
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 12, 2018

ASSIGNMENT OF MASTER�S THESIS

 Title: Authentication, authorization, and session management in the HTTP protocol

 Student: Bc. Klára Drhová

 Supervisor: RNDr. Daniel Joščák, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

Review the authentication, authorization, and session management methods in the HTTP protocol. Focus
on the security of these methods and present their general security weaknesses.
Get acquainted with the Burp Suite tool that serves as a web application security assessment tool. Find out
how this tool addresses authentication, authorization, and session management. Learn how to extend this
tool with additional features.
Create an extension to the Burp Suite that will help with authentication, session management, and
management of authorization tokens during penetration testing of web applications. Test the resulting
extension.

References

Will be provided by the supervisor.

Master’s thesis

Authentication, authorization, and session

management in the HTTP protocol

Bc. Klára Drhová

Department of Computer Systems

Supervisor: RNDr. Daniel Joščák, Ph.D.

April 29, 2018

Acknowledgements

I would like to thank my supervisor RNDr. Daniel Joščák, Ph.D., for his
valuable advices and comments and for the time he spent helping me with
this thesis. I am grateful to my colleagues for their feedbacks on the created
extension. A very special gratitude goes out to Goran Pogačić, mag. ing.
comp., for the fruitful discussions he provided me so many times and for his
faith in the extension.

I am grateful to my family for providing me with unfailing support and
continuous encouragement throughout all my life. Finally, I must express my
very profound gratitude to my partner for all his love, patience, and support
he provides me every day. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on April 29, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Klára Drhová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Drhová, Klára. Authentication, authorization, and session management in
the HTTP protocol. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2018.

Abstrakt

Tato diplomová práce se zabývá zp̊usoby autentizace, autorizace a správy
relaćı, které jsou dennodenně použ́ıvány uživateli Internetu v rámci protokolu
HTTP. Důraz je kladen předevš́ım na bezpečnost a bezpečnostńı slabiny jed-
notlivých metod. Dále byl v rámci této diplomové práce vytvořen doplněk
pro nástroj Burp Suite. Tento nástroj slouž́ı k testováńı webových aplikaćı
a je využ́ıván bezpečnostńımi specialisty po celém světě. Hlavńım př́ınosem
vytvořeného doplňku je snadná správa autentizačńıch, autorizačńıch a daľśıch
token̊u obsažených v HTTP zprávách, požadavćıch a odpověd́ıch, a dále pak
možnost spravovat v́ıce relaćı najednou a t́ım několikanásobně urychlit auto-
matizované skenováńı webových aplikaćı.

Kĺıčová slova autentizace, autorizace, správa relaćı, protokol HTTP, Burp
Suite, doplněk Authentication Master, automatizace penetračńıch test̊u

vii

Abstract

This master’s thesis deals with methods of authentication, authorization, and
session management in the HTTP protocol that are used every day by In-
ternet users. The main emphasis is placed on security of individual methods
and their security weaknesses. Furthermore, an extension to the Burp Suite
tool was created. This tool is used for web application testing by many secu-
rity specialists worldwide. The main benefit of the created extension is easy
management of authentication, authorization, and other tokens contained in
HTTP messages, requests and responses, as well as the ability to manage mul-
tiple sessions at the same time, speeding up the automated web application
scanning several times.

Keywords authentication, authorization, session management, HTTP pro-
tocol, Burp Suite, Authentication Master extension, penetration test automa-
tion

viii

Contents

Introduction 1

1 Analysis 3

1.1 HTTP Protocol . 3

1.2 SSL and TLS . 10

1.3 Authentication . 11

1.4 Authorization . 37

1.5 Session Management . 45

1.6 Summary . 50

2 Burp Suite 51

2.1 Authentication, Authorization, and Session Management in Burp
Suite . 52

3 Design 55

3.1 Goals and Requirements . 55

3.2 Basic Concepts . 57

4 Realisation and Usage 59

4.1 Implementation . 59

4.2 Usage . 65

5 Testing and Evaluation 69

5.1 Testing . 69

5.2 Features . 71

5.3 Comparison with Other Extensions 72

Conclusion 73

Bibliography 75

ix

A Acronyms 79

B Attacks against SSL and TLS 81

C Contents of enclosed DVD 87

x

List of Figures

5.1 Graph of measured times and request rates 71

xi

List of Tables

1.1 Status codes and recommended reason phrases 6

3.1 Table of described authentication schemes and whether they are
supported by the extension . 56

5.1 Measured times and request rates 70

xiii

Introduction

The Internet has become a part of our lives. We use it every day and almost
everywhere – when chatting with friends using a mobile application, when
updating our computer, or when downloading some film. Today, even many
household appliances are able to connect to the Internet. Our television can
play videos stored on the Internet, we can turn on the heating at our homes
while being at work, and our washing machines notify us once the wash pro-
gram is finished. Wireless networks, such as Wi-Fi, 3G, and LTE networks,
are almost omnipresent. The HTTP protocol is one of the main application
protocols used in the Internet today. It enables data transfers across the
Internet.

Security is the main topic in most companies recently. Users began to
take care of their personal data and public data leakage is a perfect recipe
for destroying the reputation of a company. To preserve confidentiality of our
data, data encryption is used. To verify identity of users and devices on the
Internet, authentication methods are used. Once the entity is authenticated,
it is important to check whether the entity is allowed to perform actions it
requests. Authorization methods serve this purpose. It is also necessary to
maintain some information about clients (for example, their language prefer-
ences). To do so, session management is used. All these techniques are used
daily by billions of people without knowing it – when shopping in an online
store, accessing internet banking, or sharing posts on a social network.

Today, great emphasis is placed also on security of web applications. Many
tools for web application testing have been created and companies invest more
and more money in security testing in general. Consequences of an attack
on a vulnerable application may be serious. Data and information may be
disclosed, modified, or deleted. An attacker may gain access to company’s
devices. Customers may be tricked to perform some unintended, malicious
actions. It is thus important to test web applications regularly. The Burp
Suite is one of the most popular web application testing tools used by security
experts worldwide.

1

Introduction

This thesis describes methods of authentication, authorization, and session
management that are used together with the HTTP protocol. Primarily, their
security aspects are analysed. Furthermore, an extension to the Burp Suite
tool created within the thesis is described.

Main purpose of the created extension is to manage authentication tokens,
session identifiers, and other similar tokens that can be found in HTTP mes-
sages. There are many possibilities where the token can be located – in an
HTTP header, in a URL address, in a message body, etc. To make the testing
and extension settings as easy as possible, many options were implemented.
Testers may parse and update tokens located, for example, in HTTP cookies,
headers, GET and POST parameters, XML bodies, and URL addresses.

Another desired feature of the extension is to enable testers to maintain
multiple sessions at the same time. Thus, web applications may be scanned by
multiple threads without any conflicts – something that is not possible in the
Burp Suite itself. This feature helps to speed up testing of web applications,
especially active scanning and fuzzing. The extension also allows to create new
sessions automatically and to define under what circumstances sessions expire.
Every expired session is discarded and replaced by a new one if necessary. To
avoid repetitive setting of the extension, it is possible to export user settings
to an XML file and import them anytime later.

The structure of this master’s thesis is as follows: Chapter 1 describes the
HTTP protocol in general, as well as methods of authentication, authorization,
and session management used in this protocol. Security considerations for
every such method are mentioned. Section 1.2 contains a brief description of
the SSL and TLS protocol.

The Burp Suite tool along with some its features is described in the
Chapter 2. The way this tool addresses authentication, authorization, and
session management is also mentioned in this chapter.

Chapter 3 deals with questions related to the design of the extension. Func-
tional and non-functional requirements are mentioned. Some basic concepts
used in subsequent chapters are explained.

Chapter 4 describes implementation choices, such as the choice of the
programming language, that were made. This chapter also includes a list of
implemented classes, a description of how to use the extension, and several
example use cases are mentioned.

Details related to testing of the created extension, as well as a comparison
with other similar available extensions can be found in Chapter 5.

2

Chapter 1

Analysis

This chapter describes theory necessary for understanding authentication, au-
thorization, and session management methods used on the Internet today.
These methods are then examined with focus on their security aspects.

1.1 HTTP Protocol

The Hypertext Transfer Protocol (HTTP) is a stateless application protocol.
Its purpose is to enable data transfers across the Internet. Development of
HTTP was initiated in 1989 by Tim Berners-Lee. The first standard defining
HTTP/1.1, the most common version of HTTP in use today, occurred in 1997
[1]. This standard was soon replaced by a new one, RFC 2616 [2], and then
again in 2014 by a group of standards, RFC 7230 to RFC 7235 [3–8]. A nice
overview of HTTP protocol can be found on Mozilla web page [9].

HTTP is a request/response protocol and we distinguish HTTP clients and
HTTP servers. An HTTP client, a web browser for example, is an application
that establishes a connection to a server and sends requests to it. An HTTP
server, a web page application for example, is an application that accepts this
connection, processes the requests and returns responses that usually contain
some resources. Such a resource can be an HTML file, a picture, some data,
etc., and is identified by a string called Uniform Resource Identifier (URI).
HTTP provides clients with a generic, uniform interface that is independent
of application implementation and independent of available resources.

The following example illustrates a typical client request and server re-
sponse. The string "http://www.example.com/hello.txt" is URI of the
resource and "Hello World! My payload includes a trailing CRLF.\n"

is its content. It was taken from [3].

Client Request:

GET /hello.txt HTTP/1.1

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l

3

1. Analysis

zlib/1.2.3

Host: www.example.com

Accept-Language: en, mi

Server Response:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World! My payload includes a trailing CRLF.

Requests and responses, also called messages, have a fixed format. They
consist of a start-line followed by any number of header fields (collectively
referred to as the headers). Then an empty line follows indicating the end of
the header section and the last is a message body that is optional.

Requests and responses differ only in the start-line. Format is the follow-
ing:

Request start-line:

Method Request-target HTTP-version

Response start-line:

HTTP-version Status-code Reason-phrase

There are several methods (Method part) with different purposes that are
commonly used in HTTP. Some of them are standardized in the RFC 7231 [4],
others are not:

• GET – this method requests a current representation of the target re-
source; it does not modify the resource

• HEAD – this method is the same as GET, but requests only the start-
line and header section (response is the same but without body)

• POST – this method is used to supply the server with some data that
are then processed depending on the requested resource – the data can
be for example used for modification of the resource, for creation of a
new resource or can define a format of a server response

• PUT – this method replaces all current representation of the target
resource

4

1.1. HTTP Protocol

• DELETE – this method removes all current representations of the target
resource

• CONNECT – this method establishes a tunnel to the server that is
identified by the target resource

• OPTIONS – this method is used to describe the communication options
for the target resource

• TRACE1 – this method performs a message loop-back test along the
path to the target resource; if enabled, the web server responds to a
request by echoing the whole request in the response body

• PATCH (not specified in the mentioned RFC document) – this method
is used to apply partial modifications to a resource

Also, the status codes are standardized (Status-code part). It is a 3-digit
integer code that indicates whether a specific HTTP request has been success-
fully completed. There are five classes: informational responses, successful re-
sponses, redirects, client errors, and server errors. Table 1.1 contains some of
the most commonly used status codes and corresponding recommended reason
phrases.

The HTTP headers allow to pass additional information with the message
– a request or a response. A header consists of a case-insensitive name followed
by a colon, optional space, and its value. The header must not contain any
line break. Some headers are used by both requests and responses, some of
them are applicable only for requests and some of them only for responses.
User can also use his own, non-standard headers. Their names were originally
prefixed with “X-” but this convention was deprecated in 2012. The reason
was that some originally non-standard headers had become standardized.

Some HTTP headers carry information about the client2, other contain
information about the context of request3. Information about the server can
be sent via headers4, too. Of course, the HTTP headers can also carry infor-
mation about the request, response or the message body itself5.

1The HTTP TRACE method is designed for diagnostic purposes, but can lead to the
disclosure of sensitive information such as cookies. Attack using this method is called Cross

Site Tracing attack and detailed information can be found on the OWASP web page [10].
Thus, the TRACE method should be disabled on production web servers.

2A good example of such header is User-Agent header that contains information about
application type, operating system, etc.

3For example, Cookie header contains stored HTTP cookies previously sent by the server
and Referer header contains an address of the web page from which a link to the currently
requested page was followed.

4The Server header contains information about the software and software versions used
by the origin server.

5Headers like Content-Length, Content-Language, and Content-Encoding are good ex-
amples.

5

1. Analysis

Status code Reason phrase

Information responses

100 Continue
101 Switching Protocols

Successful responses

200 OK
201 Created
202 Accepted
204 No Content

Redirection messages

301 Moved Permanently
302 Found
304 Not Modified
307 Temporary Redirect

Client error responses

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
408 Request Timeout
415 Unsupported Media Type

Server error responses

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Table 1.1: Status codes and recommended reason phrases

6

1.1. HTTP Protocol

There are many headers that are commonly used. Here you can find some
examples that are related to security:

• Cache-Control, Expires and Pragma – These headers can be used to
prevent the browser from storing a local cached copy of content received
from the web server. Caching is used for optimizing performance but
this behaviour can be risky if there is some sensitive or confidential
information in the server response. Thus, it is recommended to instruct
the browser to avoid caching such data.

• Content-Security-Policy (CSP) – This header is used to inform the client
browser about expected behaviour of the application and to whitelist
content sources. For example, sources of scripts and images or plugin
types can be defined. This header is complex in nature but allows the
browser to enforce security constraints more intelligently. If set correctly,
it can significantly decrease the chances of successful cross-site scripting
attacks.

• Cross-origin resource sharing (CORS) headers – These headers are used
to make interactions with other websites secure. Such an interaction can
include loading scripts or fonts from different websites. A header Access-
Control-Allow-Origin is used to define which websites are allowed to
access resources on the target website. If the CORS header are missing,
requests from other websites are forbidden by default.

• Public-Key-Pins – This header instructs the browser which certificate to
trust and for how long time. When the browser meets the header for
the first time, it will save that specific pinned certificate and will double-
check it next time. This header is not widely used due to its complicated
implementation and possible errors it can cause. Another alternative is a
Public-Key-Pins-Report-Only header which reports problems but doesn’t
lock users out. This header helps to prevent forged X.509 certificates
and rogue attacks in case the certificate authority is compromised.

• Referer6 and Referrer-Policy – The Referrer-Policy header is used to
specify when the browser should set the Referer header. The Referer
header allows the browser to specify the address of a web page from
which the target website or resource was loaded. This information should
not be used for security checks, although it often is, but can be useful
for analytics.

• Strict-Transport-Security – This header is sometimes called HSTS hea-
der7 and is used to force the browser to use a secure HTTPS connection

6Referer is a misspelling of the word “referrer”.
7HTTP Strict Transport Security

7

1. Analysis

when communicating with the server. If this header is properly used,
the browser will not allow to access the website over HTTP and will
prevent the client from overriding an SSL certificate warning8. Thus,
the SSL strip attacks are prevented and the man-in-the-middle attacks
are more difficult to perform.

• X-Content-Type-Options – This header serves as a defence of MIME type
confusion attacks. Most of the browsers try to guess content type of the
server response instead of trusting the response header. This technique,
called MIME sniffing, can cause that the browser is intentionally con-
fused by the attacker and executes some malicious code. This header
prevents the browser from guessing the type and instructs it to use the
value of the Content-Type header instead.

• X-Frame-Options – This header prevents the attacker from embedding
the website in an iframe HTML element on her malicious website. If
missing, the attacker can perform clickjacking attack. In this attack, the
victim is directed to the attacker’s website and manipulated to perform
unintentional actions on the target application. This header is used to
define which websites are allowed to frame the website. It has been
deprecated and should be replaced by the frame-options directive in the
Content-Security-Policy header.

• X-XSS-Protection – This header is used to inform the browser that
browser’s prevention against cross-site scripting attacks should be en-
abled or disabled. This header has been deprecated and should be
replaced by the reflected-xss directive in the Content-Security-Policy
header.

1.1.1 HTTP Cookies

As the HTTP protocol is mostly stateless, there was a necessity for some
mechanism for storing stateful information. Two headers, the response Set-
Cookie header and the request Cookie header, were introduced. The former
header serves for setting a small piece of data, called a cookie, that stores
stateful information. This cookie is sent by the server to the browser which
remembers it and later sends it back within the request to the same server
using the Cookie header. An HTTP cookie is specified in RFC 6265 [11].

Cookies are sent with every request and can be divided into two groups,
session cookies and permanent cookies. Session cookies should be deleted
when the browser shuts down but nowadays, many browsers use a technique
called session restoring which causes that cookies are restored after start of
the browser. Permanent cookies expire at a specific date and time (Expires

8SSL certificate warning appears when the website certificate is invalid or if it is faked
by an attacker

8

1.1. HTTP Protocol

attribute) or after a specific length of time (Max-Age attribute). Cookies are
usually used for these purposes:

• Session management – maintaining information about logins, items
added in the shopping cart, etc.

• Personalization – storing user preferences and settings

• Tracking – recording and analyzing user actions and behaviour

There are many security considerations associated with cookies. Cookies
are often used to identify some particular user and his session. Stealing a
cookie can thus lead to hijacking the authenticated session of the user (session
hijacking attack). Attacker can use it for getting access to some confidential
information or performing some malicious actions. Cookies are usually stolen
using social engineering techniques or cross-site scripting (XSS) vulnerability
in the application. Also, the cross-site request forgery (CSRF, XSRF) attack
makes use of cookies.

To prevent these attacks, some flags were specified. These flags restrict
the way the browser can manipulate with user’s cookies. There is a Secure
flag that limits the scope of the cookie to secure channels and protects thus
its confidentiality. The cookie with this flag set will be only sent over the
HTTPS protocol and never over the HTTP protocol that does not offer any
encryption. To prevent cross-site scripting attack, HttpOnly flag is used. It
instructs the browser to omit this cookie when providing access to cookies via
some “non-HTTP” APIs, for example, JavaScript’s document.cookie API.
Such cookies can be only sent to the server automatically within the request.
There is also a new, experimental SameSite flag that instructs the browser
not to send the cookie within cross-site requests. Such a cookie can only be
sent in requests originating from the same origin as the target domain. This
flag mitigates cross-site request forgery attacks.

For more information about cookies, refer to the Section 1.5.

1.1.2 HTTPS

HTTPS (HTTP Secure) is a protocol that enables secure communication over
a computer network. It makes use of the HTTP protocol together with SSL
or TLS protocol which serves for encryption. HTTPS URL addresses begin
with “https://” and use port 443 by default as opposed to URL addresses
beginning with “http://” and using port 80 as in the case of HTTP. Generally,
it is recommended to use HTTPS instead of insecure HTTP for all web pages.
Both SSL and TLS are discussed in the Section 1.2.

9

1. Analysis

1.2 SSL and TLS

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are security
protocols that provide communications privacy over the Internet. Their pur-
pose is to ensure data confidentiality, message integrity, and authentication.
Thus, eavesdropping, tampering, and message forgery should be prevented.
These protocols are application protocol independent – a higher level protocol
can layer on top of them transparently.

