Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Bc. Zuzana Bobotova

PROCESSING OF THREE-DIMENSIONAL MEDICAL DATA
USING COMPUTER VISION METHODS

Diploma Thesis

Degree Course: Information Systems
Field of Study: 9.2.6 Information Systems
Place of the development: Institute of Applied Informatics, FIIT STU Bratislava

Supervisor: doc. Ing. Vanda BeneSova, PhD.

May 2018

Declaration of Honor

I honestly declared that this thesis was written independently by me under professional supervision of
doc. Ing. Vanda BeneSova, Phd. All references have been clearly cited.

Zuzana Bobotova

Acknowledgement

The biggest thanks belongs to my supervisor doc. Ing. Vanda BeneSova, PhD. Thanks her I had an
opportunity to work on the interesting project and during that I learned many new important things. I
am thankful for her professional support, human touch, patience and helpful advices during the work
on this thesis and also for her time.

I would like to thank whole Vision and Graphic Group. The members inspired me a lot and they gave
me many questions to think about.

I would also like to expect many thanks to my parents, boyfriend, family and friends. Their support
helped me a lot during my studies and also during my work on this thesis.

Zuzana Bobotova

Anotacia

Slovenska technicka univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII

Studijny program: Informaéné systémy

Autor: Bc. Zuzana Bobotova
Diplomova praca: Spracovanie trojrozmernych medicinskych dat metdodami pocitacového videnia
Veduci prace: doc. Ing. Vanda BeneSova, PhD.

méj 2018

Praca je zamerana na metddy vhodné pre sledovanie vyvoja nadorového ochorenia mozgu. V praci
vyuzivame data z magnetickej rezonancie. Ide o lekarsky test, ktory sa najCastejSie pouziva pri
diagnostike rakoviny mozgu a tieZ poc¢as lieCby - hlavne pre planovanie ozarovania a sledovanie zmien
nadoru. Aby bolo mozné sledovat zmeny tumoru v Case, je potrebné segmentovat nador
z trojrozmernych dat a tiez zaregistrovat data z roznych vySetreni vykondvanych v pravidelnych
casovych intervaloch. Analyzovali sme niektoré existujice metddy pre segmentaciu mozgovych
nadorov a jednu z nich sme v naSom vyskume aj testovali. NajlepSie metody pre segmentaciu nadorov
su zaloZené na konvolu¢nych neurénovych sietach. Nasledne sme analyzovali stav problematiky
registracie a navrhli metédu pre rigidnu a taktiez nerigidnu registraciu. Rigidna registracia umoznuje
zarovnat’ data z ro6znych vySetreni. Proces sa sklada z najdenia kI'a¢ovych bodov, najdenie zhod medzi
kIai€ovymi bodmi, filtrovania zhdd a rigidnej transformacie. Na druhej strane, nerigidna registracia
umoziuje sledovanie zmien nadoru a mozgu medzi jednotlivymi vySetreniami vykonanymi pocas
procesu lie¢enia. Navrhli sme jednoduchi metédu zalozeni na optickom toku. Metdoda najde
koreSpondujuce body medzi dvomi réznymi vySetreniami. Nasledne su tieto body pouzité na
vizualizaciu zmien pomocou algoritmu morfovania obrazu. Poslednd cast’ prace pozostava z
jednoduchého vizualizaéného nastroja, ktory sprostredkuva rézne pohl'ady na data.

Annotation

Slovak University of Technology in Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Degree Course: Information Systems

Author: Bc. Zuzana Bobotova
Diploma thesis: Processing of three-dimensional medical data using computer vision methods

Supervisor: doc. Ing. Vanda Benesova, PhD.

2018, May

The work is focused on the methods suitable for monitoring development of the brain tumor disease.
At the approach, we work with magnetic resonance data. It is a medical test that is the most commonly
used for diagnosing the brain cancer and also during the treatment - mainly for radiation planning and
tumor changes observation. In order to track tumor changes over time, it is necessary to segment
tumors from the volumes and also register data from different examinations performed in regular time
periods. We have analyzed some existing methods for tumor brain segmentation and tested one of
them in our research. The best methods for tumor segmentation are based on the convolutional neural
networks. Subsequently we have analyzed state of the registration problematic and proposed a method
for rigid and also non-rigid registration. Rigid registration can align data from different examinations.
The process consists of: finding key points, finding matches between key points, filtering matches and
rigid transformation. On the other side, non-rigid registration allows track tumor and brain changes
between the examinations captured during the treatment process. We proposed a simple method based
on the optical flow. The approach finds corresponding points in two different examinations. In order,
the points are used to visualize the changes using image morphing algorithm. Last part of the work is a
simple visualization tool that offers different views on the data.

xii

Content

LISt OF TOIMNIS. ...ttt ettt b e bt e s bt e sat e e at e e bt e bt e sbeesateeabe et e e bt e bt e sbeesaeeenteebeens Xix
LISt OF SHOTTCULS ...eeeitieiieite ittt ettt et e b e s bt st et et e bt sbeesbeesaaesateeaneens XXi
LISt OF FIGUIES ..ottt b e s bt st e e et e e bt e s bt e sbeesateeabeeabeenbeebeenaeas XXiii
LISt OF TADIES ...ttt et b e sttt e e e be e bt e sbeesateeate et e e nbeesateeas XXvii
1T INEEOAUCTION c.ueiniiiiieiiicece ettt ettt ettt et e b e be e saeesat e eateebeenbeenaee e 29
2 COMPULET VISIOM teutieutiiiuiieitieteeteestte st st et e e bt esb e e suteeateeab e et e e bt e sbeesbtesaeeeateeabeebeesbtesabesabeembeenbeennes 31
2.1 Computer Vision iN MEICIINE.eeetiirriieritieeiteeeiee et steeetteeete e st e ebteesbeesbteesaeeesbeeeanes 31
2.2 Computer VISION IDIAIIES ...cccueeiiiiiiiiiiiiieitieie ettt ettt st 32
2.2.1 100155 1 [USSR PURRURSTRRRN 32

222 LT K ettt ettt e b e bt e s at e et e et e bt e sb e e s bt e s st e et e ebeesbeenaeeeas 32

223 VT K ettt b et b e et et h et b et e et sb e et et e ae et e b eaee 32

3 Image preprocessing MEtHOAScoiiiiiiiiiiiiieee ettt ettt et et 33
3.1 Processing in frequency dOmain.........cceeiiiiiiiiiiiiiieiieieee ettt 33
3.1.1 BaSiC fIIEOIS .ottt s 33

3.2 Processing in spatial dOMAINcocueiiiiriiiiienieeie ettt ettt ettt e 34
3.2.1 Linear MEthOAScooueiimiiiiiiiieieeee ettt sttt 34
322 Nonlinear MEthOAS.ooiiiiieiieee ettt et e st e st 35

3.3 MorphologiCal OPEIALIONS.........eiecviieeiieiiieerie e ettt e et eeeeeteeebeesteeessbeeessteessseeenseeeseeesnseennns 35

4 Segmentation METHOAScceeiiiiiiiiieeee ettt ettt et e bt e st st e ste e bt e saeesneeeas 37
4.1 Edge-based MEthOdS.........cuiiiiiieiieiie ettt et e se e et e e sbe e eteeenaeesnseeenes 37
4.1.1 Graph-cut alZOTTtRIMc.eiiiiiiiiie ettt et e 37
4.1.2 Active contour alOTTtRIMcocuiiiiiiiiiii ettt ettt 38

4.2 Region-based MEtNOAScceevciiiiriieiiie ettt e sre e st e e enbe e st e eeteeenneeennes 39
421 TRIESNOIAINGcueiveeieieeeeee ettt s 39
422 Region growing methodoooiiieiiiiiiice e 40
423 Watershed alGOrithimoocuiiiiiiiiiii et 40

4.3 MaACKINE LEAIMINGveeeevieeeiieeiee et eeeeeee et e e et e s e et e e esbeessaeesseesssseessseesnsesansessnseennes 41
431 KM@ANS. ..ttt ettt et st e st s 42
432 FUZZY C-MEANS ..ottt ettt ettt e st e et e e enseeensseeenseeennas 42
4.3.3 IMEAN-SIITE ..ttt ettt et ettt b e sat e st e e te e beesaeesnneeas 42
434 Superpixel alGOTTRIMS......coveiiiiiiieieie ettt 42
435 SUPPOIt VECOr MACKINEceeiieeiiieiiieeiieeeieeeieeeste et e e e steeeteeessseessseeessseesnsaeensseeas 43
4.3.6 Bayesian MOdEILScooviriiriiiiiiicieecrteeeee ettt 44
4.3.7 DIECISION IEES ...euveentiiiiieiieeiieet ettt sttt et et s e ettt e e bt e sbeesatesateenbeesbeesanenas 44

4.3.8 INEUTAL NEEWOTKS. ...ttt ettt e e e ettt e e e e e e et st eeeeeeetaaaaaeessesesasannaas 44

4.4 Atlas guided SEZMENTALIONccueirutiiiieiieiteriie ettt ettt ettt ettt e sb e s bt e saeesabeebeesbeesaeeeas 44

S Re@istration METhOAScoouiiiiiiiiieeie ettt ettt e st te e sabeesbaeesateesabeeeanes 45
5.1 FEature dEtECHIONeetieeiiiiiete ettt ettt ettt ettt e sbe e st st e e beesbeesbeesaeeeas 45
5.1.1 Feature detection methods from processing VIEWcccceceeevieerciieinieenniieenieeeieeenes 46
5.1.1.1 Area-based mMEthodsScoouiiiiiiiiiiiiiieetee et 46
5.1.1.2 Feature-based MethOdscocueriiriiiiiiiiiiiceecceee e 46

5.2 Feature MatChiNgccoiiiiiiieiie ettt sttt e b e sbe e st st e b e b eas 46
5.2.1 Feature matching methods from processing VIEWccocceeerveerciieenieenniieenieeeieeenanes 47
5.2.1.1 Area-based MEthOdScocuiiriiiiiiiiiriieecte e 47
5.2.1.2 Feature-based MEthOdScoouiiruiiiiiiiieietete et 47

5.2.2 Feature detection and matching methods from matching criterion view....................... 48
5.2.2.1 Iconic (INtenSity DASEd)......cceeruieruieriiiiieieeieet ettt ettt st e 48
5.2.2.2 GEOMEIIIC ettt ettt ettt ettt et ettt e sbe e st st s bt e be e s bt e sbeesaeesane e bt ebeennee 48
5.2.2.3 SeNSOT DASEAcouiiiiiiiiieiie ettt sttt ettt ettt et be e as 48
5.2.2.4 HYDTIG ittt ettt st be et eae e 48

53 Transformation MOdel EStIMAtION.ccc.eertiiiiiiiiieiiteieeete ettt e et e s e saee e 49
5.3.1 Division of transformation models from deformation point of Viewc.ccecceeueneene. 49
5311 RIZIA ettt sttt et st st st e 49
5.3.1.2 Non-rigid elasticC TeZISAtiONc..cceeruerierrieriereeienieetenteeeete et et sie et s eeenbeseeene 49

5.3.2 Division of transformation models from mapping point of Viewccccceeerveercreennee. 50
5.3.2.1 Global mapping MOEIS.........cceeriiriiiiieiieeeete ettt 50
5.3.2.2 Local mapping MOAEIScceerruirrriiieriieeeiieeiteeesieeeieeeieeesreeeeeeeeeeesseessseeesseennns 50
5.3.2.3 Mapping by radial basis fUNCHONc.eecieiiiiiieiieie e 50

5.4 TransfOormMatiON ...cc.eeooiiiiiiiiieiiete ettt ettt sttt et st sttt 50
5.5 VAlIAATIOM ..ttt ettt b e bt e s bt e s et e e st e e teebe e ebeesateeabeeabeeabeebeenns 51

6 INEUIAL NEEWOTKSeiiiiiiieeieeeet ettt ettt b e bt e st st e et e et e e bt e sateeateenbeembeenbeennis 53
6.1 POICEPLION.ciiiiiieiie ettt e et e e e ettt e s e e st eeesbeesssaeesseeensaeessseeenseeesneeanseennns 56
6.2 Convolutional NEEWOTKScccuiiiiiiiiiiiieitieeie ettt et eteeteeste et e s e eaaeeteebeenseenas 56

7 Medical background of the brain CanCerc.cccvevvireciieiiie e e enes 59
7.1 Magnetic resonance imaging — MRI ... 59
T2 DALA ettt ettt b e bt sttt e b e nbeesate e 59

RN F: 1 (S) 1 1 TS) o APPSR 61
8.1 T a10 1) 11 15 101 o PSR 61
8.1.1 Brain Tumor Segmentation Benchmark (BRATS)ccccoeiiiiiiiiiniiiieceeeeeeeee 61

Xiv

8.1.1.1 Brain Tumor Segmentation Using a Fully Convolutional Neural Network with

Conditional Random FIelds 2.,c.ooviiiiiieieiecicieeeceee e 64
8.1.1.2 Fully Convolutional Neural Networks with Hyperlocal Features for Brain Tumor
Segmentation Bottt 64
8.1.1.3 Image Features for Brain Lesion Segmentation Using Random Forests 13! 65
8.1.1.4 Learned Markov Random Field on Supervoxel Clusters 21cccooeiirrenennne. 65
8.1.1.5 Generative-Discriminative Lesion Segmentation Model “!................ccoviivennee. 66
8.1.1.6 Brain Tumor Segmentation with Deep Neural Networks 31c..cooevvininnnn. 66
8.1.2 Brain tumor segmentation with Deep Neural Networks..........ccccoeeiiniiiiniiiinenniennne. 67
8.1.3 Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional
Neural NetWorks 1ottt 63
8.1.4 Efficient Brain Tumor Segmentation in Magnetic Resonance Image Using Region-
Growing Combined with Level Set %)coiiiiiiieeeee e 69
8.2 REZISIALION ...eoutiiieiiiiieiieiesieeteete ettt ettt et b et s bt et e s bt eae et e sbeenbenbeemnenaesueens 69
8.2.1 Atlas to Patient Registration with Brain Tumor Based on a Mesh-free Method !%...... 69
8.2.2 PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration ®3 70
8.2.3 Registration of Brain Images with Tumors: Towards the Construction of Statistical
Atlases for Therapy Planning [0,ccccoiiiiiiiiiiiieeee e 70

8.2.4 A Model of Tumor Inducted Brain Deformation as Bio-Physical Prior For Non-Rigid
Image Registration %ottt 71

8.2.5 An EM Algorithm for Brain Tumor Image Registration: A Tumor Growth Modeling

Based Approach Pl .. ettt 71
Proposed approach for tracking brain Changes..........ccoccvveviiieiiiirieeie e 73
9.1 Basic WOTKEIOW ..ottt st sttt e be e st e s 73
9.2 INPUt MRI VOIUIMESoeiiiieiiiieeiieeiieeeite sttt ettt et ste e et e e snbeeseaeeesnsaesnseeennnas 75
9.2.1 BRATS dat@set.....ceiuiiiieiiieiieieetee ettt ettt et ettt sb e sate st e eteebeesaeesaeeens 75
9.2.2 SIEMENS AALASEL ...euveenteeiieriteiie ettt ettt st e e e b e sbee st st ebeesbee e 76
0.3 PIEPIOCESSINE. . cuveeuveieruteieniteteete ettt et et e st et et s bt et e sbe e st e bt e bt et e sbeeat et e sbeeabesbeentenbesueensenbeeanen 77
9.3.1 Removing the Percentile.........ccviiiiieriirriiie ettt s ee e e e 77
9.3.2 LD 172 21 13T TSP 79
9.33 Histogram matChingcocuioiiiiiiiiiiii ettt 79
9.34 TeStNG ANA TESUILSeeevieeeiiieiiieecieeeeeeeteeeee e e et e e sreeeteeesseesssaeesseesnseesnsseensseeennes 80
9.35 IMPIEMENTALIONeotiiiiiiiiiiieiteetert ettt ettt st st sane e 84
9.3.5.1 Structure of the source code presented by a class diagramc.cceeeeeeveveeerieercnnnnns 84
9.3.5.2 Interaction of the objects presented by a sequence diagram..........c..coceeveerereeneennenne 85
9.3.6 DIESCUSSION <.ttt ettt sttt et sh e sttt sttt et e s bt e sbeesaeeebeenbeesbeesaaeeas 86
9.4 TUMOT SEZMENTALIONeeureerieiiertiettetteteenteesteeete et e et e bt e st e eareeareeneesbeesaeesateemneenreenmeesanenas 87

XV

9.4.1 PrEPIOCESSIIE. ¢ uvtieiiieeite ettt st ettt et e st e st e s beeenans 88

942 Segmentation using trained MOdelcocoiiiiiiiiiiniii e 88
9.4.3 Implementation and diSCUSSIONccecveirriieriiieeiieeeiieeriee ettt e e sieeesbee e 88
9.5 RiZId TEZISIIAION ..ottt ettt ettt st ettt st s esbe b eae e bt saeenaesreeanes 88
9.5.1 511010 | SO OO STURUURPRRO 89
9.5.2 Creating the registration MAaskccoceeveerieriereiniinieneneeene ettt 90
9.5.2.1 Mask for the health Brain..........ccoceeiiriiriiiiiie e 90
9.5.2.2 Mask for the Cranitm............cooiiiiiiiiiiieieece ettt 91
953 Key POINE AEECTION.viieiiiiiiiie ettt ettt ettt e et e e st esbee e sateesbeeesaree s 91
9.54 Calculating descriptors — the feature VECIOTS.evvcvieiriieriiieiieeeteeiee et 92
9.5.5 Matching fEature VECIOTScc.eeveriiriinieriieienieetenieeit ettt ettt et et b e b e 93
9.5.6 Filtering the MAatChesc.eeviuiiiiiieeie ettt e et e e e e 94
9.5.7 Rigid transfOrmation.........coeeeeriirirrienienieieeeetete ettt ettt sre e 94
9.5.8] o L SRS 96
0.5.8.1 DIALASEL....eeiutietieiie ittt ettt ettt e be e bt e e ht e et e et e b e beeas 96
0.5.8.2 TeStNG TLOW..eiuiiiiiiieiiieeie ettt ettt ettt e st e e s be e e nbeesnbeeenbeesnbeeenns 96
0.5.8.3 EVAlUATIONcoitiiiiiiiiiiie ettt ettt ettt et e b e bt st e et bbbt 97
9.5.9 RESUILS .ttt ettt et ettt e bt e sat e st e e bt et e e bt e sateeae 99
15 B T8 O 6010) (] 0153 1 L2 5 o) 1 RSP PSP 109
9.5.10.1 Structure of the source code presented by a class diagramccccceveeeeveennennee. 109
9.5.10.2 Interaction of the objects presented by a sequence diagram...............ccceeeuveennen. 110
O.5. 11 DISCUSSION ..tteutiiiiieiieeieeiteeetteette ettt et e bt e s btesatesaeeeateebeesbeeeseesneeeabeenbeenbeasatesneesnneensenn 111
L R I \\[0) 1 B o Fea 16 B S o4 T 0 21) o PSS PPt 114
9.6.1 IPUL. ettt et ettt s 115
9.6.2 Finding optical flOWcoccveiiiiiiiiiiecie ettt ettt e e e 115
9.6.3 Computation of the correSponding POINLScecverereeriererreeneneerieneneeneneerenieneens 116
9.6.4 Visualization of the Changes..........ccccecueririiiiniriinneeeeeeeeee et 116
0.6.4. 1 PaAIN ITACKS ..eevtiriiiiiiiiiiiieeiteete ettt ettt ettt sttt e b et s st eaee s 116
9.6.4.2 HSV from dense flOWcocueeiieiieiiieiierie ettt ettt s 117
9.6.4.3 IMAZE MOIPRING......eiiiiiieiiieeiie ettt eee et e e st eeete e e se e e taeessseessseeesnseeas 118
9.6.5 TESEINE ettt ettt ettt et e b b s st et en 120
0.0.5. 1 DIALASEL....eeetiiiieriieiieetee ettt et b e sttt st e sbe e st st eeean 120
9.6.5.2 Testing flow and evaluationccoereevierertininiencneet ettt 121
9.6.6 RESUILS ettt ettt ettt st e s 122
9.6.6.1 Results for different MOdalitiesccceveerieriiiriienierieeie et 122
9.6.6.2 Results for different configurations of the method..........c.cccoceveevininiinininenennne. 126

XVi

9.6.7 IMPIEMENTALIONcuutiiiiiiiiiie ettt ettt e st e e sbte e et eesbbeesabeesbeeesabeeenes 128

9.6.7.1 Structure of the source code presented by a class diagramcccccceeveenieneennnen. 128

9.6.7.2 Interaction of the objects presented by a sequence diagram.............cccceecveercueeennnenn. 129

9.6.8 DIESCUSSION ..ttt ettt sttt ettt et e bt e sb e e sat e et e et e e bt e beesbeesaeeeaeeentean 130

9.7 ViSUAlIZAION T00] ...eeiiiiiiiiiiiiiiceieee ettt st 130
9.7.1 Creating the SICES.....cccutiiiiiiieie ettt ettt et st st es 131
9.7.2 Creating 3D MOAELooiiiiiiiiiieeee ettt s 131
9.7.3 Rendering of the VisualiZationscceieeriiiiiiiiiiiieieeeee et 132
9.74 IMPIEMENTALION.....c.etiieiieiiiie ittt ettt ettt e st e e sbte e e bt e eaaeesabeesbeeesabeeenns 134
9.7.4.1 Structure of the source code presented in class diagram..........cc.ccceevvvvercieerieeeenneen. 134

9.7.4.2 Interaction of the objects presented by the sequence diagramc.cccceeveevuennenee. 136

9.8 Implementation in GENETaAl..........cceeiiiieeriiieriie it eeiee ettt eee et eebteeebeesteeeseeeesbeesnseeas 138
9.8.1 Used development tOOLScovevuererierinieienieetene ettt ettt et s sresaeens 138
9.8.2 Structure of the source code presented by a class diagramccoeceevvieerieencneennnee. 138
9.8.3 Interaction of the objects presented by a sequence diagram.........cc.ccoceeeeeveerercuenennnene 139

10 CONCIUSION...c.etiiieteeeeette ettt ettt ettt et et e bt e sbe e sat e st e bt e bt enbeesbaesaaesaneen 141
RETEIEICES ...ttt sttt et et b e s bt e sat e et e et e e bt e bt e s beesateeaeeentean 143
Appendix A: Technical dOCUMENTATION..........eeitieiieiiiiie ettt ettt st e be e bt e s A
PO PIOCESSIIIE. .. eeeetieiiiee ettt ettt ettt e ettt e et e et e e s teesabteesabeesabae e st e e enbeeenbeennteeenseeeenreeennrean A
RiIGIA T@GISTIALIONeeutietietie ettt ettt ettt et esb e st e et e et e e bt e s bt e sheessteeateembeeabeebeesbeesatesaeeensean C
INON T1ZIA TEZISITALION ...eeevieeeiiieeiieesieeeieeeeieeeieeestteeeteeesateessteeessteessseeesseesssaesnseessnsaesnssessnsaeesseennseenn E
VISUALIZATION TOO] «..eitiiiiiiie ittt sh ettt et e bt e e bt e e bt e sateembeenbe e bt ebtesatesaeesateenseens I
Appendix B: Installation GUIAE.........c.eoecuiiiriiiiiieeieeeie ettt ettt e e st e e taeeseseesneeesnseeenees O
Appendix C: User guide for visualiZation t00]...........cocuiiiiiiiiiniiiieiie ettt U
APPEndix D: DISC CONMENLueiiuiieiiieeiieeeiteeieeerteeestte ettt esteeetaeeebeeesareessseessseessseesssessnseessssessnseesnses W
Appendix E: Summary - RESUMEcc.coiuiiiiiiiieiieieee ettt ettt ettt st sae e AA
L TVOO ettt AA

R N 1.1 | 2 EO USRS AA

3. Predspracovanie dal..........c.ccociieiieriinieiteneet ettt sttt sttt BB
SEEMENEACIA. ...evveeureetieiiesreereereesteesreesttestteasseaseesseesteesssessseasseassessseasssesssesssessseessessseesseesssenssensns BB
REGISTIACIA ...ttt ettt ettt sb et e b e et e bt e bt et e sbe et enbesbe et CC

4, NAVIh MEtOAY @ VYSIEAKY .ocuviiiiiiieciiciiciieeeteste ettt ettt vesebeesbeesseessaessaesebeessaesnaens DD
PredSPraCOVANIC.ceiiuiiiiiiiiiie ettt ettt e sbb e st e st e e st e s bt e e sabeesbee e abeesans EE
SEEMENEACIA. .. ecuvieereetiesiieeteere et esteesteesaeebeebe e bt esteessseasseasseassaesssesssessseasseassessseesssessseassensseessensens FF
RIZIANA TEZISIIACIA. ...cueitiiieiiitietcee ettt et ettt ettt b et e b bt e FF
NETIZIANA TEGISTTACTA .e..venveenteiieiieierteetest ettt ettt e et bt et e sbe et e s b sbt e bt sbeentesbeeanenees GG

XViii

List of terms

Axial, coronal sagittal: different directions of the brain slices

Brain: organ, center of nervous system

Cranium: skull, bones protecting brain

CSF: protects the brain from shocks and supports the venous sinuses

Fusions: volumes captured in different time during the treatment

High grade glioma: tumors of the brain with well visible boundaries of the tumor

Low grade glioma: tumors of the brain with hardly visible boundaries of the tumor
Magnetic Resonance Imaging: medical technique in radiology to create anatomy images

Tumor: abnormal mass of tissue

XiX

XX

List of shortcuts

BRATS: Multimodal Brain Tumor Image Segmentation Benchmark
CREF: conditional random fields

CSF: cerebrospinal fluid

DFT: Discrete Fourier Transformation

DCT: Discrete Cosine Transformation

FAST: Features from Accelerated Segment Test
FCNN: fully convolutional neural networks

GUI: graphical user nterface

HGG: High Grade Glioma

LGG: Low Grade Glioma

ITK: Insight Segmentation and Registration Toolkit
MR: Magnetic Resonance

MRI: Magnetic Resonance Imaging

OpenCV: Open Source Computer Vision Library
ORB: Oriented FAST and Rotated BRIEF

SIFT: Scale-Invariant Feature Transform

SLIC: Simple Linear Iterative Clustering

SUREF: Speeded-Up Robust Features

SVM: Support Vector Machine

VTK: Vizualization ToolKit

XXi

XXii

List of Figures

Figure 1: LEFT — input image, IN THE MIDDLE - dilated image, RIGHT — eroded image %1 35
Figure 2: Visualization of graph cut algorithm 721ccooiiiiiiic e 38
Figure 3: Active contour algorithm in practice 7%cocoiviiiiiieiieeeeceeeee e 39
Figure 4: LEFT — input image, RIGHT — thresholded imageccccovvuiiniiiiiiiiiniieiieeeeeee e 39
Figure 5: Iterations of region growing algorithm B, ... 40
Figure 6: Iterations of the watershed algorithm PO ... 41
Figure 7: SLIC superpixel CIUSLEIINGcecuieiiieiiiriiiiieiie ettt ettt ettt st sbeesaee e 43
Figure 8: Graphical representation of support vector machine B2c.coveveveieveieieccce, 43
Figure 9: Set of key points detected on the IMAZE..........coccuieriireriieriiieiriee ettt 46
Figure 10: Matching Of KEY POINLScc.eiiiiiiiiiieiiei ettt ettt ettt e eeesbeesbeesaeeeas 47
Figure 11: schema of the artificial NEUION...........cocciiiiiiiiiiiieeie e e 53
Figure 12: Architecture of neural NEIWOTKcccoiiiiiiiiiiiieiesie ettt 54
Figure 13: Different architectures of neural networks by Asimov institute 53..................ccccooeiinnnn. 55
Figure 14: Schema Of PErCEePLIONccecuiiiiiieiiie ettt ettt e et e st e e bteeebeesabeessbeessaeeenseeenns 56
Figure 15: Axial, coronal and sagittal view of the brain MRI...............cooiiiiiiiieee 60
Figure 16: Truth segmentation by the expert (T'1 and T0) and prediction of the algorithm (P1 and P0)

... 62
Figure 17: Distribution of Sensitivity and Specificity evaluation results of tested methods ¥ 62
Figure 18: Dice score evaluation results of the methods (only whole tumor) ¥...............c.cccooevevnnee. 63
Figure 19: Architecture Of FCININcccciiiiiiiiiieiieeete ettt ettt ettt e e vte e st e saae s ssteessaesenseeenes 64
Figure 20: Architecture of convolutional neural network Bccoiiiiiiiiic, 65
Figure 21: Proposed architecture of deep neural NEtWOIKccceeveuiirriiiniiiieiieeeeeeeeeciee e 67
Figure 22: Results of proposed methods presented in the article P4..............cooooveiiiieiiieiceie, 67
Figure 23: Architecture of input cascaded CNN presented in the article 4................cocooveveeiverenenee. 68
Figure 24: Basic flow of proposed method represented by activity diagram (UML notation) 74
Figure 25: Slices of the MRI volume in axial VIEW........cccoevieiiiiiiniiiieeeeeeete e 75

Figure 26: Labels of the brain parts: from the right A: the whole tumor (yellow) in the FLAIR
modality, B: the tumor core (red) in the T2 modality, C: the enhancing tumor structures (blue) in the
T1c modality and necrotic components (green) in the T1c modality, D: edema (yellow), non-

enhancing solid core (red), enhancing core (blue), necrotic core (green) "ccoovvvieieveveennne. 76
Figure 27: Flow of preprocessing represented by activity diagram (UML notation)...........ccccceeeeeueenne 77
Figure 28: Histogram of scaled vOIUMELric dataccceevvieriiireiiieeiieeniee et eee e eee e e saee e 78
Figure 29: Histogram of volumetric data where percentile was removed ignoring background and data
WETE SCALEA ...ttt ettt et e bt e st e bt e be e bt e sb e e s ut e e bt et e e bt e sbtesheesateeateebeesheesnteeas 78
Figure 30: Comparison of original and scaled data visualized in histogram...........ccccccccvvreverrcieencnennns 79
Figure 31: Effect of the histogram matching algorithmccccocceviiiiiininiinieceeen 80
Figure 32: Histograms of original and scaled data...........cceeeeuieeiiieneiieeniie et 81
Figure 33: Histogram of scaled data...........coccevuereriininieniiniiiieeniteest ettt 81
Figure 34: Histogram where data were scaled after removing top and bottom percentile..................... 82
Figure 35: Histogram where data were scaled after removing top and bottom percentile ignoring
DACKZIOUIA ...ttt et ettt et et e b e s e st sateeteesaeesane e 82
Figure 36: Histogram where data were scaled after removing top and bottom percentile ignoring

[0 Ted < ea (0] 111 T USSP 83
Figure 37: How removing percentile changes datacccocevireriieninniininienicneeieneseeie e 83

XXiii

Figure 38: Original (top row) and preprocessed (bottom row) data cOmparisoncceceeveeneenneenns 84

Figure 39: Class diagram of preprocessing (UML Notation)..........coeueeveeieesieeneenienienieeieesieesiee s 85
Figure 40: Sequence diagram of preprocessing (UML notation)cceeveueeenieerieeinieeniieeenieeeieeenne 86
Figure 41: Flow of the segmentation step visualized with activity diagram (UML notation)............... 87
Figure 42: Flow of rigid registration represented by activity diagram............ccccceeveeernieeniiieenieensieennne 89
Figure 43: axial MR slice 71 from Siemens, SUDj_1,coocuiiriiiiiiiiiiiiiiiieieceee e 90
Figure 44: Visual view on the process of the registration mask Creation..........c.ccocceeeveeveenreneeneneenne. 90
Figure 45: Visual view on the process of the registration mask Creation...........cceeeceeevveercieerneeeniieenne 91
Figure 46: Visualization of detected key points by different detectors (FAST, SIFT, SURF, ORB) ... 92
Figure 47: Result of the key point matching using different feature exXtractorsc..ccocceeveeveeneennenns 93
Figure 48: Result of match filtration StEP.......cocuviiiiieiiiiiiiiieeiie ettt ettt sbee e sbee e 94
Figure 49: Comparison of the input (blue channel) transposed over the reference (red and green

channel) slice before the registration and after............ceivriiiiiiiiiiieeeeee et 95
Figure 50: Comparison of the input (blue channel) transposed over the correct original input (red and

green channel) slice before the registration and after.............ccevvveeriiiiiiiieniieeeeee e 95
Figure 51: Flow of the testing process (UML NOtation)ceeerveerriieeniieniieeeniieeeieeesieeeseeesnveeesneeenns 97
Figure 52: Actual rectangle for comparison on all SICESccevereeriinirriininierineeeeeece e 98
Figure 53: Histograms of rectangles from previous Figure 53........cccccovviiiriiiiiiiieiieeieccee e 98
Figure 54: Success of finding transformation matrix by different configurationscc.cceceeeevvenuennee. 99

Figure 55: Ratio between cases when registration was successful (correlation between registered input
and reference was higher that correlation between input and reference) and was not successful (vice

Figure 56: Ratio between cases when registration was successful (correlation between registered input
and correct original was higher that correlation between input and correct original) and was not
SUCCESSTUL (VICE VEISA) ...iiiuriiieieiiieeeeieieeeeite e eettt e e e ettt e e e ettt e e e eetaeeeeeeaaseseeeasaeseeessseseeassseseeassseseennsseaeans 100
Figure 57: Comparison of average histogram correlations for different configurations..................... 101
Figure 58: Histogram correlation between reference and warped data for different configurations... 102
Figure 59: Histogram correlation between original and warped data for different configurations 102
Figure 60: Comparison of average histogram intersection for different configurations 103
Figure 61: Histogram intersection between reference and warped data for different configurations . 104
Figure 62: Histogram intersection between original and warped data for different configurations.... 104
Figure 63: Comparison of average histogram Bhattacharyya distance for different configurations... 105
Figure 64: Histogram Bhattacharyya distance between reference and warped data for different

CONTIGUIATIONSeeeutieeiiieeiee et e ettt et e ettt et eebeeestteesnseeesseessseeeseeesnseeessseeassaesnseeesnseesnseeensseesnsseennseenn 106
Figure 65: Histogram Bhattacharyya distance between original and warped data for different

CONTIGUIATIONSeeeutieiiiieeieeeeiee ettt et e ettt et eebeeestteeenseeesteesnseeensteeanseeessseeassaesnsseeansaesnseeensseesnssesnnseenn 106
Figure 66: Histogram of correlations (health brain ORB configuration), reference vs. input............. 107

Figure 67: Histogram of correlations (health brain ORB configuration), correct original vs. input... 107
Figure 68: Histogram of correlation differences between reference minus input (health brain ORB

CONTIGUIATION) 1.ttt sttt ettt b ettt at et e s bt e st e b e e bt et e sbeeat e bt e bt et e s bt eatenbesbeeabenbeebtenbenbeene 108
Figure 69: Histogram of correlation differences between correct original minus input (health brain

ORB CONIGUIALION) ...ttt ettt ettt et sbt et s bt et e bt e bt et e s bt et e besbeenbenbeene 108
Figure 70: Average time duration of the methods..........c.ccociiiiiiiiniiiinieeee e 109
Figure 71: Class diagram of rigid registration (UML NOtation)cccccceeveveeereeensieesreeesieesseeeenneens 110
Figure 72: Sequence diagram of rigid registration (UML nOtation)c....ccecceverveeneneesenenneenieneenn 111
Figure 73: Unsuccessful segmentation caused by not enough key points detectedccccecvveenneen. 112

Figure 74: Unsuccessful segmentation caused by creating mainly bad matches between the feature
VECLOTS .evvteeeeutreeeeetreeeeatreeeeaaesseeeaassssesassseesasssseesasssseesasssssesasssssesanssssesesssssessssssseeesssssesesnsseeesenssseesenseees 112

Figure 75: Unsuccessful segmentation caused by wrong matches filtering............cccceoceveeneennennen. 112
Figure 76: Examples of successful registration: merged blue channel of input (top row) or warped

input (bottom row) with red and green channel of correct original...........ccccccevviiiniiiiniiiniiennieee. 113
Figure 77: Examples of unsuccessful registration: merged blue channel of input (top row) or warped

input (bottom row) with red and green channel of correct original...........ccccceeviiiniiiiniiiiniiennieee. 113
Figure 78: Flow of non-rigid registration represented by activity diagram (UML notation).............. 114
Figure 79: preprocessed axial MR slice 93 from BRATS 2015, pat_153,....ccccoerveninnneninicncnenn 115
Figure 80: Visualization of changes between examination using paint tracks visualization technique

... 117
Figure 81: Visualization of changes using HSV 1mage.........cccceeviiiniiiiiiiiiieieceeceec e 117

Figure 82: Sets of corresponding points from old and actual slice and creation of additional points. 118
Figure 83: Sets of corresponding points (green and blue) and set of average corresponding points

(WHIER) ettt bbbt a e et 119
Figure 84: Result of Delaunay triangulationc..coccevereerienenieniineeieneeeeeneeeesie et 119
Figure 85: Flow of the testing process (UML NOtation)ccceerveeriuiernieenieeeiieeeieesieeeseeesveeeenveens 121
Figure 86: Ratio between cases where after the transformation we reached higher histogram

correlation of the transformed old slice with actual SHCEScoceeveirieniiiiiiiiieeeeee e 122
Figure 87: Comparison of average histogram correlations for different modalitiesccccccocuenneee. 123
Figure 88: Histogram correlation of transformed old slice and actual slice............ccccceveerieriereennnen. 123
Figure 89: Comparison of average histogram intersections for different modalitiescc.cccucunee... 124
Figure 90: Histogram correlation of transformed old slice and actual slice.........c.ccceevvveiiiercieennnnn. 124
Figure 91: Comparison of average Bhattacharyya distances for different modalities..........c..ccc.c....... 125
Figure 92: Histogram correlation of transformed old slice and actual slice............ccccceveereenenncnnnen. 125
Figure 93: Ratio between cases where after the transformation we reached higher histogram

correlation of the transformed old slice with actual SHCEsccceeveerieniiiiiiiieeeeeeen 126
Figure 94: Comparison of average histogram correlations for different configurations..................... 127
Figure 95: Histogram correlation of transformed old slice and actual slice........c..ccoccvveevenerecnicnncnne. 127
Figure 96: Histogram of correlations (flair W=15, S=16)ccceeriirriiiiriiiieeeeeee e 128
Figure 97: Class diagram of non-rigid registration (UML notation)..........c.ccceeeveeevieerreeencieennveennenns 129
Figure 98: Sequence diagram of non-rigid registration (UML notation)c..cecevereenueneneenenneenee 129
Figure 99: Basic steps of the ViSUAlIZAtIONoeeiieieciiiiiiieeiie ettt eeeeeeeneee s 130
Figure 100: Axial, coronal and sagittal view of the brain MRI scan..........cccccoeeeeiieiiincnniinicceeen, 131
Figure 101: 3D model Of the BIainc.ccoccueeiiiiieiiieeiieeeeeee ettt e e e e enree s 132
Figure 102: Initial window of the appliCationcceeeriiiriiiriiieeeie et 133
Figure 103: Visualization of the segmentation maskccoceeiiiiiiniiniieiiieeeeeeee e 133
Figure 104: Different ways to highlight the tumor in the 3D model...........cccccoceeiiiiininiininenen. 134
Figure 105: Class diagram of visualization (UML NOtation)cceeceerierieesieesieeneeneence e 136
Figure 106: Sequence diagram of visualization (UML notation)..........cccceceeverersieneneenenenneenieneenn. 137
Figure 107: Class diagram in general (UML NOtatioNn)ccceeerveereieeenieeniieeeeesieessieeeseveeseneessneens 139
Figure 108: Sequence diagram in @ENeralccoeviiriiririiiniiniiieneeteeee ettt 140
Figure 109: Initial window of visualization tOO]cccueeriiirerieerciie et U

XXV

XXVi

List

of Tables

Table 1: Tested combinations of alGOTithm...........cceeeiiiiiriiiiiiiii e 96
Table 2: Comparison of average histogram correlations for different configurationscc.c...... 101
Table 3: Comparison of average histogram intersection for different configurations.........cc..cc..c...... 103
Table 4: Comparison of average histogram Bhattacharyya distance for different configurations....... 105
Table 5: Average time duration of the MEthodsccccoeeviiririiiiniiiceceee e 109
Table 6: Tested MOAALILIEScceiiiiiiiiiiiiiiiiei e e e 120
Table 7: Different configurations of the method...........cccceiiiiiiiiiiiiii e 120
Table 8: Comparison of average histogram correlations for different modalities...........cc.ccoeceereenen. 122
Table 9: Comparison of average histogram intersections for different modalitiescccceceeennenn. 124
Table 10: Comparison of average Bhattacharyya distances for different modalities..............cc...c...... 125
Table 11: Comparison of average histogram correlations for different configurations 126

XXVii

XXViii

1 Introduction

Medicine is an area which is still going ahead. It is important field for people and their health. Many
different techniques are evolved to diagnose diseases. In our research, we are working on the methods
appropriate for monitoring the development of the brain tumor cancer. The most commonly used test
for tumor diagnostic is magnetic resonance imaging. The result of one magnetic resonance test of the
brain is a volume - series of images called slices. Nowadays, the computer is being used more and
more during the diagnosing the patients. It gives more opportunities to the doctors and can help them
work more effectively.

