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Modelovanie ľudskej vizuálnej pozornosti je posledné roky predmetom rozsiahleho výskumu. 
V prvej časti diplomovej práce analyzujeme súčasný stav v oblasti modelovania vizuálnej 
pozornosti. Následne predstavujeme nový prístup k získavaniu dát o ľudskej vizuálnej pozornosti 
z egocentrického pohľadu v reálnom prostredí, pričom sa opierame o predošlé práce. 

V práci opisujeme nový a kompletný návrh pre experimenty s ľudskou vizuálnou pozornosťou 
v laboratóriu. Používame špecifický hardvér a navrhujeme algoritmy, využívajúce metódy 
počítačového videnia, ktoré napomáhajú k dosiahnutiu navrhovaného cieľa. Návrh sme 
implementovali a viedli sme rozsiahle experimenty s ľudskou vizuálnou pozornosťou, ktorých 
výsledkom je nový súbor dát pre skúmanie ľudskej vizuálnej pozornosti z egocentrického pohľadu. 

Jedným z najväčších prínosov nášho návrhu a nového súboru dát je možnosť skúmať aspekty, 
vplývajúce na ľudskú vizuálnu pozornosť, ktoré nebolo možné skúmať nikdy predtým. Na základe 
predošlyćh prác sme súbor dát využili na výskum vplyvu hĺbky scény reálneho sveta na vizuálnu 
výraznosť objektov v nej. Tvrdíme, že vplyv hĺbky na vizuálnu výraznosť objektov je aplikovateľný 
na súčasné modely vizuálnej pozornosti ako koeficient vizuálnej výraznosti. Výsledky nášho 
výskumu sme aplikovali na existujúci model vizuálnej výraznosti, vyhodnotili sme výsledky 
nového modelu a zhodnotili sme možné vylepšenia. 
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Visual attention modelling is under extensive research throughout the past years. We analyse the 
current state-of-the-art in the visual attention modelling in the analytical part of this thesis. We 
propose a novel method to conduct user studies for research of human visual attention in real world 
environments from the egocentric perspective of view, building upon state-of-the-art in the visual 
attention modelling.  

We introduce a novel and complete method proposal for the user studies setup in a laboratory. To 
meet our specified goals, we use various hardware equipment and introduce our own algorithms 
and procedures based on the principles of image processing and computer vision. We created a 
novel dataset for studying human visual attention in real environments from the egocentric 
perspective of view during the extensive user studies following our proposed method. 

One of the biggest assets of the proposed method and the created dataset is the possibility to study 
aspects affecting visual attention that were not possible to study before. Based on the previous work 
in the field, we decided to conduct a research on the depth influence (distance between the observer 
and the observed object) on visual attention in real environments using the novel dataset. We claim 
that the aspect of depth influence on human visual attention can be applied on existing visual 
attention models as a saliency coefficient. We apply the results of our research on an existing 
saliency model, summarize up the results and conclude future possible improvements. 
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1 Introduction 

Sight is one of the five human senses through which we can explore our surroundings. Our brain has 
certain capacity for processing signals that has their origin in our senses. Human visual perception takes 
approximately 80% of this capacity. People, however, cannot process all visual signals perceived by 
their sight, despite of the high amount of brain capacity denoted for visual perception. Our visual 
perception is overwhelmed with visual stimuli from the objects all around us. That is a reason why visual 
perception system of humans consist of selection mechanism applied on perceived stimuli and notion of 
relevance (Borji – Itti, 2013). It is known that visual perception systems apply serial computational 
strategy despite of the fact that the process appear parallel to us. The parallelism is only the illusion of 
fast sequential processing of multiple tasks, just like we know from the CPU processing in the computer 
science. Thus, a particular location on the scene is selected for processing once at a time and its 
surroundings are suppressed and referenced as a fringe (Itti, 2000; Polatsek, 2015). While visual 
perception’s anatomical structure is familiar to us these days, the focus of research in visual perception 
is visual attention and underlying computational mechanisms (Borji – Itti, 2013). Visual attention is 
a process that helps us to decide where to fix our attention and which visual stimuli to process first by 
determining the salient regions (Goldstein, 2010). 

Scientific research related to the visual attention is interdisciplinary and involves work of psychologists 
(Rensink, 1997; Simons – Chabris, 1999), neurobiologists (Treue, 2001; Kastner – Ungerleider, 2000) 
and computer vision scientists who take the benefits from the research in medical and psychological 
research fields. Computer vision scientists focus mainly on problems of mathematical descriptions and 
complexity of visual attention and its applications in real time (Borji – Itti, 2013). The ultimate aim of 
their research is to determine and predict visual attention by models of visual attention. To build such 
a model, one has to analyse human eye fixations and movements on the scenes- the gaze information 
(Goldstein, 2010). We can use various equipment to gather gaze data during the user studies focused on 
the visual attention research and we can use many approaches to analyse and conclude them. The result 
of applying visual attention model on a given scene is visual attention map (or a saliency map) which 
predicts eye fixations on scene (Borji – Itti, 2013). 

1.1 Motivation 

To analyse the human visual attention and to introduce its model is hard and complex task and is subject 
of research for a few decades. Nowadays, we know certain amount of aspects that influence visual 
attention. However, there is a lot of work left to reveal more of them and to determine their exact impact 
on models of visual attention. Moreover, this task is not so easy because every human is a unique 
individual and therefore visual attention model of every human is unique. Our task is, therefore, to look 
for some common patterns that apply for majority of us. Among well explored aspects of visual attention 
belong static visual stimuli such as colour, orientation or contrast. Based on the knowledge from the last 
years we know that these stimuli are not sufficient for modelling our visual attention as a whole. We 
should take into account more aspects which affect our visual attention such as distance of the objects 
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on the scene and many more unexplored ones. The unexplored aspects influencing visual attention 
require even more extensive user studies and novel approaches for studying the visual attention. The 
knowledge from the research in the field of visual attention modelling is getting more and more popular 
because of large scope of its applications.  

Biologically inspired computer vision is widely used in robotics where further development of robotic 
active vision and human-robot interaction crucially depends on the principles of visual attention 
modelling. There is a suggestion that people’s trust in the intelligent robots is related to their attention 
patterns (Nagai et al., 2008).  Interaction between human and robot, as well as between human and 
human, may be disturbed by number of factors. These distractions prevent human from building trustful 
and positive relationship with interacting other. Therefore, there is a strong interest in eliminating such 
distractions from robot’s behaviour and developing visual attention of intelligent robots as close to 
humans as possible (Nagai et al., 2008). 

Among popular applications of visual attention models belong computer vision and graphics. We know 
several algorithms that can break down image into segments and recognize objects from them. This is 
task which can be done with benefit using the models of visual attention (Mitri et al., 2005). More 
complex task, however, is to prioritize objects on image from the least important to the most important 
ones for people. This way, the computer can decide which of them to highlight, show to user or make 
a thumbnail from. This involves principles of human visual attention applied on images (Marchesotti et 
al., 2009). Similar knowledge can be used in image and video compression algorithms when the task is 
to maintain details of most salient objects while discarding them from others with lower saliency (Itti, 
2004). 

Advertising is category of application of visual attention models in contrast with technical-oriented 
applications mentioned above. Advertising goals in all kinds of media is to send clear message to 
potential future buyers in the shortest time possible. This is the reason why advertisement experts 
involve visual attention scientists in their teams to improve effectivity of their advertisement campaigns 
(Liu et al., 2008). 
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2 Human vision and visual attention 

Human visual system is a complex structure responsible for receiving and evaluating visual information 
from the world around us. The amount of visual information from our surroundings is so large that our 
brain must process signals from eyes selectively using principles of visual selectivity and priority. 
Definition of visual attention is not so clear even until nowadays- mainly because of certain abstractness 
of this phenomenon. In order to find one of the first written definition we have to move a few decades 
backwards where psychologist W. James said: " Everyone knows what attention is. It is the taking 

possession of the mind, in clear and vivid form, of one out of what seem several simultaneously possible 

objects or trains of thought. Focalization, concentration of consciousness are of its essence."  (James, 
1890). We will look more in detail on the visual attention as a complex process to understand it before 
moving to the visual attention modelling research. 

2.1 Human vision 

Human vision from the biological perspective is a sensual system consisting of two receptor subsystems 
located in eyes, nerves that transport perceived signals and visual cortex in brain responsible for 
evaluating incoming sensual messages. Vision system is made up of many subsystems specialized on 
identification of contrast, shape, motion, depth, colour and many more characteristics of objects (Dobeš, 
2005). 

Light is a term for visible electromagnetic radiation which is in range of 400-700 nanometres. Light that 
enters the eye is transformed on retina into electric impulses by cells responsible for conversion, so 
called ganglion neurons (Dobeš, 2005). Another important cell found on retina are rods and cones. These 
are light-sensitive photoreceptors with different specialization. Cones are sensitive on details and 
provides us colour vision while rods are sensitive to radiation of light with small energy and helps us to 
see in dark conditions and perceive outlines of objects without colour information. Rods can be found 
on retina with significantly higher percentage- there are approximately 20 times more rods than cones 
there. Cones are concentrated mainly in the fovea which is small part on retina with best visual 
perception capabilities (Polatsek, 2015; Dobeš, 2005).  

Electric stimuli of visual information are transported to the visual cortex in the brain by the optical 
nerves. Average ratio of receptor cells number in eye and nerve cells number in optical nerve is about 
130:1 which leads us to conclusion that considerable part of visual stimuli pre-processing is happening 
directly in the eye (Dobeš, 2005). 

Motion of the eyes is possible using six eye muscles (for both eyes twelve) which are controlled in the 
frontal lobe of the brain in the three principal areas: the frontal eye field, the supplementary eye field 
and the dorsolateral prefrontal cortex (Pierrot-Deseilligny et al., 2004). Humans eye movement scan 
paths typically consists of alternating fixations and saccades. The fixations represent information 
gathering sequences around an interest region and saccades indicate the transitions between fixations 
(Karthikeyan, 2013). Frontal eye field is strongly connected with the saccades. It is involved in the 
preparation and triggering of saccades. These can be of five types based on the target location and 
behaviour: 

• Intentional, visually guided saccade (towards a target already present) 
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• Predictive saccade (towards a target not yet present) 
• Memory-guided saccade (target no longer visible) 
• Anti-saccade (towards opposite direction than target) 
• Pro-saccade (reflexive, visually guided saccade) 

Pro-saccades are mainly triggered earlier than in frontal eye field, namely in parietal eye field and are 
triggered towards a suddenly appearing peripheral target as a reflex reaction (Pierrot-Deseilligny et al., 
2004). Movement of the eyes is continual never-ending process where saccades and fixations are 
alternated (Dobeš, 2005). This is because of the anatomy of receptor cells on our retina. They are 
working in such way that they need change every small period of time to deliver visual stimuli to visual 
nerve and by visual nerve to visual cortex. You can prove this theory by looking constantly on black dot 
on a blank paper. After few seconds the dot will disappear just as if you were blind (Dobeš, 2005). 

Visual cortex in the brain consists of a few areas as shown on Figure 2-1. The smallest anatomical parts 
of visual cortex are visual nerve cells that are working on their own in the lower parts of the brain or are 
grouped together to form neural networks in the higher parts responsible for complex tasks. Similarly, 
as we know from the theory of computer neural networks, visual nerve cells do have an input and on-
off-like output.  

 

Figure 2-1: Visual cortex parts from the macaque’s brain. Human brain is very similar in the means of 
the location of visual cortex and its parts (Dobeš, 2005). The cortex parts are referenced further in the 

subchapter. 

Primary visual cortex (V1) is the first part of a brain that processes incoming neural stimuli from the 
visual nerves. It consists from simple neurons and complex neurons. Simple neurons detect simple 
geometric shapes with their alignments such as one neuron for horizontally aligned rectangle and another 
for rectangle at 45-degree angle (Dobeš, 2005). Complex neurons are evaluating information from the 
simple neurons to build up more complex information which can be movement of a rectangle as an 
example (Connors et al., 2007). Important fact is that object boundaries are most of the time enough for 
the brain to identify it (Dobeš, 2005). 

Secondary visual cortex (V2) is responsible for detection of contours of more complex objects and V4 
area detects a shape of the objects. Neurons in this area are sensitive to the colour and light, too. One 
can also find special neurons which can detect important objects for humans because of the human 
evolution- faces, silhouettes, hands, animals, and many more. The most complex objects have to be 
further examined and evaluated in higher areas of the middle temporal visual area. All these processes 
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are not taking place only in one direction- for example from V1 area to V4 and further- but they happen 
in all directions as needed to process every single stimulus (Dobeš, 2005; Connors et al., 2007). 

2.2 Visual attention 

Despite of the fact that definition of the attention as a term is an easy task, we can find out that the visual 
attention is a phenomenon covering all the factors that influence our selection mechanisms, whether 
they are stimulus driven (bottom-up) or expectations driven (top-down) (Borji – Itti, 2013). 

The meaning of visual saliency is often misunderstood as many people think that this term is visual 
attention synonym. More accurate definition of the saliency says that it just describes characteristics of 
some parts of scene that stands out in comparison to others because of physical properties such as colour, 
brightness, contrast, or orientation (Borji – Itti, 2013). Capturing attention by stimulus salience is 
a bottom-up process as it depends solely on the pattern of stimulation falling on the visual receptors 
(Goldstein, 2010). Therefore, visual saliency has strong connectivity with context of bottom-up visual 
attention computations (Koch – Ullman, 1985; Itti et al., 1998). Saliency is making up only one group 
of aspects that affect our visual attention. Among the others belong top-down stimuli and many more 
aspects such as face or human body presence on the scene.  

2.2.1 Bottom-up processing 

Visual stimuli that automatically and involuntarily attract our attention are called bottom-up (scene- or 
context-driven) stimuli (Borji – Itti, 2013; Itti – Koch, 2001). The higher the visual saliency the larger 
priority part of the scene has when undergoing bottom-up processing. Key feature of the bottom-app 
saliency is that part of the scene or object should be standing out in comparison to its neighbours in 
order to be salient. Typical example of a highly salient bottom-up stimuli originator is the emergency 
telephone located on sides of highways. These objects stand out from the context of the scene by its 
shape, colour and often by high contrast due to the reflectance of the material. These all along with 
stimuli such as depth, unexpected motion, flickering and others are making up the palette of bottom-up 
stimuli affecting our visual attention pre-attentively. 

Pre-attentive influence of perception means an influence that affects the way that we perceive stimuli 
before we even get the conscious information about the stimuli presence from our brain. Therefore, we 
cannot change the way the stimuli will influence us in this stage of visual signal processing. An object 
is in this brief time broken down into the features discussed above (Goldstein, 2010). Working with 
visual stimuli that affect pre-attentive stage of perception means taking general influence over the 
perceiving target. This is often applied by scientist and designers that design safety elements in buildings 
or vehicles, road signs. These can be often misused to inadequately draw our attention to advertisement 
on web pages or in the real environments. 

Characteristics of bottom-up pre-attentive processing is automatics, reflexivity and rapidness- it is very 
quick process with the rate of 20 to 50 milliseconds for processing an average item (Itti – Koch, 2001). 
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2.2.2 Top-down processing 

This type of visual signal processing brings the observer’s knowledge into play and therefore is so called 
knowledge-based processing (Goldstein, 2010). Top-down processing is affected by our prior 
experience, memories, skills, observation tasks and many more. This type of processing is taking place 
in both the pre-attentive and the attentive stage. Therefore, we can partially influence it or take control 
over it. The top-down processing is significantly slower than the bottom-up one.  

Main reason is that the top-down processes are handled in the higher areas of our brain (including frontal 
lobes) which are connected back to the visual cortex and parts of the visual system that are the originators 
of perceiving visual stimuli (eyes). The reason for this is that the top-down stimuli often require our 
more effort to be processed correctly (sometimes even voluntary one). It is also taking its price- average 
amount of time it takes to process top-down driven visual stimuli is 200 milliseconds and more based 
on stimuli complexity (Itti – Koch, 2001).  