There are several versions of these protocols. SSL is today prohibited
from use by Internet Engineering Task Force (IETF) and it is recommended
to use its successor, TLS. Current version of the TLS protocol, TLS 1.2, is
specified in RFC 5246 [12]. At the time of writing this thesis, there is a
public draft of a standard for TLS 1.3 that has gone through 28 versions. It is
approved now, and some companies have already begun to implement it. The
new version should provide improved security and faster speed due to use of
newer encryption methods and elimination of unnecessary steps in the TLS
handshake.

The TLS protocol is composed of two layers. The lower layer, that is on the
top of some reliable transport protocol (usually the TCP protocol), is the TLS
Record Protocol. Its main purpose is to provide connection security. Such a
connection is private and symmetric cryptography is used for data encryption.
The shared key necessary for this symmetric encryption must be unique for
each connection and is generated from some secret negotiated by another
protocol (for example, the TLS Handshake Protocol). This connection is also
reliable. Integrity of messages is checked using a keyed Message authentication
code (MAC).

The higher layer is the TLS Handshake Protocol. It allows the server and
client to authenticate each other and to negotiate an encryption algorithm
and cryptographic keys before the applications on the client and the server
begin to communicate. It provides authentication of the peers’ identity using
asymmetric cryptography and the negotiation of a shared secret is secure and
reliable. The communication cannot be modified by an attacker without being
detected and the negotiated secret cannot be eavesdropped.

Today, the TLS protocol is essential to keeping content of HTTP mes-
sages private. This is important especially for transmission of user’s creden-
tials. However, there are still many security risks. If a user is redirected to
a fraudulent web page, he may insert his credentials there and provide them
thus unintentionally to an attacker. Phishing attacks are used very often for
this purpose. As TLS certificates are issued to almost any user (including
attackers), a valid certificate is not a guarantee of security.

There are several attacks against the SSL and TLS protocols that have ap-
peared during their existence. Many of them are summarized in RFC 7457 [13].
Matthew Green, a cryptographer and professor at Johns Hopkins University,
has published detailed descriptions of some attacks on his blog [14]. You can

10

1.3. Authentication

find a brief description of chosen attacks in the Appendix B.

1.3 Authentication

Authentication is a process that verifies the identity of a user – who a user
is. Authentication precedes authorization described in Section 1.4. The user
usually provides credentials to an application or a server that are then com-
pared to already known ones9. If the credentials match, the user is successfully
authenticated and is granted authorization for access. HTTP authentication
is defined in RFC 7235 [8].

In HTTP protocol, if a request sent to a server lacks valid authentication
credentials for the target resource, a response with the 401 (Unauthorized)
status code and a WWW-Authenticate header is returned. This header should
contain at least one authentication method (also called authentication scheme,
or authentication type) that should be used to gain access to the resource.
Example of a response can be found below. If the request contains valid
credentials but these are not adequate to gain access to the resource, the
server should respond with the 403 (Forbidden) status code.

HTTP/1.1 401 Unauthorized

Date: Mon, 27 Jul 2009 12:28:53 GMT

WWW-Authenticate: Newauth realm="apps", type=1,

title="Login to \"apps\"", Basic realm="simple"

The WWW-Authenticate header can contain more than one acceptable
authentication method, and each this method can contain a comma-separated
list of authentication parameters. Furthermore, the header itself can occur
several times. A list of HTTP authentication schemes is maintained by IANA
[15].

There is a realm authentication parameter that is used by almost all HTTP
authentication schemes. Its value is an arbitrary string defined by a server. In
combination with the root URI of the server, it defines the protection space.
The protected resources on a server can be partitioned into several protection
spaces, each with its own allowed authentication schemes and own database
of known credentials.

After receiving a 401 (Unauthorized) response, a client should use Au-
thorization header in order to authenticate itself. The value of this header
contains a method of the authentication and credentials of the user. How
the credentials should be encoded prior to the transmission is defined in the
authentication scheme specification.

9It is recommended that only hashes of the passwords are stored and that the passwords
are hashed together with some random data (called salt) that is also stored. There are some
hash functions that are specially designed for key derivation and password hashing – for
example, Argon2, bcrypt, or scrypt.

11

1. Analysis

There is a similar mechanism when sending a request to a proxy in order to
use this proxy. In that case, the 407 (Proxy Authentication Required) status
code is returned and the response contains a Proxy-Authenticate header. A
client identifies itself using a Proxy-Authorization header.

This general HTTP authentication framework does not provide any mech-
anism to maintain confidentiality of the credentials. The HTTP protocol
depends on the security properties of the underlying layers (especially the
transport or session layer) which should provide connection that ensures con-
fidentiality of the headers. For example, the TLS protocol can be used to
secure the connection, as mentioned in the Section 1.2.

An important security consideration is that many HTTP clients (e.g.,
browsers) store authentication information indefinitely. This is especially a
problem if the validity of the authentication information is not limited some-
how – Basic authentication scheme is a good example. In the general HTTP
authentication framework, there is no mechanism for the server how to in-
struct the client to discard this information. However, the expiration and
revocation of the credentials can be specified in the authentication scheme
definition itself. Common circumstances for the expiration or revocation may
include an inactivity of a client for some period of time or a session termination
indication (as a “logout” action).

If the server hosts resources belonging to multiple parties and if they are
hosted under the same root URI, the credentials can also be at risk. Suc-
cessfully authenticated users which requested some resource can use the same
credentials when requesting another resource on the same origin server. This
another resource can be a malicious one and can harvest these valid creden-
tials. Possible mitigation technique is to separate resources by using a different
host name or a port number for different parties.

Servers that implement authentication and need to store users’ credentials
in order to authenticate users should store these credentials in such a way that
even a leak of the stored data does not allow an attacker to easily recover the
credentials. This is especially important in cases when the users are allowed
to choose their own passwords, as they usually tend to choose weak passwords
or to use the same password for different applications. There are some hash
functions recommended especially for password hashing. These hash functions
should be used together with method called “salting the password”. Still, a
leakage or a theft of the database of passwords that are poorly secured is very
serious and frequent problem today.

Users’ passwords should have a reasonable amount of entropy – human-
memorable passwords are usually vulnerable to dictionary attacks indepen-
dently of the authentication algorithm used. Every failed authentication at-
tempt should be logged, since many repeated login failures caused by a sin-
gle client may indicate an attacker that attempts to guess users’ credentials.
However, the server should never log any sensitive information (e.g., entered
passwords in cleartext). Another security problem associated with passwords

12

1.3. Authentication

is that users tend to reuse their passwords for many different applications and
web sites. Thus, if an attacker gains a password of a user in one application,
she is very often able to gain access to other accounts of this user in different
applications.

If an attacker is able to perform the man-in-the-middle attack and to mod-
ify the list of authentication schemes allowed by the server in server response,
then she can add some weak authentication scheme, such as the Basic au-
thentication, to the list and hope that the client will choose this one. If this
happens, the user’s credentials can get exposed to the attacker. Therefore,
the client should always choose the strongest available authentication scheme.
But this is not a flawless solution, as the attacker can also completely replace
all the offered schemes by the weak one and then easily harvest the creden-
tials. A hostile or compromised proxy server can be used to perform such an
attack. To detect these attacks, the user agent can be configured to remember
the strongest authentication scheme offered by the server in the past and if
there will be only weaker options sometime in the future, a warning message
should be thrown. To completely prevent similar attacks, it is recommended
to use the HTTPS protocol.

The Basic authentication scheme is one of the weakest ones, as it trans-
mits user’s credentials in an encoded form. The security level is the same as if
they were transmitted in the plaintext. The Digest authentication scheme uses
hash functions to hide the raw password. However, it is not easy to implement
this authentication scheme correctly and it is vulnerable to offline dictionary
attacks. Thus, it is not commonly used today. As password-based methods
suffer from many security problems, some authentication schemes, such as the
HOBA authentication scheme, aim to avoid them by using some pre-deployed
strong secret keys (e.g., digital signatures). In some cases, the authentication
method also offers authentication of the server. The Mutual and SCRAM
authentication schemes are such examples. There is also the VAPID authen-
tication scheme that is focused on authentication of an application server to
a push service within the Web Push protocol. You can find detailed descrip-
tions of the individual authentication schemes in the following subsections.
The non-standard form-based authentication technique is mentioned at the
end of this section. It is probably the most common authentication technique
used on the Internet today. The main reason may be that it allows to control
appearance and exact behaviour during the authentication process unlike the
default browser pop-up dialogues used by the HTTP authentication schemes.

1.3.1 Basic Authentication

Basic authentication is a simple HTTP authentication scheme defined in the
RFC 7617 [16]. In this scheme, the user’s credentials (both the user name
and the password) are transmitted together in an encoded form using Base64
encoding.

13

1. Analysis

Base64 encoding is a method that represents binary data in form of an
ASCII string. Every character of the output string represents 6 bits of the
input binary data. As encodings do not serve to ensure the confidentiality and
can be reverted without knowledge of any secret data, this scheme cannot be
considered secure unless it is used with some other method that ensures the
confidentiality – for example the TLS protocol mentioned above.

The exact name of this scheme used in requests and responses is “Basic”.
A server should always append the realm authentication parameter and op-
tionally also the charset authentication parameter in the WWW-Authenticate
header. A client processes user’s credentials in the following form:

1. The user name is concatenated with a single colon character (“:”) and
the password.

2. Then, the output string from the first step is encoded into an octet
sequence – the default encoding is not defined.

3. Finally, the byte data generated in the second step is encoded into a
string of ASCII characters using the Base64 encoding.

In this authentication scheme, user’s credentials must not contain any
control10 characters and the user name must not contain a colon character.
Text before the first colon is supposed to be the user name and the text after
it is supposed to be the password during validation of the credentials by the
server. An example of the Authorization header used by the client for user
name "user" and password "password" is shown below.

The following example demonstrates a communication between a client
and a server. The client requests some resource. The server responses with
a 401 response, meaning that the client has to authenticate itself in order
to obtain the resource from the server. The client finally authenticates itself
using the Basic authentication scheme.

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="example"

Client Request:

GET /resource HTTP/1.1

10Non-printing characters, also called control characters, do not represent any written
symbol. For example, a null character, a line feed character, or a horizontal tab character
are examples of control characters in ASCII that are still in common use today.

14

1.3. Authentication

Host: www.example.com

Authorization: Basic dXNlcjpwYXNzd29yZA==

Server Response:

HTTP/1.1 200 OK

...

It is supposed that resources in the same folder (or in sub-folders of this
folder) are within the same protection space and a client may send the corre-
sponding Authorization header together with a request for resource without
waiting for the 401 response from the server.

As for the security aspects of this authentication scheme, the most serious
security problem is the previously mentioned way of processing the user’s
credentials. As the credentials are only encoded, the security level is the same
as if they were transmitted over the network in the cleartext. If there is no
additional security measure, such as HTTPS, the credentials can be easily
overheard by an attacker. Thus, the scheme itself is not sufficient to protect
sensitive data.

This scheme is also vulnerable to spoofing the credentials by a hostile
server. The user can be misled to believe that he is connecting to a target
server containing required resources, and instead, he is connecting to the hos-
tile server. This server can request user’s credentials and store them for later
use.

Basic authentication can be used as identification of a user for some in-
sensitive purposes – for example, for gathering of statistics. In this case, the
user’s credentials should be created by the server and the user should not
have the option to change his password, as many users tend to use the same
password for multiple different applications.

Basic authentication scheme can also be used with one-time passwords.
In such a case, capturing of the credentials is not so problematic, as the
credentials should not be valid anymore after the first use of them. But still,
an attacker performing a man-in-the-middle attack can misuse the credentials.

1.3.2 Bearer Authentication

Bearer authentication, sometimes also called token authentication, is an HTTP
authentication scheme defined in the RFC 6750 [17]. This scheme makes use
of security tokens, called bearer tokens, which are strings usually generated
by an authorization server. A bearer token is an access token that has the
property that anybody who owns the token (a “bearer”) can use it in any way
as any other bearer can. The bearer does not have to prove possession of any
cryptographic key to use the bearer token.

The Bearer authentication scheme was defined within the OAuth 2.0 pro-
tocol described in the Subsection 1.4.2. It is probably the most common way

15

1. Analysis

of using the OAuth 2.0 API.

Clients firstly need to obtain an approval of the resource owner, also called
an authorization grant. Bearer tokens are then issued to the clients by an
authorization server in response to the acquired authorization grant. The
clients can use the access token to gain access to the resource stored on a
resource server. The resource server validates the access token, and if the
token is valid, the server returns the requested resource to the clients.

The access token replaces various authorization constructs (e.g., user’s
credentials) and can have different validity periods. The exact content of the
token is not specified in the previously mentioned RFC document; the token
can contain, for example, some authorization information. An advantage of
this approach is that the resource server does not need to implement a wide
range of authentication schemes but only the Bearer authentication scheme.

There are three standardized methods of sending the bearer token to the
resource server. Clients must not use more than one of these methods at once.
The most common method is sending the access token within the Authoriza-
tion request header. Another method is sending the token in the request
body as a parameter called “access token”. This method is used in cases when
browsers do not have access to the Authorization request header. The last
method is sending the token within the request URI as the “access token”
parameter. In this case, the client should also send the Cache-control header
containing the “no-store” option. This method should not be used unless the
previous methods are not feasible.

The exact name of this scheme used in requests and responses is “ Bearer”.
A server may append the realm authentication parameter or the scope au-
thentication parameter in the WWW-Authenticate header. If a client request
contained an access token and the authentication failed, the server should in-
clude the error parameter to provide the reason why the request was rejected.
In such a case, also the error description parameter with a human-readable
explanation and the error uri parameter can be appended.

The following example demonstrates a communication between a client
and a resource server. The client requests some resource. The server responses
with a 401 response, meaning that the client has to authenticate itself in order
to obtain the resource from the server. The client then authenticates itself
using the Bearer authentication scheme. The bearer token is however not
valid and the resource server returns an error. The client finally authenticates
itself using a new, valid token.

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 401 Unauthorized

16

1.3. Authentication

WWW-Authenticate: Bearer realm="example"

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Authorization: Bearer qT-6+A1j.9/4KpS

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer realm="example",

error="invalid_token",

error_description="The access token expired"

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Authorization: Bearer Ut8_7Df49+73a4v

Server Response:

HTTP/1.1 200 OK

...

There are multiple security considerations related to this authentication
scheme. The bearer tokens may be misused and may include some sensitive
information. Thus, it is necessary to protect them from disclosure during any
transport and when saved in any storage. When sending the token in a request
or a response, it is necessary to use an additional security protocol, such as
TLS, with this authentication scheme.

Another possible security issue can be caused by sending the access token
within the URI parameter. Depending on the server or the client, the full
URI including the parameters may be logged – in server’s log files, browser’s
history, etc. If an attacker gets access to these records, she will be able to
find out the used access token and potentially to reuse it. The page URI is
also sent in the Referer header of all requests made by that page, even if the
requested resources are third party resources. The access token can be thus
disclosed this way.

Depending on the way how the tokens are generated, an attacker may try
to generate a bogus token or to modify some existing token (for example, to
extend the validity period). Thus, she may be able to gain access to a resource
without having appropriate privileges. The attacker may also attempt to
simply reuse some access token that has been already used in the past (token
replay attack). Another possible attack is to use some token to gain access
to a resource on a different resource server that incorrectly supposes that the
token was generated for it (token redirect attack).

17

1. Analysis

Many security issues listed above can be mitigated by protecting the con-
tent of the access token. A digital signature or a Message Authentication Code
(MAC) can be used for that. The integrity protection must be strong enough
to prevent an attacker from modifying the token.

A reference to authorization information can be used instead of encoding
the information itself into the token. In this case, the references must be
infeasible to guess. To prevent the token redirect attack, it is recommended to
include identification of the resource server in the token. To prevent or limit
the token replay attack, the validity period of the token must be limited. It is
recommended to restrict the validity period to one hour or less.

The authorization server and the resource server must implement TLS
in order to protect confidentiality and integrity of the token (to prevent its
disclosure or modification). The client must verify the identity of the resource
server by validation of the TLS certificate chain and check of the list of revoked
certificates11. Otherwise, a counterfeit server can request the access token and
use it for gaining inappropriate access – similarly as in the case of the Basic
authentication.

If cookies are used to store the bearer tokens, there is an additional security
concern. The token must not be stored in a cookie that can be sent in the
cleartext over HTTP or stolen using a cross-site scripting attack.

1.3.3 Digest Authentication

Digest authentication is another authentication scheme specified in the RFC
7616 [18]. A server response contains a nonce value, an arbitrary number
that should be used only once. A valid client request contains a digest of
the user name, the password, the received nonce value, the HTTP method,
and the requested URI. Hash functions are used to create the digest – user’s
credentials are not transmitted in the cleartext as in the Basic authentication
scheme. The length of the digest depends on the used algorithm and the digest
is represented by a hexadecimal string.

The exact name of this scheme used in requests and responses is “Digest”.
A server may append the realm authentication parameter and many other pa-
rameters in the WWW-Authenticate header. The nonce parameter contains a
string that should be uniquely generated each time the WWW-Authenticate
header is used. Usually it is a Base64-encoded string or a hexadecimal string.
The exact content is not specified and may depend, for example, on the cur-
rent time, IP address of the client, ETag12 of the resource, and many other
factors. Validity period of the nonce can be limited by the server. The opaque
parameter is a string of data generated by the server. The client should return

11Certificate Revocation List (CRL) is a list of issued certificates that are not valid
anymore. A possible reason could be a disclosure of the corresponding private key.

12The ETag included in the nonce value prevents a replay attack for an updated version
of the resource.

18

1.3. Authentication

the value of this parameter within the Authorization header. The stale au-
thentication parameter is optional and describes if the used nonce value was
invalid or if the user’s credentials were invalid. The algorithm parameter indi-
cates an algorithm, a hash function, that should be used to create the digest.
The qop parameter stands for the “quality of protection” – the value “auth” in-
dicates authentication and the value “auth-int” indicates authentication with
integrity protection.

The client should respond with the Authorization header. The values of the
algorithm and opaque parameters must be the same as those sent by the server.
The response parameter is used to prove that the client knows the password
– this parameter contains the computed digest. The username parameter
contains the user name either in the plaintext or rather as a hexadecimal
hash code. The qop parameter must contain one of the options offered by the
server. The compulsory cnonce parameter is an ASCII string provided by the
client. It provides mutual authentication, message integrity protection, and
avoids chosen plaintext attacks. The compulsory nc parameter stands for the
“nonce count” and indicates the overall number of requests made with the
same nonce. The uri parameter contains the URI address of the requested
resource.

After the server receives a request from the client with Authorization
header, it needs to check the validity of the digest. It must perform exactly the
same operation as the client did and compare the result to the received digest.
Because of the way the digest is computed (defined in the RFC 7616 [18]), the
server does not need to know the user’s password in cleartext.

The server can include multiple WWW-Authenticate headers using Digest
authentication in the response. In such a case, each one of these headers must
use a different algorithm. The first header must contain the most preferred
algorithm, the last one the less preferred algorithm. The following algorithms
are defined: SHA2-256, SHA2-512/256, and MD5. The MD5 algorithm is not
recommended and is defined only for backward compatibility, as MD5 hash
function is considered to be broken.