However, the processing of the three-dimensional medical data (in our case MRI) can be time-
consuming and annoying task. Computer vision is a powerful tool to solve many interesting problems
and can help with automation of the monotone and routine tasks in many fields. Medicine is one of the
fields, where computer vision is very helpful and may be very powerful.

Actually, there is a lot of tasks in medicine and diagnostics, where some algorithm can ease the work
of the specialist. Special computer vision methods are developed to solve one specific task. Thus, we
decided to focus on the brain and cancer in the brain — tumors. In our work we present methods which
are capable to help with diagnostic of the cancer in the brain, mainly to help with the tracking the
tumor changes.

To process MRI data without computer vision methods, for example segment the tumor from the
volume, the specialist have to segment the tumor on each slice of the volume. It is time-consuming
and monotone task, but is really necessary and very helpful — mainly during the treatment process by
the irradiation when health parts of the brain should be radiated as less as possible.

The main task the work was find automatic methods for tracking changes of the patient’s disease:
track changes of the tumor and track changes of the health brain parts. To make it possible, it is
necessary to segment tumor from the volume, align data from different examinations and find
corresponding parts of the brain and tumor in different examinations captured during the treatment
process in regular time periods. Today many approaches appropriate for tumor segmentation exist.
Thus we decided to analyze them and test some. To align data from different examinations we
proposed a method based on rigid registration. The method can be used to align corresponding 2D
slices from different examinations. Finally, to track changes we proposed method based on non-rigid
registration. Method can find the corresponding points between the examinations using optical flow. It
works with the 2D corresponding slices.

The work consists of several chapters. The 2™ chapter contains general information about the
computer vision and about computer vision libraries. Additional three chapters give a look at the
image preprocessing (chapter number 3), segmentation (chapter number 4) and registration (chapter
number 5) methods. 6™ chapter is devoted to the neural networks which is a powerful tool for many
computer vision problems. Medical point of view on the brain cancer is provided in the chapter
number 7. Overview on the state of the art methods of the brain tumor segmentation and brain
registration are summarized in the chapter number 8. Finally, proposed method, implementation
details and results of the testing are summarized in chapter number 9. The method consists of several
steps. For every step is denoted one subchapter: preprocessing (chapter 9.3), segmentation (chapter
9.4), rigid registration (chapter 9.5), non-rigid registration (chapter 9.6), visualization (chapter 9.7).

29

30

2 Computer vision

Computer vision is an area that can deal with understanding digital images, videos and other digital
data. It is important to realize that the computer see data differently than we do. The image is only a
field of values. To get some information, it is inevitable to develop methods and algorithms.

Digital data may be reached by different units — cameras, sensors, scanners and other specialized units.
Usually, it is necessary to process these data in order to get some information. It can be monotone and
boring task for the human if it is done manually. Computer vision methods and algorithms are very
powerful and may facilitate human work or help the human with the processing and data analyzing.

Computer vision is highly used in various science disciplines, but also in everyday life. For example,
when you are leaving from the paid car park with the barriers in front of the shopping center, you do
not have to scan the ticket which you took on your arrival. It is because the camera captured your car
when you arrived, computer vision methods detected the sign on the car and paired your ticket with
the sign and also remembered the time of your arrival. When you left, the camera again captured the
car, computer vision detected the sign and the system had known if you have already paid.

Nowadays, we can also use many features of the cars which use computer vision, such as parking
assistant or autopilot. It is still necessary to pay attention when you are using these features, but in
future there will be absolutely autonomous cars.

Computer vision methods are also used in the industry to control the quality, in many monitoring
systems to control the situation, prevent some accidences or detect some events. Physics, biology,
chemistry, universe research or robotics are fields where computer vision has a lot of applications.

2.1 Computer vision in medicine

Medicine is another field where computer vision can ease the human work and help in different ways.
In medicine is a lot of tests where different scanners and sensors are used. Well known tests are
Magnetic Resonance Imaging (MRI), Computed Tomography (CT), sonography, x-ray and so on.
Computer vision methods can help doctors and diagnosticians to process data and ease their work.
During the keynote presentation by Dr. Yoav Medan ! on the MICCAI 2016 conference in Athens
were presented all fields of the medicine where some research in computer vision is registered. There
are listed all medicine fields mentioned in Dr. Medan’s presentation:

e “Oncological: Bone Metastases, Prostate Cancer, Breast Cancer, Kidney Cancer, Liver
Cancer, Pancreatic Cancer, Soft Tissue Tumors, Brain Tumors, Pediatric Neuroblastoma,
Head and Neck Cancer, Lung Cancer, Ovarian Cancer, Bladder Cancer, Colon Cancer,
Esophageal Cancer

o Musculoskeletal: Back Pain, Osteoid Osteoma, Osteoarthritis, Disc Degeneration, Muscle
Atrophy, Sacroiliitis, Spinal Cord Injury, Spinal Tumors

e Neurological: Essential Tremor, Neuropathic Pain, Parkinson’s Disease, Brain Tumors,
Depression, OCD, Alzheimer’s Disease, Epilepsy, Hydrocephalus, Multiple Sclerosis, Stroke,
Traumatic Brain Injury, Trigeminal Neuralgia, AVM’s Cancer Pain

31

e Women’s health: Uterine Fibroids, Breast Fibroadenomas, Uterine Adenomyosis, Tubal
Pregnancy, Fetal Surgery, Ovarian Cancer, Polycystic Ovarian Syndrome

e Cardiovascular: Hypertension, Atherosclerosis, Atrial Fibrillation, Deep Vein Thrombosis,
Heart Block, HLHS, Peripheral Artery Disease, Septal Perforation

e Urological: Prostate Cancer, Kidney Cancer, Benign Prostatic Hyperplasia, Acute Kidney
Injury, Acute Tubular Necrosis, Ureterocele, Bladder Cancer

e Endocrine Disorders: Thyroid Nodules, Diabetes, Obesity

e Miscellaneous: Hypersplenium”

2.2 Computer vision libraries

A lot of methods and algorithms have been invented until today. Some of them is not necessary to
implement again, because there are some libraries which provide the implementation of these methods
and algorithms.

22.1 OpenCV

OpenCV is an open source library which contains many implementations of computer vision methods.
It is written in C++ and C programming language and it is cross-platform. OpenCV provides interfaces
for other languages — Python, Java, Matlab and Ruby. OpenCV has very strong community, online
documentation is available ® and some books are devoted to the library, such as Learning OpenCV:
Computer Vision in C++ with the OpenCV Library written by Gary Bradski and Adrian Kaehler),
Methods from OpenCYV library are able to work only with two-dimensional data.

222 ITK

ITK (Insight Segmentation and Registration Toolkit) is another open source, cross-platform computer
vision library. It is written in C++ and wrapped for Python and Java. Cmake must be used to build the
environment. It is primary specialized on the segmentation and registration methods. Big advantage of
the library is that algorithms are able to process two, three or more-dimensional data. ITK is often
used for processing the medical data. It was developed in collaboration with National Library of
Medicine. ITK have also strong support and own community, documentation is available, too 28, ITK
has also simpler version called Simple ITK.

223 VTK

VTK (Visualization Toolkit) is an open-source, cross-platform system which is able to process
images, 3D computer graphic and provides methods for visualization of two, three and more-
dimensional data. VTK is written in C++ programming language, but contains interfaces for Python
and Java. VTK was created by Kitware company which also provides support for VTK. There is also
online documentation available *!, but people complain that documentation is not very clear. One big
advantage is that VTK has a suite for user interaction and another one advantage is that VTK can be
integrated with GUI toolkit, for example Qt.

32

3 Image preprocessing methods

Image preprocessing is first step after the acquisition of image data. In medicine, we meet with data
which are not perfect, so it is important to apply some enhancement techniques. Enhanced images can
contain clearer and more perceptible edges of the objects as wrote Toennies in his book °!. The main
goal of preprocessing is to improve the quality of the data.

Images can be processed in spatial or frequency domain as is explained in the book 8! from Sikudové
et al. The most usual enhancement techniques of image quality are:

e contrast enhancement,
e resolution enhancement,
e edge enhancement and

e noise reduction.

3.1 Processing in frequency domain

We are basically accustomed to the data in spatial domain- To process images in frequency domain, it
is necessary to convert them. Discrete Fourier Transformation (DFT), Discrete Cosine Transformation
(DCT) and wavelet transformation are used to convert data from spatial to frequency domain. Wavelet
transformation is the most usually used for image filtration techniques. Result of transformation is a
sequence of spectral coefficients.

Basic prejudice of DFT is that every signal can be represented as sum of sinus and cosine functions.
There also exists an optimized algorithm of DFT called Fast Fourier Transformation (FTT) which is
faster especially when number of coefficient is power of 2. Resulting coefficients are imaginary
numbers. On the other side DCT convert signal into a sum only of the cosine functions and resulting
coefficients are only real numbers.

3.1.1 Basic filters

Filtration is process when image spectrum (image transformed to frequency domain) is multiplied by
spectrum filter. Then image is again transformed back to spatial domain. Basic filters used for
filtration in frequency domain are low-pass filter and high-pass filter. As their names say, low-pass
filter passes low frequencies and on the other hand high-pass filter passes high frequencies. Thus, if
we want to remove details from the image, such as texture, we need to remove higher frequencies, so
we pass only low frequencies — we use low-pass filter. If we want to get image only with edges,
texture and details, we need to remove low frequencies, so we will use high-pass filter.

Filtration in frequency domain is usually used to remove periodic noise. We can use special high-pass
or low-pass filters to remove local maxims in frequency domain — filters are centered on the centers of
the maxims and multiplied with them.

33

3.2 Processing in spatial domain

3.2.1 Linear methods

Linear filter may be divided into smooth filters and edge detection filters 8. They are based on
convolution operation. Convolution is a method which systematically go through the whole image and
compute new value of the processed pixel using small surrounding of that pixel. Processed pixel is
called origin and surrounding of the pixel is defined by the convolutional kernel.

The best known smooth filters are Gaussian filter and mean filter also called blur filter. Kernel of the
Mean filter is used for computing the arithmetical average value of the pixel’s surrounding. Kernel of
the Gaussian filter is derived from Gaussian function.

The best known edge detection filters are Prewitt, Sobel and Laplacian. Prewitt filter has got two
different convolution kernels — vertical and horizontal. Thus, two information are computed using
Prewitt filter:

e horizontal changes G, of the image I are computed using horizontal Prewitt kernel:

1 0 -1

G,=|1 0 —1|=I

1 0 -1

e vertical changes G,, of the image I are computed using vertical Prewitt kernel:
1 1 1
G,=10 0 0 [|*1
-1 -1 -1
Sobel filter is very similar to Prewitt filter:

e horizontal changes G, of the image I are computed using horizontal Sobel kernel:

1 0 -1

Gr=12 0 =2|=I

1 0 -1

e vertical changes G, of the image I are computed using vertical Sobel kernel:
1 2 1
G,=10 0 0]|xI
-1 -2 -1

Prewitt filter and Sobel filer are usually used to compute image gradient. Image gradient G is a two-
dimensional vector, which coordinates are partial derivations of the function f(x, y):

G= [G2+G,7

We can also compute the angle of the vector according to the formula:

34

6 = arctan(Gy, Gy)

Laplacian filter is defined as sum of second difference in origin pixel according to surrounding of the
pixels defined by the kernel:

0 1 0

1 -4 1

0 1 0

3.2.2 Nonlinear methods

Typical nonlinear filters are ordering filters such as minimum, maximum and median filter ¥, Non-
linear filtration does not use convolution function. During the nonlinear filtration is used a mask which
specifies the pixels which are processed. Image pixels under the value 1 of the mask pixel are included
to the processing and on the other hand image pixel under the 0 mask pixel value are not included to
the processing. The mask cross through the image and all values of the image which corresponding
with the mask are ordered. Then first, last or middle value is selected depending on the type of the
filter (minimum, maximum or median).

3.3 Morphological operations

Morphology studies objects, their shape, topology and geometry °®. Morphological operations use
structuring element which go through the image. Structuring element is defined by the size, shape and
origin — position of the processed pixel. Morphology can process binary or greyscale images.

Dilation and erosion are basic morphological operations. Basically, binary dilation enlarges white
regions and on the other hand binary erosion shrinks white regions of the binary image. In general
binary dilation can be defined as union of the image and structuring element. Then binary erosion is
defined as intersection of the input image and structuring element. In the Figure 1 are shown results of
binary dilation and erosion. Greyscale dilation is defined as a maximal value of the origin’s
surrounding - intended by structuring element and greyscale erosion is minimal value of the origin’s
surrounding.

Figure 1: LEFT — input image, IN THE MIDDLE — dilated image, RIGHT — eroded image 1°®

Opening and closing are operation derived from erosion and dilation. Opening is operation where
erosion is followed by a dilation. If I is an input image and S is a structuring element then opening can
be defined as:

35

Opening=(1 © S) @ S
On the other hand, closing is operation where dilation is followed by the erosion:
Closing=(1 @ S) © S

Another derives of the erosion and dilation are top-hat and bottom-hat operations. Top hat operation is
a subtraction of input image and the morphological opening:

Tophat=1—-(I © S) & S)
Bottom hat is a subtraction of morphological closing and input image:
Bottom hat = ((I b S o S) -1

Morphological gradient is next operation which uses erosion and dilation. Erosion and dilation are not
inverse operation and this fact is used in morphological gradient. It is a subtraction of the dilation and
erosion computed with the same structuring elements. It is defined with formula:

Morphological gradient =1 @ S) — (I © S)

The method can be used to detect the boundaries of the objects on the image.

36

4 Segmentation methods

Segmentation methods divides image on several parts depending on some characteristic, such as
shape, color, intensity or texture. Segmentation is usually used to detect some object on the image.
Today a lot of segmentation methods are invented.

Many approaches such as book about medical image analysis from Toennies®®! divide segmentation
methods on:

e manual,
e semi-automatic or
e automatic.

Manual segmentation does not require any computer vision methods. Objects are segmented by the
expert manually using some special software and tools. It is time consuming and monotone task, so
computer vision experts desire automatic or semi-automatic methods appropriate for different
problems. Semi-automatic methods require some interaction with the user, but they are faster than
manual segmentation. Automatic methods do not require any inputs from the user, everything is
computed by to segmentation algorithm.

In medicine, segmentation algorithms are used to detect some specific organs and parts of the body or
to detect some anomalies on the body, such as tumors. There are several processes how to reach data
about the body structure. Every type of data acquisition is useful for different medical problem and
requires specific processing.

Segmentation methods can be divided into several groups based on approach to segmentation.
Surveys, such as survey from Masood et al. ¥, divide them on

e edge-based methods,
e region-based methods,
e machine learning and

e atlas guided.

4.1 Edge-based methods

One of the most popular features are edges. They can be used to guide the segmentation and we can
extract different types of edges: parametric, intensity, texture and watershed edges as is mentioned in
approach from Elankib et al. 16!

4.1.1 Graph-cut algorithm

Graph-cut algorithm is based on special representation of the image. Pixels represents nodes and
between neighboring pixels are edges as is shown in the Figure 2. Every edge has got some value

37

called weight. In the graph based computer vision algorithms weights depends on the similarities and
dissimilarities between the neighboring pixels. Weight may be defined by differences in the intensity,
color, texture or another characteristic. Type of the characteristic depends on the type of the algorithm.

Graph is cut to split image on several segments. Max-flow and min-cut algorithm are two basic graph-
cut algorithms 31, Min-cut algorithm finds the smallest possible cut of the graph edges and divide the
image on foreground and background. Max-flow algorithm finds the highest possible flow of the path
in the graph. The path is created in iterations in effort to maximize the flow. Path consists of the edges.
The flow is defined by the maximal value of the edges included in path.

There are several approaches which use graph cut algorithm for the segmentation such as
segmentation of the lung from chest radiographs by Candemir), segmentation in N-dimensional
medical images by Boykov and Jolly ¥ and so on.

cut

Sink

Figure 2: Visualization of graph cut algorithm ">

4.1.2 Active contour algorithm

Active contour algorithm is also known as snake algorithm. It is based on movement of the curve —
snake along the image structures as is shown in the Figure 3. Ivins?”! writes that algorithm try to
minimize the energy function of the snake in several iterations. Energy of the snake consists of
internal and external energy. Function of the external energy is proposed to find the most accurate
edges of the object — the biggest local changes. On the other hand, function of the internal energy
should keep the snake smooth.

In basic implementation of the algorithm, programmer must specify the weights of the energies which
have an impact in minimization function and whole result of the segmentation. Next input for the
method is initial snake which should approximately plot the boundaries of the object.

Algorithm was used in some approaches such as segmentation of the ventricle by Cohen % or for the
segmentation of brain structures by Yushkevich et al. (6!

38

Figure 3: Active contour algorithm in practice "

4.2 Region-based methods

4.2.1 Thresholding

Thresholding is basic and very often used computer vision method. Input for the method must be
grayscale image and output of the method is binary image (pixels can have values O or 1) as is shown
in the Figure 4. Values of the final binary image are computed from the input image depending on the
threshold value. Threshold is a constant entered by the programmer and defines the boundary between
the higher and lower intensity values of the pixels from the input image. Resulting value of the pixel in
output binary image is defined by the formula (I(P;;) is an intensity of the input pixel and T is a
threshold constant):

if 1(P;)=T
otherwice

Figure 4: LEFT — input image, RIGHT — thresholded image

39

4.2.2 Region growing method

Region growing method is iterative algorithm and the region — segmentation grows in every iteration
if the structure of the image allows it. It means that region-growing algorithm is a merging-type
region-based algorithm as is mentioned in the book from Glasbey "), In the Figure 5 is shown several
iterations of region growing algorithm.

The algorithm needs an initial position of the region called seed. Seed may be specified by the user
using simple interaction or by computed using some statistical methods. In every iteration the
algorithm controls all surrounding pixels of the region and decides if the pixel will be added or not. It
depends on some characteristic of the image. If difference between region pixel and surrounding pixel
is too big then pixel is not added to region, otherwise it is.

Region growing segmentation was used for example for the heart segmentation from ultrasound
images by Hao et al. 1%*!

lteration 5 lteration 10 lteration 20

&

o

lteration 40 lteration 70 lteration 90

¥

[80]

Figure 5: Iterations of region growing algorithm
4.2.3 Watershed algorithm

Watershed algorithm is based on the principle of height map flooding. The relief is represented by the
image gradient. Thus, as the relief of the height map is flooded, the segmentation of the watershed
algorithm increases.

Basic algorithm starts in local minims of the image ©' (it can also start on local maxims and decrease
the values in iteration). The pixel values that can be added to the regions are gradually increasing, so
the regions are enlarged in iterations. When two different regions meet, the algorithm creates a border

40

between them and that’s are the final boundaries of the image segments. The process of the algorithm
is shown in the Figure 6.

Watershed segmentation algorithm with some improvements was used for example to segment the
breast tumors by Huang ! and Chen or Grau et al. tested watershed method for knee cartilage
segmentation and gray/white matter segmentation 22!,

h=40

h=90

h=160

=

Intensity

X

Figure 6: Iterations of the watershed algorithm 1%

4.3 Machine learning

Simply, machine learning makes computers capable to learn without explicitly programming.
Computer can learn some models and make segmentations depending on the models and similar
conditions on the input image or can divide image on the parts — segments depending on some
characteristic. Basic division of machine learning techniques is on:

e unsupervised learning (clustering) and
e supervised learning (classification) as is mentioned in the book from Toennies),

Clustering is unsupervised learning method which divides pixels of the image on several clusters. No
previous training of the model is needed. Pixels are divided depending on some specific characteristic
— some feature. Pixels grouped in one cluster are more similar to each other than to the pixels from
another groups.

Classification is supervised learning which means that we need to train some model, so we need some
training dataset (data with real true results - segmentations). Training data are used to train the model

41

depending on some features and models are then used to classify pixels of the new input image into
defined classes.

4.3.1 K-means

K-means is clustering efficient algorithm which can divide the image on K clusters. It is based on the
criterion that the pixel is in the minimum distance from the center (mean) of all clusters according to
the value of the pixel. Center is iteratively calculated as the mean of the all pixels in cluster %!,

K-means algorithm was used for example for brain tumor detection by Wu et al. ¥ or for
segmentation of brain parts by Foong et al. 4!

4.3.2 Fuzzy c-means

Algorithm is based on the theory about the fuzzy logic “%). Algorithm is similar to K-means, but fuzzy
c-means allows pixels to be a part of more than one classes.

Fuzzy c-means in combination with SVM algorithm was used for prognosis of diabetes in approach by
Sanakal and Jayakumari 3!,

4.3.3 Mean-shift

Mean-shift algorithm is clustering algorithm and consists of several steps. At first an initial search
window is created. Then the algorithm computes centroid of the data (mean location) inside the search
window and search window is centered at the mean location. These steps are repeated while the values
converge.

4.3.4 Superpixel algorithms

At the beginning, superpixel is a set of pixels with some similar characteristic such as color, texture,
intensity or some combination. Superpixels are used for the next processing, because their size is still
small and they do not limit any whole object usually. However, the boundaries of the superpixels are
corresponding with the boundaries of the object on the image.

SLIC (Simple Linear Iterative Clustering) is one of the best methods proposed to create superpixels
from the image. It was invented by Achanta et. al ! and the algorithm is used in many researches. At
first, n initial cluster centers are created on a regular grid. The centers are moved in iterations to seed
locations which corresponding to the lowest gradient. Thanks this superpixel boundaries
corresponding with edges on the image. Example of superpixel clustering is shown in the Figure 7.

42

Figure 7: SLIC superpixel clustering

4.3.5 Support vector machine

Support vector machine (SVM) is supervised learning algorithm B!, Thus it is necessary to have some
training data to train the model which can divide another inputs to the classes after the training. During
the training all training data are plot into n-dimensional space ™). Number of spaces depends on the
number of features which we can extract from the data. Then the algorithm finds the hyper-plane — the
best bound between two classes in the several iterations as is shown in the Figure 8.

Y

Figure 8: Graphical representation of support vector machine !

Support Vectors

l-'_lr_-:::-u.n---l---
L ‘+.-.'_

X

82]

SVM classification algorithm was used in many approaches, for example to segment brain tumor from
MRI images by Bauer et al. ©*! or to recognize reliable heart beating from electrocardiogram waveform

(ECG) 161,

43

4.3.6 Bayesian models

The simplest Bayesian model is naive Bayesian classifier — it is probabilistic classifier % good for
large data. It is based on Bayesian theorem which calculate posterior probability 5!:

P (X|C) P(c)

O where

P (c|x) =

e P (c|x) is the posterior probability of the class,

e P (x]|c) is the probability of the given predictor class,
e P(c) is prior probability of the class and

e P(x) is prior probability of the predictor.

However, a lot of improvements of the basic model exist and Bayesian models can be also used for
clustering problem.

4.3.7 Decision trees

Decision tree is a classification algorithm which creates tree with decision nodes and leafs 1%,
Decision tree is built using some features from the input data. Features and their possible values
represent decision nodes and possible resulting output is represented by the list. Order of the features
depend on the entropy. Entropy calculates the homogeneity of the data in the classes and if the class is
homogenous then entropy is zero. It means that feature which can divide the data better is higher in the
tree. After the training, the class of new input data is gained from the trained tree using the decision
nodes and features.

Algorithm can be improved to decision forest which consists of many decision trees and result depend
on more usual result of every decision tree. It is usually used for more complicated segmentation
problems such as tumor segmentation in MRI images as in approach by Zikic et al. [6¥!

4.3.8 Neural networks

In the past years, neural networks were used to solve many different computer vision problems.
Researches show that neural networks are very suitable for analyzing and processing the digital data.
Neural networks are based on the prejudice that they will learn some rules on the big training dataset.
Bigger training dataset can raise the accuracy of the network. Nowadays exist many different types of
algorithm based on neural networks. Chapter number 6 Neural networks is devoted to the explanation
of these methods.

4.4 Atlas guided segmentation

Atlas guided segmentation is special type of segmentation, because first step is to register data on the
atlas 9, Atlas is a general structure of some part of the body, or organ in the body. Thus input data
have to be registered, so they are deformed. Input data should have similar structure as the atlas after
the registration. When data are registered then atlas and information from the atlas can be used for the
segmentation. Atlases are also usually used to detect some anomalies in the data — images or volumes.

44

S5 Registration methods

A process which can align two or more images (the reference and sensed images) of the same scene is
called registration. Crum, Hartkens and Hill in their article " write that for every one pixel from first
input data is being found position of the corresponding pixel from another input data. Images may by
captured by different sensors, from different points of view or they can be scanned in different times
or with different conditions. Registration is a necessary step to analyze and gain some information
from combination of various data sources.

From the point of view that what kind of images are registered, registration can be divided into four
groups as written Zitova in her article

e registration of different viewports — the goal is to get bigger 2D view or 3D representation of
the scene

e registration of data acquired in different times always also with different conditions — the goal
is to detect changes between the acquisitions

e registration of data acquired by different sensors also called multimodal analysis — the goal is
to work with more information obtained from different sensors

e registration of the model and the scene where model is some computer representation of the
scenes such as atlases— the goal is find the localization of the scene in the model and compare
them

Usually process of the data registration consists of four basic steps ©°: feature detection, feature
matching, estimation of the transformation model and transformation

5.1 Feature detection

In feature detection step some salient objects are detected on the image depending on the method as
shown in the Figure 9. They are usually represented as the array of the points called control points (or
key points). There is a lot of possibilities how to detect the features, but they should be detected easily.
Thus, we must decide what type of the features will be appropriate for our task. In the perfect world,
the algorithm would be able to detect the same features on the all input images regardless of the
deformation.

Feature detection methods can be divided from different points of view. Zitova divided feature
detection methods from type of processing into the two groups in her article [®': area-based methods
and feature-based methods. On the other side, Ferrante and Paragios 7 and also Crum, Hartkens and
Hill in their article " divided methods from matching criterion view and they are connecting feature
detection and feature matching into one step called finding matching criterion (Ferrante and Paragios)
or finding similarity measures (Crum, Hartkens and Hill). They divided methods into 4 groups: iconic
(intensity based), geometric, sensor based and hybrid.

45

Figure 9: Set of key points detected on the image

5.1.1 Feature detection methods from processing view

5.1.1.1 Area-based methods

Area-based methods skip the feature detection step. No features are detected in these approaches,
because it is merged with feature matching step. The algorithms are explained in the next chapter —
feature matching.

5.1.1.2 Feature-based methods

Feature-based methods find significant parts of the images based on regions, lines or points. The
algorithms can find features efficiently on the input images. They do not work with image values of
the intensities directly, but they use some methods to get high level information of the images, so they
can facilitate with differences of the images. Region features of the image are detected thanks high
contrast boundaries of these regions. Region-based features are usually represented by their centers of
gravity. Line features can be some line segments, region boundaries or object contours. They are
usually represented by pairs of end or middle points. Point features usually define some local
extremes.

5.2 Feature matching

Feature matching algorithms try to find correspondences between the features detected on the sensed
image and features detected on the reference image as is shown in the Figure 10. The problem is, that
if we had some incorrect features detected in previous step it spreads into this step. Another problem is
that corresponding features can be dissimilar, because images might be scanned with different
conditions. This problem should be solved with good choice of the feature descriptor. On the one
hand, the descriptor must be able to distinguish among the different features, but on the other hand it
cannot be influenced by noise and unexpected variations of the features. Result of description is a
feature vector which is used for the feature matching.

46

Figure 10: Matching of key points

5.2.1 Feature matching methods from processing view

5.2.1.1 Area-based methods

Area-based methods use correlation function or template matching algorithms. Thanks this, the area-
based methods can skip the feature detection step and merge it with matching step. These methods do
not detect any significant objects on the images. They are using windows or whole images which go
through reference image to find correspondence. Some statistical values are calculated to evaluate the
strength of the correspondences, such as correlation. These methods are very limited, because they are
not appropriate for images that are deformed.

5.2.1.2 Feature-based methods

Input for the feature-based methods are two sets of key points — one from reference image and second
one (or more) from sensed image. Future-based methods are divided on several types:

e Spatial relation algorithms are used if the surrounding of the key points is deformed. They are
based on spatial relations, so they require information about the distance between the key
points and spatial distribution.

e Invariant descriptors are an alternative of spatial region algorithms. Good descriptors must
fulfill some conditions. The descriptions of the corresponding features must be the same —
invariance condition. Descriptors of two different features must be different — uniqueness
condition. And they must deal with local deformation — stability condition.

e Relaxation methods are based on labeling features from sensed image with labels of the
features from reference image. The result of labeling are pairs of features — one from reference
image and second from sensed image. Then the pairs are iteratively changed, depending on the
strength of the match, until the situation is not stabilized.

47

5.2.2 Feature detection and matching methods from matching criterion
view

5.2.2.1 Iconic (intensity based)

Iconic methods use information about intensity of processed pixel and its neighborhood. In volumetric
data are used intensities of voxels to find similarities between two input data. The biggest challenge is
to deal with different types of input data (they can be reached with different sensors — multimodal
registration). In this case data have to be transformed to the same space where they can be easily
compared. Matching of the similarities in multimodal data usually use complex statistical metrics such
as cross correlation. On the other side, simpler methods, such as sum of absolute differences, can be
used to find similarities between the monomodal data.

For example, Xiao et al. used iconic based registration for calibration of ultrasound during the patient
examination in their survey ¥, Intensity based registration was also used for deformable registration
of MRI and ultrasound images for neurology surgery by Hassan, Chen and Collins 4%,

5.2.2.2 Geometric

Geometric methods use for registration a sparse set of salient image locations. It means that methods
create explicit models of the elements on the image which can be easily identified. The best
identifiable parts of the image are usually some curves, special surfaces or special points which can
match with another input data. The pros of this type of methods is that mapping is biologically valid
and allows anatomically and physiology correct transformation.

Geometric registration was used for example by Yavariabdi et al. ¥ to register 2D ultrasound images
to 3D MRI of woman pan. The main goal was to detect endometrial implants on both modalities.
Endometriosis is a disease that affects women in fertile age.

5.2.2.3 Sensor based

Sensor based methods are not based on information from images, but on another kind of information —
they work with information from some specialized sensors. The most usually types of sensors are
optical and electromagnetic tracking systems. Optical systems, such as infrared camera or laser
camera, track some special markers and it is helpful to identify position of tracked object. On the other
side, electromagnetic tracking systems use transmitters to sensors and processor units to register
location and orientation of the tracked object.

For example Polak in his surgery 71 used sensor based method for motion tracking in magnetic
resonance image for retrospective volume reconstruction. MR images are very sensitive for motion. It
is hard manly during the examination of the children.

5.2.24 Hybrid

Hybrid methods are some kind of combinations of previous three methods. They are usually used to
reach better and more exact results.

One example of interesting hybrid registration which combined sensor based and iconic registration
was developed by Bernhard et al. ¥ to automatically register MRI and ultrasound images for

48

neurosurgery. It is required for practice to register preoperative MRI images with ultrasound images
reached during the operation.

