

The fuzzy clustering algorithms described in Chapter 2 were performed on each 

numeric attribute of the Breast Cancer Wisconsin data set. As a result, the membership 

functions, shown in Figures 4.13-4.18 were obtained. 
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Figure 4.13. Membership functions of attributes A1 – A10 obtained using the FCM 

algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

 

Figure 4.14. Membership functions of attributes A1 – A10 obtained using the GK algorithm 

with Pairing Frequency index for getting the optimal number of clusters 
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Figure 4.15. Membership functions of attributes A1 – A10 obtained using the GG algorithm 

with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

 

Figure 4.16. Membership functions of attributes A1 – A10 obtained using the MID 

algorithm 
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Figure 4.17. Membership functions of attributes A1 – A10 obtained using the FEBFC 

algorithm 

 

 

 

 

 

 

Figure 4.18. Membership functions of attributes A1 – A10 obtained using the FIDBFC 

algorithm 
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Based on the obtained membership functions, fuzzification of the data set was made 

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The 

results of calculation are shown in Table 4.6. 

 

 

Table 4.6. Clustering Accuracy Indices calculated for the fuzzification performed on the 
Breast Cancer Wisconsin data set 

Algorithm 

Partition 

Coefficient 

index 

Partition 

Entropy 

index 

Fukuyama-

Sugeno 

index 

Xie-Beni 

index 

Purity 

index 

Normalized 

Mutual 

Information 

index 

FCM 0,70180 0,65043 9,97471 0,17636 0,78141 0,20863 

GK 0,80869 0,41571 3,11619 136,80074 0,77748 0,19883 

GG 0,71908 0,61341 8,52217 30,85465 0,78417 0,20820 

MID 0,91949 0,17782 8,03281 243,40205 0,76021 0,19926 

FEBFC 0,83261 0,36418 3,60073 0,09625 0,75014 0,19384 

FIDBFC 0,78031 0,47621 6,69028 0,10761 0,76131 0,20961 

 

 

As we can see in Table 4.6, the MID algorithm gives the most accurate clustering 

results according to the Partition Coefficient and the Partition Entropy indices. According to 

the Fukuyama-Sugeno, Xie-Beni and Purity indices, clustering results of the GK, FEBFC 

and GG algorithms are the most accurate correspondingly. 

The FIDBFC algorithm is the most accurate according to the Normalized Mutual 

Information index. It also more accurate than the original FEBFC algorithm according to the 

Purity index, but less accurate according to the other indices. Thus, for the Breast Cancer 

Wisconsin data set the FEBFC algorithm in general gives better results than its modification 

(the FIDBFC algorithm). 
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4.2.4. Indian Liver Patient Records 

The Indian Liver Patient Records data set is located in the Kaggle machine learning 

repository [35]. The data set contains patient records consisting of some measurements and 

information whether a patient has liver disease. The records were collected from North East 

of Andhra Pradesh, India and can be used to construct a liver disease prediction system. 

The data set contains 583 patterns, represented by 11 attributes (10 input attributes 

and 1 output), which are described in Table 4.7 

 

 

Table 4.7. Attributes of the Liver Patient Records data set: A1-A10 are input attributes and 
C is an output attribute 

Attribute Type Description 

Possible 

nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A1 numeric Age of the patient — 4 90 44.746 16.176 

A2 nominal Gender of the patient Female; 
Male 

— — — — 

A3 numeric Total Bilirubin (mg/dL) — 0.4 75 3.299 6.204 

A4 numeric Direct Bilirubin (mg/dL) — 0.1 19.7 1.486 2.806 

A5 numeric Alkaline Phosphotase 
(IU/L) 

— 63 2110 290.576 242.730 

A6 numeric Alamine 
Aminotransferase (IU/L) 

— 10 2000 80.714 182.464 

A7 numeric Aspartate 
Aminotransferase (IU/L) 

— 10 4929 109.911 288.671 

A8 numeric Total Protiens (g/dL) — 2.7 9.6 6.483 1.085 

A9 numeric Albumin (g/dL) — 0.9 5.5 3.142 0.795 

A10 numeric Albumin and Globulin 
Ratio 

— 0.3 2.8 0.947 0.318 

C nominal Dataset 1 – patient 
with liver 
disease; 
2 – no 
disease 

— — — — 

 

 

The fuzzy clustering algorithms described in Chapter 2 were performed on each 

numeric attribute of the Liver Patient Records data set. As a result, the membership 

functions, shown in Figures 4.19-4.24 were obtained. 
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Figure 4.19. Membership functions of attributes A1, A3 – A10 obtained using the FCM 

algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

Figure 4.20. Membership functions of attributes A1, A3 – A10 obtained using the GK 

algorithm with Pairing Frequency index for getting the optimal number of clusters 
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Figure 4.21. Membership functions of attributes A1, A3 – A10 obtained using the GK 

algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

Figure 4.22. Membership functions of attributes A1, A3 – A10 obtained using the MID 

algorithm 
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Figure 4.23. Membership functions of attributes A1, A3 – A10 obtained using the FEBFC 

algorithm 

 

 

 

 

 

Figure 4.24. Membership functions of attributes A1, A3 – A10 obtained using the FIDBFC 

algorithm 
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Based on the obtained membership functions, fuzzification of the data set was made 

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The 

results of calculation are shown in Table 4.8. 