The following example demonstrates a communication between a client
and a server. It was taken from the previously mentioned RFC 7616 [18].
The client requests some resource. The server responses with a 401 response,
meaning that the client has to authenticate itself in order to obtain the re-
source from the server. Two possible algorithms are proposed by the server.
The client finally authenticates itself using the Digest authentication scheme
with the SHA2-256 algorithm.

Client Request:

GET /dir/index.html HTTP/1.1

Host: www.example.org

Server Response:

19

1. Analysis

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

realm="http-auth@example.org",

qop="auth, auth-int",

algorithm=SHA-256,

nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v",

opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"

WWW-Authenticate: Digest

realm="http-auth@example.org",

qop="auth, auth-int",

algorithm=MD5,

nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v",

opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"

Client Request:

GET /dir/index.html HTTP/1.1

Host: www.example.org

Authorization: Digest username="Mufasa",

realm="http-auth@example.org",

uri="/dir/index.html",

algorithm=SHA-256,

nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v",

nc=00000001,

cnonce="f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ",

qop=auth,

response="753927fa0e85d155564e2e272a28d1802ca10daf449

6794697cf8db5856cb6c1",

opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"

Server Response:

HTTP/1.1 200 OK

...

Digest authentication should always be used over a secure channel like
the HTTPS channel using the TLS protocol. Otherwise, man-in-the-middle
attacks are quite easy to perform and the confidentiality of the message content
is not ensured.

The server needs to store some data derived from the user’s credentials
in order to be able to authenticate the user. For Digest authentication, a
user name and a hash of concatenated user name, realm, and password are
sufficient to be stored in the password file. This approach has one advantage
and one disadvantage. As for the advantage, the user’s password does not
need to be stored in plaintext and if the password file is compromised, an
attacker has to conduct a brute-force attack or a dictionary attack to obtain

20

1.3. Authentication

the user’s password. The disadvantage is that if an attacker gets data from
the password file, she immediately gains access to any document on the server
that is in the corresponding realm. The user name together with the hash
of the user name, the realm, and the password stored in the password file
is sufficient to authenticate the user. Thus, the attacker is able to spoof his
identity. However, as the realm is part of the stored hash, the attacker should
not be able to gain access to documents in other realms. There are some
security consequences of this – the password file must be well protected and
the realm string should be unique (e.g., a name of the host can be used).

In this scheme, a client does not have any option how to authenticate the
server. Nevertheless, the server is able to authenticate the client and in the
case of the Digest authentication, the method is much more secure than in
the case of the Basic authentication, as the user name and the password is
protected by a hash function. Even if there is no HTTPS in use, if the used
hash function is secure enough, the password should be protected.

As for the nonce parameter, its value is generated by the server and can
be restricted in many ways. For example, the server may generate a different
nonce value for every client, for a particular resource (and its versions), or
after some period of time. These restrictions strengthen the overall security
and prevent some types of attacks (e.g., replay attacks). On the other hand,
they can be very performance consuming and may lead to some failures. For
example, if there is a new nonce value in every single response, authentication
failures will appear for any pipelined requests.

Since the URI address of the resource is incorporated into the digest, replay
attacks for GET requests are very limited. If an attacker overhears some client
request, she will be only able to exploit its information to obtain the same
resource that was demanded by the original request. However, in such a case,
it is very likely that if she can overhear client requests, she can also overhear
server responses. Thus, she will be able to eavesdrop the requested resource
and will not need to perform the replay attack to get it. This is a very different
situation from Basic authentication. In the Basic authentication scheme, if
the attacker is able to overhear user’s request together with user’s credentials,
she is able to obtain any resource that is protected by these credentials.

As for the requests that perform some action, the security largely depends
on the algorithm for nonce generation. If the nonce value depends on the
client IP, current time, version of the resource, and server identification, the
replay attacks are very complicated. The attacker must spoof his IP address
and perform the attack before the validity of the nonce expires. To completely
eliminate replay attacks, one-time nonce values can be used.

If the qop parameter equals to the “auth-int”, then the integrity of param-
eters used for the calculation of the WWW-Authenticate and Authorization
header values are protected. Otherwise, they are not. Even if this option is
used, the content of POST and PUT requests itself is not protected. Thus,
this is not a sufficient defence of replay attacks.

21

1. Analysis

The cnonce parameter is used to prevent chosen plaintext attacks. A ma-
licious server or an attacker performing the man-in-the-middle attack may
arbitrarily choose a value of the nonce parameter and give it to the client
that will use it for the digest computation and send the digest back to the
malicious entity. In general, the ability to choose some input value makes the
cryptanalysis easier. Even if there is no known method how to exploit that for
the hash functions offered by this scheme at the moment, the creators wanted
to make these attacks even much harder by introducing the cnonce parameter.
Value of this parameter is not controlled by the attacker and is used as an
additional input into the hash function.

The cnonce parameter also prevents a dictionary attack when the attacker
chooses one particular nonce value, computes the expected client’s digest for
this nonce value and many different common passwords, and stores the values
in a database. If there is no cnonce parameter in use, she can use the man-in-
the-middle attack to change the server’s nonce value to the one she used for
the precomputation and compare the digest computed by the client with those
stored in her database. If there is a match, then the corresponding password
to the matching digest is the user’s password.

Another possible attack prevented by the cnonce parameter is the attack
in which the attacker gathers digests computed by many different clients in
response to the same nonce value. The attacker then tries to find some set
of passwords within the harvested set of clients’ digests. In this attack, the
attacker tests a few passwords for many different clients, as opposed to the
previous attack where she tested many different passwords for a single client.

A chain is only as strong as its weakest link. The security of this scheme
largely depends on the randomness of the nonce and cnonce parameters.
Therefore, if there is some weak random generated in use, then the proto-
col is not secure.

There is also a possibility of denial-of-service attacks. If there is some
malicious client that sends out many unauthenticated requests, the server
creates many new structures for storing the nonce value, etc. Thus, some
resources may get depleted. There are numerous solutions for mitigation of
these attacks. For example, only one structure may be generated for one
particular client.

1.3.4 HTTP Origin-Bound Authentication (HOBA)

HOBA authentication is an HTTP authentication method based on digital
signatures that is specified in the RFC 7486 [19]. It is still under examina-
tion. Its main goal is to offer an authentication scheme that avoids usage
of passwords and security problems related to them. HOBA also adds some
useful features such as a logout functionality. A client generates a new key
pair, a public key and a private key, for every server and realm on which it

22

1.3. Authentication

authenticates. Note that it is not necessary to use public key certificates with
their overhead, as the key pair itself is sufficient for this scheme.

A server binds the Client Public Key (CPK) with a user’s identifier (e.g.,
a user name). Of course, multiple Client Public Keys may be used by a user
– one for every client (e.g., browser) he uses. As the computation of a digital
signature is quite expensive operation, HOBA defines a way for servers to
determine a challenge of sufficient length. In this scheme, the client has an
option to renew the challenge at any time by fetching it from the server.

The exact name of this scheme used in requests and responses is “HOBA”.
A server must append the challenge and the max-age authentication parameter
in the WWW-Authenticate header. The challenge parameter is a string that
should be signed by the client in its request. To prevent replay attacks, its
value must be unique for every 401 HTTP response. The max-age parameter
specifies for how many seconds the challenge value is valid. If set to zero, then
it is valid only for one signature. The realm parameter is optional. For the
client, there is only one available parameter, the result parameter.

The HOBA scheme may be used with applications in the following way.
The user is firstly redirected to a page with HOBA authentication. After
he successfully authenticates, a new session cookie is set by the server. This
cookie is used for further interactions with the application. This is a common
way of session management today. There is however one security concern;
cookies are basically equivalent to the bearer tokens that are weaker that the
HOBA scheme.

General process of HOBA registration and authentication is not compli-
cated. A client connects to a server and sends a request. The server responses
with a WWW-Authenticate header that includes the HOBA authentication
scheme together with parameters, such as the challenge parameter. If the
client has never communicated with the server, a new key pair is generated
by the client. The Client Public Key is sent to the server which attaches the
key to the particular user name. The client then uses the parameters obtained
in the server response to compute the client-result string which is sent in the
next request as the result authentication parameter within the Authorization
header. The server checks the value of the result parameter. If the value is
valid (the signature can be verified by the client’s public key stored on the
server), a session cookie indicating that the client is authenticated is usually
returned by the server.

Every client that uses HOBA authentication maintains pairs of host names
(web origins) and realms. For every such pair, user’s credentials, the key pair,
are stored. Upon receiving a server response, the client combines the web
origin, the realm, a value of the challenge parameter, the user name, and
a client generated nonce and signs it with his private key corresponding to
the particular Client Public Key. The structure that is signed by the client
contains also lengths of the individual items to prevent ambiguity. The client-
result string is a string compound of these parameters separated by a dot:

23

1. Analysis

the user name, the server’s challenge, the nonce, and the signature – all the
parameters encoded using Base64URL encoding.

The following example demonstrates a communication between a client and
a server. At the beginning, the used parameters are mentioned. The example
was taken from the previously mentioned RFC 7486 [19]. The client requests
some resource. The server responses with a 401 response, meaning that the
client has to authenticate itself in order to obtain the resource from the server.
The client finally authenticates itself using the HOBA authentication scheme.

Client’s Public Key (maintained by the client and the server):

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAviE8fMrGIPZN9up94M28

6o38B99fsz5cUqYHXXJlnHIi6gGKjqLgn3P7n4snUSQswLExrkhSr0TPhRDuPH_t

fXLKLBbh17ofB7t7shnPKxmyZ69hCLbe7pB1HvaBzTxPC2KOqskDiDBOQ6-JLHQ8

egXB14W-641RQt0CsC5nXzo92kPCdV4NZ45MW0ws3twCIUDCH0nibIG9SorrBbCl

DPHQZS5Dk5pgS7P5hrAr634Zn4bzXhUnm7cON2x4rv83oqB3lRqjF4T9exEMyZBS

L26m5KbK860uSOKywI0xp4ymnHMc6Led5qfEMnJC9PEI90tIMcgdHrmdHC_vpldG

DQIDAQAB

-----END PUBLIC KEY-----

Origin: https://example.com:443

User Name: vesscamS2Kze4FFOg3e2UyCJPhuQ6_3_gzN-k_L6t3w

Server’s Challenge: pUE77w0LylHypHKhBqAiQHuGC751GiOVv4/7pSlo9jc=

Signature Alg.: RSA-SHA256

Client’s Nonce: Pm3yUW-sW5Q

Signature:

VD-0LGVBVEVjfq4xEd35FjnOrIqzJ2OQMx5w8E52dgVvxFD6R0ryEsHcD31ykh0i

4YIzIHXirx7bE4x9yP-9fMBCEwnHJsYwYQhfRpmScwAz-Ih1Hn4yORTb-U66miUz

q04ZgTHm4jAj45afU20wYpGXY2r3W-FRKc6J6Glv_zI_ROghERalxgXG-QVGZrKP

tG0V593Yf9IPnFSpLyW6fnxscCMWUA9T-4NjMdypI-Ze4HsC9J06tRTOunQdofr9

6ZJ2i9LE6uKSUDLCD2oeEeSEvUR--4OGtrgjzYysHZkdVSxAi7OoQBK34EUWg9kI

S13qQA43m4IMExkbApqrSg

Client Request:

GET /resource HTTP/1.1

Host: example.com

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: HOBA

max-age=0,

challenge="pUE77w0LylHypHKhBqAiQHuGC751GiOVv4/7pSlo9jc="

24

1.3. Authentication

Client Request:

GET /resource HTTP/1.1

Host: example.com

Authorization: HOBA

result="vesscamS2Kze4FFOg3e2UyCJPhuQ6_3_gzN-k_L6t3w.pUE7

7w0LylHypHKhBqAiQHuGC751GiOVv4/7pSlo9jc=.Pm3yUW-sW5Q.VD-

0LGVBVEVjfq4xEd35FjnOrIqzJ2OQMx5w8E52dgVvxFD6R0ryEsHcD31

ykh0i4YIzIHXirx7bE4x9yP-9fMBCEwnHJsYwYQhfRpmScwAz-Ih1Hn4

yORTb-U66miUzq04ZgTHm4jAj45afU20wYpGXY2r3W-FRKc6J6Glv_zI

_ROghERalxgXG-QVGZrKPtG0V593Yf9IPnFSpLyW6fnxscCMWUA9T-4N

jMdypI-Ze4HsC9J06tRTOunQdofr96ZJ2i9LE6uKSUDLCD2oeEeSEvUR

--4OGtrgjzYysHZkdVSxAi7OoQBK34EUWg9kIS13qQA43m4IMExkbApq

rSg"

Server Response:

HTTP/1.1 200 OK

...

The client has possibility to inform the server that it wishes to log out. To
do so, it sends a POST request to a special, registered URL ".well-known/

hoba/logout". In that case, the server should delete or invalidate the session
cookie and the client should also delete it.

The client can request a new challenge from the server by sending a POST
request to a registered URL ".well-known/hoba/getchal". If successful, the
server sends a new HOBA challenge within the response body. This allows
for pre-calculation of signatures and can help with making the user interface
more responsive.

The HOBA scheme does not offer a way how to invalidate a key pair (how
to delete the user’s Client Public Key from the server). This option is useful
when the user’s private key gets disclosed or is stolen. This mechanism can
be implemented at the application layer.

Registration of a new client must be secured, as registering own Client
Public Key with someone else’s account would be unacceptable. Thus, all the
parameters, user names, and other values generated by the server must be
infeasible to guess. This requires a good random generator.

If the max-age parameter has a non-zero value, replay attacks are possible
within the time window specified by its value – the situation is very similar to
the Digest and Bearer authentication. It is therefore wise to reduce the value
of the max-age parameter as much as possible. More than a few minutes is
usually not a justified choice. Servers can attempt to detect the replay attacks
and react to them by sending a new challenge value within a 401 HTTP
response.

25

1. Analysis

As the HOBA scheme does not provide confidentiality or integrity of the
message body and the header fields, it is highly recommended to use an ad-
ditional mechanism, as the TLS protocol, together with this authentication
scheme. It is important to protect the user name against attackers, as it usu-
ally does not change over time. Furthermore, if a session cookie is used, it is
necessary to protect its value.

Another security consideration concerns a way how to store and manage
the key pairs generated by the client. A user should have a possibility to set
a certain amount of time after which a particular key pair is deleted by the
client automatically or to delete the key pair anytime he decides to. Also, the
keys have to be protected against other users in some appropriate way.

The challenge parameter must be infeasible to guess, should have at least
128 bits, and should be indistinguishable from a random string. As it is sent
in the server response and returned by the client, there is no necessity to store
the value on the server. However, in such a case, some reliable mechanism for
checking the validity of the challenge has to be implemented. For example,
the challenge may be an encrypted string of a specific format that is decrypted
and checked by the server after being returned by the client.

1.3.5 Mutual Authentication

Mutual authentication is an authentication scheme that provides both the au-
thentication of a client by a server and the authentication of a server by a
client. This authentication protocol is password-based and assures the user
that the particular server knows his encrypted password. A detailed specifi-
cation can be found in the RFC 8120 [20]. It is still under examination.

This scheme has two important features that contribute to the overall
security. Although this scheme is based on passwords, there is no password
information exchanged during the communications. Thus, there is no possibil-
ity of sniffing the password (as in the case of the Basic authentication), offline
dictionary attacks are prevented, and the user’s password is not divulged even
if some phishing website is used. The second feature is that the server also
owns its valid credentials in order to successfully authenticate. Thus, the
client can always check the identity of the server and the attacks performed
using a counterfeit server are prevented.

There are three types of messages sent between the client and the server.
First type includes messages that are sent by the server to instruct the client to
start mutual authentication. These are called authentication request messages.
Second type includes messages that are used by both peers for sharing of a
cryptographic secret. These are called authenticated key exchange messages.
The last group includes messages used by both peers for verification of the
mutual authentication. These are called authentication verification messages.
The messages are used in the order in which they are mentioned. Firstly, an
authentication request message is used by the server to start the authentication

26

1.3. Authentication

protocol. Then, authenticated key exchange messages are used to perform
authentication and to share the secret. Finally, authentication verification
messages are used to verify the identity of both peers.

The exact name of this scheme used in requests and responses is “Mutual”.
The server uses two headers – the WWW-Authenticate header is used in re-
sponses with a 401 status code and the Authentication-Info header is used in
all other responses. The client uses the Authorization header.

The authentication request messages are used by the server. They should
always have a 401 status code and contain the WWW-Authenticate header
with many available mandatory or obligatory authentication parameters. The
algorithm parameter specifies the authentication algorithm to be used. Ac-
ceptable algorithms are defined in a separate RFC document – discrete-logari-
thm or elliptic-curve settings are used together with hash functions. The val-
idation parameter specifies the method of host validation. Acceptable values
are “host” for hostname validation, “tls-server-end-point” for TLS endpoint
(certificate) validation, and “tls-unique” for TLS shared-key validation. The
realm parameter is mandatory. The reason parameter describes a possible
reason for the failed authentication. Description of some available parameters
is omitted.

The authenticated key exchange messages used by the client contain the
Authorization header. The algorithm, validation, and realm parameters must
be the same as those received from the server. The mandatory user parameter
contains a user name. The kc1 parameter contains a client-side key exchange
value which depends on the algorithm used.

The authenticated key exchange messages used by the server should have a
401 status code and contain the WWW-Authenticate header. The algorithm,
validation, and realm parameters must be the same as those received from the
client. A value of the sid parameter is a session identifier which is a random
integer. The ks1 parameter contains a server-side key exchange value which
depends on the algorithm used.

The authentication verification messages used by the client contain the
Authorization header. The algorithm, validation, and realm parameters must
be the same as those received from the server. The sid parameter must contain
the value obtained from the server for the particular realm. The vkc parameter
contains a client-side authentication verification value which depends on the
algorithm used.

The authentication verification messages used by the server contain the
Authentication-Info header and do not have a 401 status code. The sid pa-
rameter must contain the value received from the client. The vks parameter
contains a server-side authentication verification value which depends on the
algorithm used.

The following example demonstrates a communication between a client
and a server. The client requests some resource. The server responses with
a 401 response, meaning that the client has to authenticate itself in order

27

1. Analysis

to obtain the resource from the server. The client then sends a message
with an authenticated key exchange to start the authentication – the user
name and the user password is used for that. The server then checks the
user’s credentials using its password database. If the credentials are valid, it
generates a new session identifier (sid) and sends it together with a server-
side authenticated key exchange value to the client. Both peers then compute
a shared session secret using the authenticated key exchange values. These
match only if both the server and the client use secret credentials generated
from the same password. The session secret will be used in every subsequent
request and response for access authentication. The client then sends a request
with a client-side authentication verification value which is calculated from
the session secret. The server checks its validity and if correct, the client
is successfully authenticated. Otherwise, a 401 HTTP response is returned.
Finally, the server sends its own authentication verification value and the
client checks it. If it has some unexpected value or if the value is not present
at all, the client must not process the rest of the response, as the response is
most likely created by an attacker using the man-in-the-middle attack and a
phishing attack is also possible.

