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Abstract

The problem of d-Path Vertex Cover, d-PVC lies in determining a sub-
set F of vertices of a given graph G = (V, E) such that G\F does not contain
a path on d vertices. The paths we aim to cover need not to be induced. It
is known that the d-PVC problem is NP-complete for any d ≥ 2. 5-PVC is
known to be solvable in O(5knO(1)) time when parameterized by the size of
the solution k. In this thesis we present an iterative compression algorithm
that solves the 5-PVC problem in O(4knO(1)) time.

Keywords graph algorithms, Hitting Set, iterative compression, para-
meterized complexity, d-Path Vertex Cover

Abstrakt

Problém zvaný d-Path Vertex Cover, d-PVC spoč́ıvá v nalezeńı pod-
množiny F vrchol̊u daného grafu G = (V, E) takové, že G \ F neobsahuje
žádnou cestu na d vrcholech. Cesty, které chceme takto podchytit, nemuśı být
indukované. Je známo, že problém d-PVC je NP-úplný pro každé d ≥ 2. Dále
je známo, že problém 5-PVC parametrizovaný velikost́ı řešeńı k je řesitelný
v čase O(5knO(1)). V této práci přicháźıme s algoritmem použ́ıvaj́ıćı iterativńı
kompresi, který řeš́ı problém 5-PVC v čase O(4knO(1)).

Kĺıčová slova grafové algoritmy, Hitting Set, iterativńı komprese, para-
metrizovaná složitost, d-Path Vertex Cover
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Introduction

The problem of d-Path Vertex Cover, d-PVC lies in determining a sub-
set F of vertices of a given graph G = (V, E) such that G\F does not contain
a path on d vertices. The paths we aim to cover need not to be induced. The
problem was first introduced by Brešar et al. [1], but its NP-completeness
was already proven by the meta-theorem of Lewis and Yannakakis [9] for any
d ≥ 2. The 2-PVC problem corresponds to the well known Vertex Cover

problem and the 3-PVC problem is also known as Maximum Dissociation

Set. The d-PVC problem is motivated by the field of designing secure wireless
communication protocols [10] or in route planning and speeding up shortest
path queries [7].

Several efficient (faster than trivial enumeration) exact algorithms are
known for 2-PVC which can be solved in O∗(1.1996n) time and polynomial
space due to Xiao and Nagamochi [17], and for 3-PVC which can be solved
in O∗(1.4656n) time and polynomial space due to Xiao and Kou [15].

When parameterized by the size of the solution k, the d-PVC problem has
a trivial FPT algorithm that runs in O∗(dk) time (FPT and the O∗ notation
are properly introduced in Chapter 1). In order to find more efficient solutions,
the problem has been extensively studied in a setting where d is a small
constant. For the 2-PVC problem, the algorithm of Chen, Kanj, and Xia [2]
has currently best known running time O∗(1.2738k). For the 3-PVC problem,
Tu [13] used iterative compression to achieve a running time O∗(2k), which
was later improved by Katrenič [8] to O∗(1.8127k) and further by Xiao and
Kou [16] to O∗(1.7485k) by using a branch-and-reduce approach. For the 4-

PVC problem, Tu and Jin [14] again used iterative compression and achieved
a running time O∗(3k). For d ≥ 5 no non-trivial algorithms are known.

Our contribution. We present an algorithm that solves the 5-PVC problem
parameterized by the size of the solution k in O∗(4k) time by employing the
iterative compression technique.
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Introduction

Organization of this thesis. We introduce the notation and properly define
the 5-PVC problem in Chapter 1. The technique of iterative compression is
then described in Chapter 2. Our main algorithm (the disjoint compression
routine) together with its proof of correctness is exposed in Chapter 3. In
Chapter 4 we experimentally evaluate our algorithm against the trivial one.
We conclude this thesis with a few open questions.
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Chapter 1

Preliminaries

We use the O∗ notation as described by Fomin and Kratsch [6]. The notation
is derived from the classical big-O notation. Big-O notation is defined as
follows. For function f(n) and g(n) we write f(n) = O(g(n)) if there are
positive numbers n0 and c such that for every n > n0 we have f(n) < c · g(n).
The O∗ notation is a modification of big-O notation which suppresses all
polynomially bounded factors. Formally, for functions f(n) and g(n) we write
f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

We use the notation of parameterized complexity as described by Cygan
et al. [3]. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a
fixed finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is called the parame-
ter. A parameterized problem L ⊆ Σ∗ × N is called fixed-parameter tractable
(FPT) if there exists an algorithm A, a computable function f : N→ N, and
a constant c such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly de-
cides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c, where |(x, k)| is
the size of the problem instance (x, k). The algorithm A is then called an FPT
algorithm.

We use standard graph notation and consider simple and undirected graphs
unless otherwise stated. Vertices of graph G are denoted by V (G), edges by
E(G). By G[X] we denote the subgraph of G induced by vertices of X ⊆ V (G).
By N(v) we denote the set of neighbors of v ∈ V (G) in G. Analogically,
N(X) =

⋃

x∈X N(x) denotes the set of neighbors of vertices in X ⊆ V (G).
The degree of vertex v is denoted by deg(v) = |N(v)|. For simplicity, we write
G \ v for v ∈ V (G) and G \X for X ⊆ V (G) as shorthands for G[V (G) \ {v}]
and G[V (G) \X], respectively.

Definition 1. A k-path denoted as an ordered k-tuple Pk = (p1, p2, . . . , pk) is
a graph with vertices V (Pk) = {p1, p2, . . . , pk} and edges E(Pk) = {{pi, pi+1} |
i ∈ {1, 2, . . . , k − 1}}. A path Pk starts at vertex x when p1 = x.

A k-cycle is a cycle on k vertices. A triangle is a 3-cycle. A P5-free graph
is a graph that does not contain a P5 as a subgraph (the P5 needs not to be

3



1. Preliminaries

induced).

The 5-Path Vertex Cover problem is formally defined as follows:

5-Path Vertex Cover, 5-PVC

Input: A graph G = (V, E), an integer k ∈ Z+
0 .

Output: A set F ⊆ V , such that |F | ≤ k and G \ F is a P5-free graph.

Definition 2. A star is a graph S with vertices V (S) = {s} ∪ {l1, . . . , lk},
k ≥ 3 and edges E(S) = {{s, li} | i ∈ {1, . . . , k}} (see Figure 1.1a). Vertex s
is called a center, vertices L = {l1, . . . , lk} are called leaves.

Definition 3. A star with a triangle is a graph S△ with vertices V (S△) =
{s, t1, t2} ∪ {l1, . . . , lk}, k ≥ 1 and edges E(S△) = {{s, t1}, {s, t2}, {t1, t2}} ∪
{{s, li} | i ∈ {1, . . . , k}} (see Figure 1.1b). Vertex s is called a center, vertices
T = {t1, t2} are called triangle vertices and vertices L = {l1, . . . , lk} are called
leaves.

Definition 4. A di-star is a graph D with vertices V (D) = {s, s′} ∪ {l1, . . . , lk}
∪ {l′1, . . . , l′m}, k ≥ 1, m ≥ 1 and edges E(D) = {{s, s′}} ∪ {{s, li} | i ∈
{1, . . . , k}} ∪ {{s′, l′j} | j ∈ {1, . . . , m}} (see Figure 1.1c). Vertices s, s′ are
called centers, vertices L = {l1, . . . , lk} and L′ = {l′1, . . . , l′m} are called leaves.

s

l1
l2l3

lk

(a) A star.

s

t1

t2l1
lk

(b) A star with a triangle.

s s′

l1
lk

l′1
l′m

(c) A di-star.

Figure 1.1

Lemma 1. If a connected graph is P5-free and has more than 5 vertices, then
it is a star, a star with a triangle, or a di-star.

Proof. Suppose we have a P5-free graph G on at least 5 vertices. Firstly, G
does not contain a k-cycle, k ≥ 5 as a subgraph, since P5 is a subgraph of such
a k-cycle. Secondly, G does not contain a 4-cycle as a subgraph, since G has

4



at least 5 vertices and it is connected which implies that there is at least one
vertex connected to the 4-cycle which in turn implies a P5 in G. Finally, G does
not contain two edge-disjoint triangles as a subgraph, since G is connected,
the two triangles are either sharing a vertex or are connected by some path,
which in both cases implies a P5 in G. Consequently, G contains either exactly
one triangle or is acyclic.

Consider the first case where G contains exactly one triangle. Label the
vertices of the triangle with {t1, t2, t3}. Then we claim that all vertices outside
the triangle are connected by an edge to exactly one vertex of that triangle,
let that vertex be t1. Indeed, for contradiction suppose they are not. Since
we have at least 5 vertices in G, label the two existing vertices outside the
triangle x and y. Then we either have x and y connecting to two different
vertices of the triangle, let them be t1, t2, which immediately implies a P5 =
(x, t1, t3, t2, y) in G, or we have a P3 = (x, y, t1) connected to the triangle,
which again implies a P5 = (x, y, t1, t2, t3). Hence, if G contains a triangle,
then it is a star with a triangle.

Consider the second case where G is acyclic. Then we claim that there is
a dominating edge in G, i.e. an edge e = {x, y} such that V (G) = N({x, y})∪
{x, y}. Indeed, for contradiction suppose that there is no such edge. Then
we have that for each edge e = {x, y} in G there must be a vertex v that is
adjacent neither to x, nor to y. Assume that v is connected to y through some
vertex u. The same also holds for the edge {y, u}, so assume that there is
a vertex v′ 6= x that is connected to u through some vertex u′ 6= y. But then
we have a P5 = (x, y, u, u′, v′) in G.

Label the dominating edge e = {s, s′}. Here, if only one of the vertices s, s′

has degree greater than one, we have a star, otherwise we have a di-star.

5





Chapter 2

Iterative compression

Iterative compression is a technique which enables us to design FPT algo-
rithms. It was first introduced by Reed et al. [12] to solve the Odd Cycle

Traversal problem. The main idea of iterative compression lies in the com-
pression routine, which takes a solution F and returns a solution F ′ such that
|F | < |F ′| or proves that the solution F is already optimal in size.

2.1 Algorithm

We start with an empty vertex set V ′ = ∅ and empty solution F = ∅ and work
with the graph G[V ′]. Surely, an empty set F is a solution for a currently
empty graph G[V ′]. One by one we add vertices v ∈ V \ V ′ to V ′ and F until
V ′ = V and if at any time the solution becomes too big, i.e. if |F | = k + 1,
we start the compression routine.

The compression routine takes F and goes through every partition of F
into two sets X, Y such that Y 6= ∅. Here, X is the part of F that we want
to keep in the solution and Y is the part of F that we want to replace with
vertices from V ′ \ F . Since X are vertices we already decided to keep in the
solution, we remove them from G[V ′], i.e. we continue with G′ = G[V ′] \X.
Now the problem is to find a solution F ′ for G′ such that |F ′| ≤ |Y |−1 and F ′

is disjoint from Y . We consider this partition only if G[Y ] is P5-free. Indeed,
we require that F ′ is disjoint from Y so we cannot have any P5 paths in G[Y ].
To find this smaller disjoint solution F ′ for G′ we use the disjoint compression
routine. The smaller solution for G[V ′] is then constructed as F̂ = X ∪F ′ and
it follows from construction of F̂ that |F̂ | ≤ k.