 

 

Table 4.8. Clustering Accuracy Indices calculated for the fuzzification performed on the 
Indian Liver Patient Records data set 

Algorithm 

Partition 

Coefficient 

index 

Partition 

Entropy 

index 

Fukuyama-

Sugeno 

index 

Xie-Beni 

index 

Purity 

index 

Normalized 

Mutual 

Information 

index 

FCM 0,76521 0,51781 7,31219 0,23369 0,71355 0,03833 

GK 0,84262 0,33978 4,81232 235,85757 0,71355 0,03798 

GG 0,80658 0,41956 6,89524 5,91104 0,71355 0,03553 

MID 0,94466 0,12144 7,53296 150,68521 0,71520 0,04287 

FEBFC 0,88244 0,25931 3,02895 0,06235 0,71355 0,02400 

FIDBFC 0,87023 0,28597 3,33581 0,06514 0,71355 0,02874 

 

 

As we can see in Table 4.8, the MID algorithm gives the most accurate clustering 

results according to the Partition Coefficient, the Partition Entropy, the Purity and the 

Normalized Mutual Information indices. According to the Fukuyama-Sugeno as well as the 

Xie-Beni indices, clustering results of the FEBFC algorithm are the most accurate. 

The FIDBFC algorithm is more accurate than the original FEBFC algorithm 

according to the Normalized Mutual Information index, but less accurate or has the same 

accuracy according to the other indices. Thus, for the Indian Liver Patient Records data set 

the FEBFC algorithm in general gives better results than its modification (the FIDBFC 

algorithm). 

 

 

4.2.5. Chronic Kidney Disease 

The Chronic Kidney Disease data set is located in the UCI machine learning 

repository [36]. This data set contains information whether a patient has chronic kidney 

disease and some additional measurements, that can be used to predict the disease. 
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The data set contains 400 patterns, represented by 25 attributes (24 input attributes 

and 1 output), which are described in Table 4.9 

 

 

Table 4.9. Attributes of the Chronic Kidney Disease data set: A1-A24 are input attributes 
and C is an output attribute 

Attribute Type Description 
Possible nominal 

values 

Min. 

value 

Max. 

value 

Mean 

value 

Standard 

deviation 

A1 numeric Age (years) — 2 90 51.483 16.954 

A2 numeric Blood Pressure 
(mm/Hg) 

— 50 180 76.469 13.459 

A3 nominal Specific Gravity 1.005; 1.010; 
1.015; 1.020; 1.025 

— — — — 

A4 nominal Albumin 0; 1; 2; 3; 4; 5 — — — — 

A5 nominal Sugar 0; 1; 2; 3; 4; 5 — — — — 

A6 nominal Red Blood Cells normal; abnormal — — — — 

A7 nominal Pus Cell normal; abnormal — — — — 

A8 nominal Pus Cell clumps present; notpresent — — — — 

A9 nominal Bacteria present; notpresent — — — — 

A10 numeric Blood Glucose 
Random (mgs/dl) 

— 22 490 148.037 74.689 

A11 numeric Blood Urea 
(mgs/dl) 

— 1.5 391 57.426 49.224 

A12 numeric Serum Creatinine 
(mgs/dl) 

— 0.4 76 3.072 5.610 

A13 numeric Sodium (mEq/L) — 4.5 163 137.529 9.193 

A14 numeric Potassium (mEq/L) — 2.5 47 4.627 2.816 

A15 numeric Hemoglobin (gms) — 3.1 17.8 12.526 2.713 

A16 numeric Packed Cell 
Volume 

— 9 54 38.885 8.141 

A17 numeric White Blood Cell 
Count 
(cells/cumm) 

— 2200 26400 8406.12 2520.06 

A18 numeric Red Blood Cell 
Count 
(millions/cmm) 

— 2.1 8 4.707 0.839 

A19 nominal Hypertension yes; no — — — — 

A20 nominal Diabetes Mellitus yes; no — — — — 

A21 nominal Coronary Artery 
Disease 

yes; no — — — — 

A22 nominal Appetite good; poor — — — — 

A23 nominal Pedal Edema yes; no — — — — 

A24 nominal Anemia yes; no — — — — 

C nominal Class ckd; notckd — — — — 

 

 

The fuzzy clustering algorithms described in Chapter 2 were performed on each 

numeric attribute of the Chronic Kidney Disease data set. As a result, the membership 

functions, shown in Figures 4.25-4.30 were obtained. 
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Figure 4.25. Membership functions of attributes A1, A2, A10 – A18 obtained using the FCM 

algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

 

Figure 4.26. Membership functions of attributes A1, A2, A10 – A18 obtained using the GK 

algorithm with Pairing Frequency index for getting the optimal number of clusters 
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Figure 4.27. Membership functions of attributes A1, A2, A10 – A18 obtained using the GG 

algorithm with Pairing Frequency index for getting the optimal number of clusters 

 

 

 

 

 

 

Figure 4.28. Membership functions of attributes A1, A2, A10 – A18 obtained using the MID 

algorithm 
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Figure 4.29. Membership functions of attributes A1, A2, A10 – A18 obtained using the 

FEBFC algorithm 

 

 

 

 

 

 

Figure 4.30. Membership functions of attributes A1, A2, A10 – A18 obtained using the 

FIDBFC algorithm 
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Based on the obtained membership functions, fuzzification of the data set was made 

and the appropriate evaluation indices, described in the Section 4.1, were calculated. The 

results of calculation are shown in Table 4.10. 