5.3 Transformation model estimation

In this step a model for transformation is estimated. Mapping functions are created to align the sensed
images with reference image. Mapping function depends on the feature correspondences and must
decide which correspondences are correct and will be matched and which will not be matched.
Information about the image degradation is used in this step to create appropriate mapping functions.

Usually authors of articles "7 divide methods only from deformation point of view on rigid and
non-rigid transformation also called elastic. However, Zitova et al. ! and also Kybic %! divided
methods in their articles also by kind of mapping on global mapping models, local mapping models
and mapping by radial basis function.

5.3.1 Division of transformation models from deformation point of view

53..1 Rigid

Rigid registration does not deform structure of the data. Basic functions of rigid registration -
transformation are:

e Scaling — when size of the image is enlarged or reduced.

e Rotation — when the image is rotated several degrees around some point.
e Translation — when the image is shifted in some direction.

e Reflection — when the image is flipped over some line.

In domain of brain surgery is rigid registration usually used to register different types of modalities to
reach more relevant information about the patient. One example of surveys in this field is survey by
Colligon et al. who registered CT, MRI and PET volumes in their approach !,

5.3.1.2 Non-rigid elastic registration

Elastic registration does not depend on the searching for the best values of the parameter as previous
rigid registration which is based on parametric mapping functions. This new type of the registration
was invented by Bajcsy and Kovacic !,

The elastic registration is based on minimization of the strength energies in iterative process. We can
imagine an image as a rubber sheet. Then internal and external forces act on that sheet to stretch or
shrink it. While external forces stretching the image, the internal forces minimize the stretching
depending on their stiffness constraints. In elastic registration methods, feature matching step is
performed concurrently with mapping function calculation. This is a big advantage because no feature
descriptors invariant to complicated deformations have been invented yet.

Well known non-rigid registration methods are fluid registration, optical flow, diffusion-based
registration and level sets.

49

Non-rigid registration can be also used for segmentation of some anomalies if we register data on
atlases as is mentioned in previous chapter 4.4 Atlas guided segmentation. Kyriacou et al. used elastic
registration to register brain MRI data on Brain atlas and to detect anomalies — tumors in the volumes
in their approach B¢,

5.3.2 Division of transformation models from mapping point of view

These methods are used for different types of rigid registrations and need to count parameters to
perform some transformation.

5.3.2.1 Global mapping models

One of the most popular and the simplest global mapping model is similarity transform. It is a linear
model defined by two key points. This model preserves the shapes and it uses only translation scaling
and rotation.

Another linear model is affine transform. It is defined by three key points. The advantage of the model
is that it preserves straight lines and their parallelism. The most usual usage is registration of different
viewports, but the scene must be larger than scanned area, scene must be flat and geometry cannot be
disturbed by any local factors.

If the scene is smaller than scanned area, then the perspective projection model should be used. It is
defined by four independent key points and describes the deformation of the flat scene.

5.3.2.2 Local mapping models

In the previous chapter, the methods created mapping function according to global deformation of the
images. However, images can be deformed also locally. It is typical for medical imaging. Mapping
functions register information about the local geometric changes.

5.3.2.3 Mapping by radial basis function

Radial bases functions are also able to work with local geometric distortions, but they are using some
combinations of global mapping methods to create mapping functions. They are linear combinations
of translation function polynomials. They were originally developed for interpolation of the irregular
surfaces. The most important property of radial basis function is that they depend only on the distance
of the key point, not on the concrete position of the key point. The most popular radial bases functions
are Gaussian, Wendland, multiquadrics and thin-plate splines (TPS).

5.4 Transformation

Mapping functions which were created in the previous step are used for the transformation of the
sensed images. There are two different approaches:

e Forward manner uses mapping functions for direct transformation of every pixel from sensed
image. It can produce overlaps or holes, so it is hard for implementation.

50

e Backward manner uses inverse of the mapping functions and coordinates of the target pixel
based on reference image to compute data for sensed image transformation. It is easier for the
implementation, because algorithm do not produce any overlaps or holes.

5.5 Validation

Validation means to show that registration was correct. It is sometimes really hard task to evaluate
correctness of the registration as writes Crum, Hartkens and Hill in their article 4. Actually, average
volume error of the registration can be estimated, but only in case when registration is rigid. It is count
as distance between the corresponding landmarks. This kind of analysis is not possible to use for non-
rigid registration techniques, because deformation is not consistent with real world. Thus, validation is
always performed to show on the dataset that transformation worked as we excepted for this kind of
registration.

51

52

6 Neural networks

Neural networks are simplicity inspired by biological neural system as is mentioned in the book by
Kriesel 2, It means that they can progressively learn to do some task from some examples. Neural
network can learn how to do some task without being explicitly programed. For example, neural
network can learn to distinguish between different type of flowers on the images. Using many
examples of those flowers with labels, neural network can detect right type of flower on the new input
image.

Neural network consists from many neurons which are connected such as brain. Those neurons are
called artificial neurons. Mathematically, we can represent the neural network as a directed graph
where neurons are nodes and connections are weighted edges.

In the Figure 11 we can see a schema of one neuron, where:
® X .. X, areinputs,
e wj ... w, are weights of connections and
e D is bias.

The inputs are multiplied by weights and summed up inside computing unit. Weights are crucial to
solve the problem. They represent the strength of connection between neurons. Result of the sum may
be number between 0 and co.

Thus, activation function (also called transfer function) is used to control the results. Activation
function can be defined by different function. The simplest is binary activation function (threshold),
which can reach only two values — 0 or 1. Another functions usually fall into the linear or sigmoid
category of functions.

*‘

X1

Output

Artificial neuron

Figure 11: schema of the artificial neuron

53

We need sophisticated neural networks to solve hard problems. More difficult neural networks consist
of several layers and every layer consist from several artificial neurons. Typical neural network
consists of:

e input layer,
e several hidden layers and

e output layer.

Input layer contains artificial neurons which receive input from outside world. Input is used to learn
network — find the best values of the weights to make network capable to process and make decision
about new inputs. Between input and output layer can be several hidden layers. Their main job is to
transform input into something that output layer can use. Finally, output layer contains neurons which
react on the information how network learned the task. Layers are usually fully connected — it means
that every neuron in one layer is connected with all neurons in its previous layer and next layer.
Typical architecture of neural network is displayed in the Figure 12.

e O
7
" \ ‘

R\
VAN .A‘?’A@'C‘A‘ </
X ONOOR S0
//}\\/é';&‘{&./”
R/
e

NgA

' Input layer O Hidden layers O Output layer

Figure 12: Architecture of neural network

On the webpage of Asimov institute ®¥ is a list of different kinds of neural network architectures. In
the Figure 13 are shown schemas of architectures from the web page. However, the schemas do not
explain how neural networks work, they only show how different neural networks are composed.
Since many different architectures exist in the next subchapters are explained only two of them:
perceptron (because it is basic architecture) and convolutional neural network (because we are
interested in this kind of neural network architecture in our approach).

54

A mostly complete chart of

© Backfed Input Cell N e u ra l N etWO r kS ——

- Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

é Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hidden cell - - g
© Probablistic Hidden Cell :: - 5
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)
= <))

N T
RV

e S
TR

. Recurrent Cell

. Memory tell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

Kernel

@ Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

A AR
R A A

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

& = =
f“i.-’\/Q\n O/Q\
v O Y T
,—-><,\/Q\,- ,\/'Q\,
._,>_<L;_6/Q Q\@/\
ﬁ_n/«-/\ro O\/-w\._w
& S S
P O

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

9. 9.9
RS RN

WAV

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SYM) Neural Turing Machine (NTM)

Figure 13: Different architectures of neural networks by Asimov institute 3%

55

6.1 Perceptron

Perceptron is one of the simplest neural network developed by Rosenblatt in 1958 9, It is very well
explained in the online book by Goodfellow et al. 2%, It consists only from input and output layer, so it
does not have any hidden layers as is shown in the Figure 14. Input layer can have two or more input

n

in*Wi I thresholding output

i=1

units and Rosenblatt designed rules to compute the output.

Figure 14: Schema of perceptron

In the research, he introduced weights. That are real numbers which determine the importance of the
inputs to count correct output. Output can have values 0 or 1 depending on the formula:

(0 if inwi < threshold
i

output =
1if inwi > threshold
i

Then the perceptron learns correct outputs depending on the input data. Perceptron get some input and
it returns some output. That output is compared with estimated output and the error is counted. Then
the error is used to edit weights.

6.2 Convolutional networks

First modern convolutional neural network was presented in paper by LeCun, Bottou, Bengio and
Haffner in 1998 B7). This algorithm is very well explained in the online tutorial by Michael Nielsen
last edited in 2017). Convolutional networks are a little different from another networks because
they are primary used for image processing. This is the reason why we are interested at it. Typical task
for convolutional network is to classify images into different classes and she need to learn on many
input examples.

Convolutional networks are not fully connected as other neural networks. Nodes are connected only
with the nearest neighbors — it depends on the implementation. Convolutional neural networks use 3
basic ideas for image recognition:

e Local receptive fields: In typical networks are neurons ordered into the vertical line, but in
convolutional networks are neurons ordered to the matrix. Then the input matrix is passed to
the hidden layers, but not each pixel is connected with all hidden neurons. There are
connections only between small regions from the input image. It means that neuron from
hidden layer will be connected only to some region from input layer and that region is called
local receptive region. Of course, each connection has a weight. Thus each region from the

56

input image is connected with neuron on the hidden layer. The algorithm starts at left top
corner and slide over one pixel in every step through whole image. This process is called
convolution. Finally, size of the hidden layer is smaller because of margins of the image. Size
of the reduction depends on the size of the regions.

Shared weights: Each connection to hidden neuron have a weight matrix (size of the weight
matrix is the same as size of the region from input image) and a bias. Those weights and value
of bias is shared for all hidden neurons. It means that output value of the hidden j, k** neuron
is defined as:

n o]
o (b + Z Wl,mxj+l,k+m>
=1

l=1m=

Where o is activation function, b is shared value of the bias, w;,, is a shared matrix of
weights and Xj; x4+, define positions of the hidden neurons. In other words, every neuron in
the hidden layer detect the same one feature. This process is usually denoted as creation the
feature map. If we want to extract more features from the input image, we need to create more
feature maps. Different feature map can be created using different filter (also called kernel)
which is defined by the weights and bias. More about the features, feature maps and filters is
written in the article by Zeiler and Fergus 7.

Pooling: After the convolution layer is usually used pooling layer which simplify the
information from the convolutional layer. Thus, feature map is processed again and max
pooling creates condensed map as summarization of some small regions. It again creates
smaller layer. One of the best known algorithm is max-pooling algorithm which compute the
maximum from given region. There are also some other pooling algorithms. Of course,
pooling must be done separately for each feature map.

57

58

7 Medical background of the brain cancer

The brain consists of many and many neurons °’!, That’s are special cells which are located only in the
brain. Every cell has got some life cycle. It means that old cells die, so new cells must be created.
During the creation and cell growing process can occur some mutation of the cell. Mutation of the cell
causes that the original functionality of the cell is lost. If there are more and more mutated cells and
they take some regions in the brain, they create the tumor.

The growth of the tumor may cause some problems which are considered as symptoms of the brain
cancer. Type of the symptoms depends on the location of the tumor in the brain - the tumor pushes on
different brain centers and cause different problems. First signs of the tumor cancer are strong and
particular headaches. Tumor may cause speech disorders, memory problems, movement disorders and
SO on.

It is very important to recognize the first symptoms of the brain cancer and start to solve them. Early
diagnostics may be crucial for the patient. In the past, it was not possible to see tumor without direct
interference with the brain, which was not also possible because medicine was not so far. It was
possible only to determine the position of the tumor depending on the symptoms.

The invention of the MRI and CT scanners allowed to see brain structures and get more information.
The typical process of MRI or CT image evaluation consists two steps. At first, one specialist has to
inspect all images and make diagnosis. In addition, conclusions of the first specialist must be
consulted with another one. That is long and time-consuming process. Nowadays, special programs
are used to highlight tumor boundaries on the slices. However, without computer vision methods it is
still time-consuming and monotone task. Thus, computer vision finds here its application.

7.1 Magnetic resonance imaging — MRI

MRI scanners are based on the magnetic fields and create grey scale images of the organs in the body
34 The patient lies in the special scanner where strong homogenous magnetic field acts. A short
radiofrequency pulse is transmitted to the patient’s body. It bounces back from the body structures as a
weak signal which is finally used for image reconstruction. The signal is scanned with different
settings, so different modalities are created. The most usual modalities are Flair, T1, T2 and T1c with
contrast substance.

MRI is the most often used technique during the brain cancer diagnostics. Patients absolve more MRI
tests at several monthly time intervals. MRI data are not used only for diagnostic, but also for the
healing process and tumor changes monitoring.

7.2 Data

The result of the MRI are volumetric data. That are three-dimensional data — a set of images called
slices. MRI data are not saved in classical image formats such as jpg or png. They are stored in special
medical formats such as DICON, NIFTI, MHA and many others. It consists of the header with
important information and body where scanned values are stored.

59

Brain MRI data may be visualized using special 3D visualization methods, but doctors often uses
printed 2D images - slices for diagnostic. They can be printed and also visualized in computer in three
different directions:

e axial,
e coronal and
e sagittal.

Examples of different views are shown in the Figure 15, where left image is axial, image in the middle

is coronal and right image is sagittal view.

Figure 15: Axial, coronal and sagittal view of the brain MRI

60

8 State of the art

This part is devoted to the most interesting state of the art methods in the field of medical imaging,
mainly tumor segmentation methods and brain registration methods.

8.1 Segmentation

8.1.1 Brain Tumor Segmentation Benchmark (BRATS)

BRATS is a challenge aimed on brain tumor segmentation. It is a part of BRAINLES workshop which
take place every year from 2012 as part of International Conference on Medical Image Computing and
Computer Assisted Intervention - MICCAL This year (2017) BRATS has got two challenges:

e segmentation of gliomas in pre-operative scans and
e prediction of patient overall survival from pre-operative scans.
In the last year, one of the challenges was monitoring of the tumor changes.

BRATS provides own dataset of MRI brain data with tumor disease "?' and also labels of tumor
segmentations made by experts. Dataset is divided on training and testing data and is increased every
year. In the last year challenge (2016) it contained 191 subjects in testing dataset and 200 subjects in
training dataset. Dataset for BRATS challenge 2017 is not available yet. In the BRATS dataset every
subject contains flair, T1, T1c and T2 MR modalities.

Prof. Dr. Bjoern Menze is one of BRAINLES organizers and he is in charge of BRATS. In 2015
Menze et al published an article ! about results from BRATS 2012 ' and BRATS 2013 !
challenges. Twenty algorithm for tumor brain segmentation were presented on BRATS challenges —
17 fully-automatic and 3 semi-automatic algorithms.

In the article is also mentioned how data were labeled by expert. Authors wrote that edema was
segmented from T2 images and Flair was used to cross-check the segmentation. The tumor core
(which consists also from enhancing and non-enhancing tumor structures) was segmented from T1-c
and T1 modalities. Then threshold of T1c was used to segment enhancing core. Necrotic core parts
were defined as the tortuous and low intensity necrotic structures and finally the non-enhancing
structures was segmented as subtraction of the enhancing core and necrotic core structures. Manual
segmentation was necessary for the evaluation of the methods for automatic segmentation.

For the evaluation of the segmentation organizers of BRATS challenge created the benchmark. It
computes accuracy, sensitivity, specificity, Dice score and also Hausdorff score:

e Sensitivity: sens(P,T) = |P|17:\7|"1|
1

e Specificity: spec(P,T) = “;c;/\lOI
]

61

e Dice score: Dice(P,T) =

|Py ATy |
(P |+ITe])/2

where T is true lesion area, T is normal area, Py is

predicted to be a lesion and P, is predicted to be normal as is shown in the Figure 16.

Predictions P

Figure 16: Truth segmentation by the expert (T; and T;y) and prediction of the algorithm (P; and Py)

Authors evaluated all methods using accuracy, specificity, Dice score and Hausdorff score. They
evaluated segmentations of whole tumor, core tumor and active tumor part. They compared results of
the methods and in the Figure 17 are shown results of sensitivity and specificity comparison. In the
Figure 18 are presented the results of Dice score evaluation.

Whole tumor
o
Menze (D) Zhao (I)
. Tustison Zikic
© Geremia | Zh
o o3 Zhao (ll)
M""“;&%;:G.‘m DoyleRiyin Raviv
BuendiaCordier gy | Subtianna
2 @ 4 Festa Bauer Meier
£ o
=3
a;, MTaylor
<
» o
o~ BShin
o
Q)
@ T T T T T T
00 02 04 06 08 1.0
Sensitivity
Tumor core Active tumor
o o) -
Riklin Raviv
© _] "5 Subbanna o 4
o Menze (D) Zhao (1) o
Zikic g Guo . £hao
. Reza $ Zikic Reza Hamamci
& Geremia .12 aue‘r Tustison P a0 ("j. - m Menze (G)
g o Menze(G) M= zhao (i £ o7 Geremia Meier ' w Roeia Ravi
% MTaylor * Buendia M DrHiziramamci f‘é Bacer B ybbanna
2 g _ Doyle 2 ; _ Taylor Buendia Doyle Zhao ()
Cordier
o~ o~
o o
Mshin
& .| o | Mshin
e T T T T T T e T T T T T T
0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 10
Sensitivity Sensitivity

Figure 17: Distribution of Sensitivity and Specificity evaluation results of tested methods **!

62

Whole tumor (Dice)

10 i g | kokok ok | ok %
e llion ol Ol
B |f|rxE|x .
o R
O | E | TR | g (17 -
!
i il O.L:I | !
08 - it 8 | i
= 8 o o%*_L 1 o
a " o] oo .
'y : A s N T
|
o L e N : '
%) [P 4
g 064 | S i
6 == TR |
{ o _:_ 1 A = 1 |
(o] o_;_ H 3 ._:. i
o o o : i ; |
S o } i i
S o ' |
(& — -+ !
(I)04 o o l: i
1
3 o £ i L
— |
a 0 ® 4 i
e
!
0.2 = o i
e} _L:I
|
o o
i
1 ik
0.0 - o o o 8 o =~
[I | | O O O . T A L
€= = - O O O 3T eyE O S U0 B . B5G Qcns Sk N eSS =
s 2 £ SEHaty TASS e e 3TE g NGO 9D O B 50
2 © el D T T ovom.wcwomngwemo8c>m
4 g R 28 e 2 3 Dﬂfgmﬁﬁomu_go’f_"
D o S {77 i = N S S5 S o cC® =5 (@) D 3
<2 O o (Tl Vol T o N =3 ST [} O m
0 © 7] (T = » x =
l}:(r O Y
m

Figure 18: Dice score evaluation results of the methods (only whole tumor) #!

In the figures we can see that Zhao(I), Menze(D) and Zhao(II) methods reached the best results in case
of whole tumor segmentation. The methods are based on:

e Zhao(I) — Learned Markov Random Field on Supervoxel Clusters
e Menze(D) — Generative-Discriminative Lesion Segmentation Model
e Zhao(Il) — the same as Zhao(I), but with updated unary potential

There is not any new summarization of BRATS 2014 — BRATS 2016 available, but proceedings of the
workshops are: BRATS 2014 ¥ BRAINLESION 2015 8 have also official journal !*' and
BRAINLESION 2016) have also official journal '*, BRAINLESION workshop consist of:

e brain lesion image analysis fully
e brain tumor image segmentation improving (originally BRATS)

e ischemic stroke lesion image segmentation predicting

I attended BRAINLES 2016 workshop and as the best method from BRATS 2016 was evaluated
Chang’s method - Fully Convolutional Neural Network with Hyperlocal Features. The method
exceeds the state of the art with Dice score of whole tumor segmentation 0.87. This method and also
some other interesting methods are explained in the next chapters.

63

8.1.1.1 Brain Tumor Segmentation Using a Fully Convolutional Neural Network with
Conditional Random Fields 2!

Zhao at al. proposed new method for tumor segmentation based on the fully convolutional neural
networks (FCNN) and conditional random fields (CRF) used for post-processing step after FCNN.
Their method consists of three steps: pre-processing, segmentation using the FCNN and post-
processing.

Authors describe that preprocessing is necessary, because devices of MRI are not the same, so
intensity ranges and bias field can be different. They decided to use N4ITK method to correct bias
fields and normalize the intensity.

Their model for tumor segmentation consists of FCNN and CRF and in train phase can segment tumor
from 2D slices. FCNN was trained on two dimensional slices and the architecture is shown in the
Figure 19.

The input for FCNN have got two different sizes. Bigger region is passed through several convolution
and pooling layers and feature map is created. Then the smaller region is added and it again passes
several convolution and pooling layers. Finally, the label of center pixel is predicted. Then the
predictions are optimized using CRF algorithm. Finally, in post-processing phase, authors remove
small 3D-connected objects using simple threshold method.

Conv 5*5 Conv 5*5 Conv 5%5

Pouling 5*5 | Pacling 5*5 Pooling 55 Conv 979
i , i i
N Vs b e \\\ // \\ /
bWy Nl \ i
65%65*3 57*57°48 ag*asrea 7 41%41+128 33335

> > —>ll—>Tl

Flair

Tic

33%33%5

.I 33*33°8 25*25°96 17*17*128 9*9%256 1*1%384 1*1%256 1*1%5

+ >0 P8>85 —>
AN A YAYaYaYa

Conv 9*9 Conv 1*1 Conv 1*1 1
Figure 19: Architecture of FCNN

Conv 5*5
Pooling 5*5

Authors evaluated the method on BRATS 2013 dataset and reached first position of all methods tested
on this dataset. Their method also reached good results using only three modalities (Flair, T2, T1c)
rather than all four which can reduce the cost of data acquisition.

8.1.1.2 Fully Convolutional Neural Networks with Hyperlocal Features for Brain
Tumor Segmentation 3!

Chang proposed simple architecture of the convolutional neural network and used also local features
for brain tumor segmentation. His method is based on fully convolutional architecture. Output is a
classification matrix with the same size as input image. The activation functions from the deepest
convolutional output layer are combined with local features. Architecture of the proposed method is

64

show in the Figure 20. Proposed method is very fast. It can segment the tumor from whole volume in
less than one second, because network is composed only from 130400 parameters.

240 x 240 x 20
120x 120x 20
240x240x 4 60 x 60 x 20 240 x 240 X 60 240 x 240 X 64 240 X 240 x 80 240 x 240 x §
30 x 30 x 40
I1Sx 15 x60
3l 1 Sy
— —_ —> ‘ —
Conv/Noem/
Rel.U/Poal Bilinear Interpolation Concatenation Conv/Normy/Rel .U Softmax

(x5)

Figure 20: Architecture of convolutional neural network ®!

Authors tested proposed architecture on BRATS 2015 dataset and evaluated the results and compared
them with BRATS 2016 leaderboard. Only dice score and Hausdorff were presented in their article.
They reached 87 % dice score and 9,1 Hausdorff for whole tumor segmentation.

8.1.1.3 Image Features for Brain Lesion Segmentation Using Random Forests 13!

Maier, Wilms and Handels used random decision forests for tumor segmentation. They tested different
features and found best combination to reach good results in segmentation. Their method consists of
pre-processing, random forest classification and post-processing step.

In the pre-processing phase, authors normalized the intensities and corrected biases. In the next step
authors trained the classifier on the subset of data. They have shown that carefully selected subset of
data can reduce training time with minimal effort to the accuracy. Model was trained using random
forest algorithm which output is a probability map. Finally, in post-processing phase they selected the
most probable classes for each voxel from probability map.

Authors tested their method on BRATS 2015 and also on ischemic stroke lesion dataset and reached
very good results in both cases. Thus, their method is robust for segmentation tasks in the brain MRI
volumes. In the BRATS 2015 leaderboard they reached dice score 75 %, sensitivity 88% and
specificity 71% for whole tumor segmentation.

8.1.1.4 Learned Markov Random Field on Supervoxel Clusters [+

Zhao, Srakaya and Corso removed the noise from the data and normalized them in the preprocessing
phase. During the normalization they put the data to the same scales using z-score (zero mean and unit

covariance). In the next step they created supervoxels using SLIC algorithm. SLIC algorithm cluster
pixels into the voxel by color similarity and proximity in the volume.

In the next step they created Markov random field and used it for the graph cut segmentation. Of
course, graph cut needs some input information about probably foreground and background. Thus,
they used training data to create histogram and then the histogram was used during the testing to create
probably background and foreground.

65

This method was explained in the summarization article by Menze et al. “?! and evaluated on BRATS
2013 dataset. The results of the method are presented in the figure: sensitivity and specificity in the
Figure 17 and Dice score in the Figure 18.

8.1.1.5 Generative-Discriminative Lesion Segmentation Model

Menze et al. proposed fully automatic method for chanel-specific tumor segmentation. The method
extends general EM segmentation algorithm to solve problems with specific spatial structures which
cannot be described sufficiently. Their method models a tumor as a multi-dimensional sequences. It
allows channel-specific segmentation of the tumor. That model also contains the information about the
location of the lesion. Method also uses information about the specific signals of healthy brain parts
thanks brain atlases.

This method was explained in the summarization article by Menze et al. “?! and evaluated on BRATS
2013 dataset. The results of the method are presented in the figure: sensitivity and specificity in the
Figure 17 and Dice score in the Figure 18.

8.1.1.6 Brain Tumor Segmentation with Deep Neural Networks [**!

Davy et al. proposed novel architecture of neural network for tumor brain segmentation. In the first
step, they preprocessed the data, they removed 1% of the lowest and highest intensities and applied
N4ITK filer.

Then, they trained model using convolutional layer, maxout convolutional layer, max pooling layer,
fully connected layer, fully connected Maxout layer, Softmax layer and Droput. Architecture of
proposed method is shown in the Figure 21.

The main job of the used layers is:
e Convolution layer is used to model features by a set of different kernels.

e Maxout convolutional layer is special convolutional layer, where one feature map can be
associated with more kernels — feature map is calculated using more kernels.

e Max pooling layer track the maximum feature value over sub-windows.

o Fully connect layer connects all units of the layer to all units in previous layer (this is not
typical for neural networks as is mentioned in chapter 6.2 Convolutional networks).

e Then the fully connected maxout layer is only a fully connected version of convolutional
maxout layer.

e Softmax layer is a special case of fully connected layer, but with softmax activation function.

e Finally, dropout is a regularization method that adds noise in the computation of the hidden
layers.

66

N B
' % o
g 64 channels 64 channels f
128 t] —s
R Maxout s i
5 - /.--"/

Figure 21: Proposed architecture of deep neural network

Authors tested proposed architecture on BRATS 2013 dataset and evaluated the results and compared
them with BRATS 2013 leaderboard. They reached dice score 74 %, sensitivity 78% and specificity
74% for whole tumor segmentation.

8.1.2 Brain tumor segmentation with Deep Neural Networks

The method is based on deep neural network and is refinement of previous method mentioned in the
previous chapter 8.1.1.6. Authors proposed 4 different architectures based on the convolutional neural
network and compared results of each trained model with other state of the art method. Results of the
comparison from the article are shown in the Figure 22. As we can see, they reached the best results
with input cascade CNN method.

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

INPUTCASCADECNN* 0.88 0.79 0.73 0.89 079 0.68 0.87 0.79 0.80
Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83
MFCASCADECNN* 0.86 0.77 0.73 0.92 0.80 0.71 0.81 0.76 0.76
TwoPATHCNN* 0.85 0.78 0.73 0.93 0.80 0.72 0.80 0.76 [0 J453
LocALCASCADECNN* 0.88 0.76 0.72 0.91 0.76 0.70 0.84 0.80 0.75
LocALPATHCNN* 0.85 0.74 0.71 0.91 0.75 0.71 0.80 0.77 73
Meier 0.82 0.73 0.69 0.76 0.78 0:71 0.92 0.72 03
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70
Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
TwoPATHCNN 0.78 0.63 0,68 0.67 0.50 0.59 0.96 0.89 0.82
LocALPATHCNN 0.77 0.64 0.68 0.65 0.52 0.60 0.96 0.87 0.80
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

Figure 22: Results of proposed methods presented in the article %

67

Input cascaded CNN exploits the effectivity of CNN architecture and directly models dependencies
between neighboring labels in segmentation thanks two cascades. Output probabilities from the first
CNN cascade are used as direct additional inputs to the second CNN cascade as is shown in the Figure
23. Thus final predictions are influenced by the model beliefs that the value is nearby other same
labels. In many other state of the art method this problem is solved using some post-processing
methods.

S5x24x24

Input

4X56x56 | |
i 69x24x24 64x21x21

P—

1 o] 224x21x21

e — Input g i Output
4x33x33 Cony 7x7 + Conv 3x3 + sxl1xl

S Maxout + Maxout +

i H ing 2x2 [

———— e Pooling 4x4 Pooling 2x2 r _D

e !

1
' = _/ Conv 21x21 +

. Softmax
Conv 13x13 +
] X wx S 160x21x21 /
Parameters 654,368

Figure 23: Architecture of input cascaded CNN presented in the article *%

Authors trained proposed CNN on BRATS 2013 training dataset and they used three methods to
improve the segmentation results:

e Gradient descent optimization was used to maximize probability of all labels in the training
set and minimize negative probability.

o Two phase training was used to minimize the problem with unbalanced distribution of labels.
While health brain parts make up 98%, only remaining 2% belong to pathology. Because of
this the model can be overwhelmed and cause problems with training. Thus in the first training
phase authors constructed dataset of equivalent-probable labels and then in the second phase
they retrain the model only on the output layer to take into account unbalanced data.

e Regularization was used to prevent the overfitting. Authors applied L1 and L2 regularization
and also dropout algorithm.

8.1.3 Automatic Brain Tumor Segmentation using Cascaded Anisotropic
Convolutional Neural Networks (¢!

Wang, Li, Ourselin and Vercauteren proposed cascaded architecture of the convolutional neural
network for brain tumor segmentation. The cascade is used to decompose the multi-class segmentation
into a sequence of 3 binary segmentations where resulting segmentation of first cascade is used as the
mask for second cascade.

Architecture of each cascade consists of several convolutional layers where anistropic and dilated
convolution filters were used. Whole tumor is segmented in first cascade, then tumor core is
segmented in the next cascade and finally enhanced tumor core is segmented in the last cascade.

68

Authors tested their method on BRATS dataset and evaluated the results and compared them with
BRATS 2017 leaderboard. They reached dice score 90,5 %, sensitivity 91,18% and specificity 99,42%
for whole tumor segmentation.

8.1.4 Efficient Brain Tumor Segmentation in Magnetic Resonance Image
Using Region-Growing Combined with Level Set *!

Hien and Binh proposed method based on region growing algorithm for tumor segmentation from
MRI volumes. Region growing methods are usually semi-automatic and requires simple user
interaction, but they create initial seed automatically from the preprocessed image. In the first step,
they preprocess the data. Thus, they compute histogram equalization and use it to enhance the image.
It shows tumor regions if is present.

In the next step they use, enhanced image to find an initial seed for region growing method. Then they
run region growing algorithm in several iterations — while value of the nearest pixel minus mean value
of region (set of pixels from previous iterations) is smaller than predefined threshold. Result of this
step is segmented image and in the next step, authors create exact boundaries of the tumor using level
set method which is appropriate to analyze motion of the boundary.

Authors used own dataset for evaluation and computed Jaccard Index to evaluate the segmentation.
Their best segmentation reached Jaccard index value equal to 87,69 — which is better than simple
region growing algorithm (81,15).

8.2 Registration

8.2.1 Atlas to Patient Registration with Brain Tumor Based on a Mesh-
free Method (15

This is the article from 2015 and authors Diaz and Boulanger present a novel method for registration
of the MRI brain images with tumor disease to the brain atlases. As is mentioned in the article, it is a
difficult task because tumor causes deformation of the brain structure. Thus, traditional methods based
on intensities and shape do not achieve good results. Authors proposed the method which simulates
brain changes caused by the tumor growth and pressure.

The method consists of three steps. In the first step, the tumor is segmented from the MRI and
registered to the atlas. The second step is a simulation of the tumor growth and consists of two main
sub-steps:

e sampling and seeding the atlas to simulate tumor growth: Boundaries of the segmented tumor
are shrinked in several iterations to a singular seed point — tumor center. This process depends
on the level set method. In every iteration is created a list of new tumor boundary points and
links to their previous positions — mapping function.

e mass-effect simulation based on mesh-free method: The method has got the mapping function
of the tumor growth, so it is applied for the atlas in this sub-step.

Final step of the method is deformable registration of the atlas. Binary image which represents brain
tissue was used for the registration. The reason is that method do not have to deal with different

69

intensities between source and target image, so it gives better results. Then the registration is applied
to the atlas in intensity scale.

Authors compared their method with two other MRI registration algorithms. They used 12 images
from BRATS dataset. They used metric based on distance fields for the evaluation. Their results show
that their method outperformed two other tested methods and their method was also faster.

8.2.2 PORTR: Pre-Operative and Post-Recurrence Brain Tumor
Registration >

Kwon et al. proposed new method for non-rigid registration of pre-operative and post-recurrence brain
MR scans. Authors called their method PORTR. This is challenging task because tumor and edema
cause big deformations and inconsistent intensity profiles between the scans.

PORTR aligns pre-operative scan with the post-recurrence scan of the same patient. In the first step,
authors segment tumor and tumor parts from both scans to extract pathological information. They use
atlases for tumor segmentation — they register atlas to both scans (pre-operative and post-recurrence)
and divide the tissues on health and pathological. This is possible, because atlas provides spatial
information and expecting intensity values about health brain parts and this can be used to detect
pathology.

Then they exclude pathological regions from the scans and provide rough registration based on the
tumor boundaries. Registration is in the next step improved using symmetry information of the brain.
Finally, they measure overlapping between aligned tumors.

They apply their method on 24 glioma patients with T1, Tlc, T2 and flair modalities. They
collaborated with experts who placed the landmarks on some specific brain parts on both per-operative
and post-recurrence scans. Then they used this information for the evaluation to measure distance
between registration created by the method and by the expert. Authors compared quantitative and also
qualitative results with other methods and they reached very good results in comparison with state of
the art. In the 10 randomly selected subjects they reached smaller error of the registration than 5 other
methods. Only one method had better results than PORTR.

8.2.3 Registration of Brain Images with Tumors: Towards the
Construction of Statistical Atlases for Therapy Planning (¢!

Zacharaki, Shen, Mohamd and Davatzikos proposed method for registration of brain scans with
tumors for therapy planning. Authors decided to register brain scans to the atlases of the brain. The
motivation is that during the therapy planning, doctors need to know position of healthy and important
brain parts to protect them as best as possible. Atlases can provide this information, but tumor changed
the structure of the brain, so registration is not simple. Deformable registration is necessary, because
tumors cause irregular changes of the health brain parts.

The main goal of the proposed method is to determine anatomical correspondences if exist, rather than
matching image intensities. The method is based on estimation of the tumor growth model using the
deformations caused by the tumor. And more, the method is robust to the little inaccurate estimations
of tumor growth simulation. Authors use the nonlinear biomechanical model to simulate tumor growth

70

in the atlas. The method tries to minimize differences between scan and atlas durng the tumor growth
simulation.

Authors used own method for the registration based on deformation around the tumor because it can
be indicative for the accuracy of the model estimation of tumor growth. They evaluated their method
on real MR dataset, but they do not compare it with other algorithms.

8.2.4 A Model of Tumor Inducted Brain Deformation as Bio-Physical
Prior For Non-Rigid Image Registration 1>

Authors of the article Mang et al presented new method for registration of the brain threatened by
tumor to a standard atlas of the brain. Authors used studies about density of cancerous cells and
information about soft tissues to create non-linear weighted function to control the deformation of the
brain cause by tumor growth.

The method is very complicated and is based on real studies from medicine thanks cooperation with
some medical institution. It uses many functions in respect to brain and tumor composition. Thus,
proposed method of the non-rigid registration and computation of the mapping function are based on
the changes from the real approaches. Thanks this, the method reached very good results. However,
authors said that it is hard to evaluate results, because there is no general method for registration
evaluation.