If after going through all partitions of F we did not find a smaller solution
for G[V ′], then we know that F was optimal in size and signalize that there
is no solution (see Algorithm 1 for illustration).

The disjoint compression routine is typically the only part that must be
designed specifically for the problem. In our case the disjoint compression

7



2. Iterative compression

routine is called disjoint and the problem it solves is called 5-PVC with

P5-free Bipartition. We describe the routine and the problem in Chapter 3.

Algorithm 1 Pseudocode of the iterative compression algorithm

1: procedure algo(G = (V, E), k)
2: V ′ ← ∅, F ← ∅
3: while V \ V ′ 6= ∅ do
4: with v ∈ V \ V ′

5: V ′ ← V ′ ∪ {v}, F ← F ∪ {v}
6: if |F | = k + 1 then
7: F̂ ← no solution
8: for each X ( F do
9: Y ← F \X

10: if G[Y ] is P5-free then
11: G′ ← G[V ′] \X
12: F ′ ← disjoint(G′, Y, V (G′) \ Y, |Y | − 1)
13: if F ′ 6= no solution then
14: F̂ = X ∪ F ′

15: break
16: end if
17: end if
18: end for
19: if F̂ 6= no solution then
20: F ← F̂
21: else
22: return no solution
23: end if
24: end if
25: end while
26: return F
27: end procedure

8



Chapter 3

5-PVC with P5-free bipartition

3.1 Problem definition

Definition 5. A P5-free bipartition of graph G = (V, E) is a pair (V1, V2)
such that V = V1 ∪ V2, V1 ∩ V2 = ∅ and G[V1], G[V2] are P5-free.

The problem that is solved by our disjoint compression routine disjoint is
formally defined as follows:

5-PVC with P5-free Bipartition, 5-PVCwB

Input: A graph G = (V, E) with P5-free bipartition (V1, V2), an integer
k ∈ Z+

0 .
Output: A set F ⊆ V2, such that |F | ≤ k and G \ F is a P5-free graph.

Throughout this thesis the vertices from V1 will be also referred to as “red”
vertices and vertices from V2 will be also refereed to as “blue” vertices. The
same colors will also be used in figures with the same meaning.

3.2 Algorithm

Our algorithm is a recursive procedure disjoint r(G, V1, V2, F, k), where G
is the input graph, V1, V2 are the partitions of the P5-free bipartition of G, F
is the solution being constructed, and k is the maximum number of vertices
we can still add to F . The procedure repeatedly tries to apply a series of
rules with a condition that a rule (RI) can be applied only if all Rules that
come before (RI) cannot be applied (see Algorithm 2 for illustration). It is
paramount that in every call of disjoint r at least one rule can be applied.
The main work is done in Rules of two types: reduction rules and branching
rules. To make it easier for the reader we also use rules called context rules,
which only describe the configuration we are currently in and serve as some
sort of a parent rules for their subrules.

9



3. 5-PVC with P5-free bipartition

Definition 6. A reduction rule is used to simplify a problem instance, i.e.
remove some vertices or edges from G and possibly add some vertices to a so-
lution, or to halt the algorithm.

Definition 7. A branching rule splits the problem instance into at least two
subinstances. The branching is based on subsets of vertices that we try to
add to a solution and by adding them to the solution we also remove them
from G.

The notation we use to denote the individual branches of a branching
rule is as follows: 〈X1 | X2 | . . . | Xl 〉. Such a rule has l branches and
X1, X2, . . . , Xl are subsets of V2 which we try to add to the solution. This
rule is translated into the following l calls of the procedure:

disjoint r(G \Xi, V1, V2 \Xi, F ∪Xi, k − |Xi|) for i ∈ {1, . . . , l}

Definition 8. A rule is applicable if the conditions of the rule are satisfied
and if there is no other rule that comes before that is applicable.

If a context rule is not applicable, it means that none of its subrules is appli-
cable.

Definition 9. A reduction rule is correct if it satisfies that the problem in-
stance has a solution if and only if the simplified problem instance has a so-
lution.

A branching rule is correct if it satisfies that if the problem instance has
a solution, then at least one of the branches of the rule will return a solution.

Definition 10. When we say we delete a vertex, we mean that we remove it
from G and also add it to the solution F . When we say we remove a vertex,
we mean that we remove it from G and do not add it to the solution F .

The fact that among Rules (R0) – (R18) there is always at least one that
is applicable is proven in Theorem 19, Section 3.12.

In the following sections assume that the parameters of the current call of
disjoint r are G, V1, V2, F, k.

3.3 Preprocessing

Reduction rule (R0). This rule stops the recursion of disjoint r. It has
three stopping conditions:

1. If k < 0, return no solution;

2. else if G is P5-free, return F ;

3. else if k = 0, return no solution.

10



3.3. Preprocessing

Algorithm 2 Illustrative pseudocode of the recursive procedure

1: procedure disjoint(G, V1, V2, k)
2: return disjoint r(G, V1, V2, ∅, k)
3: end procedure

4: procedure disjoint r(G, V1, V2, F, k)
5: Fresult ← no solution
6: R← the first rule that is applicable
7: if R is (R0) then
8: Fresult ← either F or no solution based on which stopping condition

of (R0) was triggered
9: else if R is a reduction rule then

10: let G′, V ′
1 , V ′

2 be simplified by R and let X be the vertices that R
wants to add to F

11: Fresult ← disjoint r(G′, V ′
1 , V ′

2 , F ∪X, k − |X|)
12: else
13: let the branches of R be 〈X1 | X2 | . . . | Xl 〉
14: for i← 1, . . . , l do
15: Fcandidate ← disjoint r(G \Xi, V1, V2 \Xi, F ∪Xi, k − |Xi|)
16: if Fcandidate 6= no solution and

(Fresult = no solution or |Fcandidate| ≤ |Fresult|) then
17: Fresult ← Fcandidate

18: end if
19: end for
20: end if
21: return Fresult

22: end procedure

Reduction rule (R1). Let v ∈ V (G) be a vertex such that there is no P5

in G that uses v. Then remove v from G.

Proof of correctness. Let v ∈ V (G) be a vertex that is not used by any P5 in G
and let F be a solution to the 5-PVCwB instance (G\v, V1 \{v}, V2 \{v}, k).
Then F is also a solution to (G, V1, V2, k) since v is not used by any P5 in G.

If (G \ v, V1 \ {v}, V2 \ {v}, k) does not have a solution, then we claim that
(G, V1, V2, k) also does not have a solution. Indeed, adding vertices can only
create new P5 paths. ⋊⋉

Branching rule (R2). Let P be a P5 in G with X = V (P ) ∩ V2 such that
|X| ≤ 3. Then branch on 〈x1 | x2 | . . . 〉, xi ∈ X, i.e. branch on the blue
vertices of P .

Proof of correctness. We have to delete at least one blue vertex in P , thus
branching on the blue vertices of P is correct. ⋊⋉

11



3. 5-PVC with P5-free bipartition

Lemma 2. Assume that Rules (R0) – (R2) are not applicable. Then for each
vertex v ∈ V (G) there exists a P5 in G that uses v; every P5 in G uses exactly
one red vertex; and there are only isolated vertices in G[V1].

Proof. If Rule (R1) is not applicable, then for each vertex v ∈ V (G) there
exists a P5 in G that uses v. If Rule (R2) is not applicable, then every P5

in G uses at most one red vertex and since (V1, V2) is a P5-free bipartition we
cannot have a P5 in G that uses no red vertex.

To prove that there are only isolated vertices in G[V1], assume for contra-
diction that there is an edge e in G[V1]. Since each P5 in G uses exactly one
red vertex there cannot be a P5 that uses e. Which means that at least one of
the vertices of e is not used by any P5 in G and we get a contradiction with
Rule (R1) not being applicable.

3.4 Dealing with isolated vertices in G[V2]

Lemma 3. Assume that Rules (R0) – (R2) are not applicable. Let v be an
isolated vertex in G[V2] and let F be a solution to 5-PVCwB which uses
vertex v. Then there exists a solution F ′ that does not use vertex v and
|F ′| ≤ |F |.

Proof. From Lemma 2 we get that each P5 in G which contains v must also
start in v, otherwise it would imply a P5 that uses more than one red vertex.
Suppose that there exists a path P = (v, w, x, y, z) where w is a red vertex
and {x, y, z}∩F = ∅ (see Figure 3.1). If there is no such P , then we have that
each P5 starting in v has at least one of the vertices x, y, z in F or there is no
P5 starting in v. In both cases we can put F ′ = F \ {v} and the lemma holds.

There cannot exist another path P ′ = (v, w, x′, y′, z′) such that x′ 6= x and
{x′, y′, z′}∩F = ∅, otherwise we would have a P5 = (x′, w, x, y, z) in G that is
not hit by F . Consequently, each P5 that is hit only by vertex v also contains
vertex x, which implies that F ′ = (F \ {v})∪{x} is a solution and |F ′| ≤ |F |,
thus the lemma holds.

v

w

x y z

Figure 3.1: Configuration in rule (R3).

Branching rule (R3). Let v be an isolated vertex in G[V2] and let P =
(v, w, x, y, z) be a P5 where w is a red vertex. Then branch on 〈x | y | z 〉.

12



3.5. Dealing with isolated edges in G[V2]

Proof of correctness. From Lemma 3 we know that if there exists a solution,
then there exists a solution that does not contain v. Therefore branching on
〈x | y | z 〉 is correct. ⋊⋉

Lemma 4. Assume that Rules (R0) – (R3) are not applicable. Then there
are no isolated vertices in G[V2].

Proof. For contradiction assume that Rules (R0) – (R3) are not applicable
and there is an isolated vertex v in G[V2]. If there is no P5 that uses v, then
Rule (R1) is applicable on v. So suppose that there is a P5 path P that uses v.
If there are at least two red vertices connected to v, then there also exists a P5

path P ′ that uses v and at least two red vertices and Rule (R2) is applicable.
So suppose that there is only one red vertex w connected to v. Then Rule (R3)
is applicable.

3.5 Dealing with isolated edges in G[V2]

Lemma 5. Assume that Rules (R0) – (R3) are not applicable. Let v be a blue
vertex to which at least two red vertices are connected and let Cv be a connected
component of G[V2] which contains v. Then for each red vertex w connected
to v we have that N(w) ⊆ V (Cv).

Proof. Let w1, w2 be red vertices connected to v. For contradiction assume
that w1 is connected to some vertex v′ in G[V2] such that v′ /∈ V (Cv). From
Lemma 4 we know that v′ has degree at least one in G[V2]. Label some
neighbor of v′ in G[V2] as u′. We obtained a P5 = (u′, v′, w1, v, w2) which
contradicts Lemma 2.

Lemma 6. Assume that Rules (R0) – (R3) are not applicable. Let e = {u, v}
be a blue edge to which at least two red vertices are connected in a way that to
both u and v there is at least one red vertex connected. Let Ce be a connected
component of G[V2] which contains e. Then for each red vertex w connected
to e we have that N(w) ⊆ V (Ce).

