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Práca je zameraná na metódy vhodné pre sledovanie vývoja nádorového ochorenia mozgu. V práci 
využívame dáta z magnetickej rezonancie. Ide o lekársky test, ktorý sa najčastejšie používa pri 
diagnostike rakoviny mozgu a tiež počas liečby - hlavne pre plánovanie ožarovania a sledovanie zmien 
nádoru. Aby bolo možné sledovať zmeny tumoru v čase, je potrebné segmentovať nádor 
z trojrozmerných dát a tiež zaregistrovať dáta z rôznych vyšetrení vykonávaných v pravidelných 
časových intervaloch. Analyzovali sme niektoré existujúce metódy pre segmentáciu mozgových 
nádorov a jednu z nich sme v našom výskume aj testovali. Najlepšie metódy pre segmentáciu nádorov 
sú založené na konvolučných neurónových sieťach. Následne sme analyzovali stav problematiky 
registrácie a navrhli metódu pre rigidnú a taktiež nerigidnú registráciu. Rigidná registrácia umožňuje 

zarovnať dáta z rôznych vyšetrení. Proces sa skladá z nájdenia kľúčových bodov, nájdenie zhôd medzi 

kľúčovými bodmi, filtrovania zhôd a rigidnej transformácie. Na druhej strane, nerigidná registrácia 
umožňuje sledovanie zmien nádoru a mozgu medzi jednotlivými vyšetreniami vykonanými počas 
procesu liečenia. Navrhli sme jednoduchú metódu založenú na optickom toku. Metóda nájde 
korešpondujúce body medzi dvomi rôznymi vyšetreniami. Následne sú tieto body použité na 

vizualizáciu zmien pomocou algoritmu morfovania obrazu. Posledná časť práce pozostáva z 

jednoduchého vizualizačného nástroja, ktorý sprostredkúva rôzne pohľady na dáta. 
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The work is focused on the methods suitable for monitoring development of the brain tumor disease. 

At the approach, we work with magnetic resonance data. It is a medical test that is the most commonly 

used for diagnosing the brain cancer and also during the treatment - mainly for radiation planning and 

tumor changes observation. In order to track tumor changes over time, it is necessary to segment 

tumors from the volumes and also register data from different examinations performed in regular time 

periods. We have analyzed some existing methods for tumor brain segmentation and tested one of 

them in our research. The best methods for tumor segmentation are based on the convolutional neural 

networks. Subsequently we have analyzed state of the registration problematic and proposed a method 

for rigid and also non-rigid registration. Rigid registration can align data from different examinations. 

The process consists of: finding key points, finding matches between key points, filtering matches and 

rigid transformation. On the other side, non-rigid registration allows track tumor and brain changes 

between the examinations captured during the treatment process. We proposed a simple method based 

on the optical flow. The approach finds corresponding points in two different examinations. In order, 

the points are used to visualize the changes using image morphing algorithm. Last part of the work is a 

simple visualization tool that offers different views on the data. 
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1 Introduction 

Medicine is an area which is still going ahead. It is important field for people and their health. Many 

different techniques are evolved to diagnose diseases. In our research, we are working on the methods 

appropriate for monitoring the development of the brain tumor cancer. The most commonly used test 

for tumor diagnostic is magnetic resonance imaging. The result of one magnetic resonance test of the 

brain is a volume - series of images called slices. Nowadays, the computer is being used more and 

more during the diagnosing the patients. It gives more opportunities to the doctors and can help them 

work more effectively. 

However, the processing of the three-dimensional medical data (in our case MRI) can be time-

consuming and annoying task. Computer vision is a powerful tool to solve many interesting problems 

and can help with automation of the monotone and routine tasks in many fields. Medicine is one of the 

fields, where computer vision is very helpful and may be very powerful.  

Actually, there is a lot of tasks in medicine and diagnostics, where some algorithm can ease the work 

of the specialist. Special computer vision methods are developed to solve one specific task. Thus, we 

decided to focus on the brain and cancer in the brain – tumors. In our work we present methods which 

are capable to help with diagnostic of the cancer in the brain, mainly to help with the tracking the 

tumor changes. 

To process MRI data without computer vision methods, for example  segment the tumor from the 

volume, the specialist have to segment the tumor on each slice of the volume. It is time-consuming 

and monotone task, but is really necessary and very helpful – mainly during the treatment process by 

the irradiation when health parts of the brain should be radiated as less as possible. 

The main task the work was find automatic methods for tracking changes of the patient’s disease: 
track changes of the tumor and track changes of the health brain parts. To make it possible, it is 

necessary to segment tumor from the volume, align data from different examinations and find 

corresponding parts of the brain and tumor in different examinations captured during the treatment 

process in regular time periods. Today many approaches appropriate for tumor segmentation exist. 

Thus we decided to analyze them and test some. To align data from different examinations we 

proposed a method based on rigid registration. The method can be used to align corresponding 2D 

slices from different examinations. Finally, to track changes we proposed method based on non-rigid 

registration. Method can find the corresponding points between the examinations using optical flow. It 

works with the 2D corresponding slices. 

The work consists of several chapters. The 2nd chapter contains general information about the 

computer vision and about computer vision libraries. Additional three chapters give a look at the 

image preprocessing (chapter number 3), segmentation (chapter number 4) and registration (chapter 

number 5) methods. 6th chapter is devoted to the neural networks which is a powerful tool for many 

computer vision problems. Medical point of view on the brain cancer is provided in the chapter 

number 7. Overview on the state of the art methods of the brain tumor segmentation and brain 

registration are summarized in the chapter number 8. Finally, proposed method, implementation 

details and results of the testing are summarized in chapter number 9. The method consists of several 

steps. For every step is denoted one subchapter: preprocessing (chapter 9.3), segmentation (chapter 

9.4), rigid registration (chapter 9.5), non-rigid registration (chapter 9.6), visualization (chapter 9.7). 
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2 Computer vision 

Computer vision is an area that can deal with understanding digital images, videos and other digital 

data. It is important to realize that the computer see data differently than we do. The image is only a 

field of values. To get some information, it is inevitable to develop methods and algorithms. 

Digital data may be reached by different units – cameras, sensors, scanners and other specialized units. 

Usually, it is necessary to process these data in order to get some information. It can be monotone and 

boring task for the human if it is done manually. Computer vision methods and algorithms are very 

powerful and may facilitate human work or help the human with the processing and data analyzing. 

Computer vision is highly used in various science disciplines, but also in everyday life. For example, 

when you are leaving from the paid car park with the barriers in front of the shopping center, you do 

not have to scan the ticket which you took on your arrival. It is because the camera captured your car 

when you arrived, computer vision methods detected the sign on the car and paired your ticket with 

the sign and also remembered the time of your arrival. When you left, the camera again captured the 

car, computer vision detected the sign and the system had known if you have already paid. 

Nowadays, we can also use many features of the cars which use computer vision, such as parking 

assistant or autopilot. It is still necessary to pay attention when you are using these features, but in 

future there will be absolutely autonomous cars.  

Computer vision methods are also used in the industry to control the quality, in many monitoring 

systems to control the situation, prevent some accidences or detect some events. Physics, biology, 

chemistry, universe research or robotics are fields where computer vision has a lot of applications. 

2.1 Computer vision in medicine 

Medicine is another field where computer vision can ease the human work and help in different ways. 

In medicine is a lot of tests where different scanners and sensors are used. Well known tests are 

Magnetic Resonance Imaging (MRI), Computed Tomography (CT), sonography, x-ray and so on. 

Computer vision methods can help doctors and diagnosticians to process data and ease their work. 

During the keynote presentation by Dr. Yoav Medan [77] on the MICCAI 2016 conference in Athens 

were presented all fields of the medicine where some research in computer vision is registered. There 

are listed all medicine fields mentioned in Dr. Medan’s presentation: 

 “Oncological: Bone Metastases, Prostate Cancer, Breast Cancer, Kidney Cancer, Liver 

Cancer, Pancreatic Cancer, Soft Tissue Tumors, Brain Tumors, Pediatric Neuroblastoma, 

Head and Neck Cancer, Lung Cancer, Ovarian Cancer, Bladder Cancer, Colon Cancer, 

Esophageal Cancer 

 Musculoskeletal: Back Pain, Osteoid Osteoma, Osteoarthritis, Disc Degeneration, Muscle 

Atrophy, Sacroiliitis, Spinal Cord Injury, Spinal Tumors 

 Neurological: Essential Tremor, Neuropathic Pain, Parkinson’s Disease, Brain Tumors, 

Depression, OCD, Alzheimer’s Disease, Epilepsy, Hydrocephalus, Multiple Sclerosis, Stroke, 

Traumatic Brain Injury, Trigeminal Neuralgia, AVM’s Cancer Pain  
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 Women’s health: Uterine Fibroids, Breast Fibroadenomas, Uterine Adenomyosis, Tubal 

Pregnancy, Fetal Surgery, Ovarian Cancer, Polycystic Ovarian Syndrome  

 Cardiovascular: Hypertension, Atherosclerosis, Atrial Fibrillation, Deep Vein Thrombosis, 

Heart Block, HLHS, Peripheral Artery Disease, Septal Perforation 

 Urological: Prostate Cancer, Kidney Cancer, Benign Prostatic Hyperplasia, Acute Kidney 

Injury, Acute Tubular Necrosis, Ureterocele, Bladder Cancer 

 Endocrine Disorders: Thyroid Nodules, Diabetes, Obesity 

 Miscellaneous: Hypersplenium” 

2.2 Computer vision libraries 

A lot of methods and algorithms have been invented until today. Some of them is not necessary to 

implement again, because there are some libraries which provide the implementation of these methods 

and algorithms.  

2.2.1 OpenCV 

OpenCV is an open source library which contains many implementations of computer vision methods. 

It is written in C++ and C programming language and it is cross-platform. OpenCV provides interfaces 

for other languages – Python, Java, Matlab and Ruby. OpenCV has very strong community, online 

documentation is available [84] and some books are devoted to the library, such as Learning OpenCV: 

Computer Vision in C++ with the OpenCV Library written by Gary Bradski and Adrian Kaehler [7]. 

Methods from OpenCV library are able to work only with two-dimensional data. 

2.2.2 ITK 

ITK (Insight Segmentation and Registration Toolkit) is another open source, cross-platform computer 

vision library. It is written in C++ and wrapped for Python and Java. Cmake must be used to build the 

environment. It is primary specialized on the segmentation and registration methods. Big advantage of 

the library is that algorithms are able to process two, three or more-dimensional data. ITK is often 

used for processing the medical data. It was developed in collaboration with National Library of 

Medicine. ITK have also strong support and own community, documentation is available, too [28]. ITK 

has also simpler version called Simple ITK. 

2.2.3 VTK 

VTK (Visualization Toolkit) is an open-source, cross-platform system which is able to process 

images, 3D computer graphic and provides methods for visualization of two, three and more-

dimensional data. VTK is written in C++ programming language, but contains interfaces for Python 

and Java. VTK was created by Kitware company which also provides support for VTK. There is also 

online documentation available [73], but people complain that documentation is not very clear. One big 

advantage is that VTK has a suite for user interaction and another one advantage is that VTK can be 

integrated with GUI toolkit, for example Qt. 
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3 Image preprocessing methods 

Image preprocessing is first step after the acquisition of image data. In medicine, we meet with data 

which are not perfect, so it is important to apply some enhancement techniques.  Enhanced images can 

contain clearer and more perceptible edges of the objects as wrote Toennies in his book [59]. The main 

goal of preprocessing is to improve the quality of the data. 

Images can be processed in spatial or frequency domain as is explained in the book [58] from Šikudová 
et al. The most usual enhancement techniques of image quality are: 

 contrast enhancement, 

 resolution enhancement, 

 edge enhancement and 

 noise reduction. 

3.1 Processing in frequency domain 

We are basically accustomed to the data in spatial domain- To process images in frequency domain, it 

is necessary to convert them. Discrete Fourier Transformation (DFT), Discrete Cosine Transformation 

(DCT) and wavelet transformation are used to convert data from spatial to frequency domain. Wavelet 

transformation is the most usually used for image filtration techniques. Result of transformation is a 

sequence of spectral coefficients. 

Basic prejudice of DFT is that every signal can be represented as sum of sinus and cosine functions. 

There also exists an optimized algorithm of DFT called Fast Fourier Transformation (FTT) which is 

faster especially when number of coefficient is power of 2. Resulting coefficients are imaginary 

numbers. On the other side DCT convert signal into a sum only of the cosine functions and resulting 

coefficients are only real numbers. 

3.1.1 Basic filters 

Filtration is process when image spectrum (image transformed to frequency domain) is multiplied by 

spectrum filter. Then image is again transformed back to spatial domain. Basic filters used for 

filtration in frequency domain are low-pass filter and high-pass filter. As their names say, low-pass 

filter passes low frequencies and on the other hand high-pass filter passes high frequencies. Thus, if 

we want to remove details from the image, such as texture, we need to remove higher frequencies, so 

we pass only low frequencies – we use low-pass filter. If we want to get image only with edges, 

texture and details, we need to remove low frequencies, so we will use high-pass filter. 

Filtration in frequency domain is usually used to remove periodic noise. We can use special high-pass 

or low-pass filters to remove local maxims in frequency domain – filters are centered on the centers of 

the maxims and multiplied with them. 
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3.2 Processing in spatial domain 

3.2.1 Linear methods 

Linear filter may be divided into smooth filters and edge detection filters [58]. They are based on 

convolution operation. Convolution is a method which systematically go through the whole image and 

compute new value of the processed pixel using small surrounding of that pixel. Processed pixel is 

called origin and surrounding of the pixel is defined by the convolutional kernel. 

The best known smooth filters are Gaussian filter and mean filter also called blur filter. Kernel of the 

Mean filter is used for computing the arithmetical average value of the pixel’s surrounding. Kernel of 

the Gaussian filter is derived from Gaussian function. 

The best known edge detection filters are Prewitt, Sobel and Laplacian. Prewitt filter has got two 

different convolution kernels – vertical and horizontal. Thus, two information are computed using 

Prewitt filter: 

 horizontal changes 𝐺𝑥 of the image 𝐼 are computed using horizontal Prewitt kernel: 

𝐺𝑥 = [1 0 −11 0 −11 0 −1] ∗ 𝐼 
 vertical changes 𝐺𝑦 of the image 𝐼 are computed using vertical Prewitt kernel: 

𝐺𝑦 = [ 1 1 10 0 0−1 −1 −1] ∗ 𝐼 
Sobel filter is very similar to Prewitt filter: 

 horizontal changes 𝐺𝑥 of the image 𝐼 are computed using horizontal Sobel kernel: 

𝐺𝑥 = [1 0 −12 0 −21 0 −1] ∗ 𝐼 
 vertical changes 𝐺𝑦 of the image 𝐼 are computed using vertical Sobel kernel: 

𝐺𝑦 = [ 1 2 10 0 0−1 −2 −1] ∗ 𝐼 
Prewitt filter and Sobel filer are usually used to compute image gradient. Image gradient 𝐺 is a two-

dimensional vector, which coordinates are partial derivations of the function 𝑓(𝑥, 𝑦): 
𝐺 =  √𝐺𝑥2 + 𝐺𝑦2 

We can also compute the angle of the vector according to the formula: 
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𝜃 = arctan (𝐺𝑥, 𝐺𝑦) 
Laplacian filter is defined as sum of second difference in origin pixel according to surrounding of the 

pixels defined by the kernel:  

[0 1 01 −4 10 1 0] 
3.2.2 Nonlinear methods 

Typical nonlinear filters are ordering filters such as minimum, maximum and median filter [58]. Non-

linear filtration does not use convolution function. During the nonlinear filtration is used a mask which 

specifies the pixels which are processed. Image pixels under the value 1 of the mask pixel are included 

to the processing and on the other hand image pixel under the 0 mask pixel value are not included to 

the processing. The mask cross through the image and all values of the image which corresponding 

with the mask are ordered. Then first, last or middle value is selected depending on the type of the 

filter (minimum, maximum or median). 

3.3 Morphological operations 

Morphology studies objects, their shape, topology and geometry [58]. Morphological operations use 

structuring element which go through the image. Structuring element is defined by the size, shape and 

origin – position of the processed pixel. Morphology can process binary or greyscale images.  

Dilation and erosion are basic morphological operations. Basically, binary dilation enlarges white 

regions and on the other hand binary erosion shrinks white regions of the binary image. In general 

binary dilation can be defined as union of the image and structuring element. Then binary erosion is 

defined as intersection of the input image and structuring element. In the Figure 1 are shown results of 

binary dilation and erosion. Greyscale dilation is defined as a maximal value of the origin’s 
surrounding - intended by structuring element and greyscale erosion is minimal value of the origin’s 
surrounding. 

 

Figure 1: LEFT – input image, IN THE MIDDLE – dilated image, RIGHT – eroded image [58] 

Opening and closing are operation derived from erosion and dilation. Opening is operation where 

erosion is followed by a dilation. If 𝐼 is an input image and 𝑆 is a structuring element then opening can 

be defined as: 
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𝑂𝑝𝑒𝑛𝑖𝑛𝑔 = (𝐼 ⊝  𝑆)  ⊕  𝑆  
On the other hand, closing is operation where dilation is followed by the erosion: 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 = (𝐼 ⊕  𝑆)  ⊝  𝑆  
Another derives of the erosion and dilation are top-hat and bottom-hat operations. Top hat operation is 

a subtraction of input image and the morphological opening: 𝑇𝑜𝑝 ℎ𝑎𝑡 = 𝐼 − ((𝐼 ⊝  𝑆) ⊕  𝑆)  
Bottom hat is a subtraction of morphological closing and input image: 𝐵𝑜𝑡𝑡𝑜𝑚 ℎ𝑎𝑡 = ((𝐼 ⊕  𝑆)  ⊝  𝑆) − 𝐼  
Morphological gradient is next operation which uses erosion and dilation. Erosion and dilation are not 

inverse operation and this fact is used in morphological gradient. It is a subtraction of the dilation and 

erosion computed with the same structuring elements. It is defined with formula: 𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (𝐼 ⊕  𝑆) − (𝐼 ⊝  𝑆)  
The method can be used to detect the boundaries of the objects on the image. 
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4 Segmentation methods 

Segmentation methods divides image on several parts depending on some characteristic, such as 

shape, color, intensity or texture. Segmentation is usually used to detect some object on the image. 

Today a lot of segmentation methods are invented. 

Many approaches such as book about medical image analysis from Toennies[59] divide segmentation 

methods on: 

 manual, 

 semi-automatic or  

 automatic.  

Manual segmentation does not require any computer vision methods. Objects are segmented by the 

expert manually using some special software and tools. It is time consuming and monotone task, so 

computer vision experts desire automatic or semi-automatic methods appropriate for different 

problems. Semi-automatic methods require some interaction with the user, but they are faster than 

manual segmentation. Automatic methods do not require any inputs from the user, everything is 

computed by to segmentation algorithm. 

In medicine, segmentation algorithms are used to detect some specific organs and parts of the body or 

to detect some anomalies on the body, such as tumors. There are several processes how to reach data 

about the body structure. Every type of data acquisition is useful for different medical problem and 

requires specific processing. 

Segmentation methods can be divided into several groups based on approach to segmentation. 

Surveys, such as survey from Masood et al. [40], divide them on 

 edge-based methods, 

 region-based methods, 

 machine learning and 

 atlas guided. 

4.1 Edge-based methods 

One of the most popular features are edges. They can be used to guide the segmentation and we can 

extract different types of edges: parametric, intensity, texture and watershed edges as is mentioned in 

approach from Elankib et al. [16] 

4.1.1 Graph-cut algorithm 

Graph-cut algorithm is based on special representation of the image. Pixels represents nodes and 

between neighboring pixels are edges as is shown in the Figure 2. Every edge has got some value 
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called weight. In the graph based computer vision algorithms weights depends on the similarities and 

dissimilarities between the neighboring pixels. Weight may be defined by differences in the intensity, 

color, texture or another characteristic. Type of the characteristic depends on the type of the algorithm. 

Graph is cut to split image on several segments. Max-flow and min-cut algorithm are two basic graph-

cut algorithms [55]. Min-cut algorithm finds the smallest possible cut of the graph edges and divide the 

image on foreground and background. Max-flow algorithm finds the highest possible flow of the path 

in the graph. The path is created in iterations in effort to maximize the flow. Path consists of the edges. 

The flow is defined by the maximal value of the edges included in path. 

There are several approaches which use graph cut algorithm for the segmentation such as 

segmentation of the lung from chest radiographs by Candemir [9], segmentation in N-dimensional 

medical images by Boykov and Jolly [6] and so on. 

 

Figure 2: Visualization of graph cut algorithm [75] 

4.1.2 Active contour algorithm 

Active contour algorithm is also known as snake algorithm. It is based on movement of the curve – 

snake along the image structures as is shown in the Figure 3. Ivins[27] writes that algorithm try to 

minimize the energy function of the snake in several iterations. Energy of the snake consists of 

internal and external energy. Function of the external energy is proposed to find the most accurate 

edges of the object – the biggest local changes. On the other hand, function of the internal energy 

should keep the snake smooth. 

In basic implementation of the algorithm, programmer must specify the weights of the energies which 

have an impact in minimization function and whole result of the segmentation. Next input for the 

method is initial snake which should approximately plot the boundaries of the object. 

Algorithm was used in some approaches such as segmentation of the ventricle by Cohen [10] or for the 

segmentation of brain structures by Yushkevich et al. [65] 
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Figure 3: Active contour algorithm in practice [70] 

4.2 Region-based methods 

4.2.1 Thresholding 

Thresholding is basic and very often used computer vision method. Input for the method must be 

grayscale image and output of the method is binary image (pixels can have values 0 or 1) as is shown 

in the Figure 4. Values of the final binary image are computed from the input image depending on the 

threshold value. Threshold is a constant entered by the programmer and defines the boundary between 

the higher and lower intensity values of the pixels from the input image. Resulting value of the pixel in 

output binary image is defined by the formula (𝐼(𝑃𝑖,𝑗) is an intensity of the input pixel and 𝑇 is a 

threshold constant): 

𝑃′𝑖,𝑗 = { 10        𝑖𝑓 𝐼(𝑃𝑖,𝑗) ≥ 𝑇𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑐𝑒  

          

Figure 4: LEFT – input image, RIGHT – thresholded image 
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4.2.2 Region growing method 

Region growing method is iterative algorithm and the region – segmentation grows in every iteration 

if the structure of the image allows it. It means that region-growing algorithm is a merging-type 

region-based algorithm as is mentioned in the book from Glasbey [19]. In the Figure 5 is shown several 

iterations of region growing algorithm. 

The algorithm needs an initial position of the region called seed. Seed may be specified by the user 

using simple interaction or by computed using some statistical methods. In every iteration the 

algorithm controls all surrounding pixels of the region and decides if the pixel will be added or not. It 

depends on some characteristic of the image. If difference between region pixel and surrounding pixel 

is too big then pixel is not added to region, otherwise it is. 

Region growing segmentation was used for example for the heart segmentation from ultrasound 

images by Hao et al. [23] 

 

Figure 5: Iterations of region growing algorithm [80] 

4.2.3 Watershed algorithm 

Watershed algorithm is based on the principle of height map flooding. The relief is represented by the 

image gradient. Thus, as the relief of the height map is flooded, the segmentation of the watershed 

algorithm increases. 

Basic algorithm starts in local minims of the image [5] (it can also start on local maxims and decrease 

the values in iteration). The pixel values that can be added to the regions are gradually increasing, so 

the regions are enlarged in iterations. When two different regions meet, the algorithm creates a border 
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between them and that’s are the final boundaries of the image segments. The process of the algorithm 

is shown in the Figure 6.  

Watershed segmentation algorithm with some improvements was used for example to segment the 

breast tumors by Huang [26] and Chen or Grau et al. tested watershed method for knee cartilage 

segmentation and gray/white matter segmentation [22]. 

 

Figure 6: Iterations of the watershed algorithm [56] 

4.3 Machine learning 

Simply, machine learning makes computers capable to learn without explicitly programming. 

Computer can learn some models and make segmentations depending on the models and similar 

conditions on the input image or can divide image on the parts – segments depending on some 

characteristic. Basic division of machine learning techniques is on: 

 unsupervised learning (clustering) and 

 supervised learning (classification) as is mentioned in the book from Toennies [59]. 

Clustering is unsupervised learning method which divides pixels of the image on several clusters. No 

previous training of the model is needed. Pixels are divided depending on some specific characteristic 

– some feature. Pixels grouped in one cluster are more similar to each other than to the pixels from 

another groups. 

Classification is supervised learning which means that we need to train some model, so we need some 

training dataset (data with real true results - segmentations). Training data are used to train the model 
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depending on some features and models are then used to classify pixels of the new input image into 

defined classes. 

4.3.1 K-means 

K-means is clustering efficient algorithm which can divide the image on K clusters. It is based on the 

criterion that the pixel is in the minimum distance from the center (mean) of all clusters according to 

the value of the pixel. Center is iteratively calculated as the mean of the all pixels in cluster [40]. 

K-means algorithm was used for example for brain tumor detection by Wu et al. [62] or for 

segmentation of brain parts by Foong et al. [44] 

4.3.2 Fuzzy c-means 

Algorithm is based on the theory about the fuzzy logic  [40]. Algorithm is similar to K-means, but fuzzy 

c-means allows pixels to be a part of more than one classes. 

Fuzzy c-means in combination with SVM algorithm was used for prognosis of diabetes in approach by 

Sanakal and Jayakumari [53]. 

4.3.3 Mean-shift 

Mean-shift algorithm is clustering algorithm and consists of several steps. At first an initial search 

window is created. Then the algorithm computes centroid of the data (mean location) inside the search 

window and search window is centered at the mean location. These steps are repeated while the values 

converge. 

4.3.4 Superpixel algorithms 

At the beginning, superpixel is a set of pixels with some similar characteristic such as color, texture, 

intensity or some combination. Superpixels are used for the next processing, because their size is still 

small and they do not limit any whole object usually. However, the boundaries of the superpixels are 

corresponding with the boundaries of the object on the image. 

SLIC (Simple Linear Iterative Clustering) is one of the best methods proposed to create superpixels 

from the image. It was invented by Achanta et. al [1] and the algorithm is used in many researches. At 

first, 𝑛 initial cluster centers are created on a regular grid. The centers are moved in iterations to seed 

locations which corresponding to the lowest gradient. Thanks this superpixel boundaries 

corresponding with edges on the image. Example of superpixel clustering is shown in the Figure 7. 
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Figure 7: SLIC superpixel clustering 

4.3.5 Support vector machine 

Support vector machine (SVM) is supervised learning algorithm [31]. Thus it is necessary to have some 

training data to train the model which can divide another inputs to the classes after the training. During 

the training all training data are plot into n-dimensional space [59]. Number of spaces depends on the 

number of features which we can extract from the data. Then the algorithm finds the hyper-plane – the 

best bound between two classes in the several iterations as is shown in the Figure 8.  

 

Figure 8: Graphical representation of support vector machine [82] 

SVM classification algorithm was used in many approaches, for example to segment brain tumor from 

MRI images by Bauer et al. [3] or to recognize reliable heart beating from electrocardiogram waveform 

(ECG) [46]. 
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4.3.6 Bayesian models 

The simplest Bayesian model is naive Bayesian classifier – it is probabilistic classifier [30] good for 

large data. It is based on Bayesian theorem which calculate posterior probability [59]: 𝑃 (𝑐|𝑥) =  𝑃 (𝑥|𝑐) 𝑃(𝑐)𝑃(𝑥) , where 

 𝑃 (𝑐|𝑥) is the posterior probability of the class, 

 𝑃 (𝑥|𝑐) is the probability of the given predictor class, 

 𝑃(𝑐) is prior probability of the class and 

 𝑃(𝑥) is prior probability of the predictor. 

However, a lot of improvements of the basic model exist and Bayesian models can be also used for 

clustering problem. 

4.3.7 Decision trees 

Decision tree is a classification algorithm which creates tree with decision nodes and leafs [30]. 

Decision tree is built using some features from the input data. Features and their possible values 

represent decision nodes and possible resulting output is represented by the list. Order of the features 

depend on the entropy. Entropy calculates the homogeneity of the data in the classes and if the class is 

homogenous then entropy is zero. It means that feature which can divide the data better is higher in the 

tree. After the training, the class of new input data is gained from the trained tree using the decision 

nodes and features. 