8.2.5 An EM Algorithm for Brain Tumor Image Registration: A Tumor
Growth Modeling Based Approach 2!

Gooya, Biros and Davatzikos tested Expectation-Maximization algorithm for registration of brain MR
images with tumors. The main goal of the work is model tumor growth and register scans to the brain
atlas.

In the first step, authors used SVM classifier to divide the brain pixels on six classes: gray matter,
white matter, cerebrospinal fluid (CSF), enhancing tumor, non-enhancing tumor and edema. Then they
used five classes (they merged enhancing structures with non-enhancing structures to the one class) as
posterior probability maps for the registration with the atlas. They used EM algorithm for registration
which is based on finding he maximum likelihood parameters of statistical model. Simply, authors
proposed the method which try to find model of the tumor in brain atlas which will be the most similar
with the real MR scans of the patient.

Authors evaluated the method on simulated datasets and real multimodal glioma datasets. They
proposed own method for the evaluation based on the posterior probability maps. The results show
that method achieve good similarity between patient images and wrapped templates.

71

72

9 Proposed approach for tracking brain changes

The main goal of the work was to propose and implement automatic methods appropriate for tracking
tumor changes. While the MRI is the most usual test for the brain cancer diagnostic, proposed methods
work with input MRI data - examinations from one patient captured in regular time periods.

MRI brain scans are volumetric — three-dimensional data. It means that they consist of several slices.
During the treatment of the brain cancer, patient has to undergo several examinations in regular time
intervals. Doctors have to evaluate and control all results of the patient examinations to follow the
progress of the cure. It can be really very time consuming and annoying task, so computer vision can
be very helpful in this field and automate some monotonous jobs.

There are some problems which are necessary to take into account:

e When volumes are captured in different time they can be differently rotated. It is necessary to
rotate volumes to the same position to track tumor and brain changes. This is task for the rigid
registration.

e The tumor and also brain changes over time. Tumor can grow or diminish, which also affects
the structure of the surrounding healthy parts of the brain. In order to monitor changes of the
disease, it is important to know how the parts of the brain were pushed out or deformed by the
tumor. It is task for the non-rigid registration. It is necessary to be careful and do not deform
the tumor during the calculations. This is one of the reasons why segment the tumor. Another
reason is that it allows better monitoring of the tumor changes.

e When volumes are captured with different devices or only with different settings of one
device, they are not consistent. The values of the same brain parts can be different. We need to
deal with it before the registration and also for the clear visualization. Thus, we have to
preprocess the data.

9.1 Basic workflow

In the Figure 24 is denoted basic flow (using activity diagram) of the proposed approach for detection
and tracking the tumor changes. Input for the method are data from magnetic resonance imaging test
as was mentioned. That’s are volumetric data. If we want to work only with slices, we need to create
them from the input volumes. In the survey we use data from BRATS dataset and data from practice.
Datasets are explained in chapter 9.2 Input MRI volumes.

First step of the method is preprocessing. We have to deal with different brightness and contrast of the
volumes captured in different time. It is important mainly for the visualization, but it can be helpful for
whole process. Preprocessing method is based on normalization, scaling and histogram matching
algorithm. The process is explained in the chapter 9.3 Preprocessing.

Second step is segmentation of the tumor. We need to know boundaries of the tumor to be able to
track its changes. It is also important for the next step - rigid registration. Changed parts of the tumor
and surrounding brain can cause errors in the rigid registration if they had not been segmented. Tumor
segmentation is very hard task for computer vision and many approaches is dedicated to this theme.

73

We decided to analyze state of the art methods and find opportunities to get some sources for testing.
We have found three different successful and available methods based on convolutional neural
networks and tried one of them. Methods for tumor segmentation and our testing are explained in the
chapter 9.4 Tumor segmentation.

Next step is rigid registration. We need to rotate volumes to the same direction and scale them to the
same size which is perfect task for the rigid registration. We use basic flow of the rigid registration — it
is explained in the chapter 9.5 Rigid registration.

In the next step we need to do non-rigid registration (also called elastic) to be able track the changes of
the health brain parts and also of the tumor. Changes caused by the tumor are irregular so it is perfect
task for non-rigid registration. We decided to use optical flow algorithm to find corresponding points
between the examinations as is explained in chapter 9.6 Non-rigid registration. To visualize the
changes between several different examinations we decided to test image morphing.

Finally, we would like to visualize the results with the simple desktop application. Application shows
slices in all directions (axial, coronal and sagittal) and is also capable to render volume in 3D.
Application also provides a simple interaction to the user and can show boundaries of the tumor.
Visualization tool is explained in the chapter 9.7 Visualization tool.

Input for the method
are MRI volumes

Preprocess data

Segment tumor

Registrate rigidly

Registrate non-rigidly

Figure 24: Basic flow of proposed method represented by activity diagram (UML notation)

74

9.2 Input MRI volumes

Input for the method are 3D data called volumes from magnetic resonance imaging. MRI is the most
usual test for the brain cancer diagnostic and is repeated periodically during the treatment. Volumes
can be converted to the slices to see them in 2D views. Doctors like to use 2D images for diagnostic,
but also 3D view can be interesting for the visualization. In the Figure 25 is shown an example of MRI
data transformed to 2D slices in axial perspective.

Figure 25: Slices of the MRI volume in axial view

9.2.1 BRATS dataset

In our approach we work with public MRI dataset of brains with tumors called BRATS. We are using
data from BRATS 2015 72!, because later datasets do not contain testing data. Dataset BRATS 2015
consists of:

e training data

o 220 high grade glioma studies (HGG) — tumors in the brain have well visible
boundaries

o 54 low grade glioma studies (LGG) — tumors in the brain do not have clearly visible
boundaries

e testing data — 110 studies of high grade gliomas (HGG) and also low grade gliomas (LGG)

75

Training and testing data are preprocessed. They are rigidly registered and the craniums are removed
from the volumes. The pro of the dataset is that it contains 4 different modalities: T1, T2, Flair and
T1c. Different modality can highlight different parts of the tumor — necrosis, edema, non-enhancing
tumor, enhancing tumor.

Training and also testing data contains masks as shown in the Figure 26. It labels background, health
brain parts and tumor with 5 different values (it is explained in BRATS article from 2015 [42):

e 1 —necrosis — visualized in the Figure 26 D with green color
e 2 —edema — visualized in the Figure 26 D with yellow color
e 3 —non-enhancing tumor — visualized in the Figure 26 D with red color

e 4 —enhancing tumor — visualized in the Figure 26 D with blue color

e (- everything else — health brain and black background

Figure 26: Labels of the brain parts: from the right A: the whole tumor (yellow) in the FLAIR
modality, B: the tumor core (red) in the T2 modality, C: the enhancing tumor structures (blue) in the
T1c modality and necrotic components (green) in the T1c modality, D: edema (yellow), non-
enhancing solid core (red), enhancing core (blue), necrotic core (green)

9.2.2 Siemens dataset

We will also test our method on dataset from practice which was provided by Siemens Healthineers
company. The pro of the dataset is that it contains data which are not preprocessed — volumes contain
craniums. However, examinations of the subjects contain only one modality (usually flair) for every
and provided segmentations of the brain are labeled only with O for not tumor and 1 for tumor pixels.
It consists of 108 studies — some of them have more fusions (= volumes captured in different time
during the treatment). These studies are interesting for our survey.

76

9.3 Preprocessing

Volumes from different examinations have got different values of the same brain parts. It is because
they were captured in different times and with different device settings. They can also have different
contrast and brightness. Thus, we proposed the method to preprocess the data. Basic flow of the
preprocessing is visualized in the Figure 27. It consists of three steps: removing the percentile, scaling
the data and performing histogram matching.

| ‘ i g Remove percentiles
No

| Remove percentiles?

v

Scale data

Perform histogram
matching

Figure 27: Flow of preprocessing represented by activity diagram (UML notation)

9.3.1 Removing the percentile

Data we were working with have a big range of the values. Some minimal and maximal outliers are
not very relevant for the next processing. In addition, we have to scale the data to the same range.
Ignoring the outlier values allow us reach better results. Thus we can remove data above and under
some percentile. It is possible to do it by following simple conditions:

if x(i,j) < bottom percentile then x(i,j) = bottom percentile and
if x(i,j) > top percentile then x(i,j) = top percentile,

where x(i, j) is a value of the i*", j*" pixel and bottom percentile is a margin for minimum outliers
and top percentile is a margin of maximum outliers.

Actually, volumes contain black background and foreground. We should also ignore black background
and count percentile only from the foreground to remove relevant outliers.

In the Figure 28 we can see the histogram of the scaled volume data and in compare in the Figure 29
we can see histogram of the same volume where we removed percentile ignoring background and then
scaled the data.

77

Scaled data

40000

35000 'III
Il
25000 Iml'
20000 I”l
15000 A 'I'
AN
pl

0 50 100 150 200 250

Figure 28: Histogram of scaled volumetric data

Ignored background, removed percentile 10 and 99 and scaled data

25000 A
20000 A

LA

0 50 100 150 200 250

Figure 29: Histogram of volumetric data where percentile was removed ignoring background and data

were scaled

78

9.3.2 Data scaling

We have to scale the data to the range 0 — 255, because in the next steps we use some methods which
can work only with 8-bit images. We use min max normalization formula to down scale the data:

image—min(image)

image = where image is n-dimensional array (2D or 3D).

max(image)—min(image)’

In the Figure 30 we can see difference between the histograms of the original and scaled volume data.
In the Figure 30 a) we can see original input volumetric data histogram and in the Figure 30 b) Is
histogram of the same data but scaled to the range 0 — 255.

a) original data histogram

40000
30000
20000

10000 -

b) scaled data

40000

30000 E
10000 -
T

0
0

T T T T
200 400 600 800 1000

Figure 30: Comparison of original and scaled data visualized in histogram
9.3.3 Histogram matching

Histogram matching is a simple algorithm which can match the histogram of one input data called
reference to the histogram of another input data called target. In the first step we compute histogram of
target and also histogram of reference. In follow, we compute cumulative distribution functions for
both, reference CDF; () and target data CDF, (). It gives us a probability that variable will take a given
value or less. Finally, we compute a function M () which can match reference data to target data using
the cumulative distribution functions — we find the gray level G, of reference data where cumulative
distribution function of that gray level equals to cumulative distribution function of the gray level

79

G, from target image: CDF;(G;) = CDF,(G,). Then we apply a function M() on the each pixel of the
reference image.

In the Figure 31 we can see the effect of the histogram matching algorithm. In the Figure 31 a) is
histogram of reference volume, in the Figure 31 b) is histogram of target volume and finally in the
Figure 31 c) is histogram of matched reference volume.

a) original data histogram

30000 A

20000

10000 4
0 *‘.I...-_-__ | |

b) template histogram

30000 A

30000 A i I

0 50 100 150 200 250

Figure 31: Effect of the histogram matching algorithm
9.3.4 Testing and results

We tested some configurations of the preprocessing method on the BRATS dataset (mentioned in the
chapter 9.2.1). In this section, we present some results of different configurations and the impact on
the data. When we work with 3D data, we choosed one slice from pat_153 — examination 0109,
modality flair, axial slice number 78 — to present the results.

At the beginning we tried only to scale the data, because original data have bigger range and are stored
as 16-bit volumes. However, in the next process we use some algorithms which can process only 8-bit
images (gray level range between 0 and 255). In the Figure 32 a) we can see the histogram of original
data and in the Figure 32 b) is histogram of scaled data. Actually scaling causes loss of some data, but

80

we can minimalize the damage. It is because gray level of the original data is in range 0 — 600 or more

and we have to shrink gray level values to the range 0 — 255. Actually this is not possible to see very

well in the volumes because they have got small resolution. Slice 78 of the scaled volume is shown in

the Figure 37 a).

a) original data histogram

40000

30000

20000

10000 A

V| N

i

b) scaled data

40000

30000 -

20000 A

10000 A

(=]
o 4
F'- ——

T T T
100 20 300 400 500

T
600

Figure 32: Histograms of original and scaled data

In the Figure 33 we can see a big column on the value 0 — it is caused by the black background. And

then it looks that histogram starts later than on the value 1 and ends at the value approximately 200 not

at 255. It is because the values between these ranges do not have such high representation in the

volume. Thus, we can remove outliers — small values with small representation in the volume and high

values with small representation in the volume thanks computing some percentile of the data.

Scaled data

40000 A

35000

30000 A

25000

20000

15000 A

10000 ~

5000 A

i
|

50 100 150 200

Figure 33: Histogram of scaled data

250

In the Figure 34 we can see the histogram of the volume where we removed values lower than bottom
percentile 5 of the data and values higher than top percentile 99. This change is possible to see very
well also in the volume and is shown in the Figure 37 b) using same slice 79 from the same volume.

Removed percentile 5 and 99 and scaled data

25000 '“'

.II “ “h.
15000 |]I‘“l‘ “Il
10000 “WW‘“

5000 I|I|“W||IL

50 100 150 200 250

20000 +

Figure 34: Histogram where data were scaled after removing top and bottom percentile

Actually as we can see on the histogram, it still looks that histogram starts later than on the value 1.
Rather than enlarge the bottom percentile we decided to compute bottom percentile 5 ignoring O
values = black background. We can see results of that operation presented by histogram in the Figure
35. Also volume looks different and is shown using the same slice 78 in the Figure 37 c).

Ignored background, removed percentile 5 and 99 and scaled data

25000 +

20000 + I

I|
B I”WWI
5000 A .I||| |I|

0 50 100 150 200 250

15000 A

Figure 35: Histogram where data were scaled after removing top and bottom percentile ignoring
background

Finally, we tried to compute higher bottom percentile — percentile 10 and remove values lower than
the percentile. However, it looks on the histogram presented in the Figure 36 that it removes too much

82

data, so we decided to use percentile 5 for the preprocessing. Also volume presented using the slice 78
looks too dark as is visible in the Figure 37 d).

Ignored background, removed percentile 10 and 99 and scaled data

25000 A
20000 ~ I !

A
-

0 50 100 150 200 250

10000 +

5000 +

Figure 36: Histogram where data were scaled after removing top and bottom percentile ignoring

background

a) scaled data : b) percentile 5 and 99, scaled

c) percentile 5 and 99 ignoring 0, scaled d) percentile 10 and 99 ignoring 0, scaled

Figure 37: How removing percentile changes data

83

We scaled all examination of the patients using the same process, but we still did not solve a problem
with different brightness of the examinations captured in different times. Thus, we decided to use
histogram matching algorithm to align histograms of the images as is presented in previous chapter.

The results of our preprocessing method are presented in the Figure 38. In the top row we can see slice
78 of the all original volumes from pat_153, flair modality. In the bottom row are the same slices from

the same examinations, but after all operations — remove top and bottom percentile of data, scaling
using min max normalization and histogram matching. First image was used as target image and all
next images were in histogram matching used as reference images — one by one. We can see that our
preprocessing method helps to balance brightness of the volumes.

Figure 38: Original (top row) and preprocessed (bottom row) data comparison
9.3.5 Implementation

Preprocessing can work directly with 3D volumes during the processing and all operations are
performed directly on three dimensional volumetric data not two dimensional slices — slice by slice.
This is possible using NumPy library. For the visualization of the histograms we have also used
Matplotlib library.

9.3.5.1 Structure of the source code presented by a class diagram

Preprocessing class is organized in logic package and used by the main function as is shown in the
Figure 39. Preprocessing class has two important parameters:

e top_percentile — value of top percentile: values, higher than fop_percentile, are replaced with
its value

e bottom_percentile — value of bottom percentile: values, higher than rop_percentile, are
replaced with its value

And also implements several methods:

e _ init__()— method initializes preprocessing and preprocess target data

84

e process_data() — method preprocess data as reference data

e remove_precentile() — replace values higher and lower than top or bottom percentile by their
values

e normalize() — method scale the data using min max normalization

e hist_match() — performs histogram matching of target (in code template) and reference image

get_template() — returns preprocessed template

- self.top_percentile - self
- self.bottom_percentile

- main()

- __init__(params)

- process_data(params)

- remove_percentile(params)
- normalize(params)

- hist_match(params)

- get_template()

Figure 39: Class diagram of preprocessing (UML notation)
9.3.5.2 Interaction of the objects presented by a sequence diagram

In the Figure 40 is shown sequence diagram of the preprocessing. Preprocessing is used by the main.
First we have to initialize preprocessing — we send target data to the preprocessing and preprocess
them replacing values higher or lower than top or bottom percentile by its value and scale them using
min max normalization. Then we get the preprocessed template to use it later in process.

In the next step we process all additional examination in loop — we send all of them one by one to the
preprocessing and perform the same operations — remove the percentile (replace values lower or
higher than top or bottom percentile by the values of these percentiles) and scaling (using min max
normalization) and finally we compute histogram matching between target (template) data and
reference data.

85

m preprocessing:Preprocessing

init()

remove_percentile()

normalize()

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

:—get_templa te() I
|

ﬁ — — — —preprocessed_template— — — —
|

|

|
|
|
loop |
|
|
|

examir|13tion[1:]

process_data()

remove_percentile()

normalize()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| hist_match()
|

ﬁ ————— preprocessed_data— — — — —

Figure 40: Sequence diagram of preprocessing (UML notation)

9.3.6 Discussion

Preprocessing was necessary to balance brightness of the volumes from different examinations —
means that they were captured in different time. In our method we change values lower than percentile
5 and higher then percentile 99 to the values of these percentiles. We also decided to compute
percentile only from foreground — it means that we are ignoring black background. We tried also
different values of the bottom percentile, but percentile 5 looks the best for our data.

Then we scale the data to range 0 — 255 using min max normalization. This is necessary, because some
methods from the libraries used in the next steps can process only 8-bit images. We minimize the
damage of the important data thanks the previous percentile operation.

Finally, we performed histogram matching — volume from the first examination was used as target
data and all next examination were reference data. This method helped to balance the brightness of the

86

volumes and they look almost the same. This is helpful mainly for the visualization, but can help also
other methods to work better.

9.4 Tumor segmentation

Tumor segmentation using computer vision is a problem which is studied a lot by professional
community. Solution of this problem is based on a big motivation — help doctor, radiologist with some
manual and monotonous work which they have to do. It is important to segment tumors from the
examinations. Boundaries of the tumor and other information — information about health and
important brain centers, are used for radiotherapy planning. Thus, radiologist have to segment tumor.
While MRI are volumetric data, radiologic have to segment tumor on all slices, if they have to do it
manually. It is really very time consuming task. Thus, finding appropriate automatic method is a big
motivation to help doctor and radiologist with their work.

Actually segment tumors from MRI brain scans is hard task, because the boundaries are not always
clear and sometime tumors are not significant. Many people tried to solve this problem also we had try
to implement own method in bachelor thesis. There is a lot of approaches in the field of tumor brain
segmentation with very good results. We have list some of the best in the chapter 8.1 Segmentation.

While our approach has a wide range, we decided to re-implement one of the state of the art methods
which reached the best results on the BRATS 2013 dataset and is explained in the BRAINLES 2014
proceedings ¥, We summary important parts of the article in our work in chapter. However, we came
out of the newer article dedicated to this method from 2017 by Havaei et al. ?* — in our work we
analyze this method in the chapter 8.1.2 Brain tumor segmentation with Deep Neural Networks.

One of the reasons why we decided to choose this approach was that author reached very good results
presented in the articles and second one was that the source code is available online 18!,

In segmentation step we proposed a simple pipeline which is visualized using activity diagram in the

Figure 41. It consists only of two steps: preprocessing and tumor segmentation using model trained on

®

Preprocess data

the CNN proposed by Havaei et al.

Segment tumor using
trained model

Figure 41: Flow of the segmentation step visualized by activity diagram (UML notation)

87

9.4.1 Preprocessing

First step of the method is preprocessing. It is necessary to preprocess the data by the same methods
such as authors. Thus, we used the same preprocessing steps. At first, we removed 1% of the highest
and lowest intensities (from original data, not from data preprocessed in the previous chapter — to
preserve the consistency of the data). Then, we have applied N4ITK bias correction to the modality T1
and modality Tlc using ANTs library !, Then we have normalized the data within each input
channel. Finally, it is necessary to create patches before the segmentation. Patches represent data by
the way they can be processed by the model.

9.4.2 Segmentation using trained model

Main step of the proposed workflow is segmentation. In our proposal, we have planned to use trained
model for the tumor segmentation. However, authors did not provide these model, thus we had to train
own model using their architecture explained in the chapter 8.1.2 Brain tumor segmentation with Deep
Neural Networks.

9.4.3 Implementation and discussion

As was mentioned before, source code of the proposed CNN is available free online on github 8! The
problem was that it is implemented in the old technologies — using old libraries. Thus, we re-
implement some parts of the sources and adapt them to the newest version of the libraries, because
authors did not mention anywhere which versions of the libraries they were working with.

We tried to train own model using the same dataset such as authors of the method — dataset BRATS
2015. However, due to the available calculation power, we had to minimize all parameters which
pulling out the RAM and processor.

We have to review, that we were not able to reach satisfactory results while we tried to trained own
model. The main problem was, that we tried to adapt complicated CNN architecture for the new
libraries and we had probably violated important parts of the architecture and were not able to find our
misconduct.

Finally, we decided to use only available segmentation masks of the tumors to continue in our
pipeline. Both, BRATS 2015 dataset and Siemens dataset contains mask of the tumor for patient
examination which we work with in the next steps. Properties of datasets are mentioned in the chapter
9.2.1 BRATS dataset and chapter 9.2.2 Siemens dataset.

9.5 Rigid registration

The next step of our pipeline is rigid registration. When the volumes of the brain are captured, they
can be rotated, translated and scaled a little differently because patients are examined in different time
in some periods. If we want to track changes of the tumor and brain, we have to rotate, scale and
translate volumes to the same position. This is perfect task for the rigid registration.

Rigid registration consists of six steps. Basic flow of the proposed method is shown in the Figure 42.
Input for the method are two 2D slices from MRI volumes which we are going to register. In the first
step we create a registration mask for both input images. The masks are used in the next step to detect

88

key points. Then for every key point descriptors (feature vectors) are computed. Now we have feature
vectors for both input images and in the next step we find matches between them. In this step besides
right matches, we find also wrong, too. Thus, we filter them using simple condition. From the correct
matches we can compute matrix for the transformation and use this matrix to transform and register
one of the input images to another.

Input for the
method are 2D
slices of MRI

]] volumes
Create registration

mask

Detect the key points

Compute descriptors

Match features

Filter matches

Transfrom rigidly

Figure 42: Flow of rigid registration represented by activity diagram

9.5.1 Input

Input for the proposed method are 2 two-dimensional images — one reference image and one input
image which will be registered to reference image. These images are created from MRI volumes in
axial direction. In the following chapters we present the steps of the method on the slices crated from
volumes from the Siemens dataset - subj_1 examination 20090306 (as reference) and 20091029 (as
input). Example of the input is shown in the Figure 43.

89

Figure 43: axial MR slice 71 from Siemens, subj_1,
LEFT (reference): examination 20090306, RIGHT (input for transformation): examination 20091029

9.5.2 Creating the registration mask

In the first step we need to create mask for the registration. There are two possible approaches:
e mask for the health brain or
e mask for the cranium.

9.5.2.1 Mask for the health brain

In the next steps we do not want to calculate with background, because it is not important. We also
want to remove tumor parts from the mask, because tumor parts change a lot between two MRI tests.

Creation of the registration mask is demonstrated in the Figure 44 on the reference image from
previous Figure 43. It is based on the subtraction. First we create mask of the brain. Then the mask is
eroded with small kernel to get rid of very small black regions and dilated back to create mask of the
brain. In our survey we create mask smaller than whole brain, because we want test results of the
registration method only on the health brain parts, so we exclude the cranium. Finally, from the brain
mask is subtracted mask of the tumor (as was mentioned in chapter 9.4.3 we work with the masks of

the segmentations from the datasets) and the result is a mask for the registration.

Figure 44: Visual view on the process of the registration mask creation

90

9.5.2.2 Mask for the cranium

When the background is not important, in this step we also compute only with brain parts — concretely
only with cranium of the brain. In our survey, we test difference between two mentioned approaches,
thus we create mask of the cranium in this step.

Creation of the registration mask is demonstrated in the Figure 45 on the reference image from
previous Figure 43. It is based on simple threshold algorithm and finding contours algorithm. At first
we threshold the image to get mask of the whole brain. Then we compute outer boundary of the brain
and the contour is used to create close mask of the cranium by enlarging this contour.

Figure 45: Visual view on the process of the registration mask creation

9.5.3 Key point detection

In the next step key points are detected using four different methods — FAST, SIFT, SURF and ORB.
Results of key point detection are shown in the Figure 46 on the reference image from Figure 43. Key
point detection is based on differences between the pixels. It depends on the concrete algorithm. We
have used implementation from OpenCV library. Algorithms were explained in the online OpenCV
documentation and explanations were referenced to official articles:

e SIFT (Scale-Invariant Feature Transform) ®! — In 2004 David Lowe came up with new
feature detection algorithm SIFT 8], The algorithm uses Difference of Gaussians. Difference
of Gaussians is computed for the image as difference of Gaussian blurring of the image with
two various . Then the local extremes are detected and marked as possible key points.

e SURF (Speeded-Up Robust Features) ! — After the SIFT algorithm SURF was invented in
2006 as faster alternative for feature detection by three people H. Bay, T. Tuytelaars and L.
Van Gool M. Algorithm is based on approximation of Hessian blob detector and also uses
integral of the input image to make it faster. Hessian matrix (second derivation of the image)
is used to find the local changes. The biggest changes are marked as the key points.

e ORB (Oriented FAST and Rotated BRIEF) " — In 2011 Ethan Rublee, Vincent Raubaud,
Gary Bradski and Kurt Konolige invented ORB 2! as alternative for SIFT or SURF algorithm.
Actually, SURF and SIFT are patented, and for commercial use you have to pay. ORB is not.
It is a connection of FAST and BRIEF key point detector — first key points are found using
FAST algorithm, but ORB return only top of them using Harris corner measure.

91

e FAST (Features from Accelerated Segment Test) "¥ — FAST was invented by Edward Rosten
and Tom Drummond. The algorithm is fast and allow real-time detection. The process is
described in detail in article from the year 2006 B!, Input for the algorithm is a contrast
threshold constant T. Basically, for every pixel P of the image algorithm decides if the pixel is
key point. A circle of 16 pixels is created around every pixel P and if n pixels are higher or
lower then then intensity of P pixel + threshold constant T, then pixel P is the key point.

Figure 46: Visualization of detected key points by different detectors (FAST, SIFT, SURF, ORB)
9.5.4 Calculating descriptors — the feature vectors

Descriptors are computed in the next step. Result of the computation are vectors of the features which
contains additional information. Type of the information depends on the type of the algorithm for
descriptor computation. SIFT, SURF and ORB have got their own algorithms for feature detection.
We have used implementation from OpenCV library, were algorithms were explained:

e SIFT 81381 _ Descriptors are computed for every key point. SIFT algorithm takes 16x16
neighborhood of every key point and divide it on 16 blocks with sizes 4x4. An 8-bin
histogram is created for every block. Thus, the resulting feature vector consists of the 16*8 =
128 computed values.

92

e SURF 818 _ SURF descriptor algorithm uses Haar wavelet in horizontal and vertical
direction. Feature vectors are computed as the sum of Haar wavelet response around the key
points.

e ORB ™ 1321 _ Ag was mentioned, ORB fuses FAST and BRIEF, and BRIEF algorithm
improved by the capability to compute with orientation is used to compute the feature vectors
of the key points.

9.5.5 Matching feature vectors

In our approach we have combined SIFT key point detector with SIFT descriptor algorithm, SURF
key point detector with SURF descriptor algorithm and ORB key point detector with ORB descriptor
algorithm. However, FAST does not have own algorithm for descriptor calculation, so we decided to
combine FAST key point detector with SIFT and SURF descriptor calculation algorithm and compare
results.

Depending on the similarities, which are evaluated from the feature vectors, in this step key points are
matched using brute force matching. In the Figure 47 are shown results of the matching between the
image from the Figure 43. Count of the matches is based on the count of the key point detected with
different key point detectors. Matched key points depend on the type of descriptor calculation — how
the feature vectors were computed.

FAST - SIFT FAST - SURF

Figure 47: Result of the key point matching using different feature extractors

93

9.5.6 Filtering the matches

A lot of matches is found during the matching process. In addition to the good matches, there is a lot
of fails. In this step, we filter the matches. The main prejudice of the filtering step is that first input
image is not rotated a lot to second one input image, so lines between key points should be almost
evenly. It is based on the supposition that key points have got very similar coordinates. Results of the
filtration step are shown in the Figure 48.

Figure 48: Result of match filtration step

9.5.7 Rigid transformation

Final step is rigid transformation. The affine matrix for the rigid transformation is found using matches
from the previous step. Then the matrix is used to warp a perspective of the first input image. In the
Figure 49 on the first image is visualized blue channel of input slice transposed over red and green
channel of the reference slice from the Figure 43 and next images visualize results of the registration
by all used combinations of the algorithms where the same red and green channels are transposed over
the blue channel of registered — warped slice. As we can see In the Figure 49, some parts are blue —
came from blue channel of input image and some parts are yellow — it is caused by red and green
channel of reference slice. Actually, in the dataset are also available correct registrations of the input
slice, so we applied the same visualization on correctly registered input (correct original) and rotated,
warped and translated input slice which we registered. Results are shown in the Figure 50.

94

input + reference

FAST - SIFT FAST - SURF

Figure 49: Comparison of the input (blue channel) transposed over the reference (red and green
channel) slice before the registration and after

input + registered

FAST - SIFT FAST - SURF

Figure 50: Comparison of the input (blue channel) transposed over the correct original input (red and
green channel) slice before the registration and after

95

9.5.8 Testing

We tested the method with different combinations of algorithms and compared the results. We tried
different registration masks (mask of the health brain and mask of the cranium) and also different
combinations of key point detectors and descriptors. We tested combinations showed in the Table 1.

registration mask key point detector descriptor

health brain SIFT SIFT

health brain SURF SURF

health brain ORB ORB

health brain FAST SIFT
m health brain FAST SURF
cranium SIFT SIFT
cranium SURF SURF

| cranium ORB ORB

Table 1: Tested combinations of algorithm

9.5.8.1 Dataset

While proposed method works only with 2D images, but our testing dataset — Siemens dataset consists
of 3D volumes as is explained in the chapter 9.2.2, we decided to create own dataset. We generated 2D
slices from 3D volumes. In the Siemens dataset examinations are registered, so we left 2D slices in
original - correct original and we created new files which contains these slices, but in some different
rotation, brain can be alse scaled or translated. We decided to choose slices of the first examination as
a reference slices and all next examination as unique inputs. Reference slice is not scaled, rotated or
translated. Finally, our dataset contains:

e 23372 2D unique inputs and also the same count of the correct original,
e 10011 2D reference images,
e tumor masks for all slices.

9.5.8.2 Testing flow

Testing flow is visualized using sequence diagram in the Figure 51. We process all images of the
dataset in the loop. At first we preprocess the data — all input slices are preprocessed (by the way
explained in the chapter 9.3) to the corresponding reference slice. Then inputs are registered to their
corresponding reference slices — slice by slice and finally, we evaluate the registration by comparing
histograms of the slices (explained in detail in the chapter 9.5.8.3)

96

el I;ifi'stfatlon preprocessing:Preprocessing rigid_registration:RigidRegistrtion
ipt:
loop

|

t t

| |

[init()
dataset | nit()

|
:—get_templa te()4‘
:<— — — —preprocessed_template— — — —

examinlation[1:]

+——————process_data ()4]
< _____

preprocessed_data- — — —

|
|
}
loop |
|
|
|

|

|

|

[

1 ()
init ()

|

|

|

|

rigid_registration()

|
————————————————— bFwarped_input — — — — — ———— — — — — — — — —

compare_images()

Figure 51: Flow of the testing process (UML notation)

9.5.8.3 Evaluation
\For the evaluation of the registration we decided to compare slices:

e input with reference,

e warped input with reference,

e input with correct original and

e warped input with correct original.
Thanks these combinations we can see, if registration was correct.

Actually, we do not compare whole slices at once and we do not compare black background of the
images (it is bloody). However, we span through the slice with the small rectangle as is shown in the
Figure 52 and if we hit the foreground, we compute the histogram of the slices parts under the
rectangle as is shown in the Figure 53. Then we compare the histograms using three metrics:

e correlation,

e intersection and

97

e Bhattacharyya distance.

Finally, we compute the average value of the metrics and this is the result of the comparison of two
slices.

reference warped input original

L] []

Figure 52: Actual rectangle for comparison on all slices

35
30 A
30
21 m reference) m reference
204
20
154
| 15 4
I
10 4 10 4
| \
5 f 5
J %Jﬂlﬂ%
0 AN 1 5 " A
(I) 5‘0 160 15‘0 260 25;0 6 5‘0 160 1_';0 260 25‘0
30 35 4
30 1
25 <
M original - ” M original
204
20

il i 'vj

04

T T T T
0 5‘0 160 15;0 ZEIJO 2!’;0 0 50 100 150 200 250

Figure 53: Histograms of rectangles from previous Figure 53

98

9.5.9 Results

While we have tested different configuration on the big dataset (23372 input slices), it is not possible
to visualize all results in the one graph. We decided to use several visualizations to compare different
configurations listed in the chapter 9.5.8.

One of the steps in rigid registration process is finding transformation matrix for affine (rigid)
transformation. However, there are some cases, when the matrix was not found. In these cases the
registration is unsuccessful and it fails. In the Figure 54 we can see the success of finding matrix of the
different configurations.

Ratio between the cases where transformation matrix was
found and was not found

100%
90% 3507 4476
80%
. 70%
Q
L 60%
S 50% 21798 21537
§ 40% 19865 18896
© 30%
20%
10%
0% 1574 1835 2076
(]
health health health health health cranium cranium cranium
brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
FAST+SIFT FAST+SURF
Method
W transformation matrix was found W transformation matrix was NOT found

Figure 54: Success of finding transformation matrix by different configurations

When finding of the transformation matrix is successful, we can warp the slice and compute average
correlations between the histograms of foreground slice parts as described in the chapter 9.5.8.3. If the
correlation of the warped input data with correct original or reference data is higher than correlation of
the input with correct original or reference data, then the registration was successful. In the Figure 55
we can see ratio between cases when the correlation of the warped (registered) input data and
reference data was higher (lower) than correlation of the input data and reference data. In the Figure
56 we can see ratio between cases when the correlation of the warped (registered) input data and
correct original data was higher (lower) than correlation of the input data and correct original data.

99

Ratio between cases where after the registration we reached
higher correlation of the histograms of input and reference

slice
0,
SN)css B 3046 2683 W 2312
& 80% 447 562
L
2 60%
S
o 1 4
£ 40% 17177 18646 17177 658 1127 1273
S 20%
0%
health health health health health cranium cranium cranium
brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
FAST+SIFT FAST+SURF
Method

B correlation after registration is higher B correlation after registration is lower

Figure 55: Ratio between cases when registration was successful (correlation between registered input
and reference was higher that correlation between input and reference) and was not successful (vice
versa)

Ratio between cases where after the registration we reached
higher correlation of the histograms of input and correct

original slice
100% 064 I 1950
8 80% 456 544 633
L
2 60%
2 10% 19744 W 17915 W 17379
< 1118 1291 1443
S 20%
0%
health health health health health cranium cranium cranium
brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
FAST+SIFT FAST+SURF
Method

B correlation after registration is higher W correlation after registration is lower

Figure 56: Ratio between cases when registration was successful (correlation between registered input
and correct original was higher that correlation between input and correct original) and was not
successful (vice versa)

100

For the different configurations we have compared average values of the histogram correlations
between:

e input and reference vs. warped input and reference,
e input and correct original vs. warped input and correct original.
The results are shown in the Table 2 and visualized in one bar chart in the Figure 57.