It is important to know that the bottom-up and the top-down processing are creating our visual perception 
side-by-side and the processes cannot exist without each other. There are some theories bringing the 
idea that perceiving some special types of stimuli is affected only by the bottom-up processing 
(Goldstein, 2010), but in general the two types of processing are complementary and are taking place 
sequentially in the order of bottom-up processing and, subsequently, top-down processing. 
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3 Theory base for visual attention modelling 

Visual attention modelling is undergoing an intensive research nowadays and the models are still not 
perfect enough. Model of visual attention is usually a result of the research in the field of human visual 
attention or analysis of some previous research and existing datasets. There are many approaches to 
create such a model and they greatly differ one from each other while maintaining the same theoretical 
knowledge base described in the previous chapter.  

Imagine yourself looking on a visual scene. At the very first moment of the perception the scene is a 
static picture with visual stimuli whose perception is influenced by bottom-up and some low impact of 
top-down processing. Models that consider only this static state of the scene are called spatial models. 
However, when you look on the scene for a little longer you will realize that the scene, whatsoever static 
it could seem to be, is in move all the time. Movement ca be of several types regarding self-movement, 
eye-movement, movement of the whole scene or of the objects on the scene on its own. Therefore, the 
visual attention is not defined by current state of the scene only but is influenced by accumulated 
knowledge from the previous time sequences, too (Borji – Itti, 2013). This additional information is 
most of the time very important and is called temporal information. In general, it is combined with the 
spatial information to build up the spatio-temporal models of the visual attention. 

We move our eyes from three to five times per second in average to align part of the scene we want to 
percept thoroughly with our fovea (Itti – Koch, 2001). Visual attention that relates to the eye movements 
and alignment of the fovea with the processed stimuli is known as the overt attention (Polatsek, 2015). 
This type of visual attention is strongly interconnected with the opposite phenomenon- covert attention. 
This type of attention describes mental focus onto one of the several visual stimuli on the scene without 
physically focusing the eye (Borji – Itti, 2013).  For better imagination of the covert visual attention, we 
can think of tracking a person with whom we do not want to come into contact and therefore we avoid 
focusing our eyes on the person directly. Example of the unconscious covert attention may be walking 
down the street at night focusing on the target we want to get to while covertly scanning surroundings 
of the street for a possible threat. Because overt and covert attention are in strong relation with each 
other, it is important to consider both in the visual attention models. We can easily measure overt 
attention using the eye-trackers, however, it is a lot harder to measure covert attention. Common 
approaches to measure covert attention are micro saccades, variances in saccade directions and 
measuring visual cortex activity through Mind-Machine Interfaces (Hafed – Clark, 2002; Borji – Itti, 
2013). Many models omit covert attention influence on overall visual attention due to difficulty of such 
measures (Borji – Itti, 2013) and due to very little affect that covert attention has on visual attention 
under certain circumstances. 

Methods and mechanisms used for developing saliency models denote the properties and characteristics 
of the saliency models and often the restrictions for its usability. There is a considerable number of 
approaches to obtain saliency model summarized in the state-of-the-art summarizing paper of Borji and 
Itti (Borji – Itti, 2013). General division schema is shown on Figure 3-1. The main difference between 
them is in the computational mechanisms they adopt. These can vary from biologically-inspired 
computational mechanisms of cognitive models, probabilistic-inspired computational mechanisms that 
can take top-down and memory aspects into account with advantage (Bayesian models), probabilistic-
inspired mechanisms that involves visual decisions of a viewer with respect to the end of the viewing 
task (decision theoretic models), combination of probabilistic and graph mechanisms where stimuli for 
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generating the eye movements are hidden variables with conditional independence denoted by a graph 
(Borji – Itti, 2013), signal-processing-inspired mechanisms that analyse a scene and compute saliency 
model rather from the frequency domain than from the spatial domain (spectral analysis models), 
computer-vision-inspired mechanisms that implement pattern classification approach to accompany the 
bottom-up saliency with the information about the objects on a scene and possibly their semantics 
(pattern classification models) and many more. These approaches are mixed and often used together in 
the visual attention modelling applications. 

 

 

Figure 3-1: Taxonomy of the visual attention models. (Borji – Itti, 2013) 

We focus our analytical part of the work on some specific parts of the visual attention modelling theory 
that formulate either the known global truth applicable on every approach to the research of visual 
attention or are good to understand to consider better the approach of our research. Among further 
discussed topics in following chapters we can find: 

• spatio-temporal visual attention modelling, 
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• feature integration theory, 
• cognitive models, 
• learning-based models. 

These are more in detail overviewed in the following subchapters. 

3.1 Feature integration theory 

History of the modern visual attention modelling is dated from the early 1980’s when the first theory on 
the visual attention modelling was formed by Treisman and Gelade (Treisman – Gelade, 1980). In their 
work, they break down the visual attention modelling into the set of features which are affecting visual 
perception and forming our selection mechanisms. In the next step, they propose a method for 
combination of these features into the visual attention model. Continuum of this work was the research 
of Koch and Ullman (Koch – Ullman, 1985) which led to a novel method for combining these features 
and to introduction of the saliency maps. Considered features were elementary bottom-up features, like 
orientation of edges, colour, disparity and direction of movement, back that days. The scientists said, 
that conspicuity map of the scene, in the means of one of the features stated above, can be projected on 
new complex conspicuity map. When we repeat this process with every conspicuity map for every 
feature we are getting the saliency map. This process is illustrated on Figure 3-2. Definitions of the 
projections were not stated by the authors, yet.  

 

Figure 3-2: Process of combining the conspicuity (feature) maps into the single saliency map. 
Subsequently, the extraction of the most salient regions by the winner-takes-it-all algorithm is 

visualized. (Koch – Ullman, 1985) 

3.2 Spatio-temporal visual attention modelling 

Specific feature of visual stimuli is dynamics. Complex visual attention model should be able to deal 
with the features affecting visual attention in the spatio-temporal manner and the fact is that most of 
them does. There are several approaches known to include temporal information to a visual attention 
model according to Borji and Itti (Borji – Itti, 2013): 

• Bottom-up models are most often enhanced with the motion information between two 
consecutive images of a captured scene. 
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• Flicker is an important characteristic temporal feature with an extensive research beneath. 
Flicker information often accompany the motion information from the captured scene. 

• A few models build spatio-temporal models with respect to the information about the 
observation task and its progress through the time sequences of the captured scene. 

• Temporal aspects can be extracted from the irregularities between consecutive scene images.  

3.2.1 Motion 

Motion between consecutive scene frames can be computed by the methods of computer vision, 
especially using the optical flow algorithms or spatially-shifted differences between Gabor pyramids. 

Important base for working with the visual attention in egocentric video is the optical flow theory (or 
image velocity computation). Goal of the optical flow theory is computing an approximation of the two-
dimensional motion field from the spatio-temporal patterns of the image intensity, assuming that the 
two-dimensional motion field is a projection of three-dimensional scene surfaces velocities on a two-
dimensional camera surface (Barron et al., 1992; Verri – Poggio, 1987). There are different 
computational techniques for obtaining the optical flow algorithmically. Let us focus on the most widely 
used differential technique (Borji – Itti, 2013). The idea of the differential optical flow technique is 
based on the hypothesis saying that the intensity structures of time-varying image subsets are nearly 
constant for at least a short duration of time (time derivative). Let us define image intensity function 
depending on a time 𝐼(𝑥, 𝑡) according to the definition by Barron et al. (Barron et al., 1992). Then we 
can assume that:  𝐼(𝑥, 𝑡)  ≈  𝐼(𝑥 +  ∆𝑥, 𝑡 +  ∆𝑡) 

where ∆𝑥 is a displacement of image region I at (𝑥, 𝑡) after time ∆𝑡. After applying Taylor series 
expansion: 𝐼(𝑥, 𝑡) = 𝐼(𝑥, 𝑡) +  ∆𝐼 ∙ ∆𝑥 + ∆𝑡𝐼𝑡 + 𝑂2 

Where 𝛻𝐼 is the special intensity gradient ∆𝐼 = 𝐼(𝐼𝑥, 𝐼𝑦), 𝐼𝑡 are the first-order partial derivates of 𝐼(𝑥, 𝑡) 

and 𝑂2 represent second- and higher order of partial derivates which can be ignored. Finally, after a few 
mathematical operations and neglecting of 𝑂2 we get the equation for the image velocity also known as 
the optical flow constraint equation: ∆𝐼 ∙ 𝒗 + 𝐼𝑡 = 0  
where ∆𝐼 = 𝐼(𝐼𝑥 , 𝐼𝑦) and 𝒗 = (𝑢, 𝑣) is the image velocity (Barron et al., 1992). 

Differential method models cover two basic approaches to optical flow constraint- global methods and 
local methods. 

Global methods interconnect the optical flow constraint with a regularization term (usually a smoothness 
constraint). Together, they produce a function which is minimized over an image region. When thinking 
of a regularization term in the means of a variance of the optical flow field we can pose a hypothesis 
that neighbouring velocities should be nearly identical (minimized) when these two belong to the same 
object (Barron et al., 1992; Horn – Schunck, 1981). This constraint leads to the definition of the error 
functional over the region of interest D in the image introduced by Horn and Schunck (Horn – Schunck, 
1981): 
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∫ ( (∆𝐼 ∙  𝑣 +  𝐼𝑡)2  +  𝜆2𝑡𝑟((∆𝑣)𝑇(∆𝑣))) 𝑑𝑥𝐷   
Local methods make the use of the assumption that individual motion patterns are common. There was 
introduced the local constant model for the image velocity by Lucas and Kanade (Lucas – Kanade, 
1981). They defined the image velocity as a weighted least square solution to the optical flow constraint. 
The velocity estimation is computed when minimizing: 

∑ 𝑊2(𝑥)(∆𝐼(𝑥, 𝑡) ∙ 𝑣 +  𝐼𝑡(𝑥, 𝑡))2𝑥∈𝑁  

where 𝑊2(𝑥) is a square root of window function applied on an image and N denotes neighbourhood 
of a window function (Barron et al., 1992; Lucas – Kanade, 1981). 

These methods are now often combined to provide better results as shown in the paper of Bruhn et al. 
(Bruhn et al., 2005). Authors prove in the paper, that local methods are more resistant to noise while, on 
the other hand, global methods are good at finding the dense flow fields. They combine the method of 
Horn and Schunck (Horn – Schunck, 1981) together with the one of Lucas and Kanade (Lucas – Kanade, 
1981) into an optical flow model which yields the dense flow fields and is robust enough to deal with 
the noise at the same time. 

3.2.2 Flicker 

Flicker refers to continual presence and absence of the same stimuli at some frequency f on the scene 
and formally is defined as a difference of luminance intensities in the consecutive frames. Flicker 
belongs to low-level features affecting the visual attention and is often used to extract so-called flicker 
pyramids of the image (Itti et al., 2003).  

Flicker paradigm is a phenomenon connected with change blindness research in neuropsychology. 
Change blindness means disability to detect changes in the scene (Goldstein, 2010; Rensink, 2002). 
Principle of the change blindness was discovered during an experiment in which identical images with 
one difference were presented to the observers with rapid alternations of a blank image. A series of the 
presentation periods were needed for the observer to notice the change between images. Until that time, 
the observer believed that the two images are the same ones.   

Flicker fusion theory is based on the flicker paradigm using an assumption that changes in an image 
cannot be captured by the observer until the critical brightness versus the time-of-exposure combination 
is reached. This relationship is known as the Broca-Sulzer effect (Spillman – Werner, 2012) shown on 
Figure 3-3. The flicker fusion theory is applied for example in displaying devices. The devices change 
the displayed content in frequency higher than the critical flicker perception level. Flicker and its 
influence on the visual attention (as described in the previous paragraph) has to be taken into account of 
the visual attention modelling.  
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Figure 3-3: Comparative brightness of flickers with various light intensities  in relationship with the 
time-of-exposure.1 

3.3 Cognitive models 

Cognitive models have its base in psychological and neuroscientific approaches to study human visual 
attention. Most of the visual attention models are inspired by the cognitive models or at least implement 
parts of them in some way (Borji – Itti, 2013).  

One of the first very basic cognitive models which became the standard for model comparison is the 
evergreen work described in the paper of Itti et al. (Itti et al., 1998). The cognitive model proposed by 
Itti became very popular because it was proved by the years that it has high correlation with human real 
overt attention in the free viewing tasks. The model is based on the feature integration theory as it 
decomposes input image into a set of Gaussian pyramids and computes colour, intensity and orientation 
center-surround differences for each of the pixels in each of the pyramid stages. Colour center-surround 
difference is computed in respect to each colour channel of the RGB colour space. Colour, intensity, 
and orientation maps from each pyramid stage are, then, combined together resulting in the so-called 
conspicuity maps. The conspicuity map defines the saliency of the input image in the meaning of one 
distinct feature channel. These conspicuity maps are summed up in the end and normalized to obtain the 
single final saliency map for the input image (Borji – Itti, 2013; Itti et al., 1998). Visualization of the 
Itti’s model proposal as described above is on Figure 3-4. 

                                                      
1 KALLONIATIS, M., LUU, C. Temporal resolution. Available on 23/04/2018: 
http://webvision.med.utah.edu/book/part-viii-gabac-receptors/temporal-resolution/ 
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Figure 3-4: Itti’s cognitive model of the human visual attention. (Itti et al., 1998) 

Intensity feature maps of the Itti’s model are computed by center-surround difference considering both 
two types of sensitiveness of mammal’s neurons as: 𝐼(𝑐, 𝑠) = 𝐼(𝑐) ⊖ 𝐼(𝑠)  
where 𝑐 ∈ {2,3,4} and 𝑠 = 𝑐 +  𝛿, 𝛿 ∈ {3,4}. Colour feature maps are computed from the RGB colour 
model representing “colour double-opponent” system typical for human colour perception. Neurons are 
excited by one colour and inhibited by another in the centre of their receptive field (Itti et al., 1998). 
Such colour pairs are red-green and blue-yellow. These colour double-opponent feature maps are 
computed as follows: 𝑅𝐺(𝑐, 𝑠) = |(𝑅(𝑐) − 𝐺(𝑐)) ⊖ (𝐺(𝑠) − 𝑅(𝑠))| 𝐵𝑌(𝑐, 𝑠) = |(𝐵(𝑐) − 𝑌(𝑐)) ⊖ (𝑌(𝑠) − 𝐵(𝑠))| 
Orientation sensitive neurons in primary visual cortex can be represented by Gabor filters which are 
used as orientation representation in the Itti’s model. Gabor filters are obtained from the Gabor pyramids 𝑂(𝜎, 𝜃) in 9 scales (𝜎 ∈ [0. .8]) and under 4 angles (𝜃 ∈ {0°, 45°, 90°, 135°}): 𝑂(𝑐, 𝑠, 𝜃) =  |𝑂(𝑐, 𝜃) ⊖ (𝑠, 𝜃)| 
Obtained feature maps are combined into the mentioned conspicuity maps. Resulting saliency map is 
computed as linear combination of the normalized conspicuity maps 𝐼,̅ 𝐶̅, 𝑂̅: 

𝑆 =  13 (𝑁(𝐼)̅  +  𝑁(𝐶̅) + 𝑁(𝑂̅))  
Last step of the algorithm is the implementation of the winner-takes-it-all algorithm followed by the 
inhibition of return to the saliency map. This step identifies maxima intensity region in the saliency map 
which represents the most salient object. The inhibition of return removes the local maxima from the 
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saliency map (leaving it blackened) and allows us searching for the 2nd and following most salient 
regions on the image repeating the same algorithm (Itti et al., 1998). Ordering of the most salient regions 
on an image is useful, for example, to predict the amount of time needed for the observer to look at some 
specific object on the image (as we can see on Figure 3-5). 