Proof. Let w1, w2 be red vertices connected to e and assume that w1 is con-
nected to u and w2 is connected to v. For contradiction assume that w1

is connected to some vertex v′ in G[V2] such that v′ /∈ V (Ce). We obtain
a P5 = (v′, w1, u, v, w2) which contradicts Lemma 2.

Lemma 7. Let X be a subset of V2 such that N(X)∩V1 = ∅ and |N(X)∩V2| =
1. If there exists a solution F such that F ∩X 6= ∅, then there exists a solution
F ′ such that F ′ ∩X = ∅ and |F ′| ≤ |F |.

Proof. Assume that N(X) ∩ V2 = {v}. Then each P5 that uses some vertex
in X must also use vertex v, otherwise it would be contained in X which
contradicts G[V2] being P5-free. Consequently, any P5 that is hit by a vertex

13



3. 5-PVC with P5-free bipartition

from X in the solution F can be also hit by vertex v and thus F ′ = (F \X)∪{v}
is also a solution and |F ′| ≤ |F |.

Definition 11. We say that two nodes x, y are symmetric if N(x) \ {y} =
N(y) \ {x}.

Lemma 8. Let x, y be blue vertices that are symmetric. Let F be a solution
and x ∈ F . Then at least one of the following holds:

(1) y ∈ F

(2) F ′ = (F \ {x}) ∪ {y} is a solution

Proof. Assume that x ∈ F and y /∈ F . Since x, y are symmetric, for each
path P = (p1, p2, p3, p4, p5) with pi = x and y /∈ P , there also exists a path
P ′ = (p′

1, p′
2, p′

3, p′
4, p′

5) such that p′
j = pj for j ∈ ({1, 2, 3, 4, 5}\{i}) and p′

i = y.
Firstly, if there is no P5 containing x, then trivially (2) holds. Secondly, if all
P5 paths that contain x are hit by some other vertex z, z 6= x, z ∈ F , then
again (2) holds. So suppose that there exists a P5 path P that is hit only
by x. If y /∈ P , then we know that there is a path P ′ as described above and
we get a contradiction with F being a solution since P ′ is not hit by F and
(1) must hold. Otherwise, all P5 paths that contain x also contain y and (2)
holds.

Branching rule (R4). Let e = {u, v} be an isolated edge in G[V2]. We know
from Lemmata 5 and 6 that there is only one red vertex w connected to e,
because if there were at least two red vertices connected to e, then there would
be no P5 that uses vertices from e. Let there be a red vertex w connected to
at least one vertex in e. If w is connected only to one vertex in e, let that
vertex be v (see Figure 3.2). Then branch on 〈 v | x | y 〉.

Proof of correctness. Firstly, assume that w is connected only to one vertex
of e. Then from Lemma 7 we know that we do not have to try vertex u.
Secondly, assume that w is connected to both vertices of e. Since u, v are
symmetric, from Lemma 8 it follows that we can try deleting only one of
them. Thus branching on 〈 v | x | y 〉 is correct. ⋊⋉

u v

w

x y

Figure 3.2: Configuration in rule (R4).

Lemma 9. Assume that Rules (R0) – (R4) are not applicable. Then there
are no isolated edges in G[V2].

14



3.6. Dealing with isolated P3 paths in G[V2]

Proof. For contradiction assume that Rules (R0) – (R4) are not applicable
and there is an isolated edge e = {x, y} in G[V2]. If there is no P5 that uses
vertices from e, then Rule (R1) is applicable on e. If there are at least two
red vertices connected to e, then from Lemmata 5 and 6 we know that those
red vertices are not connected to any other vertices outside e and there again
cannot be a P5 that uses vertices from e and Rule (R1) is applicable on e.

So suppose that there is a P5 that uses vertices from e and there is only one
red vertex w connected to e. But then Rule (R4) is applicable in both cases
where w is connected to both vertices in e or to exactly one vertex in e.

3.6 Dealing with isolated P3 paths in G[V2]

Context rule (R5). Let P be a P3 = (t, u, v) in G[V2]. From Lemmata 2,
5 and 6 we know that there is only one red vertex w connected to P . We
further know that w must be connected to some component of G[V2] other
than P , otherwise no P5 could be formed. Assume that x is some vertex to
which w connects outside P and let y be a neighbor of x in G[V2]. This rule
is split into four subrules (R5.1), (R5.2), (R5.3) and (R5.4) based on how w
is connected to P .

Branching rule (R5.1). Vertex w is connected only to v (see Figure 3.3a).
Then branch on 〈 v | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in P . From Lemma 7 we know that we do not have to try vertices
t, u. Thus branching on 〈 v | x 〉 is correct. ⋊⋉

Branching rule (R5.2). Vertex w is connected only to u, v (see Figure 3.3b).
Then branch on 〈u | v | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in P . From Lemma 7 we know that we do not have to try vertex t.
Thus branching on 〈u | v | x 〉 is correct. ⋊⋉

Branching rule (R5.3). Vertex w is connected only to u (see Figure 3.3c).
Then branch on 〈u | x | y 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete something in P . From Lemma 7 we know that we do not have to try
vertices t, v. Thus branching on 〈u | x | y 〉 is correct. ⋊⋉

Branching rule (R5.4). Vertex w is connected to t, v and w can be also
connected to u (see Figure 3.3d). Then branch on 〈u | v | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in P . In both cases, when w is connected to u and when not, t, v

15



3. 5-PVC with P5-free bipartition

t u v

w

x y

(a) Configuration in rule (R5.1).

t u v

w

x y

(b) Configuration in rule (R5.2).

t u v

w

x y

(c) Configuration in rule (R5.3).

t u v

w

x y

(d) Configuration in rule (R5.4).

Figure 3.3

are symmetric and from Lemma 8 we know that we have to try only one of
t, v. Thus branching on 〈u | v | x 〉 is correct. ⋊⋉

Lemma 10. Assume that Rules (R0) – (R5) are not applicable. Then there
are no isolated P3 paths in G[V2].

Proof. For contradiction assume that Rules (R0) – (R5) are not applicable and
there is an isolated P3 path P = (t, u, v) in G[V2]. If there is no P5 that uses
vertices from P , then Rule (R1) is applicable on P . Suppose there are at least
two red vertices connected to P . If they are connected to vertices t, v, then
Rule (R2) is applicable, since there is a P5 that uses at least two red vertices.
So suppose the red vertices are connected to a single vertex or a single edge
in P . Then from Lemmata 5 and 6 we know that those red vertices are not
connected to any other vertices outside P . Consequently, there cannot be a P5

that uses vertices from P and again Rule (R1) is applicable on P .

So suppose that there is a P5 that uses vertices from P and there is only
one red vertex w connected to P . There are seven possibilities how w can be
connected to P from which only five are not mutually isomorphic. Table 3.1
summarizes which rule should be applied in each situation (for clarity the
isomorphic cases are omitted).
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3.7. Dealing with isolated triangles in G[V2]

Table 3.1: Possible configurations of w and P in Lemma 10.

N(w) ∩ V (P ) Rule to apply

{u} (R5.3)

{v} (R5.1)

{t, v} (R5.4)

{u, v} (R5.2)

{t, u, v} (R5.4)

3.7 Dealing with isolated triangles in G[V2]

Context rule (R6). Let T be a K3 = {t, u, v} in G[V2]. From Lemmata 2
and 5 we know that there is only one red vertex w connected to T . We further
know that w must be connected to some component of G[V2] other than T ,
otherwise no P5 could be formed. Assume that x is some vertex to which w
connects outside T and let y be a neighbor of x in G[V2]. This rule is split into
three subrules (R6.1), (R6.2) and (R6.3) based on how w is connected to T .

Branching rule (R6.1). Vertex w is connected only to one vertex in T , let
that vertex be v (see Figure 3.4a). Then branch on 〈 v | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in T . From Lemma 7 we know that we do not have to try vertices
t, u. Thus branching on 〈 v | x 〉 is correct. ⋊⋉

Branching rule (R6.2). Vertex w is connected to exactly two vertices in T ,
let those vertices be u, v (see Figure 3.4b). Then branch on 〈 t | v | x 〉.

Proof of correctness. As in Rule (R6.1), if we do not delete vertex x, then we
have to delete something in T . Since u, v are symmetric, from Lemma 8 we
know that we have to try only one of u, v. Thus branching on 〈 t | v | x 〉 is
correct. ⋊⋉

Branching rule (R6.3). Vertex w is connected to all vertices in T (see
Figure 3.4c). Then branch on 〈 v | x 〉.

Proof of correctness. As in Rule (R6.1), if we do not delete vertex x, then we
have to delete something in T . Since vertices in T are pairwise symmetric,
from Lemma 8 we know that we have to try only one of t, u, v. Thus branching
on 〈 v | x 〉 is correct. ⋊⋉

Lemma 11. Assume that Rules (R0) – (R6) are not applicable. Then there
are no isolated triangles in G[V2].

Proof. For contradiction assume that Rules (R0) – (R6) are not applicable
and there is an isolated triangle T = {t, u, v} in G[V2]. If there is no P5 that
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3. 5-PVC with P5-free bipartition

t

u

v

w

x y

(a) Configuration in rule (R6.1).

t

u

v

w

x y

(b) Configuration in rule (R6.2).

t

u

v

w

x y

(c) Configuration in rule (R6.3).

Figure 3.4

uses vertices from T , then Rule (R1) is applicable on T . Suppose there are at
least two red vertices connected to T . If the red vertices are not connected
to a single vertex in T , then Rule (R2) is applicable, since there is a P5 that
uses at least two red vertices. So suppose the red vertices are connected to
a single vertex in T . Then from Lemma 5 we know that those red vertices are
not connected to any other vertices outside T . Consequently, there cannot be
a P5 that uses vertices from T and again Rule (R1) is applicable on T .

So suppose that there is a P5 that uses vertices from T and there is only
one red vertex w connected to T . There are seven possibilities how w can be
connected to T from which only three are not mutually isomorphic. Table 3.2
summarizes which rule should be applied in each situation (for clarity the
isomorphic cases are omitted).

Table 3.2: Possible configurations of w and T in Lemma 11.

N(w) ∩ V (T ) Rule to apply

{v} (R6.1)

{u, v} (R6.2)

{t, u, v} (R6.3)

3.8 Dealing with 4-cycles in G[V2]

Lemma 12. Let C be a connected component of G[V2] and X = V (C)∩N(V1).
Let F be a solution that deletes at least |X| vertices in C. Then F ′ = (F \
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3.8. Dealing with 4-cycles in G[V2]

V (C)) ∪X is also a solution and |F ′| ≤ |F |.

Proof. Each P5 that uses some vertex in C must also use some vertex x ∈ X,
otherwise it would be contained in C which contradicts G[V2] being P5-free.
Consequently, any P5 that is hit by a vertex from C in the solution F can be
also hit by some vertex x ∈ X and thus F ′ = (F \V (C))∪X is also a solution
and |F ′| ≤ |F |.

Context rule (R7). Let Q be a subgraph of K4 such that 4-cycle is a sub-
graph of Q, label the vertices of the 4-cycle (v1, v2, v3, v4). We will call pairs
of vertices {v1, v3} and {v2, v4} diagonal, all other pairs will be called non-
diagonal. Edges corresponding to diagonal (non-diagonal) pairs are called di-
agonal (non-diagonal) edges, respectively. This rule is split into two subrules
(R7.1), (R7.2) based on the number of red vertices connected to Q.