Average correlation between:

input and warped and input and correct warped and correct
reference slice hist reference slice hist original slice hist = original slice hist

health brain SIFT 0.55925936 0.673267044 0.696120257 0.881003553
health brain SURF 0.558169989 0.679775182 0.685948337 0.885244291
health brain ORB 0.563983903 0.692641344 0.686401059 0.89787346
health brain FAST+SIFT 0.55925936 0.673267044 0.696120257 0.881003553
health brain FAST+SURF 0.581103639 0.703054977 0.705173425 0.901245473
cranium SIFT 0.586529999 0.65107211 0.702952447 0.792392358
cranium SURF 0.577200119 0.635127201 0.687570851 0.768805339
cranium ORB 0.566164306 0.625010991 0.683571548 0.765503716

Table 2: Comparison of average histogram correlations for different configurations

Comparision of average histogram correlations of the methods

1
c
20,9
o
o 0,8
g 07
§ 06
:’9" 0,5
Z 04
£03
50,2
[}
201
g
@ 0
@ health health health health health cranium cranium cranium
g brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB

FAST+SIFT FAST+SURF
Method

B input and reference slice hist B warped and reference slice hist

B input and correct original slice hist B warped and correct original slice hist

Figure 57: Comparison of average histogram correlations for different configurations

101

For different configuration we have computed minimum, bottom quartile, median, top quartile and
maximum of the histogram correlations between:

e warped input and reference (visualized using box plot in the Figure 58)

e warped input and correct original (visualized using box plot in the Figure 59)

Histogram correlation between reference and warped data

1
0'9 | —‘7
0,8 " L
S 0’7 - %I
2 06 :
| =
2 05
o)
2 04
S o3 T
0,2
:] ° -
0,1 . P @ o - 5
0 [] - L]
Method
M health brain SIFT M health brain SURF M health brain ORB
[health brain FAS+SIFT W health brain FAST+SURF M cranium SIFT
I cranium SURF B cranium ORB

Figure 58: Histogram correlation between reference and warped data for different configurations

Correlation between original and warped data

0,8
0,7
0,6
0,5 °
0,4 !
0,3
0.2 g 8
0.1

——
- -

——

Correlation value

Method

M health brain SIFT M health brain SURF M health brain ORB
[health brain FAS+SIFT M health brain FAST+SURF M cranium SIFT
[cranium SURF M cranium ORB

Figure 59: Histogram correlation between original and warped data for different configurations

102

For the different configurations we have compared average values of the histogram intersections
between:

e input and reference vs. warped input and reference,
e input and correct original vs. warped input and correct original.
The results are shown in the Table 3 and visualized in one bar chart in the Figure 60.

Average intersection between:

input and warped and input and correct warped and correct
reference slice hist reference slice hist original slice hist original slice hist

health brain SIFT 352.2922887 418.9958806 421.7702733 526.6356664
health brain SURF 351.3932037 422.8377119 415.9759987 529.1488422
health brain ORB 353.6720788 429.6340126 415.6346208 536.8878107
health brain FAST+SIFT 352.2922887 418.9958806 421.7702733 526.6356664
health brain FAST+SURF 364.7993639 435.2697225 427.487366 539.6562794
cranium SIFT 377.2203331 415.1668951 434.6328554 482.7449933
cranium SURF 374.0779159 408.2073459 426.9232801 470.5326106
cranium ORB 365.7259957 399.7655388 423.5275305 466.8360997

Table 3: Comparison of average histogram intersection for different configurations

Comparision of average histogram intersection of the methods

w B ul D
o o o o
o o o o

Average value of the histogram intersection
N
o
o

100
0
health health health health health cranium cranium cranium
brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
FAST+SIFT FAST+SURF
Method

B input and reference slice hist B warped and reference slice hist

B input and correct original slice hist B warped and correct original slice hist

Figure 60: Comparison of average histogram intersection for different configurations

103

For different configuration we have computed minimum, bottom quartile, median, top quartile and
maximum of the histogram intersections between:

e warped input and reference (visualized using box plot in the Figure 61)

e warped input and correct original (visualized using box plot in the Figure 62)

Intersection between reference and warped data

700
600
g 500
©
>
c 400
e
=
o
g 300
[}
-
£ 200 —_— g
H
100 8 g H
o .
0
Method
M health brain SIFT M health brain SURF M health brain ORB
[health brain FAS+SIFT M health brain FAST+SURF M cranium SIFT
[cranium SURF M cranium ORB

Figure 61: Histogram intersection between reference and warped data for different configurations

Intersection between original and warped data

700
]
H
600 i Y
T
7~ |
@ 500
2 i Ky
g T ¥ s
c 400 1
= g
] H il
g 300 3 .
3 H
£ 200 °
<) ° -] : =
[] [] -]
100 = . s : £ g
: o : . 3
0
Method
M health brain SIFT M health brain SURF M health brain ORB

[health brain FAS+SIFT [health brain FAST+SURF M cranium SIFT
B cranium SURF M cranium ORB

Figure 62: Histogram intersection between original and warped data for different configurations

104

For the different configurations we have compared average values of the histogram Bhattacharyya
distances between:

e input and reference vs. warped input and reference,
e input and correct original vs. warped input and correct original.
The results are shown in the Table 4 and visualized in one bar chart in the Figure 63.

Average bhattacharyya distance between:

input and warped and input and correct warped and correct
reference slice hist reference slice hist original slice hist original slice hist

health brain SIFT 0.496994897 0.409436171 0.40232794 0.268244571
health brain SURF 0.498047819 0.404393555 0.410093665 0.267288429
health brain ORB 0.494636076 0.395065031 0.410371469 0.257348448
health brain FAST+SIFT 0.496994897 0.409436171 0.40232794 0.268244571
health brain FAST+SURF 0.479674829 0.38757861 0.394690441 0.255031371
cranium SIFT 0.467723136 0.419414784 0.39071732 0.335073082
cranium SURF 0.472076045 0.428548565 0.401592521 0.350917864
cranium ORB 0.483003533 0.439819222 0.405216908 0.356111652

Table 4: Comparison of average histogram Bhattacharyya distance for different configurations

Comparision of average histogram Bhattacharyya distance of
the methods

B input and reference slice hist B warped and reference slice hist

0,6
I
c
® 0,5
(%]
2
o 0,4
<
203
o
3
w 0,2
=
o
€ 0,1
©
oo
8 0
= health health health health health cranium cranium cranium
g brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
S FAST+SIFT FAST+SURF
Q
=) Method
©
>
[J]
oo
o
(O]
>
<

W input and correct original slice hist B warped and correct original slice hist

Figure 63: Comparison of average histogram Bhattacharyya distance for different configurations

105

For different configuration we have computed minimum, bottom quartile, median, top quartile and
maximum of the histogram Bhattacharyya distances between:

e warped input and reference (visualized using box plot in the Figure 64)

e warped input and correct original (visualized using box plot in the Figure 65)

Bhattacharyya dictance between reference and warped data

0,9

0,8
0,7 £

0,6
0,5

0’3 l
0,2 ——

0,1

e
2000 @
o0 0

[]
000 000 0 0
o0

Bhattacharyya dictance value

Method

M health brain SIFT M health brain SURF M health brain ORB
[T health brain FAS+SIFT [health brain FAST+SURF M cranium SIFT
[cranium SURF M cranium ORB

Figure 64: Histogram Bhattacharyya distance between reference and warped data for different
configurations

Bhattacharyya dictance between original and warped data

e

0,9 : g . 8 i
4 ! ° * ° ° °
3 08 . H o e . *
> ° H
2 07 | g
g e °
§ 0,6 ' l o
S 05 g H T =
o U g
= B
= 0,4 - -
Z =
g == =
% 0,2 1 s =i "

: : '

0
Method
M health brain SIFT M health brain SURF [health brain ORB

1 health brain FAS+SIFT M health brain FAST+SURF M cranium SIFT
[cranium SURF M cranium ORB

Figure 65: Histogram Bhattacharyya distance between original and warped data for different
configurations

106

We can see in the charts and tables, that health brain ORB configuration reach the best results. Thus,
we tried to watch closer on the results of this configuration. While we are working with big dataset, it
is not possible to visualize results of all registrations. We created the histogram of correlations
between:

o reference and input slices vs. reference and warped slices (Figure 66),

e correct original and input slices vs. correct original and warped slices (Figure 67).

Histogram of correlations using health brain + ORB
configuration

8000
7000
6000
5000

4000
3000
2000 I I
1000 I
0 e .
0.8 <0.9 <

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7
Value of the correlation

Count of the cases in dataset

W correlation of reference and input slice M correlation of reference and warped slice
Figure 66: Histogram of correlations (health brain ORB configuration), reference vs. input

Histogram of correlations using health brain + ORB
configuration

14000
12000
10000

8000

6000

4000 I I

2000 I I
<0.8 <0.9

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7
Value of the correlation

Count of the cases in dataset

M correlation of correct original and input slice M correlation of correct original and warped slice

Figure 67: Histogram of correlations (health brain ORB configuration), correct original vs. input

107

We have also tried to compute differences between the correlations of:

e reference and input slices vs. reference and warped slices (visualized by histogram of
differences in the Figure 68),

e correct original and input slices vs. correct original and warped slices (visualized by histogram
of differences in the Figure 69).

Histogram of difference between correlation of
warped+reference slice minus input+reference slice
using health brain + ORB configuration

6000
-
3
< 5000
3
< 4000
3
» 3000
(1]
o
‘s 2000
1=
3 1000 I
©
UO - III.-_
M 1N N 10 = 1D © N = 1N N 1IN M 1 S NN O I
c Yo 4T o< VA g d o NocM2Mgo ¥ o oo v
y © §y © § o o Vo V o V o V o VvV o VvV o
v v v v v v v v v v

Value of the difference of correlations

Figure 68: Histogram of correlation differences between reference minus input (health brain ORB
configuration)

Histogram of difference between correlation of
warped+correct original slice minus input+correct
original slice using health brain + ORB configuration

6000
o
2
< 5000
8
3
= 4000
$
% 3000
[S)
“
© 2000
o
o
>
o 1000 I
: I
0 - | .
M N N 1IN o 1 O W —H 1N N W ®MIWbmSTWIN N O W,
o Yo 4 Q@ VA g d o Noc Mg ¥ oo oo v
v 8 vy o9 v o o Vo Vo Vo Vo Vo v oo
v v v v v v v v v v

Value of the difference of correlations

Figure 69: Histogram of correlation differences between correct original minus input (health brain
ORB configuration)

108

In the Figure 66 and Figure 67 histogram distribution shows that histogram correlation between
registered input and reference or correct original is in the most cases higher than correlation between
input and reference or correct original. Thus registration is in the most cases successful. This is
confirmed by the Figure 68 and Figure 69 where we can see that in the most cases difference between
the histogram correlation of registered input with reference or correct original and between input with
reference or correct original are in the most cases positive.

We have also compared time durations of the different configurations. Average time of processing 2
slices is presented in the Table 5 and visualized in the Figure 70.

Average time duration

health brain SIFT 0.135198092
health brain SURF 0.021823367
health brain ORB 0.012575842
health brain FAST+SIFT 0.13260751
health brain FAST+SURF 0.01880375
cranium SIFT 0.109932226
cranium SURF 0.024158819
cranium ORB 0.010333754

Table 5: Average time duration of the methods

Average time duration of the methods

0,15
©» 01
£
iz 0,05

health health health health health cranium cranium cranium
brain SIFT brain SURF brain ORB brain brain SIFT SURF ORB
FAST+SIFT FAST+SURF
Method

Figure 70: Average time duration of the methods

9.5.10 Implementation

Rigid registration can process 2D slice created from 3D volumes. Input for the method are two 2D
slice — one reference and one input slice which will be registered to reference slice. Algorithms used in
our proposed method of rigid registration are from OpenCV library. Also NumPy library is used to
store slice and perform simple operations.

9.5.10.1 Structure of the source code presented by a class diagram

RigidRegistration class is organized in logic package and used by the main function as is shown in the
Figure 71. RigidRegistration class has three important parameters:

109

e registration_mask_type — health brain mask or cranium mask

e key_point_detector — used detector for key point detection (SIFT, SURF, ORB, FAST)

e key_point_descriptor — used descriptor for computing feature vectors (SIFT, SURF, ORB)
And also implements several methods:

e rigid_registration() — method preprocess data — two input 2D slices

e create_mask_for_registration() — creates mask for the registration

e detect_key_points_SIFT(), __detect_key_points_SURF(), __detect_key_points_ORB(),
__detect_key_points_FAST() — methods find key points on the slices

e _ calculate_descriptors_SIFT(), __calculate_descriptors_SURF() ,
__calculate_descriptors_ORB() — methods computer feature vectors of the key points

e _ get matches()— returns all matches between the feature vectors
e _ get _good_matches() — filter only good matches from all matches

In the source code is more parameters and methods, but they have got only help function.
I R

- self.registration_mask_type - self
- self.key_point_detector - main()
- self.key_point_descriptor

- rigid_registration(params)

- __create_mask_for_registration(param)
- __detect_keypoints_SIFT(params)

- __detect_keypoints_SURF(params)

- __detect_keypoints_ORB(params)

- __detect_keypoints_FAST(params)

- __calculate_descriptors_SIFT(params)
- __calculate_descriptors_SURF(params)
- __calculate_descriptors_SIFT(params)
- __get_matches(params)

- __get _good_matches(params)

Figure 71: Class diagram of rigid registration (UML notation)
9.5.10.2 Interaction of the objects presented by a sequence diagram

In the Figure 72 is shown sequence diagram of the rigid registration. RigidRegistration is used by the
main. First we have to initialize RigidRegistration and set configurations of the method. At first, we
create registration mask for both input slices. Registration mask can be created for health brain or
cranium. Next step is detection of key points on the both slices using SIFT, SURF, ORB or FAST
detector. In the next step descriptors (SIFT, SURF or ORB) compute feature vectors for all key points

110

and then these vectors are matched. Resulting matches are filtered to get only good matches. Finally,
matrix for the transformation is found and used to warp the input slice — register it to reference slice.

m rigid_registration:RigidRegistrtion
|
: init() '
|
|

__create_registration_mask()

__detect_keypoints_SIFT()
__detect_keypoints_SURF()
__detect_keypoints_ORB()
__detect_keypoints_FAST()

__calculate_descriptors_SIFT()
__calculate_descriptors_SURF()
__calculate_descriptors_ORB()

__get_matches()

__get_good_matches()

__find_afine_matrix_and_warp()

Figure 72: Sequence diagram of rigid registration (UML notation)

9.5.11 Discussion

In our approach we have tried to crate registration mask from health brain part or from the cranium.
Registration mask created from cranium was problematic for our method. In the Figure 54 we can see
that method was not able to find affine matrix for registration when we used mask of the cranium for
registration. There were also some very successful registrations, but in general the method did not
work well on the cranium part. This was caused by several problems:

e sometimes there was not enough key points detected so the method did not have enough
matches after the finding matches step as is shown in the Figure 73

111

e sometimes only or mainly wrong matches of feature vectors were created as is shown in the
Figure 74

e another times in the matches filtering step, our algorithm did not filter wrong matches properly
as is shown in the Figure 75

Figure 73: Unsuccessful segmentation caused by not enough key points detected

Figure 74: Unsuccessful segmentation caused by creating mainly bad matches between the feature

vectors

Figure 75: Unsuccessful segmentation caused by wrong matches filtering

Our proposed method works better when we register slices by the health brain parts and the majority
of slices were registered successfully as we can see in the Figure 55 and Figure 56. From the charts
from the Figure 57 to Figure 65 we can see that the best results reached health brain ORB
configuration and comparatively also health brain FAST-SURF configuration. However, there are still

112

cases when the method did not register slices successfully. In the Figure 76 we can see some examples
of successful registrations using health brain ORB configuration and in the Figure 77 we can see on
the other side cases of unsuccessful registration using the same configuration. Failure of the method in
the testing slice was caused by matching bad feature vectors in matching step and northerly filtration
of the matches in filtration matches step.

input + original

warped + original

Figure 76: Examples of successful registration: merged blue channel of input (top row) or warped
input (bottom row) with red and green channel of correct original

input + original

warped + original

Figure 77: Examples of unsuccessful registration: merged blue channel of input (top row) or warped
input (bottom row) with red and green channel of correct original

113

9.6 Non-rigid registration

Non-rigid registration is crucial step for the observation of the brain changes caused by the tumor.
Tumor grows and changes irregularly depending on the surrounding health brain structures and it
pushes on those surrounding structures. Thanks the non-rigid registration we should be able to track
changes of the health brain parts but also of the tumor. There are several approaches which try to deal
with the similar problem. Many of them use brain atlases for non-rigid registration and simulation of
the tumor growth. They follow different goals, such as tumor segmentation or pre-operative and post-
recurrence scan registration. Chapter 8.2 Registration is devoted to the mentioned methods. In our
work we decided to implement and test different approach, because our goal is a little different.

Basic flow is shown in the Figure 78. Input for the method are 3D volumes. However, we are using
algorithms from the library which can process only 2D images, so our method works slice by slice. In
the first step, the method finds optical flow using Farneback or Lukas-Kanade optical flow algorithm.
In the next step we compute corresponding points from the flow. This is important mainly for the
Farneback algorithm, because it returns dense flow. Lukas-Kanade returns a set of points, we only
change their structure for the next step — visualization.

Final step is visualization of the changes. We tested different approaches to the visualization:
e paint tracks,
e paint HSV from dense flow and

e image morphing.

Input for the method

’ are 3D volumes

Find optical flow

Compute

corresponding points

Visualize changes

Figure 78: Flow of non-rigid registration represented by activity diagram (UML notation)

114

9.6.1 Input

Input for the proposed method is several examinations of one patient — several 3D MRI volumes
captured in different time — in some regular period. Actually, the method can process 3D data, but it
still works slice by slice in axial direction. We try to register old examination with actual examination.
In this chapter we present the steps of the method on the slices 93 from the volumes from the BRATS
2015 dataset - pat_153 examinations 0109 (old examination) and 165 (actual examination). We work
with preprocessed images using the preprocessing described in the chapter 9.3.Example of the input is
shown in the Figure 79.

Figure 79: preprocessed axial MR slice 93 from BRATS 2015, pat_153,
LEFT (old): examination 0109, RIGHT (actual): examination 165

9.6.2 Finding optical flow

As we can see in the Figure 79, slices look really similar nevertheless the fact that they came from
different examinations of one patient. In our approach we have tested method based on the key points
and description of the key point features, but the results were bad. The main reason was that proposed
method had find matches between the feature vectors of the very distant and disagreeable key points. It
is because some parts of the brain have got very similar intensities.

Rather than reduce the area of the finding the best matches for the key points we decided to test optical
flow algorithms. We supposed that they are better suited for the problem. They are usually used to
track the motion in the videos — in consecutive frames. In our case we do not have consecutive frames,
but we can replace them by corresponding slices from following examinations.

In general, optical flow algorithms work on two basic premises:

e intensities of the object do not change between two consecutive frames — in our case two (or
more) corresponding slices from the two (or more) examinations followed by each other (this
is another reason why we head to preprocess the data)

e motion of the neighboring pixels is similar

115

We decided to use two different algorithms and compare their results:

e Lukas-Kanade optical flow algorithm — algorithm was invented by Bruce D. Lucas and Takeo
Kanade. The algorithm uses mentioned basic premises. It combines information from several
nearby pixels by creating small patch and the premise is that all pixels under the patch have
got the same motion. Then the algorithm checks the similarities of the intensities on the next
frame and thanks this it can compute the motion of these patches.

e Farneback dense optical flow algorithm — algorithm was invented by G. Farneback.
Farneback’s algorithm computes dense optical flow on dense grid of the points. At the
beginning, the algorithm approximates each neighborhood of two following frames by
quadratic polynomials. In the next step, quadratic polynomials are considered, a new signal is
constructed by a global displacement. Finally, the coefficients in the quadratic polynomials'
yields is used to calculate this global displacement by equating.

Those algorithms are suitable for the problem, because they can compute only small motions between
two frames and this is actually what we need.

9.6.3 Computation of the corresponding points

In this step we have to compute the corresponding points. Output from the previous methods is an
optical flow.

Actually Lukas-Kanade returns flow as corresponding points, thus we only have to change the
structure for the next steps.

However, Farneback algorithm returns dense optical flow — motion of the all pixels from the frame.
This is too much information for the next processing, so we choose only every x™ pixel from the
motion vectors we compute the coordinates of the corresponding points in the next frame.

9.6.4 Visualization of the changes

Final step of the non-rigid registration is visualization of the changes. We have tested different
techniques of the visualization:

e paint tracks,
e HSV from dense flow and
e image morphing.

9.6.4.1 Paint tracks

Paint tracks is the simplest visualization method. It is based only on the painting lines between the
corresponding points. In the Figure 80 are shown changes between the slices from the Figure 79 using
paint tracks technique. We can see in the figure that visualization of corresponding points created by
the Farneback have more arrows and on the other side visualization of corresponding points created by
Lukas-Kanade algorithm contains only several dots whole dots represents places where algorithm

116

detected the motions. This is caused by the fact that Farneback calculates dense flow and Lukas-
Kanade only try to detect the motion and this is probably too hard task for Lukas-Kanade algorithm.

Farneback Lukas-Kanade

Figure 80: Visualization of changes between examination using paint tracks visualization technique
9.6.4.2 HSYV from dense flow

Next visualization technique is to compute HSV image (hue, saturation, value) from the dense flow.
This technique may be used only for flow computed by Farneback optical flow algorithm because it
returns dense flow (Lukas-Kanade do not return dense flow).

Flareback returns a flow matrix with the same size as the input frames. Each element in the matrix is a
value that represents the displacement of the concrete pixel between actual and previous frame. Thus,
we compute angle of the movement and magnitude of the movement. Then we use these values to
create HSV image where angle is H (hue) and magnitude is V (value). S (saturation) is constantly set
to 255. Finally, we convert HSV image to RGB. Result is shown in the Figure 81.

Farneback

Figure 81: Visualization of changes using HSV image

117

9.6.4.3 Image morphing

Last visualization technique is called image morphing. This technique allows us to create animations
and animate changes between the examinations. Actually, we could create only simple animation
using classic animation - only slice by slice, but we decided to try create additional images using
image morphing technique. Corresponding points from the previous step are used to create additional
frames for the smooth and clearly animation.

Actually we could create additional animation using only simple blending of the two slices according
to the formula:

N(x,y) =1 —-a)*0(x,y) + a*A(x,y),

where N (x,y) is pixel from the new additional image, @ is parameter which controls blending, 0(x, y)
is pixel from the old image and A(x, y) is pixel from the actual image.

However, image morphing allow to create more clearly animation.

Corresponding points are two sets of the points as is shown in the Figure 82 a). One set is from old
slice and second one are corresponding points from the actual slice. In the first step we decided to add
four more points to both sets. These additional points are top of bounding rectangle of the brain. Thus
we create a bounding rectangle of the brain as is shown in the Figure 82 b) Then we extract the tops of
the rectangle (Figure 82 c)) and add them to the sets as is shown in the Figure 82 d).

Figure 82: Sets of corresponding points from old and actual slice and creation of additional points

118

In the next step we calculate the average position of the corresponding points using the formula:
X, =1 —a)x, +ax,
yn =1 — @)y, + ayg,

where x,, and y,, are new coordinates of the point, x, and y, are coordinates of old slice, x, and y, are
coordinates of the actual slice and « is parameter which controls blending.

Result is third set of points as is shown in the Figure 83.

Figure 83: Sets of corresponding points (green and blue) and set of average corresponding points
(white)

Next step is computation of the triangles between the points from the new set of points created in
previous step. We decided to use Delaunay triangulation. Triangles are created in the iterations. In the
Figure 84 a) is visualized result of the algorithm. From the triangles we compute corresponding
triangles in the set of points from old slice (Figure 84 b)) and also set of points of the actual slice
(Figure 84 ¢)).

\r 11{ SN
m N mw‘f,‘m/
fHBFA ' S a7
nnmnn 8B

Jﬂﬂﬂﬂﬂﬂ W%
VAN iz AN
SRS SE s
Pavianzg RE=

Figure 84: Result of Delaunay triangulation

Finally, we can create new additional image for the animation. We warp all triangles from old slice
(Figure 84 b)) and all triangles from actual slice (Figure 84 c)) to the tringles created by Delaunay

119

(Figure 84 a)). For every triangle we compute affine matrix and we transform it rigidly. Resulting
additional image is created by blending all warped corresponding triangles using the formula from the
page 118.

9.6.5 Testing

We tested the method using only Farneback optical flow, because Lukas-Kanade algorithm did not
looked well. We tested results of the method for different modalities shown in the Table 6.

modality

[| flair

T1

Tlc

T2

Table 6: Tested modalities

We also tested different settings of searching window (w) in Farneback algorithm and different size of
step between the points (s) calculated from the flow in the step Computation of the corresponding
points (chapter 9.6.3). Everything was tested on the flair modality. Table 7 shows tested configurations
of the method.

searching window size (W) step between points (s)
| 15 16
29 16
39 16
15 8
| 15 32

Table 7: Different configurations of the method

9.6.5.1 Dataset

Non-rigid registration was tested on BRATS 2015 dataset. However not all patients in the dataset have
got more examinations, so we choose from the dataset only patients with more than one examination.
Together it is 20 patients and 95 examinations. On average 4,75 examination for one patient — some
patients have only 2 examinations but other have more.

120

9.6.5.2 Testing flow and evaluation

Testing flow is visualized using sequence diagram in the Figure 85. We process all patients from the
dataset in the loop. For every patient we preprocess the data using preprocessing method from the
chapter 9.3. Then we push all examinations from one patient to the non-rigid registration algorithm
and it computes corresponding points for all examinations.

For the evaluation it is necessary to transform volumes non-rigidly. For the transformation we decided
to use similar process as image morphing described in the chapter 9.6.4.3. Actually, the process is the
same except for the last step. We do not create new image instead of that we transform triangles from
the old slice to the triangles from the actual slice. Finally, we compare slices using the same method as
in rigid registration testing (explained in the chapter 9.5.8.3). We compute average correlation,
intersection and Bhattacharyya distance for:

e histograms of slices from old examination and actual examination,

e histogram of slices from transformed (non-rigidly) old examination and actual examination.

non rigid - - : - : gl
relstratlon e preprocessing: Preprocessmg non rlgld_reglstratlon.Non ngld
loop

|
" 1
| |
| | it
dataset | e ‘
|
: ————pget | template()“
|<— — — —preprocessed_template— — — —

examihations[1:]

———process_data() 4]
< _____

preprocessed_data- — — —

|

|

)

loop |

I [
|

|

init()

process_volumes()

<" —"—"—"—-"———- corresponding_points— — — — — — — — — — — — — — — —

loop

examihations

|

|

1

r

|

|

|

|

T

loop |

|

slicep |
t +warp_image()

| |

————————————————— warped_image() ————————————— — — — —

compare_images()

Figure 85: Flow of the testing process (UML notation)

121

9.6.6 Results

We have tested non-rigid registration on the dataset consists of 20 patients with more than one
examination. While we evaluated the results slice by slice, not for whole volumes, it is not possible to
visualize all results in one graph because it is a lot of data. We used several visualizations to compare:

e results for different modalities and
e different configurations of the method.
9.6.6.1 Results for different modalities

In the Figure 86 we can see ratio between cases when the correlation of the transformed (registered)
old slices and actual slices was higher (lower) than correlation of the input old slices data and actual
slices.

Ratio between cases where after the transformation we
reached higher correlation of the histograms of transformed
old slice and actual slice

100%
S5 1598 1919 2175 1795
60%
40% 5966 5624 5371 5818
20%
0%
T1 Tlc T2

Flair

Count of slices

Modality

M correlation after the transformation is lower

B correlation after the transformation is higher

Figure 86: Ratio between cases where after the transformation we reached higher histogram
correlation of the transformed old slice with actual slices

For the different tested modalities, we have compared average values of the histogram correlations
between old slice and actual slice versus transformed old slice and actual slice. The results are
presented in the Table 8 and visualized in the Figure 87.

actual and old original actual and transformed old original
Flair 0.719322477 0.744422397
T1 0.644726762 0.667428015
Tic 0.700108284 0.714934625
T2 0.713350622 0.731279275

Table 8: Comparison of average histogram correlations for different modalities

122

Comparision of average histogram correlations using
different modalities

1
S
20,9
L
o 0,8
S 0,7
g 0,6
& 0,5
%
= 04
203
)
G 0,22
[0}
S 0,1
S
o O
& Flair T1 Tlc T2
(O] .
E Modality
W actual and old original W actual and transformed old original

Figure 87: Comparison of average histogram correlations for different modalities

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram
intersections between transformed old slice and actual slice. Results are visualized in the Figure 88.

Correlation between histograms of transformed old slices and actual slices
1,2

T il

e
3]

o o
£~ [o)]
© 0000000
|
\
).

Correlation value

o

%)

0000

© oo
e

e

Modality

M Flair BT1 BT1c @T2

Figure 88: Histogram correlation of transformed old slice and actual slice

123

For the different tested modalities, we have compared average values of the histogram intersection
between old slice and actual slice versus transformed old slice and actual slice. The results are
presented in the Table 9 and visualized in the Figure 89.

actual and old original actual and transformed old original

Flair 425.8967622 443.1579404
T1 391.8223372 412.8192378
Tic 418.0144272 431.2574375
T2 440.5532608 453.7109507

Table 9: Comparison of average histogram intersections for different modalities

Comparision of average histogram intersection
using different modalities

e 500

g 400

& 300

@

2 200

I3} c

< © 100

Cw

65 O

v = Flair T1 Tlc T2
= 0O

g ° Modality

(0]

@

§ B actual and old original B actual and transformed old original
<

Figure 89: Comparison of average histogram intersections for different modalities

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram
intersections between transformed old slice and actual slice. Results are visualized in the Figure 90.

Intersection between histograms of transformed old slices and actual slices

700
600
500

400

200

Correlation value
W
[=]
5]
| I |
o [=1=] Owﬂ%—m*

100

Modality

B Flair BT1 ET1c ET2

Figure 90: Histogram correlation of transformed old slice and actual slice

124

For the different tested modalities, we have compared average values of the histogram Bhattacharyya

distance between old slice and actual slice versus transformed old slice and actual slice. The results are

presented in the Table 10 and visualized in the Figure 91.

actual and old original actual and transformed old original

Flair 0.483100397 0.447198571
T1 0.53928495 0.497564994
Tic 0.491556665 0.46384179

T2 0.456074306 0.432324678

Table 10: Comparison of average Bhattacharyya distances for different modalities

Average value of the histogram

Comparision of average histogram Bhattacharyya

distance using different modalities
T2
W actual and transformed old original

0,6
0,5
0,4
0,3
0,2
0,1

0

correlation

Flair Tl Tlc

Modality

W actual and old original

Figure 91: Comparison of average Bhattacharyya distances for different modalities

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram

Bhattacharyya distances between transformed old slice and actual slice. Results are visualized in the

Figure 92.

Correlation value

Bhattacharyya distance between histograms of transformed old slices and actual slices

1
0,9
0,8 8
°

0,7

g

| [e——

0,6
0,5

0,4

0,3

0,2
0,1

0
Modality

M Flair BT1 WTic @T2

Figure 92: Histogram correlation of transformed old slice and actual slice

125

9.6.6.2 Results for different configurations of the method

In the Figure 93 we can see ratio between cases when the correlation of the transformed (registered)
old slices and actual slices was higher (lower) than correlation of the input old slices data and actual
slices.

Ratio between cases where after the transformation we
reached higher correlation of the histograms of transformed
old slice and actual slice

100% 1508 1594 1766 VE)
20% 5966 5967 5795 6303
0%

flairw=15s=16 flairw=29s=16 flair w=39 s=16 flair w=15 s=8 flair w=15 s=16

Configuration

Count of slices

M correlation after the transformation is lower

B correlation after the transformation is higher

Figure 93: Ratio between cases where after the transformation we reached higher histogram
correlation of the transformed old slice with actual slices

For the different tested configurations, we have compared average values of the histogram correlations
between old slice and actual slice versus transformed old slice and actual slice. The results are
presented in the Table 11 and visualized in the Figure 94.

actual and old original actual and transformed old original
flair w=15s=16 0.719322477 0.744422397
flair w=29 s=16 0.719347649 0.740349981
flair w=39s=16 0.719347649 0.737536019
flair w=15s=8 0.719347649 0.745301948
flair w=15s=16 0.719347649 0.742616476

Table 11: Comparison of average histogram correlations for different configurations

In the Table 11 and in the Figure 94 we can see that different configurations returns very similar
results, but we also try to compute minimum, bottom quartile, median, top quartile and maximum of
the histogram correlation between transformed old slice and actual slice. Results are visualized in the
Figure 95. This confirms the previous findings, so we do not visualize intersection metric and
Bhattacharyya matric in this evaluation.

126

Comparision of average histogram correlations using
different configurations

0,9
0,8

0,7
0,6
0,5
0,4
0,3
0,2
0,1

flairw=15s=16 flairw=29s=16 flair w=39 s=16 flairw=15s=8 flair w=15s=16
Configurations

Average value of the histogram correlation
o

W actual and old original W actual and transformed old original
Figure 94: Comparison of average histogram correlations for different configurations

Correlation between histograms of transfromed old slices and actual slices
1
0,9
X
0,7
0,6
0,5 - 1 -
0,4 H?
0,3 H :
0,2
0,1
0

Correlation value

Modality

M flair w=15 s=16 M flair w=29 s=16 M flair w=39 s=16
[flair w=15s=8 M flair w=15 s=16
Figure 95: Histogram correlation of transformed old slice and actual slice

We have also created the histogram of correlations for the basic configuration of the method. In the
Figure 96 we can see comparison of histogram correlation distribution for old slice and actual slice
versus transformed old slice and actual slice.

127

Histogram of correlation using flair modality and basic
configuration of the method w=15, s=16
1800
1600

1400
1200

1000
80
60
" I I
20
0 m Eam II I i

<0.3 <0.35 <0.4 <0.45 <0.5 <0.55 <0.6 <0.65 <0.7 <0.75 <0.8 <0.85 <0.9 <=1

Value of the correlation

o O O O

Count of the cases in dataset

o

B correlation between histogram of actual and old slice
B correlation between histogram of actual and transformed old slice
Figure 96: Histogram of correlations (flair w=15, s=16)
9.6.7 Implementation

Non-rigid registration can process 3D volumes, but it computes optical flow slice by slice. Input for
the method are all examination of one patients = 3D data. Algorithms used in our proposed method of
non-rigid registration are from OpenCV library. Also NumPy library is used to store data and perform
simple operations.

9.6.7.1 Structure of the source code presented by a class diagram

NonRigid class is organized in logic package and used by the main function as is shown in the Figure
97. NonRigid class has one important parameter:

o registration_ type — Farneback or Lucas-Kanade method
And also implements several methods:
e process_volumes() — processes volumes form examinations from one patient

e process_frames_farneback() — processes all corresponding slices of the examination using
Farneback optical flow algorithm

e process_frames_lk() — processes all corresponding slices of the examination using Lukas-
Kanade optical flow algorithm

e warp_images() — warps images for the evaluation

e morph_images() — creates image for image morphing

128

o delaunay_triangulation() — computes triangles from the points

o apply_transfrom() — performs transformation between input triangles

- self.registration_type - self

- process_volumes(params) - main()
- process_frames_farneback(params)
- process_frames_lk(params)

- warp_image(params)

- morph_images(params)

- delaunay_triangulation(params)

- apply_transform(params)

Figure 97: Class diagram of non-rigid registration (UML notation)
9.6.7.2 Interaction of the objects presented by a sequence diagram

In the Figure 98 is shown sequence diagram of the non-rigid registration. Nonrigid is used by the
main. First we have to initialize NonRigid and set configurations of the method. Then the processing
of the volumes can start. Volumes are processed slice by slice using Farneback optical flow method or
Lukas-Kanade optical flow method — depending on the configuration. When corresponding points are
found, we can morph images for the visualization of the tumor changes.

m nonrigid_registration:NonRigid
init() '

process_volumes

v

registration_type is Fameback

process_frames_farneback()

registration_type is LK

process_frames_lk()

|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| morph_images()
|

|

|

< — — — —corresponding_points()|— — — —
|
|
|

Figure 98: Sequence diagram of non-rigid registration (UML notation)

129

9.6.8 Discussion

Results presented in tables Table 8 - Table 10 and figures Figure 86 - Figure 92 show that modality
can affect the results of the proposed method. We reached the best results using flair modality and just
behind it T2 modality. On the other side when we used T1 modality results were the worst. Number of
cases where we reached higher correlation after the transformation of the old slice is not such
influences by the modality. However, in the Figure 86 we can see that the best results was reached
using flair modality.