 

 

Figure 3-5: Itti’s model of visual attention in an example. Saliency map is obtained from the 
conspicuity maps. Afterwards the most salient objects are extracted by the WTA algorithm and, 

finally, an approximation of fixation delays at the salient regions on the scene are computed.           
(Itti et al., 1998) 

Cognitive methods were used during the research of more recent visual attention model by Le Meur et 
al. (Le Meur et al., 2007). Researchers set a goal to implement spatio-temporal cognitive model based 
on the same principles as the Itt’s one (Itti et al., 1998). They defined set of achromatic, chromatic and 
temporal features which they extract from the input image and combine them together in the resulting 
saliency map. The asset of their work is mainly in including a temporal information in a cognition model. 
The architecture of the proposed model by Le Meur et al. is on Figure 3-6. 
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Figure 3-6: Cognitive model including temporal information from the motion. (Le Meur et al., 2007) 

Team of researchers around Murray (Murray et al., 2011) opened a discussion about the integration of 
spatial features into cognitive models. They also point out the problem of justifying the choice of 
parameter values. Murray’s team proposes a model which includes processing of visual stimuli 
according to the previous fixation pathways. They implemented inhibition mechanism, better reflecting 
the neural functions in the visual cortex, automatic adjustment of the center-surround inhibition window 
sizes, and specified parameters of the Gaussian Mixture Model on the eye-fixation data (Murray et al., 
2011; Borji – Itti, 2013). 

Cognitive models of the human visual attention help us not only in the modelling of visual system’s 
biological behaviour, and to predict visual attention, but help us also during the further research of new 
facts about our neural mechanisms and its principles, namely object recognition (Borji – Itti, 2013). 

3.4 Learning-based models 

Machine learning can help us to build up a visual saliency model in different ways. It is most often 
combined with other types of the visual attention models to improve their performance or to enhance 
such a model with higher number of relevant features. 

A Bayesian model, incorporating Bayesian machine learning algorithm, was introduced by Li et al. (Li 
et al., 2010). The proposed cognitive bottom-up model was enhanced with probabilistic Bayesian 
framework with an assumption that visual attention of people looking at the same scene is different and 
is defined by bottom-up features of the scene itself and the visual task. The saliency is in the probabilistic 
framework defined as: 

𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛) =  ∑ 𝑝(𝑇𝑘𝑡)𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛, 𝑇𝑘𝑡) + 𝑝(𝑇𝑘𝑏)𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛, 𝑇𝑘𝑏)𝑇𝑘
𝑡=1  
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where Ekn is the event when the n-th macroblock of an image is the salient region in k-th scene in a video, 
p(Tkt) and p(Tkb) is the probability that the task Tkt or bottom-up feature Tkb controls the attention 
deployment in the k-th scene in the video and xkn is a local descriptor representing the macroblock. To 
avoid difficulties in computing the probability p(Ekn|xkn,Tkt) we can substitute according to Li et al.: 𝑦𝑘𝑛 = 𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛) 𝑓𝑘𝑡(𝑥,𝑘𝑛) = 𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛, 𝑇𝑘𝑡) 𝑏𝑘𝑛 = 𝑝(𝐸𝑘𝑛|𝑥𝑘𝑛, 𝑇𝑘𝑏) 

and then we can make an approximation: 𝑦𝑘𝑛 ≈ ∑ 𝑝(𝑇𝑘𝑡)𝑓𝑘𝑡(𝑥𝑘𝑛) + 𝑝(𝑇𝑘𝑏)𝑏𝑘𝑛𝑇𝑘𝑡=1 . 

Thus, we can obtain  𝑦𝑘𝑛 from the image, the eye-fixation data or labelled salient regions from an 
external source and train the machine learning model for saliency estimation (Li et al., 2010). Further 
discussion in the paper focuses on extending the saliency estimation function for multi-task events. For 
this purpose, the implementation of machine learning using kNN (k-nearest neighbours) algorithm is 
proposed. Visualization of the model design is on Figure 3-7. 

 

Figure 3-7: Visual attention model based on the machine learning. (Li et al., 2010) 

Completely different approach in making the use of machine learning to predict visual attention is 
training the model directly from the fixation data. This approach was introduced by Kienzle et al. 
(Kienzle et al., 2009) whose work was based on the research of likeliness of the target on an image to 
become part of the saccadic movements in the free-viewing task. Team of researchers aimed to find a 
linear model fitting the eye-movement training data. They propose non-parametric bottom-up approach 
with non-linear mapping between an image patch and a fixation. The machine learning model expects 
positive output on the regions of fixations and negative output on random non-fixated regions on the 
scene (Borji – Itti, 2013; Kienzle et al., 2009). For each image patch of the size 13x13 pixels, they form 
169-dimensional vector and fit the non-parametric model using the support vector machines (SVM) 
(Schölkopf – Smola, 2002) which is formally described by Schölkopf and Smola as: 

𝑓(𝑥) =  ∑ 𝛼𝑖𝑒−𝛾||𝑥𝑖−𝑥||2𝑚
𝑖=1  

where xi is the vector of characteristic features belonging to the image patch i, 𝛼𝑖 is a weight for the 
image patch i and 𝛾 is a parameter to be set (optimal value was found out to be 𝛾 = 1). The machine 
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learning algorithm incorporates the extraction of the perceptive field which is according to Kienzle et 
al. (Kienzle et al., 2009) non-linear. They found out that the saccadic system can be interpreted by only 
four perceptive fields which can be seen on Figure 3-8. According to this conclusion, they defined the 
saliency model placing the radial basis functions centred at the perceptive fields: 

𝑠(𝑥) =  ∑ 𝛽𝑖𝜑𝑖(𝑥)4
𝑖=1  

where 𝜑𝑖 is the radial basis unit 𝑒(−𝛾||𝑧𝑖−𝑥||2) centered at the patterns z1-z4 from Figures 3-8 and 𝛽𝑖 is 
a weight regarding the optimal values of 𝛾 (Kienzle et al., 2009). 

 

 

Figure 3-8: Non-linear perceptive fields which are the result of the machine learning algorithm 
appliaction in the visual attention modelling using support vector machines. Perceptive fields on (a) 

and (b) represent most-likely salient image structures and (c), (d) least salient image structures. 
(Kienzle et al., 2009) 
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4 State-of-the-art in visual attention modelling 

There is an extensive ongoing research in the field of visual attention modelling regarding the past years. 
Many research papers introducing novelties in this field are presented on computer vision, psychological 
and neurophysiological conferences every year. Proof of this fact can be spotted on Figure 3-1 where 
different approaches to visual attention modelling are accompanied with the year of their introduction. 
The summary research paper summing up the state-of-the-art in the visual attention modelling is dated 
to 2013 which can be considered slightly out-of-date because the research in the field is becoming more 
and more extensive, nowadays. In this chapter, we try to reveal the current state-of-the-art in the visual 
attention modelling, overcoming the out-dated paper from the 2013. Mainly the novel approaches to 
visual attention modelling are inspiring us in choosing the proper research approach in this thesis. 
Therefore, to accomplish overview on visual attention modelling from previous chapter, we provide 
detailed overview on some of the most recent research. 

One of the complete novelties is the application of the functional magnetic resonance imaging (fMRI) 
of human brains performing tasks related to the visual perception in the visual attention research. This 
approach is interesting to mention for demonstrating the importance of the modern technologies in the 
visual attention modelling. Reasons for the development of the model based on human brain’s activity 
is related to the higher availability of the MRI devices, nowadays. This may be caused by the confirmed 
importance of the visual attention analysis in the diagnosis detection (Merker, 2007; Ungerleider et al., 
2000). Speaking about the visual attention in the context of the diagnostics, Alzheimer disease diagnosis 
is under an extensive research and it was proved that the diagnose has strong correlation with changed 
visual attention patterns (Hao, 2005). 

In the following subchapters, we discuss and analyse the most recent topics and novel approaches in the 
visual attention modelling: 

• Including depth information (distance of the objects from the observer) into visual attention 
models and its correlation with neural responses to the three-dimensional scenes (Roberts et al., 
2015). 

• Visual attention research from the egocentric perspective of the observer (Matsuo et al., 2014; 
Buso et al., 2015). 

• Visual attention and it’s interconnection with emotions of people (Sripada et al., 2014; Hajcak 
et al., 2013). 

• Artificial intelligence and neural networks as benchmark-leader’s methods to predict the 
visual attention (Kümmerer et al., 2016; Kruthiventi et al., 2015; Vig et al., 2014). 

4.1 Depth in the visual attention modelling 

It is proved these days, that the third dimension of the scene (depth) plays a significant role as an aspect 
influencing our visual attention (Borji – Itti, 2013; Roberts et al., 2015). Crucial in the research in this 
field is to determine its exact impact on the perception of a visual scene. Subsequently, it is essential to 
involve depth in the modern visual attention models. The first research related to the depth influence on 
human visual attention was building upon the assumption that depth plays role in the pre-attentive stage 
of visual perception and, thus, it is essential to study its influence as the bottom-up aspect (Lang et al., 
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2012; Wang et al., 2013). Nowadays, we know that depth is playing its role in the both pre-attentive 
stage and attentive stage of visual perception. Therefore, it is influencing visual attention in the bottom-
up and top-down manners (Roberts et al., 2015). Influence on the visual attention in the bottom-up 
manner is truly straightforward but top-down effects of depth may not be so clear. We briefly introduce 
the reasoning of Roberts et al. to consider the depth influence in both manners in the next subchapter. 

4.1.1 Depth as both bottom-up and top-down aspect 

During visual searching tasks, users tend to segment the perceived scene and there is an assumption that 
understanding the process of segmentation can reveal us whether and how the depth of the scene 
influences top-down factors of the visual attention (Roberts et al., 2015). In the research work of Roberts 
et al., the two contradictory assumptions are further discussed: whether depth influences only the 
bottom-up manners of the visual attention, or it participates also as the top-down stimuli in the higher-
order representation of the scene by segments. The results proved the second fact and Roberts et al. 
claim, that the depth’s top-down influence on the visual attention may be even greater. The team of 
scientists held an experiment, in which numerous participants were asked to search for a particular letter 
of the English alphabet on an image with other letters. The letters were in different imaginary depth on 
the image while the target depth was either known or unknown. The depth illusion was achieved by 
tilting the two-dimensional image. Participants were provided with images containing 8 or 16 letters and 
the projection was either vertical or tilted (vertical for no-depth illusion) as we can see on Figure 4-1.  

 

Figure 4-1: Examples of various image conditions presented to participants of experiment of (Roberts 
et al., 2015).  

MRI data were collected during the user studies. Visual cortex responses of the specific cortical areas 
which should be sensitive to depth perception were monitored. Response times and accuracy results are 
visualized on Figure 4-2.  
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Figure 4-2: Response times and accuracy of response in an experiment with letter depths under 
different conditions shown on Figure 4-1. (Roberts et al., 2015) 

We can see that people responded significantly more quickly when the information about the relative 
depth of the letter was known rather than unknown. Conclusion of Roberts et al. says that participants 
were, therefore, able to benefit from the relevant three-dimensional region (segment) of the image. 
Patterns of the activations in participant’s brains are revealing us that target depth influences the activity 
in the depth-sensitive parietal regions, but not in the depth-sensitive visual regions. Based on this 
conclusion the assumption says that segmentation of the images with depth is the result of selectivity in 
the higher-order brain areas than in the perceptual regions (Roberts et al., 2015). Thus, according to 
Roberts et al., depth plays significant role both as the bottom-up and the top-down aspect and the top-
down aspect may be even more significant than the bottom-up one. The top-down manner, however, 
can be effectively suppressed when conducting a user studies. 

4.1.2 Depth influence on visual attention in real environments 

Considering depth influence on the human visual attention, we partially build upon previous work of 
Olešová’s master thesis (Olešová, 2016) where the research was focused on creating real world model 
of visual attention with included depth information. In this work an assumption, saying that depth is 
playing its significant role as the aspect of visual attention, was proved. A small unique dataset with a 
few participants was made throughout the user study involving free-viewing tasks on real scene in a 
laboratory.  

Conclusion of Olešová states, that estimation of depth influence on visual attention can be approximal 
to polynomial function (Olešová, 2016). Thus, middle-depth location of objects in real world should 
take the most of human visual attention in neutral conditions: 2,5𝑥3 − 0,17 ∙ 10−3𝑥2 + 0,03𝑥 − 0,75 

where x is depth of the pixel in the image. However, the research is still open while the relevancy of the 
defined function representing depth influence on the visual attention was not proved, yet. We decided 
to continue in the research of the visual attention in a real-world-like conditions in a laboratory. 
However, based on the deeper analysis of the state-of-the-art in the visual attention modelling we 
propose novel and more innovative research approach.  
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4.1.3 Research of visual attention in three-dimensional scenes 

There is a lack of datasets for studying depth influence on human visual attention in the real 
environments, or at least in three-dimensional scenes displayed to the observers. Two publicly available 
datasets of three-dimensional stereoscopic images displayed to the observers including depth 
information related to the image are described in this subchapter. 

A computational model of stereoscopic 3D visual saliency – 3D Dataset. (Wang et al., 2013) 

Work of (Wang et al., 2013) claimed in their paper that extensive and successful research in the field of 
human visual attention in the two-dimensional space (using common displaying devices and 2-D images 
projected to observers) is very popular and extensive till nowadays. They assume that the research 
should be extended to the three-dimensional space including information about depth of the scene 
provided to the observer. The research group around Wang was one of the initiators of such tendencies 
in the visual attention research. Back that days, the availability of datasets for the research of visual 
attention in three-dimensions was very poor. Wang et al. designed and created a novel 3-D dataset 
including the depth information. However, as they were one of the pioneers in the field, the dataset was 
not innovative and robust enough for extensive and more relevant research of depth influence on the 
visual attention.  

The authors stayed with the static images displayed to the observers. The idea of the innovative approach 
was the fact, that the images were stereoscopic displayed through stereoscopic glasses. The created 
dataset contains two versions of each of the 18 static images involved in the user studies (one for the 
left eye and one for the right one) along with the disparity and depth maps, raw data from the eye-tracker 
and processed raw data into the fixation density map. Most of the images contain natural scenes, but 
despite of this fact, the dataset is not large enough and is not providing the observers real environments 
to study their visual attention in. Sample from the dataset is on Figure 4-3. 

 

Figure 4-3: Sample of the 3-D dataset introduced by Wang et al. (Wang et al., 2013). Images in the 
group (a) were projected to the observers through the stereoscopic glasses. Corresponding depth 

matrices are visualized in image group (b).   

Depth Matters – NUS3D-Saliency Dataset. (Lang et al., 2012) 
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There is another research work published in the field of modelling 3-D visual attention. The team of 
Lang et al. (Lang et al., 2012) did more significant step towards extensive studying of depth influence 
on visual attention by creating a novel, larger dataset to study human visual attention on.   

The method proposal was very similar to the previous one- the dataset obtained during the user studies 
contains set of stereoscopic images (one for each eye) accompanied with depth maps and eye-fixation 
maps. The main asset of this dataset is the number of images (600) and number of participants (14) 
involved in the user studies. Researchers took static pictures of 600 real world scene images alongside 
with depth maps using Kinect device. From these two they computed stereoscopic images by proposed 
algorithm (more in Lang et al., 2012). They used common stereoscopic display throughout their user 
studies and projected the images to the participants- to some of them in 2-D and to some in 3-D. They 
analysed the correlation of the eye-fixation maps for 2-D and 3-D images during the evaluation phase. 
Sample from the dataset can be seen on Figure 4-4. The dataset is often used for comparison purposes 
of the novel visual attention models incorporating 3rd dimension of the scene. However, the dataset has 
some flaws. One of them are very noisy depth data which are sometimes not accurate and do not 
correspond with the image. Another flaw is that the dataset contains more images of the same scenes 
and that the relevancy of the ground-truth based on 14 participants divided into two groups is disputable. 
However, no better dataset including the depth information is publicly available, nowadays. Therefore, 
we will consider the dataset in the evaluation phase of our thesis.  

 

Figure 4-4: Sample from the dataset created by Lang et al.(Lang et al., 2012). Top left: RGB image 
projected to the observers, top right: depth map, bottom left: fixation map corresponding to image 

projection in 2-D, bottom right: fixation map corresponding to image projection in 3-D. 