Reduction rule (R7.1). Assume that there are at least two red vertices
connected to Q. Then delete v1 and add it to the solution F .

Proof of correctness. We have to delete something in Q. From Lemmata 2, 5
and 6 we know that if there are at least two red vertices connected to Q, then
they must be connected either to a single vertex or a single edge in Q and
these vertices are not connected to any component in G[V2] other than Q.

Firstly, consider the case (a) when the red vertices are connected to a single
vertex, let it be v1 (see Figure 3.5a). Then from Lemma 12 we know that we
only have to try deleting v1. Thus deleting v1 and adding it to the solution F
is correct.

Secondly, consider the case (b) when the red vertices are connected to the
vertices of a single edge, let them be v1, v2 (see Figure 3.5b). Observe that
there are no diagonal edges in Q, since they would allow a P5 that uses at
least two red vertices, which would contradict Lemma 2. Also observe that
the red vertices are connected to v1 or v2 by exactly one edge, i.e. there is not
a red vertex among them connected to both v1 and v2, otherwise we would
contradict Lemma 2 again. Consequently, after deleting v1 there can be no
P5 formed in the component containing Q. Thus deleting v1 and adding it to
the solution F is correct. ⋊⋉

Context rule (R7.2). Assume that there is only one red vertex w connected
to Q and X = V (Q) ∩ N(w). This rule is split into five subrules (R7.2a),
(R7.2b), (R7.2c), (R7.2d) and (R7.2e) based on how w is connected to Q and
whether w is connected to other components.

Reduction rule (R7.2a). Vertex w is connected only to one vertex in Q,
let it be v1 (see Figure 3.6a). Then delete v1 and add it to the solution F .

Proof of correctness. We have to delete something in Q and Lemma 12 implies
that we have to try only v1, thus deleting v1 and adding it to the solution F
is correct. ⋊⋉
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3. 5-PVC with P5-free bipartition

v1 v2

v3v4

w1
w2

(a) Case (a) configuration in rule (R7.1).

v1 v2

v3v4

w1
w2

(b) Case (b) configuration in rule (R7.1).

Figure 3.5

Branching rule (R7.2b). Set X contains at least one diagonal pair, let that
pair be {v1, v3} (see Figure 3.6b). Then branch on 〈 v1 | v2 | v4 〉.

Proof of correctness. We have to delete something in Q. Since v1, v3 are
symmetric, from Lemma 8 we know that we have to try only one of v1, v3.
Thus branching on 〈 v1 | v2 | v4 〉 is correct. ⋊⋉

Observation. Rule (R7.2b) also covers configurations where |X| ≥ 3, since
the conditions of the rule would be satisfied in that case.

Branching rule (R7.2c). Set X contains exactly one non-diagonal pair, let
that pair be {v1, v2}, and case (a) either both diagonal edges are in Q (see
Figure 3.6c), or case (b) none of them is (see Figure 3.6d). Then branch on
〈 v1 | v3 | v4 〉

Proof of correctness. We have to delete something in Q. Vertices v1, v2 are
symmetric and Lemma 8 applies. Thus branching on 〈 v1 | v3 | v4 〉 is correct.

⋊⋉

Reduction rule (R7.2d). Set X contains exactly one non-diagonal pair,
let that pair be {v1, v2} and exactly one diagonal edge is in Q, let that edge
be {v1, v3}. Furthermore, w is connected only to Q, i.e. N(w) ⊆ V (Q) (see
Figure 3.6e). Then delete any vertex vi in Q and add it to the solution F .

Proof of correctness. Since w is connected only to Q, after deleting some
vertex in Q, there can be no P5 formed in the component containing Q. Thus
deleting any vertex vi in Q and adding it to the solution F is correct. ⋊⋉

Branching rule (R7.2e). Set X contains exactly one non-diagonal pair, let
that pair be {v1, v2} and exactly one diagonal edge is in Q, let that edge be
{v1, v3}. Furthermore, w is connected to at least one more component of G[V2]
other than Q, label the vertex to which w connects outside Q as x and let y be
a neighbor of x in G[V2] (see Figure 3.6f). Then branch on 〈 {v1, v2} | x | y 〉.
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3.8. Dealing with 4-cycles in G[V2]

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete at least two vertices in Q. From Lemma 12 we know that we only
have to try deleting vertices {v1, v2}. Thus branching on 〈 {v1, v2} | x | y 〉 is
correct. ⋊⋉

x y

v1 v2

v3v4

w

(a) Configuration in rule (R7.2a).

x yv1 v2

v3v4

w

(b) Configuration in rule (R7.2b).

x y

v1 v2

v3v4

w

(c) Case (a) configuration in rule (R7.2c).

x y

v1 v2

v3v4

w

(d) Case (b) configuration in rule (R7.2c).

v1 v2

v3v4

w

(e) Configuration in rule (R7.2d).

x y

v1 v2

v3v4

w

(f) Configuration in rule (R7.2e).

Figure 3.6

Lemma 13. Assume that Rules (R0) – (R7) are not applicable. Then there
is no component of G[V2] that contains a 4-cycle as a subgraph.

Proof. For contradiction assume that Rules (R0) – (R7) are not applicable
and there is a component Q in G[V2] that contains a 4-cycle as a subgraph,
label the vertices of the 4-cycle (v1, v2, v3, v4). Observe that Q is a subgraph
of K4, as otherwise there would be a P5 in G[V2].

If there is no P5 that uses vertices from Q, then Rule (R1) is applicable
on Q. Suppose there are at least two red vertices connected to Q. If the
red vertices are not connected to a single vertex or a single edge in Q, then
Rule (R2) is applicable, since there is a P5 that uses at least two red vertices.
So suppose the red vertices are connected to a single vertex or a single edge
in Q. Then from Lemmata 5 and 6 we know that those red vertices are not
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3. 5-PVC with P5-free bipartition

connected to any other vertices outside Q and in both cases Rule (R7.1) is
applicable.

So suppose that there is a P5 that uses vertices from Q and there is only
one red vertex w connected to Q. We consider only not mutually isomorphic
possibilities how w is connected to Q. Firstly, in the case where there are no
diagonal edges in Q the possibilities are summarized in Table 3.3a. Secondly,
in the case where there are both diagonal edges in Q the possibilities are
summarized in Table 3.3b.

Finally, in the case where there is only one diagonal edge in Q, let that
edge be {v1, v3}, there is one exception when w is connected to both v1 and v2

where we need to consider whether w is connected only to Q (N(w) ⊆ V (Q)),
or w is connected also outside Q (N(w) 6⊆ V (Q)). The case with only one
diagonal edge is summarized in Table 3.3c.

3.9 Dealing with stars in G[V2]

Recall the definition of a star. A star is a graph S with vertices V (S) =
{s} ∪ {l1, . . . , lk}, k ≥ 3 and edges E(S) = {{s, li} | i ∈ {1, . . . , k}}. Vertex s
is called a center, vertices L = {l1, . . . , lk} are called leaves.

Context rule (R8). Let S be a star in G[V2]. This rule is divided into three
subrules (R8.1), (R8.2) and (R8.3) based on how w is connected to S.

Lemma 14. Assume that Rules (R0) – (R7) are not applicable. Then there
is only one red vertex connected to S.

Proof. For contradiction assume that Rules (R0) – (R7) are not applicable and
that there are at least two red vertices connected to S. If they are connected
to two different leaves, then we get a contradiction with Lemma 2. So suppose
they are connected to the set {s, li} for some i ∈ {1, . . . , k}. From Lemmata 5
and 6 we know, that the red vertices are not connected to a component of
G[V2] other than S and therefore there can be no P5 formed in the component
containing S. Thus the vertices of the component containing S are not used
by any P5 in G and the rule (R1) is applicable.

Branching rule (R8.1). A red vertex w is connected to at least two leaves
of S, let those two leaves be l1, l2 (see Figure 3.7a). Then branch on 〈 l1 | s |
L \ {l1, l2} 〉.

Proof of correctness. We have to delete something in S, since there is a path
P5 = (l1, w, l2, s, li) for some i ∈ {3, . . . , k}. From Lemma 14 we know that w
is the only red vertex connected to S.

Suppose that we do not delete any vertex from {s, l1, l2}. Then the only
thing we can do is to delete each vertex in L \ {l1, l2}, otherwise we would not
hit all paths in S.
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3.9. Dealing with stars in G[V2]

Table 3.3: Possible configurations of w and Q in Lemma 13.

(a) No diagonal edges in Q.

N(w) ∩ V (Q) Rule to apply

{v1} (R7.2a)

{v1, v2} (R7.2c)

{v1, v3} (R7.2b)

{v1, v2, v3} (R7.2b)

{v1, v2, v3, v4} (R7.2b)

(b) Both diagonal edges in Q.

N(w) ∩ V (Q) Rule to apply

{v1} (R7.2a)

{v1, v2} (R7.2c)

{v1, v2, v3} (R7.2b)

{v1, v2, v3, v4} (R7.2b)

(c) One diagonal edge in Q, let it be {v1, v3}.

N(w) ∩ V (Q) Rule to apply

{v1} (R7.2a)

{v2} (R7.2a)

{v1, v2} and
N(w) ⊆ V (Q)

(R7.2d)

{v1, v2} and
N(w) 6⊆ V (Q)

(R7.2e)

{v1, v3} (R7.2b)

{v2, v4} (R7.2b)

{v1, v2, v3} (R7.2b)

{v1, v2, v4} (R7.2b)

{v1, v2, v3, v4} (R7.2b)

Now, assume that we did not delete all vertices from L \ {l1, l2}, label x
a vertex from L\{l1, l2} that is not deleted. Suppose that we do not delete any
vertex from {l1, l2}. Then we have to delete s, otherwise a path (l1, w, l2, s, x)
would remain.

Finally, assume that we did not even delete s, now we have to delete
something in {l1, l2}. Since l1, l2 are symmetric, from Lemma 8 we know that
we have to try only one of l1, l2. Therefore branching on 〈 l1 | s | L \ {l1, l2} 〉
is correct. ⋊⋉

Observation. Assume that Rules (R0) – (R8.1) are not applicable. Then the
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3. 5-PVC with P5-free bipartition

red vertex w connected to S is connected only to a subset of {s, li} for some
i ∈ {1, . . . , k}, assume that the set w connects to is a subset of {s, l1}. Also
observe that w must be connected to at least one component of G[V2] other
than S.

Branching rule (R8.2). A red vertex w is connected only to s and w is
connected to some other vertex x in G[V2] outside S and y is a neighbor of x
in G[V2] (see Figure 3.7b). Then branch on 〈 s | x | y 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete something in S. From Lemma 7 we know, that we do not have to try
any vertex in L. Thus branching on 〈 s | x | y 〉 is correct. ⋊⋉

Branching rule (R8.3). A red vertex w is connected to l1, w can be con-
nected also to s, and w is connected to some other vertex x in G[V2] outside S
(see Figure 3.7c). Then branch on 〈 s | l1 | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in S. From Lemma 7 we know, that we do not have to try any
vertex in L \ {l1}. Thus branching on 〈 s | l1 | x 〉 is correct. ⋊⋉

s
l1

l2

l3lk

w

x y

(a) Configuration in rule (R8.1).

s
l1

l2

l3lk

w

x y

(b) Configuration in rule (R8.2).

s
l1

l2

l3lk

w

x y

(c) Configuration in rule (R8.3).