Algorithm can be improved to decision forest which consists of many decision trees and result depend 

on more usual result of every decision tree.  It is usually used for more complicated segmentation 

problems such as tumor segmentation in MRI images as in approach by Zikic et al. [68] 

4.3.8 Neural networks 

In the past years, neural networks were used to solve many different computer vision problems. 

Researches show that neural networks are very suitable for analyzing and processing the digital data. 

Neural networks are based on the prejudice that they will learn some rules on the big training dataset. 

Bigger training dataset can raise the accuracy of the network. Nowadays exist many different types of 

algorithm based on neural networks. Chapter number 6 Neural networks is devoted to the explanation 

of these methods. 

4.4 Atlas guided segmentation 

Atlas guided segmentation is special type of segmentation, because first step is to register data on the 

atlas [40]. Atlas is a general structure of some part of the body, or organ in the body. Thus input data 

have to be registered, so they are deformed. Input data should have similar structure as the atlas after 

the registration. When data are registered then atlas and information from the atlas can be used for the 

segmentation. Atlases are also usually used to detect some anomalies in the data – images or volumes. 
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5 Registration methods 

A process which can align two or more images (the reference and sensed images) of the same scene is 

called registration. Crum, Hartkens and Hill in their article [14] write that for every one pixel from first 

input data is being found position of the corresponding pixel from another input data. Images may by 

captured by different sensors, from different points of view or they can be scanned in different times 

or with different conditions. Registration is a necessary step to analyze and gain some information 

from combination of various data sources. 

From the point of view that what kind of images are registered, registration can be divided into four 

groups as written Zitová in her article [69]: 

 registration of different viewports – the goal is to get bigger 2D view or 3D representation of 

the scene 

 registration of data acquired in different times always also with different conditions – the goal 

is to detect changes between the acquisitions 

 registration of data acquired by different sensors also called multimodal analysis – the goal is 

to work with more information obtained from different sensors 

 registration of the model and the scene where model is some computer representation of the 

scenes such as atlases– the goal is find the localization of the scene in the model and compare 

them 

Usually process of the data registration consists of four basic steps [69]: feature detection, feature 

matching, estimation of the transformation model and transformation 

5.1 Feature detection 

In feature detection step some salient objects are detected on the image depending on the method as 

shown in the Figure 9. They are usually represented as the array of the points called control points (or 

key points). There is a lot of possibilities how to detect the features, but they should be detected easily. 

Thus, we must decide what type of the features will be appropriate for our task. In the perfect world, 

the algorithm would be able to detect the same features on the all input images regardless of the 

deformation.  

Feature detection methods can be divided from different points of view. Zitová divided feature 
detection methods from type of processing into the two groups in her article [69]: area-based methods 

and feature-based methods. On the other side, Ferrante and Paragios [17] and also Crum, Hartkens and 

Hill in their article [14] divided methods from matching criterion view and they are connecting feature 

detection and feature matching into one step called finding matching criterion (Ferrante and Paragios) 

or finding similarity measures (Crum, Hartkens and Hill). They divided methods into 4 groups: iconic 

(intensity based), geometric, sensor based and hybrid. 
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Figure 9: Set of key points detected on the image 

5.1.1 Feature detection methods from processing view 

5.1.1.1 Area-based methods 

Area-based methods skip the feature detection step. No features are detected in these approaches, 

because it is merged with feature matching step. The algorithms are explained in the next chapter – 

feature matching. 

5.1.1.2 Feature-based methods 

Feature-based methods find significant parts of the images based on regions, lines or points. The 

algorithms can find features efficiently on the input images. They do not work with image values of 

the intensities directly, but they use some methods to get high level information of the images, so they 

can facilitate with differences of the images. Region features of the image are detected thanks high 

contrast boundaries of these regions. Region-based features are usually represented by their centers of 

gravity. Line features can be some line segments, region boundaries or object contours. They are 

usually represented by pairs of end or middle points. Point features usually define some local 

extremes. 

5.2 Feature matching 

Feature matching algorithms try to find correspondences between the features detected on the sensed 

image and features detected on the reference image as is shown in the Figure 10. The problem is, that 

if we had some incorrect features detected in previous step it spreads into this step. Another problem is 

that corresponding features can be dissimilar, because images might be scanned with different 

conditions. This problem should be solved with good choice of the feature descriptor. On the one 

hand, the descriptor must be able to distinguish among the different features, but on the other hand it 

cannot be influenced by noise and unexpected variations of the features. Result of description is a 

feature vector which is used for the feature matching. 
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Figure 10: Matching of key points 

5.2.1 Feature matching methods from processing view 

5.2.1.1 Area-based methods 

Area-based methods use correlation function or template matching algorithms. Thanks this, the area-

based methods can skip the feature detection step and merge it with matching step. These methods do 

not detect any significant objects on the images. They are using windows or whole images which go 

through reference image to find correspondence. Some statistical values are calculated to evaluate the 

strength of the correspondences, such as correlation. These methods are very limited, because they are 

not appropriate for images that are deformed. 

5.2.1.2 Feature-based methods 

Input for the feature-based methods are two sets of key points – one from reference image and second 

one (or more) from sensed image. Future-based methods are divided on several types: 

 Spatial relation algorithms are used if the surrounding of the key points is deformed. They are 

based on spatial relations, so they require information about the distance between the key 

points and spatial distribution. 

 Invariant descriptors are an alternative of spatial region algorithms. Good descriptors must 

fulfill some conditions. The descriptions of the corresponding features must be the same – 

invariance condition. Descriptors of two different features must be different – uniqueness 

condition. And they must deal with local deformation – stability condition. 

 Relaxation methods are based on labeling features from sensed image with labels of the 

features from reference image. The result of labeling are pairs of features – one from reference 

image and second from sensed image. Then the pairs are iteratively changed, depending on the 

strength of the match, until the situation is not stabilized. 



 

48 

 

5.2.2 Feature detection and matching methods from matching criterion 

view 

5.2.2.1 Iconic (intensity based) 

Iconic methods use information about intensity of processed pixel and its neighborhood. In volumetric 

data are used intensities of voxels to find similarities between two input data. The biggest challenge is 

to deal with different types of input data (they can be reached with different sensors – multimodal 

registration). In this case data have to be transformed to the same space where they can be easily 

compared. Matching of the similarities in multimodal data usually use complex statistical metrics such 

as cross correlation. On the other side, simpler methods, such as sum of absolute differences, can be 

used to find similarities between the monomodal data. 

For example, Xiao et al. used iconic based registration for calibration of ultrasound during the patient 

examination in their survey [63]. Intensity based registration was also used for deformable registration 

of MRI and ultrasound images for neurology surgery by Hassan, Chen and Collins [49]. 

5.2.2.2 Geometric 

Geometric methods use for registration a sparse set of salient image locations. It means that methods 

create explicit models of the elements on the image which can be easily identified. The best 

identifiable parts of the image are usually some curves, special surfaces or special points which can 

match with another input data. The pros of this type of methods is that mapping is biologically valid 

and allows anatomically and physiology correct transformation. 

Geometric registration was used for example by Yavariabdi et al. [64] to register 2D ultrasound images 

to 3D MRI of woman pan. The main goal was to detect endometrial implants on both modalities. 

Endometriosis is a disease that affects women in fertile age. 

5.2.2.3 Sensor based 

Sensor based methods are not based on information from images, but on another kind of information – 

they work with information from some specialized sensors. The most usually types of sensors are 

optical and electromagnetic tracking systems. Optical systems, such as infrared camera or laser 

camera, track some special markers and it is helpful to identify position of tracked object. On the other 

side, electromagnetic tracking systems use transmitters to sensors and processor units to register 

location and orientation of the tracked object. 

For example Polak in his surgery [47] used sensor based method for motion tracking in magnetic 

resonance image for retrospective volume reconstruction. MR images are very sensitive for motion. It 

is hard manly during the examination of the children. 

5.2.2.4 Hybrid 

Hybrid methods are some kind of combinations of previous three methods. They are usually used to 

reach better and more exact results. 

One example of interesting hybrid registration which combined sensor based and iconic registration 

was developed by Bernhard et al. [18] to automatically register MRI and ultrasound images for 
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neurosurgery. It is required for practice to register preoperative MRI images with ultrasound images 

reached during the operation. 

5.3 Transformation model estimation 

In this step a model for transformation is estimated. Mapping functions are created to align the sensed 

images with reference image. Mapping function depends on the feature correspondences and must 

decide which correspondences are correct and will be matched and which will not be matched. 

Information about the image degradation is used in this step to create appropriate mapping functions. 

Usually authors of articles [14][17] divide methods only from deformation point of view on rigid and 

non-rigid transformation also called elastic. However, Zitová et al. [69] and also Kybic [35] divided 

methods in their articles also by kind of mapping on global mapping models, local mapping models 

and mapping by radial basis function. 

5.3.1 Division of transformation models from deformation point of view 

5.3.1.1 Rigid 

Rigid registration does not deform structure of the data. Basic functions of rigid registration - 

transformation are: 

 Scaling – when size of the image is enlarged or reduced. 

 Rotation – when the image is rotated several degrees around some point. 

 Translation – when the image is shifted in some direction. 

 Reflection – when the image is flipped over some line. 

In domain of brain surgery is rigid registration usually used to register different types of modalities to 

reach more relevant information about the patient. One example of surveys in this field is survey by 

Colligon et al. who registered CT, MRI and PET volumes in their approach [11]. 

5.3.1.2 Non-rigid elastic registration 

Elastic registration does not depend on the searching for the best values of the parameter as previous 

rigid registration which is based on parametric mapping functions. This new type of the registration 

was invented by Bajcsy and Kovacic [2]. 

The elastic registration is based on minimization of the strength energies in iterative process. We can 

imagine an image as a rubber sheet. Then internal and external forces act on that sheet to stretch or 

shrink it. While external forces stretching the image, the internal forces minimize the stretching 

depending on their stiffness constraints. In elastic registration methods, feature matching step is 

performed concurrently with mapping function calculation. This is a big advantage because no feature 

descriptors invariant to complicated deformations have been invented yet. 

Well known non-rigid registration methods are fluid registration, optical flow, diffusion-based 

registration and level sets. 
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Non-rigid registration can be also used for segmentation of some anomalies if we register data on 

atlases as is mentioned in previous chapter 4.4 Atlas guided segmentation. Kyriacou et al. used elastic 

registration to register brain MRI data on Brain atlas and to detect anomalies – tumors in the volumes 

in their approach [36]. 

5.3.2 Division of transformation models from mapping point of view 

These methods are used for different types of rigid registrations and need to count parameters to 

perform some transformation. 

5.3.2.1 Global mapping models 

One of the most popular and the simplest global mapping model is similarity transform. It is a linear 

model defined by two key points. This model preserves the shapes and it uses only translation scaling 

and rotation. 

Another linear model is affine transform. It is defined by three key points. The advantage of the model 

is that it preserves straight lines and their parallelism. The most usual usage is registration of different 

viewports, but the scene must be larger than scanned area, scene must be flat and geometry cannot be 

disturbed by any local factors. 

If the scene is smaller than scanned area, then the perspective projection model should be used. It is 

defined by four independent key points and describes the deformation of the flat scene. 

5.3.2.2 Local mapping models 

In the previous chapter, the methods created mapping function according to global deformation of the 

images. However, images can be deformed also locally. It is typical for medical imaging. Mapping 

functions register information about the local geometric changes. 

5.3.2.3 Mapping by radial basis function 

Radial bases functions are also able to work with local geometric distortions, but they are using some 

combinations of global mapping methods to create mapping functions. They are linear combinations 

of translation function polynomials. They were originally developed for interpolation of the irregular 

surfaces. The most important property of radial basis function is that they depend only on the distance 

of the key point, not on the concrete position of the key point. The most popular radial bases functions 

are Gaussian, Wendland, multiquadrics and thin-plate splines (TPS). 

5.4 Transformation 

Mapping functions which were created in the previous step are used for the transformation of the 

sensed images. There are two different approaches: 

 Forward manner uses mapping functions for direct transformation of every pixel from sensed 

image. It can produce overlaps or holes, so it is hard for implementation. 
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 Backward manner uses inverse of the mapping functions and coordinates of the target pixel 

based on reference image to compute data for sensed image transformation. It is easier for the 

implementation, because algorithm do not produce any overlaps or holes. 

5.5 Validation 

Validation means to show that registration was correct. It is sometimes really hard task to evaluate 

correctness of the registration as writes Crum, Hartkens and Hill in their article [14]. Actually, average 

volume error of the registration can be estimated, but only in case when registration is rigid. It is count 

as distance between the corresponding landmarks. This kind of analysis is not possible to use for non-

rigid registration techniques, because deformation is not consistent with real world. Thus, validation is 

always performed to show on the dataset that transformation worked as we excepted for this kind of 

registration.  
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6 Neural networks 

Neural networks are simplicity inspired by biological neural system as is mentioned in the book by 

Kriesel [32]. It means that they can progressively learn to do some task from some examples. Neural 

network can learn how to do some task without being explicitly programed. For example, neural 

network can learn to distinguish between different type of flowers on the images. Using many 

examples of those flowers with labels, neural network can detect right type of flower on the new input 

image. 

Neural network consists from many neurons which are connected such as brain. Those neurons are 

called artificial neurons. Mathematically, we can represent the neural network as a directed graph 

where neurons are nodes and connections are weighted edges.  

In the Figure 11 we can see a schema of one neuron, where: 

 𝑥1… 𝑥𝑛 are inputs,  

 𝑤1… 𝑤𝑛 are weights of connections and  

 𝑏 is bias.  

The inputs are multiplied by weights and summed up inside computing unit. Weights are crucial to 

solve the problem. They represent the strength of connection between neurons. Result of the sum may 

be number between 0 and ∞. 

 Thus, activation function (also called transfer function) is used to control the results. Activation 

function can be defined by different function. The simplest is binary activation function (threshold), 

which can reach only two values – 0 or 1. Another functions usually fall into the linear or sigmoid 

category of functions. 

Figure 11: schema of the artificial neuron 
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We need sophisticated neural networks to solve hard problems. More difficult neural networks consist 

of several layers and every layer consist from several artificial neurons. Typical neural network 

consists of: 

 input layer, 

 several hidden layers and 

 output layer. 

Input layer contains artificial neurons which receive input from outside world. Input is used to learn 

network – find the best values of the weights to make network capable to process and make decision 

about new inputs. Between input and output layer can be several hidden layers. Their main job is to 

transform input into something that output layer can use. Finally, output layer contains neurons which 

react on the information how network learned the task. Layers are usually fully connected – it means 

that every neuron in one layer is connected with all neurons in its previous layer and next layer. 

Typical architecture of neural network is displayed in the Figure 12. 

Figure 12: Architecture of neural network 

On the webpage of Asimov institute [83] is a list of different kinds of neural network architectures. In 

the Figure 13 are shown schemas of architectures from the web page. However, the schemas do not 

explain how neural networks work, they only show how different neural networks are composed. 

Since many different architectures exist in the next subchapters are explained only two of them: 

perceptron (because it is basic architecture) and convolutional neural network (because we are 

interested in this kind of neural network architecture in our approach). 

 

Input layer Hidden layers Output layer 
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Figure 13: Different architectures of neural networks by Asimov institute [83] 
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6.1 Perceptron 

Perceptron is one of the simplest neural network developed by Rosenblatt in 1958 [50]. It is very well 

explained in the online book by Goodfellow et al. [20]. It consists only from input and output layer, so it 

does not have any hidden layers as is shown in the Figure 14. Input layer can have two or more input 

units and Rosenblatt designed rules to compute the output.  

Figure 14: Schema of perceptron 

In the research, he introduced weights. That are real numbers which determine the importance of the 

inputs to count correct output. Output can have values 0 or 1 depending on the formula: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  {  
  0 𝑖𝑓 𝑥𝑖𝑤𝑖  ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖1 𝑖𝑓 𝑥𝑖𝑤𝑖  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

 

Then the perceptron learns correct outputs depending on the input data. Perceptron get some input and 

it returns some output. That output is compared with estimated output and the error is counted. Then 

the error is used to edit weights.    

6.2 Convolutional networks 

First modern convolutional neural network was presented in paper by LeCun, Bottou, Bengio and 

Haffner in 1998 [37]. This algorithm is very well explained in the online tutorial by Michael Nielsen 

last edited in 2017 [45]. Convolutional networks are a little different from another networks because 

they are primary used for image processing. This is the reason why we are interested at it. Typical task 

for convolutional network is to classify images into different classes and she need to learn on many 

input examples.  

Convolutional networks are not fully connected as other neural networks. Nodes are connected only 

with the nearest neighbors – it depends on the implementation. Convolutional neural networks use 3 

basic ideas for image recognition: 

 Local receptive fields: In typical networks are neurons ordered into the vertical line, but in 

convolutional networks are neurons ordered to the matrix. Then the input matrix is passed to 

the hidden layers, but not each pixel is connected with all hidden neurons. There are 

connections only between small regions from the input image. It means that neuron from 

hidden layer will be connected only to some region from input layer and that region is called 

local receptive region. Of course, each connection has a weight. Thus each region from the 
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input image is connected with neuron on the hidden layer. The algorithm starts at left top 

corner and slide over one pixel in every step through whole image. This process is called 

convolution. Finally, size of the hidden layer is smaller because of margins of the image. Size 

of the reduction depends on the size of the regions. 

 Shared weights: Each connection to hidden neuron have a weight matrix (size of the weight 

matrix is the same as size of the region from input image) and a bias. Those weights and value 

of bias is shared for all hidden neurons. It means that output value of the hidden 𝑗, 𝑘𝑡ℎ neuron 

is defined as: 

𝜎 (𝑏 + 𝑤𝑙,𝑚𝑥𝑗+𝑙,𝑘+𝑚𝑜
𝑚=1

𝑛
𝑙=1 ) 

 

Where 𝜎 is activation function, 𝑏  is shared value of the bias, 𝑤𝑙,𝑚 is a shared matrix of 

weights and 𝑥𝑗+𝑙,𝑘+𝑚 define positions of the hidden neurons. In other words, every neuron in 

the hidden layer detect the same one feature. This process is usually denoted as creation the 

feature map. If we want to extract more features from the input image, we need to create more 

feature maps. Different feature map can be created using different filter (also called kernel) 

which is defined by the weights and bias. More about the features, feature maps and filters is 

written in the article by Zeiler and Fergus [67]. 

 Pooling: After the convolution layer is usually used pooling layer which simplify the 

information from the convolutional layer. Thus, feature map is processed again and max 

pooling creates condensed map as summarization of some small regions. It again creates 

smaller layer. One of the best known algorithm is max-pooling algorithm which compute the 

maximum from given region. There are also some other pooling algorithms. Of course, 

pooling must be done separately for each feature map. 
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7 Medical background of the brain cancer 

The brain consists of many and many neurons [57]. That’s are special cells which are located only in the 
brain. Every cell has got some life cycle. It means that old cells die, so new cells must be created. 

During the creation and cell growing process can occur some mutation of the cell. Mutation of the cell 

causes that the original functionality of the cell is lost. If there are more and more mutated cells and 

they take some regions in the brain, they create the tumor. 

The growth of the tumor may cause some problems which are considered as symptoms of the brain 

cancer. Type of the symptoms depends on the location of the tumor in the brain - the tumor pushes on 

different brain centers and cause different problems. First signs of the tumor cancer are strong and 

particular headaches. Tumor may cause speech disorders, memory problems, movement disorders and 

so on. 

It is very important to recognize the first symptoms of the brain cancer and start to solve them. Early 

diagnostics may be crucial for the patient. In the past, it was not possible to see tumor without direct 

interference with the brain, which was not also possible because medicine was not so far. It was 

possible only to determine the position of the tumor depending on the symptoms. 

The invention of the MRI and CT scanners allowed to see brain structures and get more information. 

The typical process of MRI or CT image evaluation consists two steps. At first, one specialist has to 

inspect all images and make diagnosis. In addition, conclusions of the first specialist must be 

consulted with another one. That is long and time-consuming process. Nowadays, special programs 

are used to highlight tumor boundaries on the slices. However, without computer vision methods it is 

still time-consuming and monotone task. Thus, computer vision finds here its application.  

7.1 Magnetic resonance imaging – MRI 

MRI scanners are based on the magnetic fields and create grey scale images of the organs in the body 
[34]. The patient lies in the special scanner where strong homogenous magnetic field acts. A short 

radiofrequency pulse is transmitted to the patient’s body. It bounces back from the body structures as a 
weak signal which is finally used for image reconstruction. The signal is scanned with different 

settings, so different modalities are created. The most usual modalities are Flair, T1, T2 and T1c with 

contrast substance. 

MRI is the most often used technique during the brain cancer diagnostics. Patients absolve more MRI 

tests at several monthly time intervals. MRI data are not used only for diagnostic, but also for the 

healing process and tumor changes monitoring.  

7.2 Data 

The result of the MRI are volumetric data. That are three-dimensional data – a set of images called 

slices. MRI data are not saved in classical image formats such as jpg or png. They are stored in special 

medical formats such as DICON, NIFTI, MHA and many others. It consists of the header with 

important information and body where scanned values are stored. 
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Brain MRI data may be visualized using special 3D visualization methods, but doctors often uses 

printed 2D images - slices for diagnostic. They can be printed and also visualized in computer in three 

different directions: 

 axial, 

 coronal and 

 sagittal. 

Examples of different views are shown in the Figure 15, where left image is axial, image in the middle 

is coronal and right image is sagittal view. 

   

Figure 15: Axial, coronal and sagittal view of the brain MRI 
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8 State of the art 

This part is devoted to the most interesting state of the art methods in the field of medical imaging, 

mainly tumor segmentation methods and brain registration methods. 

8.1 Segmentation 

8.1.1 Brain Tumor Segmentation Benchmark (BRATS) 

BRATS is a challenge aimed on brain tumor segmentation. It is a part of BRAINLES workshop which 

take place every year from 2012 as part of International Conference on Medical Image Computing and 

Computer Assisted Intervention - MICCAI. This year (2017) BRATS has got two challenges: 

 segmentation of gliomas in pre-operative scans and 

 prediction of patient overall survival from pre-operative scans.  

In the last year, one of the challenges was monitoring of the tumor changes. 

BRATS provides own dataset of MRI brain data with tumor disease [72] and also labels of tumor 

segmentations made by experts. Dataset is divided on training and testing data and is increased every 

year. In the last year challenge (2016) it contained 191 subjects in testing dataset and 200 subjects in 

training dataset. Dataset for BRATS challenge 2017 is not available yet. In the BRATS dataset every 

subject contains flair, T1, T1c and T2 MR modalities. 

Prof. Dr. Bjoern Menze is one of BRAINLES organizers and he is in charge of BRATS. In 2015 

Menze et al published an article [42] about results from BRATS 2012 [60] and BRATS 2013 [41] 

challenges. Twenty algorithm for tumor brain segmentation were presented on BRATS challenges – 

17 fully-automatic and 3 semi-automatic algorithms. 

In the article is also mentioned how data were labeled by expert. Authors wrote that edema was 

segmented from T2 images and Flair was used to cross-check the segmentation. The tumor core 

(which consists also from enhancing and non-enhancing tumor structures) was segmented from T1-c 

and T1 modalities. Then threshold of T1c was used to segment enhancing core. Necrotic core parts 

were defined as the tortuous and low intensity necrotic structures and finally the non-enhancing 

structures was segmented as subtraction of the enhancing core and necrotic core structures. Manual 

segmentation was necessary for the evaluation of the methods for automatic segmentation. 

For the evaluation of the segmentation organizers of BRATS challenge created the benchmark. It 

computes accuracy, sensitivity, specificity, Dice score and also Hausdorff score: 

 Sensitivity: 𝑠𝑒𝑛𝑠(𝑃, 𝑇) =  |𝑃1˄𝑇1||𝑇1|  

 Specificity: 𝑠𝑝𝑒𝑐(𝑃, 𝑇) =  |𝑃0˄0||𝑇0|  
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 Dice score: 𝐷𝑖𝑐𝑒(𝑃, 𝑇) =  |𝑃1˄𝑇1|(|𝑃1|+|𝑇1|)/2, where 𝑇1 is true lesion area, 𝑇0 is normal area, 𝑃1 is 

predicted to be a lesion and 𝑃0 is predicted to be normal as is shown in the Figure 16. 

 

Figure 16: Truth segmentation by the expert (𝑇1 and 𝑇0) and prediction of the algorithm (𝑃1 and 𝑃0) 

Authors evaluated all methods using accuracy, specificity, Dice score and Hausdorff score. They 

evaluated segmentations of whole tumor, core tumor and active tumor part. They compared results of 

the methods and in the Figure 17 are shown results of sensitivity and specificity comparison. In the 

Figure 18 are presented the results of  Dice score evaluation. 

 

                       

Figure 17:  Distribution of Sensitivity and Specificity evaluation results of tested methods [42] 
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Figure 18: Dice score evaluation results of the methods (only whole tumor) [42] 

In the figures we can see that Zhao(I), Menze(D) and Zhao(II) methods reached the best results in case 

of whole tumor segmentation. The methods are based on: 

 Zhao(I) – Learned Markov Random Field on Supervoxel Clusters 

 Menze(D) – Generative-Discriminative Lesion Segmentation Model 

 Zhao(II) – the same as Zhao(I), but with updated unary potential 

There is not any new summarization of BRATS 2014 – BRATS 2016 available, but proceedings of the 

workshops are: BRATS 2014 [43], BRAINLESION 2015 [48] have also official journal [13] and 

BRAINLESION 2016 [8] have also official journal [12]. BRAINLESION workshop consist of: 

 brain lesion image analysis fully 

 brain tumor image segmentation improving (originally BRATS) 

 ischemic stroke lesion image segmentation predicting 

I attended BRAINLES 2016 workshop and as the best method from BRATS 2016 was evaluated 

Chang’s method - Fully Convolutional Neural Network with Hyperlocal Features. The method 

exceeds the state of the art with Dice score of whole tumor segmentation 0.87. This method and also 

some other interesting methods are explained in the next chapters. 
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8.1.1.1 Brain Tumor Segmentation Using a Fully Convolutional Neural Network with 

Conditional Random Fields [12] 

Zhao at al. proposed new method for tumor segmentation based on the fully convolutional neural 

networks (FCNN) and conditional random fields (CRF) used for post-processing step after FCNN. 

Their method consists of three steps: pre-processing, segmentation using the FCNN and post-

processing. 

Authors describe that preprocessing is necessary, because devices of MRI are not the same, so 

intensity ranges and bias field can be different. They decided to use N4ITK method to correct bias 

fields and normalize the intensity. 

Their model for tumor segmentation consists of FCNN and CRF and in train phase can segment tumor 

from 2D slices. FCNN was trained on two dimensional slices and the architecture is shown in the 

Figure 19.  

The input for FCNN have got two different sizes. Bigger region is passed through several convolution 

and pooling layers and feature map is created. Then the smaller region is added and it again passes 

several convolution and pooling layers. Finally, the label of center pixel is predicted. Then the 

predictions are optimized using CRF algorithm. Finally, in post-processing phase, authors remove 

small 3D-connected objects using simple threshold method. 

 

Figure 19: Architecture of FCNN 

Authors evaluated the method on BRATS 2013 dataset and reached first position of all methods tested 

on this dataset. Their method also reached good results using only three modalities (Flair, T2, T1c) 

rather than all four which can reduce the cost of data acquisition.  

8.1.1.2 Fully Convolutional Neural Networks with Hyperlocal Features for Brain 

Tumor Segmentation [8] 

Chang proposed simple architecture of the convolutional neural network and used also local features 

for brain tumor segmentation. His method is based on fully convolutional architecture. Output is a 

classification matrix with the same size as input image. The activation functions from the deepest 

convolutional output layer are combined with local features. Architecture of the proposed method is 
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show in the Figure 20. Proposed method is very fast. It can segment the tumor from whole volume in 

less than one second, because network is composed only from 130400 parameters. 

 

Figure 20: Architecture  of convolutional neural network [8] 

Authors tested proposed architecture on BRATS 2015 dataset and evaluated the results and compared 

them with BRATS 2016 leaderboard. Only dice score and Hausdorff were presented in their article. 