4.2 Visual attention modelling and the egocentric video 

User studies for the visual attention research were most often held in laboratories using common 
displaying devices with static eye-trackers monitoring gaze on the display. The things started to move 
forward along with introducing new technologies providing us new possibilities in the visual attention 
research. The main advancement in the research of visual attention is not only in incorporation of the 
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fMRI imaging but also in adopting egocentric video as starting point for new research possibilities. As 
fMRI helps us to understand how exactly visual perception works from the anatomical point of view, 
the egocentric video provides us the possibility to study the visual attention from more realistic point of 
view- view from the perspective of the human eye. This makes the research of visual attention in the 
real world (for example in people’s everyday life) more possible and provides us the opportunity to 
move the research from the front of displaying devices towards reality. Egocentric video is an image 
sequence recorded “by an eye of observer” with a camera usually mounted on glasses of the observer 
capturing the scene influenced by the observer head’s shakes and moves. Mobile eye-tracking uses the 
egocentric video principle and accompany the video with gaze information at each frame.  

There are a few research papers incorporating the egocentric video and mobile eye-tracking. However, 
these are not focused on the research of human visual attention. Explicitly mentioned incorporation of 
the egocentric video in a research is mentioned in the paper of Matsuo et al. (Matsuo et al., 2015) where 
the team proposes a method for activity recognition in the egocentric video based on the attention. 
Another existing work tried to recognize activities in the egocentric videos by hand activities (Fathi et 
al., 2011) which are, however, insufficient in some cases because of the inability to recognize hands-
free activities and activities where hands are not observed by the eyes. In the proposed algorithm of the 
state-of-the-art works, an egocentric attention map is built up in two main steps. Firstly, the gaze map is 
built as a grey-scale image in size of the original image where the value of each pixel is corresponding 
to a degree of the attendance at the pixel location. The next step is extracting observers motion and 
adjusting the gaze map to produce the final attention map. This method is briefly explained in (Yamada 
et al., 2011), which is main starting point in the visual attention modelling from the egocentric videos 
(Borji – Itti, 2013). Basis of this method may be described in an example in which an observer sees two 
equally salient objects on the left and on the right and his head moves to the right, so an object to the 
right should be considered more salient. Therefore, rotation and translation-based maps are defined and 
combined with gaze map as shown on Figure 4-5. We can build upon the knowledge of the equivalent 
saliency of objects on the scene and on the rotation and translation-based evaluation of object’s saliency 
in the egocentric video in our research approach proposal in the next chapter. 
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Figure 4-5: Design of the attention model based on the egocentric video proposed by Yamada et al.  
(Yamada et al., 2011) and used in the work of Matsuo et al.  (Matsuo et al., 2015). 

In the work of Buso et al. (Buso et al., 2015), the team builds upon the same starting point as Matsuo et 
al. and Fathi et al. as they focus on tasks in the egocentric video. Similarly, they consider only tasks in 
which an observer uses his hands. They neglect the recognition of the activity or task itself and focus on 
generating top-down saliency map based on the task an observer is working on with his hands. They 
define global and local descriptors of hands found in the egocentric video. Based on these descriptors, 
they define an object which an observer is interacting with. Subsequently, they assign the object some 
top-down saliency value by the proposed method. In their work they prove, that the computation of 
bottom-up saliency model was not useful at all during the tasks where hands were used. They claim that 
their method provides better results than current state-of-the-art bottom-up solutions. Evaluation was 
made only as a comparison to the existing state-of-the-art bottom up visual attention models as the 
approach in this paper is unique. The results are shown on Figure 4-6. For the future work, Buso et al. 
discuss combining their top-down task-driven model with some existing bottom-up saliency model 
including relevant temporal information. 
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Figure 4-6: Comparison of the proposed model of Buso et al. (Buso et al., 2015) with the other 
bottom-up state-of-the-art models: (c) Fathi’s segmentation (Fathi et al., 2011), (e) Itti’s model (Itti, 
1998), (f) Graph-based visual saliency model (Harel, 2007), (g) Spatio-temporal geometric model 

(Boujut, 2012). 

4.3 Emotions and their effect on visual attention 

Research, held during the past years, related to the emotions and their influence effect on the visual 
attention was focused on the emotions invoked by observing some image. It is proved that human brain 
is organized into many interconnectivity networks which have certain specific inter-relationships, and 
these alter during psychological tasks. One of them may be image perception and tasks related to it 
(Sripada et al., 2013). The Sripada’s team conducts fMRI study on 54 participants monitoring specific 
brain’s regions of interest and observing alternations in the interconnectivity networks while images 
with different Emotion Regulation Tasks (ERT) were presented to them. Emotion Regulation Tasks 
were validated during the previous research (Banks et al., 2007; Phan et al., 2005) and were related to 
images producing averse and negative emotions. The tasks were of different kinds, each related to 
emotion maintain and reappraise conditions. The maintain condition was the one when the participant 
was trying not to change the emotion invoked by the image and the reappraise condition was based on 
the instruction for the participant to knowingly change the emotion from the image to positive one. The 
fMRI results visualized on Figure 4-7 shows that the most significant changes in major of the 
interconnectivity networks in the brain (considering the difference between the maintain and the 
reappraisal conditions) are related to the visual network and dorsal attention parts with most changes, 
however, belonging to the visual network. Therefore, it is concluded that emotions and their changes 
are in strong relation with the human visual perception. Thus, the future study in the field of emotion 
sand their influence effect on visual attention is relevant. 
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Figure 4-7: Cross-tabulation map visualizing changes in major of the interconnectivity networks in a 
human brain as a comparison between maintain and reappraisal conditions. (Sripada et al., 2013). 

4.4 Artificial intelligence and neural networks in the visual attention 

modelling 

A significant change in the visual attention modelling approaches is a shift towards the advanced 
learning-based computational models. This may be caused by the progress in biologically-inspired 
algorithms and methods which can now trustfully represent natural behaviour of the neural processes 
(Fister et al., 2013; Mirjalili, 2015; Mirjalili et al., 2016). The computational cost of the computer-vision 
methods applied on the high-resolution images is expensive on the resources. Therefore, learning-based 
modelling overcomes them in this point of view, too.  

A fusion of the cognitive models with learning-based ones is clear from the research of Denil et al. 
(Denil et al., 2012) where an attention model driven by the gaze data is proposed. Neuroscientific theory 
of the visual perception is considered in the model in the means of two interactive pathways- identity 
(“what” aspect) and control (“where” aspect). Advantages of the neural networks with the images as the 
input were summed up in the research work of Mnih et al. (Mnih et al., 2014). They assume that the 
computational cost of the convolutional neural networks, applied on the high-resolution images, is too 
expensive on the resources. Thus, they propose a recurrent neural network able to predict the visual 
attention in the high-resolution videos with a satisfying time complexity. 

Convolutional and deep neural networks can be applied in many areas of informatics and information 
science, among them in the field of the visual attention, too. First-of-a-kind fully convolutional network 
to predict visual attention was proposed by research collective of Kruthiventi (Kruthiventi et al., 2015). 
This convolutional network is able to learn multiple features needed to predict visual attention. The 
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learning is unsupervised, held in a hierarchical manner from training images in multiple scales. The 
global context is considered using network layers with large receptive fields. The network layers are 
proposed to be spatially invariant by implementing custom Location Based Convolutional Layer 
(LBCL). Architecture of the convolutional network is similar to the VGG-16 net (Simonyan – 
Zisserman, 2014). There are 7 blocks of which two are two-layered, three are three-layered (one is 
dedicated to high-level features and the rest are dedicated to low-level spatial features) and the last two 
are special blocks extracting semantic features from the images. Training parameters of the network are 
set according to Simonyan and Zisserman, initial learning rate of the first five blocks was set to 2 𝑥 10−4 
and learning rate of remaining blocks was set to 2 𝑥 10−3 (Simonyan – Zisserman, 2014). The training 
phase is held in two phases. During the first one, the network is learning from the computed saliency 
maps in the SALICON dataset (Jiang et al., 2015). During the second phase, the convolutional network 
is learning from the actual eye-fixation maps (ground-truth) on different images than in the first stage. 
Kruthiventi with colleagues concludes that the main assets of their work are introduction of the inception 
module, extracting semantic features from the image, and the Location Based Convolutional Layer 
which is able to distinguish location-based patterns in the images. Combination of the mentioned assets 
can outperform the state-of-the-art models and highly correlates with the ground-truth of human eye-
fixations as shown on Figure 4-8. 

Image GBVS eDN BMS Mr-CNN DeepFix 

(proposed) 

Ground-truth 

 

Figure 4-8: Comparison of the visual attention model using convolutional neural networks proposed 
by Kruthiventi  (Kruthiventi et al., 2015) with other state-of-the-art models. The proposed model has 

significantly better results than the others and highly correlates with the ground-truth. 
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5 Proposed research approach 

In this thesis, we introduce a novel method for conducting user studies focused on the research of human 
visual attention in real environments. We propose the novel method building up on the previous work 
and the visual attention modelling principles described in the analytical part of this thesis (Wang et al., 
2013; Roberts et al., 2015; Olešová, 2016). The novel approach is based on suppression of the specifics 
of visual attention modelling from the camera perspective of view, which are well known from the 
research in the past years. In this thesis, the camera perspective is meant as the approach in the visual 
attention modelling where the images are displayed to the observers using standard displaying devices 
and the ground-truth data are collected as visual attention data referring to the image. We claim that the 
subsequent research on this kind of datasets then results in visual attention models predicting visual 
attention from the perspective of the camera. 

Despite of the camera perspective, we propose to adapt a new perspective (the egocentric one) for the 
research of human visual attention. The ultimate goal of our novel research method is to implement our 
findings from the egocentric perspective of view into an existing saliency based on the perspective of 
the camera. The knowledge transfer between the modelling approaches is a great asset in the field of the 
visual attention modelling that we present in this thesis.  

The novel approach leads to some novelties in the way we look at the saliency of the objects in the 
scene, too. The common bottom-up saliency model from the camera perspective looks at the static 
objects in an image through their planar properties as explained in the analytical part of the thesis, e.g. 
size, colour, orientation, contrast. Saliency of the object is computed by the saliency model based on 
these properties. However, taking into account real environments and the egocentric perspective of view 
(representing the perspective of a human eye), our approach looks at the same objects on the scene like 
on the objects with exactly the same properties influencing their saliency. This means that the objective 
bottom-up saliency of identical objects on the scene is equal. The subjective bottom-up saliency of the 
static objects perceived by the observer from his egocentric perspective is then greatly influenced by the 
object’s position in the scene (and also by the internal state of the observer, a strong top-down aspect, 
which we will try to suppress in our research).  

Based on the previous research in the field we claim, that the influence of two-dimensional position of 
the objects on the scene (meaning left-right position) on their saliency, as well as the center-surround 
difference influence, can be very accurately involved in the saliency computations by the state-of-the-
art saliency models (e.g. the “DeepFix” described in the Subchapter 4.4 and more in Borji et al., 2013).  
Therefore, we will focus our research using the novel proposed method for conducting user studies 
mainly on the third dimension of the object positions in the scene and its impact on their saliency.  

Moreover, we introduce the mentioned method for application of the novel findings from our research, 
following our novel method proposal, into the state-of-the-art saliency models based on the camera 
perspective. Speaking of this knowledge transfer, we claim that the saliency of the objects on the scene 
themselves (referred previously as the objective saliency) can be determined by the existing saliency 
models with high accuracy, too. Summing things up, the conventional saliency computations may lack 
only the information about the influence of the object’s depth on the scene (the third dimension) on their 
saliency to predict visual attention closer to the visual attention in real environments from the egocentric 
perspective of view. Therefore, we focus the research following our proposed method on the depth 
influence on visual attention in real environments. Then, the aspect of the depth influence on the saliency 
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of the objects can be applied on the saliency map computed by the conventional saliency models. We 
propose this application in form of a weighting function- the depth saliency coefficient.  

We study the depth phenomenon on a novel dataset created during the extensive user studies, following 
our novel proposed research method and regarding the novel research approach described in previous 
paragraph, and present the results of our novel approach and their evaluation in this thesis. 

5.1 Research method overview 

Goal of our proposed research method is to provide the possibility to study visual attention in real 
environments from the egocentric perspective of view. The method proposal is complete and detailed 
and contains description of all phases of the research described in the beginning of the Chapter- user 
study setup, methodology to conduct the user study, dataset creation and evaluation of the dataset.   

Our proposed method is based on an idea to provide the observers, participating in the user study, a real 
scene in a laboratory and to collect data about the observer's visual attention during visual perception of 
the scene. This approach is in contrast with the previous methods for conducting user studies on human 
visual attention which provide an observer an artificial scene, generated by conventional displaying 
devices. Laboratory conditions were chosen to suppress the influence of surroundings in the exterior on 
the human visual attention as we want to focus on a specific bottom-up aspect influencing visual 
attention. Output from the user studies following our proposed method is a novel dataset for studying 
human visual attention in real environments including the information about the depth of the scene. This 
dataset is then used in our research of the depth influence on the human visual attention.  

5.1.1 Real environments 

Real environments are simulated in a laboratory which should be simplistic and with as less salient 
objects in the field of vision of the observer as possible. Regions of interest (ROIs)- in our method 
proposal 10 polystyrene balls hanging from the roof- are placed in different depths on the scene. Multiple 
standard LCD projectors are used to project various changing content onto the ROIs during the user 
study. Background of the scene should remain unaffected by the projection, so it does not distract the 
observer’s visual attention. Therefore, projection calibration procedure, using Kinect 2.0 device and 
methods of computer vision, is proposed to create a projection mask for each of the projectors. Details 
related to the calibration procedure are explained in the Subchapter 6.1.1. The experiment is proposed 
to be static, without motion influence on the visual attention. Therefore, an observer is required to stand 
still at a specific place during the user study. Proposed laboratory setup, representing the real scene, is 
illustrated on Figure 5-1.  
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Figure 5-1: Schema of the user study setup in a laboratory. A participant stands at the red cross and 
yellow circles represents hanging polystyrene balls (our ROIs) with the distance from the observer 
written inside of them. We use three LCD projectors to cover all the ROIs by the projected content. 

5.1.2 Capturing the egocentric data 

Observer’s visual attention data are collected during the user study by a mobile glass eye-tracker (more 
in the Subchapter 6.1.2). The observer is instructed to look freely on the scene while changes of the 
projected content on the scene are being handled by the projection handling software module 
(Subchapter 6.1.1). By free viewing task, we try to suppress certain top-down factors that influence the 
visual attention (visual searching, previous expectations, etc.). Hence, we want to observe the bottom-
up influence of the depth on the visual attention. Caption from our final, targeted user study setup is 
displayed on Figure 5-2. 

 

Figure 5-2: Participant, ready to start an experiment, captured along with the complete scene setup 
with desired projection on the ROIs. The eye tracker is mounted to a computer with running data 

acquisition module. 

5.1.3 Projection overview 

Content projected on the scene and changes of the projection may reflect goal of the research as the 
projection handling software module is proposed to be open for modification of the projection sequence. 
We propose our own projection sequence for the research of depth influence on human visual attention. 
The main specificity of our projection sequence is in projecting the same changing content on two ROIs 
on the scene at the same time (the action is further referenced as concurrent change on ROIs). Simplified, 
no content is projected on the ROIs at the beginning. Subsequently, the same content is projected on 
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two ROIs in different depths simultaneously, at the same time, for duration of 1000 milliseconds with 

300 milliseconds fade-in and fade-out effect. There are generated complete (102 ) combinations of these 

concurrent changes on the scene. The generated combinations have to be randomly sorted to avoid 
previous expectations during the user study. Based on the complete combinations, each ROI can be 
compared with each other during the dataset evaluation phase (e.g. in the means of the observer's first 
fixations immediately after changes on concurrent ROIs occur).  

Three types of the concurrent changes on the scene and their random complete combinations are 
generated: 

• projection of plain white colour, 
• projection of slightly different colour tint, 
• projection of the same face. 

The projection sequence, it’s visualizations and its development are explained more in detail in the 
Subchapter 6.2.3. 