Figure 3.7

Lemma 15. Assume that Rules (R0) – (R8) are not applicable. Then there
are no stars in G[V2].

Proof. For contradiction assume that Rules (R0) – (R8) are not applicable
and there is a star S in G[V2].

If there is no P5 that uses vertices from S, then Rule (R1) is applicable
on S. Suppose there are at least two red vertices connected to S. If the

24



3.10. Dealing with stars with a triangle in G[V2]

red vertices are not connected to a single vertex or a single edge in S, then
Rule (R2) is applicable, since there is a P5 that uses at least two red vertices.
So suppose the red vertices are connected to a single vertex or a single edge
in S. Then from Lemmata 5 and 6 we know that those red vertices are not
connected to any other vertices outside S. Consequently, there cannot be a P5

that uses vertices from S and again Rule (R1) is applicable on S.
So suppose that there is a P5 that uses vertices from S and there is only one

red vertex w connected to S. If w is connected to two leaves, then Rule (R8.1)
is applicable. So suppose that w is not connected to two leaves. There are
three not mutually isomorphic possibilities how w can be connected to S and
they are summarized in Table 3.4.

Table 3.4: Possible configurations of w and S in Lemma 15.

N(w) ∩ V (S) Rule to apply

{l1} (R8.3)

{s} (R8.2)

{l1, s} (R8.3)

3.10 Dealing with stars with a triangle in G[V2]

Recall the definition of star with a triangle. A star with a triangle is a graph
S△ with vertices V (S△) = {s, t1, t2} ∪ {l1, . . . , lk}, k ≥ 1 and edges E(S△) =
{{s, t1}, {s, t2}, {t1, t2}}∪ {{s, li} | i ∈ {1, . . . , k}}. Vertex s is called a center,
vertices T = {t1, t2} are called triangle vertices and vertices L = {l1, . . . , lk}
are called leaves.

Context rule (R9). Let S△ be a star with a triangle in G[V2]. This rule is
divided into four subrules (R9.1), (R9.2), (R9.3) and (R9.4) based on how w
is connected to S△.

Branching rule (R9.1). There is a red vertex w such that {t1, t2} ⊆ N(w)
(see Figure 3.8a). Then branch on 〈 t1 | s | L 〉.

Proof of correctness. The proof follows the same logic as in Rule (R8.1)
where w was connected to l1, l2 instead of t1, t2. ⋊⋉

Branching rule (R9.2). There is a red vertex w such that |{t1, t2}∩N(w)| =
1, assume that w is connected to t1 (see Figure 3.8b). Then branch on 〈 t1 |
s | L 〉.

Lemma 16. Assume that Rules (R0) – (R9.1) are not applicable and the
assumptions of Rule (R9.2) are satisfied. Let F be a solution that contains t2,
then at least one of the following holds:
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3. 5-PVC with P5-free bipartition

(1) t1 ∈ F

(2) F ′ = (F \ {t2}) ∪ {t1} is a solution

Proof. If there is no P5 containing t2, then (2) trivially holds. Suppose that
every P5 that contains t2 also contains t1, then again (2) trivially holds. So
assume that there is a P5 labeled P that contains t2 but does not contain
t1. If for each such P there is some vertex x such that x 6= t2 and x ∈ F ,
then (2) holds, since t2 is not needed in the solution. Finally assume that
V (P ) ∩ F = {t2}, then, since P does not contain t1, P must start at t2 and
P = (t2, p1, p2, p3, p4). But then there also exists a path P ′ = (t1, p1, p2, p3, p4)
and P ′ is not hit, which is a contradiction with F being a solution and (1)
must hold.

Proof of correctness. We have to delete something in S△. Similarly as in
Rule (R8.1) suppose that we do not delete any vertex from {s, t1, t2}. Then
the only thing we can do is to delete each vertex in L.

So assume that we did not delete all vertices from L, label some remaining
vertex from L as x. If we do not delete anything in {t1, t2}, then we have to
delete s.

Finally, from Lemma 16 we see that deleting only t1 is sufficient and thus
branching on 〈 t1 | s | L 〉 is correct. ⋊⋉

Branching rule (R9.3). There is a red vertex w connected to a leaf, let that
leaf be l1, i.e. l1 ∈ N(w) (see Figure 3.8c). Then branch on 〈 l1 | s 〉.

Proof of correctness. We have to delete something from {l1, s, t1, t2}. Since
there is no red vertex connected to any of {t1, t2}, Lemma 7 applies on {t1, t2}
and we have to try only vertices from {l1, s}, therefore branching on 〈 l1 | s 〉
is correct. ⋊⋉

Branching rule (R9.4). A red vertex w is connected only to s. Also w
must be connected to some component of G[V2] other than S△, otherwise no
P5 would occur in the component containing S△. Label the vertex to which w
connects outside S△ as x (see Figure 3.8d). Then branch on 〈 s | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in S△. Since there is no red vertex connected to L ∪ V (T ), by
Lemma 7 we have to try only s. Thus branching on 〈 s | x 〉 is correct. ⋊⋉

Lemma 17. Assume that Rules (R0) – (R9) are not applicable. Then there
are no stars with a triangle in G[V2].

Proof. For contradiction assume that Rules (R0) – (R9) are not applicable
and there is a star with a triangle S△ in G[V2].

If there is no P5 that uses vertices from S△, then Rule (R1) is applicable
on S△. So suppose that there is a P5 that uses vertices from S△, which implies
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3.11. Dealing with di-stars in G[V2]
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(d) Configuration in rule (R9.4).

Figure 3.8

that there is at least one red vertex connected to S△, label one of those red
vertices as w.

If w is connected to both t1, t2, then Rule (R9.1) is applicable. So suppose
that w is not connected to both t1, t2. If w is connected to one of t1, t2, then
Rule (R9.2) is applicable. So suppose that w is not connected to any of t1, t2.
If w is connected to a leaf, then Rule (R9.3) is applicable.

Now we are in the situation in which the red vertices can be connected only
to the center of S△. Firstly, if there are at least two red vertices connected to
the center of S△, then from Lemma 5 these vertices are not connected to any
other vertices outside S△. Consequently, there is no P5 that uses vertices from
S△ and again Rule (R1) is applicable on S△. Rule (R1) is also applicable if
there is only one red vertex connected to the center of S△ and that vertex is
connected to no other component in G[V2].

Finally, if there is only one red vertex w connected to the center of S△

and w is also connected to some vertices outside S△, then Rule (R9.4) is
applicable.

3.11 Dealing with di-stars in G[V2]

Recall the definition of a di-star. A di-star is a graph D with vertices V (D) =
{s, s′} ∪ {l1, . . . , lk} ∪ {l

′
1, . . . , l′m}, k ≥ 1, m ≥ 1 and edges E(D) = {{s, s′}}
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3. 5-PVC with P5-free bipartition

s s′

l1
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l′1

l′m
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x y

Figure 3.9: Configuration in rule (R10).

∪ {{s, li} | i ∈ {1, . . . , k}} ∪ {{s′, l′j} | j ∈ {1, . . . , m}}. Vertices s, s′ are
called centers, vertices L = {l1, . . . , lk} and L′ = {l′1, . . . , l′m} are called leaves.

Branching rule (R10). Let D be a di-star in G[V2] and let there be a red
vertex w connected to at least two leaves on the same side of the di-star, i.e.
|N(w) ∩ L| ≥ 2 or |N(w) ∩ L′| ≥ 2. Assume that those leaves are from L and
l1, l2 are among them (see Figure 3.9). Then branch on 〈 l1 | s | s

′ 〉.

Proof of correctness. We have to delete something in {l1, l2, s, s′} and since
l1, l2 are symmetric, from Lemma 8 we know that we have to try only one of
them, thus branching on 〈 l1 | s | s

′ 〉 is correct. ⋊⋉

Observation. Assume that Rules (R0) – (R10) are not applicable. In the
following rules we have to consider only configurations where the red vertices
are connected to a subset of {l1, s, s′, l′1}.

Context rule (R11). Let D be a di-star in G[V2] and let there be a red
vertex w connected to both s, s′. This rule is split into three subrules (R11.1),
(R11.2), and (R11.3) based on the degrees of s and s′.

Context rule (R11.1). Assume that both s, s′ have degree two in G[V2], i.e.
the di-star D is actually a P4. This rule is split into four subrules (R11.1a),
(R11.1b), (R11.1c), and (R11.1d) based on how w is connected to D and
whether w is connected to other components.

Branching rule (R11.1a). Vertex w is connected only to s, s′ (see Fig-
ure 3.10a). Then branch on 〈 s | s′ 〉.

Proof of correctness. We have to delete something in D and from Lemma 7
we know that we do not have to try vertices in L and L′. Thus branching on
〈 s | s′ 〉 is correct. ⋊⋉

Branching rule (R11.1b). Vertex w is connected to s, s′ and to one leaf,
let that leaf be l1 (see Figure 3.10b). Then branch on 〈 l1 | s | s

′ 〉.
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3.11. Dealing with di-stars in G[V2]

Proof of correctness. We have to delete something in D and from Lemma 7
we know that we do not have to try vertex l′1. Thus branching on 〈 l1 | s | s

′ 〉
is correct. ⋊⋉

Branching rule (R11.1c). Vertex w is connected to l1, l′1, s, s′ and to at
least one other component of G[V2], label the vertex w connects to outside D
as x and the neighbor of x in G[V2] as y (see Figure 3.10c). Then branch on
〈x | y | {l1, s′} | {s, l′1} | {s, s′} 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete at least two vertices in D. Assume that we want to delete only two
vertices in D. Out of six possible pairs of vertices only {l1, s′}, {s, l′1}, {s, s′}
lead to a solution. Deleting more than two vertices in D also deletes at least
one of the pairs {l1, s′}, {s, l′1}, {s, s′}. Thus branching on 〈x | y | {l1, s′} |
{s, l′1} | {s, s′} 〉 is correct. ⋊⋉

Reduction rule (R11.1d). Vertex w is connected only to l1, l2, s, s′ and to
no other component of G[V2] (see Figure 3.10d). Then delete any vertex v
in D and add it to the solution F .

Proof of correctness. From Lemma 2 we know that there is no red vertex other
than w connected to D, thus after deleting any vertex v in D and adding it
to the solution F there is not enough vertices in D to from a P5 with w. ⋊⋉

Context rule (R11.2). Assume that exactly one of s, s′ has degree at least
3 in G[V2], let it be s. This rule is split into four subrules (R11.2a), (R11.2b),
(R11.2c), and (R11.2d) based on how w is connected to D.

Branching rule (R11.2a). Vertex w is connected only to s, s′ (see Fig-
ure 3.11a). Then branch on 〈 s | s′ 〉.

Proof of correctness. We have to delete something in D and from Lemma 7
we know that we do not have to try vertices in L and L′. Thus branching on
〈 s | s′ 〉 is correct. ⋊⋉

Branching rule (R11.2b). Vertex w is connected to s, s′ and exactly one
leaf from L, let that leaf be l1 (see Figure 3.11b). Then branch on 〈 l1 | s | s

′ 〉.