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Mutual realm="example".

...

Client Request:

GET /resource HTTP/1.1

Host: www.example.com

Authorization: Mutual user="john",

kc1="...",

...

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Mutual sid=...,

ks1="...",

...

A "session secret" calculation

Client Request:

28

1.3. Authentication

GET /resource HTTP/1.1

Host: www.example.com

Authorization: Mutual sid=...,

vkc="...",

...

Server Response:

HTTP/1.1 200 OK

Authentication-Info: Mutual vks="..."

...

There are also some alternative courses of the authentication.

• The client may omit the first request and immediately send the request
containing the authenticated key exchange.

• If both peers previously shared a session secret, the client may directly
send the request containing the authentication verification value. The
server either accepts it or sends a 401 response, indicating that the key
is expired and a new key exchange is required.

This protocol, as well as the protocols mentioned above, relies on secu-
rity of the underlying layers. The TLS protocol should be used to provide
data confidentiality and integrity. The protocol itself is secure against passive
eavesdropping and replay attacks.

If the TLS server certificates are reliably verified, the man-in-the-middle
attacks are prevented. Otherwise, there is a threat of rigging the mutually
authenticated content by a JavaScript code (or other similar script) that is
not authenticated by this mechanism.

As this is a password-based protocol, all the security concerns related to
the passwords apply also to it. The user’s passwords must not be disclosed.
In contrast with the Basic authentication, the user’s password is in this au-
thentication protocol safe, even if an attacker uses a counterfeit server or a
phishing web site. The mutual authentication further enables the detection of
such servers and web pages.

The shared session secret also must not be disclosed, as this would lead to
a possibility of session hijacking attack until the session expires.

There is also a possibility of denial-of-service attacks. The server maintains
a table of active session. If there is some malicious client that sends many
requests for the key exchange, the server creates many new sessions. Thus,
some resources may get depleted. There are many solutions how to mitigate
these attacks. For example, number of pending key exchange requests made
by one client may be limited, a minimal time delay between two key exchange
requests made by one client may be set, or a time limit for validity of the
sessions may be set. However, the situation is better that in the case of the

29

1. Analysis

Digest authentication; in this case, the session is created after the client sends
out his user name and starts a key exchange.

As the password is not directly transported during the communication, it
cannot be sniffed and obtained using an offline dictionary attack. Still, active
dictionary attacks are possible. In these attacks, the attacker sends many
authentication requests, every time trying a different password. The server
may prevent these attacks by limiting the number or rate of unsuccessful
authentication requests.

1.3.6 OAuth Authentication

As OAuth is rather an authorization protocol than an authentication protocol,
its description can be found in the section called Authorization, Subsection
1.4.1.

1.3.7 Salted Challenge Response Authentication Mechanism
(SCRAM)

Salted Challenge Response Authentication Mechanism is a family of authen-
tication mechanisms that are still under examination. Their main purpose
is to provide a more robust way of authentication than in the case of mech-
anisms transmitting a plaintext password13 but with easier implementation
and deployment than in the case of earlier challenge-response authentication
mechanisms14. Specification can be found in the RFC 7804 [21].

This authentication mechanism has several advantages. Information stored
on the server in the password database is not sufficient to impersonate a client
and an attacker has to perform a dictionary attack to get the client’s password.
Furthermore, the information in the database is salted15, so pre-computed
password tables, called rainbow tables, are not applicable for an attacker. This
authentication mechanism also supports mutual authentication and supports
reauthentication requiring only one client request and one server response.

The exact name of this scheme used in requests and responses is a string
“SCRAM-” followed by the name of the underlying hash function in uppercase.
For example, “SCRAM-SHA-256” and “SCRAM-SHA-1” are valid authenti-
cation scheme names. All HTTP servers and clients should implement the
“SCRAM-SHA-256” authentication mechanism for interoperability reasons.

Similarly, as in the case of the Mutual authentication, two headers are
used by the server: the WWW-Authenticate header in responses with a 401

13For example, the Basic authentication
14For example, the Digest authentication
15A salt is random data that is in this case generated by the server. It is used as an

input into a hash function together with the client’s password. It serves as a defence against
dictionary attacks and pre-computed rainbow table attack. Its value is also stored in the
password database.

30

1.3. Authentication

status code and Authentication-Info in other server responses. The realm
parameter is optional and appears only in the first SCRAM server response
and first SCRAM client request. The data parameter is a Base64-encoded
string described below. The sid parameter is a unique session identifier.

The following example demonstrates a communication between a client
and a server. It was taken from the previously mentioned RFC 7804 [21]. The
client requests some resource. The server responses with a 401 response, mean-
ing that the client has to authenticate itself in order to obtain the resource
from the server. Two possible realms are proposed by the server. The client
selects one of the realms and authenticates itself using the SCRAM authenti-
cation scheme with the SHA-256 hash function. The server also authenticates
itself in the last server response.

Client Request:

GET /resource HTTP/1.1

Host: server.example.com

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate:

SCRAM-SHA-256 realm="realm3@example.com",

SCRAM-SHA-256 realm="testrealm@example.com"

Client Request:

GET /resource HTTP/1.1

Host: server.example.com

Authorization:

SCRAM-SHA-256 realm="testrealm@example.com",

data=biwsbj11c2VyLHI9ck9wck5HZndFYmVSV2diTkVrcU8K

Server Response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: SCRAM-SHA-256

sid=AAAABBBBCCCCDDDD,

data=cj1yT3ByTkdmd0ViZVJXZ2JORWtxTyVodllEcFdVYTJSYVRDQWZ

1eEZJbGopaE5sRixzPVcyMlphSjBTTlk3c29Fc1VFamI2Z1E9PS

xpPTQwOTYK

Client Request:

GET /resource HTTP/1.1

Host: server.example.com

Authorization: SCRAM-SHA-256 sid=AAAABBBBCCCCDDDD,

data=Yz1iaXdzLHI9ck9wck5HZndFYmVSV2diTkVrcU8laHZZRHBXVWE

yUmFUQ0FmdXhGSWxqKWhObEYscD1kSHpiWmFwV0lrNGpVaE4rVX

31

1. Analysis

RlOXl0YWc5empmTUhnc3FtbWl6N0FuZFZRPQo=

Server Response:

HTTP/1.1 200 OK

Authentication-Info: sid=AAAABBBBCCCCDDDD,

data=dj02cnJpVFJCaTIzV3BSUi93dHVwK21NaFVaVW4vZEI1bkxUSlJ

zamw5NUc0PQo=

...

The data parameter contains information necessary for the mutual authen-
tication. Its value is a Base64-encoded string that is composed of several fields
depending on the current step.

In the first value of the data parameter in the example above, the client
sends the following encoded string:

n,,n=user,r=rOprNGfwEbeRWgbNEkqO

The first field "n" is a flag denoting that HTTP channel binding is not sup-
ported. The client’s user name ("n=") and a random, unique nonce value
("r=") follows. The server responses with this encoded string:

r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxFIlj)hNlF,

s=W22ZaJ0SNY7soEsUEjb6gQ==,i=4096

The first field ("r=") contains a nonce value generated by the server and
appended to the client’s nonce. The client’s salt ("s=") and a number of
iterations ("i=") is also sent. These fields are necessary for further parameter
generation. The client then sends this string to the server:

c=biws,r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxFIlj)hNlF,

p=dHzbZapWIk4jUhN+Ute9ytag9zjfMHgsqmmiz7AndVQ=

The first field ("c=") contains encoded information about the channel bind-
ing, the second field ("r=") has the same value as in the previous case, and
the last field ("p=") contains the client proof that is necessary for the client
authentication. The server verifies the proof and responds with a 200 response
containing this encoded string:

v=6rriTRBi23WpRR/wtup+mMhUZUn/dB5nLTJRsjl95G4=

It contains only one field, the server verifier ("v="), that enables the client
to authenticate the server. Exact formulas for computation of the proof and
verifier fields can be found in the RFC document.

If an attacker is able to sniff messages (e.g., there is no HTTPS in use),
then she is able to perform offline dictionary or brute-force attacks to recover
the client’s password. This may be problematic especially when some weak

32

1.3. Authentication

hash function, such as MD5, is used. The complexity of the password and
increasing iteration count improves the security. A similar situation occurs if
the password database is stolen. In such a case, the utilized salt makes the
attacks more difficult – a separate attack is necessary for every single entry in
the database.

As long as the used password, hash function, salt, or iteration count is
unique across the servers, the original server is not able to impersonate any
of his clients.

The selection of the used hash function is not directly specified. If possible,
the client should choose the strongest available hash function to secure the
authentication process and protect the confidentiality of his password as much
as possible. On the other hand, the computational difficulty is also often taken
into account.

There is a possibility of denial-of-service attacks on clients. A hostile server
or another attacker able to modify messages can change the iteration count
to some big value. That may lead to depletion of computing resources of the
client. As a defence, the client may choose a maximum admissible iteration
count and fail the authentication if the number supplied by the server is higher.

1.3.8 Voluntary Application Server Identification
Authentication (VAPID)

VAPID authentication is a mechanism focused on authentication of an ap-
plication server to a push service. Today, many applications use Web Push
protocol to deliver messages to a user automatically, without being requested
by the user. This behaviour can be used for example for notifications. In
the Web Push protocol, three different roles are used: an application server,
a push service, and a client (a user agent or an application). An application
server can send a message, called a push message, at any time to a push service
that ensures reliable delivery to the target client. The VAPID authentication
protocol was defined in the RFC 8292 [22] and enables the application servers
to authenticate themselves to the push services to better distinguish between
legitimate and bogus traffic.

The server identity has many applications. The push service can use the
stable identity of the application server to create a behavioural model and to
detect deviations from it. A software error or an attack may cause a significant
deviation – in this case, it may be desirable to inform an application server
administrator about the current situation. The server identity can be also used
for message priority determination. The clients are able to subscribe to some
application servers using their identifiers, while not to the others. Besides the
server identity, some additional information, such as contact information, can
be provided by the application server.

In this authentication method, the application server needs to generate and
store a single key pair that can be used for the Elliptic Curve Digital Signature

33

1. Analysis

Algorithm. When sending messages to the push service, the server includes
a JSON Web Token that is signed using the private key. The token includes
information about the origin address and expiration time. The validity period
must not be greater than 24 hours. If the signature or some parameter in the
token is invalid, the push service may reject the request (a 403 (Forbidden)
status code should be returned) and the information from the request must
not be used.

The exact name of this scheme used within the Authorization header is
“vapid”. There are two possible authentication parameters. The t parameter
contains the signed token which is composed of three Base64-encoded parts
separated by a dot character – a token header, a token payload (body), and
the signature. The k parameter contains the corresponding Base64-encoded
public key of the application server in uncompressed form that serves as a
stable identifier of the server.

The following example demonstrates a message sent by an application sever
to a push service. It was taken from the RFC document mentioned above.

Application Server Request:

POST /p/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1

Host: push.example.net

TTL: 30

Content-Length: 136

Content-Encoding: aes128gcm

Authorization: vapid

t=eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJhdWQiOiJodHRwc

zovL3B1c2guZXhhbXBsZS5uZXQiLCJleHAiOjE0NTM1MjM3NjgsInN

1YiI6Im1haWx0bzpwdXNoQGV4YW1wbGUuY29tIn0.i3CYb7t4xfxCD

quptFOepC9GAu_HLGkMlMuCGSK2rpiUfnK9ojFwDXb1JrErtmysazN

jjvW2L9OkSSHzvoD1oA,

k=BA1Hxzyi1RUM1b5wjxsn7nGxAszw2u61m164i3MrAIxHF6YK5h4SDY

ic-dRuU_RCPCfA5aq9ojSwk5Y2EmClBPs

{ encrypted push message }

As mentioned before, the t parameter consists of three parts separated by a
dot character – a token header, a token payload, and a signature. The encoded
and decoded first two parts can be found here:

Token Header Encoded:

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9

Token Header Decoded:

{"typ":"JWT","alg":"ES256"}

Token Payload Encoded:

eyJhdWQiOiJodHRwczovL3B1c2guZXhhbXBsZS5uZXQiLCJleHAiOjE0NTM

34

1.3. Authentication

1MjM3NjgsInN1YiI6Im1haWx0bzpwdXNoQGV4YW1wbGUuY29tIn0

Token Payload Decoded:

{"aud":"https://push.example.net","exp":1453523768,

"sub":"mailto:push@example.com"}

In the Web Push protocol, URI addresses of the push service intended for
receiving requests from application servers should stay secret. The VAPID
authentication protocol adds another layer of security – the push message is
processed only if it includes a valid signed token.

There is a possibility of replay attacks if an attacker gains a token that is
still valid. Thus, the HTTPS protocol should be used with this authentication
method to provide confidentiality and to prevent eavesdropping. The restricted
validity period of the token reduces the impact of similar attacks.

The contact information provided by application servers is not proven and
may be falsified before inserted into the token. It is important to keep it in
mind when handling some critical security issues.

As signature validation is a computationally intensive operation, there
is a threat of denial-of-service attacks. It is recommended that application
servers reuse tokens which permits the push service to utilize a cache of already
validated signatures.

1.3.9 Form-based Authentication

Form-based authentication is a technique used on the Internet that makes
use of a web form into which the user enters his credentials. Actually, this
non-standardized technique generally does not use the HTTP authentication
framework at all and is not an HTTP authentication scheme. However, it
is probably the most common authentication technique used on the Internet
today. According to some sources, over 90% of web applications use this
mechanism [23]. That is the reason why it is mentioned in this thesis.

In general, the term “form-based authentication” refers to any authentica-
tion technique that uses a form for credentials, no matter how the credentials
are transmitted. For example, they can be transmitted using the HTTP Au-
thorization header and Basic authentication scheme. More specifically, the
term “form-based authentication” is used for an HTML form that sends user’s
credentials in a message body using the HTTP protocol and POST method.
In the following description, the term “form-based authentication” is used in
this sense.

The whole process consists of several steps. First, a user requests some
resource via the HTTP protocol and because he is not authenticated, he is
redirected to a login page containing the login form. Second, the user fills in
his credentials and sends them to the server. The credentials are sent in the
plaintext within the POST request body – usually as POST parameters or
within some structure, such as a JSON structure. Finally, the server verifies

35

1. Analysis

the credentials and if valid, creates a new session identifier which is trans-
mitted in the form of an HTTP cookie. This cookie identifies the user in
the subsequent requests. Usually, the user is redirected back to the requested
resource.

The following example demonstrates a communication between a client
and a server during the whole process. POST parameters are used for the
transmission of the credentials.

Client Request:

GET /resource.html HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 302 Found

Location: https://www.example.com/loginpage.html

Client Request:

GET /loginpage.html HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 200 OK

...

<form method="post" action="login">

<input type="text" name="username">

<input type="password" name="password">

<input type="submit" value="Login">

</form>

...

Client Request:

POST /login HTTP/1.1

Host: www.example.com

username=user123&password=mypassword123

Server Response:

HTTP/1.1 302 Found

Location: https://www.example.com/resource.html

Set-Cookie: SESSIONID=3ab58263c9275fa4274bc927d2694b64;

Expires=Fri, 13 Apr 2018 21:18:00 GMT; Secure; HttpOnly

Client Request:

36

1.4. Authorization

GET /resource.html HTTP/1.1

Host: www.example.com

Cookie: SESSIONID=3ab58263c9275fa4274bc927d2694b64

Server Response:

HTTP/1.1 200 OK

...

This authentication method is not much secure, as it transmits user’s
credentials in the plaintext and its security completely depends on the security
of the underlying layers. Thus, HTTPS should be always employed when using
this method. A phishing attack may be used by an attacker to steal user’s
credentials.

1.4 Authorization

Authorization is a process that verifies whether some user has access to some
resource or whether he is permitted to perform some operation (for example,
deleting or modifying some resource). Authorization should not be confused
with access control which is a process of enforcing defined security rules for a
particular resource.

There are not many authorization protocols used in the HTTP protocol
today. The reason is that the most common process for authorization in the
Internet does not use the HTTP protocol directly. Instead, some authentica-
tion method is used to verify the user’s identity. The identity itself is then
used to determine whether the user is authorized to perform an action or re-
quest a resource. The user is usually identified by user’s credentials contained
in the Authorization header or by a session identifier. For more information
about session identifiers, refer to the Section 1.5.

The OAuth protocol, which is used for third-party access authorization, is
described in the following subsections.

1.4.1 OAuth 1.0 Authorization

In OAuth 1.0 protocol, three different roles are used: a client, a server, and
a resource owner. This protocol provides a method for a resource owner to
authorize clients to access his protected resources on a server using user-agent
redirections and without sharing his credentials. The clients are thus able to
access resources on behalf of their owners. Although the OAuth protocol is
primarily used for authorization, it can be also used for authentication – in
addition to verification of the resource owner authorization, the server can
verify identity of the clients. The OAuth protocol version 1.0 was defined

37

1. Analysis

in the RFC 5849 [24]. The exact name of this scheme used in requests and
responses is “OAuth”.

The whole process is illustrated by the following example. A user of a
social network, let’s call him Jim, shares some photos on this network. Jim
has the role of the resource owner and the photos are the protected resources.
The social network site, hosted on "photos.example.net", has the role of
the server. Jim would like to use a photo editing web application hosted on
"app.example.com", the client, to edit one of the photos he shares on the
social network. Jim thus needs the web application to access his photo on the
network but without giving it his credentials.

The photo editing web application has the option to load photos from
the social network. In order to do that, the application owns its own client
credentials – "ky8js72h4kd956ds" is its identifier and "83hwgf2u59d745fg"

is its password – and is configured to be able to use interface offered by the
social network.

The social network uses "HMAC-SHA1" algorithm as its signature method
and offers these URI addresses for communication with other applications:

• "https://photos.example.net/initiate" – this URI address is used
by other applications to ask for temporary credentials

• "https://photos.example.net/authorize" – this URI address is used
to get authorization from the resource owner

• "https://photos.example.net/token" – this URI address is used for
requesting a set of token credentials using the temporary credentials

The client, the photo editing application, first needs to obtain a set of tem-
porary credentials from the server, the social network, to identify the request
for access delegation. To do so, the client sends the following request to the
server:

GET /initiate HTTP/1.1

Host: photos.example.net

Authorization: OAuth realm="Photos",

oauth_consumer_key="ky8js72h4kd956ds",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1523110363",

oauth_nonce="fTjrTp",

oauth_callback="http%3A%2F%2Fapp.example.com%2Fready",

oauth_signature="JgzmHF5%2B8i0fLzAPf%2F8mXkK2Qw8%3D"

After the request is validated by the server, a set of temporary credentials
is returned.