They reached 87 % dice score and 9,1 Hausdorff for whole tumor segmentation. 

8.1.1.3 Image Features for Brain Lesion Segmentation Using Random Forests [13] 

Maier, Wilms and Handels used random decision forests for tumor segmentation. They tested different 

features and found best combination to reach good results in segmentation. Their method consists of 

pre-processing, random forest classification and post-processing step.  

In the pre-processing phase, authors normalized the intensities and corrected biases. In the next step 

authors trained the classifier on the subset of data. They have shown that carefully selected subset of 

data can reduce training time with minimal effort to the accuracy. Model was trained using random 

forest algorithm which output is a probability map. Finally, in post-processing phase they selected the 

most probable classes for each voxel from probability map. 

Authors tested their method on BRATS 2015 and also on ischemic stroke lesion dataset and reached 

very good results in both cases. Thus, their method is robust for segmentation tasks in the brain MRI 

volumes. In the BRATS 2015 leaderboard they reached dice score 75 %, sensitivity 88% and 

specificity 71% for whole tumor segmentation. 

8.1.1.4 Learned Markov Random Field on Supervoxel Clusters [42] 

Zhao, Srakaya and Corso removed the noise from the data and normalized them in the preprocessing 

phase. During the normalization they put the data to the same scales using z-score (zero mean and unit 

covariance). In the next step they created supervoxels using SLIC algorithm. SLIC algorithm cluster 

pixels into the voxel by color similarity and proximity in the volume.  

In the next step they created Markov random field and used it for the graph cut segmentation. Of 

course, graph cut needs some input information about probably foreground and background. Thus, 

they used training data to create histogram and then the histogram was used during the testing to create 

probably background and foreground. 
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This method was explained in the summarization article by Menze et al. [42] and evaluated on BRATS 

2013 dataset. The results of the method are presented in the figure: sensitivity and specificity in the 

Figure 17 and Dice score in the Figure 18. 

8.1.1.5 Generative-Discriminative Lesion Segmentation Model [42] 

Menze et al. proposed fully automatic method for chanel-specific tumor segmentation. The method 

extends general EM segmentation algorithm to solve problems with specific spatial structures which 

cannot be described sufficiently. Their method models a tumor as a multi-dimensional sequences. It 

allows channel-specific segmentation of the tumor. That model also contains the information about the 

location of the lesion. Method also uses information about the specific signals of healthy brain parts 

thanks brain atlases. 

This method was explained in the summarization article by Menze et al. [42] and evaluated on BRATS 

2013 dataset. The results of the method are presented in the figure: sensitivity and specificity in the 

Figure 17 and Dice score in the Figure 18. 

8.1.1.6 Brain Tumor Segmentation with Deep Neural Networks [43] 

Davy et al. proposed novel architecture of neural network for tumor brain segmentation. In the first 

step, they preprocessed the data, they removed 1% of the lowest and highest intensities and applied 

N4ITK filer.  

Then, they trained model using convolutional layer, maxout convolutional layer, max pooling layer, 

fully connected layer, fully connected Maxout layer, Softmax layer and Droput. Architecture of 

proposed method is shown in the Figure 21.  

The main job of the used layers is: 

 Convolution layer is used to model features by a set of different kernels. 

 Maxout convolutional layer is special convolutional layer, where one feature map can be 

associated with more kernels – feature map is calculated using more kernels. 

 Max pooling layer track the maximum feature value over sub-windows.  

 Fully connect layer connects all units of the layer to all units in previous layer (this is not 

typical for neural networks as is mentioned in chapter 6.2 Convolutional networks).  

 Then the fully connected maxout layer is only a fully connected version of convolutional 

maxout layer.  

 Softmax layer is a special case of fully connected layer, but with softmax activation function.  

 Finally, dropout is a regularization method that adds noise in the computation of the hidden 

layers. 
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Figure 21: Proposed architecture of deep neural network 

Authors tested proposed architecture on BRATS 2013 dataset and evaluated the results and compared 

them with BRATS 2013 leaderboard. They reached dice score 74 %, sensitivity 78% and specificity 

74% for whole tumor segmentation. 

8.1.2 Brain tumor segmentation with Deep Neural Networks 

The method is based on deep neural network and is refinement of previous method mentioned in the 

previous chapter 8.1.1.6. Authors proposed 4 different architectures based on the convolutional neural 

network and compared results of each trained model with other state of the art method. Results of the 

comparison from the article are shown in the Figure 22. As we can see, they reached the best results 

with input cascade CNN method. 

 

Figure 22: Results of proposed methods presented in the article [24] 



 

68 

 

Input cascaded CNN exploits the effectivity of CNN architecture and directly models dependencies 

between neighboring labels in segmentation thanks two cascades. Output probabilities from the first 

CNN cascade are used as direct additional inputs to the second CNN cascade as is shown in the Figure 

23. Thus final predictions are influenced by the model beliefs that the value is nearby other same 

labels. In many other state of the art method this problem is solved using some post-processing 

methods. 

 

Figure 23: Architecture of input cascaded CNN presented in the article [24] 

Authors trained proposed CNN on BRATS 2013 training dataset and they used three methods to 

improve the segmentation results: 

 Gradient descent optimization was used to maximize probability of all labels in the training 

set and minimize negative probability. 

 Two phase training was used to minimize the problem with unbalanced distribution of labels. 

While health brain parts make up 98%, only remaining 2% belong to pathology. Because of 

this the model can be overwhelmed and cause problems with training. Thus in the first training 

phase authors constructed dataset of equivalent-probable labels and then in the second phase 

they retrain the model only on the output layer to take into account unbalanced data. 

 Regularization was used to prevent the overfitting. Authors applied L1 and L2 regularization 

and also dropout algorithm. 

8.1.3 Automatic Brain Tumor Segmentation using Cascaded Anisotropic 

Convolutional Neural Networks [61] 

Wang, Li, Ourselin and Vercauteren proposed cascaded architecture of the convolutional neural 

network for brain tumor segmentation. The cascade is used to decompose the multi-class segmentation 

into a sequence of 3 binary segmentations where resulting segmentation of first cascade is used as the 

mask for second cascade.  

Architecture of each cascade consists of several convolutional layers where anistropic and dilated 

convolution filters were used. Whole tumor is segmented in first cascade, then tumor core is 

segmented in the next cascade and finally enhanced tumor core is segmented in the last cascade. 
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Authors tested their method on BRATS dataset and evaluated the results and compared them with 

BRATS 2017 leaderboard. They reached dice score 90,5 %, sensitivity 91,18% and specificity 99,42% 

for whole tumor segmentation. 

8.1.4 Efficient Brain Tumor Segmentation in Magnetic Resonance Image 

Using Region-Growing Combined with Level Set [25] 

Hien and Binh proposed method based on region growing algorithm for tumor segmentation from 

MRI volumes. Region growing methods are usually semi-automatic and requires simple user 

interaction, but they create initial seed automatically from the preprocessed image. In the first step, 

they preprocess the data. Thus, they compute histogram equalization and use it to enhance the image. 

It shows tumor regions if is present.  

In the next step they use, enhanced image to find an initial seed for region growing method. Then they 

run region growing algorithm in several iterations – while value of the nearest pixel minus mean value 

of region (set of pixels from previous iterations) is smaller than predefined threshold. Result of this 

step is segmented image and in the next step, authors create exact boundaries of the tumor using level 

set method which is appropriate to analyze motion of the boundary. 

Authors used own dataset for evaluation and computed Jaccard Index to evaluate the segmentation. 

Their best segmentation reached Jaccard index value equal to 87,69 – which is better than simple 

region growing algorithm (81,15). 

8.2 Registration 

8.2.1 Atlas to Patient Registration with Brain Tumor Based on a Mesh-

free Method [15] 

This is the article from 2015 and authors Diaz and Boulanger present a novel method for registration 

of the MRI brain images with tumor disease to the brain atlases. As is mentioned in the article, it is a 

difficult task because tumor causes deformation of the brain structure. Thus, traditional methods based 

on intensities and shape do not achieve good results. Authors proposed the method which simulates 

brain changes caused by the tumor growth and pressure. 

The method consists of three steps. In the first step, the tumor is segmented from the MRI and 

registered to the atlas. The second step is a simulation of the tumor growth and consists of two main 

sub-steps:  

 sampling and seeding the atlas to simulate tumor growth: Boundaries of the segmented tumor 

are shrinked in several iterations to a singular seed point – tumor center. This process depends 

on the level set method. In every iteration is created a list of new tumor boundary points and 

links to their previous positions – mapping function. 

 mass-effect simulation based on mesh-free method: The method has got the mapping function 

of the tumor growth, so it is applied for the atlas in this sub-step. 

Final step of the method is deformable registration of the atlas. Binary image which represents brain 

tissue was used for the registration. The reason is that method do not have to deal with different 
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intensities between source and target image, so it gives better results. Then the registration is applied 

to the atlas in intensity scale. 

Authors compared their method with two other MRI registration algorithms. They used 12 images 

from BRATS dataset. They used metric based on distance fields for the evaluation. Their results show 

that their method outperformed two other tested methods and their method was also faster. 

8.2.2 PORTR: Pre-Operative and Post-Recurrence Brain Tumor 

Registration [33] 

Kwon et al. proposed new method for non-rigid registration of pre-operative and post-recurrence brain 

MR scans. Authors called their method PORTR. This is challenging task because tumor and edema 

cause big deformations and inconsistent intensity profiles between the scans.  

PORTR aligns pre-operative scan with the post-recurrence scan of the same patient. In the first step, 

authors segment tumor and tumor parts from both scans to extract pathological information. They use 

atlases for tumor segmentation – they register atlas to both scans (pre-operative and post-recurrence) 

and divide the tissues on health and pathological. This is possible, because atlas provides spatial 

information and expecting intensity values about health brain parts and this can be used to detect 

pathology.  

Then they exclude pathological regions from the scans and provide rough registration based on the 

tumor boundaries. Registration is in the next step improved using symmetry information of the brain. 

Finally, they measure overlapping between aligned tumors.  

They apply their method on 24 glioma patients with T1, T1c, T2 and flair modalities. They 

collaborated with experts who placed the landmarks on some specific brain parts on both per-operative 

and post-recurrence scans. Then they used this information for the evaluation to measure distance 

between registration created by the method and by the expert. Authors compared quantitative and also 

qualitative results with other methods and they reached very good results in comparison with state of 

the art. In the 10 randomly selected subjects they reached smaller error of the registration than 5 other 

methods. Only one method had better results than PORTR. 

8.2.3 Registration of Brain Images with Tumors: Towards the 

Construction of Statistical Atlases for Therapy Planning [66] 

Zacharaki, Shen, Mohamd and Davatzikos proposed method for registration of brain scans with 

tumors for therapy planning. Authors decided to register brain scans to the atlases of the brain. The 

motivation is that during the therapy planning, doctors need to know position of healthy and important 

brain parts to protect them as best as possible. Atlases can provide this information, but tumor changed 

the structure of the brain, so registration is not simple. Deformable registration is necessary, because 

tumors cause irregular changes of the health brain parts. 

The main goal of the proposed method is to determine anatomical correspondences if exist, rather than 

matching image intensities. The method is based on estimation of the tumor growth model using the 

deformations caused by the tumor. And more, the method is robust to the little inaccurate estimations 

of tumor growth simulation. Authors use the nonlinear biomechanical model to simulate tumor growth 
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in the atlas. The method tries to minimize differences between scan and atlas durng the tumor growth 

simulation. 

Authors used own method for the registration based on deformation around the tumor because it can 

be indicative for the accuracy of the model estimation of tumor growth. They evaluated their method 

on real MR dataset, but they do not compare it with other algorithms. 

8.2.4 A Model of Tumor Inducted Brain Deformation as Bio-Physical 

Prior For Non-Rigid Image Registration [39] 

Authors of the article Mang et al presented new method for registration of the brain threatened by 

tumor to a standard atlas of the brain. Authors used studies about density of cancerous cells and 

information about soft tissues to create non-linear weighted function to control the deformation of the 

brain cause by tumor growth. 

The method is very complicated and is based on real studies from medicine thanks cooperation with 

some medical institution. It uses many functions in respect to brain and tumor composition. Thus, 

proposed method of the non-rigid registration and computation of the mapping function are based on 

the changes from the real approaches. Thanks this, the method reached very good results. However, 

authors said that it is hard to evaluate results, because there is no general method for registration 

evaluation. 

8.2.5 An EM Algorithm for Brain Tumor Image Registration: A Tumor 

Growth Modeling Based Approach [21] 

Gooya, Biros and Davatzikos tested Expectation-Maximization algorithm for registration of brain MR 

images with tumors. The main goal of the work is model tumor growth and register scans to the brain 

atlas. 

In the first step, authors used SVM classifier to divide the brain pixels on six classes: gray matter, 

white matter, cerebrospinal fluid (CSF), enhancing tumor, non-enhancing tumor and edema. Then they 

used five classes (they merged enhancing structures with non-enhancing structures to the one class) as 

posterior probability maps for the registration with the atlas. They used EM algorithm for registration 

which is based on finding he maximum likelihood parameters of statistical model. Simply, authors 

proposed the method which try to find model of the tumor in brain atlas which will be the most similar 

with the real MR scans of the patient. 

Authors evaluated the method on simulated datasets and real multimodal glioma datasets. They 

proposed own method for the evaluation based on the posterior probability maps. The results show 

that method achieve good similarity between patient images and wrapped templates.  
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9 Proposed approach for tracking brain changes 

The main goal of the work was to propose and implement automatic methods appropriate for tracking 

tumor changes. While the MRI is the most usual test for the brain cancer diagnostic, proposed methods 

work with input MRI data - examinations from one patient captured in regular time periods. 

MRI brain scans are volumetric – three-dimensional data.  It means that they consist of several slices. 

During the treatment of the brain cancer, patient has to undergo several examinations in regular time 

intervals. Doctors have to evaluate and control all results of the patient examinations to follow the 

progress of the cure. It can be really very time consuming and annoying task, so computer vision can 

be very helpful in this field and automate some monotonous jobs.  

There are some problems which are necessary to take into account: 

 When volumes are captured in different time they can be differently rotated. It is necessary to 

rotate volumes to the same position to track tumor and brain changes. This is task for the rigid 

registration. 

 The tumor and also brain changes over time. Tumor can grow or diminish, which also affects 

the structure of the surrounding healthy parts of the brain. In order to monitor changes of the 

disease, it is important to know how the parts of the brain were pushed out or deformed by the 

tumor. It is task for the non-rigid registration. It is necessary to be careful and do not deform 

the tumor during the calculations. This is one of the reasons why segment the tumor. Another 

reason is that it allows better monitoring of the tumor changes. 

 When volumes are captured with different devices or only with different settings of one 

device, they are not consistent. The values of the same brain parts can be different. We need to 

deal with it before the registration and also for the clear visualization. Thus, we have to 

preprocess the data. 

9.1 Basic workflow 

In the Figure 24 is denoted basic flow (using activity diagram) of the proposed approach  for detection 

and tracking the tumor changes. Input for the method are data from magnetic resonance imaging test 

as was mentioned. That’s are volumetric data. If we want to work only with slices, we need to create 

them from the input volumes. In the survey we use data from BRATS dataset and data from practice. 

Datasets are explained in chapter 9.2 Input MRI volumes. 

First step of the method is preprocessing. We have to deal with different brightness and contrast of the 

volumes captured in different time. It is important mainly for the visualization, but it can be helpful for 

whole process. Preprocessing method is based on normalization, scaling and histogram matching 

algorithm. The process is explained in the chapter 9.3 Preprocessing. 

Second step is segmentation of the tumor. We need to know boundaries of the tumor to be able to 

track its changes. It is also important for the next step - rigid registration. Changed parts of the tumor 

and surrounding brain can cause errors in the rigid registration if they had not been segmented. Tumor 

segmentation is very hard task for computer vision and many approaches is dedicated to this theme. 
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We decided to analyze state of the art methods and find opportunities to get some sources for testing. 

We have found three different successful and available methods based on convolutional neural 

networks and tried one of them. Methods for tumor segmentation and our testing are explained in the 

chapter 9.4 Tumor segmentation. 

Next step is rigid registration. We need to rotate volumes to the same direction and scale them to the 

same size which is perfect task for the rigid registration. We use basic flow of the rigid registration – it 

is explained in the chapter 9.5 Rigid registration. 

In the next step we need to do non-rigid registration (also called elastic) to be able track the changes of 

the health brain parts and also of the tumor. Changes caused by the tumor are irregular so it is perfect 

task for non-rigid registration. We decided to use optical flow algorithm to find corresponding points 

between the examinations as is explained in chapter 9.6 Non-rigid registration. To visualize the 

changes between several different examinations we decided to test image morphing. 

Finally, we would like to visualize the results with the simple desktop application. Application shows 

slices in all directions (axial, coronal and sagittal) and is also capable to render volume in 3D. 

Application also provides a simple interaction to the user and can show boundaries of the tumor. 

Visualization tool is explained in the chapter 9.7 Visualization tool. 

Preprocess data

Segment tumor

Registrate rigidly

Registrate non-rigidly

Visualize

Input for the method 

are MRI volumes

 

Figure 24: Basic flow of proposed method represented by activity diagram (UML notation) 
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9.2 Input MRI volumes 

Input for the method are 3D data called volumes from magnetic resonance imaging. MRI is the most 

usual test for the brain cancer diagnostic and is repeated periodically during the treatment. Volumes 

can be converted to the slices to see them in 2D views. Doctors like to use 2D images for diagnostic, 

but also 3D view can be interesting for the visualization. In the Figure 25 is shown an example of MRI 

data transformed to 2D slices in axial perspective. 

 

Figure 25: Slices of the MRI volume in axial view 

9.2.1 BRATS dataset 

In our approach we work with public MRI dataset of brains with tumors called BRATS. We are using 

data from BRATS 2015 [72], because later datasets do not contain testing data. Dataset BRATS 2015 

consists of: 

 training data 

o 220 high grade glioma studies (HGG) – tumors in the brain have well visible 

boundaries 

o 54 low grade glioma studies (LGG) – tumors in the brain do not have clearly visible 

boundaries 

 testing data – 110 studies of high grade gliomas (HGG) and also low grade gliomas (LGG) 



 

76 

 

Training and testing data are preprocessed. They are rigidly registered and the craniums are removed 

from the volumes. The pro of the dataset is that it contains 4 different modalities: T1, T2, Flair and 

T1c. Different modality can highlight different parts of the tumor – necrosis, edema, non-enhancing 

tumor, enhancing tumor. 

Training and also testing data contains masks as shown in the Figure 26. It labels background, health 

brain parts and tumor with 5 different values (it is explained in BRATS article from 2015 [42]): 

 1 – necrosis – visualized in the Figure 26 D with green color 

 2 – edema – visualized in the Figure 26 D with yellow color 

 3 – non-enhancing tumor – visualized in the Figure 26 D with red color 

 4 – enhancing tumor – visualized in the Figure 26 D with blue color 

 0 – everything else – health brain and black background 

 

Figure 26: Labels of the brain parts: from the right A: the whole tumor (yellow) in the FLAIR 

modality, B: the tumor core (red) in the T2 modality, C: the enhancing tumor structures (blue) in the 

T1c modality and necrotic components (green) in the T1c modality, D: edema (yellow), non-

enhancing solid core (red), enhancing core (blue), necrotic core (green)  [42] 

9.2.2 Siemens dataset 

We will also test our method on dataset from practice which was provided by Siemens Healthineers 

company. The pro of the dataset is that it contains data which are not preprocessed – volumes contain 

craniums. However, examinations of the subjects contain only one modality (usually flair) for every 

and provided segmentations of the brain are labeled only with 0 for not tumor and 1 for tumor pixels. 

It consists of 108 studies – some of them have more fusions (= volumes captured in different time 

during the treatment). These studies are interesting for our survey. 
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9.3 Preprocessing 

Volumes from different examinations have got different values of the same brain parts. It is because 

they were captured in different times and with different device settings. They can also have different 

contrast and brightness. Thus, we proposed the method to preprocess the data. Basic flow of the 

preprocessing is visualized in the Figure 27. It consists of three steps: removing the percentile, scaling 

the data and performing histogram matching. 

Remove percentiles

Remove percentiles?

Scale data

Perform histogram 

matching

Yes

No

 

Figure 27: Flow of preprocessing represented by activity diagram (UML notation) 

9.3.1 Removing the percentile 

Data we were working with have a big range of the values. Some minimal and maximal outliers are 

not very relevant for the next processing. In addition, we have to scale the data to the same range. 

Ignoring the outlier values allow us reach better results. Thus we can remove data above and under 

some percentile. It is possible to do it by following simple conditions: 𝑖𝑓 𝑥(𝑖, 𝑗) < 𝑏𝑜𝑡𝑡𝑜𝑚 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡ℎ𝑒𝑛 𝑥(𝑖, 𝑗) = 𝑏𝑜𝑡𝑡𝑜𝑚 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑎𝑛𝑑   𝑖𝑓 𝑥(𝑖, 𝑗) > 𝑡𝑜𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡ℎ𝑒𝑛 𝑥(𝑖, 𝑗) = 𝑡𝑜𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒, 
where 𝑥(𝑖, 𝑗) is a value of the 𝑖𝑡ℎ, 𝑗𝑡ℎ pixel and 𝑏𝑜𝑡𝑡𝑜𝑚 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 is a margin for minimum outliers 

and 𝑡𝑜𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 is a margin of maximum outliers.  

Actually, volumes contain black background and foreground. We should also ignore black background 

and count percentile only from the foreground to remove relevant outliers.  

In the Figure 28 we can see the histogram of the scaled volume data and in compare in the Figure 29 

we can see histogram of the same volume where we removed percentile ignoring background and then 

scaled the data. 
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Figure 28: Histogram of scaled volumetric data 

 

Figure 29: Histogram of volumetric data where percentile was removed ignoring background and data 

were scaled 
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9.3.2 Data scaling 

We have to scale the data to the range 0 – 255, because in the next steps we use some methods which 

can work only with 8-bit images. We use min max normalization formula to down scale the data: 𝑖𝑚𝑎𝑔𝑒 =  image−min (𝑖𝑚𝑎𝑔𝑒)max(𝑖𝑚𝑎𝑔𝑒)−min (𝑖𝑚𝑎𝑔𝑒), where 𝑖𝑚𝑎𝑔𝑒 is n-dimensional array (2D or 3D). 

In the Figure 30 we can see difference between the histograms of the original and scaled volume data. 

In the Figure 30 a) we can see original input volumetric data histogram and in the Figure 30 b) Is 

histogram of the same data but scaled to the range 0 – 255. 

 

Figure 30: Comparison of original and scaled data visualized in histogram 

9.3.3 Histogram matching 

Histogram matching is a simple algorithm which can match the histogram of one input data called 

reference to the histogram of another input data called target. In the first step we compute histogram of 

target and also histogram of reference. In follow, we compute cumulative distribution functions for 

both, reference 𝐶𝐷𝐹1() and target data 𝐶𝐷𝐹2(). It gives us a probability that variable will take a given 

value or less. Finally, we compute a function 𝑀() which can match reference data to target data using 

the cumulative distribution functions – we find the gray level 𝐺2 of reference data where cumulative 

distribution function of that gray level equals to cumulative distribution function of the gray level 
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𝐺1 from target image: 𝐶𝐷𝐹1(𝐺1) = 𝐶𝐷𝐹2(𝐺2). Then we apply a function 𝑀() on the each pixel of the 

reference image. 

In the Figure 31 we can see the effect of the histogram matching algorithm. In the Figure 31 a) is 

histogram of reference volume, in the Figure 31 b) is histogram of target volume and finally in the 

Figure 31 c) is histogram of matched reference volume. 

 

Figure 31: Effect of the histogram matching algorithm 

9.3.4 Testing and results 

We tested some configurations of the preprocessing method on the BRATS dataset (mentioned in the 

chapter 9.2.1). In this section, we present some results of different configurations and the impact on 

the data. When we work with 3D data, we choosed one slice from pat_153 – examination 0109, 

modality flair, axial slice number 78 – to present the results. 

At the beginning we tried only to scale the data, because original data have bigger range and are stored 

as 16-bit volumes. However, in the next process we use some algorithms which can process only 8-bit 

images (gray level range between 0 and 255). In the Figure 32 a) we can see the histogram of original 

data and in the Figure 32 b) is histogram of scaled data. Actually scaling causes loss of some data, but 
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we can minimalize the damage. It is because gray level of the original data is in range 0 – 600 or more 

and we have to shrink gray level values to the range 0 – 255. Actually this is not possible to see very 

well in the volumes because they have got small resolution. Slice 78 of the scaled volume is shown in 

the Figure 37 a). 

 

Figure 32: Histograms of original and scaled data 

In the Figure 33 we can see a big column on the value 0 – it is caused by the black background. And 

then it looks that histogram starts later than on the value 1 and ends at the value approximately 200 not 

at 255. It is because the values between these ranges do not have such high representation in the 

volume. Thus, we can remove outliers – small values with small representation in the volume and high 

values with small representation in the volume thanks computing some percentile of the data. 

 

Figure 33: Histogram of scaled data 
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In the Figure 34 we can see the histogram of the volume where we removed values lower than bottom 

percentile 5 of the data and values higher than top percentile 99. This change is possible to see very 

well also in the volume and is shown in the Figure 37 b) using same slice 79 from the same volume. 

 

Figure 34: Histogram where data were scaled after removing top and bottom percentile 

Actually as we can see on the histogram, it still looks that histogram starts later than on the value 1. 

Rather than enlarge the bottom percentile we decided to compute bottom percentile 5 ignoring 0 

values = black background. We can see results of that operation presented by histogram in the Figure 

35. Also volume looks different and is shown using the same slice 78 in the Figure 37 c). 

 

Figure 35: Histogram where data were scaled after removing top and bottom percentile ignoring 

background 

Finally, we tried to compute higher bottom percentile – percentile 10 and remove values lower than 

the percentile. However, it looks on the histogram presented in the Figure 36 that it removes too much 
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data, so we decided to use percentile 5 for the preprocessing. Also volume presented using the slice 78 

looks too dark as is visible in the Figure 37 d). 

 

Figure 36: Histogram where data were scaled after removing top and bottom percentile ignoring 

background 

 

z 

  

 

 

Figure 37: How removing percentile changes data 

a) scaled data b) percentile 5 and 99, scaled 

c) percentile 5 and 99 ignoring 0, scaled d) percentile 10 and 99 ignoring 0, scaled 
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We scaled all examination of the patients using the same process, but we still did not solve a problem 

with different brightness of the examinations captured in different times. Thus, we decided to use 

histogram matching algorithm to align histograms of the images as is presented in previous chapter. 

The results of our preprocessing method are presented in the Figure 38. In the top row we can see slice 

78 of the all original volumes from pat_153, flair modality. In the bottom row are the same slices from 

the same examinations, but after all operations – remove top and bottom percentile of data, scaling 

using min max normalization and histogram matching. First image was used as target image and all 

next images were in histogram matching used as reference images – one by one. We can see that our 

preprocessing method helps to balance brightness of the volumes. 

 

  

Figure 38: Original (top row) and preprocessed (bottom row) data comparison 

9.3.5 Implementation 

Preprocessing can work directly with 3D volumes during the processing and all operations are 

performed directly on three dimensional volumetric data not two dimensional slices – slice by slice. 

This is possible using NumPy library. For the visualization of the histograms we have also used 

Matplotlib library. 

9.3.5.1 Structure of the source code presented by a class diagram 

Preprocessing class is organized in logic package and used by the main function as is shown in the 

Figure 39. Preprocessing class has two important parameters: 

 top_percentile – value of top percentile: values, higher than top_percentile, are replaced with 

its value 

 bottom_percentile – value of bottom percentile: values, higher than top_percentile, are 

replaced with its value 

And also implements several methods:  

 __init__() – method initializes preprocessing and preprocess target data 
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 process_data() – method preprocess data as reference data 

 remove_precentile() – replace values higher and lower than top or bottom percentile by their 

values 

 normalize() – method scale the data using min max normalization 

 hist_match() – performs histogram matching of target (in code template) and reference image 

 get_template() – returns preprocessed template 

Preprocessing

- self.top_percentile

- __init__(params)

- self.bottom_percentile

- process_data(params)

- remove_percentile(params)

- normalize(params)

- hist_match(params)

Main

- self

- main()

- get_template()

 

Figure 39: Class diagram of preprocessing (UML notation) 

9.3.5.2 Interaction of the objects presented by a sequence diagram 

In the Figure 40 is shown sequence diagram of the preprocessing. Preprocessing is used by the main. 