Proof of correctness. We have to delete something in D and from Lemma 7 we
know that we do not have to try vertices in L \ {l1} and L′. Thus branching
on 〈 l1 | s | s

′ 〉 is correct. ⋊⋉

Branching rule (R11.2c). Vertex w is connected to s, s′, l′1 (see Figure 3.11c).
Then branch on 〈 l′1 | s | s

′ 〉.

Proof of correctness. We have to delete something in D and from Lemma 7 we
know that we do not have to try vertices in L. Thus branching on 〈 l′1 | s | s

′ 〉
is correct. ⋊⋉
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(a) Configuration in rule (R11.1a).
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(c) Configuration in rule (R11.1c).
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(d) Configuration in rule (R11.1d).

Figure 3.10

Branching rule (R11.2d). Vertex w is connected to s, s′, l′1 and exactly one
leaf from L, let that leaf be l1 (see Figure 3.11d). Then branch on 〈 l1 | s | s

′ 〉.

Proof of correctness. Let l2 be some other leaf from L, l2 6= l1. We have to
delete something in {l1, l2, s, s′} and from Lemma 7 we know that we do not
have to try l2. Thus branching on 〈 l1 | s | s

′ 〉 is correct. ⋊⋉

Branching rule (R11.3). Assume that both s, s′ have degree at least 3 in
G[V2] (see Figure 3.12). Then branch on 〈L | s | s′ | L′ 〉.

Proof of correctness. Assume that none of the vertices s, s′ is deleted and that
neither whole L, nor whole L′ is deleted. Let l1 be a not deleted leaf from L
and l′1 not deleted leaf from L′. That implies a P5 = (l1, s, w, s′, l′1) in D and
hence at least one whole side of the di-star must be deleted to get a solution.
Thus branching on 〈L | s | s′ | L′ 〉 is correct. ⋊⋉

Observation. Assume that Rules (R0) – (R11) are not applicable. In the
following rules we have to consider only configurations where the red vertices
are connected to a subset of {l1, s, s′, l′1}, but not to both s and s′.

Context rule (R12). Let D be a di-star in G[V2] and let there be a red
vertex w connected by two edges to D. We know that w is connected to
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3.11. Dealing with di-stars in G[V2]
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Figure 3.11
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Figure 3.12: Configuration in rule (R11.3).

a subset of {l1, s, s′, l′1}, but not to both s and s′. This rule is split into three
subrules (R12.1), (R12.2), and (R12.3) based on how w is connected to D.

Branching rule (R12.1). Vertex w is connected to a center and its leaf, let
them be s and l1 (see Figure 3.13a). Then branch on 〈 l1 | s 〉.

Proof of correctness. We have to delete something in D and from Lemma 7
we do not have to try vertices other than l1 and s, thus branching on 〈 l1 | s 〉
is correct. ⋊⋉
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(b) Configuration in rule (R12.2).

Figure 3.13

Branching rule (R12.2). Vertex w is connected to a center and to a leaf
of the other center, let them be s′ and l1 (see Figure 3.13b). Then branch on
〈 l1 | s | s

′ 〉.

Proof of correctness. We have to delete something in D and from Lemma 7
we do not have to try vertices other than l1, s and s′, thus branching on
〈 l1 | s | s

′ 〉 is correct. ⋊⋉

Context rule (R12.3). Vertex w is connected to two opposite leaves, let
them be l1 and l′1. This rule is split into four subrules (R12.3a), (R12.3b),
(R12.3c), and (R12.3d) based on the degrees of s and s′ and whether w is
connected to other components.

Branching rule (R12.3a). Both s, s′ have degree 2 in G[V2] and w is con-
nected to a component of G[V2] other than D, let x be the vertex w connects
to outside D and let y be a neighbor of x in G[V2] (see Figure 3.14a). Then
branch on 〈x | y | {l1, l′1} 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete at least two vertices in D and from Lemma 12 we know that we only
have to try to delete {l1, l′1}. Therefore branching on 〈x | y | {l1, l′1} 〉 is
correct. ⋊⋉

Reduction rule (R12.3b). Both s, s′ have degree 2 in G[V2] and w is not
connected to a component of G[V2] other than D (see Figure 3.14b). Then
delete any vertex v in D and add it to the solution F .

Proof of correctness. We have to delete something in D and after deleting any
vertex v in D and adding it to the solution F , there is not enough vertices in
the component containing D to form a P5. ⋊⋉

Branching rule (R12.3c). Exactly one of s, s′ has degree at least 3 in G[V2],
let it be s (see Figure 3.14c). Then branch on 〈 l1 | s | l

′
1 〉.
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(d) Configuration in rule (R12.3d).

Figure 3.14

Proof of correctness. Let l2 be some leaf from L \ {l1}. We have to delete
something in {l1, l2, s, l′1} and from Lemma 7 we know that we do not have to
try vertex l2. Thus branching on 〈 l1 | s | l

′
1 〉 is correct. ⋊⋉

Branching rule (R12.3d). Both s, s′ have degree at least 3 in G[V2] (see
Figure 3.14d). Then branch on 〈 s | s′ | {l1, l′1} 〉.

Proof of correctness. Assume that none of the vertices s, s′ is deleted. If we
do not delete both l1, l′1, then at least one of L or L′ must be wholly deleted.
Since both L and L′ have size at least 2, we would delete at least two vertices
in D and by Lemma 12 we can choose {l1, l′1} instead. Thus branching on
〈 s | s′ | {l1, l′1} 〉 is correct. ⋊⋉

Context rule (R13). Let D be a di-star in G[V2] and let there be a red
vertex w connected by three edges to D. We know that w is connected to
a subset of {l1, s, s′, l′1}, but not to both s and s′. Assume that w is connected
to l1, s, l′1. This rule is split into four subrules (R13.1), (R13.2), (R13.3) and
(R13.4) based on the degrees of s and s′ and whether w is connected to other
components.
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3. 5-PVC with P5-free bipartition

Branching rule (R13.1). Both s, s′ have degree 2 in G[V2] and w is con-
nected to at least one other component of G[V2], label the vertex w connects
to outside D as x and the neighbor of x in G[V2] as y (see Figure 3.15a). Then
branch on 〈x | y | {l1, s′} | {s, l′1} 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to
delete at least two and from Lemma 12 at most three vertices in D. Suppose
we wanted to delete exactly two vertices. Out of six possible pairs, only
{l1, s′}, {s, s′}, {s, l′1} lead to a solution. We do not have to try {s, s′}, since if
we delete s, then Lemma 7 becomes applicable and we may delete l′1 instead
of s′. Finally, if we wanted to delete three vertices, then by Lemma 12 those
vertices would be {l1, s, l′1}, but this is already covered by branching on {s, l′1}.
Thus branching on 〈x | y | {l1, s′} | {s, l′1} 〉 is correct. ⋊⋉

Reduction rule (R13.2). Both s, s′ have degree 2 in G[V2] and w is not
connected to other component of G[V2] (see Figure 3.15b). Then delete any
vertex v in D and add it to the solution F .

Proof of correctness. We have to delete something in D and after deleting any
vertex v of D and adding it to the solution F , there is not enough vertices
in D to form a P5 with w. ⋊⋉

Branching rule (R13.3). Vertex s has degree at least 3 in G[V2] (see Fig-
ure 3.15c). Then branch on 〈 l1 | s | l

′
1 〉.

Proof of correctness. We have to delete something in {l1, l2, s, l′1} and from
Lemma 7 we know that we do not have to try vertex l2, thus branching on
〈 l1 | s | l

′
1 〉 is correct. ⋊⋉

Branching rule (R13.4). Vertex s′ has degree at least 3 in G[V2] (see Fig-
ure 3.15d). Then branch on 〈 l1 | s

′ | l′1 〉.

Proof of correctness. We have to delete something in {l1, s′, l′1, l′2} and from
Lemma 7 we know that we do not have to try vertex l′2, thus branching on
〈 l1 | s

′ | l′1 〉 is correct. ⋊⋉

Observation. Assume that Rules (R0) – (R13) are not applicable. In the
following rules we have to consider only configurations where the red vertices
are connected to exactly one of {l1, s, s′, l′1}.

Context rule (R14). There is exactly one red vertex w connected to D by
one edge. This rule is split into two subrules (R14.1) and (R14.2) based on
how w is connected to D.

Reduction rule (R14.1). Vertex w is connected to a leaf, let it be l1 (see
Figure 3.16a). Then delete l1 and add it to the solution F .
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3.11. Dealing with di-stars in G[V2]

s s′

l1 l′1

w

x y

(a) Configuration in rule (R13.1).

s s′
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w

(b) Configuration in rule (R13.2).

s s′
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lk

l′1
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l′m

w
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(c) Configuration in rule (R13.3).

s s′

l1
l2

lk

l′1
l′2

l′m

w

x y

(d) Configuration in rule (R13.4).

Figure 3.15

Proof of correctness. We have to delete something in D and from Lemma 12
we know that deleting l1 and adding it to the solution F is correct. ⋊⋉

Branching rule (R14.2). Vertex w is connected to a center, let it be s,
and w is connected to at least one component of G[V2] other than D, label
the vertex w connects to outside D as x (see Figure 3.16b). Then branch on
〈 s | x 〉.

Proof of correctness. If we do not delete vertex x, then we have to delete
something in D and from Lemma 12 we know that deleting s is sufficient.
Thus branching on 〈 s | x 〉 is correct. ⋊⋉

Reduction rule (R15). There are at least two red vertices connected to D
by exactly one edge and they are connected to a single vertex. From Lemma 5
we know, that the red vertices are not connected to a component of G[V2]
other than D and hence the single vertex must be a leaf, let it be l1, otherwise
no P5 would be formed and Rule (R1) would be applicable. Then delete l1
and add it to the solution F .

Proof of correctness. We have to delete something in D and from Lemma 12
we know that deleting l1 and adding it to the solution F is correct. ⋊⋉
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3. 5-PVC with P5-free bipartition
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(a) Configuration in rule (R14.1).

s s′

l1
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l′m

w

x y

(b) Configuration in rule (R14.2).

Figure 3.16

s s′

l1

lk

l′1

l′m

w1 w2

Figure 3.17: Configuration in rule (R15).

Branching rule (R16). There are at least two red vertices connected to D
by exactly one edge and they are connected to two opposite leaves, let those
leaves be l1, l′1. Assume that there is at least one red vertex connected to
each one of them. Further assume that the red vertices connected to l1 are
not connected to a component of G[V2] other than D (see Figure 3.18). Then
branch on 〈 s′ | l′1 〉.

Proof of correctness. We have to delete something in D. From Lemma 12 we
know, that we will delete at most two vertices from D and those vertices would
be {l1, l′1}. Now suppose that we want to delete exactly one vertex from D.
From Lemma 7 we know that we have to consider trying only vertices in
{l1, s, s′, l′1}. Assume that there exists a solution F that deletes either l1 or s
from D. Since F is a solution, if there is a P5 that uses at least one of {s′, l′1},
then it must be hit by some vertex outside D.