The results presented in the Table 11, Figure 94 and Figure 95 show that configuration of the method
cannot improve the correlation between the old slice + actual slice and transformed old slice + actual
slice. However, in the Figure 93 we can see that when we use smaller step for the computation of the
corresponding points, more old slices after the transformation reach higher value of the correlation
witch actual slices than other configurations.

In the Figure 96 we can see that using basic configuration of the method correlation between the old
frame and actual frame is higher after the transformation of the old frame, thus method work well for
our problem.

9.7 Visualization tool

We have created simple tool to visualize 3D volumes. The tool can process 3D data format and
visualize brain MRI scans in 2D and 3D view. It also provides simple interaction. We can switch
on/off the visualization of the tumor segmentation in both 2D and 3D views. Preparation of the
visualization consists of several steps as is shown in the Figure 99.

Input for the method are 3D
volumes and tumor masks

Create the slices

Create the 3D model

Render visualizations

Figure 99: Basic steps of the visualization

130

9.7.1 Creating the slices

In the first step, we have to create slices to visualize MRI volumes in 2D. All medical software
products usually use 3 different 2D views of 3D data based on the direction where we are looking
from:

e axial,
e coronal and
e sagittal.

Not all data have got good resolution in all directions, but we decided to show all views. In the Figure
100 is shown an example of 2D slices in all directions.

We are creating slices directly from the volume. When the user requests some slice (by interaction in
the tool) then we only scroll through them. We are using special matrixes, different for every direction,
to get slices from the volume:

1 0 0 x
e Matrix for axial view: m = 8 (1) 2 321 , where X, y, z is position of the volume center.
0 0 0 1
1 0 0 x
e Matrix for coronal view: m = 8 (1) (1) }z} , where X, y, z is position of the volume center.
0 0 0 1
0 0 -1 «x
e Matrix for sagittal view: m = (1) (1) 8 Z , where X, y, z is position of the volume center.
0 0 01

Figure 100: Axial, coronal and sagittal view of the brain MRI scan

9.7.2 Creating 3D model

If we want to create the 3D model of the brain and separately of the tumor we have to segment those
parts from the volume to the two independent arrays. Segmentation of the whole brain is simple

131

because background is black and everything other is brain, so we can simply use threshold greater than
zero to segment foreground — brain. To segment tumor from the volume we use mask of the tumors
from the datasets. Masks from the BRATS dataset contains 5 different labels, so we have to unit them
if we want to segment whole tumor.

Then we can use those segments as an input for the ray casting method which can create 3D model of
the brain and also of the tumor. Different settings are implemented in the visualization tool to visualize
whole brain, tumor only or location of the tumor in the brain. An example of the model created by ray
casting method tool is shown in the Figure 101, where we can see health brain with 7% opacity and
tumor with none opacity.

Ray casting algorithm is a simple algorithm which can generate 3D model from the volume. The
algorithm is based on the fact that we send a ray from some point. The ray crosses the volume at some
point and then the value of the point is rendered on the canvas.

Figure 101: 3D model of the brain

9.7.3 Rendering of the visualizations

Final step is initialization of the GUI based on the settings from the previous steps. Initial GUI of our
desktop application consists of four canvases and side panel with some setting options as is shown in
the Figure 102. Three canvases contain axial, coronal and sagittal 2D slices. Fourth canvas contains
3D model of the brain and tumor and three axes which show where in the brain are slices on the
canvases located.

132

User can translate and zoom the slices. When user scroll through the slices, axes in the 3D model
change depending on the direction of scrolling. Application window also contain two histograms — one
for health brain structures and second one for tumor structures.

In addition, application allow to display masks of the tumor on the slice views as is shown in the
Figure 103. User can also highlight tumor in the 3D model by choosing different settings on the side
panel. Figure 104 shows different views of the highlighted tumor in the 3D model.

© ™ Brain tumor detection

3D model Axiak: 89 3D model

@ tum infront [highlight ecolo
spacity: 10
& axes
Slices

Sagittal: 90 Coronal: 170

«

Health brain histogram (10 bins)

1

Tumor histogram (10 bins)

Figure 102: Initial window of the application

Axial: 89 30 model
Sagittal: 90 Coronal: 170

Figure 103: Visualization of the segmentation mask

133

Figure 104: Different ways to highlight the tumor in the 3D model

9.74 Implementation

We are using VTK library and its functions to create the windows and also interaction. It is only a
simple library — it can create only one independent window when we run the program. Thus, we
connected VTK with PyQt. Thanks this we were able to create more sophisticated layout of the GUI
using special widgets which permit to add simple VTK windows.

9.7.4.1 Structure of the source code presented in class diagram

Visualization is organized to the more classes in the visualization package. And also uses some
functions from Main class. Class diagram of the visualization is shown in the Figure 105.

Main class does not have any important parameters but implements several methods for user
interaction:

o showTumorVolume()— shows tumor model in the canvas
e showBrainVolume() — shows brain model in the canvas

e setHealthBrainOpacity() — changes opacity of the brain in 3D model

134

o setTumorOpacity() — changes opacity of the tumor in 3D model

o tumorToFront() — moves tumor in front of the brain in 3D model

e highlightTumor() — changes brightness of the tumor in 3D model

e redolorTumor() — changes collor of the tumor in 3D model

o showTumorMask() — shows mask of the tumor in the slices

o showAxes()— show axes in 3D model canvas
GUI class implements two methods:

o setupUi(), retranslateUi() which create GUI — window of the application:
Axe class implements one method:

e paintLine() — method paint line into the canvas of 3D model depending on the numbers of
visualized slices

Histogram class implements one method:
o makeHistogram() — computes histogram of input data and paint it to histogram canvas
Volume class has two important parameters and implements several methods:
e tumor — data to create 3D model of the tumor
e brain— data to create 3D model of the brain
e createTumorActor() - creates 3D model of the tumor
e createBrainActor() — creates 3D model of the brain
e volumeRender() — renders volume to the canvas
Slices class implements several methods:
e getBrainSlices() - creates slices from 3D data
o getTumorSlices() — creates slices of the masks of tumors from 3D data

e setlnteraction() and addMouseMoveCallback() - handle additional interaction to scroll thought
slices

135

visualization

- self - self

- paintLine() - main()

- __init__(params)

- showTumorVolume()
Gui - showBrainVolume()

- setHealthBrainOpacity()
- self - setTumorOpacity()

- setupUi() - tumorToFront()

- retranslateUi() - highlightTumor()

- recolorTumor()

- showTumorMask()

Histogram - showAxes()

- self

- makeHistogram(params)

Slices

- self

- getBrainSlices(params)

- getTumorSlices(params)

- setInteraction(params)

- mouseMoveCallback(params)

Volume

- self.tumor
- self.brain

- createTumorActor(params)
- createBrainActor(params)
- volumeRender(params)

Figure 105: Class diagram of visualization (UML notation)

9.7.4.2 Interaction of the objects presented by the sequence diagram

In the Figure 106 is shown sequence diagram of the visualization. When user run the program main
function starts and process all data using the method. Then it is time for the visualization. At first we
create GUI elements for the user interface (window, canvases, labels, buttons). In the next step we
crate 3D model of the brain and tumor for 3D visualization of the volume. We also create slices in
axial, coronal and sagittal direction for both, brain and tumor again. In this step we have to set
interaction too. It allows user scroll through the slices in the GUL Then we can create axes for the
canvas with 3D model visualization. The axes show positions of the slices in the brain. Finally, we
create histogram of health brain and histogram of tumor. The result is a GUI returned to the user.

136

volume: histogram:
axe:Axe .
Volume Histogram

| | | | |

| | | | |

: : init()—bl—init() : : : :

setupUi
		Uiy			
		retranslate Ui()l			
I I <gui_elements: I I I I					
		o			
	I innit()				
I I I createBrainActor(I I I					
		L			
	<~ — — —brain_actor— — — —				
	———create TumorActor(
		[
	<— — — —tumor_actor- — — —				
		L nieh)			
innit!					
	[0			
	———getBrainSlices()				
: : Ik— —————— : brain_slices— — — — — — — : :					
		!)			
	T —getTumo rSlices(
	ke ————— —ltumor_slicess —l— — — — —				
				setInteraction()	
				I	
I I I I I loop I I					
				—	
				direqtions	
	[[init() [
					S
					paintLine()
			L [
	I T 1 init() ‘				
			- i		
	I T make Histogram() '				
1					
: : :<— —————— : —————— blmin_histogram ————————————					
			[
	I T makeHistogram(}				
			!		
	c————-- —————- tumor_histogram— — — — — — — — — — — —				
<-———-——-- GUF——————— u | | |
1 1 1 1

Figure 106: Sequence diagram of visualization (UML notation)

137

9.8 Implementation in general

9.8.1 Used development tools

Sources are written in Python 3.5 programming language and several libraries are used for proposed
methods. Preprocessing use SimpleITK and NumPy— images and volumes are represented as arrays
and performed operations are fast. Tested segmentation method based on convolutional neural
networks uses Tensorflow and Keras libraries. Both registration methods use algorithms from
OpenCV library. Finally, visualization tool is implemented using VTK, to render visualizations, and
PyQT with plugin for VTK, to provide GUI. Matplotlib and Pandas are used for evaluation.

9.8.2 Structure of the source code presented by a class diagram

Source code is organized to the classes and packages as is shown in the Figure 107. Main class
contains main function and basic functions for visualization — to set visibilities, opacities of the brain
and tumor and also to visualize axes.

Logic package contains classes for preprocessing, rigid and non-rigid registration and also for reading
data from disk. Some source codes are also used in the scripts for testing and dataset generating, but
they are not involved in the class diagram — there is only collapsed scripts package. Logic package
consists of these classes:

e Reading class is used by the main function, but mainly it is used by the scripts for testing and
dataset generating. It reads one examination of the patient stored on the disk in specific
hierarchy.

e Preprocessing class preprocess the volumes and was explained in detail in the chapter 9.3.
Preprocessing is used in the main function to preprocess volumes and also in mentioned
scripts.

e Rigid class implements functions for rigid registration of the slices and was explained in the
chapter 9.5. It was not necessary to use rigid registration in main, because we were working
with registered data, so it is used only by the scripts for testing.

e NonRigid class consists of methods for non-rigid registration of the volumes. It can process
whole volume, but it works slice by slice. It is explained in detail in the chapter 9.6.

Object package contains only two classes which represent some objects:

e Examination class stores all data from one patient examination — name, modalities and results
of non-rigid registration.

e Volume class stores volumetric data and basic information from the data such as origin,
spacing, size and direction.

Visualization package contains all important classes for visualization tool — GUI. They are explained
in detail in chapter 9.7, but in general:

e Gui class generates basic layout of the visualization tool.

138

e Slices class implements function for generating 2D slices from 3D volume in axial, sagittal
and coronal view and also functions for the interaction which allows to scroll through slices.

o Volume class implements function for generating 3D model of the brain from volumetric data.

e Histogram class computes and paints the visualization of the histogram from the data (for the
brain part and tumor part)

e Axe class contains methods for visualizing and moving axes in the 3D view depending on
number of slices displayed in all 2D slice views.

Reader

- self

- read(params)

- __find_files(params)

- __find_path_to(params)
- __load_data(params)

Preprocessing

- self.top_percentile
- self.bottom_percentile

- __init__(params)

- process_data(params)

- remove_percentile(params)
- normalize(params)

- hist_match(params)

Rigid

- self.registration_mask_type
- self.key_point_detector
- self.key_point_descriptor

- self

- main()

- __init__(params)

- showTumorVolume()
- showBrainVolume()

- showVolume() |
- setHealthBrainOpacity()

- setTumorOpacity()
- tumorToFront()

- highlightTumor()

- recolorTumor()

- showAxes()

- showTumorMask()

|

Examination

- self.path
- self.name
- self.mri_t1

- rigid_registration(params)

- __create_mask_for_registration(param)
- __detect_keypoints_SIFT(params)

- __detect_keypoints_SURF(params)

- __detect_keypoints_ORB(params)

- __detect_keypoints_FAST(params)

- __calculate_descriptors_SIFT(params)
- __calculate_descriptors_SURF(params)
- __calculate_descriptors_SIFT(params)
- __get_matches(params)

- __get_good_matches(params)

NonRigid

- self.registration_type

- process_volumes(params)

- process_frames_farneback(params)
- process_frames_|lk(params)

- warp_image(params)

- morph_images(params)

- delaunay_triangulation(params)

- apply_transform(params)

- self.mri_tlc

- self.mri_t2

- self.mri_flair

- self.warped_data
- self.own_points
- self.next_points

- self.origin

- self.size

- self.spacing
- self.direction
- self.data

visualization

Axe

- self

- paintLine()

Gui

- self

- setupUi()
- retranslateUi()

Histogram

- self

- makeHistogram(params)

Slices

- self.modelWindow
- self.modelRenderer

- getBrainSlices(params)

- getTumorSlices(params)

- setInteraction(params)

- mouseMoveCallback(params)

Volume

- self.tumor
- self.brain

- createTumorActor(params)
- createBrainActor(params)
- volumeRender(params)

Figure 107: Class diagram in general (UML notation)

9.8.3 Interaction of the objects presented by a sequence diagram

In the Figure 108 is shown sequence diagram. After the reading the examination of the patient, data
are preprocessed using preprocessing methods mentioned in the chapter 9.5. First examination is used
as target and all next are reference examiations. We have got rigidly registered data, but if we did not

139

have then all examination would be registered using rigid registration methods as is explained in the
chapter 9.5. Then to track the tumor changes, we have to register data non rigidly — find corresponding
points between the examinations. Thus, we use methods of the non-rigid registration mentioned in
chapter 9.6. Finally, we can visualize data using visualization tool as is explained in the chapter 9.7.
This return the GUI to the user.

[
w preprocessing: rigid_registration nonrigid_registration: mv form:Main
m Preprocessing :RigidRegistrtion NonRigidRegistrtion V- .
I I I I
: run()—b—: init()—'I : :
: get_template() I : :
: :< —preprocessed_template— 1 : :
| ! } 4 |
loop		
examinlation[1:]		
: I‘—pmoess_data()—‘ : :		
: :< — -preprocessed_data— —	: :	
I I n I I		
I T init() I I		
b rigid_registration()		
N ede — —		
< waiped		
		(
I f init () f		
I + process_volumes()—		
: :< ——————————— —— correspondin&points—: —————————————	:	
t t +—init () t		
K-——————- F——————————— F——————— GUF—F———————————— dm—————— e ——		
Figure 108: Sequence diagram in general

140

10 Conclusion

The main goal of the work was to develop methods appropriate for tracking brain and tumor changes
caused by the tumor growth. To track the tumor changes, we have to segment tumor, register different
examination from one patient and register changes. We proposed a method for tumor tracking. It
consists from five steps.

First step is preprocessing of the data. This is important, because examination from one patient have
different ranges and different brightness. We used histogram matching algorithm to balance the
brightness of the examinations from one patient and the results are very promising.

Second and important step is tumor segmentation method. We have to segment tumor to be able to
track tumor changes and changes of the health brain. In our approach we decided to re-implement one
of the state of the art method. Selected method was based on cascaded convolutional neural networks.
However, during the testing we did not reach satisfactorily results, so in the next steps we decide to
use tumor masks from the datasets. Boundaries of the tumor are crucial for correctness of the rigid
registration and can be very helpful for non-rigid registration.

Third step is rigid registration of the volumes from different examinations but from one patient.
During the rigid registration we have to compute without the tumor, because as time flows, the tumor
changes. We used basic flow of the registration which consists of several steps: creating mask for
registration, finding key points, computing feature vectors, finding matches between the vectors,
filtration of the matches, finding matrix for transformation and transforming data finally. Proposed
method can process 2D slices. We tested the method on the dataset which contains registered and
warped 2D slices created from Siemens dataset. We tested different configurations of the method,
using different segmentation masks, different key point detectors and feature extractors. Results are
promising. The best results we reached using registration mask of the health brain parts, ORB key
point detector and descriptor.

Enlargement of the tumor causes also changes of the health structures of the brain, because they are
threaded out by the tumor. This causes irregular changes of the brain so this is perfect task for fourth
step — non-rigid registration. We proposed method based on the optical flow for this problem. We
tested two different algorithms: Farneback and Lukas-Kanade, but Farneback algorithm worked better
against the Lukas-Kanade, because Farneback returns dense flow. We tested the method on the
BRATS 2015 dataset using only patients with more than one examination. During the valuation we
had to transform one examination non-rigidly to other one to compute histogram correlations between
the examinations. We used Delaunay triangulation and affine transformation. We tested the impact of
different modalities and different input parameter of the Farneback algorithm. We reached the best
results using Flair modality and comparatively T2. However, different configuration of the Farneback
algorithm did not have a big impact on the non-rigid registration. Only usage of the smaller step,
during the computation of the corresponding points from the flow, helped to get higher correlation
after the transformation in more cases than other configurations.

Final step is visualization. For the visualization of the tumor changes we implemented three different
methods: painting the tracks, HSV image of the changes and image morphing. We have also created a
simple visualization tool where user can see volumetric data in axial, coronal and sagittal direction and
it also cab create 3D model of the brain and tumor using ray casting algorithm.

141

142

References

[1] ACHANTA, R. et al. SLIC Superpixels. In InfoScience EPFL [online]. 2010. [cit. 2015-06-22]. .
Dostupné na internete: <http://infoscience.epfl.ch/record/149300>.

[2] BAJCSY, R. - KOVACIC, S. Multiresolution elastic matching. In Computer Vision, Graphics,
and Image Processing [online]. 1989. Vol. 46, no. 1, s. 1-21. [cit. 2017-05-10]. . Dostupné na
internete: <http://linkinghub.elsevier.com/retrieve/pii/S0734189X89800143>.

[3] BAUER, S. et al. Fully Automatic Segmentation of Brain Tumor Images Using Support Vector
Machine Classification in Combination with Hierarchical Conditional Random Field Regularization.
In [online]. 2011. s. 354-361. Dostupné na internete: <http://link.springer.com/10.1007/978-3-642-
23626-6_44>.

[4] BAY, H. et al. Surf: Speeded up robust features. In Computer vision—ECCV . 2006. s. 404—417. .

[5] BEUCHER, S. - LANTUEJOUL, C. [online]. .1979. Dostupné na internete:
<http://www.citeulike.org/group/7252/article/4083187>.

[6] BOYKOV, Y.Y. - JOLLY, M.-P. Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001 [online]. 2001. Vol. 1, no. July, s. 105—112. Dostupné na internete:
<http://ieeexplore.ieee.org/document/937505/>.

[7] BRADSKI, G. - KAEHLER, A. Learning OpenCV: Computer Vision with the OpenCV Library
[online]. . First. vyd. USA: O’Reilly Media, 2008. 555 s. ISBN 978-0-596-51613-0.

[8] BRAIN, M. - IMAGE, T. Multimodal Brain Tumor Image Segmentation Benchmark : “ Change
Detection ”. In Multimodal Brain Tumor Image Segmentation (BRATS) Challenge, MICCAI . 2016. .

[9] CANDEMIR, S. et al. Graph Cut Based Automatic Lung Boundary Detection in Chest
Radiographs. In . 2012. s. 7-9. .

[10] COHEN, L.D. Contour Models. In CVGIP: Graphical Models and Image Processing . 1991.
Vol. 53, no. 2,s. 211-218. .

[11] COLLIGNON, A. et al. Automated multi-modality image registration based on information
theory. In /4th International Conference on Information Processing in Medical Imaging . 1995.
s.263-274. .

[12] CRIMI, A. et al. Brainlesion : Glioma , Multiple Sclerosis ,. . 2016. ISBN 9783319555232,

[13] CRIMI, A. et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
In MICCAI 2015 . [s.1.]: Springer, 2015. s. 1-122. .

[14] CRUM, W.R. et al. Non-rigid image registration: theory and practice. In The British Journal of
Radiology [online]. 2004. Vol. 77, no. suppl_2, s. S140-S153. Dostupné na internete:
<http://www.birpublications.org/doi/10.1259/bjr/25329214>.

[15] DIAZ, 1. - BOULANGER, P. Atlas to patient registration with brain tumor based on a mesh-free
method. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, EMBS . 2015. Vol. 2015-Novem, s. 2924-2927. .

[16] ELNAKIB, A. et al. Multi Modality State-of-the-Art Medical Image Segmentation and

143

Registration Methodologies [online]. . 2011. 1-39 s. ISBN 978-1-4419-8203-2.

[17] FERRANTE, E. - PARAGIOS, N. Slice-to-volume medical image registration: A survey. In
Medical Image Analysis [online]. 2017. Vol. 39, s. 101-123. Dostupné na internete:
<http://dx.doi.org/10.1016/j.media.2017.04.010>.

[18] FUERST, B. et al. Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D
LC2 Metric. In Medical Image Analysis [online]. 2014. Vol. 18, no. 8, s. 1312—1319. Dostupné na
internete: <http://dx.doi.org/10.1016/j.media.2014.04.008>.

[19] GLASBEY, C.A. AND HORGAN, G.W. Chapter 4 Segmentation. In Image Analysis for the
Biological Sciences . 1995.s. 1-31. .

[20] GOODFELLOW, L. et al. Deep Learning [online]. . [s.1.]: MIT Press, 2016. .

[21] GOOYA, A. et al. An EM algorithm for brain tumor image registration: A tumor growth
modeling based approach. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Workshops [online]. 2010. s. 39—46. Dostupné na internete:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5543440>.

[22] GRAU, V. et al. Improved Watershed Transform for Medical Image Segmentation Using Prior
Information. In IEEE Transactions on Medical Imaging [online]. 2004. Vol. 23, no. 4, s. 447-458.
Dostupné na internete: <http://iecexplore.ieee.org/document/1281998/>.

[23] HAO, X.H.X. et al. A novel region growing method for segmenting ultrasound images. In 2000
IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.OOCH37121) .
2000. Vol. 2, no. November, s. 1-4. .

[24] HAVAEI M. et al. Brain tumor segmentation with Deep Neural Networks. In Medical Image
Analysis [online]. 2017. Vol. 35, s. 18-31. Dostupné na internete:
<http://dx.doi.org/10.1016/j.media.2016.05.004>.

[25] HIEN, N.M. - BINH, N.T. 2016. .

[26] HUANG, Y.L. et al. Level set segmentation for breast tumor in 2-D sonography. In
International Journal of Computer Assisted Radiology and Surgery . 2006. Vol. 1, no. SUPPL. 7,
s. 63-65. .

[27] IVINS,J.-PORRILL,J. EVERYTHING YOU ALWAYS WANTED (BUT WERE AFRAID
TO ASK). In Vision Research [online]. 2000. Vol. 86, no. July 1993, s. 35. Dostupné na internete:
<http://www-mal.upc.es/~susin/files/Snakes Aivru86¢.pdf>.

[28] JOHNSON, H.J. et al. The ITK Software Guide Book 1: Introduction and Development
Guidelines Fourth Edition Updated for ITK version 4.7. In [online]. 2015. Dostupné na internete:
<https://itk.org/>.

[29] KOCH, G. et al. Siamese Neural Networks for One-Shot Image Recognition. In Proceedings of
the 32 nd International Conference on Machine Learning . 2015. Vol. 7, no. 11, s. 956-963. .

[30] KONONENKO, I. Machine learning for medical diagnosis: history, state of the art and
perspective. In Artificial intelligence in medicine . 2001. Vol. 23, no. 1, s. 89-109. .

[31] KOTSIANTIS, S.B. et al. Machine learning: A review of classification and combining
techniques. In Artificial Intelligence Review . 2006. Vol. 26, no. 3, s. 159-190. .

[32] KRIESEL, D. A Brief Introduction to Neural Networks. In Retrieved August [online]. 2005.

144

s. 244. Dostupné na internete: <http://www.dkriesel.com/en/science/neural networks>.

[33] KWON, D. et al. PORTR: Pre-operative and post-recurrence brain tumor registration. In /EEE
Transactions on Medical Imaging . 2014. Vol. 33, no. 3, s. 651-667. .

[34] KWONG, K.K. et al. Dynamic magnetic resonance imaging of human brain activity during
primary sensory stimulation. In Proceedings of the National Academy of Sciences [online]. 1992.
Vol. 89, no. 12, s. 5675-5679. [cit. 2014-12-23]. . Dostupné na internete:
<http://www.pnas.org/content/89/12/5675.short>.

[35] KYBIC, J. Elastic image registration using parametric deformation models. In Swiss Federal
Institute of Technology Lausanne [online]. 2001. Vol. 2439, s. 182. Dostupné na internete:
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.4447 &rep=rep1 &type=pdf%5Cnpapers
2://publication/uuid/9089267B-7045-48E6-85E2-336D677DA195>.

[36] KYRIACOU, S.K. et al. Nonlinear elastic registration of brain images with tumor pathology
using a biomechanical model [MRI]. In IEEE Transactions on Medical Imaging [online]. 1999.
Vol. 18, no. 7, s. 580-592. Dostupné na internete: <http://ieeexplore.ieee.org/document/790458/>.

[37] LECUN, Y. et al. Gradient-based learning applied to document recognition. In /EE . 1998. .

[38] LOWE, D.G. Distinctive image features from scale-invariant keypoints. In International journal
of computer vision . 2004. Vol. 60, no. 2, s. 91-110. .

[39] MANG, A. et al. A model of tumour induced brain deformation as bio-physical prior for non-
rigid image registration. In Proceedings - International Symposium on Biomedical Imaging . 2011.
s. 578-581. .

[40] MASOQD, S. et al. A Survey on Medical Image Segmentation. In Current Medical Imaging
Reviews [online]. 2015. Vol. 11, no. 1, s. 3—14. Dostupné na internete:
<http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-
4056&volume=11&issue=1&spage=3>.

[41] MENZE, B. et al. Multimodal Brain Tumor Segmentation. In Proc MICCAI-BRATS
(Multimodal Brain Tumor Segmentation Challenge) . 2013. .

[42] MENZE, B.H. et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
In IEEE Transactions on Medical Imaging . 2015. Vol. 34, no. 10, s. 1993-2024. .

[43] MENZE, B.H. - JAKAB, A. Boston, Massachusetts, 2014. .

[44] NG, H.P. et al. Medical Image Segmentation Using K-Means Clustering and Improved
Watershed Algorithm. In 2006 IEEE Southwest Symposium on Image Analysis and Interpretation
[online]. 2006. no. April 2014, s. 61-65. Dostupné na internete:
<http://ieeexplore.ieee.org/document/1633722/>.

[45] NIELSEN, M. Neural networks. In [online]. 2017. Dostupné na internete:
<http://neuralnetworksanddeeplearning.com/chap6.html>.

[46] OSOWSKI, S. et al. Support Vector Machine-Based Expert System for Reliable Heartbeat
Recognition. In IEEE Transactions on Biomedical Engineering . 2004. Vol. 51, no. 4, s. 582-589. .

[47] POLAK, M. Motion-Robust MRI through Real-Time Motion Tracking and Retrospective Super-
Resolution Volume Reconstruction. In . 2013. s. 1-12. .

[48] RAO, V. et al. Multimodal Brain Tumor Image Segmentation Benchmark. In Multimodal Brain

145

Tumor Image Segmentation (BRATS) Challenge, MICCAI [online]. 2015. Vol. 2015, s. 56. Dostupné
na internete: <http://people.csail.mit.edu/menze/papers/proceedings_miccai_brats_2015.pdf>.

[49] RIVAZ, H. et al. Automatic deformable MR-ultrasound registration for image-guided
neurosurgery. In /IEEE Transactions on Medical Imaging . 2015. Vol. 34, no. 2, s. 366-380. .

[50] ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in the brain. In Psychological Review [online]. 1958. Vol. 65, no. 6, s. 386—408.
Dostupné na internete: <http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519>.

[51] ROSTEN, E. - DRUMMOND, T. Machine learning for high-speed corner detectionMachine
learning for high-speed corner detection. In Computer vision—ECCV . 2016. s. 430-443. .

[52] RUBLEE, E. et al. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision . 2011. s. 2564-2571. .

[53] SANAKAL, R. - JAYAKUMARI, S.T. Prognosis of Diabetes Using Data mining Approach-
Fuzzy C Means Clustering and Support Vector Machines. In International Journal of Computer
Trends and Technology . 2014. Vol. 11, no. 2, s. 94-98. .

[54] SINCLAIR, D.A. A 3D Sweep Hull Algorithm for computing Convex Hulls and Delaunay
Triangulation . In . .

[55] SINHA, S. Graph Cut Algorithms in Vision, Graphics and Machine Learning An Integrative
Paper. In UNC Chapel Hill [online]. 2004. Dostupné na internete:
<http://cs.unc.edu/~ssinha/pubs/SinhaGraphCutsIP2004.pdf>.

[56] SOILLE, P. - VINCENT, L.M. Determining watersheds in digital pictures via flooding
simulations. In KUNT, M.Ed. [online]. 1990. s. 240-250. [cit. 2017-05-09]. Dostupné na internete:
<http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=951210>.

[57] STRICKLAND, R.N. Image-Processing Techniques for Tumor Detection [online]. . [s.1.]: CRC
Press, 2002. 384 s. ISBN 0203909356.

[58] SIKUDOV, E. et al. Pocitacové videnie. . 1. vyd. Praha: Wikina, 2011. 397 s. ISBN 978-80-
87925-07-2.

[59] TOENNIES, K.D. Guide to Medical Image Analysis: Methods and Algorithms. . 2012. 98-101 s.
ISBN 978-1-4471-2751-2.

[60] TOMAS-FERNANDEZ, X. - WARFIEL, S.K. Multimodal brain tumor segmentation. In Proc
MICCAI-BRATS (Multimodal Brain Tumor Segmentation Challenge) [online]. 2012. s. 1-73.
Dostupné na internete: <http://www.imm.dtu.dk/projects/BRATS2012>.

[61] WANG, G. etal. [online]. .2017. Dostupné na internete: <http://arxiv.org/abs/1709.00382>.

[62] WU, M.-N. et al. Brain Tumor Detection Using Color-Based K-Means Clustering Segmentation.
In Third International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP 2007) [online]. 2007. no. December 2007, s. 245-250. Dostupné na internete:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4457697>.

[63] XIAOQO, Y. et al. User-friendly freehand ultrasound calibration using Lego bricks and automatic
registration. In International Journal of Computer Assisted Radiology and Surgery . 2016. Vol. 11,
no. 9,s. 1703-1711. .

[64] YAVARIABDI, A. et al. Mapping and characterizing endometrial implants by registering 2D

146

transvaginal ultrasound to 3D pelvic magnetic resonance images. In Computerized Medical Imaging
and Graphics [online]. 2015. Vol. 45, s. 11-25. Dostupné na internete:
<http://dx.doi.org/10.1016/j.compmedimag.2015.07.007>.

[65] YUSHKEVICH, P.A. et al. User-guided 3D active contour segmentation of anatomical
structures: Significantly improved efficiency and reliability. In Neurolmage . 2006. Vol. 31, no. 3,
s. 1116-1128. .

[66] ZACHARAKI, E.I et al. Registration of brain images with tumors: towards the construction of
statistical atlases for therapy planning. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE
International Symposium on . 2006. s. 197-200. .

[67] ZEILER, M.D. - FERGUS, R. Visualizing and understanding convolutional networks. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) . 2014. Vol. 8689 LNCS, no. PART 1, s. 818-833. .

[68] ZIKIC, D. et al. Decision forests for tissue-specific segmentation of high-grade gliomas in
multi-channel MR. In Medical Image Computing and Computer-Assisted Intervention (MICCAI)
[online]. 2012. Vol. 15, no. Pt 3, s. 369-76. Dostupné na internete:
<http://link.springer.com/10.1007/978-3-642-33454-
2_46%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23286152>.

[69] ZITOVA, B. - FLUSSER, J. Image registration methods: A survey. In Image and Vision
Computing . 2003. Vol. 21, no. 11, s. 977-1000. .

[70] 5.3 Experiments. In [online]. [cit. 2017-12-07]. Dostupné na internete:
<https://www.cs.sfu.ca/~stella/papers/blairthesis/main/node31.html>.

[71] ANTs N4ITK bias correction. In [online]. Dostupné na internete:
<https://github.com/ANTsX/ANTs/blob/master/Examples/N4BiasFieldCorrection.cxx>.

[72] BRATS 2015 dataset repository. In [online]. Dostupné na internete:
<https://www.smir.ch/BRATS/Start2015>.

[73] Documentation | VTK. In [online]. [cit. 2017-05-08]. Dostupné na internete:
<http://www.vtk.org/documentation/>.

[74] FAST Algorithm for Corner Detection — OpenCV 3.0.0-dev documentation. In [online]. [cit.
2017-05-08]. Dostupné na internete: <http://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html>.

[75] graph cut. In [online]. [cit. 2017-12-07]. Dostupné na internete: <http://cybertron.cg.tu-
berlin.de/xiwang/imgs/visapp2014.png>.

[76] Introduction to SURF (Speeded-Up Robust Features) — OpenCV 3.0.0-dev documentation. In
[online]. [cit. 2017-05-08]. Dostupné na internete: <http://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html>.

[77] MICCAI 2016 - Day 2 - Keynote - Yoav Medan - YouTube. In [online]. [cit. 2017-05-08].
Dostupné na internete:

<https://www.youtube.com/watch?v=zV QCKrMXrnQ&index=6&list=PLsrNuu93xWxUDbZ9h5NLI
0Q7ax5HZYTen>.

[78] OpenCV: Introduction to SIFT (Scale-Invariant Feature Transform). In [online]. [cit. 2017-05-
08]. Dostupné na internete: <http://docs.opencv.org/3.1.0/da/df5/tutorial py sift intro.html>.

147

[79] ORB (Oriented FAST and Rotated BRIEF) — OpenCV 3.0.0-dev documentation. In [online].
[cit. 2018-04-28]. Dostupné na internete: <https://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html>.

[80] region growing. In [online]. [cit. 2017-12-07]. Dostupné na internete:
<https://www.mathworks.com/matlabcentral/mlc-
downloads/downloads/submissions/35269/versions/2/screenshot.jpg>.

[81] repository vitalab / VITALabAI_ public / source / VITALabAl / model / brats — Bitbucket. In
[online]. 2017. [cit. 2017-12-11]. Dostupné na internete:
<https://bitbucket.org/vitalab/vitalabai_public/src/19cd5eba023d8c75¢2dcb75d77330fb00c24ce99/VI
TALabAl/model/brats/?at=master>.

[82] SVM. In [online]. [cit. 2017-12-07]. Dostupné na internete:
<https://www.analyticsvidhya.com/wp-content/uploads/2015/10/SVM_1.png>.

[83] web page of Asimov institute. In [online]. [cit. 2017-12-08]. Dostupné na internete:
<http://www.asimovinstitute.org/neural-network-zoo/>.

[84] Welcome to opencv documentation! — OpenCV 2.4.13.2 documentation. In [online]. [cit. 2017-
05-08]. Dostupné na internete: <http://docs.opencv.org/2.4/index.html>.

148

Appendix A: Technical documentation

All source codes were developed in Python and also OpenCV, SimplelTK and other Python libraries
were used. Visualization of the volumetric data was developed using VTK library, PyQt and PyQt
plugin for VTK.

Preprocessing

Preprocessing can process 3D or 2D data, input for the preprocessing are reference and target data.
Preprocessing is initialized with target data. Target is normalized and some percentile of the data can
be removed — see Listing 1 (target = template).