38

1.4. Authorization

HTTP/1.1 200 OK

Content-Type: application/x-www-form-urlencoded

oauth_token=sifd4j6jerhp4j89&oauth_token_secret=

aperj5nfyc32hdio&oauth_callback_confirmed=true

Jim’s browser is then redirected by the client to a server page that requires
an approval from the resource owner, Jim. The URI address of this page is
the following:

https://photos.example.net/authorize?oauth_token=

sifd4j6jerhp4j89

Jim then has to sign in the social network using his credentials. If the
login procedure passes off without any problems, Jim is asked to grant the
photo editing web application "app.example.com" access to his photos. If he
approves that, his browser is redirected to the URI address provided by the
client ("oauth_callback" parameter).

http://app.example.com/ready?oauth_token=

sifd4j6jerhp4j89&oauth_verifier=ht5eavcno07hfery

The server informs the client in this way that the resource owner granted
it the permission to access his photos. The client then needs to ask the server
for a set of token credentials using its temporary credentials.

GET /token HTTP/1.1

Host: photos.example.net

Authorization: OAuth realm="Photos",

oauth_consumer_key="ky8js72h4kd956ds",

oauth_token="sifd4j6jerhp4j89",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1523110364",

oauth_nonce="rJ7qn5P",

oauth_verifier="ht5eavcno07hfery",

oauth_signature="fk%2BycE1TUcRHdOEv40VkjNU7cr0%3D"

After the request is validated, the server returns a set of token credentials.

HTTP/1.1 200 OK

Content-Type: application/x-www-form-urlencoded

oauth_token=kre73jt065kshq9y&

oauth_token_secret=to6xiqmpv86j4ick

With these credentials, the client is now ready to access the Jim’s photo.

39

1. Analysis

GET /photos?file=JimsPhoto.jpg&size=original HTTP/1.1

Host: photos.example.net

Authorization: OAuth realm="Photos",

oauth_consumer_key="ky8js72h4kd956ds",

oauth_token="kre73jt065kshq9y",

oauth_signature_method="HMAC-SHA1",

oauth_timestamp="1523110365",

oauth_nonce="fuwpGe",

oauth_signature="tqFNFaYBgsPHAHg7cGNo%2FZUlUJ4%3D"

After the server validates the client request, it returns the photo that was
requested. The client is able to reuse these token credentials, until Jim revokes
the access or signs out of the social network.

In this protocol, three classes of credentials are used:

• client credentials – they identify and authenticate the client that makes
requests; they are used throughout the whole process

• temporary credentials – they are used to identify the access request
through the authorization process; they must be revoked after being
used once to obtain the token credentials and it is recommended to limit
their validity period

• token credentials – they are issued after the resource owner grants access
rights to the client and identify the access grant itself; the server should
enable the resource owner to revoke these credentials; they can have a
restricted scope or a limited validity period

The whole process based on redirections in the browser of the resource
owner is summarized here:

1. The client uses his client credentials to request a set of temporary cre-
dentials that identify the access request in the following steps.

2. The resource owner gives permission to the server to grant access to the
client. The client is identified by the temporary credentials.

3. After the access is granted to the client, it uses its temporary credentials
to ask the server for a set of token credentials.

4. The client uses the obtained token credentials to access resources of the
resource owner.

If the value of the oauth timestamp parameter is too old, the server may
reject the request. The token credentials may be used by another client than
the one to which the token credentials were issued. The sever can however

40

1.4. Authorization

prohibit such behaviour. The validity period of the token credentials may be
restricted.

The value of the nonce parameter is a unique16 random string generated
by the client. The server uses its value to prevent replay attacks by verifying
that the request has never been made before. Restriction of the time period
after which a request with an old timestamp is rejected decreases the number
of nonces that must be remembered by the server.17

The oauth signature parameter enables the server to verify that the client
knows both the user name and the password and thus to verify the identity
of the client. There are three signature methods defined in OAuth 1.0 autho-
rization protocol – “HMAC-SHA1”, “RSA-SHA1”, and “PLAINTEXT”. The
“RSA-SHA1” method utilizes RSA keys instead of the passwords and the
“PLAINTEXT” method actually does not compute any signature. Servers
may implement their own custom methods.

The value of the oauth signature parameter is computed depending on the
selected signature method. If the “PLAINTEXT” method is chosen, then
this parameter is set to the value in this form: the encoded client password
concatenated with an “&” character concatenated with the encoded token
password (that is part of the temporary or token credentials). As the pass-
words are sent in the plaintext for this method, the security considerations
are analogical to those for Basic authentication. The TLS protocol must be
used to protect them. If one of the remaining methods is chosen, the value of
the oauth signature parameter is computed in this way:

1. The following HTTP request elements are concatenated:

• The used HTTP request method (e.g., “GET”, “POST”)

• An “&” character

• The base URI address (e.g., “https://photos.example.net/initiate”)
– without the query and anchor part, the port number is included
only if some non-standard number is used

• An “&” character

• The request parameters – they are collected from the request18,
decoded to their original form, sorted, encoded, and finally con-
catenated into a single string

2. If the “HMAC-SHA1” method is used, then hash-based message authen-
tication code algorithm19 in combination with SHA-1 hash function is

16Unique across all requests with the same client credentials, token credentials, and times-
tamp

17In such a case, it is important for the both peers, the client and the server, to have the
time synchronized with each other.

18The GET parameters, Authorization header parameters (except for the realm parame-
ter), and the POST parameters are collected.

19Defined in RFC 2104

41

1. Analysis

applied – as an input to the function, the string created in the first step
is used, and as a key, concatenated passwords20 are used

3. If the “RSA-SHA1” method is used, then the string created in the first
step is signed using the client’s private RSA key using RSASSA-PKCS1-
v1 5 signature algorithm as defined in the RFC 3447 document

4. The result computed in step 2 or step 3, depending on the method
chosen, is encoded using the Base64 algorithm and finally used as the
value of the oauth signature parameter

All the authorization parameters used by this protocol can be transmitted
either in the Authorization request header or in the request body or in the
request URI query, as in the case of the Bearer authentication. For security
concerns related to putting parameters into the URI query, refer to the Section
1.3.2.

This protocol is designed to partially protect the integrity of requests,
especially the parameters sent in messages. However, the header fields and
some other message parts are not protected. Furthermore, the confidentiality
of requests is not ensured at all. Thus, it is necessary to use this protocol
together with the TLS protocol to protect sensitive contents and potentially
the client’s passwords.

In the case of the “RSA-SHA1” method, there are no temporary or token
passwords in use and requests are signed using only the client’s private RSA
key. It is thus essential to protect this key against its disclosure. In the case
of the “HMAC-SHA1” and “PLAINTEXT” methods, the server need to store
clients’ passwords in the plaintext in order to compute the signatures. If an
attacker gains access to the password database, she will be able to perform any
action under an arbitrary client’s account. Therefore, the password database
must be protected from unauthorized access. If the “PLAINTEXT” method is
chosen and there is no HTTPS in use, an attacker is able to sniff the passwords
in the plaintext. If the “HMAC-SHA1” method is chosen and there is no
HTTPS in use, then an attacker is able to sniff the signatures and run offline
dictionary or brute-force attacks to recover the passwords from the signature
value. To prevent such attacks, servers should generate passwords that are
long enough and random enough.

If the client is, for example, some desktop application that is free to down-
load, there is a threat that an attacker will obtain the client’s credentials from
the executable file using reverse engineering methods or from the source code
if available.

In contrast with the Mutual authentication, the server identity is not ver-
ified in this protocol. An attacker is able to use some counterfeit server to
intercept client requests and return some deceptive responses. Additionally,

20The same string as in the case of the “PLAINTEXT” method

42

1.4. Authorization

if the “PLAINTEXT” method is used by the client, the attacker will obtain
the client’s password.

As the server needs to track some parameters, such as nonce values, denial-
of-service attacks are possible. The server can be also incited to perform
some expensive computations, such as signatures verification, to dissipate its
resources.

There is a possibility of cross-site request forgery attacks on the URI ad-
dresses offered by the server for communication with other applications if
cookies are used to identify the request owner. Also, the client’s callback
URI address is at risk. It is thus important to implement methods of pre-
vention against these attacks on both the server and the client. For example,
CAPTCHA test may be used or reentry of resource owner’s credentials may
be enforced. The resource owner should be always informed to which client
he is going to grant the access permission. Another possible attack is the
clickjacking attack. If the response headers are set appropriately, the attack
should be prevented.

Although there are no possible attacks feasible for an ordinary attacker
today, the SHA-1 hash function is considered broken or at least insecure and
is being replaced by newer and more secure hash functions. As the OAuth 1.0
protocol supports any custom signature methods, it is possible to implement a
more secure way of signing requests (for example, using the SHA-2 or SHA-3
hash functions).

Because this authorization scheme suffers from several security weaknesses
and is impractical in many ways, it is considered obsolete and should be re-
placed by the OAuth 2.0 authorization framework defined in the RFC 6749
document [25] and described below.

1.4.2 OAuth 2.0 Authorization

The OAuth 2.0 protocol is not backward compatible with OAuth 1.0, as it
is a completely new protocol. However, the overall architecture has been
preserved. Its definition can be found in the RFC 6749 [25] and a nice overview
was written by Aaron Parecki [26]. The Bearer authentication is a part of the
OAuth 2.0 framework.

The OAuth 2.0 framework was designed to remedy the shortcomings of
the first version of the protocol. The main differences are listed below:

• OAuth 2.0 offers new scenarios, called authorization flows.

In OAuth 1.0, desktop and mobile applications had to open a browser
and redirect a resource owner to a server’s web page in order to get
his approval. Further, they had to copy the resulting token from the
browser back to the application.

43

1. Analysis

In OAuth 2.0, new flows were added which target not only the web appli-
cations but also desktop applications and applications for mobile phones
and living room devices.

If the resource owner, in OAuth 2.0 called user, trusts the client, he can
entrust it his credentials, the user name and the password, which are
then used directly by the client. This flow is useful, for example, if the
user wants to quickly write a script for his personal use only. He is no
longer forced to install a library to handle all the OAuth 1.0 processes.

Another flow is the following: a client may use its own credentials to
request an access token to access its own resources – not on behalf of a
resource owner.

• In the OAuth 1.0 protocol, servers had to maintain session information
between client requests. First, the client asked for temporary credentials
using its client credentials. Second, the client redirected the resource
owner in order to obtain his approval. Finally, the client asked the
server for token credentials using its temporary credentials. This caused
that the protocol was difficult to scale to large systems.

In the OAuth 2.0 protocol, the server uses the client credentials only
if the client obtains authorization from the resource owner. After that,
the client uses only the resulting access token.

• The Bearer authentication based on existing cookie architecture was in-
troduced. Its description can be found in the Subsection 1.3.2. Only one
secret token is used instead of the token credentials that were composed
of a public and private part. The bearer tokens also do not require sign-
ing of each request – there is no necessity to parse, decode, sort, and
encode parameters. There is also no HMAC in use.

• With OAuth 2.0, the role of the authorization server is separated from
the server offering API to clients. The authorization server is only re-
sponsible for obtaining authorization from resource owners and issuing
tokens to clients. The API server uses only the access tokens for authen-
tication. Two different physical servers may be used to implement the
two roles.

• In OAuth 2.0, the authorization server usually issues an access token
with a short validity period along with a long-lived refresh token. The
client may thus obtain new access tokens without requesting a resource
owner permission again. Tokens can be also easily revoked.

44

1.5. Session Management

1.5 Session Management

An HTTP session (also called a web session) is a sequence of HTTP request
and response network transactions that are associated to one particular user.
Sessions are typically temporary and expire after some time. Usually, their
validity is extended with each new request from a client and a fixed maximum
overall validity period is set that cannot be exceeded.

Many web applications need to maintain some state information about
each user, such as language preference or application settings, for longer du-
ration. Sessions provide the ability to establish variables and to use them for
every interaction of the user with the web application during the session va-
lidity. Sessions are also used for maintaining information about user’s identity
which is verified during the authentication process. Based on this identity,
user’s privileges are checked to ensure that the authorization is handled cor-
rectly.

It is a common practice to use a random string, called a session identifier,
for identification of the session. It should be long enough to be infeasible
to guess it21. The session identifier is assigned at session creation time, is
exchanged between the server and the client and is used instead of using the
session information directly. When the server receives a request with the
session identifier, it looks up associated session information in its database
using the identifier as a key.

HTTP is a stateless protocol – that means that every request and response
pair is independent of the other. Therefore, it is necessary to implement ses-
sion management that links both the authentication and the authorization
modules available in the web application. In the HTTP protocol, this is
achieved by using cookies. State management mechanism in the HTTP pro-
tocol is specified in the RFC 6265 [11].

HTTP cookie can be seen as a pair consisting of a name and a value
along with some additional metadata. This metadata is used to determine
whether a particular cookie should be used in a specific request and includes
flags mentioned in the Subsection 1.1.1. A cookie can be limited to a specific
server, URI address, and time period.

As mentioned before, a server inserts the Set-Cookie header into its re-
sponse to establish a new cookie. This header may be sent in any response
(with an arbitrary status code). Furthermore, multiple Set-Cookie headers
can be used in a single response if they set cookies with different names. The
format of the header is the following:

Set-Cookie: cookie-name=cookie-value(; attribute-name)*

(; attribute-name=attrribute-value)*

21OWASP recommends using identifiers with 128 bits or more.

45

1. Analysis

There are several standardized attributes for this header. Some of them con-
tain a value, others are used only as flags. Each attribute should be used at
most once. All standardized attributes are listed below:

• Expires – this attribute contains a value – a date and time at which the
cookie expires

If set to a date and time in the past, a cookie with identical name, path,
and domain should be removed from the browser.

• Max-Age – this attribute contains a value – a number of seconds until
the cookie expires

• Domain – this attribute contains a value – hosts to which the cookie
will be sent

If set to "example.com", the cookie will be sent when making requests to
"example.com", "www.example.com", "www.corp.example.com", etc.
The specified value must include the origin server. If the attribute is
missing, the cookie should be sent only to the origin server (and not, for
example, to any subdomain).

• Path – this attribute contains a value – a set of paths to which the cookie
is limited (including their subdirectories)

If the attribute is not specified, the browser should use the directory in
the URI address of the corresponding request. This attribute should not
be used for security decisions.

• Secure – this attribute does not contain any value – the cookie should
be sent only over secure channels (e.g., HTTPS channels)

Protects only the confidentiality of the cookie, not its integrity.

• HttpOnly – this attribute does not contain any value – the cookie is used
only for HTTP requests, not for any “non-HTTP” APIs

If both the Max-Age and the Expires attributes are set for a single cookie,
the Max-Age attribute has precedence. If neither the Max-Age nor the Expires
attribute is set, the cookie is considered to be a session cookie and deleted
after the current session is over (usually when the browser shuts down).

If a new cookie with the same name, domain, and path is set by the server,
the browser should replace the original cookie with this new one.

The browser uses the Cookie header in a request to inform the server
about stored cookies. Only non-expired, applicable cookies are appended to
the request. Cookies set by a server response with 100-level status code may
be ignored. The format of the header is the following:

Cookie: cookie-name=cookie-value(; cookie-name=

cookie-value)*

46

1.5. Session Management

The header can contain two cookies with the same name, if they were set with
different path or domain. A single request must contain the Cookie header at
most once.

The following example demonstrates how the previously mentioned head-
ers are used.

Client Request:

GET /resource1.html HTTP/1.1

Host: www.example.com

Server Response:

HTTP/1.1 200 OK

Set-Cookie: cookie1=value1; Domain=example.com;

Expires=Fri, 13 Apr 2018 21:18:00 GMT; Secure; HttpOnly

...

Client Request:

GET /resource2.html HTTP/1.1

Host: www.example.com

Cookie: cookie1=value1

Server Response:

HTTP/1.1 200 OK

Set-Cookie: cookie1=newvalue1; Domain=example.com;

Expires=Fri, 13 Apr 2018 21:18:30 GMT

Set-Cookie: cookie2=value2; Domain=www.example.com

...

Client Request:

GET /resource3.html HTTP/1.1

Host: www.example.com

Cookie: cookie1=newvalue1; cookie2=value2

Client Request:

GET /resource4.html HTTP/1.1

Host: subdomain.example.com

Cookie: cookie1=newvalue1

There are many security risks associated with cookies [23]. If cookies
are used for user authentication, it is possible to perform a cross-site request
forgery attack to require some actions on a server on behalf of a user. An
attacker usually tricks the user to load some malicious page prepared by the

47

1. Analysis

attacker. This can be achieved by using a phishing attack. After the malicious
page is loaded, a specially crafted request to a target host is made (for example,
using a JavaScript code, HTTP redirection, or HTML form). The browser
automatically attaches cookies intended for the target server to the request.
If there is a valid session identifier in a cookie, the target server authenticates
the request and performs an action specified by the request – the action is
performed on behalf of the user without knowing it. This attack can be used,
for example, to change user’s password in the target application or to transfer
money in internet banking. There are many mitigation techniques – it is
recommended to use so-called “anti-CSRF tokens” that cannot be guessed by
the attacker and if missing, the requested action should not be performed.
The server can also require a CAPTCHA test or reentry of user’s credentials
before any sensitive operation is performed. The experimental SameSite flag
should prevent the browser from sending cookies within cross-site requests.

To protect confidentiality of cookies, it is necessary to use some secure
channel, such as the HTTPS channel. In such a case, it is further important
to set the Secure flag for every cookie. Unless using a secure channel, the
cookies are transferred in the cleartext and can be sniffed by an attacker. The
server can also encrypt and sign the content of every cookie in order to protect
it.

If the session identifier is stored in a cookie, there is a possibility of the
session fixation attack. In this attack, an attacker inserts her own value into
the cookie containing the identifier22. Then, the attacker waits until a victim
signs in to the target application on a server using the planted identifier value,
as cookies are attached automatically to requests. If the server accepts the
identifier received from the browser and connects it with the victim’s session,
the attacker at this moment knows its exact value and can use it to interact
with the server directly. She can, for example, obtain some private information
about the victim or perform some actions using his identity. This could be a
big security issue especially for computers used by multiple users (for example,
in public places). Thus, it is recommended that servers always generate a new
session identifier after the user signs in to an application.

Another risk associated with storing session identifiers in cookies are the
session hijacking attacks23 where an attacker is able to impersonate a victim
in the web application. The attacker can perform a cross-site scripting (XSS)
attack or use a physical access to a victim’s computer in order to obtain a
valid session identifier. After that, she is able to spoof the victim’s identity.
This is dangerous especially when the session cookie has a long validity period
which is a common practice for internet stores and other online services today.

Another possible security issue is that cookies cannot be limited to a par-
ticular port. Thus, all services running on the same server having the same

22All common browsers allow users to modify cookies
23Actually, the session fixation attack also belongs to this group of attacks.

48

1.5. Session Management

host name (despite the different port numbers) have access to the same cook-
ies. They obtain them within client requests and they can modify them. The
same situation happens also for different schemes, such as the http and ftp
scheme. Some browsers also fail to respect the Path attribute in some un-
usual situations – for example, when JavaScript document.cookie function is
called.

If there are two different subdomains of one domain, such as "aaa.example

.com" and "bbb.example.com", some problems may occur. For example, the
"aaa.example.com" server can set a cookie with the domain set to "example.

com" and overwrite thus a cookie previously established by the "bbb.example.

com". This new cookie will be used in interactions with the "bbb.example.

com" which can lead to some security implications. Similarly for the Path
attribute, an application running on the "www.example.com/app1" may set
the path of a cookie to an arbitrary value – for example, "/app2".