And with that we know that either F ′ = (F \ {l1, s}) ∪ {s′} or F ′′ =
(F \ {l1, s}) ∪ {l′1} is also a solution since all P5 paths that start in the red
vertices connected to l1 use at least one of {l′1, s′} (they use both if |L′| = 1)
and |F ′| ≤ |F |, |F ′′| ≤ |F |. Thus branching on 〈 s′ | l′1 〉 is correct. ⋊⋉

Observation. Assume that Rules (R0) – (R16) are not applicable. Then for
each di-star component of G[V2] there are exactly two red vertices connected to
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Figure 3.18: Configuration in rule (R16).
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di-stardi-star

di-star

Figure 3.19: Configuration in rule (R17).

two opposite leaves in the di-star. Furthermore, each red vertex is connected
to at least two different di-star components of G[V2].

Branching rule (R17). Let there be a di-star D and the two red vertices
w, w′ connected to D are connected to leaves l1, l′1, respectively, and at least
one of the centers has degree at least three, let it be s (see Figure 3.19). Then
branch on 〈 s | s′ | l′1 〉.

Proof of correctness. We know that we have to delete something in D and
we will delete at most two vertices from D. In the case where we delete two
vertices from D, we delete vertices l1, l′1 by Lemma 12. So suppose that we
want to delete exactly one vertex from D. It cannot be vertex l1, since center s
has degree at least three, thus there exists another leaf l2 connected to s. This
implies a P5 = (l2, s, s′, l′1, w′). Finally, from Lemma 7 we know that we do
not have to try vertices in L \ {l1} and L′ \ {l′1}. Consequently, branching on
〈 s | s′ | l′1 〉 is correct. ⋊⋉

Branching rule (R18). Let there be a di-star D and the two red vertices
w, w′ connected to D are connected to leaves l1, l′1, respectively, and both
centers have degree exactly two (see Figure 3.20). Then branch on 〈 l1 | l

′
1 〉.

Proof of correctness. Observe that each di-star component of G[V2] is actually
a P4 now. Let F be a solution. Label the di-star components of G[V2] as
D1, D2, . . . , Dr. Observe that F deletes at least one vertex in each di-star
component Di.
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3. 5-PVC with P5-free bipartition

s s′

l1 l′1

w1 w2 di-star

di-stardi-star

di-star

Figure 3.20: Configuration in rule (R18).

Firstly, we construct a directed graph G′ such that V (G′) = V1 and there
is an edge ei = (x, y) in G′ if and only if F deletes exactly one vertex in Di

and the deleted vertex is either sy
i or lyi where lyi is a leaf y connects to in Di

and sy
i is the center of Di to which lyi is connected.

We claim that each vertex in G′ has outgoing degree at most one. Indeed,
for contradiction assume that vertex w has outgoing degree at least two, which
means that there are two di-star components Di, Dj connected to w such
that F does not contain the leaves w is connected to in Di, Dj , let them be
lwi , lwj and the centers to which these leaves are connected, let them be sw

i , sw
j .

But that implies a P5 = (sw
i , lwi , w, lwj , sw

j ) in G and F would not be a solution,
which is a contradiction.

Secondly, we construct a set F ′ in the following way: (1) for each di-star
component Di where F deletes at least two vertices, add to F ′ the two leaves
of Di and (2) for each edge ej = (x, y) in G′ add to F ′ a leaf connected to y
in Dj .

Finally, F ′ is also a solution because in the di-star Di where F deleted at
least two vertices we know from Lemma 12 that it suffices to delete only the
leaves of Di and we claim that in the graph G \F ′ there is no P5. Indeed, for
contradiction assume that there is a P5 in G\F ′. But that could only happen
if there was a vertex w in G′ with an outgoing degree at least two, which is
a contradiction.

Therefore F ′ is a solution that uses only leaves of the di-stars in G and
from construction of G′ and F ′ we have that |F ′| ≤ |F |. Thus branching on
〈 l1 | l

′
1 〉 is correct. ⋊⋉

Lemma 18. Assume that Rules (R0) – (R9) are not applicable. Then at least
one of Rules (R10) – (R18) is applicable.

Proof. From Lemma 1 together with Lemmata 4, 9, 10, 11, 13, 15 and 17
we are now in the situation in which all components of G[V2] are di-stars
and there must be a di-star D in G[V2] such that there is a P5 that uses the
vertices of D which implies there is at least one red vertex connected to D.
For contradiction assume that Rules (R10) – (R18) are not applicable, i.e. no
rules are applicable.
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3.11. Dealing with di-stars in G[V2]

Let w be some red vertex connected to D. If |N(w)∩L| ≥ 2 or |N(w)∩L′| ≥
2, then Rule (R10) is applicable. So for the rest of this proof assume that each
red vertex can be connected only to vertices l1, s, s′, or l′1.

Firstly, assume that there is only one red vertex w connected to D. In
Table 3.5 we list all possibilities (omitting several isomorphic cases) based
on how w is connected to D, on the degrees of s and s′, and whether w
is connected only to D (N(w) ⊆ V (D)) or w is also connected outside D
(N(w) 6⊆ V (D)).

Observe that if there were at least two red vertices connected to D and w
was connected to D by at least two edges, then Rule (R2) would be applicable
with the only exception in case where w is connected to {l1, s} or {s′, l′1} and
the other red vertices to s or s′, respectively. But this exception is resolved
by Rule (R1) since vertices connected only to s or s′ in this configuration are
not used by any P5. With this in mind, if there are at least two red vertices
connected to D, then they are connected to D by only one edge.

Secondly, assume that there are at least two red vertices connected to D
by exactly one edge. Let X ⊆ V (D) be the vertices to which the red vertices
are connected in D. If |X ∩ L| ≥ 2 or |X ∩ L′| ≥ 2, then Rule (R2) is
applicable, since there is a P5 that uses at least two red vertices. So suppose
that X ⊆ {l1, s, s′, l′1}. If {l1, s′} ⊆ X or {s, l′1} ⊆ X (which covers also
cases where |X| ≥ 3), then again Rule (R2) is applicable. If the vertices are
connected to a single edge, then at least one of the vertices of such edge is a
center and the vertices connected to that center are not used by any P5 in this
configuration and Rule (R1) is applicable. We conclude that the red vertices
may be connected only to a single vertex or to two opposite leaves in D.

Thirdly, assume that the red vertices are connected to a single vertex. If
that vertex is a leaf, then Rule (R15) is applicable, otherwise Rule (R1) is
applicable.

Fourthly, assume that the red vertices are connected to two opposite leaves,
let them be l1 and l′1, and let W be the red vertices connected to l1 and W ′

be the red vertices connected to l′1. If the vertices in W or in W ′ (or both) are
not connected to any component other than D, then Rule (R16) is applicable.

Observe that now we are in situation in which there are exactly two red
vertices w and w′ connected to D by exactly one edge and these vertices are
connected to l1 and l′1, assume that w is connected to l1 and w′ is connected
to l′1. Furthermore, vertices w and w′ are connected to at least one other di-star
in G[V2]. If at least one of L, L′ has size at least two, then Rule (R17) is appli-
cable, otherwise all di-stars in G[V2] are actually a P4 paths and Rule (R18)
is applicable.

Finally, there is no di-star remaining in G[V2] which together with Lem-
mata 1, 4, 9, 10, 11, 13, 15 and 17 implies that G[V2] = ∅ and since V1, V2

is a P5-free bipartition, there is no P5 path remaining in G and Rule (R0) is
applicable.
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3. 5-PVC with P5-free bipartition

Table 3.5: Possible configurations of single red vertex w and D in Lemma 18.

N(w) ∩ V (D)

N(w) 6⊆ V (D) N(w) ⊆ V (D)
|L| = 1, |L| > 1, |L| > 1, |L| = 1, |L| > 1, |L| > 1,
|L′| = 1 |L′| = 1 |L′| > 1 |L′| = 1 |L′| = 1 |L′| > 1

{l1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{s} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{s′} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{l′

1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{l1, s} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s′} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{l1, l′

1} (R12.3a) (R12.3c) (R12.3d) (R12.3b) (R12.3c) (R12.3d)
{s, s′} (R11.1a) (R11.2a) (R11.3) (R11.1a) (R11.2a) (R11.3)
{s, l′

1} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{s′, l′

1} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s, s′} (R11.1b) (R11.2b) (R11.3) (R11.1b) (R11.2b) (R11.3)
{l1, s, l′

1} (R13.1) (R13.3) (R13.3) (R13.2) (R13.3) (R13.3)
{l1, s′, l′

1} (R13.1) (R13.4) (R13.3) (R13.2) (R13.4) (R13.3)
{s, s′, l′

1} (R11.1b) (R11.2c) (R11.3) (R11.1b) (R11.2c) (R11.3)
{l1, s, s′, l′

1} (R11.1c) (R11.2d) (R11.3) (R11.1d) (R11.2d) (R11.3)

3.12 Final remarks

Theorem 19. For any values of the input parameters of the call to disjoint r

procedure at least one of Rules (R0) – (R18) is applicable.

Proof. The theorem directly follows from Lemma 18.

Theorem 20. The disjoint procedure solves the 5-PVCwB problem in O∗(3k)
time.

Proof. We use the technique of analysis of branching algorithms as described
by Fomin and Kratsch [6].

Let T (k) be the maximum number of leaves in any search tree of a problem
instance with parameter k. We analyze each branching rule separately and
finally use the worst-case bound on the number of leaves over all branching
rules to bound the number of leaves in the search tree of the whole procedure.

Let 〈X1 | X2 | . . . | Xl 〉 be the branching rule to be analyzed. We have
that l ≥ 2 and |Xi| ≥ 1. This implies the linear recurrence

T (k) ≤ T (k − |X1|) + T (k − |X2|) + · · ·+ T (k − |Xl|).

It is well known that the base solution of such linear recurrence is of the
form T (k) = λk where λ is a complex root of the polynomial

λk − λk−|X1| − λk−|X2| − · · · − λk−|Xl| = 0

40



3.12. Final remarks

and the worst-case bound on the number of leaves of the branching rule is
given by the unique positive root of the polynomial. This positive root λ is
called a branching factor.

The worst-case upper bound of the number of leaves in the search tree of
the whole procedure is the maximal branching factor among the branching
factors of all the branching rules. In our case, the worst-case branching factor
is 3 (see Table 3.6 for the branching factors), therefore the upper bound of
the number of leaves in the search tree is O∗(3k).

Now we have to upper bound the number of inner nodes in the search
tree. We claim that each path from the root to some leaf of the search tree
has at most O(|V (G)|) vertices. Indeed, each rule removes at least one vertex
from G. Therefore the upper bound of the number of inner nodes in the search
tree is O∗(3k).

Since the running time of each rule (the work that is done in each node of
the search tree) is polynomial in |V (G)|, we get that the worst-case running
time of the whole procedure is O∗(3k).

Theorem 21. The iterative compression algorithm solves the 5-PVC problem
and runs in O∗(4k) time.

Proof. Take a look again at Algorithm 1. The compression routine on lines
7 – 23 is run at most |V (G)| times and the worst case running time of one run
of the compression routine can be computed as

∑

X(F

O∗(3k−|X|) =
k
∑

i=0

(

k + 1

i

)

O∗(3k−i) = O∗(4k).

Therefore the final running time of the algorithm is O∗(4k) and the 5-

PVC problem is solvable in O∗(4k) time when parameterized by the size of
the solution k.
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3. 5-PVC with P5-free bipartition

Table 3.6: Branching factors λ of the branching rules.