First we have to initialize preprocessing – we send target data to the preprocessing and preprocess 

them replacing values higher or lower than top or bottom percentile by its value and scale them using 

min max normalization. Then we get the preprocessed template to use it later in process. 

In the next step we process all additional examination in loop – we send all of them one by one to the 

preprocessing and perform the same operations – remove the percentile (replace values lower or 

higher than top or bottom percentile by the values of these percentiles) and scaling (using min max 

normalization) and finally we compute histogram matching between target (template) data and 

reference data. 
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main: preprocessing:Preprocessing

init()

process_data()

preprocessed_data

loop

examination[1:]

remove_percentile()

normalize()

remove_percentile()

normalize()

get_template()

preprocessed_template

hist_match()

 
Figure 40: Sequence diagram of preprocessing (UML notation) 

9.3.6 Discussion 

Preprocessing was necessary to balance brightness of the volumes from different examinations – 

means that they were captured in different time. In our method we change values lower than percentile 

5 and higher then percentile 99 to the values of these percentiles. We also decided to compute 

percentile only from foreground – it means that we are ignoring black background. We tried also 

different values of the bottom percentile, but percentile 5 looks the best for our data.  

Then we scale the data to range 0 – 255 using min max normalization. This is necessary, because some 

methods from the libraries used in the next steps can process only 8-bit images. We minimize the 

damage of the important data thanks the previous percentile operation. 

Finally, we performed histogram matching – volume from the first examination was used as target 

data and all next examination were reference data. This method helped to balance the brightness of the 
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volumes and they look almost the same. This is helpful mainly for the visualization, but can help also 

other methods to work better. 

9.4 Tumor segmentation 

Tumor segmentation using computer vision is a problem which is studied a lot by professional 

community. Solution of this problem is based on a big motivation – help doctor, radiologist with some 

manual and monotonous work which they have to do. It is important to segment tumors from the 

examinations. Boundaries of the tumor and other information – information about health and 

important brain centers, are used for radiotherapy planning. Thus, radiologist have to segment tumor. 

While MRI are volumetric data, radiologic have to segment tumor on all slices, if they have to do it 

manually. It is really very time consuming task. Thus, finding appropriate automatic method is a big 

motivation to help doctor and radiologist with their work. 

Actually segment tumors from MRI brain scans is hard task, because the boundaries are not always 

clear and sometime tumors are not significant. Many people tried to solve this problem also we had try 

to implement own method in bachelor thesis. There is a lot of approaches in the field of tumor brain 

segmentation with very good results. We have list some of the best in the chapter 8.1 Segmentation.  

While our approach has a wide range, we decided to re-implement one of the state of the art methods 

which reached the best results on the BRATS 2013 dataset and is explained in the BRAINLES 2014 

proceedings [43]. We summary important parts of the article in our work in chapter.  However, we came 

out of the newer article dedicated to this method from 2017 by Havaei et al. [24] – in our work we 

analyze this method in the chapter 8.1.2 Brain tumor segmentation with Deep Neural Networks. 

One of the reasons why we decided to choose this approach was that author reached very good results 

presented in the articles and second one was that the source code is available online [81].  

In segmentation step we proposed a simple pipeline which is visualized using activity diagram in the 

Figure 41. It consists only of two steps: preprocessing and tumor segmentation using model trained on 

the CNN proposed by Havaei et al. 

Preprocess data

Segment tumor using 

trained model

 

Figure 41: Flow of the segmentation step visualized by activity diagram (UML notation) 
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9.4.1 Preprocessing 

First step of the method is preprocessing. It is necessary to preprocess the data by the same methods 

such as authors. Thus, we used the same preprocessing steps. At first, we removed 1% of the highest 

and lowest intensities (from original data, not from data preprocessed in the previous chapter – to 

preserve the consistency of the data). Then, we have applied N4ITK bias correction to the modality T1 

and modality T1c using ANTs library [71]. Then we have normalized the data within each input 

channel. Finally, it is necessary to create patches before the segmentation. Patches represent data by 

the way they can be processed by the model. 

9.4.2 Segmentation using trained model 

Main step of the proposed workflow is segmentation. In our proposal, we have planned to use trained 

model for the tumor segmentation. However, authors did not provide these model, thus we had to train 

own model using their architecture explained in the chapter 8.1.2 Brain tumor segmentation with Deep 

Neural Networks. 

9.4.3 Implementation and discussion 

As was mentioned before, source code of the proposed CNN is available free online on github [81]. The 

problem was that it is implemented in the old technologies – using old libraries. Thus, we re-

implement some parts of the sources and adapt them to the newest version of the libraries, because 

authors did not mention anywhere which versions of the libraries they were working with. 

We tried to train own model using the same dataset such as authors of the method – dataset BRATS 

2015. However, due to the available calculation power, we had to minimize all parameters which 

pulling out the RAM and processor. 

We have to review, that we were not able to reach satisfactory results while we tried to trained own 

model. The main problem was, that we tried to adapt complicated CNN architecture for the new 

libraries and we had probably violated important parts of the architecture and were not able to find our 

misconduct.  

Finally, we decided to use only available segmentation masks of the tumors to continue in our 

pipeline. Both, BRATS 2015 dataset and Siemens dataset contains mask of the tumor for patient 

examination which we work with in the next steps. Properties of datasets are mentioned in the chapter 

9.2.1 BRATS dataset and chapter 9.2.2 Siemens dataset. 

9.5 Rigid registration 

The next step of our pipeline is rigid registration. When the volumes of the brain are captured, they 

can be rotated, translated and scaled a little differently because patients are examined in different time 

in some periods. If we want to track changes of the tumor and brain, we have to rotate, scale and 

translate volumes to the same position. This is perfect task for the rigid registration. 

Rigid registration consists of six steps. Basic flow of the proposed method is shown in the Figure 42. 

Input for the method are two 2D slices from MRI volumes which we are going to register. In the first 

step we create a registration mask for both input images. The masks are used in the next step to detect 
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key points. Then for every key point descriptors (feature vectors) are computed. Now we have feature 

vectors for both input images and in the next step we find matches between them. In this step besides 

right matches, we find also wrong, too. Thus, we filter them using simple condition. From the correct 

matches we can compute matrix for the transformation and use this matrix to transform and register 

one of the input images to another. 

Create registration 

mask

Detect the key points

Compute descriptors

Match features

Filter matches

Transfrom rigidly

Input for the 

method are 2D 

slices of MRI 

volumes

 

Figure 42: Flow of rigid registration represented by activity diagram 

9.5.1 Input 

Input for the proposed method are 2 two-dimensional images – one reference image and one input 

image which will be registered to reference image. These images are created from MRI volumes in 

axial direction. In the following chapters we present the steps of the method on the slices crated from 

volumes from the Siemens dataset - subj_1 examination 20090306 (as reference) and 20091029 (as 

input). Example of the input is shown in the Figure 43. 
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Figure 43: axial MR slice 71 from Siemens, subj_1,  

LEFT (reference): examination 20090306, RIGHT (input for transformation): examination 20091029 

9.5.2 Creating the registration mask 

In the first step we need to create mask for the registration. There are two possible approaches: 

 mask for the health brain or 

 mask for the cranium. 

9.5.2.1 Mask for the health brain 

In the next steps we do not want to calculate with background, because it is not important. We also 

want to remove tumor parts from the mask, because tumor parts change a lot between two MRI tests.  

Creation of the registration mask is demonstrated in the Figure 44 on the reference image from 

previous Figure 43. It is based on the subtraction. First we create mask of the brain. Then the mask is 

eroded with small kernel to get rid of very small black regions and dilated back to create mask of the 

brain. In our survey we create mask smaller than whole brain, because we want test results of the 

registration method only on the health brain parts, so we exclude the cranium. Finally, from the brain 

mask is subtracted mask of the tumor (as was mentioned in chapter 9.4.3 we work with the masks of 

the segmentations from the datasets) and the result is a mask for the registration. 

                                             

Figure 44: Visual view on the process of the registration mask creation 

- 
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9.5.2.2 Mask for the cranium 

When the background is not important, in this step we also compute only with brain parts – concretely 

only with cranium of the brain. In our survey, we test difference between two mentioned approaches, 

thus we create mask of the cranium in this step. 

Creation of the registration mask is demonstrated in the Figure 45 on the reference image from 

previous Figure 43. It is based on simple threshold algorithm and finding contours algorithm. At first 

we threshold the image to get mask of the whole brain. Then we compute outer boundary of the brain 

and the contour is used to create close mask of the cranium by enlarging this contour. 

                               

Figure 45: Visual view on the process of the registration mask creation 

9.5.3 Key point detection 

In the next step key points are detected using four different methods – FAST, SIFT, SURF and ORB. 

Results of key point detection are shown in the Figure 46 on the reference image from Figure 43. Key 

point detection is based on differences between the pixels. It depends on the concrete algorithm. We 

have used implementation from OpenCV library. Algorithms were explained in the online OpenCV 

documentation and explanations were referenced to official articles: 

 SIFT (Scale-Invariant Feature Transform) [78] – In 2004 David Lowe came up with new 

feature detection algorithm SIFT [38]. The algorithm uses Difference of Gaussians. Difference 

of Gaussians is computed for the image as difference of Gaussian blurring of the image with 

two various σ. Then the local extremes are detected and marked as possible key points. 

 SURF (Speeded-Up Robust Features) [76] – After the SIFT algorithm SURF was invented in 

2006 as faster alternative for feature detection by three people H. Bay, T. Tuytelaars and L. 

Van Gool [4]. Algorithm is based on approximation of Hessian blob detector and also uses 

integral of the input image to make it faster.  Hessian matrix (second derivation of the image) 

is used to find the local changes. The biggest changes are marked as the key points. 

 ORB (Oriented FAST and Rotated BRIEF) [79] – In 2011 Ethan Rublee, Vincent Raubaud, 

Gary Bradski and Kurt Konolige invented ORB [52] as alternative for SIFT or SURF algorithm. 

Actually, SURF and SIFT are patented, and for commercial use you have to pay. ORB is not. 

It is a connection of FAST and BRIEF key point detector – first key points are found using 

FAST algorithm, but ORB return only top of them using Harris corner measure. 
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 FAST (Features from Accelerated Segment Test) [74] – FAST was  invented by Edward Rosten 

and Tom Drummond. The algorithm is fast and allow real-time detection. The process is 

described in detail in article from the year 2006 [51]. Input for the algorithm is a contrast 

threshold constant T. Basically, for every pixel P of the image algorithm decides if the pixel is 

key point. A circle of 16 pixels is created around every pixel P and if n pixels are higher or 

lower then then intensity of P pixel + threshold constant T, then pixel P is the key point. 

   

    

Figure 46: Visualization of detected key points by different detectors (FAST, SIFT, SURF, ORB) 

9.5.4 Calculating descriptors – the feature vectors 

Descriptors are computed in the next step. Result of the computation are vectors of the features which 

contains additional information. Type of the information depends on the type of the algorithm for 

descriptor computation. SIFT, SURF and ORB have got their own algorithms for feature detection. 

We have used implementation from OpenCV library, were algorithms were explained: 

 SIFT [78][38] – Descriptors are computed for every key point. SIFT algorithm takes 16x16 

neighborhood of every key point and divide it on 16 blocks with sizes 4x4. An 8-bin 

histogram is created for every block. Thus, the resulting feature vector consists of the 16*8 = 

128 computed values. 

SIFT SURF 

FAST ORB 
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 SURF [76][4] – SURF descriptor algorithm uses Haar wavelet in horizontal and vertical 

direction. Feature vectors are computed as the sum of Haar wavelet response around the key 

points. 

 ORB [79] [52] – As was mentioned, ORB fuses FAST and BRIEF, and BRIEF algorithm 

improved by the capability to compute with orientation is used to compute the feature vectors 

of the key points.  

9.5.5 Matching feature vectors 

In our approach we have combined SIFT key point detector with SIFT descriptor algorithm, SURF 

key point detector with SURF descriptor algorithm and ORB key point detector with ORB descriptor 

algorithm. However, FAST does not have own algorithm for descriptor calculation, so we decided to 

combine FAST key point detector with SIFT and SURF descriptor calculation algorithm and compare 

results. 

Depending on the similarities, which are evaluated from the feature vectors, in this step key points are 

matched using brute force matching. In the Figure 47 are shown results of the matching between the 

image from the Figure 43. Count of the matches is based on the count of the key point detected with 

different key point detectors. Matched key points depend on the type of descriptor calculation – how 

the feature vectors were computed. 

  

                

              

Figure 47: Result of the key point matching using different feature extractors 

FAST  SIFT FAST  SURF 

SURF 

SIFT 

ORB 
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9.5.6 Filtering the matches 

A lot of matches is found during the matching process. In addition to the good matches, there is a lot 

of fails. In this step, we filter the matches. The main prejudice of the filtering step is that first input 

image is not rotated a lot to second one input image, so lines between key points should be almost 

evenly. It is based on the supposition that key points have got very similar coordinates. Results of the 

filtration step are shown in the Figure 48. 

   

              

               
 

Figure 48: Result of match filtration step 

9.5.7 Rigid transformation 

Final step is rigid transformation. The affine matrix for the rigid transformation is found using matches 

from the previous step. Then the matrix is used to warp a perspective of the first input image. In the 

Figure 49 on the first image is visualized blue channel of input slice transposed over red and green 

channel of the reference slice from the Figure 43 and next images visualize results of the registration 

by all used combinations of the algorithms where the same red and green channels are transposed over 

the blue channel of registered – warped slice. As we can see In the Figure 49, some parts are blue – 

came from blue channel of input image and some parts are yellow – it is caused by red and green 

channel of reference slice. Actually, in the dataset are also available correct registrations of the input 

slice, so we applied the same visualization on correctly registered input (correct original) and rotated, 

warped and translated input slice which we registered. Results are shown in the Figure 50. 

SURF ORB 

FAST  SIFT FAST  SURF 

SIFT 
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   Figure 49: Comparison of the input (blue channel) transposed over the reference (red and green 

channel) slice before the registration and after 

 

    

Figure 50: Comparison of the input (blue channel) transposed over the correct original input (red and 

green channel) slice before the registration and after 

SIFT input + reference SURF

FAST  SIFT FAST  SURF ORB 

ORB 

input + registered SIFT SURF 

FAST  SIFT FAST  SURF 
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9.5.8 Testing 

We tested the method with different combinations of algorithms and compared the results. We tried 

different registration masks (mask of the health brain and mask of the cranium) and also different 

combinations of key point detectors and descriptors. We tested combinations showed in the Table 1. 

 registration mask key point detector descriptor 

▬ health brain SIFT SIFT 

▬ health brain SURF SURF 

▬ health brain ORB ORB 

▬ health brain FAST SIFT 

▬ health brain FAST SURF 

▬ cranium SIFT SIFT 

▬ cranium SURF SURF 

▬ cranium ORB ORB 

Table 1: Tested combinations of algorithm 

9.5.8.1 Dataset 

While proposed method works only with 2D images, but our testing dataset – Siemens dataset consists 

of 3D volumes as is explained in the chapter 9.2.2, we decided to create own dataset. We generated 2D 

slices from 3D volumes. In the Siemens dataset examinations are registered, so we left 2D slices in 

original - correct original and we created new files which contains these slices, but in some different 

rotation, brain can be alse scaled or translated. We decided to choose slices of the first examination as 

a reference slices and all next examination as unique inputs. Reference slice is not scaled, rotated or 

translated. Finally, our dataset contains: 

 23372 2D unique inputs and also the same count of the correct original,  

 10011 2D reference images, 

 tumor masks for all slices. 

9.5.8.2 Testing flow 

Testing flow is visualized using sequence diagram in the Figure 51. We process all images of the 

dataset in the loop. At first we preprocess the data – all input slices are preprocessed (by the way 

explained in the chapter 9.3) to the corresponding reference slice. Then inputs are registered to their 

corresponding reference slices – slice by slice and finally, we evaluate the registration by comparing 

histograms of the slices (explained in detail in the chapter 9.5.8.3)  
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rigid registration 

script:
preprocessing:Preprocessing

init()

process_data()

preprocessed_data

loop

examination[1:]

get_template()

preprocessed_template

rigid_registration:RigidRegistrtion

loop

dataset

init()

rigid_registration()

warped_input

compare_images()

Figure 51: Flow of the testing process (UML notation) 

9.5.8.3 Evaluation 

   For the evaluation of the registration we decided to compare slices: 

 input with reference, 

 warped input with reference, 

 input with correct original and 

 warped input with correct original. 

Thanks these combinations we can see, if registration was correct. 

Actually, we do not compare whole slices at once and we do not compare black background of the 

images (it is bloody). However, we span through the slice with the small rectangle as is shown in the 

Figure 52 and if we hit the foreground, we compute the histogram of the slices parts under the 

rectangle as is shown in the Figure 53. Then we compare the histograms using three metrics: 

 correlation, 

 intersection and  
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 Bhattacharyya distance. 

Finally, we compute the average value of the metrics and this is the result of the comparison of two 

slices. 

    

Figure 52: Actual rectangle for comparison on all slices 

  

 

Figure 53: Histograms of rectangles from previous Figure 53 

reference input warped input 

▬ input 

▬ reference ▬ reference 

original 

▬ warped  

▬ warped  

▬ original 

▬ input 

▬ original 
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9.5.9 Results 

While we have tested different configuration on the big dataset (23372 input slices), it is not possible 

to visualize all results in the one graph. We decided to use several visualizations to compare different 

configurations listed in the chapter 9.5.8. 

One of the steps in rigid registration process is finding transformation matrix for affine (rigid) 

transformation.  However, there are some cases, when the matrix was not found. In these cases the 

registration is unsuccessful and it fails. In the Figure 54 we can see the success of finding matrix of the 

different configurations. 

 

Figure 54: Success of finding transformation matrix by different configurations 

When finding of the transformation matrix is successful, we can warp the slice and compute average 

correlations between the histograms of foreground slice parts as described in the chapter 9.5.8.3. If the 

correlation of the warped input data with correct original or reference data is higher than correlation of 

the input with correct original or reference data, then the registration was successful. In the Figure 55 

we can see ratio between cases when the correlation of the warped (registered) input data and 

reference data was higher (lower) than correlation of the input data and reference data. In the Figure 

56 we can see ratio between cases when the correlation of the warped (registered) input data and 

correct original data was higher (lower) than correlation of the input data and correct original data. 
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Figure 55: Ratio between cases when registration was successful (correlation between registered input 

and reference was higher that correlation between input and reference) and was not successful (vice 

versa) 

 

Figure 56: Ratio between cases when registration was successful (correlation between registered input 

and correct original was higher that correlation between input and correct original) and was not 

successful (vice versa) 
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For the different configurations we have compared average values of the histogram correlations 

between: 

 input and reference vs. warped input and reference, 

 input and correct original vs. warped input and correct original. 

The results are shown in the Table 2 and visualized in one bar chart in the Figure 57. 

 

Table 2: Comparison of average histogram correlations for different configurations 

 

Figure 57: Comparison of average histogram correlations for different configurations 

 

 

input and 

reference slice hist

 warped and 

reference slice hist

input and correct 

original slice hist

warped and correct 

original slice hist

health brain SIFT 0.55925936 0.673267044 0.696120257 0.881003553

health brain SURF 0.558169989 0.679775182 0.685948337 0.885244291

health brain ORB 0.563983903 0.692641344 0.686401059 0.89787346

health brain FAST+SIFT 0.55925936 0.673267044 0.696120257 0.881003553

health brain FAST+SURF 0.581103639 0.703054977 0.705173425 0.901245473

cranium SIFT 0.586529999 0.65107211 0.702952447 0.792392358

cranium SURF 0.577200119 0.635127201 0.687570851 0.768805339

cranium ORB 0.566164306 0.625010991 0.683571548 0.765503716
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For different configuration we have computed minimum, bottom quartile, median, top quartile and 

maximum of the histogram correlations between: 

 warped input and reference (visualized using box plot in the Figure 58) 

 warped input and correct original (visualized using box plot in the Figure 59) 

 

Figure 58: Histogram correlation between reference and warped data for different configurations 

 

Figure 59: Histogram correlation between original and warped data for different configurations 



 

103 

 

For the different configurations we have compared average values of the histogram intersections 

between: 

 input and reference vs. warped input and reference, 

 input and correct original vs. warped input and correct original. 

The results are shown in the Table 3 and visualized in one bar chart in the Figure 60. 

 

Table 3: Comparison of average histogram intersection for different configurations 

 

Figure 60: Comparison of average histogram intersection for different configurations 
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reference slice hist

input and correct 

original slice hist

warped and correct 

original slice hist

health brain SIFT 352.2922887 418.9958806 421.7702733 526.6356664

health brain SURF 351.3932037 422.8377119 415.9759987 529.1488422

health brain ORB 353.6720788 429.6340126 415.6346208 536.8878107

health brain FAST+SIFT 352.2922887 418.9958806 421.7702733 526.6356664

health brain FAST+SURF 364.7993639 435.2697225 427.487366 539.6562794

cranium SIFT 377.2203331 415.1668951 434.6328554 482.7449933

cranium SURF 374.0779159 408.2073459 426.9232801 470.5326106

cranium ORB 365.7259957 399.7655388 423.5275305 466.8360997
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For different configuration we have computed minimum, bottom quartile, median, top quartile and 

maximum of the histogram intersections between: 

 warped input and reference (visualized using box plot in the Figure 61) 

 warped input and correct original (visualized using box plot in the Figure 62) 

 

Figure 61: Histogram intersection between reference and warped data for different configurations 

 

Figure 62: Histogram intersection between original and warped data for different configurations 
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For the different configurations we have compared average values of the histogram Bhattacharyya 

distances between: 

 input and reference vs. warped input and reference, 

 input and correct original vs. warped input and correct original. 

The results are shown in the Table 4 and visualized in one bar chart in the Figure 63. 

 

Table 4: Comparison of average histogram Bhattacharyya distance for different configurations 

 

Figure 63: Comparison of average histogram Bhattacharyya distance for different configurations 
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For different configuration we have computed minimum, bottom quartile, median, top quartile and 

maximum of the histogram Bhattacharyya distances between: 

 warped input and reference (visualized using box plot in the Figure 64) 

 warped input and correct original (visualized using box plot in the Figure 65) 

 

Figure 64: Histogram Bhattacharyya distance between reference and warped data for different 

configurations 

 

Figure 65: Histogram Bhattacharyya distance between original and warped data for different 

configurations 
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We can see in the charts and tables, that health brain ORB configuration reach the best results. Thus, 

we tried to watch closer on the results of this configuration. While we are working with big dataset, it 

is not possible to visualize results of all registrations. We created the histogram of correlations 

between: 

 reference and input slices vs. reference and warped slices (Figure 66),  

 correct original and input slices vs. correct original and warped slices (Figure 67). 

 

Figure 66: Histogram of correlations (health brain ORB configuration), reference vs. input 

 

Figure 67: Histogram of correlations (health brain ORB configuration), correct original vs. input 
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We have also tried to compute differences between the correlations of: 

 reference and input slices vs. reference and warped slices (visualized by histogram of 

differences in the Figure 68),  

 correct original and input slices vs. correct original and warped slices (visualized by histogram 

of differences in the Figure 69). 

 

Figure 68: Histogram of correlation differences between reference minus input (health brain ORB 

configuration) 

 

Figure 69: Histogram of correlation differences between correct original minus input (health brain 

ORB configuration) 
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In the Figure 66 and Figure 67 histogram distribution shows that histogram correlation between 

registered input and reference or correct original is in the most cases higher than correlation between 

input and reference or correct original. Thus registration is in the most cases successful. This is 

confirmed by the Figure 68 and Figure 69 where we can see that in the most cases difference between 

the histogram correlation of registered input with reference or correct original and between input with 

reference or correct original are in the most cases positive.  

We have also compared time durations of the different configurations. Average time of processing 2 

slices is presented in the Table 5 and visualized in the Figure 70. 

 

Table 5: Average time duration of the methods 

 

Figure 70: Average time duration of the methods 

9.5.10 Implementation 

Rigid registration can process 2D slice created from 3D volumes. Input for the method are two 2D 

slice – one reference and one input slice which will be registered to reference slice. Algorithms used in 

our proposed method of rigid registration are from OpenCV library. Also NumPy library is used to 

store slice and perform simple operations. 

9.5.10.1 Structure of the source code presented by a class diagram 

RigidRegistration class is organized in logic package and used by the main function as is shown in the 

Figure 71. RigidRegistration class has three important parameters: 
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 registration_mask_type – health brain mask or cranium mask 

 key_point_detector – used detector for key point detection (SIFT, SURF, ORB, FAST) 

 key_point_descriptor – used descriptor for computing feature vectors (SIFT, SURF, ORB) 

And also implements several methods:  

 rigid_registration() – method preprocess data – two input 2D slices 

 __create_mask_for_registration() – creates mask for the registration 

 __detect_key_points_SIFT(), __detect_key_points_SURF(), __detect_key_points_ORB(), 

__detect_key_points_FAST() – methods find key points on the slices 

 __calculate_descriptors_SIFT(), __calculate_descriptors_SURF() , 

__calculate_descriptors_ORB()  – methods computer feature vectors of the key points 

 __get_matches() – returns all matches between the feature vectors 

 __get_good_matches() – filter only good matches from all matches 

In the source code is more parameters and methods, but they have got only help function. 

Mian

- self

- main()

Rigid

- self.registration_mask_type 

- rigid_registration(params)

- self.key_point_detector 

- self.key_point_descriptor 

- __create_mask_for_registration(param)

- __detect_keypoints_SIFT(params)

- __detect_keypoints_SURF(params)

- __detect_keypoints_ORB(params)

- __detect_keypoints_FAST(params)

- __calculate_descriptors_SIFT(params)

- __calculate_descriptors_SURF(params)

- __calculate_descriptors_SIFT(params)

- __get_matches(params)

- __get_good_matches(params)

 

Figure 71: Class diagram of rigid registration (UML notation) 

9.5.10.2 Interaction of the objects presented by a sequence diagram 

In the Figure 72 is shown sequence diagram of the rigid registration. RigidRegistration is used by the 

main. First we have to initialize RigidRegistration and set configurations of the method. At first, we 

create registration mask for both input slices. Registration mask can be created for health brain or 

cranium. Next step is detection of key points on the both slices using SIFT, SURF, ORB or FAST 

detector. In the next step descriptors (SIFT, SURF or ORB) compute feature vectors for all key points 
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and then these vectors are matched. Resulting matches are filtered to get only good matches. Finally, 

matrix for the transformation is found and used to warp the input slice – register it to reference slice. 

main: rigid_registration:RigidRegistrtion

init()

rigid_registration()

__detect_keypoints_SIFT()

__detect_keypoints_SURF()

__detect_keypoints_ORB()

__detect_keypoints_FAST()

__create_registration_mask()

__calculate_descriptors_SIFT()

__calculate_descriptors_SURF()

__calculate_descriptors_ORB()

__get_matches()

__get_good_matches()

__find_afine_matrix_and_warp()

warped_input

 
Figure 72: Sequence diagram of rigid registration (UML notation) 

9.5.11 Discussion 

In our approach we have tried to crate registration mask from health brain part or from the cranium. 

Registration mask created from cranium was problematic for our method. In the Figure 54 we can see 

that method was not able to find affine matrix for registration when we used mask of the cranium for 

registration. There were also some very successful registrations, but in general the method did not 

work well on the cranium part. This was caused by several problems: 

 sometimes there was not enough key points detected so the method did not have enough 

matches after the finding matches step as is shown in the Figure 73 
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 sometimes only or mainly wrong matches of feature vectors were created as is shown in the 

Figure 74 

 another times in the matches filtering step, our algorithm did not filter wrong matches properly 

as is shown in the Figure 75 

 

Figure 73: Unsuccessful segmentation caused by not enough key points detected 

     

Figure 74: Unsuccessful segmentation caused by creating mainly bad matches between the feature 

vectors 

     

Figure 75: Unsuccessful segmentation caused by wrong matches filtering 

Our proposed method works better when we register slices by the health brain parts and the majority 

of slices were registered successfully as we can see in the Figure 55 and Figure 56. From the charts 

from the Figure 57 to Figure 65 we can see that the best results reached health brain ORB 

configuration and comparatively also health brain FAST-SURF configuration. However, there are still 
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cases when the method did not register slices successfully. In the Figure 76 we can see some examples 

of successful registrations using health brain ORB configuration and in the Figure 77 we can see on 

the other side cases of unsuccessful registration using the same configuration. Failure of the method in 

the testing slice was caused by matching bad feature vectors in matching step and northerly filtration 

of the matches in filtration matches step. 