An active network attacker can impersonate a response from an HTTP
server (e.g., "http://www.example.com/") and inject the Set-Cookie header
into the message. The cookie set in this way is then used by the client
when sending requests to the legitimate HTTPS server (e.g., "https://www.

example.com/"). This attack may be mitigated by encrypting and signing
the contents of the cookies. However, there is still a possibility to replay a
cookie obtained in another way.

Another possible security issue for cookies are DNS spoofing attacks. If
the DNS server is compromised, the session credentials may be disclosed to a
malicious server.

There is also a possibility of denial-of-service attacks when sending a big
amount of requests to create new sessions to one server.

So-called third-party cookies are used when loading resources from other
servers. They are typically used to track a user, for example, for advertising
purposes. This is more a privacy problem than a security issue.

Besides the session management defined by the HTTP protocol and de-
scribed above, there are other ways how to pass on session information and
session identifier. The session identifier can also be inserted into a URL add-
ress as a POST parameter. However, this approach suffers from many secu-
rity issues. An unacquainted user can copy the whole URL address (including
POST parameters) from a browser and send it to someone else without know-
ing that he just disclosed his private session identifier. Furthermore, URL
addresses are logged in the browser and on the server. If an attacker has
access to the browser history or server log file, she is able to gather all such
session identifiers.

Session information should always be stored on a server or should have
such a format so they cannot be forged by a client or an attacker.

49

1. Analysis

1.6 Summary

Many authentication schemes were specified within the HTTP protocol. All
of them rely on security of the underlying layers to provide confidentiality and
integrity of HTTP messages. The use of the TLS protocol or another secure
channel is especially important for schemes that transfer user credentials in
the plaintext. The Basic authentication is such example.

The Digest authentication scheme makes use of hash functions to protect
the passwords. However, this scheme is not easy to implement and is not
widely used.

The Bearer authentication scheme is usually used within the OAuth 2.0
authorization process. It makes use of access tokens, called bearer tokens, that
are generated by a server. These tokens are usually used instead of credentials
to access a resource on behalf of its owner.

The Mutual authentication scheme was designed to offer the authentication
of a server. Although this scheme is based on passwords, they are not sent
directly over the communication channel. This scheme is still experimental.

In general, the password-based methods suffer from several weaknesses, as
users tend to chose weak passwords and reuse them. The HOBA authentica-
tion scheme aims to prevent such problems by using digital signatures. This
scheme is still under examination.

Another experimental authentication scheme is the SCRAM authentica-
tion scheme which also allows authentication of a server. Its advantage is that
the information stored on a server is not sufficient to impersonate a client.

The VAPID authentication scheme is focused on authentication of an ap-
plication server to a push service within the Web Push protocol. Thus, it is
not used for web applications.

Probably the most common authentication method in use on the Internet
today is the form-based authentication. Although this method is not stan-
dardized and does not use the HTTP authentication framework, it provides
website owners with fine-grained control over the authentication process and
with a possibility to customize the design of the login form.

The HTTP protocol offers two authorization protocols – the OAuth 1.0 and
OAuth 2.0. These are used for third-party access authorization. A resource
owner can grant access to his resources to another parties without revealing
his own credentials. The OAuth 2.0 framework was designed to remedy the
shortcomings of the OAuth 1.0.

The HTTP cookies are used to provide session management in the HTTP
protocol. They can be exploited for many serious attacks. However, if the
web application is secured appropriately and the server configured correctly,
they should provide secure session management.

50

Chapter 2

Burp Suite

This chapter describes the Burp Suite tool, some of its features and how this
tool addresses authentication, authorization, and session management.

Burp Suite is a graphical tool for security testing of web applications. It
records requests and responses between a browser and servers. The recorded
requests can be then modified and resent. It offers several tools, each for an-
other purpose. For example, the Spider is a tool for automatic crawling of
web applications, the Scanner is a tool for automatic vulnerability scanning
of web applications24, and the Intruder is a tool for fuzzing requests. Its main
advantages are the low price, automatic scanning tool capable of detecting
up to 100 different vulnerabilities, easy extensibility, and a number of avail-
able customization options. These are the possible reasons why this tool has
become one of the most popular web application security tools among secu-
rity professionals worldwide. The Burp Suite documentation can be found
online [27].

Burp Suite automatically stores cookies that were issued by web sites in
the cookie jar. Users have an option to set which tools will use these cookies
when issuing requests. However, there is only one cookie jar shared between
all the tools. Thus, it is possible to maintain only one session at the same
time and all threads used for scanning or fuzzing use this single session. This
can lead to errors for applications which have an upper limit on the number
of concurrent requests per one session. We tried to solve this limitation in the
practical part of this thesis.

Burp Suite offers a feature called Macros. A macro is a sequence of one or
more requests that is defined by a user. They can be used to perform various
tasks, such as a login to the application to obtain a new session, obtaining a
token used in another request, or fetching a page to check whether the current
session is valid. Macros can be launched by session handling rules.

24The Scanner tool finds all possible input points within a request and updates them with
a list of potentially dangerous inputs one by one. The tool assesses possible vulnerabilities
using the corresponding responses.

51

2. Burp Suite

A session handling rule consists of two parts – a scope and a list of actions.
The scope defines for which requests will be the actions performed. It can be
decided based on the tool that is issuing the request, the URL address of the
request, or names of parameters within the request. These session handling
rules can be used, for example, to check the current session and if not valid,
running a macro to log back into the application. It is also possible to use it
for obtaining of a valid anti-CSRF token and inserting its value into a request
that requires it.

There is a feature called Match and replace. It can be used to automat-
ically replace parts of requests and responses – for example, for updating
some header values, values of tokens, etc. Unfortunately, this functionality
only works for messages going through the Proxy tool (messages going from
a browser or a desktop application to a server and back). We mitigated this
restriction in the practical part of this thesis by implementing a similar func-
tionality that works for requests issued by any tool.

A big advantage of the Burp Suite tool is its easy extensibility. Users can
create their own extensions and share them in the official BApp store. Ex-
tensions published in the official store can be downloaded very easily directly
from Burp Suite. They can be written in Java, Python, or Ruby, and Burp
Suite offers a plenty of functions that can be used by the extensions, called
Burp Suite API. Users can thus customize the default behaviour in numerous
ways, such as modifying HTTP requests and responses, customizing the user
interface, and adding custom checks to the Scanner.

2.1 Authentication, Authorization, and Session
Management in Burp Suite

The Burp Suite has support for several types of authentication. In the User
options/Connections tab, there is a section called Platform authentication
which lets users configure the following types of authentication: the HTTP
Basic, HTTP Digest, and NTLM authentication. The inserted credentials are
then used to automatically carry out platform authentication to destination
web servers.

For simple login forms, it is possible to specify user credentials in the
Application Login section in the Spider/Options tab. However, this settings
may be only used for crawling of a web application (using the Spider tool).

In the case of more complex login forms, it is necessary to create a macro
that handles user authentication. A session handling rule must be used to
launch the macro to authenticate the user automatically. Although the process
of setting up the macro and the rule can be complicated, it works quite well
in many cases and if configured properly. The macros also allow to copy some
parameter values from previous macro responses to subsequent ones. However,
only cookies, POST parameters, and GET parameters can be updated in

52

2.1. Authentication, Authorization, and Session Management in Burp Suite

this way. The same restriction also applies to the session handling rules and
parameter update using them.

The Burp Suite currently does not support update of request headers by
session handling rules. Users can partially solve this issue by chaining a second
instance of Burp after the first one and configuring a match and replace rule
in the Proxy tool. Another solution is to create an own extension in order to
handle tokens within headers. This issue is especially problematic for bearer
tokens used in the Bearer authentication scheme for third-party authorization.
A similar situation also applies to other HTTP authentication schemes. In the
practical part of this thesis, we implemented an extension that mitigates this
limitation.

As for the session management, the Burp Suite tool offers many options.
It uses the cookie jar to track application cookies. Session handling rules are
then used to update the cookie values in requests. It is possible to choose
which Burp tools should update the cookie jar and which requests should be
updated with the stored cookie values. Is it also possible to use macros and
session handling rules for automatic creation of a new session if it expires. A
significant limitation is that only one cookie jar exists and only one session
can be maintained at the same time. Additional information about session-
handling support in the Burp Suite can be found in The Web Application
Hacker’s Handbook [23] or in the official documentation [27].

53

Chapter 3

Design

A practical part of this master’s thesis was to create an extension to the Burp
Suite tool. This chapter deals with the design of the extension. First, func-
tional and non-functional requirements are mentioned. Second, some basic
concepts used by the extension are explained. Some parts of this and sub-
sequent chapters have been taken from a documentation published on the
Internet [28].

3.1 Goals and Requirements

The main goal of the extension is to simplify testing of web applications us-
ing Burp Suite. On the official web site, there are hundreds of requests for
enhancement of the tool. Many of them are related to session management,
authentication, and authorization in some way. Several of the requests ask for
a possibility to maintain multiple different sessions at the same time. Another
request asks for a feature similar to the Match and replace that would work
for all the tools, not only the Proxy tool. There is also a request to be able to
use values extracted from previous messages in the Match and replace. Many
of the requests are quite old, some dating back to 2015. All of these features
have not been added yet. Typically, there is some proposed workaround to
solve the problem. However, that is usually quite complicated and impracti-
cal. A regular advice to maintain multiple sessions at the same time is to use
several instances of Burp Suite or to create your own extension. We tried to
create an extension that would implement such features that are missing in
Burp Suite and that are requested by Burp Suite users.

The key feature of the extension is to support the most common methods
for authentication, authorization, and session management on the Internet
today. It includes the cookie-based and URL-based session management, the
form-based authentication, the Basic authentication, and the Bearer authenti-
cation. The Digest authentication as well as the experimental authentication
schemes are not so important to us, as they are not commonly used. The

55

3. Design

Authentication
Scheme

Standardized Supported Reason

Basic
Authentication

Yes Yes

Bearer
Authentication

Yes Yes

Digest
Authentication

Yes No Not widely used

HOBA
Authentication

Yes No Experimental
protocol

Mutual
Authentication

Yes No Experimental
protocol

SCRAM
Authentication

Yes No Experimental
protocol

VAPID
Authentication

Yes No Used mainly for
Web Push

Form-based
Authentication

No Yes The most
common scheme
on the Internet

Table 3.1: Table of described authentication schemes and whether they are
supported by the extension

VAPID authentication is not used for web applications; therefore, it is not the
subject of our interest. An overview of the described authentication schemes
may be found in the Table 3.1.

An important criterion is to make the program easy to use. For example, a
possibility to export already made settings and import them later is a crucial
feature, as the initial setup usually takes a lot of time.

Functional requirements are listed below:

• A possibility to handle tokens used for the most common methods for
authentication, authorization, and session management:

– The form-based authentication

– The Basic authentication

– The Bearer authentication

– The cookie-based session management

– The URL-based session management

• Maintaining multiple sessions at the same time

• A possibility to define when a session is expired

56

3.2. Basic Concepts

• A possibility to create new sessions

• A possibility to export user settings to a file and to import such a file

The first functional requirement implies a necessity to parse and update to-
kens within cookies, URL addresses, headers, GET parameters, and POST
parameters.

Non-functional requirements are listed below:

• Files with exported settings are in a human-readable and easily editable
format

3.2 Basic Concepts

This subsection describes basic concepts used in the created extension. The
aim of this section is to explain the main characteristics of the concepts and
to introduce the reader to terms used in the following chapters.

• Variable – Variables are unique identifiers that interconnect all struc-
tures used in the extension. Sometimes, it is also understood to be a
pair composed of the unique identifier and a corresponding value. They
are used in Rules, Sessions, Default Parameters, and Session Expira-
tion Rules. A Variable identifies a record in a Session, that is used for
extracting tokens from responses and updating them in requests. Vari-
ables are also used for specification of default values and rules for Session
expiration.

• Session – A Session is a database or a set of pairs consisting of a Vari-
able and a corresponding value. It keeps all the tokens extracted from
responses that can be later used in requests for authentication, session
management, etc. Actually, it is possible to use the Session to store
almost anything that can be extracted from responses – a status code
of the last response within the Session, values of response headers, val-
ues of arbitrary cookies, URL address of the corresponding request, etc.
Which parts of responses should be extracted into the Session and where
should be the values used within requests is defined by Rules.

There may be multiple Sessions used by this extension and the number
of Sessions is automatically increased according to the current need. If
a new request comes and there is no free Session, a new one is created –
a Burp macro defined by the user is launched and tokens are extracted
from the macro responses. The Sessions are independent of each other.

• Rule – There are two types of Rules – Response Rules and Request
Rules.

57

3. Design

Response Rules define which parts of responses should be extracted and
in which Variables within the Session should the extracted values be
stored. If the Variable is not present in the Session, it is created.

Request Rules define which parts of requests should be updated and
which Variables (more precisely, values of these Variables) should be
used for the update. If there is no such Variable, a Default Parameter
is used. And if there is no such Default Parameter, the Request Rule is
omitted.

• Default Parameter – A Default Parameter is a pair composed of a Vari-
able name and some fixed value (a string). Default Parameters are used
if there is some Request Rule that should update a request with value
of some Variable but this Variable is not present in the Session (was not
extracted yet or there is no corresponding Response Rule that extracts
its value). In such a case, the Default Parameter is used if it exists.
If there is no Default Parameter with such Variable name, the Request
Rule is omitted. The value of a Default Parameter can be an empty
string.

• Session Expiration Rule – Session Expiration Rules are rules that define
when a Session is not valid anymore – validity of a token expired, user
was logged out, etc. Session Expiration Rules have this form: “If a value
of some Variable equals to some string/contains some string/matches
some regular expression, then the Session should be invalidated.” If at
least one Session Expiration Rule applies, the Session is considered as
expired and is thrown away. There can be more Session Expiration Rules
for one particular Variable.

There may be multiple Response and Request Rules associated with one
Variable. It is possible to create several Response Rules that extract some
value from a response and store it in the same Variable. For example, it is
possible to extract a value either from a cookie or from a message body –
the last one found will be stored in the corresponding Session. Further, it is
possible to use a value of one Variable in multiple places in a request. For
example, it is possible to update either a cookie or a POST parameter (or
both at once) with the value of the Variable.

58

Chapter 4

Realisation and Usage

Burp Suite enables several ways how the extension can cooperate with the tool
itself. Our extension implements an interface called “IHttpListener”. This
interface causes that the extension is notified about outgoing requests and
incoming responses made by any Burp tool. The intercepted responses are
used for extraction of tokens, and the requests are updated with the extracted
values.

4.1 Implementation

It was necessary to make several implementation decisions. The first decision
concerned the choice of the programming language. Burp Suite offers three
options – Java, Python, and Ruby. As Burp Suite itself is written in Java and
Java extensions do not require any additional environment25, it was decided
to use Java. Furthermore, there may be some memory issues when using
extensions written in Python or Ruby.

Besides the ability to parse and update tokens within cookies, URL ad-
dresses, headers, GET parameters, and POST parameters, we decided to sup-
port updating and parsing of JSON message bodies, XML message bodies,
and we also offer a general solution for parsing and updating almost anything
in requests and responses using regular expressions (so-called General Request
and Response Rules). Thanks to this, the extension offers many additional
options that were not specified in the assignment but we believe will be useful.
For example, it enables to handle anti-CSRF tokens.

We decided not to support a dynamic computation of values in the first
version of the program, as it is not used by the most common methods of
authentication, authorization, and session management. Still, we believe it
would be a nice feature to add in the future.

25In order to use a Python extension, you need to download a Python interpreter imple-
mented in Java, called Jython. For Ruby, you need to download JRuby.

59

4. Realisation and Usage

We looked for some solution that would allow us to create new Sessions
whenever it is necessary. Burp Suite macros appeared to be a good candidate
for login operations. Although there were some problems we had to solve,
we finally decided to use them, as Burp Suite users are already familiar with
them.

XML was chosen as a format of exported files. It is both human-readable
and machine-readable. It is also easily editable and is supported by many
text editors. In most browsers, XML files are rendered in an organized and
highly readable way – elements can be collapsed, etc26. People familiar with
HTML language usually do not have problems with understanding XML files.
We also believe that the XML format is much more readable even for non-
technical people than the JSON format. Furthermore, XML format was a
choice for several popular Java serialization libraries. Its main disadvantage
is its verbosity. However, the length is not a critical parameter in the case of
settings files that are not primarily intended for sending over a network.

During the export, all Rules, Default Parameters, Session Expiration Rules,
and additional settings created by a user are saved. The Sessions are not ex-
ported. The main reason is that they would be anyway after some time with
high probability expired. Also, the macro used for Session creation is not
exported. However, it is usually stored in the Burp Suite itself.

For parsing JSON message bodies, a Google library called gson [29] was
chosen. It is developed by a large, international company, it has an open
source code, and it is still an active project. Its main advantage is that it is
easy to use.

For handling XML message bodies and XML files, we decided to use the
DOMParser library (the javax.xml package) that is integrated in Java by de-
fault. Thus, there is no need for including an external library to the extension.

As there may be several requests and responses at the same time, it com-
monly happens that the input function to the extension is called several times
simultaneously. It was thus necessary to perform all the sensitive operations
in a thread-safe manner. We chose to use Java synchronized keyword to
create synchronized statements.

To handle several sessions at the same time, we created a new class called
SessionManager. It maintains two structures – a pool of free, available Ses-
sions and a hash table of reserved Sessions. A more detailed description of the
class can be found in the Subsection 4.1.2. Again, it was critical to perform
all operations involving the two structures in a thread-safe manner.

It was necessary to create several graphical elements to allow users to
enter their Rules, Default Parameters, and more. The extension has its own
tab within the Burp Suite window. Some additional tabs were created within

26This was one of the reasons why JSON format was not chosen. Further, JSON is mostly
used with JavaScript, and JSON files usually contain more lines of code than the XML ones
when formatted. However, JSON is usually shorter than XML in number of characters or
bytes.

60

4.1. Implementation

the main tab to handle different types of Rules and other settings. Also,
several separate windows are used (e.g., for creation of Rules). The interface
of the extension was designed in order to make it as uncluttered and organized
as possible. Great emphasis was placed on ease of use.

4.1.1 Encountered Problems

During the design and implementation of the extension, we encountered sev-
eral problems. We hit the limits of the available Burp Suite API several times.

First, a macro cannot be launched by an extension directly. So, we speci-
fied the following URL address which is requested by the extension and which
indicates that the macro for Session creation defined by the user should be
created. This requires this URL address to be in scope of the macro – users
have to set it up.

http://localhost:80/launch-burp-macro-122333

The overall process for creation of a new Session begins if a new request comes
to the extension and there is no free Session available. In such a situation,
the extension creates a request that is sent to the URL address mentioned
above. If the user macro is set properly, it should be launched. The extension
extracts and updates values within the macro messages. The new Session is
made up of the extracted values after the macro is over.