5.1.4 Proposed dataset overview 

The novel dataset created during conducting the user studies, following our proposed method, should 
consist of: 

• the egocentric video from the observer's perspective captured during the user study, 
• the information about the observer's gaze referencing the egocentric video frames (in a separate 

file), 
• the information about changes on the scene and their timing which can be synchronized with 

egocentric video. 

Data and information that are valuable for further research and should be obtainable from the dataset by 
further data processing are, e.g.: 

• fixations on ROI and their order after each change on the scene occurs, 
• durations of fixations, 
• delay of the fixations. 

Details about the dataset are explicitly explained in the Subsection 6.1.2 along with the eye-tracking 
module proposal. 
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6 User study setup and methodology 

We follow the previous Chapter 5 with detailed description of our proposed method and user study 
proposal from the technical point of view. The objective of the proposed method is to enable research 
of the human visual attention in real environments from the egocentric perspective of view. We already 
stated before that various specific hardware and methods of computer vision were used to fulfil our 
method proposal. All the used hardware and principles are further discussed in the next Subchapters. 

6.1 User study setup proposal 

The user study setup proposal follows the objectives of our research meeting the requirements of the 
novel research approach described in the Chapter 5. Goals of the user study setup are to: 

• provide an observer a real scene in a laboratory as described in the Subsection 5.1.1 with 
projection aimed to study depth influence on the visual attention as discussed in the Subsection 
5.1.3, 

• monitor visual attention of the observer from the egocentric perspective of view as described in 
the Subsection 5.1.2, 

• create a novel dataset as the output of the user study according to the dataset description in the 
Subsection 5.1.4. 

Further requirements on the user study proposal to make the user studies repeatable, scalable and 
adjustable for further research of the visual attention in real environments are:  

• automation of significant parts of the user studies, 
• scalability of the user studies, maintaining the same laboratory conditions for each participant, 
• adjustability of the projection sequence to match the needs of future user studies, 
• supporting various content projection (colour, textures) onto the ROIs with various shapes. 

We met all the goals and requirements in this thesis and included them in our user study setup proposal 
in the following Subchapters. Only easily accessible hardware in IT laboratories is used to conduct the 
user studies (with exception of the eye-tracker which is a piece of a specific hardware): 

• common LCD projectors, 
• Kinect 2.0 device, 
• SMI mobile eye-tracking glasses. 

The mobile eye-tracker is able to capture the egocentric video and gaze in the real-time. However, it is 
not able to capture depth information from the scene. No affordable, non-intrusive solution exists to 
capture gaze along with the egocentric video and the depth map of the scene at the same time during the 
user studies, nowadays. Therefore, we decided to make the whole experiment static (participant is 
standing the whole experiment at a specific place as captured on the schema on Figure 5.1.1) to avoid 
equipping participants with additional intrusive depth-capturing devices (e.g. Kinect). As the scene is 
static too, we can easily measure distances of the ROIs from the static participant for the evaluation 
purposes.  
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We propose projecting adjustable prepared content (projection sequence) on selected ROI on the scene 
to reach complexity of the scene and dynamic changes on the scene (see Subsection 5.1.3 and 6.2.3). 
The projection sequence will allow us great flexibility and mastery over the content appearing on the 
scene which can be targeted to study certain phenomenon of the visual attention. This is a great asset of 
the user study proposal as it can be reused in the future research of different aspects influencing visual 
attention. 

There are numerous challenges related to reach goals of the user study setup described in the beginning 
of this subchapter. Among others, algorithms and methods of computer vision are used to meet them. 
The user study setup is, therefore, supported by three proposed software modules: 

• projection management module, 
• eye-tracking module, 
• automatic evaluation module. 

We describe the modules more in detail, along with the applied principles of computer vision, in the 
following subsections. 

6.1.1 Projection handling module 

Hanging polystyrene balls from the roof in different depths at the scene (meaning distance from a static 
observer) represent our regions of interest (ROIs) where the desired changing content is projected. We 
use binary projection mask applied on a conventional LCD projector’s frame buffer with 1 values to 
project content on the desired ROIs and 0 values to project nothing on other areas at the scene covered 
by the LCD projector's projection plane. Thus, ROI background is unaffected by the projection and is 
not distracting the observer’s visual attention.  

We use multiple projectors across the laboratory to maintain good quality of projected content on each 
of the ROI at different depths. The desired state of projection on ROIs is captured on Figure 5-2. The 
computation of the binary projection mask (computation further referenced as projector calibration) is a 
challenging part of the setup which is further described.  

Projectors are calibrated separately one-by-one using one Kinect 2.0 device2 placed in the front of the 
device that is being calibrated. Working with multiple Kinect devices is not considered in the proposal 
as the Kinect device takes up more than 50% of the common computer’s USB bus3.  

6.1.1.1 Projection calibration 

Common LCD projectors are usually known as displaying devices, being able to project desired content 
on a homogenous white background. Not so well-known usage of the LCD projectors is to make them 
project directly on desired areas on scene (which are within scope of projection plane), transforming the 
projectors to multifunctional reflectors. Under projection on the desired areas we understand projection 
of black colour on non-ROI areas and any other colour on ROI areas. This creates the illusion of 
projecting content on specific areas at the scene using e.g. theatre reflectors. This illusion is working 
due to the fact that the common LCD projectors project black colour- RGB(0,0,0)- as “nothing”. The 
illusion can be easily proved by visual experiment with an LCD projector which we made as a feasibility 

                                                      
2 Manufacturers website: http://www.xbox.com/sk-SK/xbox-one/accessories/kinect 
3 Kinect 2.0 documentation available on 6/4/2018 at: https://msdn.microsoft.com/en-us/library/jj131023.aspx 
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study in the beginning of our research. Result of the test is captured on Figure 6-1. Projection calibration 
necessary for obtaining the projection mask applicable on the projector’s frame buffer is described in 
the next paragraphs.  

 

Figure 6-1 Testing the illusion of projecting bright light on specific areas at the scene (marked by red 
circles) using e.g. theatre reflectors. In fact, LCD projector projects white colour on the ROIs and 

black colour on non-ROI areas which creates the mentioned illusion. 

Kinect device should be placed in the front of the LCD projector that is meant to be calibrated. The 
Kinect should be aligned with the projector, so it’s camera lenses are in the same direction and angle as 
the projector’s lens to simplify the calibration procedure. The information acquired through the Kinect 
device are the RGB frame and the normalized depth map of the scene in the range <0;1>.  

The RGB frame is used for segmentation of the projection plane by its corner coordinates using either 
human interaction (clicks on corners) or an improved adaptive Gaussian mixture model for the 
background subtraction (Zivkovic, 2004). Projection plane can be easily segmented from the RGB 
image when the Kinect is aligned with the projector (Figure 6-3). Using this simplification in the 
calibration process, we avoid more complicated geometric transformations between coordinate spaces 
and we may focus on the main objective of this thesis.  

 

Figure 6-2 The RGB frame from the Kinect with the visible projection plane that can be easily 
segmented from the frame. Projection of plain white colour during the calibration is handled by the 

calibration module. 

The Kinect’s depth map space coordinates do not match the Kinect’s RGB image space coordinates. 
Therefore, we have to define homography projection between the RGB space and the depth map space 
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and vice versa. This homography can be defined using depth point-cloud space of the Kinect as proposed 
by Khoshelham-Elberink. The depth point-cloud space can be used for the projective transformation of 
the projection plane in the RGB space to the depth map space and transformation of the ROI locations 
in the depth map to the RGB image space. We obtained planimetric object coordinates 𝑃(𝑋𝑘 , 𝑌𝑘) of each 
point in the image from its image coordinates 𝑃(𝑥𝑘 , 𝑦𝑘), the scale determined by the distance (depth) of 
the point k in the object space 𝑍𝑘 and the focal length of the camera f: 

𝑃(𝑋𝑘 , 𝑌𝑘) =  
−𝑍𝑘𝑓(𝑃(𝑥𝑘 , 𝑦𝑘) − 𝑃0 +  𝛿𝑃(𝑥𝑘,𝑦𝑘)) 

 
where 𝑃0 is the principal point, and 𝛿𝑃(𝑥𝑘,𝑦𝑘) are corrections for lens distortion (Khoshelham-Elberink, 

2012). We can perform projective transformations between points in the RGB frame and points in the 
depth map using the defined homography. Thus, we can define the segmented projection plane in the 
depth map. Projective transformation of the whole depth map to the RGB image space by the inverse 
homography defined above is visualized on Figure 6-4. 

 

Figure 6-3 Visualization of the homography transformation of the depth map (with ROI locations 
marked by red colour) to the RGB image space using the inverse homography matrix of the RGB 

frame projection to the depth point-cloud space. If you place the images one on another, the positions 
of the pixels would match and refer to the same point in the depth point-cloud space. 

The ROIs at the scene are proposed to be of non-salient colour (the same as the background). Thus, ROI 
segmentation from the RGB frame would be difficult (see Figure 6-4 on the right). Therefore, projection 
plane segmented from the Kinect’s depth map is used for segmentation of the ROIs from the background 
of the scene. The ROIs stand out in the depth map as they are located in different depths than the 
background is.  

We incorporate human interaction (clicking on ROI areas) and flood-fill algorithm (flood-filling clicked 
depth level in the depth map) in the segmentation process (Figure 6-2). The user interaction during the 
calibration process is appropriate while the ROIs can be of different shapes and in different depths during 
the future user studies. We try to maintain our setup proposal general enough for its future use in this 
case. Only the segmented-out projection plane from the depth map is displayed to the user during the 
ROI segmentation for better usability of the user interface. It is obvious that only the ROIs within the 
projection plane may be affected by the projection of the LCD projector. 
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Figure 6-4 Visualized projection plane part of the Kinect’s depth map with segmented ROI locations 
by incorporating the user interaction (clicks on the ROI areas) and the flood-fill algorithm. 

Binary projection mask M in the depth map space is obtained after the ROI segmentation using flood-
fill algorithm as: 𝑀(𝑥, 𝑦) =  {0,    𝑖𝑓  𝐼′(𝑥, 𝑦) − 𝐼(𝑥, 𝑦) = 01,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where  𝐼′ is the depth map with the flood-filled regions and I is the original depth map before the flood-
fill operations. Projection mask in the depth map space is transformed back to the RGB space by the 
homography using the depth point-cloud space. 

Projection space of the LCD projector (or projector’s frame buffer space) is relative to the Kinect’s RGB 
space. Thus, we can compute another homography between the Kinect’s RGB space and the projection 
space. This is an orthogonal projection between two two-dimensional spaces. Therefore, we can use the 
projection plane corner coordinates from the RGB image to define a set of four equations with one 
unknown homography projection matrix H: 

(𝑥′𝑦′) = 𝐻. (𝑥𝑦) 

where the projection plane corner coordinates from the RGB image are substituted for x and y and 𝑥′, 𝑦′ ∈ {[0,0], [0,1], [1,0], [1,1]}. The homogenous homography matrix between the RGB image space 
and the projection space can be determined by solving the set of equations using principles of the 
algebra. 

Homography transformation using the matrix H applied on the projection mask in the RGB image space 
results in the projection mask in projection space of the LCD projector (projector’s frame buffer space). 
The final, double transformed projection mask can be applied on the projectors frame buffer to project 
content directly on ROIs (Figure 6-5). Whole calibration process is repeated with all the LCD projectors. 
User interaction with the projection handling module is modelled in the sequence diagram on Figure 6-
6 (considering the interaction during the projection plane segmentation, too). 
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Figure 6-5 One calibrated LCD projector with projection mask applied on its frame buffer is 
projecting on the desired ROIs. 

There is a re-calibration step involved in the calibration process after obtaining the projection mask 
applicable on the projector’s frame buffer. During the re-calibration step the RGB frame of projection 
on the ROIs is acquired by the Kinect device (as on Figure 6-5). The module automatically computes 
the projection error from the calibration phase, comparing the captured frame with the ROI locations 
segmented from the depth map space and transformed to the RGB space earlier. ROI locations are 
segmented from the captured RGB frame as regions with the highest pixel intensities, having volume 
which may approximately correspond to the ROI in the frame. The detected ROIs are then labelled from 
the left-hand-side, starting from the zero, to match the labelling of the ROIs during the calibration. The 
re-calibration procedure matches ROIs segmented from the captured RGB frame with the ROI locations 
segmented from the depth map space and transformed to the RGB space earlier. The projection error is 
then computed for each of the ROIs separately. The error denotes the shift vector applied on the ROI 
coordinates in the resulting projection mask.  

If one is not satisfied with the result of the projection after the calibration phase (including the re-
calibration step), the projection mask can be manually fine-tuned. There is a user friendly interactive 
interface for the fine-tuning of the projection with immediate responses on the scene when changes in 
the projection mask occur (for more details see Appendix B of this thesis).  

Calibration data for each projector are saved on the disk in separate binary files containing the calibration 
data structures. Saved binary file can be read by the projection handling module. This allows us to use 
only one Kinect device to calibrate all the projectors one-by-one, to transfer the projection data to 
another computer with projection handling module, or to reuse the calibration next time when needed 
(if the object placement in the laboratory does not change). If the laboratory setup shifted a little bit from 
the time of the last calibration, the proposed manual fine-tuning of the projection may be useful after 
loading the saved calibration data, too. 
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Figure 6-6: Sequence diagram of all the required user interaction with projection handling module 
throughout the calibration process. 

6.1.1.2 Content projection 

We have the information about ROIs position in the depth map space, RGB frame space and the frame 
buffer’s projection space. It is trivial to detect the ROIs in the projection mask and label them from the 
left-hand-side to the right-hand-side beginning from the zero. The labelling will hold for the ROI 
positions in all the other projection spaces, too. Displayed ROI labels are visualized on Figure 6-7. 

 

Figure 6-7: Labeled ROIs segmented from the projection mask and transformed to the RGB frame 
space for visualization purposes. 

Similarly, labelling the projectors used in the user studies would result in uniform differentiation among 
them. Hence, the ROI on the scene can be unambiguously referenced by the projector label combined 
with the ROI label. Each ROI should be for practical reasons referenced by the unique number starting 
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from the zero to make the projection sequence easy to define. For this purpose, the hash map is defined. 
It translates the unique ROI labels onto the projector-ROI label combinations. The unique ROI labels 
are assigned to ROIs by the convention starting from the zero from the left-hand-side. 

The application of the projection mask on the projector’s frame buffer is handled by the operations on 
graphic chip of the computer using OpenGL. Each labelled ROI in the projection mask is treated as an 
OpenGL polygon. Thus, any colour or texture may be interpolated within the polygon instead of 
projecting plain white colour on ROI through the projection mask. Finally, projection module is prepared 
for the projection sequence rendering, as we can reference any of the defined ROIs on the scene and 
interpolate any content within it’s coordinates in the projection mask. 

Projection sequence handled by the module is adjustable. It is possible to define a unique own projection 
sequence in the form of ROI labels with corresponding content that should be projected on them 
accompanied with hold duration of the change. There can be any number of such changes contained in 
one projection sequence. Defined changes are all rendered by the module and the transitions between 
them are generated automatically so the changes on the scene are not too sudden. By default, the fade-
out and fade-in effect (each with duration of 300 milliseconds) is added between the two changes. The 
rendered sequence is then projected on the ROIs whole at once, using the module’s “play” directive. 
New projection can be started right after the previous one is finished. More about the usage of the module 
and the projection sequences can be found in the Appendix B of this thesis. 

6.1.2 Eye-tracking module 

We used the mobile SMI Eye Tracking Glasses4 (equipped by the observer on Figure 6-8) incorporating 
three-point calibration procedure5 provided with the SMI SDK for Windows platform6 to acquire the 
egocentric frames at 60Hz sampling frequency with the corresponding gaze data during the user studies. 
There is a free software application iView ETG provided by the SMI company, running on Windows 
platform, compatible with these glasses. The software provides driver for the eye-tracker and simple 
user interface with only limited possibilities of customization of the data gathering process. The main 
shortfall of the software is the impossibility to store the egocentric video and the gaze information in 
two separate files. The gaze is hard-written in the acquired egocentric video frames. This type of output 
is good for visual analysis and evaluation of the dataset. However, it is not suitable for further processing 
of the gaze data or automated dataset evaluation. Therefore, the eye-tracking module based on the SMI 
SDK is proposed for the data acquisition part of the user study. 