    

    

Figure 76: Examples of successful registration: merged blue channel of input (top row) or warped 

input (bottom row) with red and green channel of correct original 

    

    

Figure 77: Examples of unsuccessful registration: merged blue channel of input (top row) or warped 

input (bottom row) with red and green channel of correct original 
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9.6 Non-rigid registration 

Non-rigid registration is crucial step for the observation of the brain changes caused by the tumor. 

Tumor grows and changes irregularly depending on the surrounding health brain structures and it 

pushes on those surrounding structures. Thanks the non-rigid registration we should be able to track 

changes of the health brain parts but also of the tumor. There are several approaches which try to deal 

with the similar problem. Many of them use brain atlases for non-rigid registration and simulation of 

the tumor growth. They follow different goals, such as tumor segmentation or pre-operative and post-

recurrence scan registration. Chapter 8.2 Registration is devoted to the mentioned methods. In our 

work we decided to implement and test different approach, because our goal is a little different. 

Basic flow is shown in the Figure 78. Input for the method are 3D volumes. However, we are using 

algorithms from the library which can process only 2D images, so our method works slice by slice. In 

the first step, the method finds optical flow using Farneback or Lukas-Kanade optical flow algorithm. 

In the next step we compute corresponding points from the flow. This is important mainly for the 

Farneback algorithm, because it returns dense flow. Lukas-Kanade returns a set of points, we only 

change their structure for the next step – visualization. 

Final step is visualization of the changes. We tested different approaches to the visualization: 

 paint tracks, 

 paint HSV from dense flow and 

 image morphing. 

Find optical flow

Compute 

corresponding points

Visualize changes

Input for the method 

are 3D volumes

 

Figure 78: Flow of non-rigid registration represented by activity diagram (UML notation) 
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9.6.1 Input 

Input for the proposed method is several examinations of one patient – several 3D MRI volumes 

captured in different time – in some regular period. Actually, the method can process 3D data, but it 

still works slice by slice in axial direction. We try to register old examination with actual examination. 

In this chapter we present the steps of the method on the slices 93 from the volumes from the BRATS 

2015 dataset - pat_153 examinations 0109 (old examination) and 165 (actual examination). We work 

with preprocessed images using the preprocessing described in the chapter 9.3.Example of the input is 

shown in the Figure 79.  

              

Figure 79: preprocessed axial MR slice 93 from BRATS 2015, pat_153,  

LEFT (old): examination 0109, RIGHT (actual): examination 165 

9.6.2 Finding optical flow 

As we can see in the Figure 79, slices look really similar nevertheless the fact that they came from 

different examinations of one patient. In our approach we have tested method based on the key points 

and description of the key point features, but the results were bad. The main reason was that proposed 

method had find matches between the feature vectors of the very distant and disagreeable key points. It 

is because some parts of the brain have got very similar intensities. 

Rather than reduce the area of the finding the best matches for the key points we decided to test optical 

flow algorithms. We supposed that they are better suited for the problem. They are usually used to 

track the motion in the videos – in consecutive frames. In our case we do not have consecutive frames, 

but we can replace them by corresponding slices from following examinations.  

In general, optical flow algorithms work on two basic premises: 

 intensities of the object do not change between two consecutive frames – in our case two (or 

more) corresponding slices from the two (or more) examinations followed by each other (this 

is another reason why we head to preprocess the data) 

 motion of the neighboring pixels is similar 
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We decided to use two different algorithms and compare their results:  

 Lukas-Kanade optical flow algorithm – algorithm was invented by Bruce D. Lucas and Takeo 

Kanade. The algorithm uses mentioned basic premises. It combines information from several 

nearby pixels by creating small patch and the premise is that all pixels under the patch have 

got the same motion. Then the algorithm checks the similarities of the intensities on the next 

frame and thanks this it can compute the motion of these patches. 

 Farneback dense optical flow algorithm – algorithm was invented by G. Farneback. 

Farneback’s algorithm computes dense optical flow on dense grid of the points. At the 
beginning, the algorithm approximates each neighborhood of two following frames by 

quadratic polynomials. In the next step, quadratic polynomials are considered, a new signal is 

constructed by a global displacement. Finally, the coefficients in the quadratic polynomials' 

yields is used to calculate this global displacement by equating.  

Those algorithms are suitable for the problem, because they can compute only small motions between 

two frames and this is actually what we need. 

9.6.3 Computation of the corresponding points 

In this step we have to compute the corresponding points. Output from the previous methods is an 

optical flow.  

Actually Lukas-Kanade returns flow as corresponding points, thus we only have to change the 

structure for the next steps. 

However, Farneback algorithm returns dense optical flow – motion of the all pixels from the frame. 

This is too much information for the next processing, so we choose only every xth pixel from the 

motion vectors we compute the coordinates of the corresponding points in the next frame. 

9.6.4 Visualization of the changes 

Final step of the non-rigid registration is visualization of the changes. We have tested different 

techniques of the visualization: 

 paint tracks, 

 HSV from dense flow and 

 image morphing. 

9.6.4.1 Paint tracks 

Paint tracks is the simplest visualization method. It is based only on the painting lines between the 

corresponding points. In the Figure 80 are shown changes between the slices from the Figure 79 using 

paint tracks technique. We can see in the figure that visualization of corresponding points created by 

the Farneback have more arrows and on the other side visualization of corresponding points created by 

Lukas-Kanade algorithm contains only several dots whole dots represents places where algorithm 
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detected the motions. This is caused by the fact that Farneback calculates dense flow and Lukas-

Kanade only try to detect the motion and this is probably too hard task for Lukas-Kanade algorithm. 

          

Figure 80: Visualization of changes between examination using paint tracks visualization technique 

9.6.4.2 HSV from dense flow 

Next visualization technique is to compute HSV image (hue, saturation, value) from the dense flow. 

This technique may be used only for flow computed by Farneback optical flow algorithm because it 

returns dense flow (Lukas-Kanade do not return dense flow). 

Flareback returns a flow matrix with the same size as the input frames. Each element in the matrix is a 

value that represents the displacement of the concrete pixel between actual and previous frame. Thus, 

we compute angle of the movement and magnitude of the movement. Then we use these values to 

create HSV image where angle is H (hue) and magnitude is V (value). S (saturation) is constantly set 

to 255. Finally, we convert HSV image to RGB. Result is shown in the Figure 81. 

 

Figure 81: Visualization of changes using HSV image 

Farneback Lukas-Kanade 

Farneback 
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9.6.4.3 Image morphing 

Last visualization technique is called image morphing. This technique allows us to create animations 

and animate changes between the examinations. Actually, we could create only simple animation 

using classic animation - only slice by slice, but we decided to try create additional images using 

image morphing technique. Corresponding points from the previous step are used to create additional 

frames for the smooth and clearly animation.  

Actually we could create additional animation using only simple blending of the two slices according 

to the formula: 𝑁(𝑥, 𝑦) = (1 − 𝛼) ∗ 𝑂(𝑥, 𝑦) + 𝛼 ∗ 𝐴(𝑥, 𝑦), 
where 𝑁(𝑥, 𝑦) is pixel from the new additional image, 𝛼 is parameter which controls blending, 𝑂(𝑥, 𝑦) 
is pixel from the old image and 𝐴(𝑥, 𝑦) is pixel from the actual image. 

However, image morphing allow to create more clearly animation. 

Corresponding points are two sets of the points as is shown in the Figure 82 a). One set is from old 

slice and second one are corresponding points from the actual slice. In the first step we decided to add 

four more points to both sets. These additional points are top of bounding rectangle of the brain. Thus 

we create a bounding rectangle of the brain as is shown in the Figure 82 b) Then we extract the tops of 

the rectangle (Figure 82 c)) and add them to the sets as is shown in the Figure 82 d). 

  

 

 

Figure 82: Sets of corresponding points from old and actual slice and creation of additional points 

 

a) b) 

c) d) 
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In the next step we calculate the average position of the corresponding points using the formula: 𝑥𝑛 = (1 − 𝛼)𝑥𝑜 + 𝛼𝑥𝑎 𝑦𝑛 = (1 − 𝛼)𝑦𝑜 + 𝛼𝑦𝑎, 

where 𝑥𝑛 and 𝑦𝑛 are new coordinates of the point, 𝑥𝑜 and 𝑦𝑜 are coordinates of old slice, 𝑥𝑎 and 𝑦𝑎 are 

coordinates of the actual slice and 𝛼 is parameter which controls blending. 

Result is third set of points as is shown in the Figure 83. 

 

Figure 83: Sets of corresponding points (green and blue) and set of average corresponding points 

(white) 

Next step is computation of the triangles between the points from the new set of points created in 

previous step. We decided to use Delaunay triangulation. Triangles are created in the iterations. In the 

Figure 84 a) is visualized result of the algorithm. From the triangles we compute corresponding 

triangles in the set of points from old slice (Figure 84 b)) and also set of points of the actual slice 

(Figure 84 c)). 

 

Figure 84: Result of Delaunay triangulation 

Finally, we can create new additional image for the animation. We warp all triangles from old slice 

(Figure 84 b)) and all triangles from actual slice (Figure 84 c)) to the tringles created by Delaunay 

a) b) c) 
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(Figure 84 a)). For every triangle we compute affine matrix and we transform it rigidly. Resulting 

additional image is created by blending all warped corresponding triangles using the formula from the 

page 118. 

9.6.5 Testing 

We tested the method using only Farneback optical flow, because Lukas-Kanade algorithm did not 

looked well. We tested results of the method for different modalities shown in the Table 6. 

 modality 

▬ flair 

▬ T1 

▬ T1c 

▬ T2 

Table 6: Tested modalities 

We also tested different settings of searching window (w) in Farneback algorithm and different size of 

step between the points (s) calculated from the flow in the step Computation of the corresponding 

points (chapter 9.6.3). Everything was tested on the flair modality. Table 7 shows tested configurations 

of the method. 

 searching window size (w) step between points (s) 

▬ 15 16 

▬ 29 16 

▬ 39 16 

▬ 15 8 

▬ 15 32 

Table 7: Different configurations of the method 

9.6.5.1 Dataset 

Non-rigid registration was tested on BRATS 2015 dataset. However not all patients in the dataset have 

got more examinations, so we choose from the dataset only patients with more than one examination. 

Together it is 20 patients and 95 examinations. On average 4,75 examination for one patient – some 

patients have only 2 examinations but other have more. 
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9.6.5.2 Testing flow and evaluation 

Testing flow is visualized using sequence diagram in the Figure 85. We process all patients from the 

dataset in the loop. For every patient we preprocess the data using preprocessing method from the 

chapter 9.3. Then we push all examinations from one patient to the non-rigid registration algorithm 

and it computes corresponding points for all examinations.  

For the evaluation it is necessary to transform volumes non-rigidly. For the transformation we decided 

to use similar process as image morphing described in the chapter 9.6.4.3. Actually, the process is the 

same except for the last step. We do not create new image instead of that we transform triangles from 

the old slice to the triangles from the actual slice. Finally, we compare slices using the same method as 

in rigid registration testing (explained in the chapter 9.5.8.3). We compute average correlation, 

intersection and Bhattacharyya distance for: 

 histograms of slices from old examination and actual examination, 

 histogram of slices from transformed (non-rigidly) old examination and actual examination. 

non-rigid 

registration script:
preprocessing:Preprocessing

init()

process_data()

preprocessed_data

loop

examinations[1:]

get_template()

preprocessed_template

nonrigid_registration:NonRigid

loop

dataset

init()

process_volumes()

corresponding_points

compare_images()

loop

examinations

loop

slices

warp_image()

warped_image()

 
Figure 85: Flow of the testing process (UML notation) 
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9.6.6 Results 

We have tested non-rigid registration on the dataset consists of 20 patients with more than one 

examination. While we evaluated the results slice by slice, not for whole volumes, it is not possible to 

visualize all results in one graph because it is a lot of data. We used several visualizations to compare: 

 results for different modalities and 

 different configurations of the method. 

9.6.6.1 Results for different modalities 

In the Figure 86 we can see ratio between cases when the correlation of the transformed (registered) 

old slices and actual slices was higher (lower) than correlation of the input old slices data and actual 

slices. 

 

Figure 86: Ratio between cases where after the transformation we reached higher histogram 

correlation of the transformed old slice with actual slices 

For the different tested modalities, we have compared average values of the histogram correlations 

between old slice and actual slice versus transformed old slice and actual slice. The results are 

presented in the Table 8 and visualized in the Figure 87. 

 

Table 8: Comparison of average histogram correlations for different modalities 
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T1 0.644726762 0.667428015

T1c 0.700108284 0.714934625
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123 

 

 

Figure 87: Comparison of average histogram correlations for different modalities 

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram 

intersections between transformed old slice and actual slice. Results are visualized in the Figure 88. 

 

Figure 88: Histogram correlation of transformed old slice and actual slice 
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For the different tested modalities, we have compared average values of the histogram intersection 

between old slice and actual slice versus transformed old slice and actual slice. The results are 

presented in the Table 9 and visualized in the Figure 89. 

 

Table 9: Comparison of average histogram intersections for different modalities 

 

Figure 89: Comparison of average histogram intersections for different modalities 

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram 

intersections between transformed old slice and actual slice. Results are visualized in the Figure 90. 

 

Figure 90: Histogram correlation of transformed old slice and actual slice 

actual and old original actual and transformed old original

Flair 425.8967622 443.1579404

T1 391.8223372 412.8192378

T1c 418.0144272 431.2574375

T2 440.5532608 453.7109507

0

100

200

300

400

500

Flair T1 T1c T2

A
v

e
ra

g
e

 v
a

lu
e

 o
f 

th
e

 h
is

to
g

ra
m

 

co
rr

e
la

ti
o

n

Modality

Comparision of average histogram intersection

using different modalities

actual and old original actual and transformed old original



 

125 

 

For the different tested modalities, we have compared average values of the histogram Bhattacharyya 

distance between old slice and actual slice versus transformed old slice and actual slice. The results are 

presented in the Table 10 and visualized in the Figure 91. 

 

Table 10: Comparison of average Bhattacharyya distances for different modalities 

 

Figure 91: Comparison of average Bhattacharyya distances for different modalities 

We have computed minimum, bottom quartile, median, top quartile and maximum of the histogram 

Bhattacharyya distances between transformed old slice and actual slice. Results are visualized in the 

Figure 92. 

 

Figure 92: Histogram correlation of transformed old slice and actual slice 

actual and old original actual and transformed old original
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T2 0.456074306 0.432324678

0

0,1

0,2

0,3

0,4

0,5

0,6

Flair T1 T1c T2

A
v

e
ra

g
e

 v
a

lu
e

 o
f 

th
e

 h
is

to
g

ra
m

 

co
rr

e
la

ti
o

n

Modality

Comparision of average histogram Bhattacharyya 

distance using different modalities

actual and old original actual and transformed old original



 

126 

 

9.6.6.2 Results for different configurations of the method 

In the Figure 93 we can see ratio between cases when the correlation of the transformed (registered) 

old slices and actual slices was higher (lower) than correlation of the input old slices data and actual 

slices. 

 

Figure 93: Ratio between cases where after the transformation we reached higher histogram 

correlation of the transformed old slice with actual slices 

For the different tested configurations, we have compared average values of the histogram correlations 

between old slice and actual slice versus transformed old slice and actual slice. The results are 

presented in the Table 11 and visualized in the Figure 94. 

 

Table 11: Comparison of average histogram correlations for different configurations 

In the Table 11 and in the Figure 94 we can see that different configurations returns very similar 

results, but we also try to compute minimum, bottom quartile, median, top quartile and maximum of 

the histogram correlation between transformed old slice and actual slice. Results are visualized in the 

Figure 95. This confirms the previous findings, so we do not visualize intersection metric and 

Bhattacharyya matric in this evaluation. 
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Figure 94: Comparison of average histogram correlations for different configurations 

 

Figure 95: Histogram correlation of transformed old slice and actual slice 

We have also created the histogram of correlations for the basic configuration of the method. In the 

Figure 96 we can see comparison of histogram correlation distribution for old slice and actual slice 

versus transformed old slice and actual slice. 
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Figure 96: Histogram of correlations (flair w=15, s=16) 

9.6.7 Implementation 

Non-rigid registration can process 3D volumes, but it computes optical flow slice by slice. Input for 

the method are all examination of one patients = 3D data. Algorithms used in our proposed method of 

non-rigid registration are from OpenCV library. Also NumPy library is used to store data and perform 

simple operations. 

9.6.7.1 Structure of the source code presented by a class diagram 

NonRigid class is organized in logic package and used by the main function as is shown in the Figure 

97. NonRigid class has one important parameter: 

 registration_ type – Farneback or Lucas-Kanade method 

And also implements several methods: 

 process_volumes() – processes volumes form examinations from one patient 

 process_frames_farneback() – processes all corresponding slices of the examination using 

Farneback optical flow algorithm 

 process_frames_lk() – processes all corresponding slices of the examination using Lukas-

Kanade optical flow algorithm 

 warp_images() – warps images for the evaluation 

 morph_images() – creates image for image morphing 
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 delaunay_triangulation() – computes triangles from the points 

 apply_transfrom() – performs transformation between input triangles 

Main

- self

- main()

NonRigid

- self.registration_type

- process_volumes(params)

- process_frames_farneback(params)

- process_frames_lk(params)

- warp_image(params)

- morph_images(params)

- apply_transform(params)

- delaunay_triangulation(params)

 

Figure 97: Class diagram of non-rigid registration (UML notation) 

9.6.7.2 Interaction of the objects presented by a sequence diagram 

In the Figure 98 is shown sequence diagram of the non-rigid registration. Nonrigid is used by the 

main. First we have to initialize NonRigid and set configurations of the method. Then the processing 

of the volumes can start. Volumes are processed slice by slice using Farneback optical flow method or 

Lukas-Kanade optical flow method – depending on the configuration. When corresponding points are 

found, we can morph images for the visualization of the tumor changes. 

main: nonrigid_registration:NonRigid

init()

process_volumes

process_frames_farneback()

process_frames_lk()

morph_images()

corresponding_points()

alt

registration_type is LK

registration_type is Farneback

 
Figure 98: Sequence diagram of non-rigid registration (UML notation) 
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9.6.8 Discussion 

Results presented in tables Table 8 - Table 10 and figures Figure 86 - Figure 92 show that modality 

can affect the results of the proposed method. We reached the best results using flair modality and just 

behind it T2 modality. On the other side when we used T1 modality results were the worst. Number of 

cases where we reached higher correlation after the transformation of the old slice is not such 

influences by the modality. However, in the Figure 86 we can see that the best results was reached 

using flair modality. 

The results presented in the Table 11, Figure 94 and Figure 95 show that configuration of the method 

cannot improve the correlation between the old slice + actual slice and transformed old slice + actual 

slice. However, in the Figure 93 we can see that when we use smaller step for the computation of the 

corresponding points, more old slices after the transformation reach higher value of the correlation 

witch actual slices than other configurations. 

In the Figure 96 we can see that using basic configuration of the method correlation between the old 

frame and actual frame is higher after the transformation of the old frame, thus method work well for 

our problem. 

9.7 Visualization tool 

We have created simple tool to visualize 3D volumes. The tool can process 3D data format and 

visualize brain MRI scans in 2D and 3D view. It also provides simple interaction. We can switch 

on/off the visualization of the tumor segmentation in both 2D and 3D views. Preparation of the 

visualization consists of several steps as is shown in the Figure 99. 

Create the slices

Create the 3D model

Render visualizations

Input for the method are 3D 

volumes and tumor masks

 
Figure 99: Basic steps of the visualization 
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9.7.1 Creating the slices 

In the first step, we have to create slices to visualize MRI volumes in 2D. All medical software 

products usually use 3 different 2D views of 3D data based on the direction where we are looking 

from: 

 axial,  

 coronal and  

 sagittal. 

Not all data have got good resolution in all directions, but we decided to show all views. In the Figure 

100 is shown an example of 2D slices in all directions. 

We are creating slices directly from the volume. When the user requests some slice (by interaction in 

the tool) then we only scroll through them. We are using special matrixes, different for every direction, 

to get slices from the volume: 

 Matrix for axial view: 𝑚 = |1 00 1 0 𝑥0 𝑦0 00 0 1 𝑧0 1|, where x, y, z is position of the volume center. 

 Matrix for coronal view: 𝑚 = |1 00 0 0 𝑥1 𝑦0 10 0 0 𝑧0 1|, where x, y, z is position of the volume center. 

 Matrix for sagittal view: 𝑚 = |0 01 0 −1 𝑥   0 𝑦0 10 0    0 𝑧   0 1|, where x, y, z is position of the volume center. 

         

Figure 100: Axial, coronal and sagittal view of the brain MRI scan 

9.7.2 Creating 3D model 

If we want to create the 3D model of the brain and separately of the tumor we have to segment those 

parts from the volume to the two independent arrays. Segmentation of the whole brain is simple 
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because background is black and everything other is brain, so we can simply use threshold greater than 

zero to segment foreground – brain. To segment tumor from the volume we use mask of the tumors 

from the datasets. Masks from the BRATS dataset contains 5 different labels, so we have to unit them 

if we want to segment whole tumor. 

Then we can use those segments as an input for the ray casting method which can create 3D model of 

the brain and also of the tumor. Different settings are implemented in the visualization tool to visualize 

whole brain, tumor only or location of the tumor in the brain. An example of the model created by ray 

casting method tool is shown in the Figure 101, where we can see health brain with 7% opacity and 

tumor with none opacity.  

Ray casting algorithm is a simple algorithm which can generate 3D model from the volume. The 

algorithm is based on the fact that we send a ray from some point. The ray crosses the volume at some 

point and then the value of the point is rendered on the canvas. 

 

Figure 101: 3D model of the brain 

9.7.3 Rendering of the visualizations 

Final step is initialization of the GUI based on the settings from the previous steps. Initial GUI of our 

desktop application consists of four canvases and side panel with some setting options as is shown in 

the Figure 102. Three canvases contain axial, coronal and sagittal 2D slices. Fourth canvas contains 

3D model of the brain and tumor and three axes which show where in the brain are slices on the 

canvases located. 
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User can translate and zoom the slices. When user scroll through the slices, axes in the 3D model 

change depending on the direction of scrolling. Application window also contain two histograms – one 

for health brain structures and second one for tumor structures. 

In addition, application allow to display masks of the tumor on the slice views as is shown in the 

Figure 103. User can also highlight tumor in the 3D model by choosing different settings on the side 

panel. Figure 104 shows different views of the highlighted tumor in the 3D model. 

 

Figure 102: Initial window of the application 

 

Figure 103: Visualization of the segmentation mask 
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Figure 104: Different ways to highlight the tumor in the 3D model 

9.7.4 Implementation 

We are using VTK library and its functions to create the windows and also interaction. It is only a 

simple library – it can create only one independent window when we run the program. Thus, we 

connected VTK with PyQt. Thanks this we were able to create more sophisticated layout of the GUI 

using special widgets which permit to add simple VTK windows. 

9.7.4.1 Structure of the source code presented in class diagram 

Visualization is organized to the more classes in the visualization package. And also uses some 

functions from Main class. Class diagram of the visualization is shown in the Figure 105.  

Main class does not have any important parameters but implements several methods for user 

interaction: 

 showTumorVolume() – shows tumor model in the canvas 

 showBrainVolume() – shows brain model in the canvas 

 setHealthBrainOpacity() – changes opacity of the brain in 3D model 
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 setTumorOpacity() – changes opacity of the tumor in 3D model 

 tumorToFront() – moves tumor in front of the brain in 3D model 

 highlightTumor() – changes brightness of the tumor in 3D model 

 redolorTumor() – changes collor of the tumor in 3D model 

 showTumorMask() – shows mask of the tumor in the slices 

 showAxes() – show axes in 3D model canvas 

GUI class implements two methods: 

 setupUi(), retranslateUi() which create GUI – window of the application: 

Axe class implements one method: 

 paintLine() – method paint line into the canvas of 3D model depending on the numbers of 

visualized slices 

Histogram class implements one method: 

 makeHistogram() – computes histogram of input data and paint it to histogram canvas 

Volume class has two important parameters and implements several methods: 

 tumor – data to create 3D model of the tumor 

 brain –  data to create 3D model of the brain 

 createTumorActor() - creates 3D model of the tumor 

 createBrainActor() – creates 3D model of the brain 

 volumeRender() – renders volume to the canvas 

Slices class implements several methods: 

 getBrainSlices() - creates slices from 3D data 

 getTumorSlices() – creates slices of the masks of tumors from 3D data 

 setInteraction() and addMouseMoveCallback() - handle additional interaction to scroll thought 

slices 
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Axe

- self

- paintLine()

Gui

- self

- setupUi()

Histogram

- self

- makeHistogram(params)

Slices

- getBrainSlices(params)

Volume

- self.tumor

- createTumorActor(params)

- retranslateUi()

- self

- getTumorSlices(params)

- setInteraction(params)

- mouseMoveCallback(params)

- self.brain

- createBrainActor(params)

- volumeRender(params)

Main

- self

- __init__(params)

- showTumorVolume()

- showBrainVolume()

- setHealthBrainOpacity()

- setTumorOpacity()

- tumorToFront()

- highlightTumor()

- recolorTumor()

- showAxes()

- showTumorMask()

- main()

 

Figure 105: Class diagram of visualization (UML notation) 

9.7.4.2 Interaction of the objects presented by the sequence diagram 

In the Figure 106 is shown sequence diagram of the visualization. When user run the program main 

function starts and process all data using the method. Then it is time for the visualization. At first we 

create GUI elements for the user interface (window, canvases, labels, buttons). In the next step we 

crate 3D model of the brain and tumor for 3D visualization of the volume. We also create slices in 

axial, coronal and sagittal direction for both, brain and tumor again. In this step we have to set 

interaction too. It allows user scroll through the slices in the GUI. Then we can create axes for the 

canvas with 3D model visualization. The axes show positions of the slices in the brain. Finally, we 

create histogram of health brain and histogram of tumor. The result is a GUI returned to the user. 
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main:
my_form:

MyFormuser
gui:Gui

volume:

Volume

slices:

Slices
axe:Axe

histogram:

Histogram

run()

init() init()
setupUi()

retranslateUi()

gui_elements

innit()

brain_actor

createBrainActor()

createTumorActor()

tumor_actor

innit()

setInteraction()

getBrainSlices()

brain_slices

getTumorSlices()

tumor_slices

init()

paintLine()

loop

directions

init()

makeHistogram()

brain_histogram

makeHistogram()

tumor_histogram

GUI

 

Figure 106: Sequence diagram of visualization (UML notation) 
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9.8 Implementation in general 

9.8.1 Used development tools 

Sources are written in Python 3.5 programming language and several libraries are used for proposed 

methods. Preprocessing use SimpleITK and NumPy– images and volumes are represented as arrays 

and performed operations are fast. Tested segmentation method based on convolutional neural 

networks uses Tensorflow and Keras libraries. Both registration methods use algorithms from 

OpenCV library. Finally, visualization tool is implemented using VTK, to render visualizations, and 

PyQT with plugin for VTK, to provide GUI. Matplotlib and Pandas are used for evaluation. 

9.8.2 Structure of the source code presented by a class diagram 

Source code is organized to the classes and packages as is shown in the Figure 107. Main class 

contains main function and basic functions for visualization – to set visibilities, opacities of the brain 

and tumor and also to visualize axes. 

Logic package contains classes for preprocessing, rigid and non-rigid registration and also for reading 

data from disk. Some source codes are also used in the scripts for testing and dataset generating, but 

they are not involved in the class diagram – there is only collapsed scripts package. Logic package 

consists of these classes: 

 Reading class is used by the main function, but mainly it is used by the scripts for testing and 

dataset generating. It reads one examination of the patient stored on the disk in specific 

hierarchy. 