Another complication with macros is that the extension is not able to
recognize the requests and responses issued by the macro. This is a serious
inconvenience, as we need to use the extracted values from the macro responses
to create the new Session. Thus, it is necessary to insert the following header
into all macro requests – again, the user must arrange this:

AuthenticationMaster: launch-burp-macro-122333

If this header is present in an incoming request, the extension recognizes that
this is a macro request and uses it (and the corresponding response) for the
creation of the new Session. The header is removed during request processing
and is not sent to any server – it should not be exposed anywhere.

The last serious issue was how to recognize the corresponding requests
and responses. When a request comes, it is assigned some free Session and its
Variables are used for update of the request. After the request is processed,
the assigned Session is freed by the request and reserved for the corresponding
response. After the response comes, it gets the same Session as was assigned
to the corresponding request and some values are possibly extracted. After
the response is processed, the Session is freed and can be reused. To perform
all the described actions, we need to recognize to which request a response
belongs. The Burp Suite API offers a function that returns an identifier of the
pair – the request and the response. Unfortunately, this function is available

61

4. Realisation and Usage

only for messages going through the Proxy tool – requests coming from a
browser and corresponding responses. Thus, it is not useful for our extension.
Furthermore, the object holding the message pair also alters and cannot be
used for this purpose. The only unchanging and unique object is the whole
request string (under certain circumstances). Thus, we decided to use the
Java hashCode called on the request string, as it is quite fast and sufficient
for our purposes. To use these hashes reliably, our extension must be the last
extension that modifies requests. To ensure that, the user needs to put the
extension to the last position in the list in Extender/Extensions tab in the
Burp Suite.

Although these workarounds work without any problems, they can be
annoying for users. Unfortunately, we were not able to find better solutions to
these problems, even after discussions with Burp Suite employees. However,
these workarounds do not affect servers, as the custom header is removed by
our extension during the request processing. If the extension is turned on, the
header should never leave the tool.

4.1.2 Classes

This subsection provides an overview of all implemented classes along with
their brief descriptions. The classes are organized into several packages.

• ActiveSessionsSnapshot – This class is used to copy the state of all Ses-
sions at a certain time. The information is then visible in the graphical
interface.

• BurpExtender – This class is used to interconnect the Burp Suite with
the created extension and implements several interfaces defined by the
Burp API. The IBurpExtender interface must be implemented by all
extensions. The IHttpListener interface is used to notify the extension of
all requests and responses. When the IExtensionStateListener interface
is implemented, the extension will be notified when the extension is
unloaded – this can be used for cleanup actions, saving state of the
extension, etc. This class contains an input point to the extension. If
a new message comes to this class and the extension is enabled, the
message is passed to the MessageProcessor class.

• DefaultParameters – This class stores default values of Variables. These
values are used if there is some Request Rule performed for some request
and there is no relevant Variable in the assigned Session.

• MessageProcessor – This class performs the main processing of requests
and responses. First, a new Session is demanded from the SessionMan-
ager. Second, all relevant Rules are collected. Then, the message is
parsed and the Rules are applied. Finally, the Session is returned to

62

4.1. Implementation

the SessionManager and the message is completed and returned to the
Burp Suite.

• RulesDictionary – This class maintains all Rules created by a user. De-
pending on the URL address of the message, the list of relevant Request
or Response Rules is returned.

• SerializationHandler – This class is used to export user settings to a file
and import user settings from a file.

• SessionDB – This class implements the Session, as described above. It
stores a set of Variables and the extracted values.

• SessionExpirationRules – This class stores Session Expiration Rules that
were created by a user. It is used to verify that a Session is still valid
and did not expire (according to the Session Expiration Rules).

• SessionManager – This class manages Sessions. It maintains two main
data structures – a pool of free Sessions and a list of reserved Sessions
that were already used by a request and are waiting for the corresponding
response. If a new request comes, the SessionManager assigns it some
free Session from the pool. If there is no free Session, a new one is
created. After the request is processed, the Session is returned to the
SessionManager, placed into the list of reserved Sessions and waits for
the corresponding response. When the response comes, it obtains the
Session that was reserved for it. After the response is processed, the
Session is returned back to the SessionManager and is released for use
by a new request (it is placed into the pool of free Sessions).

• Classes for Rules – The base class, called Rule, implements all features
common to all Rules. It also declares some abstract methods. There are
two other abstract classes that inherit from the Rule class – the ReqRule
and ResRule classes that correspond to the Request and Response Rules
respectively. From these abstract classes are inherited non-abstract,
final classes that can be instantiated. The final classes implement spe-
cific types of Rules – for example, the ReqRuleCookie class implements
Request Rules for handling cookies and the ResRuleHeader class im-
plements Response Rules for handling headers. The final classes offer
methods for extracting and updating tokens within messages. It is pos-
sible to restrict a Rule to certain URL addresses.

In the case of Request Rules, it is possible to set some prefix and suffix
that will be appended to the value of a Variable when applying the Rule
(updating a request).

In the case of Response Rules, it is possible to set some regular expression
that will be used for further extraction of the value. For example, you

63

4. Realisation and Usage

can create a Rule that extracts content of some header and then to set
the regular expression that extracts only the first word of the content.

• Classes for graphical interface – There are many classes for creation of
new tabs, windows, forms, etc. The Java Swing library was used.

4.1.3 Overall Process

This subsection briefly describes steps of processing requests and responses.
The aim of this description is to present the main process performed by the
extension.

The following list describes how a request is processed.

1. A new request comes to the BurpExtender.

2. If the extension is enabled and the request comes from a Burp tool that
is allowed, it is sent to the MessageProcessor ; otherwise, the request is
not processed.

3. If only items in scope are set to be processed and the URL address of the
request is from the scope set in Burp Suite, it is processed; otherwise,
the request is not processed.

4. A new Session is assigned to the request. If there is no free Session, a
new one is created.

5. Then, all the Request Rules that are relevant to the particular URL
address are collected.

6. The collected Rules are applied one by one – the request is updated with
values in the Session (alternatively Default Parameters). First, cookies,
URL address, GET parameters, and POST parameters are updated.
Second, General Rules are applied. Then, Headers are updated. Finally,
XML and JSON parameters are updated.

7. The assigned Session is reserved for the corresponding response – it is
waiting until the corresponding response comes. To recognize that the
response belongs to the request, a hash of the request body is used –
Burp Suite does not offer any unique identifier for the pairs of requests
and responses.

8. The message is completed and returned.

The following list describes how a response is processed.

1. A new response comes to the BurpExtender.

64

4.2. Usage

2. If the extension is enabled and the response comes from a Burp tool that
is allowed, it is sent to the MessageProcessor ; otherwise, the response is
not processed.

3. If only items in scope are set to be processed and the URL address of
the original request is from the scope set in Burp Suite, it is processed;
otherwise, the response is not processed.

4. The Session that was reserved by the request is given to the response.
If there is no such Session, the response is not processed. Possible rea-
sons for a missing reserved Session are the following: the extension has
just been enabled and the corresponding request was not processed, an-
other extension changed the request (and also its hash), settings of the
extension were changed, etc.

5. Then, all the Response Rules that are relevant to the particular URL
address are collected.

6. The collected Rules are applied one by one – values are extracted from
the response and inserted into the Session. Order is not fixed.

7. The assigned Session is freed and can be used by another request.

4.2 Usage

To add the extension into the Burp Suite, it is necessary to open the Exten-
der/Extensions tab in the Burp Suite and click on the Add button. A new
window appears. It is required to insert a path to a jar file with the extension
and click on the Next button. Output of the extension printed out during the
load appears, as well as possible load errors. If there is no error on the output,
the extension should be loaded successfully and a new tab with the extension
should appear. As mentioned before, it is necessary to place the extension in
the list of extensions so that it is the last one that modifies requests. Now, it
is possible to set up the extension or load some configuration file in the new
tab.

4.2.1 Use Cases

The created extension can be used, for example, for handling different tokens
within requests and responses. However, there are many other possible uses.
Some examples are described below.

Use Case 1 – The Basic authentication scheme (described in the Sub-
section 1.3.1)
The extension can be, for example, used to add the Authorization header
with the Basic scheme and some fixed credentials to every request going to

65

4. Realisation and Usage

some particular server. First, it is necessary to create a new Request Rule
that will insert the Authorization header. Then, it is necessary to set the
authentication scheme and the credentials. To do that, we can set the pre-
fix to "Basic ". Let us assume that the Variable used by this Rules is called
"credentials". Finally, we need to set the value of the Variable. We can cre-
ate a new Default Parameter credentials="dXNlcjpwYXNzd29yZA==". The
"dXNlcjpwYXNzd29yZA==" string is a Base64-encoded string "user:password".

Use Case 2 – The Bearer authentication scheme (described in the
Subsection 1.3.2)
To handle Bearer tokens, it is necessary to set up a Response Rule for token
extraction depending on how the token is sent to us – we can use the JSON
Response Rule, General Response Rule, etc. Let us call the Variable for
extraction "BearerToken". Then, we can create a Header Request Rule that
will add the Authorization header to particular requests. We can restrict the
URL addresses for which the Rule should be applied. We have to set up the
prefix to "Bearer " and to use the extracted value of the "BearerToken"

Variable for update.

Use Case 3 – The form-based authentication scheme (described in the
Subsection 1.3.9
The extension can be used to handle form-based authentication. It is necessary
to create Default Parameters for the user name and password and update their
values in a login request using an appropriate Request Rules. Further, we have
to create a Cookie Response Rule to extract the session identifier from a cookie
to some Variable. We have to use a Cookie Request Rule to update the cookie
in requests using the extracted value.

Use Case 4 – The anti-CSRF tokens handling
The extension can help manage anti-CSRF tokens. A General Response Rule
can be used for extraction of the token from an arbitrary part of a response.
A Request Rule for POST parameters can be used to update the value of the
token within the request body. Both Rules have to use the same Variable
name.

Use Case 5 – The URL address modification
The extension can also be applied if a URL address of some application
changes. It is possible to change the protocol, host name, port number, path,
or any other part of the URL address using regular expressions. If the host
name changed, for example, from "www.example.com" to "www.new.example.

com", it is possible to redirect all requests to the new host name. It is also pos-
sible to change some directory – URL addresses beginning with "www.example.

com/old/..." can be changed to "www.example.com/new/...". Further-
more, the protocol and the port number can also be changed. Thus, it is

66

4.2. Usage

possible to redirect all HTTP requests to use the HTTPS protocol if available
on the server.

This list of use cases is not exhaustive – the extension can be used for
many other purposes that are not mentioned in this subsection. We also
plan to implement some additional features to extend its capabilities. For
example, it would be beneficial to add a possibility to compute Variable values
dynamically. That would allow users to handle tokens used for the Digest
authentication and some other experimental authentication schemes. Further,
a possibility to parse HTML responses would be useful. That would allow
users to use selectors for token extraction (similarly, as in the case of XML
responses and the XPath language).

New versions of the extension can be found on the official page [28], as
well as updated information about the extension.

67

Chapter 5

Testing and Evaluation

This chapter describes how the extension was tested, what are its main fea-
tures, and what are differences between our and other similar extensions.

5.1 Testing

The extension was developed and tested mainly on the computer Lenovo
Thinkpad W530 244744G with Intel Core i7-3720QM, 16 GB of RAM memory,
and a hard disk drive, running 64-bit operating system Windows 10 Enter-
prise. However, some other colleagues also participated in the testing with
their own devices. Because Java is a cross-platform in the sense that compiled
Java programs run on all platforms with a Java virtual machine, there should
not be any problems with using the extension on many different devices.

During testing of the extension, two main criteria were set – the proper
functioning of the implemented functionalities and the speed. The function-
alities were tested continuously on several different applications. After a new
functionality had been added, it was manually tested to work as expected.
As for the Request Rules, it was necessary to use some extension for record-
ing requests and responses27 to check whether the requests were modified by
the Rules as expected. As for the Response Rules, the correctness of the
extracted values was checked using the extension text output. Later, a new
window was used which shows current Variable values of all valid Sessions.
All the implemented features were tested and work as expected.

Several colleagues participated in the testing and review of the extension
and provided a valuable feedback. Some comments were already reflected and
some new features were added based on the provided feedback. For example,
a new feature for manual deletion of a Session was implemented and built into
the extension.

27The Logger++ and Flow extensions can be used for this purpose.

69

5. Testing and Evaluation

Number of session Average scan time Request rate
[s] [requests/s]

1 2,072 1.39

5 343 8.42

10 157 18.34

20 65 44.18

Table 5.1: Measured times and request rates

Regarding the speed of the extension, handling of tokens requires some
additional overhead. Further, it is necessary to consider the time it takes to
create new Sessions at the beginning of every active scan or fuzzing. However,
these additional time requirements are negligible28 and more than compen-
sated by the ability of using multiple sessions at the same time.

The Burp Suite Scanner tool offers an option to set a number of concur-
rent requests for the scanning. For many applications (especially the ones
with anti-CSRF and similar tokens), it is not possible to use more than one
concurrent request if the tester wants to process the tokens correctly and
achieve the most accurate possible results, as Burp Suite can maintain only
one session at the moment. Therefore, testers cannot utilize this option in
many cases. Our extension allows them to use multiple sessions at the same
time and thus to fully utilize this option. For each of the concurrent requests,
another Session is used. In the following paragraphs, we will interchange the
terms “number of concurrent requests” and “number of sessions”. During the
testing of the extension, we came to the following finding: if using multiple
concurrent requests during an active scan, the speed-up is super-linear. This
trend is reflected in our measurements.

For a scan of one particular request we needed 2,072 seconds using a single
session29. Average number of requests per second was 1.39. For a scan of
the same request using 5 threads, we needed 343 seconds on average and the
average number of requests per second was 8.42. For a scan using 10 threads,
we needed 157 seconds on average and the average number of requests per
second was 18.34. When we used 20 threads, we needed 65 seconds on average
and the average number of requests per second was 44.18. Summary of the
measured times and request rates can be found in the table 5.1.

As we can see from the values that are plotted in the graph 5.1, managing
of multiple sessions greatly speeds up scanning of requests and the whole
application in general. The super-linear speed-up was not disrupted by our

28Scanning and fuzzing time depends primarily on the speed of the connection. Processing
on the local computer has quite a little impact on the overall time.

29Scanning of requests takes quite a long time, especially if the requests contain many
parameters that should be tested. The request scan we performed took more than 34 minutes
using a single session. If we would need to scan the whole application that usually contains
tens or hundreds of such requests using a single session, it would take days.

70

5.2. Features

0

5

10

15

20

25

30

35

40

45

50

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

re
q

u
e

st
s

p
e

r
se

co
n

d

T
im

e
 [

s]

Number of concurrent requests (Number of sessions)

Average time

Average

number of

requests per

second

Figure 5.1: Graph of measured times and request rates

extension and even synchronization of multiple threads and greater network
congestion for 20 concurrent requests did not reverse the trend. We believe
that this extension will be helpful to many testers and will save their time.

5.2 Features

Our extension meets all the requirements specified in the assignment and it is
also suitable for other purposes. Its main features are listed below:

• Handling of the following parts of requests and responses:

– Cookies – extraction and update of their content

– Headers – extraction and update of their content

– URL address – extraction and update of the URL address

– GET and POST parameters – update of their content

– JSON message body – extraction and update of the JSON structure

– XML message body – extraction and update of the XML structure
using the XPath language

– Other parts – extraction and update of other parts of messages
using a regular expression

71

5. Testing and Evaluation

This can be used to manage authentication, authorization, and session
tokens, as well as anti-CSRF tokens. Further, it is possible to automat-
ically resend requests with a URL address different from the original
one.

• A possibility to use fixed values of tokens that cannot be extracted from
a response (Default Parameters) – this feature can be used for example
for storing testing credentials

• Maintaining multiple sessions at the same time

• A possibility to define when a session is expired based on the extracted
values from responses

• A possibility to create new sessions using Burp Suite macros

• A possibility to export and import user settings to an XML file

• An organized graphical interface that is user-friendly and easy to use

Our extension makes the token handling significantly easer. It also offers
additional features that are not available in the Burp Suite tool. Using our
extension, the time necessary for web application testing may get shorten
several times.

5.3 Comparison with Other Extensions

There are not many extensions that have similar features as the ours. The
Burp Suite itself does not support handling of multiple sessions at the same
time and token management is far more complicated to set up.

There is an extension called TokenJar that handles anti-CSRF tokens,
session identifiers, and other tokens. However, it does not provide so many
options as our extension, does not allow to maintain multiple sessions at the
same time and does not offer automatic creation of a new session. This ex-
tension has one big advantage – it allows to compute parameters dynamically
using JavaScript; thus, it is possible to use this extension for generation of
random tokens, etc. It also preserves its state automatically.

There are several extensions that handle anti-CSRF tokens, such as the
CSRF Token Tracker, CSurfer, and Match/Replace Session Action. There
are also some specialized extensions for handling bearer tokens30. However,
features of these extensions are usually very limited.

At the time of writing this thesis, we are not aware of any other similar
extension.

30For example, the UpdateToken and BearerAuthToken are both available on the GitHub
page. These two extensions are not available in the official BApp store and must be down-
loaded and loaded to the Burp Suite manually.

72

Conclusion

The aim of this thesis was to find out which authentication, authorization, and
session management methods are used in the HTTP protocol and to analyse
their security aspects and weaknesses. There are many available methods, es-
pecially for authentication. Some of them enable authentication of the server,
while others do not. In some cases, credentials are transferred in the plaintext
which brings additional security threats. None of the methods is completely
secure – each has its own weaknesses that can be used for an attack, and
these weaknesses were described in this master’s thesis. All the studied meth-
ods also rely on security of the underlying layers to provide confidentiality
and integrity of HTTP messages and in many cases to protect the credentials
themselves. Thus, these methods should always be used over a secure channel
(e.g., using the HTTPS protocol).

Within the practical part of this thesis, an extension to the Burp Suite
tool has been created. It meets all the specified requirements and provides
many additional functionalities. Its main feature is easy management of au-
thentication, authorization, and other tokens contained in HTTP messages.
Many options are offered to simplify the set-up of the extension. Further,
the extension allows testers to maintain multiple sessions at the same time
and thus to speed up web application testing several times in some cases. A
large number of Burp Suite users ask for adding similar feature into the Burp
Suite itself, yet without success. According to information obtained from an
employee of the company which develops the tool, adding such feature is not
planned in the near future. As far as we know, there is also no comparable
extension available at the moment. Thus, we hope that this extension will
be useful for many people. At least, until a similar functionality is released
as a part of the Burp Suite itself. All the predefined requirements have been
fulfilled and the extension was successfully tested.

In terms of future plans, we would like to publish the source code of the
extension on the GitHub page. Other users will be thus able to further improve
the extension and customize it. We also plan to include the extension in the

73

Conclusion

official Burp Suite store. This store contains dozens of such extensions and
users can install them directly from the Burp Suite tool. It is possible that the
extension will be officially introduced in September at the OWASP meeting
held in Prague.