                                                      
4 Manufacturers website available on 28/04/2018 at: https://www.smivision.com/eye-tracking/product/eye-
tracking-glasses/ 
5 Explanation of 3-point calibration of the eye-tracker available on 24/02/2018 at: 
\url{http://tsgdoc.socsci.ru.nl/images/c/cb/IView_X_SDK_Manual.pdf 
6 Available on 24/02/2018 at: \url{https://www.smivision.com/wp-content/uploads/2016/10/smi_prod_sdk.pdf 
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Figure 6-8: The observer equipped with the mobile SMI Eye Tracking Glasses. The eye-tracker is 
connected through the cable to a computer with the running eye-tracking module. 

Architecture and implementation of the SDK is noticeably outdated and does not contain many of the 
features implemented in the SMI software products. The SMI company, however, does not exist 
anymore and does not provide any software purchases or SDK updates since 2017. Therefore, we 
propose our own eye-tracking software module built upon the existing SMI SDK. It has client-server 
architecture where:  

• server-side is acquiring raw data from the eye tracker and handling the data requests from the 
client, 

• client-side is sending data requests to the server and processing the received data.  

The requirements on the eye-tracking module are:  

• writing the egocentric video frames into the video file with common encoding, and with frame-
rate equal to the sampling frequency of the eye-tracker (60Hz corresponds to 60 frames-per-

second in this case),  
• writing gaze into a separate structured file so the gaze samples and the egocentric video frames 

can be easily matched. 

Our module, extending the client-side of the SDK, is able to save the egocentric frames from the eye 
tracker into a video file with wmv format. We chose this video format as it is as loss-less as possible 
and, at the same time, it is widely supported across the Windows platforms. Raw gaze data are saved by 
the client-side for each video frame in a separate structured csv data file. The egocentric frames saved 
in the video are referenced by each gaze sample in the data file. This way, further data processing of the 
gaze is possible without modification of the egocentric video. The activity diagram of our proposed 
extension is on Figure 6-9. 

As mentioned in the previous paragraphs, gaze data from the eye-tracker are raw and lack any post-
processing on the SDK’s side. However, we decided to store them in the data file as raw samples, so we 
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do not drop any frames resulting in the frame-rate drop in the video. We proposed and implemented a 
post-processing algorithm to filter out noise and to deal with invalid data samples in the gaze data. The 
post-processing takes place after the user study is finished and the gaze data from one participant are 
complete. The input for the post-processing algorithm is only the data file with gaze information.  

As the algorithm, we adapted and implemented part of the I-VT fixation classifier algorithm published 
by Olsen (Olsen, 2012). We chose only suitable parts of the algorithm for our post-processing procedure 
as the paper is only partially relevant for the mobile glass eye trackers and originally was meant for the 
static eye-trackers under the display. The relevant proposed and implemented algorithm parts are:  

• gap fill-in algorithm using linear interpolation between valid samples, 
• noise reduction algorithm using median filter with small window size (3 gaze samples) as 

proposed by Olsen.  

The post-processed gaze data file is ready to be an input for further data processing, visualization of the 
egocentric video with written gaze (by our simple proposed software tool), and for the automatic 
evaluation module. 

 

 

Figure 6-9: Activity diagram of the event handling on the SMI SDK extension’s client-side proposed 
in this thesis.  

6.1.3 Automatic evaluation module 

The automatic evaluation software module is proposed to make the evaluation of the information, 
obtainable from the dataset by further processing, simpler and faster. The information possible to mine 
from the dataset are: fixations on ROI after change of the scene, their order, duration, delays, etc. We 
focus our research on the bottom-up aspect of visual attractivity of the changes on the scene captured in 
the egocentric video. As we know from the visual attention theory (Chapter 2), the bottom-up aspects 
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affecting visual attention are the strongest during observing the scene (or a change on it) for the first 
milliseconds. Therefore, we found fixations on ROIs after change on the scene and the fixation’s order 
as the most valuable information for our research among all the obtainable information from the dataset. 
Thus, we can easily focus on the first fixations after change on the scene in the evaluation phase. The 
goal of the automatic evaluation module is, therefore, to provide an information about fixations on ROI 
for each frame of the egocentric video in the dataset. 

The input for the automatic evaluation module are the data acquired by the eye-tracking module and 
post-processed using our post-processing algorithm (described in the previous Subchapter):  

• video file containing the egocentric video frames, 
• corresponding data file with post-processed gaze information for each video frame, 
• projection sequence protocol. 

The only information we lack from the dataset to get our desired output in a straightforward way are 
locations of our ROIs (their border coordinates) at each egocentric video frame. We propose two 
methods for ROI segmentation from the egocentric video:  

• segmentation of the image regions with the highest pixel intensities,  
• enhanced segmentation using fiducial markers (Garrido-Jurado et al., 2014). 

6.1.3.1 Segmentation of the image regions with the highest pixel intensities 

Segmentation of the image regions with the highest pixel intensities is a simple and fast segmentation 
algorithm. The algorithm has an assumption that bright light (white colour) is projected on all ROIs at 
a frame on which the segmentation takes place (e.g. white colour projected as a calibration before 
starting the projection sequence). The enlightened ROI should then be the brightest objects on the scene. 
We can afford such an assumption because of low brightness conditions in laboratory throughout the 
experiments (for more details see Subchapter 6.2.1). The segmentation algorithm has two steps:  

• image thresholding with high constant threshold value, computed as a maximum pixel intensity 
in a frame from which is subtracted a constant tolerance value (can be modified manually), 

• contour detection algorithm introduced by Suzuki (Suzuki et al., 1985), applied on the output 
of the threshold operation, where detected contours represent ROI border coordinates in the 
egocentric video. 

6.1.3.2 Enhanced segmentation using fiducial markers 

Fiducial markers segmentation is used in computer vision to precisely detect coordinates of the marker 
position in an image (Garrido-Jurado et al., 2014). Therefore, we assume that our segmentation 
algorithm should be more reliable and robust using them. Fiducial markers are projected on the ROIs 
during the eye-tracker calibration step and segmented from the egocentric video frame instead of using 
simple segmentation algorithm described in the previous Subchapter. The fiducial marker segmentation 
algorithm implementation by Garrido-Jurado is publicly available. After obtaining the accurate ROI 
coordinates in the frame, the enhanced segmentation step should be followed by the previously proposed 
segmentation of the image regions with the highest intensities to determine border coordinates of the 
ROIs.  

The enhanced segmentation algorithm is proposed and implemented as part of this thesis. However, it 
was not used during our user studies because this method is not indifferent on marker deformations 
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which do not preserve straight lines- and the deformation of projection on polystyrene balls does not. 
Therefore, marker content projected on the polystyrene balls was undetectable. The enhanced 
segmentation may be used for the future user studies where flat ROIs are used. 

6.1.3.3 ROI tracking in the egocentric video 

We decided to track the ROI locations between two consecutive frames of the egocentric video instead 
of running the time-consuming segmentation algorithm frame-by-frame. We experimentally studied two 
types of flow algorithms (global and dense optical flow) used for tracking objects between video frames 
in computer vision applications. By observations of results in relation to high specificity of egocentric 
video (head shakes, tilts and moves, depth of the scene, etc.), we found out that global optical flow is 
not matching our needs. Therefore, we suggest to involve dense optical flow algorithm by (Farnebäck, 
2003) in our ROI tracking algorithm proposal. The algorithm computes flow (a shift vector) for every 
pixel of two consecutive frames. The algorithm works well on the edges. However, it does not work 
well on non-edge homogenous regions where the flow cannot be determined. Visualization of the flow 
applied on the egocentric frame is on Figure 6-10. 

 

Figure 6-10: Visualization of the dense optical flow in the egocentric frame. The green arrows denote 
vectors of flow at specific pixels. Notice, that flow is computed correctly only around edges of objects. 

We compute the approximal shift vector for each ROI separately using the flow map. The computed 
shift vector is added to the border coordinates of the ROI from the previous frame to obtain the new ROI 
coordinates in the consecutive frame: 𝐶′(𝑥′, 𝑦′) = 𝐶(𝑥, 𝑦) +  𝑣⃗𝑠ℎ𝑖𝑓𝑡 

where C is a set of the ROI border coordinates in current frame, C’ is a set of ROI border coordinates in 
the succeeding frame and 𝑣𝑠ℎ𝑖𝑓𝑡 is the computed approximal shift vector of the ROI. The shift vector 𝑣⃗𝑠ℎ𝑖𝑓𝑡 is obtained as the mean flow vector of the pixels around the ROI border coordinates: 𝑣⃗𝑠ℎ𝑖𝑓𝑡 =  (𝐹 ∩ 𝐶𝑠𝑢𝑟𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

where 𝐶𝑠𝑢𝑟𝑟 is the union of C with the pixel coordinates around the ROI border coordinates (border 
surroundings), in an absolute distance of 𝛿 pixels from C in the current frame, and F is the flow map 
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between current and consecutive frames calculated by the dense flow algorithm proposed by Farnebäck. 
We consider 𝐶𝑠𝑢𝑟𝑟 instead of just the C set in the computation of the ROI shift vector due to better 
results when the flow map is noisy directly on the ROI border coordinates. We also cannot consider C 
with all the pixels inside of the ROI due to distorted values of dense optical flow inside the ROI with 
homogeneous content.  

The shift vector approximation cumulates an error during the ROI tracking phase. We found this issue 
during the prototyping phase of the proposal (see Figure 6-13). The error is eliminated every n video 
frames by repeating the segmentation algorithm on the n-th frame. There are more precise methods for 
object tracking in the egocentric video- for reference see (Ren et al., 2010). However, they are not 
publicly available, nowadays, and their proposal is an untrivial research task.  

 

Figure 6-11: Successful tracking of previously segmented ROIs using proposed shift vector 
computations (left). Tracking error (right) caused by specifics of the egocentric video- constant shakes 

and fast tilts of the head- and by cumulation of the tracking error. The captures are from the 
prototyping phase of the module proposal. 

6.1.3.4 Output of the automatic evaluation module 

Having the information about ROI coordinates at each frame and the gaze information alongside, the 
detection of fixated ROI at each video frame is a trivial task. Fixated ROI at certain frame is the one 
intersected by the gaze coordinates. If no intersection was found, no fixation on ROI was encountered 
in the frame. The segmented and tracked ROIs are labeled for the evaluation output purposes from the 
left-hand-side (or right-hand-side if needed) starting from the zero. The fixated ROI indexes (with 
reference to the frame in the video) are written in the structured data file which is an output of the 
automatic evaluation module or are used in the graphic output of the module (as on Figure 6-11). Graphic 
output of the module is the egocentric video with ROI locations and gaze written in alongside with the 
fixated ROI index information. 

We encountered significant, unpredictable, pattern-less errors in the gaze data provided by the eye-
tracker (described more in detail in the Subchapter 7.1). Therefore, we take into account enlarged area 
around the ROIs when determining their intersection with the gaze (also on Figure 6-11). Simplified 
pseudocode of our proposed automatic evaluation module can be found on Figure 6-12. 
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Figure 6-12 Automatically evaluated egocentric video frame from the dataset by the automatic 
evaluation module (graphic output). Tracked ROIs are in red circles (they have enlarged areas) and 
gaze is a blue dot. The intersection is displayed in the top-left corner. ROIs are numbered from the 

right-hand-side starting from the zero. 

 

Figure 6-13: Simplified pseudocode of the main procedure in the automatic evaluation module. 

6.2 Methodology of the user study 

In this chapter we will thoroughly explain the methodology of the proposed user study, making use of 
the user study setup described in the previous chapter, leading to achieve goals of the proposed method. 
As stated before, the main objective of conducting the user studies following our proposed method is 
creating a novel dataset for the research of visual attention. Methodology of the proposed user study is 
following these steps: 
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1. laboratory preparation 
2. equipping and guidance of the participant 
3. projection sequence setup 
4. data storing and finalizing the dataset. 

All the steps are described more in detail in the next Subchapters, so anyone can reproduce the user 
studies following our proposed method and user study setup. 

6.2.1 Laboratory preparation 

We have to ensure that the laboratory is well prepared for the experiments with human visual attention. 
From the theory about bottom-up and top-down factors affecting visual attention (Subchapter 2.2.1 and 
2.2.2) we know that the scene observed by an experiment participant shall be as less visually distracting 
as possible. Therefore, saliency of the laboratory scene itself and of the objects at the scene shall be low. 
Hence, saliency of projection changes on the scene will be very high comparing to the neutral scene. If 
we ensure compliance of the laboratory setup with the proposal, we are able to study nearly isolated 
effect of the changes on the scene on the participant’s visual attention. Low saliency of the scene can be 
achieved by providing e.g. white background without any distracting objects or furniture in the field of 
vision of the observer. This applies for the ROIs, too. Therefore, polystyrene balls are a good choice of 
ROIs on the scene while they are of the same colour as the background (white colour) and are not salient. 
Polystyrene balls should be placed at the scene following schema on Figure 5-1. It is necessary to place 
ROIs in sufficient distance from the background (at least 20 centimetres), so they can be segmented out 
from the background during the projection calibration phase. There should be low light conditions in 
the laboratory (not too dark, but no sunshine) and no bright objects or objects emitting light at the scene.  

The second part of the laboratory preparation is projection calibration which is described in detail in the 
Subchapter 6.1.1 and step-by-step explained in the user guide (Appendix B of this thesis).  

6.2.2 Equipping and guidance of the participant 

Participant of the user study is equipped with the eye-tracker glasses, firmly tightened on the participants 
head to prevent shakes or moves of the eye-tracker (Figure 6-8). The eye-tracker is connected to a 
computer with the data acquisition module running and with enough storage space on the hard drive for 
the recorded egocentric video. Participants are asked to take off their dioptric glasses before participating 
in the experiment. The dioptric glasses would prevent the eye-tracker to work correctly because of the 
interferences with infrared light emitted by the eye-tracker towards the observer’s eyeballs. Moreover, 
participants are instructed to stand still at a specified place in the laboratory and to look around the scene 
only with their eyes, without moving their head (see schema on Figure 5-1 and capture from the user 
studies on Figure 5-2). This is a preventive instruction as the head moves may cause the eye-tracker to 
shift and, thus, to fail in further gaze estimation.  

We calibrate the eye-tracker with the participant using three-point calibration method.7 Calibrating the 
eye-tracker requires three stable points on the scene far away from each other but without the need of 
head movement of the participant. Participant is instructed to look at them at specified order. These 

                                                      
7 Explanation of three-point calibration of the eye-tracker available on 24/02/2018 at: 
http://tsgdoc.socsci.ru.nl/images/c/ cb/IView_X_SDK_Manual.pdf 
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points are clicked in the stream of the egocentric video from the eye-tracking module. After the eye-
tracker is calibrated with the participant, he/she is asked to look at ROIs on the scene, one-by-one, for 
double checking the gaze accuracy. If the gaze is not accurate enough for the further evaluation purposes, 
the calibration process is repeated. 

After the successful calibration, participant is asked to look freely on the scene without any specific task 
given. By free-viewing tasks we try to suppress certain top-down factors that affect the visual attention 
(visual searching, previous expectations, etc.) as we want to observe mainly the bottom-up influence of 
the depth on visual attention.  