 Preprocessing class preprocess the volumes and was explained in detail in the chapter 9.3. 

Preprocessing is used in the main function to preprocess volumes and also in mentioned 

scripts. 

 Rigid class implements functions for rigid registration of the slices and was explained in the 

chapter 9.5. It was not necessary to use rigid registration in main, because we were working 

with registered data, so it is used only by the scripts for testing. 

 NonRigid class consists of methods for non-rigid registration of the volumes. It can process 

whole volume, but it works slice by slice. It is explained in detail in the chapter 9.6.  

Object package contains only two classes which represent some objects: 

 Examination class stores all data from one patient examination – name, modalities and results 

of non-rigid registration. 

 Volume class stores volumetric data and basic information from the data such as origin, 

spacing, size and direction. 

Visualization package contains all important classes for visualization tool – GUI. They are explained 

in detail in chapter 9.7, but in general: 

 Gui class generates basic layout of the visualization tool. 
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 Slices class implements function for generating 2D slices from 3D volume in axial, sagittal 

and coronal view and also functions for the interaction which allows to scroll through slices. 

 Volume class implements function for generating 3D model of the brain from volumetric data. 

 Histogram class computes and paints the visualization of the histogram from the data (for the 

brain part and tumor part) 

 Axe class contains methods for visualizing and moving axes in the 3D view depending on 

number of slices displayed in all 2D slice views. 

NonRigid

- self.registration_type

- process_volumes(params)

Rigid

- self.registration_mask_type 

- rigid_registration(params)

Preprocessing

- self.top_percentile

- __init__(params)

Reader

- self

- read(params)

Examination

- self.path

Volume

- self.origin

Axe

- self

- paintLine()

Gui

- self

- setupUi()

Histogram

- self

- makeHistogram(params)

Slices

- self.modelWindow

- getBrainSlices(params)

Volume

- self.tumor

- createTumorActor(params)

- __find_files(params)

- __find_path_to(params)

- __load_data(params)

Main

- self

- __init__(params)

- self.bottom_percentile

- process_data(params)

- remove_percentile(params)

- normalize(params)

- hist_match(params)

- self.key_point_detector 

- self.key_point_descriptor 

- __create_mask_for_registration(param)

- __detect_keypoints_SIFT(params)

- __detect_keypoints_SURF(params)

- __detect_keypoints_ORB(params)

- __detect_keypoints_FAST(params)

- __calculate_descriptors_SIFT(params)

- __calculate_descriptors_SURF(params)

- __calculate_descriptors_SIFT(params)

- __get_matches(params)

- __get_good_matches(params)

- process_frames_farneback(params)

- process_frames_lk(params)

- warp_image(params)

- morph_images(params)

- apply_transform(params)

- delaunay_triangulation(params)

- self.name

- self.mri_t1

- self.mri_t2

- self.mri_t1c

- self.mri_flair

- self.warped_data

-  self.own_points

-  self.next_points

- self.size

- self.spacing

- self.direction

- self.data

- showTumorVolume()

- showBrainVolume()

- showVolume()

- setHealthBrainOpacity()

- setTumorOpacity()

- tumorToFront()

- highlightTumor()

- recolorTumor()

- showAxes()

- showTumorMask()

- retranslateUi()

- self.modelRenderer

- getTumorSlices(params)

- setInteraction(params)

- mouseMoveCallback(params)

- self.brain

- createBrainActor(params)

- volumeRender(params)

scripts

- main()

 

Figure 107: Class diagram in general (UML notation) 

9.8.3 Interaction of the objects presented by a sequence diagram 

In the Figure 108 is shown sequence diagram. After the reading the examination of the patient, data 

are preprocessed using preprocessing methods mentioned in the chapter 9.5. First examination is used 

as target and all next are reference examiations. We have got rigidly registered data, but if we did not 
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have then all examination would be registered using rigid registration methods as is explained in the 

chapter 9.5. Then to track the tumor changes, we have to register data non rigidly – find corresponding 

points between the examinations. Thus, we use methods of the non-rigid registration mentioned in 

chapter 9.6. Finally, we can visualize data using visualization tool as is explained in the chapter 9.7. 

This return the GUI to the user. 

main:
preprocessing:

Preprocessing

init()

process_data()

preprocessed_data

loop

examination[1:]

get_template()

preprocessed_template

rigid_registration

:RigidRegistrtion

init()

rigid_registration()

warped

nonrigid_registration:

NonRigidRegistrtion

init()

process_volumes()

corresponding_points

my_form:Main

init()

user

GUI

run()

 

Figure 108: Sequence diagram in general 
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10 Conclusion 

The main goal of the work was to develop methods appropriate for tracking brain and tumor changes 

caused by the tumor growth. To track the tumor changes, we have to segment tumor, register different 

examination from one patient and register changes. We proposed a method for tumor tracking. It 

consists from five steps. 

First step is preprocessing of the data. This is important, because examination from one patient have 

different ranges and different brightness. We used histogram matching algorithm to balance the 

brightness of the examinations from one patient and the results are very promising. 

Second and important step is tumor segmentation method. We have to segment tumor to be able to 

track tumor changes and changes of the health brain. In our approach we decided to re-implement one 

of the state of the art method. Selected method was based on cascaded convolutional neural networks. 

However, during the testing we did not reach satisfactorily results, so in the next steps we decide to 

use tumor masks from the datasets.  Boundaries of the tumor are crucial for correctness of the rigid 

registration and can be very helpful for non-rigid registration.  

Third step is rigid registration of the volumes from different examinations but from one patient. 

During the rigid registration we have to compute without the tumor, because as time flows, the tumor 

changes. We used basic flow of the registration which consists of several steps: creating mask for 

registration, finding key points, computing feature vectors, finding matches between the vectors, 

filtration of the matches, finding matrix for transformation and transforming data finally. Proposed 

method can process 2D slices. We tested the method on the dataset which contains registered and 

warped 2D slices created from Siemens dataset. We tested different configurations of the method, 

using different segmentation masks, different key point detectors and feature extractors. Results are 

promising. The best results we reached using registration mask of the health brain parts, ORB key 

point detector and descriptor. 

Enlargement of the tumor causes also changes of the health structures of the brain, because they are 

threaded out by the tumor. This causes irregular changes of the brain so this is perfect task for fourth 

step – non-rigid registration. We proposed method based on the optical flow for this problem. We 

tested two different algorithms: Farneback and Lukas-Kanade, but Farneback algorithm worked better 

against the Lukas-Kanade, because Farneback returns dense flow. We tested the method on the 

BRATS 2015 dataset using only patients with more than one examination. During the valuation we 

had to transform one examination non-rigidly to other one to compute histogram correlations between 

the examinations. We used Delaunay triangulation and affine transformation. We tested the impact of 

different modalities and different input parameter of the Farneback algorithm. We reached the best 

results using Flair modality and comparatively T2. However, different configuration of the Farneback 

algorithm did not have a big impact on the non-rigid registration. Only usage of the smaller step, 

during the computation of the corresponding points from the flow, helped to get higher correlation 

after the transformation in more cases than other configurations. 

Final step is visualization. For the visualization of the tumor changes we implemented three different 

methods:  painting the tracks, HSV image of the changes and image morphing. We have also created a 

simple visualization tool where user can see volumetric data in axial, coronal and sagittal direction and 

it also cab create 3D model of the brain and tumor using ray casting algorithm.  
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Appendix A: Technical documentation 

All source codes were developed in Python and also OpenCV, SimpleITK and other Python libraries 

were used. Visualization of the volumetric data was developed using VTK library, PyQt and PyQt 

plugin for VTK. 

Preprocessing 

Preprocessing can process 3D or 2D data, input for the preprocessing are reference and target data. 

Preprocessing is initialized with target data. Target is normalized and some percentile of the data can 

be removed – see Listing 1 (target = template). 

Listing 1: Initialization of preprocessing 

def __init__(self, template=None, remove_percentile=False, bottom_percentile=5, 
top_percentile=99, ignore_zero_values=False): 
 
        self.ignore_zero_values = ignore_zero_values 
        self.bottom_percentile = bottom_percentile 
        self.top_percentile = top_percentile 
        self.rem_percentile = remove_percentile 
 
 
        if self.ignore_zero_values: 
            tmp = np.ma.masked_where(template == 0, template) 
            tmp = tmp.compressed() 
        else: 
            tmp = None 
 
        if template is not None: 
            if self.rem_percentile: 
                template = self.remove_percentile(data=template, data_info=tmp, 
     bottom_percentile=self.bottom_percentile,  
     top_percentile=self.top_percentile) 
            template = self.normalize(data=template) 
 
            self.template = template 

 
 

Then the reference image can be processed. Reference image is normalized and the same percentile 

can be removed from the data, but reference data are also matched to the target using histogram 

matching algorithm – see Listing 2. 

Listing 2: Function for processing the reference data 

def process_data(self, data, path=None): 
 
        if self.ignore_zero_values: 
            # ignore black backround - zero values 
            tmp = np.ma.masked_where(data == 0, data) 
            tmp = tmp.compressed() 
        else: 
            tmp = None 
 
        if self.rem_percentile: 
            data = self.remove_percentile(data=data, data_info=tmp, 
bottom_percentile=self.bottom_percentile, top_percentile=self.top_percentile) 
        data = self.normalize(data=data) 
        data = self.hist_match(template=self.template, data=data) 
 
        return self.normalize(data) 
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In the preprocessing some help functions are used: normalize() function – Listing 3, 

remove_percentile() function  – Listing 4 and hist_match() function – Listing 5. 

Listing 3: Normalization of the data 

def normalize(self, data): 
 
        new_min = np.amin(data) 
        new_max = np.amax(data) 
        normalized = ((data - new_min) / (new_max - new_min)) * 255 #65535 
 
        return np.uint8(normalized) 

 

 

Listing 4: Remove some percentile from the data 

def remove_percentile(self, data, data_info=None, bottom_percentile=10, top_percentile=99): 
 
        if data_info is not None: 
            new_min = np.percentile(data_info, bottom_percentile) 
            new_max = np.percentile(data_info, top_percentile) 
        else: 
            new_min = np.percentile(data, bottom_percentile) 
            new_max = np.percentile(data, top_percentile) 
 
        data[np.where(data < new_min)] = new_min 
        data[np.where(data > new_max)] = new_ma 
 
        return data 

 

 

Listing 5: Histogram matching of the target and reference data 

def hist_match(self, template, data): 
        oldshape = data.shape 
        data = data.ravel() 
        template = template.ravel() 
 
        # get the set of unique pixel values and their corresponding indices and 
        # counts 
        s_values, bin_idx, s_counts = np.unique(data, return_inverse=True, 
                                                return_counts=True) 
        t_values, t_counts = np.unique(template, return_counts=True) 
 
        # take the cumsum of the counts and normalize by the number of pixels to 
        # get the empirical cumulative distribution functions for the data and 
        # template images (maps pixel value --> quantile) 
        s_quantiles = np.cumsum(s_counts).astype(np.float64) 
        s_quantiles /= s_quantiles[-1] 
        t_quantiles = np.cumsum(t_counts).astype(np.float64) 
        t_quantiles /= t_quantiles[-1] 
 
        # interpolate linearly to find the pixel values in the template image 
        # that correspond most closely to the quantiles in the data image 
        interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) 
 
        return interp_t_values[bin_idx].reshape(oldshape) 
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Rigid registration 

Input for the algorithm are two 2D images generated from volumes of magnetic resonance test in axial 

direction. One of the images is reference and next image is input which will be registered. Next 

listings show important steps of the algorithm. 

In the first step, mask for registration is created. There are two different types of masks. One is a 

subtraction of the mask of the tumor segmentation from the mask of the brain. Mask of the brain is 

created using threshold method. Second one is mask of the cranium created from mask of the brain 

using find contours algorithm. See Listing 6. 

Listing 6: Create mask for registration 

# creation of mask for area which we will work with in registration process 
def __create_mask_for_registration(self, image, segmentation_mask, idx, path): 
 
        # threshold input image first to get mask of brain 
        _, thresholded_image = cv2.threshold(image, 10, 255, cv2.THRESH_BINARY) 
 
        if self.registration_mask_type is 'health_brain':    
            # reduction of mask to remove margins of brain 
            kernel = np.ones((5, 5), np.uint8) 
            thresholded_image = cv2.dilate(thresholded_image, kernel=kernel, iterations=1) 
            kernel = np.ones((15, 15), np.uint8) 
            thresholded_image = cv2.erode(thresholded_image, kernel=kernel, iterations=1)  
            # substract tumor from mask 
            result = thresholded_image - segmentation_mask 
            _, result = cv2.threshold(result, 250, 255, cv2.THRESH_BINARY) 
 
        elif self.registration_mask_type is 'cranium':  
            kernel = np.ones((10, 10), np.uint8) 
            thresholded_image = cv2.dilate(thresholded_image, kernel=kernel, iterations=1) 
            kernel = np.ones((7, 7), np.uint8) 
            thresholded_image = cv2.erode(thresholded_image, kernel=kernel, iterations=1) 
            _, contours, _ = cv2.findContours(thresholded_image, cv2.RETR_EXTERNAL,  
     cv2.CHAIN_APPROX_NONE) 
            result = np.zeros_like(image) 
            cv2.drawContours(result, contours, -1, 255, 20) 
 
        if self.show_results: 
 
        return result 

 

 

In the next step we can detect the key points using SIFT, SURF, ORB or FAST key point detector 

(Listing 7) and compute feature vectors using SIFT, SURF or ORB descriptors (Listing 8). 

Listing 7: Detect the key points using SIFT, SURF or FAST detector 

# detect keypoint using SIFT detector 
def __detect_keypoints_SIFT(self, image, registration_mask, idx, path): 
        sift = cv2.xfeatures2d.SIFT_create() 
        keypoints = sift.detect(image, registration_mask) 
        if self.show_results or self.save_results: 
            self.__panit_keypoints(image, keypoints, idx, path) 
        return keypoints 
 
# detect keypoint using SURF detector 
def __detect_keypoints_SURF(self, image, registration_mask, idx, path): 
        surf = cv2.xfeatures2d.SURF_create(400) 
        keypoints = surf.detect(image, registration_mask) 
        if self.show_results or self.save_results: 
            self.__panit_keypoints(image, keypoints, idx, path) 
        return keypoints 
 
    # detect keypoint using ORB detector 



 

D 

def __detect_keypoints_ORB(self, image, registration_mask, idx, path): 
        orb = cv2.ORB_create() 
        keypoints = orb.detect(image, registration_mask) 
        if self.show_results or self.save_results: 
            self.__panit_keypoints(image, keypoints, idx, path) 
        return keypoints 
 
    # detect keypoint using FAST detector 
def __detect_keypoints_FAST(self, image, registration_mask, idx, path): 
        fast = cv2.FastFeatureDetector_create() 
        keypoints = fast.detect(image, registration_mask) 
        if self.show_results or self.save_results: 
            self.__panit_keypoints(image, keypoints, idx, path) 
        return keypoints 

 

 

Listing 3: Calculate descriptors (feature vectors) using SIFT or SURF 

# compute descriptors using SIFT 
def __calculate_descriptors_SIFT(self, image, keypoints): 
        sift = cv2.xfeatures2d.SIFT_create() 
        _, descriptors = sift.compute(image, keypoints) 
        return descriptors 
 
# compute descriptors using SURF 
def __calculate_descriptors_SURF(self, image, keypoints): 
        surf = cv2.xfeatures2d.SURF_create(400) 
        _, descriptors = surf.compute(image, keypoints) 
        return descriptors 
 
# compute descriptors using ORB 
def __calculate_descriptors_ORB(self, image, keypoints): 
        orb = cv2.ORB_create() 
        _, descriptors = orb.compute(image, keypoints) 
        return descriptors 

 

 

Then feature vectors can be matched using brute force matcher. See Listing 8. 

Listing 8: Match descriptor vectors 

# get all matches (depending on computed descriptors) between the keypoints of both images 
def __get_matches(self, desc_1, desc_2, img_1, img_2, keypoints_1, keypoints_2, path): 
        # create BFMatcher object 
        if self.key_point_descriptor == 'SIFT' or self.key_point_descriptor == 'SURF': 
            bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) 
        else: 
            bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
 
        # match descriptors 
        matches = bf.match(desc_1, desc_2) 
         
        return matches 

 

 

Good matches were filtered depending on the prejudice that brain volume is not a lot rotated to each 

other so lines between matches should be almost evenly. See Listing 9. 

Listing 9: Filter matches 

# filter good matches from all matches - they should not be very far away 
def __get_good_matches(self, matches, keypoints_1, keypoints_2, img_1, img_2, path, 
tolerancy_lr=20, tolerancy_tb=20): 
        good_matches = [] 
        for i in range(0, len(matches)): 
 
            x1 = keypoints_1[matches[i].queryIdx].pt[0] 
            y1 = keypoints_1[matches[i].queryIdx].pt[1] 
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            x2 = keypoints_2[matches[i].trainIdx].pt[0] 
            y2 = keypoints_2[matches[i].trainIdx].pt[1] 
 
            # good matches have to satisfy the criteria 
            if x1 + tolerancy_lr >= x2 and x1 - tolerancy_lr <= x2 and  
      y1 + tolerancy_tb >= y2 and y1 - tolerancy_tb <= y2: 
                good_matches.append(matches[i]) 
 
        return good_matches 

 

 

Finally, transformation matrix is computed from the filtered matches and input is warped to the 

reference image – registration is completed. See Listing 10.  

Listing 10: Rigid transformation 

# find afine transform 
afine = cv2.estimateRigidTransform(dst_pts, src_pts, False) 
 
if afine is not None: 
            # apply afine transform 
            img_result = cv2.warpAffine(img_2, afine, (img_2.shape[1], img_2.shape[0])) 

 

Non rigid registration 

Non rigid registration can process 3D data, but it still works slice by slice. It is based on the optical 

flow. We used two different algorithms Lukas-Kanade optical flow (Listing 11) and Farneback dense 

optical flow (Listing 12) 

Listing 11: Lukas-Kanade optical flow 

# function process all corresponding frames of examination volumes using lucas-canade optical 
flow 
def process_frames_lk(self, frames, paths=None, path_extension=None, modality='flair'): 
        old_gray = None 
        p0 = None 
         
        for index, frame in enumerate(frames): 
            result = None 
            warped_result = [] 
            old_points = [] 
            new_points = [] 
            save_path = "" 
 
            if old_gray is None and p0 is None: 
                # take first frame 
                old_gray = frame.copy() 
                # find corners on first frame 
                p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **self.feature_params) 
            else: 
                # actual image 
                actual_gray = frame.copy() 
                # calculate optical flow - Lucas Kanade 
                p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, actual_gray, p0, None,  

**self.lk_params) 
                # select good points 
                good_old_points = p0[st == 1] 
                good_actual_points = p1[st == 1] 
                old_points = list(tuple(map(tuple, good_old_points))) 
                new_points = list(tuple(map(tuple, good_actual_points))) 
 
                # warp old image to actual image for evaluation using Delaunay 
                warped_result = self.warp_image(img_old=old_gray.copy(),  

img_new=actual_gray.copy(), old_points=old_points, 
new_points=new_points, path=save_path) 

                # morph images for visualization 
                self.morph_images(img_old=old_gray.copy(), img_new=actual_gray.copy(),  
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old_points=old_points, new_points=new_points, path=save_path) 
 
                # update the previous frame and previous points 
                old_gray = actual_gray.copy() 
                p0 = good_actual_points.reshape(-1, 1, 2) 
 
        return warped_frames, old_points_list, new_points_list 

 

 

Listing 12: Farneback optical flow 

# function process all corresponding frames of examination volumes using farneback algorithm 
def process_frames_farneback(self, frames, paths=None, path_extension=None, modality='flair'): 
        old_gray = None 
         
        for index, frame in enumerate(frames): 
            result = None 
            old_points = None 
            new_points = None 
            save_path = "" 
 
            if old_gray is None: 
                # take first frame 
                old_gray = frame.copy() 
            else: 
                # actual image 
                actual_gray = frame.copy() 
                # calc optical flow using Farneback 
                flow = cv2.calcOpticalFlowFarneback(old_gray, actual_gray, None,  

**self.farneback_params) 
                # get old (for old_gray) and new points (for actual grey) from flow 
                old_points, new_points = self.__get_points_from_flow(img=actual_gray,  

flow=flow, step=16) 
                # warp old image to actual image for evaluation using Delaunay 
                result = self.warp_image(img_old=old_gray.copy(), img_new=actual_gray.copy(),  

old_points=old_points, new_points=new_points, 
animate=False, path=save_path) 

                # morph images for visualization 
                self.morph_images(img_old=old_gray.copy(), img_new=actual_gray.copy(),   

old_points=old_points, new_points=new_points, animate=False, 
path=save_path) 

 
                old_gray = actual_gray.copy() 
        return warped_frames, old_points_list, new_points_list 

 

 

If we are using Farneback algorithm, we have to compute points from the flow. See Listing 13.  

Listing 13: Compute points from the Farneback optical flow 

# function returns points of old frame and actual frame computed from flow 
def __get_points_from_flow(self, img, flow, step=8): 
        h, w = flow.shape[:2] 
        y, x = np.mgrid[step / 2:h:step, step / 2:w:step].reshape(2, -1).astype(int) 
        fx, fy = flow[y, x].T 
        lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2) 
        lines = np.int32(lines + 0.5) 
 
        old_points = [] 
        new_points = [] 
        for (x1, y1), (_x2, _y2) in lines: 
            if img[y1][x1] > 0 and img[_y2][_x2] > 0: # points inside the brain are accepted 
                old_points.append((x1, y1)) 
                new_points.append((_x2, _y2)) 
 
        return old_points, new_points 
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Finally, we can visualize the changes using different visualization techniques. We can draw track after 

Lukas-Kanade algorithm (Listing 14), draw tracks after Farneback algorithm (Listing 15) or crate 

HSV image from Farnebask dense flow (Listing 16). 

Listing 14: Draw tracks after Lukas-Kanade algorithm 

# function draw motions between examination frames after lucas-canade optical flow 
def __draw_tracks_after_lk(self, actual_img, good_old, good_new, mask): 
        # draw the tracks 
        for i, (new, old) in enumerate(zip(good_new, good_old)): 
            a, b = new.ravel() 
            c, d = old.ravel() 
            mask = cv2.line(mask, (a, b), (c, d), self.color[i].tolist(), 2) 
 
        img = cv2.add(actual_img, mask) 
 
        return mask, img 

 

 

Listing 15: Draw tracks after Farneback algorithm 

# function draw flow - motions between examination frames after farneback 
def __draw_flow_after_farneback(self, img, old_points, new_points): 
 
        vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) 
 
        for (x1, y1), (_x2, _y2) in zip(old_points, new_points): 
            cv2.arrowedLine(vis, (x1, y1), (_x2, _y2), (0, 255, 0), 1) 
            cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) 
 
        return vis 

 

 

Listing 16: Create HSV image form Farneback dense flow 

# function draw HSV after farneback - it shows motion between two examinations 
def __draw_hsv_after_farneback(self, flow): 
 
        h, w = flow.shape[:2] 
        fx, fy = flow[:, :, 0], flow[:, :, 1] 
        ang = np.arctan2(fy, fx) + np.pi 
        v = np.sqrt(fx*fx+fy*fy) 
        hsv = np.zeros((h, w, 3), np.uint8) 
        hsv[..., 0] = ang*(180/np.pi/2) 
        hsv[..., 1] = 255 
        hsv[..., 2] = np.minimum(v*4, 255) 
        bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) 
 
        return bgr 

 

 

We can also visualize the changes using animation. For the animation we can create additional images 

to provide more smooth animation. Thus, we implemented image morphing algorithm based on 

corresponding point, Delaunay triangulation and alpha blending (see Listing 17). 

Listing 17: Image morphing algorithm 

# compute delaunay triangulation 
def delaunay_triangulation(self, points, img, animate=True, path=None): 
 
        # keep a copy of input image 
        img_orig = img.copy() 
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        # create rectangle for Subdiv2D 
        size = img.shape 
        rect = (0, 0, size[1], size[0]) 
 
        # create an instance of Subdiv2D 
        subdiv = cv2.Subdiv2D(rect) 
 
        for idx, p in enumerate(points): 
            # insert point to the SubDiv2D 
            subdiv.insert(p) 
 
 
        # get triangles from subdiv 
        triangleList = subdiv.getTriangleList() 
        size = img.shape 
        r = (0, 0, size[1], size[0]) 
 
        # select only good triangles and save as lst of points 
        triangles = [] 
        for t in triangleList: 
            pt1 = (int(t[0]), int(t[1])) 
            pt2 = (int(t[2]), int(t[3])) 
            pt3 = (int(t[4]), int(t[5])) 
 
            if self.__rect_contains__(r, pt1) and self.__rect_contains__(r, pt2) and  

self.__rect_contains__(r, pt3): 
                triangles.append([pt1, pt2, pt3]) 
 
        return triangles 
 
# transform one triangle to another one 
def apply_transform(self, src, srcTri, dstTri, size): 
        # pair of triangles is used to find the affine transform 
        warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri)) 
        # apply affine transform 
        dst = cv2.warpAffine(src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR,  

borderMode=cv2.BORDER_REFLECT_101) 
        return dst 

 
# morph old and actual image for visualization 
def morph_images(self, img_old, img_new, old_points, new_points, animate=False, path=None): 
        alpha = 0.5 
 
        # morph images without warping 
        img_morphed = np.uint8((1.0 - alpha) * img_old + alpha * img_new) 
 
        r = cv2.boundingRect(img_old) 
        b1 = (r[0], r[1]) 
        b2 = (r[0] + r[2], r[1]) 
        b3 = (r[0] + r[2], r[1] + r[3]) 
        b4 = (r[0], r[1] + r[3]) 
 
        # compute weighted average point coordinates 
        points = [] 
 
        old_points.extend((b1, b2, b3, b4)) 
        new_points.extend((b1, b2, b3, b4)) 
 
        for p1, p2 in zip(old_points, new_points): 
            x = (1 - alpha) * p1[0] + alpha * p2[0] 
            y = (1 - alpha) * p1[1] + alpha * p2[1] 
            points.append((int(x), int(y))) 
 
        # compute delaunay trinagulation on weighted points 
        triangles = self.delaunay_triangulation(points=points, img=img_old, animate=animate,  

path=path) 
 
        # get triangles of old point set and actual points set 
        triangles_old = [] 
        triangles_new = [] 
        for t in triangles: 
            p1_i = points.index(t[0]) 
            p2_i = points.index(t[1]) 
            p3_i = points.index(t[2]) 
            triangles_old.append([old_points[p1_i], old_points[p2_i], old_points[p3_i]]) 
            triangles_new.append([new_points[p1_i], new_points[p2_i], new_points[p3_i]]) 
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        # morph images 
        img_morph = img_old.copy() 
        img_paint = np.zeros(img_old.shape, dtype=img_old.dtype) 
 
        idx = 0 
        for t, t1, t2 in zip(triangles, triangles_old, triangles_new): 
            # find bounding rectangle for triangles 
            r = cv2.boundingRect(np.float32([t])) 
            r1 = cv2.boundingRect(np.float32([t1])) 
            r2 = cv2.boundingRect(np.float32([t2])) 
 
            tRect = [] 
            t1Rect = [] 
            t2Rect = [] 
 
            for i in range(0, 3): 
                tRect.append(((t[i][0] - r[0]), (t[i][1] - r[1]))) 
                t1Rect.append(((t1[i][0] - r1[0]), (t1[i][1] - r1[1]))) 
                t2Rect.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1]))) 
 
            # get mask of processed triangle by filling triangle 
            mask = np.zeros((r[3], r[2]), dtype=np.float32) 
            cv2.fillConvexPoly(mask, np.int32(t2Rect), (1.0, 1.0, 1.0), 16, 0) 
 
            img1Rect = img_old[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]] 
            img2Rect = img_new[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] 
 
            size = (r[2], r[3]) 
            warpImage1 = self.apply_transform(img1Rect, t1Rect, tRect, size) 
            warpImage2 = self.apply_transform(img2Rect, t2Rect, tRect, size) 
 
            # alpha blending for rectangular patches 
            imgRect = (1.0 - alpha) * warpImage1 + alpha * warpImage2 
 
            # copy triangular region of the rectangular patch to the output image 
            img_morph[r[1]:r[1] + r[3], r[0]:r[0] + r[2]] = img_morph[r[1]:r[1] +  

r[3],r[0]:r[0] + r[2]] * (1 - mask) + imgRect * mask 
            img_paint[r[1]:r[1] + r[3], r[0]:r[0] + r[2]] = img_paint[r[1]:r[1] +  

r[3],r[0]:r[0] + r[2]] * (1 - mask) + imgRect * mask 
 

 

 

Visualization tool 

Function volumeRender() is used to render brain and tumor volume in 3D model visualization. At first 

transfer functions for opacity and color are defined and all voxels are appended to the defined 

functions. Then ray casting algorithm is used to create the volume and defined properties of the input 

data are mapped to the volume. See Listing 18. 