In the meantime, there are many useful functionalities that could be added
into the extension. For example, a possibility to calculate values of tokens
dynamically using code snippets. This would enable users to handle tokens
used within Digest authentication scheme and multiple experimental schemes.
It would also allow users to use the current time for the token computation, to
concatenate multiple values into one token, etc. Further, we believe it would
be useful to add a possibility to parse HTML responses. Finally, automatic
backup of the settings would be beneficial in case of any program failures.
We plan to implement all the mentioned enhancements to make the extension
even more useful and handy, and we would like to continue developing and
supporting the extension in the future.

74

Bibliography

[1] FIELDING, R. et al. RFC 2068 – Hypertext Transfer Protocol – HTTP/1.1
[online]. 1997 [viewed 23 February 2018]. Available from: https://

tools.ietf.org/html/rfc2068.

[2] FIELDING, R. et al. RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1
[online]. 1999 [viewed 23 February 2018]. Available from: https://

tools.ietf.org/html/rfc2616.

[3] FIELDING, R.; RESCHKE, J. RFC 7230 – Hypertext Transfer Proto-
col (HTTP/1.1): Message Syntax and Routing [online]. 2014 [viewed 23
February 2018]. Available from: https://tools.ietf.org/html/rfc7230.

[4] FIELDING, R.; RESCHKE, J. RFC 7231 – Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content [online]. 2014 [viewed 23 February
2018]. Available from: https://tools.ietf.org/html/rfc7231.

[5] FIELDING, R.; RESCHKE, J. RFC 7232 – Hypertext Transfer Proto-
col (HTTP/1.1): Conditional Requests [online]. 2014 [viewed 23 February
2018]. Available from: https://tools.ietf.org/html/rfc7232.

[6] FIELDING, R.; LAFON, Y. and RESCHKE, J. RFC 7233 – Hypertext
Transfer Protocol (HTTP/1.1): Range Requests [online]. 2014 [viewed 23
February 2018]. Available from: https://tools.ietf.org/html/rfc7233.

[7] FIELDING, R.; NOTTINGHAM, M. and RESCHKE, J. RFC 7234 – Hy-
pertext Transfer Protocol (HTTP/1.1): Caching [online]. 2014 [viewed 23
February 2018]. Available from: https://tools.ietf.org/html/rfc7234.

[8] FIELDING, R.; RESCHKE, J. RFC 7235 – Hypertext Transfer Protocol
(HTTP/1.1): Authentication [online]. 2014 [viewed 23 February 2018].
Available from: https://tools.ietf.org/html/rfc7235.

75

https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235

Bibliography

[9] HTTP [online]. 2017 [viewed 23 February 2018]. Available from: https:

//developer.mozilla.org/en-US/docs/Web/HTTP.

[10] Test HTTP Methods (OTG-CONFIG-006) [online]. 2015 [viewed 24
February 2018]. Available from: https://www.owasp.org/index.php/

Test_HTTP_Methods_(OTG-CONFIG-006).

[11] BARTH, A.; BERKELEY, U.C. RFC 6265 – HTTP State Management
Mechanism [online]. 2011 [viewed 10 March 2018]. Available from: https:

//tools.ietf.org/html/rfc6265.

[12] DIERKS, T.; RESCORLA, E. RFC 5246 – The Transport Layer Secu-
rity (TLS) Protocol Version 1.2 [online]. 2008 [viewed 10 March 2018].
Available from: https://tools.ietf.org/html/rfc5246.

[13] SHEFFER, Y.; HOLZ, R. and SAINT-ANDRE, P. RFC 7457 – Sum-
marizing Known Attacks on Transport Layer Security (TLS) and Data-
gram TLS (DTLS) [online]. 2015 [viewed 10 March 2018]. Available from:
https://tools.ietf.org/html/rfc7457.

[14] GREEN, M. A Few Thoughts on Cryptographic Engineering [on-
line]. 2018 [viewed 16 March 2018]. Available from: https://

blog.cryptographyengineering.com/.

[15] Hypertext Transfer Protocol (HTTP) Authentication Scheme Reg-
istry [online]. 2017 [viewed 18 March 2018]. Available from:
https://www.iana.org/assignments/http-authschemes/http-

authschemes.xhtml.

[16] RESCHKE, J. RFC 7617 – The ’Basic’ HTTP Authentication Scheme
[online]. 2015 [viewed 1 April 2018]. Available from: https://

tools.ietf.org/html/rfc7617.

[17] JONES, M. and HARDT, D. RFC 6750 – The OAuth 2.0 Authoriza-
tion Framework: Bearer Token Usage [online]. 2012 [viewed 1 April 2018].
Available from: https://tools.ietf.org/html/rfc6750.

[18] SHEKH-YUSEF, R.; AHRENS, D. and BREMER, S. RFC 7616 – HTTP
Digest Access Authentication [online]. 2015 [viewed 1 April 2018]. Available
from: https://tools.ietf.org/html/rfc7616.

[19] FARRELL, S.; HOFFMAN, P. and THOMAS, M. RFC 7486 – HTTP
Origin-Bound Authentication (HOBA) [online]. 2015 [viewed 5 April 2018].
Available from: https://tools.ietf.org/html/rfc7486.

[20] OIWA, Y. et al. RFC 8120 – Mutual Authentication Protocol for
HTTP [online]. 2017 [viewed 6 April 2018]. Available from: https:

//tools.ietf.org/html/rfc8120.

76

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://www.owasp.org/index.php/Test_HTTP_Methods_(OTG-CONFIG-006)
https://www.owasp.org/index.php/Test_HTTP_Methods_(OTG-CONFIG-006)
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7457
https://blog.cryptographyengineering.com/
https://blog.cryptographyengineering.com/
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7616
https://tools.ietf.org/html/rfc7486
https://tools.ietf.org/html/rfc8120
https://tools.ietf.org/html/rfc8120

Bibliography

[21] MELNIKOV, A. RFC 7804 – Salted Challenge Response HTTP Authen-
tication Mechanism [online]. 2016 [viewed 9 April 2018]. Available from:
https://tools.ietf.org/html/rfc7804.

[22] THOMSON, M. and BEVERLOO, P. RFC 8292 – Voluntary Application
Server Identification (VAPID) for Web Push [online]. 2017 [viewed 9 April
2018]. Available from: https://tools.ietf.org/html/rfc8292.

[23] STUTTARD, D. and PINTO, M. The Web Application Hacker’s Hand-
book: Finding and Exploiting Security Flaws. 2nd ed. Indianapolis: Wiley,
2011. 912 p. ISBN 978-1-118-02647-2.

[24] HAMMER-LAHAV, E. RFC 5849 – The OAuth 1.0 Protocol [online].
2010 [viewed 7 April 2018]. Available from: https://tools.ietf.org/

html/rfc5849.

[25] HARDT, D. RFC 6749 – The OAuth 2.0 Authorization Frame-
work [online]. 2012 [viewed 13 April 2018]. Available from: https://

tools.ietf.org/html/rfc6749.

[26] PARECKI, A. OAuth.com – OAuth 2.0 Servers [online]. 2016 [viewed 13
April 2018]. Available from: https://www.oauth.com/.

[27] Burp Suite Documentation [online]. 2018 [viewed 15 April 2018]. Available
from: https://portswigger.net/burp/help/.

[28] DRHOVA, K. Authentication master – Burp Suite Extension [online].
2018 [viewed 15 April 2018]. Available from: http://klara.drhova.cz/

AuthenticationMaster/index.html.

[29] google-gson [online]. 2018 [viewed 16 April 2018]. Available from: https:

//github.com/google/gson.

[30] The DROWN Attack [online]. 2016 [viewed 16 March 2018]. Available
from: https://drownattack.com/.

[31] Triple Handshakes Considered Harmful: Breaking and Fixing Authenti-
cation over TLS [online]. 2014 [viewed 16 March 2018]. Available from:
https://www.mitls.org/pages/attacks/3SHAKE.

77

https://tools.ietf.org/html/rfc7804
https://tools.ietf.org/html/rfc8292
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://www.oauth.com/
https://portswigger.net/burp/help/
http://klara.drhova.cz/AuthenticationMaster/index.html
http://klara.drhova.cz/AuthenticationMaster/index.html
https://github.com/google/gson
https://github.com/google/gson
https://drownattack.com/
https://www.mitls.org/pages/attacks/3SHAKE

Appendix A

Acronyms

3DES Triple DES, Triple Data Encryption Algorithm

3G Third Generation

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CAPTCHA Completely Automated Public Turing test to tell Computers
and Humans Apart

CBC Cipher Block Chaining

CORS Cross-origin Resource Sharing

CSP Content Security Policy

CSRF Cross-site Request Forgery

DNS Domain Name System

GB Gigabyte

GCM Galois/Counter Mode

HMAC Keyed-hash Message Authentication Code

HOBA HTTP Origin-Bound Authentication

HSTS HTTP Strict Transport Security

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

79

A. Acronyms

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

JAR Java Archive

JSON JavaScript Object Notation

LAN Local Area Network

LTE Long-Term Evolution

MAC Message Authentication Code

MIME Multipurpose Internet Mail Extensions

NTLM NT LAN Manager

OWASP Open Web Application Security Project

RFC Request for Comments

RSA Rivest–Shamir–Adleman

SCRAM Salted Challenge Response Authentication Mechanism

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

VAPID Voluntary Application Server Identification Authentication

XML Extensible Markup Language

XSS Cross-site Scripting

80

Appendix B

Attacks against SSL and TLS

There are many types of attacks against the SSL and TLS protocols, some of
them having serious consequences. Certain versions of these protocols suffer
from implementation and design flaws. Some attacks take advantage of con-
figuration issues. A brief description of chosen attacks can be found below.

• BEAST attack (Browser Exploit Against SSL/TLS attack) – This attack
was published in 2011 and affects SSL 3.0 and TLS 1.0. The attacker
takes advantage of a vulnerable implementation of the CBC mode of
operation in the vulnerable protocols. In this implementation, the ini-
tialization vector is predictable and the attacker is thus able to guess
and decrypt parts of a packet. Especially, decrypting HTTP cookies
can be a serious issue. This attack can be prevented by using TLS 1.1
or TLS 1.2.

• BREACH attack (Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext) – This compression attack is a variant of the
CRIME attack described below. The inbuilt HTTP-level data compres-
sion is exploited in this case which is much more prevalent than the
TLS-level compression used in the CRIME attack.

• CRIME attack (Compression Ratio Info-leak Made Easy attack) – This
attack uses a vulnerability found in TLS compression and can be used
to predict sensitive information (such as the HTTP cookies) if TLS-level
compression is used. This is done by guessing the secret character by
character and observing the compressed size of the request for these
different input values (for example, by sniffing the network traffic). If
the compressed size is smaller, then the inserted character is equal to
the one contained in the secret. To conduct this attack, the attacker
needs to have reasonable control over the victim’s browser or to make
the victim click on a link with some malicious code. This issue can be

81

B. Attacks against SSL and TLS

mitigated by turning off the TLS compression on the server or client
side.

• DROWN attack (Decrypting RSA with Obsolete and Weakened eNcryp-
tion) [30] – This cross-protocol attack 31 exploits a vulnerability in the
deprecated SSL 2.0 protocol together with the configuration of a server
that shares the same RSA keys between the two protocols. The SSL
2.0 protocol supports vulnerable export cipher suites 32 and thus can
be used to obtain a symmetric session key for a captured TLS connec-
tion. Also, some weaknesses in older OpenSSL implementations can be
exploited to reduce the effort required to break the encryption. The
attacker can gain unencrypted communication between clients and the
server and can impersonate a website on the vulnerable server (change
the content that the clients see). This issue can be mitigated by ensuring
that the server’s private keys are not used with any software that allows
SSL 2.0 connections.

• FREAK attack (Factoring RSA Export Keys) – This attack is a down-
grade attack against export cipher suits – especially, the RSA cryptosys-
tem. An attacker can trick a vulnerable client and a vulnerable server
(using the man-in-the-middle attack) to use a weak RSA export keys. If
the export RSA modulus with 512 bits or less is used, then the attacker
can factor it quite easily using the number field sieve algorithm and can
impersonate the server and fake a web site 33. This issue can be solved
by disabling support for all export cipher suites on the server.

• Heartbleed attack – This is an implementation attack that exploits a
coding mistake. The vulnerability was found in 2014 in the extension
of the cryptography library OpenSSL which is widely used by TLS pro-
tocol. In “heartbeat” message, the client sends a payload that contains
data and information about its size. The server should response with
the same message (the same data and size of the data). Due to the
coding error, the server did not check whether the size corresponded to

31Cross-protocol attacks exploit bugs in one protocol implementation (in this case SSL
2.0) to attack the security of connections made under a different protocol (in this case TLS).

32Export cipher suites were designed in 1990s to be sufficiently weak that they could
be broken easily by the National Security Agency (NSA) and the U.S. government but not
by other organizations with lesser computing resources. However, with unceasing increases
in computing power, they can be broken today by anyone with access to cloud computing
services. For example, RSA using modulus with 512 or less bits can be broken in several
hours. The FREAK attack exploits export-grade RSA, the Logjam attack exploits export-
grade Diffie-Hellman, and the DROWN attack exploits export-grade symmetric ciphers – all
three kinds of deliberately weakened cryptographic primitives have been exploited.

33Generating RSA keys is computationally expensive, and many servers do not generate
them for every single connection. In fact, some of them generate a single RSA key at the
startup and use it until they are switched off.

82

the data received. If an attacker sent bigger size than the real data size
was, the server responded with the data from the attacker’s request and
some random data that was placed after it in the server’s memory to
meet the specified length.

• Logjam attack – This attack is a downgrade attack against Diffie–Hellman
key exchange. We can gain the secret key established using Diffie–
Hellman key exchange if we are able to solve the discrete logarithm
problem which can be solved using the index calculus algorithm. In
this algorithm, an attacker is able to compute first three steps of the
index calculus algorithm in advance. The last step can be computed in
relatively short time (for 512-bit prime in order of minutes). In this at-
tack, the attacker uses a man-in-the-middle attack to downgrade a TLS
connection to use 512-bit export-grade Diffie–Hellman prime and then
computes the secret key that is shared between the client and the server.
Using this shared key, she is able to read the exchanged data, modify
them, or inject data into the connection. This attack can be mitigated
by allowing only Diffie–Hellman key exchange with 2048 or more bits
or by switching to Elliptic-curve Diffie–Hellman key exchange (ECDH)
that cannot be solved directly by using the index calculus algorithm.

• Lucky Thirteen attack – This attack is a novel variant of the padding
oracle attack. It is a timing side channel attack 34 against TLS imple-
mentation of the CBC mode of operation that allows the attacker to
decrypt arbitrary ciphertext. It is rather a theoretical attack, as the
timing differential caused by invalid padding is very small and can be
exploited only from a close distance (e.g., over a LAN) and with repeat-
ing the process many times to eliminate the noise (that could change in
the future with faster networks, etc.). The Lucky Thirteen attack can
be mitigated by using authenticated encryption, such as AES-GCM, or
encrypt-then-MAC instead of the TLS default of MAC-then-encrypt.

• POODLE attack (The Padding Oracle On Downgraded Legacy Encryp-
tion attack) – This attack is a variant of the padding oracle attack on
the CBC mode of operation and affects SSL 3.0 (there is also its newer
variant against TLS). It takes advantage of the support of SSL 3.0 on
many servers and clients (due to compatibility reasons) and a vulnerabil-
ity in SSL 3.0 protocol which is related to block padding. The attacker
forces the client to downgrade the connection to SSL 3.0 protocol using a
man-in-the-middle attack and then deciphers the value of an encrypted
block by modifying the padding bytes. The attacker can thus retrieve

34Side channel attacks are attacks that exploit information leaked into surrounding which
is not part of the normal function. For example, power consumption, electromagnetic ra-
diation, timing information, sound, or returned errors can be used to provide additional
information about the system.

83

B. Attacks against SSL and TLS

the plaintext character by character. The easiest mitigation technique
is to completely disable SSL 3.0 on the server.

• Renegotiation attack – This vulnerability is a major attack on the TLS
renegotiation mechanism and applies to all current versions of the pro-
tocol and also to SSL 3.0. It was discovered in 2009. This attack allows
an attacker to inject plaintext into the victim’s requests. For example,
if the attacker is able to hijack an HTTPS connection, she is then able
to insert her own requests to the conversation the client has with the
web server. However, the attacker cannot decrypt the communication
between the client and the server. Using the renegotiation attack, an
attacker can also downgrade a HTTPS connection to a HTTP connec-
tion, inject custom responses, perform denial of service, etc. There is an
extension that is a permanent fix for this vulnerability.

• Sweet32 attack – This attack breaks all 64-bit block ciphers (e.g., 3DES)
used in CBC mode by exploiting a birthday attack and some way to
capture enough traffic to launch the birthday attack (either a man-in-the-
middle attack or injection of a malicious JavaScript into a web page). An
attacker is able to recover a plaintext without knowing the encryption
key. Firstly, she needs to collect a big amount of blocks enciphered
with the same key; the amount depends on the length of the block
and is equal to roughly 32 GB of ciphertext for 64-bit blocks to have a
good chance of success. Secondly, she needs to find a collision of two
blocks – if we assume that half of the plaintext blocks are known to the
attacker, she would need to increase the amount of ciphertext to about
64 GB. Finally, she is able to find the plaintext block corresponding
to the colliding ciphertext block using the known plaintext block and
ciphertext blocks preceding to the colliding ones (they play the role of
initialization vectors).

• TIME attack (Timing Info-leak Made Easy attack) – In this compression
attack, the attacker needs to redirect a victim to a malicious website that
will run some code to get the secret data. The attacker does not observe
the compressed size but the time it takes to send these messages across
the network. If the message is longer (less compressed) and overflows
into an additional TCP packet, then the time necessary for the sending
will be longer. In contrast with the CRIME attack and the BREACH
attack, the attacker does not need to sniff the network. This attack can
be mitigated by disabling TLS compression.

• Triple Handshake attack [31] – In this attack, the attacker is able to
establish two connections which has the same encryption keys. If a client
connects to a malicious server, the client presents user’s credentials. The
server can then misuse these credentials and impersonate the client at

84

any other server that accepts the same credentials. The malicious server
performs a kind of man-in-the-middle attack. This attack does not rely
on implementation errors and can be prevented, for example, by using
the Content-Security-Policy response header.

85

Appendix C

Contents of enclosed DVD

readme.txt.......................the file with DVD content description
extension.............................the directory with the extension

AuthenticationMaster.jar............the extension in JAR format
doc the directory of documentation
src....................................the directory of source codes

text..the thesis text directory
DP Drhova Klara 2018.pdf............the thesis text in PDF format
thesis..............the directory of LATEX source codes of the thesis

87

	Introduction
	Analysis
	HTTP Protocol
	SSL and TLS
	Authentication
	Authorization
	Session Management
	Summary

	Burp Suite
	Authentication, Authorization, and Session Management in Burp Suite

	Design
	Goals and Requirements
	Basic Concepts

	Realisation and Usage
	Implementation
	Usage

	Testing and Evaluation
	Testing
	Features
	Comparison with Other Extensions

	Conclusion
	Bibliography
	Acronyms
	Attacks against SSL and TLS
	Contents of enclosed DVD