Rule λ Rule λ Rule λ Rule λ

(R2) 3 (R7.2b) 3 (R10) 3 (R12.2) 3

(R3) 3 (R7.2c) 3 (R11.1a) 2 (R12.3a) 2.415

(R4) 3 (R7.2e) 2.415 (R11.1b) 3 (R12.3c) 3

(R5.1) 2 (R8.1) 2.415 (R11.1c) 3 (R12.3d) 2.415

(R5.2) 3 (R8.2) 3 (R11.2a) 2 (R13.1) 2.733

(R5.3) 3 (R8.3) 3 (R11.2b) 3 (R13.3) 3

(R5.4) 3 (R9.1) 3 (R11.2c) 3 (R13.4) 3

(R6.1) 2 (R9.2) 3 (R11.2d) 3 (R14.2) 2

(R6.2) 3 (R9.3) 2 (R11.3) 2.733 (R16) 2

(R6.3) 2 (R9.4) 2 (R12.1) 2 (R17) 3

(R18) 2
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Chapter 4

Experimental evaluation

We implemented both our iterative compression algorithm algo running in
O∗(4k) time and the trivial algorithm trivial running in O∗(5k) time. We
ran a few experiments to experimentally show that our algorithm algo is
indeed faster than the trivial algorithm on instances with sufficiently large
parameter k.

4.1 Environment

The experiments were run on a PC running Ubuntu Linux 17.10 with Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz processor and 16GB of RAM. The pro-
gramming language used was C++ with the gcc compiler version 7.2.0 with
-Ofast optimizations enabled.

4.2 Datasets

We generated instances with varying numbers of vertices n and parameters k.
The types of graphs we generated are: path, random, and semi-random.

• path – a simple path on n vertices

• random – a random graph on n vertices; each edge has the same proba-
bility of being in the graph

• semi-random – constructed in the following way: let b = n−k and start
with an empty graph G; (1) randomly and with uniform probability add
P5-free components to G until |V (G)| = b, the numbers of leaves of stars,
stars with a triangle, and di-stars to be generated are also determined
uniformly at random between the minimum number (from definition)
and the remaining number of vertices; (2) add k isolated vertices U =
{u1, u2, . . . , uk} to G; (3) for each ui ∈ U pick k random vertices in
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4. Experimental evaluation

V (G) \ U and make ui adjacent to those vertices. This construction
ensures that there is a solution for G with size at most k.

4.3 Implementation remark

We simplified finding the P5 paths in the graph to trivial enumeration since
it is still just a polynomial factor in the final running time. But we admit
that in this area there is a lot of room to improve the algorithm so that it can
process instances with large number of vertices but small parameter k.

4.4 Results

Tables 4.1, 4.2, and 4.3 and Figure 4.1 summarize the results. In the tables
the abbreviations a and t stand for algo and trivial, respectively. The
times measured are in seconds and they are the average running time of three
runs on the same dataset. We set a hard time limit to 3600 seconds. If an
algorithm exceeded this time limit, we stopped its execution and in the tables
marked this fact with “> 3600”.

It can be seen that the trivial algorithm performs better when the prob-
lem instance is small and with small parameter k. That is expected since
the algo algorithm is far more complex and this significantly increases the
multiplicative constant in its running time. But when parameter k gets suffi-
ciently large, we see that the trivial algorithm is exponentially slower than
the algo algorithm.

An unexpected phenomenon occurred in the semi-random datasets, where
trivial algorithm performed much better than algo. We attribute this poor
performance of algo algorithm to the complexity of determining which rule
should be applied in given situation.
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algo and trivial running times, random dataset with n = 30.
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Figure 4.1: algo and trivial running times, random dataset with n = 30.
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4.4. Results

T
ab

le
4.

1:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
p
at

h
gr

ap
h
s.

n

k
3

4
5

6
7

8
9

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

2
5

0
.1

7
0

.
1

6
0

.1
8

0
.
1

7
0

.
1

8
0

.2
1

0
.
1

8
0

.3
4

0
.
1

8
0

.7
1

0
.
1

6
1

.9
8

0
.
1

7
4

.0
5

3
0

0
.
4

2
0

.5
0

0
.4

6
0

.
4

6
0

.5
5

0
.
5

4
0

.
9

7
1

.0
6

0
.
5

7
2

.6
9

0
.
9

0
6

.9
5

0
.
5

6
2

0
.1

6
3

5
1

.
5

9
1

.6
1

1
.
7

4
2

.1
0

1
.
7

5
1

.8
2

1
.
5

1
2

.5
2

1
.
4

3
5

.3
7

2
.
0

5
1

6
.9

6
1

.
7

7
6

1
.0

5
4

0
3

.
1

1
3

.5
9

3
.
2

1
3

.6
3

3
.
2

0
3

.7
5

2
.
7

1
4

.4
7

3
.
0

0
1

0
.2

6
3

.
4

7
3

6
.2

9
2

.
4

7
1

3
7

.9
8

4
5

5
.3

9
3

.
6

5
4

.6
7

3
.
7

2
4

.3
3

3
.
8

3
5

.2
5

4
.
3

3
6

.6
0

5
.
9

9
8

.
0

1
1

8
.2

7
6

.
3

9
8

5
.4

8
5

0
1

0
.1

4
1

0
.
0

7
9

.
2

1
9

.9
5

9
.
4

2
1

0
.2

5
1

0
.
5

2
1

1
.2

9
1

0
.
5

3
1

4
.3

8
1

0
.
8

4
2

9
.8

7
1

7
.
1

7
1

0
8

.3
6

T
a
b
le

4
.2

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
ra

n
d
om

gr
ap

h
s.

n

k
3

4
5

6
7

8
9

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

2
5

1
.0

5
0

.
3

6
1

.5
0

0
.
5

9
2

.9
4

1
.
3

7
7

.5
5

7
.
0

1
1

4
.
9

2
4

3
.8

1
6

7
.
9

0
2

5
9

.6
3

4
8

.
3

7
1

4
4

5
.8

8
3

0
2

.5
2

1
.
1

1
5

.0
2

1
.
8

3
4

.7
0

4
.
6

3
2

4
.6

7
1

3
.
6

5
4

5
.
5

8
7

0
.0

3
1

3
7

.
5

3
4

2
1

.1
4

1
1

9
.
5

4
2

5
4

0
.3

2
3

5
5

.1
4

4
.
9

5
9

.7
9

5
.
1

8
2

2
.6

6
9

.
3

0
5

9
.1

5
3

6
.
3

3
8

4
.
3

9
1

4
4

.3
9

2
2

4
.
0

0
1

1
4

3
.3

0
5

1
3

.
1

4
>

3
6

0
0

4
0

1
1

.0
5

4
.
0

3
1

9
.0

2
4

.
8

1
4

3
.9

1
8

.
4

5
1

0
1

.9
2

3
5

.
3

3
2

0
2

.6
1

1
7

0
.
7

3
7

4
8

.
8

4
>

3
6

0
0

1
9

6
6

.
0

1
>

3
6

0
0

4
5

3
4

.9
8

8
.
8

5
6

2
.6

5
1

2
.
0

3
1

8
6

.4
5

2
4

.
3

6
5

0
4

.6
2

8
1

.
2

9
4

1
3

.
4

2
4

2
0

.2
2

1
1

8
7

.
0

0
>

3
6

0
0

>
3

6
0

0
>

3
6

0
0

5
0

3
3

.0
5

1
4

.
0

5
7

6
.8

7
2

1
.
8

5
1

1
3

.3
5

3
7

.
9

5
2

3
0

.7
7

1
4

3
.
2

0
5

0
5

.
4

9
6

6
7

.6
1

1
2

4
0

.
1

2
>

3
6

0
0

>
3

6
0

0
>

3
6

0
0

T
a
b
le

4
.3

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
se

m
i-

ra
n
d
om

gr
ap

h
s.

n

k
3

4
5

6
7

8
9

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

a
[s

]
t

[s
]

2
5

0
.
1

7
0

.1
9

0
.
2

0
0

.2
1

0
.5

6
0

.
3

4
0

.
8

6
1

.0
8

1
3

.1
1

4
.
8

2
9

.
1

7
3

7
.9

8
8

1
.
2

8
2

6
5

.2
4

3
0

0
.7

6
0

.
4

1
0

.6
4

0
.
4

5
1

.1
9

0
.
5

1
3

.7
3

0
.
9

5
8

.2
0

4
.
0

8
1

4
.
3

0
2

9
.1

5
7

2
1

.9
8

2
3

9
.
8

1

3
5

1
.5

8
1

.
3

8
1

.7
7

1
.
4

1
1

.
3

3
1

.7
0

4
.8

7
2

.
4

3
1

9
.6

0
6

.
9

0
1

.
7

4
3

3
.5

9
2

4
0

.1
3

2
1

5
.
8

6

4
0

2
.
3

8
2

.8
5

2
.
5

5
3

.0
7

2
.9

7
2

.
6

3
6

.7
8

4
.
3

0
2

1
.7

7
9

.
0

5
4

8
.9

5
3

7
.
6

0
7

9
6

.3
4

2
2

8
.
5

8

4
5

4
.
5

7
5

.3
8

5
.
6

6
5

.9
1

5
.
4

4
6

.5
9

1
2

.1
8

7
.
5

8
2

0
.8

7
1

3
.
4

7
1

3
4

.9
2

4
9

.
9

6
1

1
3

9
.3

8
2

7
2

.
5

4

5
0

1
0

.
5

2
1

1
.0

6
1

0
.4

7
9

.
6

2
1

1
.2

5
1

0
.
4

5
1

4
.7

1
1

2
.
2

7
6

4
.8

0
1

7
.
8

1
3

4
0

.8
4

5
6

.
0

0
1

2
2

4
.7

4
2

8
3

.
4

7

45





Conclusion

We conclude this thesis with a few open questions.
Firstly, we see the trend of solving 3-PVC, 4-PVC and now 5-PVC with

the iterative compression technique, so it is natural to ask whether this ap-
proach can be further used for 6-PVC or even to d-PVC in general. However,
given the complexity (number of rules) of the algorithm presented in this
thesis, it seems more reasonable to first try to find a simpler algorithm for
5-PVC.

Secondly, motivated by the work of Orenstein et al. [11], we ask whether
known algorithms for 3-PVC, 4-PVC, 5-PVC can be generalized to work with
directed graphs.

Finally, due to Fafianie and Kratsch [5] we know that d-PVC problem has
a kernel with O(kd) vertices and edges. Dell and van Melkebeek [4] showed
that there is no O(kd−ǫ) kernel for any ǫ > 0 for general d-Hitting Set

unless coNP is in NP/poly, which would imply a collapse of the polynomial-
time hierarchy. However, for 3-PVC problem, Xiao and Kou [16] presented
a kernel with 5k vertices. To our knowledge, it is not known whether there
exists a linear kernel for 4-PVC or any d-PVC with d ≥ 5.

47





Bibliography
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Contents of CD

readme.txt ....................... the file with CD contents description
thesis.pdf ......................... the Diploma thesis in PDF format
src....................................the thesis source code directory
implementation................the algorithm implementation directory

bin ......................................... the executable binaries
data .................................................. the datasets
measure ......................................... the measurements
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