Listing 18: Creating 3D model and preparation for the visualization 

def volumeRender(self, img, tf=[], spacing=[1.0, 1.0, 1.0]): 
 
        importer = self.numpy2VTK(img, spacing) 
 
        # Transfer Functions 
        opacity_tf = vtk.vtkPiecewiseFunction() 
        color_tf = vtk.vtkColorTransferFunction() 
 
        if len(tf) == 0: 

            tf.append([img.min(), 0, 0, 0, 0]) 
            tf.append([img.max(), 1, 1, 1, 1]) 
 
        for p in tf: 
            color_tf.AddRGBPoint(p[0], p[1], p[2], p[3]) 
            opacity_tf.AddPoint(p[0], p[4]) 
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        # working on the CPU 

        volMapper = vtk.vtkVolumeRayCastMapper() 

        compositeFunction = vtk.vtkVolumeRayCastCompositeFunction() 
        compositeFunction.SetCompositeMethodToInterpolateFirst() 
        volMapper.SetVolumeRayCastFunction(compositeFunction) 
        volMapper.SetInputConnection(importer.GetOutputPort()) 
 
        # The property describes how the data will look 
        self.volProperty = vtk.vtkVolumeProperty() 
        self.volProperty.SetColor(color_tf) 
        self.volProperty.SetScalarOpacity(opacity_tf) 
        self.volProperty.ShadeOn() 
        self.volProperty.SetInterpolationTypeToLinear() 
 
        # the lines below speed things up 
        # pix_diag = 5.0 
        # volMapper.SetSampleDistance(pix_diag / 5.0) 
        # volProperty.SetScalarOpacityUnitDistance(pix_diag) 
 

 

        volume = vtk.vtkVolume() 
        volume.SetMapper(volMapper) 
        volume.SetProperty(self.volProperty) 
 
        return volume 

 

 

Slices in axial, coronal and sagittal direction are created from the volume to visualize data in 2D. At 

first data are loaded and additional information, such as spacing, minimal and maximal position of the 

data are reached from the input. Spacing information is then used to compute center of the volume. 

Positions of the center are parameters for the matrixes. They are used for slice creation. See Listing 19. 

Listing 19: Creating slices and preparation for the visualization 

def getBrainSlices(self, sliceType): 

        VTK_DATA_ROOT = vtkGetDataRoot() 
 
        # Start by loading some data. 
        reader = vtk.vtkMetaImageReader() 
        reader.SetFileName("../../data/brain/flair.mha") 
        reader.Update() 
 
        # Calculate the center of the volume 
        reader.Update() 
        (xMin, xMax, yMin, yMax, zMin, zMax) =  

reader.GetExecutive().GetWholeExtent(reader.GetOutputInformation(0)) 

        (xSpacing, ySpacing, zSpacing) = reader.GetOutput().GetSpacing() 
        (x0, y0, z0) = reader.GetOutput().GetOrigin() 
 
        center = [x0 + xSpacing * 0.5 * (xMin + xMax), 
                  y0 + ySpacing * 0.5 * (yMin + yMax), 
                  z0 + zSpacing * 0.5 * (zMin + zMax)] 
 
        metrix = vtk.vtkMatrix4x4() 

        # Matrices for axial, coronal, sagittal, oblique view orientations 
        if sliceType == "coronal": 
            metrix.DeepCopy((1, 0, 0, center[0], 
                              0, 0, 1, center[1], 
                              0, 1, 0, center[2], 
                              0, 0, 0, 1)) 
 
            self.axes.paintAxeZ([center[0], - center[1], 0], [center[0], - center[1], 250],  

self.modelRenderer) 

            self.axes.setCenterZ(center[2]) 
 
        elif sliceType == "sagittal": 
            metrix.DeepCopy((0, 0,-1, center[0], 
                               1, 0, 0, center[1], 
                               0, 1, 0, center[2], 
                               0, 0, 0, 1)) 
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            self.axes.paintAxeY([center[0], 0, center[2]], [center[0], 250, center[2]],  

self.modelRenderer) 

            self.axes.setCenterY(-center[1]) 
 
        elif sliceType == "oblique": 
            metrix.DeepCopy((1, 0, 0, center[0], 
                              0, 0.866025, -0.5, center[1], 
                              0, 0.5, 0.866025, center[2], 
                              0, 0, 0, 1)) 
            self.line = self.axeObject.paintLine([0, 0, 0], [0, 0, 0]) 
 
        else:  # axial 
            metrix.DeepCopy((1, 0, 0, center[0], 
                            0, 1, 0, center[1], 
                            0, 0, 1, center[2], 
                            0, 0, 0, 1)) 
            self.axes.paintAxeX([0, - center[1], center[2]], [250, - center[1], center[2]],  

self.modelRenderer) 
            self.axes.setCenterX(center[0]) 

 

        self.modelWindow.Render() 
 
        # Extract a slice in the desired orientation 
        #reslice = vtk.vtkImageReslice() 
        self.resliceBrain.SetInputConnection(reader.GetOutputPort()) 
        self.resliceBrain.SetOutputDimensionality(2) 
        self.resliceBrain.SetResliceAxes(metrix) 
        self.resliceBrain.SetInterpolationModeToLinear() 
 
        # Create a greyscale lookup table 
        self.table.SetRange(0, 2000) # image intensity range 
        self.table.SetValueRange(0.0, 1.0) # from black to white 
        self.table.SetSaturationRange(0.0, 0.0) # no color saturation 
        self.table.SetRampToLinear() 
        self.table.Build() 

 
        # Map the image through the lookup table 
        color = vtk.vtkImageMapToColors() 
        color.SetLookupTable(self.table) 

        color.SetInputConnection(self.resliceBrain.GetOutputPort()) 
 
        threshold = vtk.vtkThreshold() 
        threshold.SetInputConnection(color.GetOutputPort()) 
        threshold.ThresholdByUpper(100) 
 
        # Display the image 
        actor = vtk.vtkImageActor() 
        actor.GetMapper().SetInputConnection(color.GetOutputPort()) 
 
        return actor 

 

 

Histogram is counted separately for the health brain and for the tumor structures. Then the values are 

used to paint the histogram on the canvases using simple rectangles. See Listing 20. 

Listing 20: Histogram calculation and visualization 

def makeHistogram(self, data): 
         
        min = 100000 
        max = 0 
 
        self.points = vtk.vtkPoints() 
        polygons = vtk.vtkCellArray() 
 
        for idx, d in enumerate(data): 
            if idx > 0: 
                if d < min: 

                    min = d 
                if d > max: 
                    max = d 
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        for idx, d in enumerate(data): 

            if(idx > 0): 
                print(d) 
                d = (d - min)/(max-min) 
                print(d) 
                polygons.InsertNextCell(self.createRectangle((idx-1)*0.1, (idx-1)*0.1+0.1, 0, d, (idx-
1)*4)) 
 
        # polygons.InsertNextCell(self.createRectangle(10, 20, 0, 40, 4)) 
 
        polygonPolyData = vtk.vtkPolyData() 
        polygonPolyData.SetPoints(self.points) 
        polygonPolyData.SetPolys(polygons) 
 
        mapper = vtk.vtkPolyDataMapper() 
        mapper.SetInputData(polygonPolyData) 
 
        actor = vtk.vtkActor() 

        actor.SetMapper(mapper) 

 
        axeObject = axe.Axe() 
        actorX = axeObject.paintLine([0, 0, 0], [len(data)*0.1, 0, 0]) 
        actorY = axeObject.paintLine([0, 0, 0], [0, 1, 0]) 
 
        actorList = [] 
        actorList.append(actor) 
        actorList.append(actorX) 
        actorList.append(actorY) 
 
        return actorList 
 
    def createRectangle(self, x1, x2, y1, y2, i): 
        self.points.InsertNextPoint(x1, y1, 0) 
        self.points.InsertNextPoint(x1, y2, 0) 

        self.points.InsertNextPoint(x2, y2, 0) 
        self.points.InsertNextPoint(x2, y1, 0) 
 
        polygon = vtk.vtkPolygon() 

        polygon.GetPointIds().SetNumberOfIds(4) 
        polygon.GetPointIds().SetId(0, i) 
        polygon.GetPointIds().SetId(1, i+1) 
        polygon.GetPointIds().SetId(2, i+2) 
        polygon.GetPointIds().SetId(3, i+3) 
 
        return polygon 

 

 

Axes in the 3D model of the brain are created for the better navigation. Axes correspondent with slices 

displayed in the widgets. Thus, orders of the displayed slices are used to create lines in the 3D model 

of the brain. See Listing 21. 

Listing 21: Display the axes in the model 

def paintLine(self, x1, x2): 
 
        # Create a vtkPoints object and store the points in it 
        pts = vtk.vtkPoints() 
        pts.InsertNextPoint(x1) 
        pts.InsertNextPoint(x2) 
 
        # Setup two colors - one for each line 
        green = [0, 255, 0] 
 
        # Setup the colors array 
        colors = vtk.vtkUnsignedCharArray() 

        colors.SetNumberOfComponents(3) 
        colors.SetName("Colors") 
 
        # Add the colors we created to the colors array 
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        colors.InsertNextTuple(green) 

 

        # Create the x line 
        linex = vtk.vtkLine() 
        linex.GetPointIds().SetId(0, 0) 
        linex.GetPointIds().SetId(1, 1) 
 
        # Create a cell array to store the lines in and add the lines to it 
        lines = vtk.vtkCellArray() 
        lines.InsertNextCell(linex) 
 
        # Create a polydata to store everything in 
        linesPolyData = vtk.vtkPolyData() 
 
        # Add the points to the dataset 
        linesPolyData.SetPoints(pts) 
 
        # Add the lines to the dataset 
        linesPolyData.SetLines(lines) 

 

        # Color the lines - associate the first component (red) of the 
        # colors array with the first component of the cell array (line 0) 
        # and the second component (green) of the colors array with the 
        # second component of the cell array (line 1) 
        linesPolyData.GetCellData().SetScalars(colors) 
 
        # Visualize 
        mapper = vtk.vtkPolyDataMapper() 
        mapper.SetInputData(linesPolyData) 
 
        line_actor = vtk.vtkActor() 
        line_actor.SetMapper(mapper) 
 
        return line_actor 
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Appendix B: Installation guide 

To run the project, follow these steps: 

1. Operating system 

-developed on: Ubuntu 16.04 

Project was developed on Ubuntu 16.04 and also this guide provides steps to prepare environment 

for the project on the Ubuntu. 

2. Python installation 

-version: Python 3.5.2 

Project is developed in Python programming language. During the development Python 3.5.2 was the newest 

version of the python programming language. 

To install python in terminal use command: 

$ sudo apt-get install python3.5-dev 

To control python installation use command: 

$ python --version 

I suggest to use Pycharm IDE for writing code. If you don't have installed Pycharm yet, then dowload 

the sources and install. It is JetBrains software which is free for the students - download student 

licence. 

3. Virtual environment preparation 

I suggest to use virtual environment. 

-requirement: pip 

To find out if you have pip in terminal: 

$ pip --version 

If you do not have pip, use command for installation in terminal: 

apt-get -y install python-pip 

Finally, to install and prepare virtual environment via console: 

$ pip install virtualenv 
$ cd /my_project_folder      //go to the folder directory !!! 
$ python3 -m venv env        //create virtual environment called env 
$ source env/bin/activate    //activate virtual environment 

https://www.jetbrains.com/pycharm/download/#section=linux
https://virtualenv.pypa.io/en/stable/installation/
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When virtual environment is activated, in terminal you can see: 

(env) $ 

Important: You should control, if Pycharm IDE automatically set interpreter for the project. If it 

didn't, it won't know libraries which will be installed in next steps. So you must set it manually (for 

Pycharm): 

 In Pycharm open File --> Settings --> enroll Project: project_name --> click to Project 

Interpreter. In the field Project Interpreter, you should see path to your environment folder. 

 If it is not set, add it manually. Push button next to the Project Interpreter field and choose 

Add Local. Then browse to the virtual environment folder. 

4. Install requirements 

 You can install all requirements which support pip using pip command (DON'T FORGET: Virtual 

environment must be activated): 

$ source env/bin/activate      //use this command only if your virtual environment 
is not activated 
(env) $ pip3 – r install requirements.txt   //you have to be in folder where 
requirements are located 

5. OpenCV 

-version: OpenCV 3.2.0 

In the project is used OpenCV library. Durig the development OpenCV 3.2.0 was the newest version. 

OpenCV represents images as NumPy arrays, so we need to install NumPy into our env virtual environment 

(DON'T FORGET: Virtual environment must be activated): 

$ source env/bin/activate      //use this command only if your virtual environment 
is not activated 
(env) $ pip3 install numpy 

If you end up getting a Permission denied error related to pip’s. cache directory, try to use following 

commands: 

(env) $ sudo rm -rf ~/.cache/pip/ 
(env) $ pip install numpy 

To install next prerequisites for the library use following commands (now the virtual environment 

don't have to be activated): 

(env) $ deactivate                                                               
//deactivate the virtual environment 
$ sudo apt-get install build-essential cmake git pkg-config                      
//install developer tools used to compile OpenCV 
$ sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12-dev      
//install libraries and packages used to read various image formats 
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev  
//install libraries used to read video formats 
$ sudo apt-get install libgtk2.0-dev                                             
//install GTK so we can use OpenCV’s GUI features 

http://opencv.org/
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$ sudo apt-get install libatlas-base-dev gfortran                                
//install packages that are used to optimize various functions inside OpenCV, such 
as matrix operations 

Now we can pull down OpenCV from GitHub: 

$ cd ~ 
$ git clone https://github.com/Itseez/opencv.git 

We’ll also need to grab the opencv_contrib repo. Without this repository, we won’t have access to 

standard keypoint detectors and local invariant descriptors (such as SIFT, SURF, etc.) that were 

available in the OpenCV 2.4.X version. We’ll also be missing out on some of the newer OpenCV 3.0 
features like text detection in natural images. 

To pull down opencv_contrib repo use commands: 

$ cd ~ 
$ git clone https://github.com/Itseez/opencv_contrib.git 

If you have also Python 2.x in your computer, you should set default python command for python 3.x. 

If you won't do this step, OpenCV library will be probably installed in the Python 2.x site-packages 

folder (/usr/local/lib/python3.4/site-packages/cv2.cpython-34m.so). To set Python 3.x as default use 

command: 

$ alias python=python3 

There is time to setup the build (cmake MUST BE installed!!!): 

$ cd ~/opencv 
$ mkdir build 
$ cd build 
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \ 
    -D CMAKE_INSTALL_PREFIX=/usr/local \ 
    -D INSTALL_C_EXAMPLES=ON \ 
    -D INSTALL_PYTHON_EXAMPLES=ON \ 
    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ 
    -D BUILD_EXAMPLES=ON .. 

Now we can compile OpenCV (where the 4 can be replaced with the number of available cores on 

your processor to speedup the compilation time): 

$ make -j4 

Assuming OpenCV 3.0 compiled without error, you can now install it on your system: 

$ sudo make install 
$ sudo ldconfig 

Now OpenCV should be installed in 

/usr/local/lib/python3.5/site-packages/ 

However, in order to use OpenCV within our env virtual environment, we first need to sym-link 

OpenCV into the site-packages directory of the env environment, like this: 

$ cd /my_project_folder                 //go to the folder directory !!! 
$ cd env/lib/python3.5/site-packages/ 

https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv_contrib
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$ ln -s /usr/local/lib/python3.5/site-packages/cv2.cpython-34m.so cv2.so 

Notice changing the name from cv2.cpython-34m.so to cv2.so — now Python can import our OpenCV 

bindings using the name cv2. 

This one OpenCV step follows some step from online OpenCV downloading and environment 

preparation tutorial. 

Test OpenCV installation 

In terminal: 

$ cd /my_project_folder                 //go to the folder directory !!! 
$ source env/bin/activate               //use this command only if your virtual 
environment is not activated 
(env) $ python 
>>> import cv2 
>>> cv2.__version__ 

OpenCV help: Some OpenCV tutorials for python are available for easier start with OpenCV in Python 

programming language. 

6. VTK 

-version: vtk 7.1.1 

Download corresponding version from VTK wensite 

Build VTK...in terminal: 

$ mkdir vtk 
$ cd vtk 
$ ccmake path_to_downloaded_folder 

Now press c to configure (YOU CAN HAVE SOME IMPORT ERRORS...THEN YOU MUST 

INSTALL). After configuring several options should appear. Press t to toggle to Advanced mode and 

change the following: 

BUILD_TESTING on 
VTK_WRAP_PYTHON on 
VTK_WRAP_TCL on 
Change CMAKE_INSTALL_PREFIX to /usr 
Change VTK_PYTHON_VERSION to 3.5 (your python version) 
Change PYTHON_EXECUTABLE to your python executable. For me it was 
/usr/local/bin/python . You can check it by typing which python in your another 
terminal. 
Change PYTHON_INCLUDE_DIR to the directory where the python libraries are installed. 
In my case it is /usr/lib/python3.5/ 

Press c to configure. Now press g to generate Makefile. ( You may have to press c and g again as it 

sometimes does not work properly ) 

Then install VTK and the Wrappers in terminal: 

$ make 
$ sudo make install 
$ cd Wrapping/Python 

http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu/
http://www.pyimagesearch.com/2015/07/20/install-opencv-3-0-and-python-3-4-on-ubuntu/
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html
http://www.vtk.org/download/
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$ make 
$ sudo make install 

Set PYTHONPATH environment variable for your computer (not for your virtual environment), use 

terminal: 

$ export 
PYTHONPATH=/home/zuzana/vtk/lib:/home/zuzana/vtk/Wrapping/Python:$PYTHONPATH 

Test vtk installation 

(env) $ python 
>>> import vtk 
>>> print(vtk.vtkVersion.GetVTKSourceVersion()) 

If you want set PYTHONPATH permanently in your computer, use terminal and type: 

$ cd 

$ gedit .bashrc  

and then add row: export 

PYTHONPATH=/home/zuzana/vtk/lib:/home/zuzana/vtk/Wrapping/Python:$PYTHONPATH 

Probably it will be necessary to restart your computer. You can also add the same row into your virtual 

environment into file activate (located in your_project_folder/env/bin/), but when you run code from 

IDE not from console, you must do next step. 

SET PATHS FOR VIRTUAL ENVIRONEMNT IN YOUR INTERPRETER (for Pycharm): 

 select Settings > Project Interpreter 

 to the right of interpreter selector there is an icon button, click it and select "More..." 

 pop up a new "Project Interpreters" window select right bottom button (named "show paths for 

the selected interpreter") 

 pop up a "Interpreter Paths" window 

 click the "+" buttom > select your desired PYTHONPATH directory (the folder which 

contains python modules) and click OK Done! Enjoy it! 

7. SimpleITK 

Activate virtual environament and run command: 

$ cd your_project_path 
$ source env/bin/activate 
(env) $  pip install --trusted-host itk.org -f 
https://itk.org/SimpleITKDoxygen/html/PyDownloadPage.html SimpleITK 
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Appendix C: User guide for visualization tool 

Visualization tool is a simple desktop application. It has only one main window as shown in the Figure 

109. It contains: 

 three 2D views which visualize data in axial, coronal and sagittal direction, 

 one canvas with 3D model of the brain and tumor, 

 histogram of the health brain and tumor and 

 some check boxes for setting different properties of the visualizations depending on the user 

preferences. 

 
Figure 109: Initial window of visualization tool 

Application can visualize different volumes from one patient in different phase of processing, but this 

can be still set only programmatically in the main function. One of the following data type can be 

chosen for the visualization: 

 different examination or different modality and 

 original volumes, preprocessed volumes or transformed volumes. 

Interaction allows you to: 

 zoom, translate and scroll through slices, 

 zoom and rotate 3D model, 
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 zoom histograms. 

In the application can also be set different configurations of the visualizations using check boxes 

on the left side of the window: 

 in canvases which contains 2D slice in different directions: 

o show or hide tumor masks, 

o filter values to be displayed in the slices. 

 in 3D model: 

o show or hide tumor or whole brain, 

o change opacity of the tumor or whole brain, 

o change visualization setting of the tumor: 

 move tumor in frond – paint tumor 3D model above the brain model 

 highlight tumor – it changes the brightness of the tumor 

 recolor tumor – it changes the color of the tumor 

o show or hide axes 
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Appendix D: Work plan 

project week task State 

DP1 

1 analyze computer vision and preprocessing Done 

2 
analyze segmentation 

Done 

3 Done 

4 
analyze registration 

Done 

5 Done 

6 
implement segmentation 

Done 

7 Done 

8 test segmentation Done 

9 

rigid registration 

Done 

10 Done 

11 Done 

12 evaluate rigid registration Done 

DP2 

1 preprocessing Done 

2 

non-rigid registration 

Done 

3 Done 

4 Done 

5 evaluate non-rigid registration Done 

6 tumor changes visualization Done 

7 image morphing Done 

8 

visualization tool 

Done 

9 Done 

10 Done 

11 
documentation 

Done 

12 Done 
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Appendix E: Disc content 

Basic structure of the folders and files on the disc: 

 data folder 

o non-rigid_dataset_example-BRATS2015 folder – several examples of the data used 

for non-rigid registration (from BRATS 2015 dataset) 

o rigid_dataset_example-Siemens folder – several examples of the data used for rigid 

registration (from Siemens dataset) 

 diagrams folder 

o diagrams_activity.vsdx – activity diagrams used in the work 

o diagrams_calss.vsdx – class diagrams used in the work 

o diagrams_sequence.vsdx – sequence diagrams used in the work 

 evaluation folder 

o result_nonrigid_configurations.xlsx – evaluation, graphs, charts and statistical 

evaluation of non-rigid registration for different configuration 

o result_nonrigid_modalities.xlsx – evaluation, graphs, charts and statistical evaluation 

of rigid registration for different modalities 

o results_rigid_registration.xlsx – evaluation, graphs, charts and statistical evaluation of 

rigid registration for different configurations 

 sources folder – all source codes developed during the work 

 visualization_tool_screenshots – more screenshots of the visualization tool 

 dp_xbobotova.pdf - documantation 
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Appendix E: Summary - Resumé 

1. Úvod 

Medicína je oblasť, ktorá stále vyvíja. Je dôležitá pre ľudí a ich zdravie. Na diagnostikovanie ochorení 
sa využíva mnoho rôznych techník. V našom výskume pracujeme na metódach vhodných na 
monitorovanie vývoja nádoru na mozgu. Najčastejšie používaným testom na diagnostiku nádorov je 
zobrazovanie pomocou magnetickej rezonancie. Výsledkom testu magnetickej rezonancie mozgu je 
séria obrazov nazývaných rezy. V súčasnosti sa počítače používajú stále viac počas diagnostikovania 
pacientov. Poskytujú lekárom viac príležitostí a môžu im pomôcť pracovať efektívnejšie. 

Spracovanie trojrozmerných lekárskych údajov (v našom prípade MRI) môže byť časovo náročná a 
nepríjemná úloha. Počítačové videnie je silný nástroj na riešenie mnohých zaujímavých problémov a 
môže pomôcť pri automatizácii monotónnych a rutinných úloh v mnohých oblastiach. Lekárstvo je 
jednou z oblastí, v ktorých je počítačové videnie veľmi užitočné a môže byť veľmi silným nástrojom. 

V skutočnosti existuje veľa úloh v medicíne a diagnostike, kde niektoré algoritmy môžu uľahčiť prácu 
špecialistom. Na vyriešenie jednej konkrétnej úlohy sa vyvíjajú vždy špecializované metódy 
počítačového videnia. Preto sme sa rozhodli zamerať sa na mozog a rakovinu v mozgu - nádory. V 

našej práci prezentujeme metódy, ktoré sú schopné pomôcť s diagnózou rakoviny v mozgu, a to 
hlavne s cieľom sledovať zmeny nádoru. 

Pri spracovaní dát z MRI bez metód počítačového videnia, napríklad pri segmentácia nádoru z 3D dát, 
špecialista musí segmentovať nádor na každom reze. To je časovo náročná a monotónna úloha, ale je 
to naozaj nevyhnutné a veľmi užitočné - hlavne počas procesu liečby ožiarením, keď by sa zdravé 
časti mozgu mali pred žiarením čo najviac chrániť. 

Hlavnou úlohou práce bolo nájsť automatické metódy na sledovanie zmien ochorenia pacienta. Aby to 
bolo možné, je potrebné segmentovať nádor z MRI, zaregistrovať MRI z rôznych vyšetrení a nájsť 
korešpondujúce časti mozgu a nádoru v rôznych vyšetreniach zachytených počas liečby v 
pravidelných časových intervaloch. Dnes existuje veľa prístupov vhodných na segmentáciu nádoru. 
Rozhodli sme sa niektoré analyzovať a otestovať. Na registráciu údajov z rôznych vyšetrení sme 

navrhli metódu založenú na rigidnej registrácii. Nakoniec sme navrhli metódu založenú na nerigidnej 

registrácii, ktorá vie nájsť korešpondencie rovnakých častí mozgu a tumoru medzi dvoma 

vyšetreniami pomocou algoritmov založených na optickom toku. 

V nasledujúcich kapitolách uvádzame krátky úvod do problematiky predspracovania dát, segmentácie 
a registrácie v časti 2 Analýza, návrh našej metódy a popis jednotlivých krokov v časti 3 Návrh 
metódy a výsledky. V tejto kapitole opisujeme aj dosiahnuté výsledky. A v poslednej časti 4 Záver sa 

nachádza krátke zhrnutie.  

2. Analýza 

Počítačové videnie je oblasť, ktorá dokáže porozumieť digitálnym obrazom, videám a iným 
digitálnym údajom. Je dôležité uvedomiť si, že počítač vidí údaje inak než my. Obraz je len súborom 
hodnôt a ak chceme získať nejaké informácie, je nevyhnutné vyvinúť nejaké metódy a algoritmy. 
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Počítačové videnie je používané v rôznych vedeckých disciplínach, ale aj v každodennom živote. V 
súčasnosti ho môžeme nájsť aj v mnohých funkciách automobilov, v priemysle sa používajú na 
kontrolu kvality, v mnohých monitorovacích systémoch na kontrolu situácie, zabránenie nejasnostiam 
alebo odhalenie niektorých udalostí. Fyzika, biológia, chémia, vesmírny výskum alebo robotika sú 
oblasti, v ktorých má počítačové videnie veľa aplikácií. 

Medicína je ďalšia oblasť, v ktorej počítačové videnie môže uľahčiť ľudskú prácu a pomôcť rôznymi 
spôsobmi. V medicíne je veľa testov, kde sa používajú rôzne skenery a snímače. Známe testy sú 

napríklad magnetická rezonancia (MRI), počítačová tomografia (CT), sonografia, röntgenové 
vyšetrenie atď. Metódy počítačového videnia môžu pomôcť lekárom a diagnostikom spracovávať 
údaje a uľahčiť tak ich prácu. 

Predspracovanie dát 

Predspracovanie je prvým krokom po získaní obrazových dát. V medicíne sa stretávame s údajmi, 
ktoré nie sú dokonalé, takže je dôležité aplikovať niektoré techniky, aby sme ich vylepšili. Dáta po 
predspracovaní môžu obsahovať jasnejšie a lepšie okraje objektov. Hlavným cieľom predspracovania 
je zlepšiť kvalitu údajov. 