6.2.3 Projection sequence proposal 

Content projected on the scene and its changes may reflect goal of the research as the projection handling 
software module is open for a modification of the projection sequence. We proposed two own projection 
sequences for the research of depth influence on human visual attention. First proposed projection 
sequence was the first one, experimental, and aimed on verification of relevancy of claims about visual 
attention we made earlier. The first projection sequence was used to test the user study setup and 
software modules, and to find out if the claims about the depth influence on human visual attention are 
relevant to study by the proposed novel method. Moreover, we wanted to obtain the first results as an 
indication of possible results of depth influence on human visual attention. The first sequence consists 
of various changes occurring on the scene on two or more ROIs at the same to achieve concurrency 
aspect: 

• projection of slightly different colour tint: bright yellow colour RGB(100,100,0) is projected on 
all ROIs and dark yellow colour RGB(60,60,0) is projected on some of the ROIs (Olešová, 2016) 
– Figure 6-14 a), 

• projection of the same texture on two or three ROIs at the same time, as the texture projected 
on ROIs will be rather salient while nothing is projected on other ROIs – Figure 6-14 b), 

• projection of the same face on two or three ROIs at the same time, as human face is one of the 
most important top-down features to attract visual attention (Xu et al., 2015) – Figure 6-14 c). 

 

    

a) b) c) 
 

Figure 6-14 Projection changes of the first proposed projection sequence. Various changes occur on 
the scene on two or more ROIs at the same time. Dark yellow colour is projected on certain ROIs 

(Figure a) left) while bright yellow colour is projected on the others (Figure a) right), texture invoking 
fear (trypophobia) on Figure b), or the same face is projected on certain ROIs (Figure c)). 
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We manually defined a few projection changes on two or three ROIs at the same time for each of the 
projection change types on Figure 6-14. The changes occurred on these ROIs in the specified order while 
other remained unaffected by the projection: 

ROI depth [m] ROI depth [m] ROI depth [m] 
2,16 6,31 - 
2,68 6,00 - 
3,79 5,45 - 
3,23 5,72 - 
4,33 4,88 - 
2,16 4,88 6,31 
2,16 5,45 5,72 
2,16 5,45 6,00 
2,68 4,88 6,31 

Table 6-1 List of manually defined projection changes on two or three ROIs at the same time to test 
the concurrency of saliency of the changes at the scene. 

Each change of the first sequence is proposed to be projected on the scene and held for 2000 milliseconds 
with 500 milliseconds fade-in and fade-out effect. Changes in the projection sequence defined in the 
Table 6-1 are not sufficient for a relevant research. However, it’s implementation in the pilot user studies 
revealed shortfalls of the implemented software modules, laboratory setup and in the processes of the 
user study and resulted in fine-tuning of the proposal for more precise research. The major drawback of 
the sequence is the inability to mutually compare the saliency of a specific ROI in certain depth with 
each other. Moreover, the memory factor plays a significant role in the projection sequence parts where 
the same texture and face are projected because there are defined only a few changes on the scene. All 
the knowledge from the pilot experiments using the first proposed projection sequence was re-used to 
master the second proposed projection sequence which was used during the extensive major experiments 
with numerous participants.  

The main specificity of second, enhanced projection sequence is changing of the same projected content 
only on two ROIs at the scene at the same time (the action is further referenced as concurrent change on 
ROIs). Simplified, no content is projected on the ROIs at the beginning. Subsequently, the same content 
is projected on two ROIs simultaneously in different depths for duration of 1000 milliseconds with 300 

milliseconds lasting fade-in and fade-out effect. There are generated complete (102 ) combinations of 

these concurrent changes on the scene as we use ten polystyrene balls and require changes on two of 
them at once. Therefore, during the evaluation phase, each ROI can be compared with each other, i.e. in 
the means of the observer's first fixation immediately after the change on concurrent ROIs occurs. 
Generated combination’s orders are randomized to eliminate the memory factor during the user study. 
Three types of concurrent changes on the scene are generated in random order: 

• projection of plain white colour on two ROIs on the scene (for simplicity to eliminate the 
influence of various aspects affecting visual attention, e.g. different colour, shape, orientation, 
etc.)- Figure 6-15, 

• projection of slightly different colour tint: bright yellow colour RGB(100,100,0) is projected on 
all ROIs and dark yellow colour RGB(60,60,0) is projected on two changed ROIs (Olešová, 
2016) – Figure 6-16, 

• projection of the same face on two ROIs, as human face is one of the most visually attractive 
objects known these days (Xu, 2015)- Figure 6-17. 
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Figure 6-15 Visualization of projection of plain white colour on two random ROIs. 

 

Figure 6-16 Visualization of projection of slightly different colour tint on two random ROIs. 

 

Figure 6-17 Visualization of projection of the same faces on two random ROIs. 

Projection sequence rendered by the projection handling module is ready to be played on one click right 
after the participant undergoes the successful calibration process. The sequence has to be played as a 
whole, without any interruption or interaction with the projection handling module.  

6.2.4 Data storing 

The egocentric video file and corresponding data file with gaze information from the user study are 
automatically stored in the unique folder created by the data acquisition module for each participant. 
The file formats and principles of data storing is described in the Subchapter 6.1.2.  

The data acquisition procedure has to be finished properly as described in the instructions printed by the 
eye-tracking module (for more details see the User guide in the Appendix B of this thesis). This is due 
to necessity of proper finalization of the created video file. Otherwise, the video file may be corrupted 
and not usable for evaluation. Captured data are ready to be processed and evaluated either by the 
researcher, or automatically using our proposed data evaluation module. 

6.3 Technical and implementation details 

Windows 10 with the latest updates was the platform we used for implementation and use of the 
proposed modules. Selection of platform was dependent on the requirements of Kinect 2.0 device which 
operates well on Windows platforms. Microsoft Visual Studio 2015 was used as our development 
environment. 

We implemented proposed software modules in C++ language. We used several library dependencies 
to fulfil implementation needs of the modules. For image processing, computer vision and video 
manipulation purposes we used the open-source self-compiled OpenCV library in version 3.48 together 

                                                      
8 Available on 01/05/2018 at: https://opencv.org/opencv-3-4.html 
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with the optional contributions package9. We used the open-source GLFW 3 library10 for operations on 
graphic chip of the computer required by the projection handling module.  

Setting up the acquisition of the data from Kinect 2.0 device and its integration to a custom C++ project 
was more complex, as the data from the Kinect should be in format compatible with the OpenCV library 
for further processing. We installed Kinect for Windows Runtime v2.0 driver and Kinect for Windows 
SDK v2.011. For testing purposes of the Kinect device, we installed the Kinect Studio v2.0, too. The 
platform for interaction with the Kinect 2.0 SDK and transformation of the outputs to the OpenCV 
format is a piece of work of Yoshihisa Nitta released under MIT license for educational purposes12. 

The SMI SDK is not currently publicly available as the SMI company exists no more since 2017. The 
former SMI webpage provides no longer any data or support. We obtained the SDK without any 
documentation from the master thesis of Olešová (Olešová, 2016). 

We implemented each software module as a separate C++ project with possible release of independent 
binaries on each other. Main parts of the modules from the technical and implementational point of view 
are described in the Appendix A of this thesis. 

  

                                                      
9 Available on 01/05/2018 at: https://github.com/opencv/opencv_contrib 
10 Available on 01/05/2018 at: http://www.glfw.org/ 
11 Available on 01/05/2018 at: https://developer.microsoft.com/en-us/windows/kinect/develop 
12 Available on 01/05/2018 at: https://github.com/YoshihisaNitta/NtKinect 
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7 Evaluation and results 

We describe conducted user studies, results from the created datasets and their evaluation in this 
Chapter. We held two experiments testing and verifying our software modules and user study setup and 
two experiments (pilot and major user studies on depth impact on the human visual attention) following 
proposed methods and methodology in this thesis (Chapters 5 and 6). The last two mentioned 
experiments (pilot and major one) were involving complete user study setup and the projection 
sequences defined in the Subchapter 6.2.3. 

7.1 Testing the setup during first experiments 

Before our own user studies of the depth impact on visual attention took place, we evaluated proposed 
software modules implementations by numerous tests and two small experiments that took place at our 
faculty. These experiments served us as a proof of concept of our method proposal and as a feedback on 
the software modules, so these could have been refined for our major user studies. The two test 
experiments were: 

• participation on the user studies of emotion impact on the human visual attention (as a result of 
collaboration between the Faculty of Psychology, Comenius University in Bratislava and 
colleagues from Faculty of Informatics and Information Technologies, Slovak University of 
Technology in Bratislava), 

• our own, simplified experiment testing the modules integration. 

7.1.1 User studies of emotion impact on the visual attention 

We participated on the user studies of emotion impact on the human visual attention. The user studies 
were result of collaboration between the Faculty of Psychology of Comenius University in Bratislava 
and the Faculty of Informatics and Information Technologies, Slovak University of Technology in 
Bratislava. The main objectives of our participation were to beta-test the crucial part of our proposed 
eye-tracking module and to provide support for the eye-tracking phase of the experiments proposed by 
colleagues from the faculties. One half of the eye-tracking part was held with the SMI eye-tracking 
glasses using SMI SDK and our proposed eye-tracking module and the other half was held in a 
laboratory equipped with displays with attached, static eye-trackers. We recorded egocentric videos 
along with gaze data from seven participants during the experiments. Example of the egocentric frame 
from the eye-tracker is on Figure 7-1. 

During the evaluation, we encountered significant accuracy error of the gaze data from the eye-tracker. 
Even after precise, repeated calibration, the device was not able to measure the gaze accurately enough 
to distinguish certain point of fixation of visual attention. The gaze was skewed significantly during 
whole experiments with the gaze error reaching more than 100 pixels in the egocentric video. The gaze 
error was unpredictable, without specific patterns (e.g. shift of the gaze 50 pixels to the left), making it 
impossible to deal with the error in the post-processing phase. Moreover, the distance of the observer 
from the projection plane and size of the objects made the error of the gaze even more severe and in 
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some cases crucial for the evaluation (as on Figure 7-1). Hence, only limited manual evaluation of the 
obtained dataset was possible.  

We have to emphasize, that the gaze error was not caused by our proposed eye-tracking module as the 
skewed data were the output of the SMI SDK’s server-side which is closed for modifications or 
extensions. As we had to work with the eye-tracker during our further research, we tried to eliminate the 
gaze error by proper eye-tracking conditions and some client-side software modifications. 

 

Figure 7-1: Egocentric video frame with gaze written in (red dot). The egocentric video was captured 
throughout the user studies of emotion impact on the visual attention held at the faculty. The 

participant just found searched object, located approximately in the middle of the displayed image. 
There is a significant gaze error encountered, here, and the evaluation of the frame is not possible. 

7.1.2 Module testing during the simplified experiments 

We decided to conduct small test experiment during the implementation phase of our work. Our decision 
was motivated by high complexity of the proposed modules and the user study setup. Therefore, we 
wanted to beta-test them to verify our approach, test implementations of the modules and to collect 
information necessary for improvement of some crucial parts of the modules, as we wanted to obtain 
the best results possible during the major experiments. 

The experiment was held in the same laboratory where our future major experiment took place. We 
involved 5 participants in the experiments. Setup of the experiments had these constraints comparing to 
the complete proposal in this thesis: 

• there was one projector used, 
• projection was limited to four ROIs on the scene, 
• salient objects were not removed from the background, 
• simplified projection sequence was used (a few changes on the single ROIs without the 

concurrency aspect). 
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The evaluation of the module implementations is an intermediary step towards conducting our major 
experiments. Therefore, we took testing notes and improvement proposals which are already 
implemented in the setup proposal in this thesis, rather than making statistical evaluation of performance 
of the involved modules. 

7.1.2.1 Projection handling module  

Projection mask applied on the calibrated LCD projector correlated with the ROI positions at the scene. 
The projection itself was of satisfying quality to simulate changes at the scene and project textures (e.g. 
human face) without affecting the background (capture on Figure 7-2). The improvements to the 
calibration module were made, namely the re-calibration step proposed in the Subchapter 6.1.1, to 
maximize the surface of the ROIs covered by projection. There was a significant limitation of the 
calibration precision by the Kinect 2.0 depth map accuracy. We were also limited by avoiding more 
complex geometric transformations during the calibration phase, so we could stay focused on the 
primary goals of this thesis. We decided to implement the user interaction possibility in the module. Our 
aim is to provide the user a possibility to fine-tune the projection manually after the calibration phase, 
instead of introducing novel methods for projection calibration with higher precision. The user 
interaction allows to match the projection with the ROI surface perfectly- for more details see the 
Subchapter 6.1.1.  

 

Figure 7-2: Successful projection calibration during tests of projection calibration module (simplified 
experiments). 

7.1.2.2 Eye-tracking module 

The SMI SDK extension proposed in this thesis was reliable with no encountered loss of the data from 
the eye-tracker or frame-rate drop in the egocentric video. However, as stated in the previous 
Subchapter, problematic part of the module was the eye-tracking hardware and server-side of the SDK. 
We had several calibration issues related to the SDK with the eye-tracker. The client side of the eye-
tracking module itself does not have any control over calibration procedure after sending calibration 
data to SDK server. The calibration procedure on the server-side was, however, not reliable. It was not 
possible to calibrate the eye-tracker with significant number of participants: 2 out of 5 in our test 
experiment. The problem persisted even after several calibration attempts, making the calibration 
successful only in approximately 60%. The inability to calibrate the eye-tracker with a participant is 
making it impossible for him to participate in the experiment. Moreover, even after successful 
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calibration, the data were frequently skewed and not accurate enough. In some cases, it was not possible 
to determine on which object participant fixed his attention. This made significant problems not only 
for the automatic evaluation module expecting the accurate gaze data from the eye-tracker (with small 
tolerance) but also for manual evaluation of the data. The gaze error of the eye-tracker can be clearly 
seen on Figure 7-3.  

 

Figure 7-3: Gaze error from the eye-tracker after its proper calibration. The error is unpredictable (as 
stated on Figure 7-1), and its causes are not clear, yet. However, the eye-tracking hardware is 

significantly out-dated, nowadays. 

The error of the eye-tracker is more significant when working with various depths of the scene. While 
the gaze error in a video frame can be only few pixels, the same error represents a few centimetres when 
looking at distant objects (Figure 7-4). 

 

Figure 7-4: Gaze error during eye-tracking of fixations at objects in certain distance from the observer. 
The more far the object is, the bigger the negative impact that the error has on the eye-tracking 

precision is. Black dot represents the observer from the top-down view, vertical line represents the 
egocentric video plane and two crosses represent real objects captured in the video. One of the object 
(cross in the circle) represents the one where the observer really looked at and the other is the skewed 

gaze captured by the eye-tracker. 

The gaze error is known issue of many mobile eye-tracking devices and manufacturing companies are 
dealing with this issue for a long time. However, the gaze error of the SMI eye-tracker is outstanding as 
the hardware is significantly out-dated, nowadays. Gaze data are determined from the internal eye 
modelling based on the shape of the eye, cornea, location of the fovea and reflectiveness of infrared light 
emitted from the eye-tracker. When eyes of a participant does not meet the requirements of the eye-
tracker on anatomical shapes or reflectiveness, then the gaze of participant cannot be determined. This 
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can be avoided by modern technologies and driver improvements which represent in most cases a secret 
of the manufacturer. More about eye-tracker calibration can be found in an article issued by Tobii 
laboratories13. 

There are two partial gaze error solutions that we propose. The first one was already implemented in the 
automatic evaluation module. It is based on enlarging ROI detected in egocentric video by a constant 
error radius. The error radius helps the evaluation module to deal with fixations that seems to be out of 
the ROI, but in fact they are (Figure 7-5). The enlargement of the ROI locations is limited to the size 
that ensures no overlap of the ROIs. 

The second partial solution we propose is to maintain prefect conditions during the calibration eye-
tracking phase of the experiments. We were able to increase success rate of the calibration of the eye-
tracker with the participants to nearly 100% by certain hardware adjustments. However, it is hard to 
solve the mentioned gaze error programmatically. Therefore, we suggest using mobile eye-tracker of a 
higher quality during the future research. 

 

Figure 7-5: Partial solution for the eye-tracker’s gaze error which was additionally proposed and 
implemented in the automatic evaluation module. The ROI areas (red circles) are enlarged when 

searching for the gaze-ROI intersection by the evaluation algorithm. 