Listing 1: Initialization of preprocessing

def init (self, template=None, remove percentile=False, bottom percentile=5,
top percentile=99, ignore zero values=False):

self.ignore zero values = ignore zero values
self.bottom percentile = bottom percentile
self.top percentile = top percentile
self.rem percentile = remove percentile

if self.ignore zero values:

tmp = np.ma.masked where (template == 0, template)
tmp = tmp.compressed/()

else:
tmp = None

if template is not None:
if self.rem percentile:
template = self.remove percentile(data=template, data info=tmp,
bottom percentile=self.bottom percentile,
top percentile=self.top percentile)
template = self.normalize (data=template)

self.template = template

Then the reference image can be processed. Reference image is normalized and the same percentile
can be removed from the data, but reference data are also matched to the target using histogram
matching algorithm — see Listing 2.

Listing 2: Function for processing the reference data

def process_data(self, data, path=None):

if self.ignore zero values:
ignore black backround - zero values
tmp = np.ma.masked where(data == 0, data)
tmp tmp.compressed ()

else:
tmp

None

if self.rem percentile:

data = self.remove percentile(data=data, data info=tmp,
bottom percentile=self.bottom percentile, top percentile=self.top percentile)
data = self.normalize (data=data)

data = self.hist match(template=self.template, data=data)

return self.normalize (data)

In the preprocessing some help functions are wused: normalize() function — Listing

remove_percentile() function — Listing 4 and hist_match() function — Listing 5.

Listing 3: Normalization of the data

def normalize(self, data):
new min = np.amin (data)
new_max = np.amax (data)

normalized = ((data - new min) / (new max - new min)) * 255 #65535

return np.uint8 (normalized)

Listing 4: Remove some percentile from the data

def remove percentile(self, data, data info=None, bottom percentile=10, top percentile=99):

if data info is not None:
new min = np.percentile(data info, bottom percentile)
new max = np.percentile(data info, top percentile)
else:
new min = np.percentile(data, bottom percentile)
new max = np.percentile(data, top percentile)

data[np.where(data < new min)] = new min
data[np.where (data > new max)] = new ma

return data

Listing 5: Histogram matching of the target and reference data

def hist _match(self, template, data):
oldshape = data.shape
data = data.ravel()
template = template.ravel ()

get the set of unique pixel values and their corresponding indices and

counts

s_values, bin idx, s _counts = np.unique(data, return inverse=True,
return counts=True)

t values, t counts = np.unique(template, return counts=True)

take the cumsum of the counts and normalize by the number of pixels to
get the empirical cumulative distribution functions for the data and
template images (maps pixel value --> quantile)

s_quantiles = np.cumsum(s_counts) .astype (np.float64)
s_quantiles /= s_quantiles[-1]
t quantiles = np.cumsum(t counts) .astype (np.float64)

t quantiles /= t quantiles[-1]
interpolate linearly to find the pixel values in the template image
that correspond most closely to the quantiles in the data image

interp t values = np.interp(s_quantiles, t quantiles, t values)

return interp t values[bin idx].reshape (oldshape)

Rigid registration

Input for the

listings show

In the first step, mask for registration is created. There are two different types of masks. One is a
subtraction of the mask of the tumor segmentation from the mask of the brain. Mask of the brain is
created using threshold method. Second one is mask of the cranium created from mask of the brain

algorithm are two 2D images generated from volumes of magnetic resonance test in axial
direction. One of the images is reference and next image is input which will be registered. Next

important steps of the algorithm.

using find contours algorithm. See Listing 6.

Listing 6: Create mask for registration

creation o

f mask for area which we will work with in registration process

def _ create mask for registration(self, image, segmentation mask, idx, path):

th
_r t

if s

reshold input image first to get mask of brain
hresholded image = cv2.threshold(image, 10, 255, cv2.THRESH BINARY)

elf.registration mask type is 'health brain':

reduction of mask to remove margins of brain

kernel = np.ones((5, 5), np.uint8)

thresholded image = cv2.dilate(thresholded image, kernel=kernel, iterations=l)
kernel = np.ones((15, 15), np.uint8)

thresholded image = cv2.erode (thresholded image, kernel=kernel, iterations=1l)
substract tumor from mask

result = thresholded image - segmentation mask

_, result = cv2.threshold(result, 250, 255, cv2.THRESH BINARY)

elif

self.registration mask type is 'cranium':

kernel = np.ones((10, 10), np.uint8)

thresholded image = cv2.dilate(thresholded image, kernel=kernel, iterations=l)
kernel = np.ones((7, 7), np.uint8)

thresholded image = cv2.erode (thresholded image, kernel=kernel, iterations=1)

_, contours, = cv2.findContours(thresholded image, cv2.RETR EXTERNAL,

if s

retu

cv2.CHAIN APPROX NONE)
result = np.zeros_like (image)
cv2.drawContours (result, contours, -1, 255, 20)

elf.show results:

rn result

In the next step we can detect the key points using SIFT, SURF, ORB or FAST key point detector

(Listing 7) and compute feature vectors using SIFT, SURF or ORB descriptors (Listing 8).

Listing 7: Detect the key points using SIFT, SURF or FAST detector

detect keypoint using SIFT detector
def _ detect keypoints_SIFT (self, image, registration _mask, idx, path):

sift
keyp
if s

retu

= cv2.xfeatures2d.SIFT create ()

oints = sift.detect (image, registration mask)
elf.show_results or self.save results:

self. panit keypoints(image, keypoints, idx, path)
rn keypoints

detect keypoint using SURF detector
def _ detect keypoints_SURF (self, image, registration _mask, idx, path):

surf
keyp
if s

retu

detect

= cv2.xfeatures2d.SURF create (400)

oints = surf.detect (image, registration mask)
elf.show results or self.save results:

self. panit keypoints(image, keypoints, idx, path)
rn keypoints

keypoint using ORB detector

def _ detect keypoints ORB(self, image, registration_mask, idx, path):
orb = cv2.0RB create()
keypoints = orb.detect (image, registration mask)
if self.show results or self.save results:
self. panit keypoints(image, keypoints, idx, path)
return keypoints

detect keypoint using FAST detector
def _ detect keypoints_FAST (self, image, registration mask, idx, path):
fast = cv2.FastFeatureDetector create()
keypoints = fast.detect (image, registration mask)
if self.show results or self.save results:
self. panit keypoints(image, keypoints, idx, path)
return keypoints

Listing 3: Calculate descriptors (feature vectors) using SIFT or SURF

compute descriptors using SIFT
def _ calculate_descriptors SIFT(self, image, keypoints):
sift = cv2.xfeatures2d.SIFT create()
, descriptors = sift.compute (image, keypoints)

return descriptors

compute descriptors using SURF

def _ calculate descriptors_ SURF (self, image, keypoints):
surf = cv2.xfeatures2d.SURF create (400)
_, descriptors = surf.compute(image, keypoints)
return descriptors

compute descriptors using ORB
def _ calculate_descriptors ORB(self, image, keypoints):
orb = cv2.0RB create()
, descriptors = orb.compute (image, keypoints)

return descriptors

Then feature vectors can be matched using brute force matcher. See Listing 8.

Listing 8: Match descriptor vectors

get all matches (depending on computed descriptors) between the keypoints of both images
def _ get matches(self, desc_1, desc 2, img 1, img 2, keypoints_ 1, keypoints_ 2, path):
create BFMatcher object
if self.key point descriptor == 'SIFT' or self.key point descriptor == 'SURF':
bf = cv2.BFMatcher (cv2.NORM L2, crossCheck=True)
else:
bf = cv2.BFMatcher (cv2.NORM HAMMING, crossCheck=True)

match descriptors
matches = bf.match(desc_ 1, desc 2)

return matches

Good matches were filtered depending on the prejudice that brain volume is not a lot rotated to each
other so lines between matches should be almost evenly. See Listing 9.

Listing 9: Filter matches

filter good matches from all matches - they should not be very far away
def _ get_good matches(self, matches, keypoints 1, keypoints 2, img 1, img 2, path,
tolerancy 1r=20, tolerancy tb=20):

good_matches = []

for i in range (0, len(matches)):

x1
yl

keypoints 1[matches[i].queryIdx].pt[0]
keypoints 1[matches[i].queryIdx].pt[1]

x2
y2

keypoints 2[matches[i].trainIdx].pt[0]
keypoints 2[matches[i].trainIdx].pt[1]

good matches have to satisfy the criteria
if x1 + tolerancy lr >= x2 and x1 - tolerancy lr <= x2 and
yl + tolerancy tb >= y2 and yl - tolerancy tb <= y2:
good matches.append (matches[i])

return good matches

Finally, transformation matrix is computed from the filtered matches and input is warped to the
reference image — registration is completed. See Listing 10.

Listing 10: Rigid transformation

find afine transform
afine = cv2.estimateRigidTransform(dst pts, src pts, False)

if afine is not None:
apply afine transform
img result = cv2.warpAffine(img 2, afine, (img 2.shape[l], img 2.shape([0]))

Non rigid registration

Non rigid registration can process 3D data, but it still works slice by slice. It is based on the optical
flow. We used two different algorithms Lukas-Kanade optical flow (Listing 11) and Farneback dense
optical flow (Listing 12)

Listing 11: Lukas-Kanade optical flow

function process all corresponding frames of examination volumes using lucas-canade optical
flow
def process frames lk(self, frames, paths=None, path extension=None, modality='flair'):

old gray = None

p0 = None

for index, frame in enumerate (frames) :
result = None
warped result =
old points = []
new points = []
save_path = ""

[

if old gray is None and pO is None:

take first frame

old gray = frame.copy ()

find corners on first frame

p0 = cv2.goodFeaturesToTrack (old gray, mask=None, **self.feature params)
else:

actual image

actual gray = frame.copy ()

calculate optical flow - Lucas Kanade

pl, st, err = cv2.calcOpticalFlowPyrLK(old gray, actual gray, pO, None,

**self.lk params)

select good points

good old points = pO[st == 1]

good actual points = pl[st == 1]

old points = list(tuple (map (tuple, good old points)))

new _points = list(tuple (map (tuple, good actual points)))

warp old image to actual image for evaluation using Delaunay

warped result = self.warp image (img old=old gray.copy(),
img new=actual gray.copy(), old points=old points,
new points=new points, path=save path)

morph images for visualization

self.morph images (img old=old gray.copy(), img new=actual gray.copy(),

old points=old points, new points=new_points, path=save path)
update the previous frame and previous points
old gray = actual gray.copy ()
p0 = good actual points.reshape(-1, 1, 2)

return warped frames, old points_ list, new points list

Listing 12: Farneback optical flow

function process all corresponding frames of examination volumes using farneback algorithm
def process frames farneback(self, frames, paths=None, path extension=None, modality='flair'):

old gray = None

for index, frame in enumerate (frames) :
result = None
old points = None
new _points = None
save path = ""

if old gray is None:
take first frame
old gray = frame.copy ()
else:
actual image
actual gray = frame.copy ()
calc optical flow using Farneback
flow = cv2.calcOpticalFlowFarneback (old gray, actual gray, None,
**self.farneback params)
get old (for old gray) and new points (for actual grey) from flow
old_points, new_points = self. get points from flow(img=actual gray,
flow=flow, step=16)
warp old image to actual image for evaluation using Delaunay
result = self.warp image (img old=old gray.copy(), img new=actual gray.copy(),
old points=o0ld points, new points=new points,
animate=False, path=save path)
morph images for visualization
self.morph images (img old=old gray.copy(), img new=actual gray.copy(),
old points=old points, new points=new points, animate=False,
path=save path)

old gray = actual gray.copy ()
return warped frames, old points list, new points list

If we are using Farneback algorithm, we have to compute points from the flow. See Listing 13.

Listing 13: Compute points from the Farneback optical flow

function returns points of old frame and actual frame computed from flow
def get points from flow(self, img, flow, step=8):

h, w = flow.shape[:2]

y, x = np.mgrid[step / 2:h:step, step / 2:w:step].reshape(2, -1).astype(int)
fx, fy = flowly, x].T

lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2)

lines = np.int32(lines + 0.5)

old points = []
new points = []
for (x1, yl), (x2, y2) in lines:
if img[yl][x1] > 0 and img[y2][x2] > 0: # points inside the brain are accepted
old points.append((x1l, yl))
new points.append((x2, y2))

return old points, new_points

Finally, we can visualize the changes using different visualization techniques. We can draw track after
Lukas-Kanade algorithm (Listing 14), draw tracks after Farneback algorithm (Listing 15) or crate
HSV image from Farnebask dense flow (Listing 16).

Listing 14: Draw tracks after Lukas-Kanade algorithm

function draw motions between examination frames after lucas-canade optical flow
def draw tracks_after lk(self, actual img, good old, good new, mask):
draw the tracks
for i, (new, old) in enumerate (zip (good new, good old)):
a, b = new.ravel ()
c, d = old.ravel ()
mask = cv2.line (mask, (a, b), (c, d), self.color[i].tolist (), 2)

img = cv2.add(actual img, mask)

return mask, img

Listing 15: Draw tracks after Farneback algorithm

function draw flow - motions between examination frames after farneback
def draw flow after farneback(self, img, old points, new points):

vis = cv2.cvtColor (img, cv2.COLOR_GRAY2BGR)

for (x1, yl), (x2, _y2) in zip(old points, new points):
cv2.arrowedLine (vis, (x1, yl), (x2, y2), (0, 255, 0), 1)
cv2.circle(vis, (x1, yl), 1, (0, 255, 0), -1)

return vis

Listing 16: Create HSV image form Farneback dense flow

function draw HSV after farneback - it shows motion between two examinations
def draw hsv after farneback(self, flow):

h, w = flow.shape[:2]

fx, fy = flow[:, :, 0], flow[:, :, 1]

ang np.arctan2 (fy, fx) + np.pi

v = np.sqgrt (fx*fx+fy*fy)

hsv = np.zeros((h, w, 3), np.uint8)
hsv[..., 0] = ang*(180/np.pi/2)

hsv[..., 1] = 255

hsv[..., 2] = np.minimum(v*4, 255)

bgr = cv2.cvtColor (hsv, cv2.COLOR HSV2BGR)

return bgr

We can also visualize the changes using animation. For the animation we can create additional images
to provide more smooth animation. Thus, we implemented image morphing algorithm based on
corresponding point, Delaunay triangulation and alpha blending (see Listing 17).

Listing 17: Image morphing algorithm

compute delaunay triangulation
def delaunay triangulation(self, points, img, animate=True, path=None) :

keep a copy of input image
img orig = img.copy ()

create rectangle for Subdiv2D
size = img.shape
rect = (0, 0, size[l], size[0])

create an instance of Subdiv2D
subdiv = cv2.Subdiv2D (rect)

for idx, p in enumerate (points):
insert point to the SubDiv2D
subdiv.insert (p)

get triangles from subdiv
trianglelList = subdiv.getTrianglelList ()
size = img.shape

r = (0, 0, size[l], size[0])

select only good triangles and save as lst of points

triangles = []

for t in trianglelist:
ptl = (int(t[0]), int(t[1]))
pt2 = (int(t[2]), int(t[3]))
pt3 = (int(t[4]), int(t[5]))

if self. rect contains (r, ptl) and self. rect contains_ (r, pt2) and
self. rect contains_ (r, pt3):
triangles.append([ptl, pt2, pt3])

return triangles

transform one triangle to another one
def apply transform(self, src, srcTri, dstTri, size):
pair of triangles is used to find the affine transform
warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri))
apply affine transform
dst = cv2.warpAffine(src, warpMat, (size[0], size[l]), None, flags=cv2.INTER LINEAR,
borderMode=cv2. BORDERiREFLECTil 01)
return dst

morph old and actual image for visualization
def morph images(self, img old, img new, old points, new points, animate=False, path=None) :
alpha = 0.5

morph images without warping
img morphed = np.uint8((1.0 - alpha) * img old + alpha * img new)

r = cv2.boundingRect (img_old)
bl = (r[0], r[1l])

[
b2 = (r[0] + r[2], r[l])
b3 = (r[0] + r[2], r[l] + r[3])
b4 = (r[0], r[l] + r[3])

compute weighted average point coordinates
points = []

old points.extend((bl, b2, b3, b4))
new points.extend((bl, b2, b3, b4))

for pl, p2 in zip(old points, new points):
x = (1 - alpha) * pl[0] + alpha * p2[0]
y = (1 - alpha) * pl[1l] + alpha * p2[1]
points.append((int(x), int(y)))

compute delaunay trinagulation on weighted points
triangles = self.delaunay triangulation(points=points, img=img old, animate=animate,
path=path)

get triangles of old point set and actual points set
triangles old = []

triangles new = []

for t in triangles:

pl i = points.index(t[0])
p2 i = points.index(t[1])
p3_1 = points.index(t[2])
triangles_old.append([old points[pl i], old points[p2 1], old points[p3 i]])
triangles new.append([new points[pl i], new_points[p2 1], new points[p3 i]])

morph images
img morph = img old.copy ()
img paint = np.zeros(img old.shape, dtype=img old.dtype)

idx = 0

for t, tl, t2 in zip(triangles, triangles old, triangles new):
find bounding rectangle for triangles
r = cv2.boundingRect (np.float32([t]))

rl = cv2.boundingRect (np.float32([tl]))
r2 = cv2.boundingRect (np.float32 ([t2]))
tRect = []
tlRect = []
t2Rect = []

for i in range (0,

3):
tRect.append (((t[1][0] - r[0]), (t[i][1l] - r[1])))
tlRect.append (((t1[i]1[0] - rl1[0]), (tl[il[1l] - xl1[11)))
t2Rect.append (((t2[1][0] - x2[0]), (t2[i][1] - r2[1])))

get mask of processed triangle by filling triangle
mask = np.zeros ((r[3], r[2]), dtype=np.float32)
cv2.fillConvexPoly (mask, np.int32(t2Rect), (1.0, 1.0, 1.0), 16, 0)

imglRect = img old[r1[1]:r1[1] + r1[3], rl[O0]:r
img2Rect = img new([r2[1]:r2[1] + r2[3], r2[0]:r
size = (r[2], r[3])

warpImagel = self.apply transform(imglRect, tlRect, tRect, size)
warpImage2 = self.apply transform(img2Rect, t2Rect, tRect, size)

alpha blending for rectangular patches
imgRect = (1.0 - alpha) * warpImagel + alpha * warpImage2

copy triangular region of the rectangular patch to the output image

img morph([r[1]:r[1] + r[3], r[0]:r[0] + r[2]] = img morph[r([l]:r[1] +
r(3],r[0]:x[0] + r[2]] * (1 - mask) + imgRect * mask
img paint[r([1]:r[1] + r[3], r[0]:r[0] + r[2]] = img paint[r[l]:r[1] +
r[3],r[0]:x[0] + r[2]] * (1 - mask) + imgRect * mask

Visualization tool

Function volumeRender() is used to render brain and tumor volume in 3D model visualization. At first
transfer functions for opacity and color are defined and all voxels are appended to the defined
functions. Then ray casting algorithm is used to create the volume and defined properties of the input
data are mapped to the volume. See Listing 18.

Listing 18: Creating 3D model and preparation for the visualization

def volumeRender(self, img, tf=[], spacing=[1.0, 1.0, 1.0]):
importer = self.numpy2VTK(img, spacing)

Transfer Functions
opacity_tf = vtk.vtkPiecewiseFunction()
color_tf = vtk.vtkColorTransferFunction()

if len(tf) == 0:
tf.append([img.min(), 0, 0, 0, 0])
tf.append([img.max(), 1, 1, 1, 1])

for p in tf:
color_tf.AddRGBPoint(p[@], p[1], p[2], p[3])
opacity_tf.AddPoint(p[@], p[4])

working on the CPU

volMapper = vtk.vtkVolumeRayCastMapper()

compositeFunction = vtk.vtkVolumeRayCastCompositeFunction()
compositeFunction.SetCompositeMethodToInterpolateFirst()
volMapper.SetVolumeRayCastFunction(compositeFunction)
volMapper.SetInputConnection(importer.GetOutputPort())

The property describes how the data will look
self.volProperty = vtk.vtkVolumeProperty()
self.volProperty.SetColor(color_tf)
self.volProperty.SetScalarOpacity(opacity_tf)
self.volProperty.ShadeOn()
self.volProperty.SetInterpolationTypeToLinear()

the lines below speed things up

pix_diag = 5.0

volMapper.SetSampleDistance(pix_diag / 5.0)

volProperty.SetScalarOpacityUnitDistance(pix_diag)

volume = vtk.vtkVolume()
volume.SetMapper(volMapper)
volume.SetProperty(self.volProperty)

return volume

Slices in axial, coronal and sagittal direction are created from the volume to visualize data in 2D. At
first data are loaded and additional information, such as spacing, minimal and maximal position of the
data are reached from the input. Spacing information is then used to compute center of the volume.
Positions of the center are parameters for the matrixes. They are used for slice creation. See Listing 19.

Listing 19: Creating slices and preparation for the visualization

def getBrainSlices(self, sliceType):
VTK_DATA_ROOT = vtkGetDataRoot()

Start by loading some data.

reader = vtk.vtkMetaImageReader()
reader.SetFileName("../../data/brain/flair.mha")
reader.Update()

Calculate the center of the volume

reader.Update()

(xMin, xMax, yMin, yMax, zMin, zMax) =
reader.GetExecutive().GetWholeExtent(reader.GetOutputInformation(0))

(xSpacing, ySpacing, zSpacing) = reader.GetOutput().GetSpacing()

(x0, yo, z0) = reader.GetOutput().GetOrigin()

center = [x@ + xSpacing * 0.5 * (xMin + xMax),
y@ + ySpacing * 0.5 * (yMin + yMax),
z0 + zSpacing * 0.5 * (zMin + zMax)]

metrix = vtk.vtkMatrix4x4()
Matrices for axial, coronal, sagittal, oblique view orientations
if sliceType == "coronal":
metrix.DeepCopy((1, ©, ©, center[0],
0, 0, 1, center[1],
0, 1, 9, center[2],
0, 0, 0, 1))

self.axes.paintAxezZ([center[0], - center[1], @], [center[@], - center[1], 250],
self.modelRenderer)
self.axes.setCenterZ(center[2])

elif sliceType == "sagittal":
metrix.DeepCopy((9, ©,-1, center[0],
1, @0, 0, center[1],
0, 1, 0, center[2],
0, 0, 0, 1))

self.axes.paintAxeY([center[0], ©, center[2]], [center[@], 250, center[2]],
self.modelRenderer)
self.axes.setCenterY(-center[1])

elif sliceType == "oblique":
metrix.DeepCopy((1, ©, @, center[0],
0, 0.866025, -0.5, center[1],
0, 0.5, 0.866025, center[2],
e, 0, 0, 1))
self.line = self.axeObject.paintLine([0, 0, 0], [0, 0, 0])

else: # axial

metrix.DeepCopy((1, @, ©, center[0],
0, 1, 9, center[1],
0, 0, 1, center[2],
0, 0, 0, 1))

self.axes.paintAxeX([@, - center[1], center[2]], [250, - center[1], center[2]],

self.modelRenderer)
self.axes.setCenterX(center[0])

self.modelWindow.Render()

Extract a slice in the desired orientation

#reslice = vtk.vtkImageReslice()
self.resliceBrain.SetInputConnection(reader.GetOutputPort())
self.resliceBrain.SetOutputDimensionality(2)
self.resliceBrain.SetResliceAxes(metrix)
self.resliceBrain.SetInterpolationModeToLinear()

Create a greyscale lookup table

self.table.SetRange(0, 2000) # image intensity range
self.table.SetValueRange(0.0, 1.9) # from black to white
self.table.SetSaturationRange(0.0, 0.0) # no color saturation
self.table.SetRampToLinear()

self.table.Build()

Map the image through the lookup table

color = vtk.vtkImageMapToColors()
color.SetLookupTable(self.table)
color.SetInputConnection(self.resliceBrain.GetOutputPort())

threshold = vtk.vtkThreshold()
threshold.SetInputConnection(color.GetOutputPort())
threshold.ThresholdByUpper(100)

Display the image
actor = vtk.vtkImageActor()
actor.GetMapper().SetInputConnection(color.GetOutputPort())

return actor

Histogram is counted separately for the health brain and for the tumor structures. Then the values are
used to paint the histogram on the canvases using simple rectangles. See Listing 20.

Listing 20: Histogram calculation and visualization

def makeHistogram(self, data):

min 100000
max = @

self.points = vtk.vtkPoints()
polygons = vtk.vtkCellArray()

for idx, d in enumerate(data):
if idx > @:
if d < min:
min = d
if d > max:
max = d

for idx, d in enumerate(data):
if(idx > 0):
print(d)
d = (d - min)/(max-min)
print(d)
polygons.InsertNextCell(self.createRectangle((idx-1)*0.1, (idx-1)*e.1+0.1, 0, d, (idx-
1)*4))

polygons.InsertNextCell(self.createRectangle(10, 20, 0, 40, 4))

polygonPolyData = vtk.vtkPolyData()
polygonPolyData.SetPoints(self.points)
polygonPolyData.SetPolys(polygons)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInputData(polygonPolyData)

actor = vtk.vtkActor()
actor.SetMapper(mapper)

axeObject = axe.Axe()
actorX = axeObject.paintLine([0, @, @], [len(data)*e.1, o, ©])
actorY = axeObject.paintLine([©@, ©, 0], [0, 1, O])

actorList = []

actorList.append(actor)
actorList.append(actorX)
actorList.append(actory)

return actorList

def createRectangle(self, x1, x2, y1, y2, i):
self.points.InsertNextPoint(x1, y1, ©)
self.points.InsertNextPoint(x1, y2, ©)
self.points.InsertNextPoint(x2, y2, 0)
self.points.InsertNextPoint(x2, y1, 0)

polygon = vtk.vtkPolygon()
polygon.GetPointIds().SetNumberOfIds(4)
polygon.GetPointIds().SetId(0, i)
polygon.GetPointIds().SetId(1, i+1)
polygon.GetPointIds().SetId(2, i+2)
polygon.GetPointIds().SetId(3, i+3)

return polygon

Axes in the 3D model of the brain are created for the better navigation. Axes correspondent with slices
displayed in the widgets. Thus, orders of the displayed slices are used to create lines in the 3D model
of the brain. See Listing 21.

Listing 21: Display the axes in the model

def paintLine(self, x1, x2):

Create a vtkPoints object and store the points in it
pts = vtk.vtkPoints()

pts.InsertNextPoint(x1)

pts.InsertNextPoint(x2)

Setup two colors - one for each line
green = [0, 255, 0]

Setup the colors array

colors = vtk.vtkUnsignedCharArray()
colors.SetNumberOfComponents(3)
colors.SetName("Colors")

Add the colors we created to the colors array

colors.InsertNextTuple(green)

Create the x line

linex = vtk.vtkLine()
linex.GetPointIds().SetId(0, 9)
linex.GetPointIds().SetId(1, 1)

Create a cell array to store the lines in and add the lines to it
lines = vtk.vtkCellArray()
lines.InsertNextCell(linex)

Create a polydata to store everything in
linesPolyData = vtk.vtkPolyData()

Add the points to the dataset
linesPolyData.SetPoints(pts)

Add the lines to the dataset
linesPolyData.SetLines(lines)

Color the lines - associate the first component (red) of the

colors array with the first component of the cell array (line 9)
and the second component (green) of the colors array with the

second component of the cell array (line 1)
linesPolyData.GetCellData().SetScalars(colors)

Visualize
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputData(linesPolyData)

line_actor = vtk.vtkActor()
line_actor.SetMapper(mapper)

return line_actor

Appendix B: Installation guide

To run the project, follow these steps:

1. Operating system
-developed on: Ubuntu 16.04

Project was developed on Ubuntu 16.04 and also this guide provides steps to prepare environment
for the project on the Ubuntu.

2. Python installation
-version: Python 3.5.2

Project is developed in Python programming language. During the development Python 3.5.2 was the newest
version of the python programming language.

To install python in terminal use command:

$ sudo apt-get install python3.5-dev
To control python installation use command:
$ python --version

I suggest to use Pycharm IDE for writing code. If you don't have installed Pycharm yet, then dowload
the sources and install. It is JetBrains software which is free for the students - download student
licence.

3. Virtual environment preparation

I suggest to use virtual environment.

-requirement: pip

To find out if you have pip in terminal:

$ pip --version

If you do not have pip, use command for installation in terminal:
apt-get -y install python-pip

Finally, to install and prepare virtual environment via console:

S pip install virtualenv

S /my_project folder //go to the folder directory !!!
$ python3 -m venv env //create virtual environment called env
S env/bin/activate //activate virtual environment

https://www.jetbrains.com/pycharm/download/#section=linux
https://virtualenv.pypa.io/en/stable/installation/

When virtual environment is activated, in terminal you can see:
(env) S

Important: You should control, if Pycharm IDE automatically set interpreter for the project. If it
didn't, it won't know libraries which will be installed in next steps. So you must set it manually (for
Pycharm):

e In Pycharm open File --> Settings --> enroll Project: project_name --> click to Project
Interpreter. In the field Project Interpreter, you should see path to your environment folder.

e If it is not set, add it manually. Push button next to the Project Interpreter field and choose
Add Local. Then browse to the virtual environment folder.

4. Install requirements

You can install all requirements which support pip using pip command (DON'T FORGET: Virtual
environment must be activated):

S env/bin/activate //use this only if your virtual environment
is not activated

(env) $ pip3 - r install requirements.txt //you have to be in folder where
requirements are located

5. OpenCV

-version: OpenCV 3.2.0

In the project is used OpenCV library. Durig the development OpenCV 3.2.0 was the newest version.

OpenCV represents images as NumPy arrays, so we need to install NumPy into our env virtual environment
(DON'T FORGET: Virtual environment must be activated):

S env/bin/activate //use this only if your virtual environment
is not activated
(env) $ pip3 install numpy

If you end up getting a Permission denied error related to pip’s. cache directory, try to use following
commands:

(env) $ sudo rm -rf ~/.cache/pip/
(env) $ pip install numpy

To install next prerequisites for the library use following commands (now the virtual environment
don't have to be activated):

(env) $ deactivate

//deactivate the virtual environment

$ sudo apt-get install build-essential cmake git pkg-config

//install developer tools used to compile OpenCV

$ sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpngl2-dev
//install libraries and packages used to various image formats

S sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
//install libraries used to video formats

S sudo apt-get install libgtk2.0-dev

//install GTK so we can use OpenCV’s GUI features

http://opencv.org/

S sudo apt-get install libatlas-base-dev gfortran
//install packages that are used to optimize various functions inside OpenCV, such
as matrix operations

Now we can pull down OpenCV from GitHub:

@ ~
$ git clone https://github.com/Itseez/opencv.git

We’ll also need to grab the opencv_contrib repo. Without this repository, we won’t have access to
standard keypoint detectors and local invariant descriptors (such as SIFT, SURF, etc.) that were
available in the OpenCV 2.4.X version. We’ll also be missing out on some of the newer OpenCV 3.0

features like text detection in natural images.

To pull down opencv_contrib repo use commands:

s ~
$ git clone https://github.com/Itseez/opencv_contrib.git

If you have also Python 2.x in your computer, you should set default python command for python 3.x.
If you won't do this step, OpenCV library will be probably installed in the Python 2.x site-packages
folder (/usr/local/lib/python3.4/site-packages/cv2.cpython-34m.so). To set Python 3.x as default use
command:

S python=python3

There is time to setup the build (cmake MUST BE installed!!!):

$ ~/opencv
$ mkdir build
$ build

$ cmake -D CMAKE BUILD TYPE=RELEASE
-D CMAKE INSTALL PREFIX=/usr/local
-D INSTALL C EXAMPLES=ON '
-D INSTALL PYTHON EXAMPLES=ON \
-D OPENCV_EXTRA MODULES PATH=~/opencv_contrib/modules
-D BUILD EXAMPLES=ON ..

Now we can compile OpenCV (where the 4 can be replaced with the number of available cores on
your processor to speedup the compilation time):

S make -74
Assuming OpenCV 3.0 compiled without error, you can now install it on your system:

$ sudo make install
$ sudo ldconfig

Now OpenCV should be installed in
/usr/local/lib/python3.5/site-packages/

However, in order to use OpenCV within our env virtual environment, we first need to sym-link
OpenCYV into the site-packages directory of the env environment, like this:

$ /my project folder //go to the folder directory !!!
S env/1lib/python3.5/site-packages/

https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv_contrib

$ 1n -s /usr/local/lib/python3.5/site-packages/cv2.cpython-34m.so cv2.so

Notice changing the name from cv2.cpython-34m.so to cv2.s0o — now Python can import our OpenCV
bindings using the name cv2.

This one OpenCV step follows some step from online OpenCV downloading and environment

preparation tutorial.

Test OpenCYV installation

In terminal:
S /my_project folder //go to the folder directory !!!
S env/bin/activate //use this only if your virtual

environment is not activated
(env) $ python

>>> import cv2

>>> cv2. version

OpenCYV help: Some OpenCV tutorials for python are available for easier start with OpenCV in Python
programming language.

6. VIK

-version: vtk 7.1.1

Download corresponding version from VTK wensite

Build VTK...in terminal:

$ mkdir vtk
S vtk
$ ccmake path to downloaded folder

Now press ¢ to configure (YOU CAN HAVE SOME IMPORT ERRORS..THEN YOU MUST
INSTALL). After configuring several options should appear. Press t to toggle to Advanced mode and
change the following:

BUILD TESTING on

VTK_WRAP_PYTHON on

VTK_WRAP TCL on

Change CMAKE INSTALL PREFIX to /usr

Change VTK PYTHON VERSION to 3.5 (your python version)

Change PYTHON EXECUTABLE to your python executable. For me it was
/usr/local/bin/python . You can check it by typing which python in your another
terminal.

Change PYTHON INCLUDE DIR to the directory where the python libraries are installed.
In my case it is /usr/lib/python3.5/

Press c to configure. Now press g to generate Makefile. (You may have to press ¢ and g again as it
sometimes does not work properly)

Then install VTK and the Wrappers in terminal:

$ make
$ sudo make install
$ Wrapping/Python

http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu/
http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu/
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html
http://www.vtk.org/download/

S make
$ sudo make install

Set PYTHONPATH environment variable for your computer (not for your virtual environment), use
terminal:

$
PYTHONPATH=/home/zuzana/vtk/1lib:/home/zuzana/vtk/Wrapping/Python: $PYTHONPATH

Test vtk installation

(env) $ python
>>> import vtk
>>> print(vtk.vtkVersion.GetVTKSourceVersion())

If you want set PYTHONPATH permanently in your computer, use terminal and type:

$

$ gedit .bashrc

and then add row: export
PYTHONPATH=/home/zuzana/vtk/lib:/home/zuzana/vtk/Wrapping/Python:$SPYTHONPATH

Probably it will be necessary to restart your computer. You can also add the same row into your virtual
environment into file activate (located in your_project_folder/env/bin/), but when you run code from
IDE not from console, you must do next step.

SET PATHS FOR VIRTUAL ENVIRONEMNT IN YOUR INTERPRETER (for Pycharm):
e select Settings > Project Interpreter
o to the right of interpreter selector there is an icon button, click it and select "More..."

e pop up a new "Project Interpreters" window select right bottom button (named "show paths for
the selected interpreter")

e pop up a "Interpreter Paths" window

e click the "+" buttom > select your desired PYTHONPATH directory (the folder which
contains python modules) and click OK Done! Enjoy it!

7. Simplel TK

Activate virtual environament and run command:

S your project path

S env/bin/activate

(env) $ pip install --trusted-host itk.org -f
https://itk.org/SimpleITKDoxygen/html/PyDownloadPage.html SimpleITK

Appendix C: User guide for visualization tool

Visualization tool is a simple desktop application. It has only one main window as shown in the Figure
109. It contains:

e three 2D views which visualize data in axial, coronal and sagittal direction,
e one canvas with 3D model of the brain and tumor,
e histogram of the health brain and tumor and

e some check boxes for setting different properties of the visualizations depending on the user

Figure 109: Initial window of visualization tool

preferences.

‘©®® Brain tumor detection

32 GB Volume

Application can visualize different volumes from one patient in different phase of processing, but this
can be still set only programmatically in the main function. One of the following data type can be
chosen for the visualization:

e different examination or different modality and

e original volumes, preprocessed volumes or transformed volumes.
Interaction allows you to:

e zoom, translate and scroll through slices,

e zoom and rotate 3D model,

e zoom histograms.