 

 

Table 4.10. Clustering Accuracy Indices calculated for the fuzzification performed on the 
Chronic Kidney Disease data set 

Algorithm 

Partition 

Coefficient 

index 

Partition 

Entropy 

index 

Fukuyama-

Sugeno 

index 

Xie-Beni 

index 

Purity 

index 

Normalized 

Mutual 

Information 

index 

FCM 0,77893 0,49223 5,33962 0,22215 0,74692 0,17449 

GK 0,86890 0,28460 2,22786 169,93521 0,75999 0,19142 

GG 0,79741 0,44822 4,80674 22,14820 0,68667 0,13921 

MID 0,93745 0,13790 5,55817 301,79223 0,63449 0,07141 

FEBFC 0,87330 0,28549 1,50738 0,06734 0,65568 0,09795 

FIDBFC 0,82725 0,38268 3,01684 0,08254 0,67831 0,12089 

 

 

As we can see in Table 4.10, the MID algorithm gives the most accurate clustering 

results according to the Partition Coefficient and the Partition Entropy indices; the FEBFC 

algorithm gives the most accurate clustering results according to the Fukuyama-Sugeno and 

the Xie-Beni indices; the GK algorithm gives the most accurate clustering results according 

to the Purity and the Normalized Mutual Information indices. 

The FIDBFC algorithm is more accurate than the original FEBFC algorithm 

according to the Purity and the Normalized Mutual Information indices, but less accurate 

according to the other indices. Thus, for the Chronic Kidney Disease data set the FEBFC 

algorithm in general gives better results than its modification (the FIDBFC algorithm). 
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CONCLUSION 

The diploma thesis was devoted to problematics of transformation from numeric into 

linguistic values, that is based on clustering, in medical data analysis. A study of theoretical 

aspects of cluster analysis was performed for understanding the problematics. In a process 

of the study several definitions of the term “clustering” were considered and own definition 

was proposed by the author of the thesis, according to which, clustering is an unsupervised 

learning method of partitioning a data set into a finite number of discrete groups (clusters) 

such that each group consists of similar objects according to some defined distance measure. 

The most commonly used data types in clustering are discrete and continuous types. The 

discrete data type aggregates nominal and binary (symmetrical as well as asymmetrical) 

types. The study also has involved describing of similarity and dissimilarity measures and 

explanation differences between hard clustering and fuzzy clustering. 

The software tool, that is be able to make transformation of values of any numeric 

attribute of a medical data set into fuzzy values, has been developed to achieve the goal of 

this thesis. The main requirement for the tool was the ability of integration into an expert 

system for medical data analysis, in a way that it could be considered as a computational 

component of the system. This goal was achieved successfully by implementation of fully-

featured Fuzzy Clustering Tool. This tool has two basic functionalities: performing a cluster 

analysis to transform numeric into linguistic values and fuzzification based on the calculated 

membership functions to obtain a resulting fuzzy data set. In addition to these basic 

functionalities, the Fuzzy Clustering Tool provides simple statistical analysis of a data set, 

visualization of a membership function and a possibility to import external clustering results. 

The following clustering algorithms were implemented in the Fuzzy Clustering Tool 

to perform a clustering analysis: Fuzzy c-Means, Gustafson-Kessel algorithm, Gath-Geva 

algorithm, Multi-Interval Discretization and Fuzzy Entropy Based Fuzzy Classifier. 

Additionally, the author of the thesis proposed a modification of the Fuzzy Entropy Based 

Fuzzy Classifier, that supposes using a fuzzy information density instead of fuzzy entropy. 

He called this modification Fuzzy Information Density Based Fuzzy Classifier (FIDBFC). 

The FIDBFC was formally described in Section 2.5 and its implementation was included 

into the Fuzzy Clustering Tool. 
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All implemented clustering algorithms were evaluated and compared on the 

following medical data sets: Pima Indians Diabetes, Heart Disease, Breast Cancer 

Wisconsin, Indian Liver Patient Records and Chronic Kidney Disease. In the first two of 

them the proposed modification of the clustering algorithm (i.e. FIDBFC) gave more 

accurate clustering results than the original FEBFC algorithm. Thus, we can state that on 

some medical data set using the proposed FIDBFC for transformation from numeric into 

linguistic and fuzzy values is preferable. 
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Appendix 1: UML Class diagram of the Fuzzy Clustering Tool 
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Appendix 2: Contents of the CD 

The enclosed CD contains: 

• the diploma thesis in electronic form (PDF format); 

• the source code of the Fuzzy Clustering Tool. 

 

 

 