Obrázky je možné spracovať v priestorovej alebo frekvenčnej oblasti. Najbežnejšie techniky 
vylepšenia kvality obrázkov sú: 

 zvýšenie kontrastu, 

 vylepšenie rozlíšenia, 

 zvýraznenie hrán a 

 redukcia šumu. 

Segmentácia 

Segmentačné metódy rozdeľujú obrazové dáta na niekoľko častí v závislosti od nejakých vlastností, 
ako napríklad tvar, farba, intenzita alebo textúra. Segmentácia sa zvyčajne používa na detekciu 
nejakého objektu na obrázku. V súčasnosti existuje veľa segmentačných metód vhodných na rôzne 
typy problémov. 

Dostupná literatúra rozdeľuje segmentačné prístupy na manuálne, poloautomatické a automatické. 
Manuálna segmentácia nevyžaduje žiadne metódy počítačového videnia. Objekty sú segmentované 
odborníkom ručne pomocou nejakého špeciálneho softvéru a nástrojov. Je to časovo náročná a 
monotónna úloha. Poloautomatické metódy vyžadujú určitú interakciu s používateľom, ale sú 
rýchlejšie než manuálna segmentácia. Automatické metódy nevyžadujú žiadne vstupy od používateľa, 
všetko sa vypočíta podľa segmentačného algoritmu. 

V medicíne sa segmentačné algoritmy používajú na detekciu niektorých špecifických orgánov a častí 
tela alebo na detekciu niektorých anomálií na tele, ako sú nádory. Existuje niekoľko prístupov, ako 
získať údaje o štruktúre tela. 
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Metódy segmentácie je možné rozdeliť na niekoľko skupín na základe ich prístupu k segmentácii. 
Prieskumy sumarizujúce odborné články ich rozdeľujú na: 

 Metódy založené na hranách - jeden z najobľúbenejších prístupov. Často sa používajú na 

usmernenie segmentácie, umožňujú extrahovať rôzne typy hrán: parametrické, intenzívne, 
textúrové a okrajové. Medzi najznámejšie algoritmy tohto typu patria algoritmus rez grafom 
a algoritmus aktívnych kontúr. 

 Metódy založené na regiónoch – segmentujú vstupné dáta na základe podobnosti hodnôt 
v jednotlivých regiónoch obrazov. Najjednoduchším algoritmom je prahovanie, ktoré na 
základe 1 vstupnej konštanty vie rozdeliť obraz na regióny s nižšou hodnotou a vyššou 
hodnotou oproti tomuto prahu. Medzi ďalšie známe algoritmy patrí metóda rastúcich regiónov 
a záplavový algoritmus. 

 Strojové učenie – jednoducho povedané robí počítače schopné učiť sa bez explicitného 
programovania. Počítač sa môže naučiť niektoré modely a vykonávať segmentácie v závislosti 
od modelov na základe podobných podmienok na vstupnom obrázku alebo rozdeliť obraz na 
časti - segmenty v závislosti od niektorých charakteristík. Základné rozdelenie techník 

strojového učenia je na: 

o učenie bez učiteľa (klastrovanie) – metóda, ktorá rozdeľuje pixely obrazu na niekoľko 
klastrov pričom nie je potrebný žiadny tréning. 

o učenie s učiteľom (klasifikácia) – umožňuje natrénovať model na nejakých vstupných 
dátach, ktorý vie potom následne klasifikovať podobné dáta na základe tohto 
naučeného modelu. 

o  neurónové siete – dnes najčastejšie používaný prístup, ide v podstate o učenie 
s učiteľom, kedy sa taktiež na základe vstupných dát trénuje nejaký model. 

Registrácia 

Proces, ktorý môže zarovnať dva alebo viac obrázkov (referenčný a snímaný) tej istej scény, sa nazýva 
registrácia. Pri registrácii predpokladáme, že pre nejaké pixely z prvých vstupných dát sa nachádza 
pozícia zodpovedajúcich pixelov v nasledujúcich vstupných dátach. Obrázky môžu byť snímané 
rôznymi snímačmi z rôznych uhlov pohľadu alebo môžu byť naskenované v rôznych časoch alebo v 
rôznych podmienkach. Registrácia je nevyhnutným krokom na analýzu a získavanie informácií z 
kombinácie rôznych zdrojov údajov. 

Z pohľadu, aké obrazy sú registrované, môže byť registrácia rozdelená do štyroch skupín: 

 registrácia rôznych výrezov - cieľom je získať väčšie 2D zobrazenie alebo 3D zobrazenie 
scény 

 registrácia údajov získaných v rôznych časových obdobiach vždy aj s rôznymi podmienkami - 
cieľom je zistiť zmeny medzi akvizíciami 

 registrácia údajov získaných rôznymi senzormi, nazývaná tiež multimodálna analýza - cieľom 
je pracovať s viacerými informáciami získanými z rôznych senzorov 
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 registrácia modelu a scény, kde model predstavuje počítačové zobrazenie scén ako sú atlasy - 
cieľom je nájsť lokalizáciu scény v modeli a porovnať ju 

Zvyčajne sa proces registrácie údajov skladá zo štyroch základných krokov:  

 Detekcia príznakov - na obrázku sa hľadajú nejaké výrazné objekty. Obyčajne sú 
reprezentované ako pole bodov nazývané kľúčové body. Existuje veľa možností detekcie 
funkcií, ale hlavným predpokladom je, že by mali byť ľahko detekovateľné. Z pohľadu 
kritéria, na základe ktorého zhody hľadáme ich môžeme rozdeliť na geometrické, senzorové, 
založené na intenzite a hybridné. Z pohľadu ako pracujú môžu byť rozdelené na metódy 
založené na regiónoch alebo metódy založené na príznakoch. 

 Hľadanie zhôd medzi príznakmi - hľadanie zhody medzi príznakmi detekovanými na 
snímanom obrázku a príznakmi získanými z referenčného obrázku. Problémom je, že ak sme v 
predchádzajúcom kroku zistili nejaké nesprávne príznaky, rozšíri sa do tohto kroku. Ďalším 
problémom je, že v skutočnosti korešpondujúce príznaky môžu byť odlišné, pretože obrázky 
môžu byť skenované s rôznymi podmienkami. Tento problém by sa mal vyriešiť s dobrou 
voľbou deskriptora príznakov. Na jednej strane musí byť deskriptor schopný rozlišovať medzi 
rôznymi znakmi, ale na druhej strane nemôže byť ovplyvnený šumom a neočakávanými 
zmenami príznakov. 

 Odhad transformačného modelu je ďalším krokom registrácie. Korešpondujúce príznaky sa 
v tomto kroku používajú na výpočet transformačného modelu. Autori článkov rozdeľujú 
metódy z deformačného hľadiska na rigidnú a nerigidnú transformáciu nazývanú aj elastická 
transformácia. Rigidná registrácie nedeformuje dáta, umožňuje len škálovanie, rotáciu, 

reflexiu a transláciu. Na druhej strane nerigidná registrácia deformuje štruktúru dát a objektov, 

tak aby sa výstup čo najviac podobal na referenčný obraz. 

 Transformácia – na záver sa transformačné matice vytvorené v predošlom kroku použijú na 
transformáciu dát, čím vlastne dáta zaregistrujeme. 

3. Návrh metódy a výsledky 

Hlavným cieľom práce bolo navrhnúť a implementovať automatické metódy vhodné na sledovanie 
zmien nádoru. Keďže MRI je najbežnejším testom pre diagnostiku rakoviny mozgu, navrhované 
metódy pracujú so vstupnými MRI dátami - vyšetrenia od jedného pacienta zachyteného v 
pravidelných časových intervaloch. 

MRI snímky mozgu sú trojrozmerné dáta. To znamená, že pozostávajú z niekoľkých rezov. Počas 
liečby rakoviny mozgu musí pacient podstúpiť niekoľko vyšetrení v pravidelných časových 
intervaloch. Lekári musia vyhodnotiť a kontrolovať všetky výsledky vyšetrení pacientov, aby 
sledovali priebeh liečby. Môže to byť naozaj veľmi časovo náročná a nepríjemná úloha, takže 
počítačové videnie môže byť v tejto oblasti veľmi užitočné a automatizovať niektoré monotónne 
úlohy. 

Existujú určité problémy, ktoré je potrebné vziať do úvahy: 

 Keďže MRI sa vykonávajú v inom čase, môžu byť inak otočené. Je potrebné otočiť dáta do 
rovnakej pozície, aby sme mohli na sledovať zmeny. To je úloha pre rigidnú registráciu. 
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 V priebehu času sa mení nádor a tiež mozog. Nádor môže rásť alebo zmenšovať sa, čo tiež 
ovplyvňuje štruktúru okolitých zdravých častí mozgu. Na sledovanie zmien ochorenia je 
dôležité vedieť, ako bol mozog deformovaný nádorom. To je úloha pre nerigidnú registráciu.  

 Dáta sa zaznamenávajú s rôznymi zariadeniami alebo len s rôznymi nastaveniami jedného 
zariadenia a je bežné, že nie sú konzistentné. Hodnoty tých istých častí mozgu môžu byť 
odlišné. Tým sa musíme zaoberať ešte pred registráciou a tiež nám to pomôže vytvoriť lepšiu 
vizualizáciu. Preto musíme dáta predspracovať. 

Navrhli sme vlastnú metódu na sledovanie zmien tumoru a mozgu. Vstupom pre metódu sú dáta z 
MRI testu, ako bolo spomenuté. Ide o 3D dáta, takže ak chceme pracovať len s rezmi, musíme ich 
vytvoriť zo vstupných dát. V práci používame údaje z datasetu BRATS 2015 a údaje z praxe od 

spoločnosti Siemens. 

Prvým krokom navrhnutej metódy je prepracovanie. Musíme vyriešiť odlišný jas a kontrast dát 
zachytených v inom čase. Je to dôležité najmä pre vizualizáciu, ale môže to byť užitočné pre celý 
proces.  

Druhým krokom je segmentácia nádoru. Musíme poznať hranice nádoru, aby sme mohli sledovať jeho 
zmeny. Je to tiež dôležité pre ďalší krok – pre rigidnú registrácia. Zmenené časti nádoru a okolitého 
mozgu môžu spôsobiť chyby v rigidnej registrácii, ak by neboli segmentované.  

Ďalším krokom je rigidná registrácia. Potrebujeme otočiť dáta do rovnakej pozície s využitím 
translácie, rotácie a prípadne aj škálovania. 

V ďalšom kroku musíme urobiť nerigidnú registráciu (nazývanú aj elastická), aby sme mohli sledovať 
zmeny zdravých častí mozgu a tiež nádoru. Zmeny spôsobené nádorom sú nepravidelné, takže je to 

perfektná úloha práve pre nerigidnú registráciu. 

Nakoniec, aby sme mohli vizualizovať dáta vytvorili sme jednoduchú desktopovú aplikáciu. 

Predspracovanie 

Dáta z rôznych vyšetrení môžu mať rôzne hodnoty tých istých častí mozgu. Je to preto, že boli 
zachytené v rôznych časoch a s rôznymi nastaveniami zariadenia. Môžu mať tiež odlišný kontrast a 
jas. Preto sme navrhli metódu na predspracovanie týchto dát. Pozostáva z troch krokov: odstránenie 
percentilu, škálovanie údajov a algoritmus mapovania histogramov. 

Odstránenie nejakého percentilu dát znamená, že nájdeme hodnotu určeného horného a dolného 
percentilu (my sme používali horný percentil 99 a dolný percentil 5) a hodnoty vyššie ako horný 
percentil nahradíme hodnotou tohto percentilu a naopak hodnoty nižšie ako dolný percentil nahradíme 
hodnotou dolného precentilu. 

Pre škálovanie dát sme vyžili vzorec min max normalizácie a dáta sme preškálovali na rozsah 0-255:  𝑑𝑎𝑡𝑎 =  data−min (data)max(data)−min (data) ∗ 255, kde data sú n-dimenzionálne pole (2D alebo 3D) 
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Algoritmus mapovania histogramov je jednoduchý algoritmus, ktorý je založený na tom, že histogram 

jedných vstupných dát nazývaných referenčné dáta sa mapuje na histogram iných vstupných dát 
nazývaných cieľové dáta. 

Výsledky testovania ukazujú, že metódy vhodne predspracujú dáta, pretože jas a kontrast dát po 
spracovaní je viac vyvážený ako pred spracovaním. 

Segmentácia 

Segmentácia nádorov pomocou počítačového videnia je problémom, ktorý je čato skúmaný odbornou 
komunitou. Riešenie tohto problému je založené na veľkej motivácii – pomôcť lekárom a rádiológom 
s manuálnou a monotónnou prácou, ktorú musia robiť pri diagnostike.  

V skutočnosti je segmentácia nádorov z MRI vyšetrení mozgu ťažká úloha, pretože hranice nie sú 
vždy jasné a niekedy nádory nie sú výrazné. Veľa ľudí už riešilo daný problém a preto existuje mnoho 

prístupov v oblasti segmentácie mozgových nádorov s veľmi dobrými výsledkami. Preto sme sa 
rozhodli implementovať jednu z najnovších metód, ktorá dosiahla najlepšie výsledky na datasete 
BRATS 2013. Ide o metódu od Havaei a kol. [24] - Segmentácia nádorov mozgu s použitím hlbokých 
neurónových sietí. 

Jedným z dôvodov, prečo sme sa rozhodli vybrať tento prístup, bolo, že autor dosiahol veľmi dobré 
výsledky ako je uvedené v článkoch a druhý z nich bol, že zdrojový kód je k dispozícii online [81]. 

Počas práce sme však narazili na problém a to, že zdrojový kód využíva staré verzie niektorých 
knižníc a nikde sa neuvádza, že aké. Preto bolo potrebné niektoré časti kódu re-implementovať 
a prispôsobiť na nové verzie knižníc. Danú metódu sme následne testovali, avšak nepodarilo sa nám 
dosiahnuť uspokojivé výsledky a preto sme sa v ďalších krokoch rozhodli radšej použiť segmentačné 
masky z datasetov. 

Rigidná registrácia 

Ďalším krokom nami navrhnutej metódy je rigidná registrácia. Keďže dáta z MRI pochádzajúce od 
jedného pacient z rôznych vyšetrení sa robia v úplne inom čase, tak môžu byť inak otočené, preložené 
alebo zmenšené. Ak chceme sledovať zmeny nádoru a mozgu, musíme zarovnať dáta do rovnakej 
pozície. To je dokonalá úloha pre rigidnú registráciu. 

Nami navrhnutá rigidná registrácia pozostáva zo šiestich krokov. Vstupom metódy sú dva 2D rezy 
z 3D MRI dát. V prvom kroku vytvoríme registračnú masku pre oba vstupné obrázky. Navrhli sme 
algoritmy na vytvorenie dvoch rôznych typov másk a to masky zdravého mozgu a masky lebky. Na 

vytvorenie oboch másk využívame prahovanie nasledované morfologickými operáciami, čím 
dostaneme masku celého mozgu. Aby sme vytvorili masku len zdravej časti mozgu, tak ju erodujeme 
a následne odčítame ešte masku tumoru. Aby sme vytvorili masku lebky, tak nájdeme kontúru 
pôvodnej masky, kontúru zväčšíme a tým dostaneme približnú masky lebky. 

Masky sa v ďalšom kroku používajú na nájdenie kľúčových bodov v oboch vstupných obrázkoch. 

V tomto kroku využívame 4 rôzne algoritmy: SIFT, SURF, FAST a ORB. Následne pre všetky 
nájdené kľúčové body vypočítame vektory príznakov pomocou deskriptorov SIFT, SURF alebo ORB.  

Teraz máme vektory pre oba vstupné obrazy a v ďalšom kroku nájdeme medzi nimi zhody. V tomto 

kroku, okrem správnych zhôd, tiež získame aj nesprávne. Preto ich odfiltrujeme pomocou 
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jednoduchých podmienok založených na predpoklade, že dáta nie sú príliš rôzne otočené, zmenšené 
alebo posunuté.  

Následne z odfiltrovaných zhôd vypočítame transformačnú maticu pre transformáciu a použijeme ju 

na transformáciu a registráciu jedného zo vstupných obrázkov k inému. 

Počas testovania sme skúšali rôzne konfigurácie rigidnej registrácie – skúšali sme využiť rôzne masky 
pre registráciu (buď zdravej časti mozgu alebo lebky), rôzne algoritmy na získanie kľúčových bodov 

a tiež výpočet vektorov príznakov. 

Aby sme overili správnosť registrácie porovnali sme navzájom dva vstupné obrázky a porovnali sme 

ich s výstupnými zaregistrovanými a taktiež sme porovnali zaregistrované obrázky s originálmi 
(pôvodne zaregistrovanými obrázkami z datasetu). Neporovnávali sme celé rezy, ale vytvorili sme 
metódu, ktorá postupne z výsekov tých častí rezov, kde sa nachádza aspoň nejaká časť mozgu, 
vypočíta histogramy a určí korelácie, prieniky a Bhattacharryouvu vzdialenosť medzi týmito 

histogramami. 

Výsledky ukázali, že registračná maska vytvorená z lebky bola pre našu metódu problematická. Naša 
metóda mala pri využití masky lebky problém s nájdením afinnej matice pre registráciu. Mali sme 
s využitím takejto masky aj niektoré veľmi úspešné registrácie, ale vo všeobecnosti metóda 
nefungovala dobre.  

Navrhnutá metóda funguje lepšie, keď registrujeme rezy s využitím masky zdravými mozgovými častí 
a väčšina rezov bola úspešne zaregistrovaná. Najlepšie výsledky sme dosiahli s využitím algoritmu 

ORB pre hľadanie kľúčových bodov a tiež deskripciu príznakov. Porovnateľné výsledky sme dosiahli 
aj s využitím kombinácia FAST detektora kľúčových bodov a SURF deskriptora. Existujú však aj 

prípady, kedy metóda úspešne nezaregistrovala rezy. Zlyhanie metódy bolo spôsobené nesprávne 
nájdenými zhodami medzi vektormi príznakov a teda aj nesprávnou filtráciou zlých zhôd. 

Nerigidná registrácia 

Nerigidná registrácia je rozhodujúcim krokom pre pozorovanie zmien mozgu spôsobených nádorom. 
Nádor rastie a mení sa nepravidelne v závislosti od okolitých zdravých mozgových štruktúr čím tlačí 
na tieto štruktúry. Vďaka nerigidnej registrácii vieme sledovať zmeny zdravých častí mozgu, ale aj 
nádoru. Existuje niekoľko prístupov, ktoré sa pokúšajú riešiť podobný problém. Mnohé z nich 
používajú atlasy mozgu a sledujú rôzne ciele, ako je segmentácia nádoru alebo registrácia snímok pred 
operáciou a po rekurencii. V našej práci sme sa rozhodli implementovať a otestovať iné prístupy, 
pretože náš cieľ je trochu iný. 

Vstupom metódy sú 3D dáta. Používame však algoritmy z knižnice, ktoré dokážu spracovať len 2D 
obrázky, takže naša metóda aj napriek tomu funguje po rezoch. V prvom kroku metóda nájde optický 
tok pomocou algoritmu Farneback alebo Lukas-Kanade. Základným predpokladom týchto algoritmov 

je, že pohyb susedných pixelov je rovnaký a intenzity objektov sa medzi dvomi nasledujúcimi 
snímkami veľmi nezmenia (aj preto sme museli dáta správne predspracovať). Tieto algoritmy sa často 
používajú na sledovanie pohybu v jednotlivých snímkach videa. Sú vhodné pre náš problém, pretože 
neočakávajú veľké zmeny medzi snímkami a to je presne to, čo potrebujeme. 

V ďalšom kroku vypočítame zodpovedajúce body z toku. To je dôležité najmä pre algoritmus 
Farneback, pretože jeho výsledkom je hustý tok. Lukas-Kanade vráti súbor bodov a mi v tomto kroku 
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len zmeníme ich štruktúru pre finálny krok, ktorým je vizualizácia. Testovali sme rôzne prístupy k 
vizualizácii: 

 vykreslenie zmien, 

 vytvorenie HSV obrázka z hustého toku a 

 morfovanie rezov. 

Vykreslenie zmien je jednoduchý algoritmus, ktorý len nakreslí šípky v smere pohybu jednotlivých 
korešpondujúcich bodov. Vytvorenie HSV (hue - odtieň, saturation – sýtosť, value – hodnota) obrázka 
z hustého toku funguje tak, že z toku vypočítame uhol pohybu korešpondujúcich bodov a vzdialenosť 
medzi týmito bodmi a vytvoríme HSV obrázok tak, že uhol bude hodnota odtieňa a vzdialenosť 
hodnota hodnoty. Saturáciu sme nastavili konštantne na 255. 

Posledným prístupov je morfovanie rezov. Je to založené na vytvorení animácie z rezov a metóda nám 
umožňuje vytvoriť nové rezy, ktoré sú priemerom medzi existujúcimi a teda ich v animácii 
umiestnime medzi existujúce. Tým vznikne krajšia a vyhladenejšia animácia. Pri morfovaní 
využívame algoritmu Delaunayovej triangulácie, rigidnú transformáciu  vzniknutých trojuholníkov a 
alfa blending. 

Aby sme mohli nerigidnú registráciu testovať, museli sme transformovať jeden z rezov. Využili sme 
na to metódu podobnú morfovaniu až na to, že v poslednom kroku sme nevytvárali nový rez, ale 

transfromovali sme jeden z rezov na ten druhý cez trojuholníky vypočítané pomocou Delaunayovej 
triangulácie. Následne sme podobne ako pri testovaní rigidnej registrácie vyhodnotili histogramovaú 
koreláciu, prienik a Bhattacharryouvu vzdialenosť. 

Testovali sme, že aký vplyv má na nerigidnú registráciu využitie rôznych modalít a tiež využitie 
rôznych algoritmov a parametre týchto algoritmov. Zistili sme, že rôzne modality majú vplyv na 
úspešnosť a najlepšie výsledky sme dosiahli s použitím Flair modality a porovnateľne aj s použitím 
T2. Pri porovnávaní algoritmov sme zistili, že pre algoritmus Lukas-Kanade je toto ťažká úloha, 
pretože algoritmus sa len snaží nájsť zmeny v rezoch a tie nie sú veľmi výrazne. Úspešní sme boli 
s využitím Farnebackovho algoritmu, práve vďaka tomu, že vracia hustý tok avšak zistili sme, že 
parametre metódy nemajú výrazný vplyv na úspešnosť registrácie. Jedine, keď sme použili menší krok 
pri výpočte korešpondujúcich bodov z toku, tak sme zistili, že registrácia je úspešná vo viacerých 
prípadoch ako pri použití väčšieho kroku.  

Nástroj na vizualizáciu 3D MRI dát 

Aby bolo možné vizualizovať dáta, ktoré používame a spracúvame, vytvorili sme jednoduchý nástroj 
na vizualizáciu týchto 3D dát. Tento nástroj dokáže spracovať 3D dátový formát a vizualizovať 
snímky MRI v 2D a 3D pohľade. 2D pohľady sú tri a umožňujú pohľad na jednotlivé rezy v axiálnom, 
sagitálnom a koronálnom smere. 3D pohľad na dáta sprostredkúvame na základe vytvoreného 3D 
modelu pomocou algoritmu ray casting – umožňuje vidieť mozog alebo tumor. Aplikácia poskytuje 

tiež jednoduchú interakciu. Umožňuje prechádzanie cez rezy vo všetkých smeroch, ich približovanie 
a posúvanie, približovanie, posúvanie a otáčanie 3D modelu, zapnutie / vypnutie vizualizácie 

segmentácie nádoru v 2D aj 3D pohľade a tiež zobrazuje osi v 3D pohľade, ktoré ukazujú, kde sa 
práve zobrazené rezy v mozgu nachádzajú. V 3D modeli je tiež možné nastaviť priehľadnosť mozgu 
alebo aj tumoru, aby sa dala lepšie sledovať jeho lokalizácia. 
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4. Záver 

Hlavným cieľom práce bolo vyvinúť metódy vhodné na sledovanie zmien mozgu a nádorov 
spôsobených rastom nádoru. Na sledovanie zmeny nádoru musíme segmentovať nádor, registrovať 
rôzne vyšetrenia od jedného pacienta a zaznamenať zmeny medzi nimi. V práci sme navrhli metódu 
vhodnú na sledovanie nádoru, ktorá pozostáva z piatich krokov. 

Prvým krokom je predspracovanie údajov. To je dôležité, pretože vyšetrenia od jedného pacienta majú 
rozdielne rozsahy dát a rozdielny jas. Na vyváženie jasu vyšetrení od jedného pacienta sme použili 
algoritmus mapovania histogramov. Výsledky sú veľmi sľubné. 

Druhým a dôležitým krokom je metóda segmentácie nádoru. Musíme segmentovať nádor, aby sme 
mohli sledovať zmeny tumoru a zmeny zdravého mozgu. V našom prístupe sme sa rozhodli opätovne 
implementovať jednu z najlepších metód. Vybraná metóda bola založená na kaskádovitých 
konvolučných neurónových sieťach. Počas testovania sme však nedosiahli uspokojivé výsledky, takže 
v nasledujúcich krokoch sme sa rozhodli používať nádorové masky z datasetov. Hranice nádoru sú 
rozhodujúce pre správnosť rigidnej registrácie a môžu byť veľmi užitočné pre nerigidnú registráciu. 

Tretím krokom je rigidná registrácia dát z rôznych vyšetrení, ale od jedného pacienta. Počas rigidnej 
registrácie musíme počítať iba z oblasťami mozgu bez nádoru, pretože nádor sa časom mení. Použili 
sme základný tok registrácie, ktorý pozostáva z niekoľkých krokov: vytváranie masky pre registráciu, 
nájdenie kľúčových bodov, výpočet vektorov príznakov, nájdenie zhôd medzi vektormi, filtrácia zhôd, 

nájdenie matice pre transformáciu a nakoniec transformácia dát. Navrhovaná metóda môže spracovať 
2D rezy. Metódu sme testovali na datasete, ktorý obsahuje registrované a neregistrované 2D rezy 

vytvorené zo Siemens datasetu. Testovali sme rôzne konfigurácie metódy s využitím rôznych 
segmentačných masiek, rôznych detektorov kľúčových bodov a deskriptorov príznakov. Výsledky sú 
sľubné. Najlepšie výsledky sme dosiahli s využitím registračnej masky zdravých častí mozgu, ORB 
kľúčového detektora a deskriptora. 

Zväčšenie nádoru spôsobuje aj zmeny v štruktúre mozgu, pretože nádor sa časom mení. To spôsobuje 
nepravidelné zmeny mozgu, takže je to perfektná úloha pre štvrtý krok – nerigidnú registráciu. Pre 

tento problém sme navrhli metódu založenú na optickom toku. Testovali sme dva rôzne algoritmy: 
Farneback a Lukas-Kanade, ale algoritmus Farneback pracoval lepšie oproti Lukas-Kanade, vďaka 
tomu, že Farneback počíta hustý tok. Metódu sme testovali na datasete BRATS 2015 s použitím iba 
pacientov, ktorí mali viac ako jedno vyšetrenie. Počas vyhodnotenia sme museli jedno vyšetrenie 
nerigidne transformovať vzhľadom na druhé, aby sme vedeli medzi nimi vypočítať histogramové 
korelácie. Na to sme použili Delaunayovu trianguláciu a afinnú transformáciu. Testovali sme vplyv 
rôznych modalít a rôznych vstupných parametrov algoritmu Farneback. Najlepšie výsledky sme 
dosiahli pomocou modality Flair a porovnateľne aj T2. Avšak odlišná konfigurácia algoritmu 
Farneback nemala veľký vplyv na nerigidnú registráciu. Len použitie menšieho kroku pri výpočte 
zodpovedajúcich bodov z toku pomohlo dosiahnuť vyššiu koreláciu po transformácii vo viacerých 
prípadoch ako v prípade iných konfigurácií. 

Posledným krokom je vizualizácia. Na vizualizáciu zmien nádoru sme zaviedli tri rôzne metódy: 
vykreslenie zmien čiarami, HSV obrázok zmien a morfovanie obrazu. Tiež sme vytvorili jednoduchý 
vizualizačný nástroj, kde používateľ môže vidieť MRI dáta v axiálnom, koronálnom a sagitálnom 
smere a tiež je dostupný aj 3D model mozgu a nádoru vytvorený pomocou algoritmu ray cating. 

 