In the application can also be set different configurations of the visualizations using check boxes
on the left side of the window:

e in canvases which contains 2D slice in different directions:
o show or hide tumor masks,
o filter values to be displayed in the slices.
¢ in 3D model:
o show or hide tumor or whole brain,
o change opacity of the tumor or whole brain,
o change visualization setting of the tumor:
= move tumor in frond — paint tumor 3D model above the brain model
= highlight tumor — it changes the brightness of the tumor
= recolor tumor — it changes the color of the tumor

o show or hide axes

Appendix D: Work plan

project week task State
1 analyze computer vision and preprocessing Done
2 Done
analyze segmentation
3 Done
4 Done
analyze registration
5 Done
6 Done
DP1 implement segmentation
7 Done
8 test segmentation Done
9 Done
10 rigid registration Done
11 Done
12 evaluate rigid registration Done
1 preprocessing Done
2 Done
3 non-rigid registration Done
4 Done
5 evaluate non-rigid registration Done
6 tumor changes visualization Done
DP2
7 image morphing Done
8 Done
9 visualization tool Done
10 Done
11 Done
documentation
12 Done

Appendix E: Disc content

Basic structure of the folders and files on the disc:
e data folder

o non-rigid_dataset_example-BRATS2015 folder — several examples of the data used
for non-rigid registration (from BRATS 2015 dataset)

o rigid_dataset_example-Siemens folder — several examples of the data used for rigid
registration (from Siemens dataset)

e diagrams folder

o diagrams_activity.vsdx — activity diagrams used in the work

o diagrams_calss.vsdx — class diagrams used in the work

o diagrams_sequence.vsdx — sequence diagrams used in the work
e evaluation folder

o result_nonrigid_configurations.xIsx — evaluation, graphs, charts and statistical
evaluation of non-rigid registration for different configuration

o result_nonrigid_modalities.xlsx — evaluation, graphs, charts and statistical evaluation
of rigid registration for different modalities

o results_rigid_registration.xIsx — evaluation, graphs, charts and statistical evaluation of
rigid registration for different configurations

e sources folder — all source codes developed during the work
e visualization_tool_screenshots — more screenshots of the visualization tool

e dp_xbobotova.pdf - documantation

Appendix E: Summary - Resumé

1. Uvod

Medicina je oblast’, ktora stale vyvija. Je dolezita pre 'udi a ich zdravie. Na diagnostikovanie ochoreni
sa vyuziva mnoho roznych technik. V naSom vyskume pracujeme na metédach vhodnych na
monitorovanie vyvoja nadoru na mozgu. NajcastejSie pouzivanym testom na diagnostiku nadorov je
zobrazovanie pomocou magnetickej rezonancie. Vysledkom testu magnetickej rezonancie mozgu je
séria obrazov nazyvanych rezy. V sti€asnosti sa pocitace pouzivaju stale viac pocas diagnostikovania
pacientov. Poskytuju lekarom viac prilezitosti a moézu im pomdct pracovat’ efektivnejsie.

Spracovanie trojrozmernych lekarskych tdajov (v nasom pripade MRI) mdze byt ¢asovo naro¢na a
neprijemna uloha. Pocitacové videnie je silny nastroj na rieSenie mnohych zaujimavych problémov a
modze pomdct’ pri automatizacii monotonnych a rutinnych tloh v mnohych oblastiach. Lekarstvo je
jednou z oblasti, v ktorych je pocitacové videnie vel'mi uzito¢né a méze byt vel'mi silnym nastrojom.

V skutocnosti existuje vel'a loh v medicine a diagnostike, kde niektoré algoritmy moézu ul'ah¢it’ pracu
Specialistom. Na vyrieSenie jednej konkrétnej tlohy sa vyvijaji vzdy Specializované metody
pocitacového videnia. Preto sme sa rozhodli zamerat’ sa na mozog a rakovinu v mozgu - nadory. V
nasej praci prezentujeme metody, ktoré su schopné pomdct’ s diagnézou rakoviny v mozgu, a to
hlavne s cielom sledovat’ zmeny nadoru.

Pri spracovani dat z MRI bez metod pocitacového videnia, napriklad pri segmentécia nadoru z 3D dat,
$pecialista musi segmentovat’ nador na kazdom reze. To je Casovo naro¢na a monotoénna tloha, ale je
to naozaj nevyhnutné a vel'mi uZzito¢né - hlavne pocCas procesu lieCby oziarenim, ked’ by sa zdravé
Casti mozgu mali pred ziarenim ¢o najviac chranit’.

Hlavnou tilohou prace bolo ngjst’ automatické metddy na sledovanie zmien ochorenia pacienta. Aby to
bolo mozné, je potrebné segmentovat’ nador z MRI, zaregistrovat MRI z r6znych vySetreni a najst
korespondujuce casti mozgu a nadoru v roznych vySetreniach zachytenych pocas liecby v
pravidelnych Casovych intervaloch. Dnes existuje vel'a pristupov vhodnych na segmenticiu nadoru.
Rozhodli sme sa nicktoré analyzovat’ a otestovat. Na registraciu tdajov z réznych vySetreni sme
navrhli metodu zalozenu na rigidnej registracii. Nakoniec sme navrhli metédu zaloZentl na nerigidnej
registracii, ktorda vie najst koreSpondencie rovnakych casti mozgu atumoru medzi dvoma
vySetreniami pomocou algoritmov zalozenych na optickom toku.

V nasledujucich kapitoldch uvadzame kratky tivod do problematiky predspracovania dat, segmentécie
aregistracie v Casti 2 Analyza, navrh nasej metddy a popis jednotlivych krokov v ¢asti 3 Navrh
metddy a vysledky. V tejto kapitole opisujeme aj dosiahnuté vysledky. A v poslednej Casti 4 Zaver sa
nachadza kratke zhrnutie.

2. Analyza
Pocitacové videnie je oblast, ktora dokaze porozumiet' digitdlnym obrazom, videdm a inym

digitalnym udajom. Je dolezité uvedomit’ si, ze pocita¢ vidi tidaje inak nez my. Obraz je len siborom
hodndt a ak chceme ziskat’ nejaké informécie, je nevyhnutné vyvinit’ nejaké metddy a algoritmy.

AA

Pocitacové videnie je pouzivané v roznych vedeckych disciplinach, ale aj v kazdodennom Zzivote. V
sucasnosti ho moézeme ndjst’ aj v mnohych funkcidch automobilov, v priemysle sa pouzivaju na
kontrolu kvality, v mnohych monitorovacich systémoch na kontrolu situécie, zabranenie nejasnostiam
alebo odhalenie niektorych udalosti. Fyzika, bioldgia, chémia, vesmirny vyskum alebo robotika st
oblasti, v ktorych ma pocitacové videnie vela aplikacii.

Medicina je d’alSia oblast’, v ktorej pocitacové videnie mdze ul'ahCit’ l'udska pracu a pomdet’ r6znymi
spdsobmi. V medicine je vela testov, kde sa pouzivaju rozne skenery a snimace. Zname testy su
napriklad magneticka rezonancia (MRI), pocitacova tomografia (CT), sonografia, rontgenové
vySetrenie atd. Metddy pocitacového videnia mézu pomoct lekarom a diagnostikom spracovavat’
udaje a ul’ahcit’ tak ich pracu.

Predspracovanie dat

Predspracovanie je prvym krokom po ziskani obrazovych dat. V medicine sa stretavame s udajmi,
ktoré nie su dokonalé, takze je dblezité aplikovat’ niektoré techniky, aby sme ich vylepsili. Data po
predspracovani mézu obsahovat’ jasnejsie a lepSie okraje objektov. Hlavnym ciel'om predspracovania
je zlepsit’ kvalitu udajov.

Obrazky je mozné spracovat v priestorovej alebo frekvencnej oblasti. NajbeznejSie techniky
vylepsenia kvality obrazkov su:

e zvySenie kontrastu,
e vylepsenie rozliSenia,
e zvyraznenie hran a

e redukcia Sumu.
Segmentacia

Segmentacné metody rozdelujii obrazové data na niekolko Casti v zavislosti od nejakych vlastnosti,
ako napriklad tvar, farba, intenzita alebo textura. Segmenticia sa zvyCajne pouziva na detekciu
nejakého objektu na obrazku. V sucasnosti existuje vela segmentacnych metéd vhodnych na rdzne
typy problémov.

Dostupna literatura rozdel'uje segmenta¢né pristupy na manualne, poloautomatické a automatické.
Manuélna segmentacia nevyzaduje ziadne metody pocitatového videnia. Objekty su segmentované
odbornikom ru¢ne pomocou nejakého Specidlneho softvéru a nastrojov. Je to ¢asovo naro¢nad a
monotonna uloha. Poloautomatické metdody vyzaduju urcitu interakciu s pouzivatelom, ale su
rychlejSie neZ manualna segmentacia. Automatické metody nevyzaduji Ziadne vstupy od pouzivatela,
vSetko sa vypocita podl'a segmentaéného algoritmu.

V medicine sa segmentacné algoritmy pouzivaju na detekciu niektorych Specifickych organov a Casti
tela alebo na detekciu niektorych anomalii na tele, ako st nadory. Existuje niekol'ko pristupov, ako
ziskat’ udaje o Strukture tela.

BB

Metody segmentacie je mozné rozdelit’ na niekol’ko skupin na zaklade ich pristupu k segmentacii.

Prieskumy sumarizujiuce odborné ¢lanky ich rozdel'uji na:

Metody zalozené na hranach - jeden z najobltibenejsich pristupov. Casto sa pouZzivajii na
usmernenie segmentacie, umoziuju extrahovat’ rdzne typy hran: parametrické, intenzivne,
textirové a okrajové. Medzi najznamejSie algoritmy tohto typu patria algoritmus rez grafom
a algoritmus aktivnych kontur.

Metody zalozené na regidonoch — segmentuju vstupné data na zaklade podobnosti hodnot
v jednotlivych regionoch obrazov. Najjednoduch§im algoritmom je prahovanie, ktoré na
zaklade 1 vstupnej konStanty vie rozdelit obraz na regiony s nizSou hodnotou a vys$Sou
hodnotou oproti tomuto prahu. Medzi d’alSie zname algoritmy patri metoéda rastacich regionov
a zaplavovy algoritmus.

Strojové ucenie — jednoducho povedané robi pocitate schopné ucit’ sa bez explicitného
programovania. Po¢ita¢ sa moze naucit’ niektoré modely a vykonavat’ segmentacie v zavislosti
od modelov na zaklade podobnych podmienok na vstupnom obrazku alebo rozdelit’ obraz na
Casti - segmenty v zavislosti od niektorych charakteristik. Zakladné rozdelenie technik
strojového ucenia je na:

o ucenie bez ucitel’a (klastrovanie) — metoda, ktora rozdel'uje pixely obrazu na niekol'ko
klastrov pricom nie je potrebny ziadny tréning.

o ucenie s ucitelom (klasifikacia) — umoznuje natrénovat’ model na nejakych vstupnych
datach, ktory vie potom nasledne klasifikovat podobné data na zaklade tohto
nauceného modelu.

o neurdnové siete — dnes najCastejSie pouZzivany pristup, ide v podstate o ucenie
s ucitel'om, kedy sa taktiez na zaklade vstupnych dat trénuje nejaky model.

Registracia

Proces, ktory moze zarovnat’ dva alebo viac obrdzkov (referencny a snimany) tej istej scény, sa nazyva

registracia. Pri registracii predpokladame, Zze pre nejaké pixely z prvych vstupnych dat sa nachadza

pozicia zodpovedajucich pixelov v nasledujicich vstupnych datach. Obrazky mézu byt snimané

roznymi snimac¢mi z réznych uhlov pohl'adu alebo mézu byt naskenované v réznych casoch alebo v

roznych podmienkach. Registracia je nevyhnutnym krokom na analyzu a ziskavanie informacii z
kombinacie réznych zdrojov udajov.

Z pohl'adu, aké obrazy st registrované, moze byt registracia rozdelena do Styroch skupin:

registracia roznych vyrezov - cielom je ziskat vicSie 2D zobrazenie alebo 3D zobrazenie
scény

registracia udajov ziskanych v ré6znych asovych obdobiach vzdy aj s réznymi podmienkami -
cielom je zistit’ zmeny medzi akviziciami

registracia udajov ziskanych ré6znymi senzormi, nazyvana tiez multimodalna analyza - cielom
je pracovat’ s viacerymi informaciami ziskanymi z r6znych senzorov

CcC

e registracia modelu a scény, kde model predstavuje pocitaCové zobrazenie scén ako su atlasy -
cielom je najst’ lokalizaciu scény v modeli a porovnat’ ju

Zvycajne sa proces registracie udajov sklada zo styroch zakladnych krokov:

o Detekcia priznakov - na obrazku sa hladaju nejaké vyrazné objekty. Obycajne su
reprezentované ako pole bodov nazyvané klacové body. Existuje vel'a moznosti detekcie
funkcii, ale hlavnym predpokladom je, ze by mali byt l'ahko detekovatelné. Z pohladu
kritéria, na zaklade ktorého zhody hl'adame ich mézeme rozdelit’ na geometrické, senzorové,
zalozené na intenzite a hybridné. Z pohladu ako pracuji moézu byt rozdelené na metody
zalozené na regionoch alebo metddy zalozené na priznakoch.

e Hrladanie zhdéd medzi priznakmi - hladanie zhody medzi priznakmi detekovanymi na
snimanom obrédzku a priznakmi ziskanymi z referenéného obrazku. Problémom je, ze ak sme v
predchadzajicom kroku zistili nejaké nespravne priznaky, rozsiri sa do tohto kroku. Dal§im
problémom je, Ze v skuto¢nosti koreSpondujuce priznaky mozu byt odlisné, pretoze obrazky
moézu byt skenované s roznymi podmienkami. Tento problém by sa mal vyriesit' s dobrou
vol'bou deskriptora priznakov. Na jednej strane musi byt deskriptor schopny rozliSovat’ medzi
roznymi znakmi, ale na druhej strane nemoze byt ovplyvneny Sumom a neocakavanymi
zmenami priznakov.

e Odhad transformaéného modelu je d’alsim krokom registracie. KoreSpondujice priznaky sa
v tomto kroku pouzivaju na vypocet transformaéného modelu. Autori ¢lankov rozdeluju
metddy z deformacného hladiska na rigidnt a nerigidnt transformaciu nazyvanu aj elasticka
transformacia. Rigidna registracie nedeformuje data, umozinuje len Skalovanie, rotaciu,
reflexiu a translaciu. Na druhej strane nerigidna registracia deformuje Strukturu dat a objektov,
tak aby sa vystup ¢o najviac podobal na referencny obraz.

e Transformacia — na zaver sa transformac¢né matice vytvorené v predoslom kroku pouziji na
transformaciu dat, ¢im vlastne data zaregistrujeme.

3. Navrh metody a vysledky

Hlavnym cielom prace bolo navrhnit’ a implementovat’ automatické metéody vhodné na sledovanie
zmien nadoru. Kedze MRI je najbeznejSim testom pre diagnostiku rakoviny mozgu, navrhované
metddy pracujii so vstupnymi MRI datami - vySetrenia od jedného pacienta zachyteného v
pravidelnych ¢asovych intervaloch.

MRI snimky mozgu su trojrozmerné data. To znamend, Ze pozostavaji z niekol’kych rezov. Pocas
liecby rakoviny mozgu musi pacient podstapit niekolko vySetreni v pravidelnych casovych
intervaloch. Lekari musia vyhodnotit a kontrolovat’ vSetky vysledky vySetreni pacientov, aby
sledovali priebeh liecby. Mdze to byt naozaj velmi Casovo narofna a neprijemna uloha, takze
pocitacové videnie moze byt v tejto oblasti vel'mi uzitocné a automatizovat' niektoré monotdénne
ulohy.

Existuji urcité problémy, ktoré je potrebné vziat' do uvahy:
e Kedze MRI sa vykondvaju v inom ¢ase, mdzu byt inak otocené. Je potrebné otoCit’ data do

rovnakej pozicie, aby sme mohli na sledovat’ zmeny. To je uloha pre rigidnu registraciu.

DD

e V priebehu ¢asu sa meni nador a tiez mozog. Nador méze rast’ alebo zmenSovat’ sa, ¢o tieZ
ovplyvituje Struktiru okolitych zdravych casti mozgu. Na sledovanie zmien ochorenia je
dolezité vediet, ako bol mozog deformovany nadorom. To je uloha pre nerigidnt registraciu.

e Data sa zaznamenavaju s réoznymi zariadeniami alebo len s réznymi nastaveniami jedného
zariadenia a je bezné, Ze nie si konzistentné. Hodnoty tych istych ¢asti mozgu mézu byt
odlisné. Tym sa musime zaoberat’ este pred registraciou a tiez ndm to pomdze vytvorit’ lepsiu
vizualizaciu. Preto musime data predspracovat’.

Navrhli sme vlastni metédu na sledovanie zmien tumoru a mozgu. Vstupom pre metddu s data z
MRI testu, ako bolo spomenuté. Ide o 3D data, takze ak chceme pracovat’ len s rezmi, musime ich
vytvorit' zo vstupnych dat. V praci pouzivame udaje z datasetu BRATS 2015 a udaje z praxe od
spolo¢nosti Siemens.

Prvym krokom navrhnutej metédy je prepracovanie. Musime vyriesit' odlisSny jas a kontrast dat
zachytenych v inom case. Je to dolezité najmi pre vizualizaciu, ale mdze to byt uzitocné pre cely
proces.

Druhym krokom je segmentacia nadoru. Musime poznat’ hranice nadoru, aby sme mohli sledovat’ jeho
zmeny. Je to tiez dolezité pre d’alsi krok — pre rigidnu registracia. Zmenené Casti naddoru a okolitého
mozgu mozu spdsobit’ chyby v rigidnej registracii, ak by neboli segmentované.

Dalsim krokom je rigidnd registracia. Potrebujeme otoCit' data do rovnakej pozicie s vyuzitim
translacie, rotacie a pripadne aj Skalovania.

V d’alSom kroku musime urobit’ nerigidnt registraciu (nazyvanu aj elasticka), aby sme mohli sledovat’
zmeny zdravych casti mozgu a tiez nadoru. Zmeny sposobené nadorom su nepravidelné, takze je to
perfektna tiloha prave pre nerigidnu registraciu.

Nakoniec, aby sme mohli vizualizovat’ data vytvorili sme jednoduchu desktopovu aplikaciu.

Predspracovanie

Data z roznych vySetreni mézu mat’ rdézne hodnoty tych istych Casti mozgu. Je to preto, Ze boli
zachytené v réznych Casoch a s r6znymi nastaveniami zariadenia. Mozu mat’ tiez odliSny kontrast a
jas. Preto sme navrhli metodu na predspracovanie tychto dat. Pozostava z troch krokov: odstranenie
percentilu, Skalovanie tidajov a algoritmus mapovania histogramov.

Odstranenie nejakého percentilu dat znamena, Ze najdeme hodnotu uréeného horného a dolného
percentilu (my sme pouzivali horny percentil 99 a dolny percentil 5) a hodnoty vysSie ako horny
percentil nahradime hodnotou tohto percentilu a naopak hodnoty nizsie ako dolny percentil nahradime
hodnotou dolného precentilu.

Pre skalovanie dat sme vyZili vzorec min max normalizacie a data sme preSkalovali na rozsah 0-255:

data—min(data)

data = * 255, kde data su n-dimenzionalne pole (2D alebo 3D)

max(data)—min(data)

EE

Algoritmus mapovania histogramov je jednoduchy algoritmus, ktory je zalozeny na tom, ze histogram
jednych vstupnych dat nazyvanych referencné data sa mapuje na histogram inych vstupnych dat
nazyvanych ciel'ové data.

Vysledky testovania ukazuj, ze metody vhodne predspracujii data, pretoze jas a kontrast dat po
spracovani je viac vyvazeny ako pred spracovanim.

Segmentacia

Segmentacia nadorov pomocou pocitacového videnia je problémom, ktory je ¢ato skimany odbornou
komunitou. Riesenie tohto problému je zalozené na velkej motivacii — pomoct’ lekdrom a radiolégom
s manualnou a monoténnou pracou, ktorti musia robit’ pri diagnostike.

V skutocnosti je segmentacia nadorov z MRI vySetreni mozgu tazka uloha, pretoze hranice nie st
vzdy jasné a niekedy nadory nie s vyrazné. Vel'a l'udi uz rieSilo dany problém a preto existuje mnoho
pristupov v oblasti segmentacie mozgovych nadorov s vel'mi dobrymi vysledkami. Preto sme sa
rozhodli implementovat’ jednu z najnovSich metdd, ktora dosiahla najlepSie vysledky na datasete
BRATS 2013. Ide o metddu od Havaei a kol. ** - Segmentécia nadorov mozgu s pouzitim hlbokych
neurénovych sieti.

Jednym z dovodov, preco sme sa rozhodli vybrat’ tento pristup, bolo, ze autor dosiahol vel'mi dobré
vysledky ako je uvedené v ¢lankoch a druhy z nich bol, Ze zdrojovy kéd je k dispozicii online B!,
Pocas prace sme vSak narazili na problém ato, ze zdrojovy koéd vyuziva staré verzie niektorych
kniznic anikde sa neuvadza, ze aké. Preto bolo potrebné niektoré Casti kodu re-implementovat
a prispdsobit’ na nové verzie kniznic. Dani metddu sme nasledne testovali, avSak nepodarilo sa nam
dosiahnut’ uspokojivé vysledky a preto sme sa v d’alSich krokoch rozhodli radsej pouzit’ segmentacné
masky z datasetov.

Rigidna registracia

Dal$im krokom nami navrhnutej metédy je rigidna registracia. Ked'ze data z MRI pochadzajuce od
jedného pacient z roznych vySetreni sa robia v Uplne inom case, tak mozu byt inak otocené, prelozené
alebo zmenSené. Ak chceme sledovat’ zmeny nddoru a mozgu, musime zarovnat' data do rovnakej
pozicie. To je dokonala uloha pre rigidnu registraciu.

Nami navrhnuta rigidna registracia pozostava zo Siestich krokov. Vstupom metody st dva 2D rezy
z 3D MRI dat. V prvom kroku vytvorime registraéni masku pre oba vstupné obrazky. Navrhli sme
algoritmy na vytvorenie dvoch réznych typov mask a to masky zdravého mozgu a masky lebky. Na
vytvorenie oboch mask vyuZzivame prahovanie nasledované morfologickymi operaciami, cim
dostaneme masku celého mozgu. Aby sme vytvorili masku len zdravej Casti mozgu, tak ju erodujeme
anasledne od¢itame eSte masku tumoru. Aby sme vytvorili masku lebky, tak najdeme konturu
povodnej masky, kontru zva¢sime a tym dostaneme priblizni masky lebky.

Masky sa v d’alSom kroku pouzivaju na najdenie kIic¢ovych bodov v oboch vstupnych obrazkoch.
V tomto kroku vyuzivame 4 rbézne algoritmy: SIFT, SURF, FAST a ORB. Nasledne pre vsetky
najdené kl'icové body vypocitame vektory priznakov pomocou deskriptorov SIFT, SURF alebo ORB.

Teraz mame vektory pre oba vstupné obrazy a v d’alSom kroku najdeme medzi nimi zhody. V tomto
kroku, okrem spravnych zhod, tiez ziskame aj nespravne. Preto ich odfiltrujeme pomocou

FF

jednoduchych podmienok zaloZenych na predpoklade, Ze data nie su prili§ rozne oto¢ené, zmensené
alebo posunuté.

Nasledne z odfiltrovanych zhod vypocitame transformacni maticu pre transformaciu a pouzijeme ju
na transformdciu a registraciu jedného zo vstupnych obrazkov k inému.

Pocas testovania sme skusali rézne konfiguracie rigidnej registracie — skusali sme vyuzit’ rozne masky
pre registraciu (bud’ zdravej Casti mozgu alebo lebky), rozne algoritmy na ziskanie kl'icovych bodov
a tiez vypocet vektorov priznakov.

Aby sme overili spravnost’ registracie porovnali sme navzajom dva vstupné obrazky a porovnali sme
ich s vystupnymi zaregistrovanymi a taktiez sme porovnali zaregistrované obrazky s originalmi
(povodne zaregistrovanymi obrazkami z datasetu). Neporovnavali sme celé rezy, ale vytvorili sme
metddu, ktora postupne z vysekov tych Casti rezov, kde sa nachadza asponn nejaka Cast’” mozgu,
vypocita histogramy aurc¢i korelacie, prieniky a Bhattacharryouvu vzdialenost medzi tymito
histogramami.

Vysledky ukazali, Ze registracnd maska vytvorena z lebky bola pre nasu metddu problematicka. Nasa
metdda mala pri vyuziti masky lebky problém s najdenim afinnej matice pre registraciu. Mali sme
s vyuzitim takejto masky aj niektoré velmi tUspes$né registracie, ale vo vSeobecnosti metdda
nefungovala dobre.

Navrhnutd metoda funguje lepsie, ked’ registrujeme rezy s vyuzitim masky zdravymi mozgovymi Casti
a vicsina rezov bola uspeSne zaregistrovana. NajlepSie vysledky sme dosiahli s vyuzitim algoritmu
ORB pre hl'adanie kIi¢ovych bodov a tiez deskripciu priznakov. Porovnatel'né vysledky sme dosiahli
aj s vyuzitim kombinacia FAST detektora kl'icovych bodov a SURF deskriptora. Existuju vsak aj
pripady, kedy metoda uspeSne nezaregistrovala rezy. Zlyhanie metédy bolo sposobené nespravne
najdenymi zhodami medzi vektormi priznakov a teda aj nespravnou filtraciou zlych zhod.

Nerigidna registracia

Nerigidna registracia je rozhodujucim krokom pre pozorovanie zmien mozgu sposobenych nadorom.
Nédor rastie a meni sa nepravidelne v zavislosti od okolitych zdravych mozgovych Struktar ¢im tlaci
na tieto Struktary. Vd’aka nerigidnej registracii vieme sledovat’ zmeny zdravych ¢asti mozgu, ale aj
nadoru. Existuje niekolko pristupov, ktoré sa pokusaju rieSit’ podobny problém. Mnohé z nich
pouzivaju atlasy mozgu a sleduji rozne ciele, ako je segmentacia nadoru alebo registracia snimok pred
operaciou a po rekurencii. V naSej praci sme sa rozhodli implementovat’ a otestovat’ iné pristupy,
pretoze nas ciel’ je trochu iny.

Vstupom metddy su 3D data. Pouzivame vsak algoritmy z kniznice, ktoré dokazu spracovat’ len 2D
obrazky, takze nasa metoda aj napriek tomu funguje po rezoch. V prvom kroku metoda najde opticky
tok pomocou algoritmu Farneback alebo Lukas-Kanade. Zakladnym predpokladom tychto algoritmov
je, ze pohyb susednych pixelov je rovnaky a intenzity objektov sa medzi dvomi nasledujicimi
snimkami vel'mi nezmenia (aj preto sme museli data spravne predspracovat’). Tieto algoritmy sa Casto
pouzivaju na sledovanie pohybu v jednotlivych snimkach videa. St vhodné pre na$ problém, pretoze
neocakavajui vel'ké zmeny medzi snimkami a to je presne to, ¢o potrebujeme.

V dalsom kroku vypocitame zodpovedajuce body z toku. To je ddlezit¢ najmi pre algoritmus
Farneback, pretoze jeho vysledkom je husty tok. Lukas-Kanade vrati subor bodov a mi v tomto kroku

GG

len zmenime ich Strukturu pre finalny krok, ktorym je vizualizacia. Testovali sme rozne pristupy k
vizualizacii:

e vykreslenie zmien,
e vytvorenie HSV obrazka z hustého toku a
e morfovanie rezov.

Vykreslenie zmien je jednoduchy algoritmus, ktory len nakresli §ipky v smere pohybu jednotlivych
korespondujucich bodov. Vytvorenie HSV (hue - odtien, saturation — sytost’, value — hodnota) obrazka
z hustého toku funguje tak, Ze z toku vypocitame uhol pohybu korespondujucich bodov a vzdialenost’
medzi tymito bodmi a vytvorime HSV obrazok tak, Ze uhol bude hodnota odtiefia a vzdialenost
hodnota hodnoty. Saturdciu sme nastavili konstantne na 255.

Poslednym pristupov je morfovanie rezov. Je to zaloZené na vytvoreni animdcie z rezov a metdéda nam
umoziuje vytvorit nové rezy, ktoré si priemerom medzi existujicimi ateda ich v animacii
umiestnime medzi existujuce. Tym vznikne krajSia a vyhladenejSia animacia. Pri morfovani
vyuzivame algoritmu Delaunayovej trianguléacie, rigidntl transformaciu vzniknutych trojuholnikov a
alfa blending.

Aby sme mohli nerigidnu registraciu testovat’, museli sme transformovat’ jeden z rezov. Vyuzili sme
na to metdodu podobnu morfovaniu az na to, Ze v poslednom kroku sme nevytvarali novy rez, ale
transfromovali sme jeden z rezov na ten druhy cez trojuholniky vypocitané pomocou Delaunayovej
triangulacie. Nasledne sme podobne ako pri testovani rigidnej registracie vyhodnotili histogramovau
korelaciu, prienik a Bhattacharryouvu vzdialenost'.

Testovali sme, ze aky vplyv ma na nerigidni registraciu vyuzitie roznych modalit a tiez vyuZitie
roznych algoritmov a parametre tychto algoritmov. Zistili sme, Ze r6zne modality maju vplyv na
uspesnost’ a najlepsie vysledky sme dosiahli s pouzitim Flair modality a porovnatel'ne aj s pouzitim
T2. Pri porovnavani algoritmov sme zistili, ze pre algoritmus Lukas-Kanade je toto tazka uloha,
pretoZe algoritmus sa len snazi najst zmeny v rezoch a tie nie su velmi vyrazne. Uspe$ni sme boli
s vyuzitim Farnebackovho algoritmu, prave vd’aka tomu, Ze vracia husty tok avSak zistili sme, Ze
parametre metody nemajl vyrazny vplyv na GspeSnost’ registracie. Jedine, ked’ sme pouzili mensi krok
pri vypocte koreSpondujicich bodov z toku, tak sme zistili, Ze registracia je uspesna vo viacerych
pripadoch ako pri pouziti vacsieho kroku.

Nastroj na vizualizaciu 3D MRI dat

Aby bolo mozné vizualizovat’ data, ktoré pouzivame a spracuvame, vytvorili sme jednoduchy nastroj
na vizualizaciu tychto 3D dat. Tento nastroj dokaze spracovat’ 3D datovy format a vizualizovat
snimky MRI v 2D a 3D pohl'ade. 2D pohl'ady st tri a umoznuji pohlad na jednotlivé rezy v axidlnom,
sagitalnom a koronalnom smere. 3D pohl'ad na data sprostredkiivame na zaklade vytvoreného 3D
modelu pomocou algoritmu ray casting — umoznuje vidiet mozog alebo tumor. Aplikacia poskytuje
tiez jednoduchu interakciu. Umoziuje prechadzanie cez rezy vo vSetkych smeroch, ich priblizovanie
a postvanie, priblizovanie, posuvanie a ota¢anie 3D modelu, zapnutic / vypnutie vizualizacie
segmentacie nadoru v 2D aj 3D pohlade atiez zobrazuje osi v 3D pohlade, ktoré ukazuju, kde sa
prave zobrazené rezy v mozgu nachadzaju. V 3D modeli je tieZ mozné nastavit’ prichl'adnost’ mozgu
alebo aj tumoru, aby sa dala lepsie sledovat jeho lokalizacia.

HH

4. Zaver

Hlavnym cielom prace bolo vyvinit metédy vhodné na sledovanie zmien mozgu a nadorov
spdsobenych rastom nadoru. Na sledovanie zmeny nadoru musime segmentovat nador, registrovat’
rozne vysetrenia od jedného pacienta a zaznamenat’ zmeny medzi nimi. V praci sme navrhli metoédu
vhodnu na sledovanie nadoru, ktord pozostava z piatich krokov.

Prvym krokom je predspracovanie udajov. To je dolezité, pretoze vySetrenia od jedného pacienta maja
rozdielne rozsahy dat a rozdielny jas. Na vyvazenie jasu vySetreni od jedného pacienta sme pouzili
algoritmus mapovania histogramov. Vysledky st vel'mi sl'ubné.

Druhym a doélezitym krokom je metéoda segmentacie nadoru. Musime segmentovat’ nador, aby sme
mohli sledovat’ zmeny tumoru a zmeny zdravého mozgu. V naSom pristupe sme sa rozhodli opatovne
implementovat’ jednu z najlepSich metéd. Vybrand metéoda bola zalozena na kaskadovitych
konvolu¢nych neurénovych sietach. Pocas testovania sme vSak nedosiahli uspokojivé vysledky, takze
v nasledujtcich krokoch sme sa rozhodli pouzivat nadorové masky z datasetov. Hranice nadoru st
rozhodujuce pre spravnost’ rigidnej registracie a mézu byt’ vel'mi uzito¢né pre nerigidnu registraciu.

Tretim krokom je rigidna registracia dat z réznych vySetreni, ale od jedného pacienta. Pocas rigidnej
registracie musime pocitat’ iba z oblastami mozgu bez nadoru, pretoze nador sa ¢asom meni. Pouzili
sme zakladny tok registracie, ktory pozostava z niekol’kych krokov: vytvaranie masky pre registraciu,
najdenie kl'acovych bodov, vypocet vektorov priznakov, najdenie zhdd medzi vektormi, filtracia zhod,
najdenie matice pre transformaciu a nakoniec transformacia dat. Navrhovana metéda moze spracovat’
2D rezy. Metddu sme testovali na datasete, ktory obsahuje registrované a neregistrované 2D rezy
vytvorené zo Siemens datasetu. Testovali sme rdozne konfigurdcie metédy s vyuzitim réznych
segmenta¢nych masiek, roznych detektorov kl'aicovych bodov a deskriptorov priznakov. Vysledky st
slubné. NajlepSie vysledky sme dosiahli s vyuzitim registracnej masky zdravych casti mozgu, ORB
klaic¢ového detektora a deskriptora.

Zvacsenie nadoru spdsobuje aj zmeny v Struktire mozgu, pretoze nador sa ¢asom meni. To spdsobuje
nepravidelné zmeny mozgu, takze je to perfektna uloha pre Stvrty krok — nerigidnu registraciu. Pre
tento problém sme navrhli metdodu zalozent na optickom toku. Testovali sme dva roézne algoritmy:
Farneback a Lukas-Kanade, ale algoritmus Farneback pracoval lepSie oproti Lukas-Kanade, vdaka
tomu, Ze Farneback pocita husty tok. Metodu sme testovali na datasete BRATS 2015 s pouzitim iba
pacientov, ktori mali viac ako jedno vySetrenie. PocCas vyhodnotenia sme museli jedno vysetrenie
nerigidne transformovat’ vzhl'adom na druhé, aby sme vedeli medzi nimi vypocitat’ histogramové
korelacie. Na to sme pouzili Delaunayovu triangulaciu a afinna transformaciu. Testovali sme vplyv
réznych modalit a réznych vstupnych parametrov algoritmu Farneback. NajlepsSie vysledky sme
dosiahli pomocou modality Flair a porovnatelne aj T2. AvSak odlisnd konfiguracia algoritmu
Farneback nemala velky vplyv na nerigidnu registraciu. Len pouzitie menSieho kroku pri vypocte
zodpovedajtcich bodov z toku pomohlo dosiahnut’ vyssiu korelaciu po transformdécii vo viacerych
pripadoch ako v pripade inych konfiguracii.

Poslednym krokom je vizualizacia. Na vizualizaciu zmien nadoru sme zaviedli tri rézne metody:
vykreslenie zmien ¢iarami, HSV obrazok zmien a morfovanie obrazu. Tiez sme vytvorili jednoduchy
vizualizaény nastroj, kde pouzivatel méze vidiet MRI data v axidlnom, koronalnom a sagitalnom
smere a tieZ je dostupny aj 3D model mozgu a nadoru vytvoreny pomocou algoritmu ray cating.