7.1.2.3 Data evaluation module 

We tested the implementation of the data evaluation module as proposed in this thesis. As we mentioned 
in the Subchapter 6.1.3, using dense optical flow without any modification is not enough for object 
tracking in the egocentric video, as this problematic is a research topic itself. Anyway, using dense 
optical flow ends up by error cumulation from the tracking phase and, thus, maintaining inaccurate ROI 
locations in the egocentric video. Therefore, we proposed to repeat the segmentation phase every n-th 
video frame to adjust the ROI locations in the egocentric video and eliminate the error.  

Moreover, we are often unable to run our proposed segmentation algorithm to detect ROI locations in a 
video frame due to projection of various content (e.g. dark colours). Therefore, bright colour has to 
appear on each ROI at the same time every n seconds, making it possible to run a segmentation step in 
video frames. We propose to project white colour on each ROI after each projection change at the scene, 

                                                      
13 Available on 01/05/2018 at: https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/what-
happens-during-the-eye-tracker-calibration/ 
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or at the frames marked as segmentation ones in the data file with gaze information. This can serve as a 
resetting factor for observer’s visual attention during the experiments and as a synchronization for the 
data evaluation module with projection sequence, too. The proposed method was implemented and was 
proved as working in the pilot experiments described in the next Subchapter. However, due to the 
accuracy error of the eye-tracker, making automatic data evaluation possible only in rare cases, it was 
not used during our major experiments. 

7.2 Pilot experiments 

The first experiments with the depth influence on human visual attention were pilot experiments with 7 
participants using the first proposed projection sequence. These were held to test all the equipment and 
implemented software modules and to find out if the claims about the depth influence on human visual 
attention can be studied using the dataset created by the proposed novel method. Order of fixations of 
participants after each projection change at the scene was extracted from the data collected throughout 
the experiments. We encountered again a significant error in the gaze data obtained using the SMI eye-
tracker (as stated in previous Subchapters). Therefore, automatically evaluated data were in most cases 
corrected by human interaction and some of them were evaluated manually. The reason is visualized on 
Figure 7-6. 

  

Figure 7-6 Captures of the egocentric video frames (with gaze written in as a red dot) at the same 
moment during the experiments with two different participants. The capture on the left side visualizes 
decent quality of the obtained gaze data while the capture on the right side visualizes bad quality of the 

gaze data. Both participants are looking at the closer ROI with projected face. 

We are providing visualizations of participants first fixation ratio after projection change at the scene 
occurred (Figures 7-7 – 7-10). First fixations ratio is expressed in percentage and grouped by three types 
of the projection sequence changes (see the first projection sequence proposal in the Subchapter 6.2.3). 
We can discuss, regarding the obtained data, that distribution of ROI’s saliency in similar depths is 
approximately evenly distributed (Figure 7-8). On the other hand, distribution of saliency of ROIs which 
depth is significantly different is not balanced (Figure 7-7) and invokes an assumption that objects closer 
to the observer are more salient. The findings and first results prove our first claim that depth plays 
significant role as an aspect of human visual attention and further research of depth influence on the 
visual attention is relevant. 

We can observe from the first results that first fixations of participants may be in relation with the type 
of change at the scene (either change in colour, texture presence or face presence). Slight changes in 
colour were surprisingly more salient in greater distance from the observer in comparison to texture or 
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face projection changes in same distances. This fact, however, may be only a coincidence caused by 
small dataset. Face and texture changes on ROIs were significantly more salient in distances closer to 
the participant when changes on two ROIs occurred. This can be clearly seen on Figures 7-9 and 7-10. 
Concurrency of changes on three ROIs proved the assumption that any change closer to participant was 
the most salient one and the saliency of changes on the scene were decreasing with the distance from 
the observer. This can prove our second claim that depth influence on the human visual attention can be 
approximated as a continuous function (Olešová, 2016) and the exact relation of the depth influence and 
the saliency is relevant for further research. Moreover, as stated before, saliency of the same objects in 
similar distances from the observer are approximately evenly distributed and balanced (Figure 7-9).  

 

Figure 7-7 First fixations ratio after concurrent changes on two ROIs at significantly different depths 
occurred. Type of change is expressed as colour of the column in the bar chart. Generally, we can 

observe that ROI closer to the observer was more salient. Moreover, type of the change on the scene 
may correlate with its objective saliency which is indifferent on the depth of the scene. 

 

 

Figure 7-8 First fixations ratio after concurrent changes on two ROIs at similar depths occurred. 
Generally, the distribution of first fixations is more balanced. However, the aspect of the type of 

change at the scene is very strong. 
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Figure 7-9 First fixations ratio after concurrent changes on three ROIs occurred. One ROI was in the 
depth close to the observer and the other ones were in different, further depths. Saliency in the diagram 

on the right is more evenly distributed than in the right one. This may be the consequence of similar 
depths of two of the ROIs affected by the projection in the results provided by the right diagram. 

 

Figure 7-10 First fixations ratio after concurrent changes on three ROIs occurred. One ROI was in the 
depth close to the observer and the other ones were in different further depths. It can be clearly 

noticed, that the ROI closest to the observer attracted the observer’s attention in most cases. 

In addition, we have to mention that results of first fixations ratio on Figures 7-7 – 7-10 may be 
influenced by memory factors. The changing colour tone, texture and projected face could have been 
memorized from occurrences at the scene before, as the order of projection sequence was corresponding 
with order in the Table 6-1. This means that top-level factors might have influenced participant’s visual 
attention, and these were dominating instead of bottom-up factors in our results. Moreover, the dataset 
is too small to conclude any further claims from the findings summed up in the previous paragraphs. 
We tested our software modules which were reliable and identified shortfalls of the hardware we are 
using (mainly the accuracy and calibration performance of the eye-tracker). The precision of the eye-
tracking hardware is a true limitation for the user studies as the hardware is very specific, expensive, 
and cannot be easily replaced.  

We revised the module proposals to even better match the requirements and mastered the projection 
sequence to better match our research goals in research of depth as the aspect of human visual attention. 
Summing the results up, we obtained the indicators saying that our research and our claims are relevant, 
and we obtained first results of depth influence on the visual attention which we expect to be proved in 
the extensive major experiments. 
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7.3 Major experiments 

We held the major experiments with the same laboratory setup as proposed in the thesis and verified in 
the pilot experiments. The only difference was the refined projection sequence which was used (the 
second one mentioned in the Subchapter 6.2.3). There was big amount of the data obtained throughout 
the major experiments that took place during three full days in the laboratory. The experiments were 
more exhausting and time-consuming comparing to the pilot ones while the projection sequence 
consisted of three parts with complete combinations of concurrent changes at the scene. We also did our 
best to calibrate the eye-tracker with each of the participants as thoroughly as possible to produce a 
novel dataset of a high quality. Time spent with one participant was, therefore, approximately 15 minutes 
of which approximately 8 minutes were related to monitoring their visual attention while the projection 
sequence took place. 

We created the novel dataset (contents described in the Section 5.1.4) from the data obtained by 
conducting the user studies with 37 participants. Part of the information relevant for our thesis and 
carried by the dataset was evaluated during studying the depth influence on human visual attention. We 
evaluated observer's first fixation on certain ROI immediately after projection change at the scene 
occurred. Other information about visual attention of the observer (i.e. duration of the first fixation, its 
delay after the change on the scene) are not considered, yet. They are too complex for evaluation and 
can be included in the future research. Moreover, we take into account only the first part of the projection 
sequence involved in the experiments (projection of a white colour on two ROIs at the same time). This 
evaluation approach is based on findings from the pilot experiments where more complex changes on 
the scene like colour tint change or face presence means significant influence of other aspects on the 
observer’s visual attention. These aspects were interfering with the aspect which is subject of our 
research- depth of the objects at the scene. Further parts of the projection sequence were included in the 
experiments to provide more extensive dataset for possible future research of the human visual attention 
from the egocentric perspective of view. 

During the evaluation process, each ROI was compared with each other in the means of the first fixation 
ratio after the concurrent change on the scene occurred (as proposed in the Subchapter 6.2.3). The ratio 
is expressed as a percentage value. Visualizations of the comparison of the all the ROIs in certain depth 
with every other ROI are on Figures 7-11 – 7-15. There can be clearly distinguished more salient ROIs 
with comparison to the other ones (e.g. ROI in the depth of 4.24m with very high fixation ratio 
comparing to each other ROI). 

 

Figure 7-11 First fixations ratio (in percentage) on the ROI in the depth of 1.80 metres (left) and 2.50 
metres (right) in comparison with every other ROI after concurrent change on the scene occurred.  

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.056.085.144.243.352.50

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.056.085.144.243.351.80

Concurrent ROI depth [m]



60 
 

 

Figure 7-12 First fixations ratio (in percentage) on the ROI in the depth of 3.35 metres (left) and 4.24 
metres (right) in comparison with every other ROI after concurrent change on the scene occurred. 

 

Figure 7-13 First fixations ratio (in percentage) on the ROI in the depth of 5.14 metres (left) and 6.08 
metres (right) in comparison with every other ROI after concurrent change on the scene occurred. 

 

Figure 7-14 First fixations ratio (in percentage) on the ROI in the depth of 7.05 metres (left) and 7.71 
metres (right) in comparison with every other ROI after concurrent change on the scene occurred. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.056.085.144.242.501.80

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.056.085.143.352.501.80

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.056.084.243.352.501.80

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.717.055.144.243.352.501.80

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.716.085.144.243.352.501.80

Concurrent ROI depth [m]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

9.018.507.056.085.144.243.352.501.80

Concurrent ROI depth [m]



61 
 

 

Figure 7-15 First fixations ratio (in percentage) on the ROI in the depth of 8.50 metres (left) and 9.01 
metres (right) in comparison with every other ROI after concurrent change on the scene occurred. 

Considering that concurrent changes on two ROIs are evaluated in the statistics we claim that the first 
fixations ratio of 50% refers to a pure chance (each of the two ROIs have attracted the same amount of 
first fixations of the observers). Thus, we cannot conclude anything about the relation of the ROI's 
saliency and the distance of the ROI from the observer. Subsequently, we claim that any percentage of 
first fixations over (or below) 50% means that there may be a relation of the ROI's saliency and the 
distance of the ROI from the observer. In the case of percentage value of the first fixations over 50% we 
speak about a positive relation: saliency of the ROI in certain depth is higher in comparison with the 
other one in different depth. On the other hand, in the case of percentage value of first fixations below 
50% we speak about a negative relation- saliency of the ROI in certain depth is lower in comparison 
with the other one in different depth. Therefore, we introduce our own metrics- depth score- for 
determining impact of the ROI depth on its saliency. The metric is used for our own statistical and 
evaluation purposes and to support some of our claims. Depth score is simply defined as a fixation 
ratio’s percentage value normalized to the interval <0;1> from which the normalized value of a pure 
chance is subtracted or added: 𝑠𝑐𝑜𝑟𝑒′ =  𝑛𝑜𝑟𝑚(𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒);  𝑠𝑐𝑜𝑟𝑒′ ∈  < 0; 1 >   𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒′ ± 0,5 . 

The operation of subtraction or addition depends on the desired range of the depth score and on the 
visualization or application the score is used for. The subtraction shuffles range of the depth scores to 
the interval <-0,5;0,5>. This range is good for visualization of collision table, comparing depth score 
of every ROI with each other (Table 7-1). 
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Table 7-1 Collision table of the depth scores based on the visual attention data collected during the 
extensive user studies with 37 participants. The table should be read from the left to the right. There is 

a strong trend in the depth score data forming the illusionary diagonals. Thus, depth perception 
patterns are proved to exist and they form strong aspects influencing the visual attention. 

We can make some conclusions based on the analysis of the provided visualization. The most important 
conclusion is that depth plays definitely a significant role as an aspect of the human visual attention as 
there are strong patterns of depth visual perception based on visual analysis of the collision table. We 
can prove this claim by the fact that the values of the depth scores do not converge to zero and vary in 
the whole interval <-0,5;0,5> and there is a strong trend in the depth scores, forming the illusionary 
diagonals.  

We can observe the trends in the score values from the visualization. Depth scores under the diagonal 
from the top-left corner are positive, looking at them from the left-hand-side to the right-hand-side. This 
means that the objects closer to the observer are more salient in relation to their depth than the distant 
ones. In other words, the saliency of the objects at the scene was decreasing with their distance from the 
observer. However, this is not true about the objects too close to the observer. This can be clearly seen 
by scores of the ROIs too close to the observer, namely the first three one at depths of 1,80 m, 2,30 m 
and 3,35 m. They were more salient than the farthest ROIs, but less salient as less distant ROIs farther 
from them.  

This leads us to an assumption, that human visual attention assigns the highest saliency to objects in 
certain depth at the scene. We introduce this phenomenon as the most salient depth. The saliency of the 
objects is then decreasing with the distance of the objects from the most salient depth. This assumption 
is supported by Figure 7-16 displaying the average scores of all the ROIs in different depths computed 
from the collision table (the average values are normalized to the interval <0,5;1,5>). 
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Figure 7-16 Average depth saliency scores computed as the statistical mean of ROI scores against each 
other ROI at various depths (visualized in Table 7-1). The most salient ROI and, thus, the most salient 

depth was the one in approximately 4.24 metres from the observer. Saliency of the objects in other 
depths were significantly decreasing with the distance from the most salient depth. The scores are 

normalized to the interval <0.5;1.5>. 

7.4 Depth influence on human visual attention 

The average depth saliency scores on Figure 7-16 carry information about the statistically average 
saliency of the object in certain depth based on the ground-truth data. The average depth difference 
between ROIs was 72.1 centimetres which refers to sampling frequency of the average depth score curve 
on Figure 7-16. The connected curve forms the basis of our novel depth saliency coefficient 
approximation. The approximation can be derived by defining a continuous, connected function 
converging to the ground-truth of the observed data. Depth saliency coefficient expressed by a 
continuous function is then applicable as a weighting factor on the existing saliency models when the 
information about depth of the scene is available. The conversion of our findings about the depth 
influence on human visual attention from the egocentric perspective to the camera perspective of the 
existing saliency models is the ultimate goal of our research. It connects our novel proposed approach 
to visual attention research with the common, traditional approaches meaning more significant 
contribution to the area of visual attention modelling.  

The approximation of general depth saliency coefficient based on the ground truth of obtained data 
should be a connected function defined in the range of (0; ∞) meters where the infinity is just a 
mathematical generalization. In praxis, the range is upper-bounded by human sight range in meters 
which varies from person to person. Research work of Olešová (Olešová, 2016) concludes 
approximation of depth influence on the human visual attention as a polynomial function of the third 
order (see Subchapter 4.1.2). This representation has many limitations among which the biggest are: 
small range of depths on which the function can be applied (the range is approximately <0.5; 3.5> 
meters) and low accuracy of the depth influence as the polynomic curve ignores the peaks in the visual 
attention ground truth. 
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We decided to approximate introduced depth saliency coefficient as a conditional continuous function. 
This representation was chosen to preserve significant peek in the range of the most salient depth in the 
ground truth data and to better reflect gradual descend of the coefficient in relation with the distance 
from the most salient depth. We choose two exponential functions with Euler number as a basis with 
intersection in the most salient depth of 4.24 metres to model the slopes on both sides of the most salient 
depth. The exponential approximation of the ground truth data is visualized on Figure 7-17 as the data 
trendlines and the whole function is visualized in wider range on Figure 7-18. 

 

Figure 7-17 Depth saliency coefficient normalized to the range <0.5; 1.5> with the trendlines of 
continuous conditional function approximating the ground truth of visual attention data obtained 

during the user studies. 

We can define a connected continuous conditional function of the depth saliency coefficient using the 
equations of the exponential functions approximated on Figure 7-17 above. We introduce the depth 
saliency coefficient function as: 

𝑦 = { 710 𝑒115854𝑥,     𝑖𝑓 𝑥∈(0; 4.24)9150 𝑒−46509 𝑥,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where x is the depth in meters and y is the depth saliency coefficient relative to the depth. The depth 
saliency coefficient function is visualized on Figure 7-18 in the range (0; 60>. It is obvious that we 
made a step forward in the depth-saliency function definition and approximated the depth-saliency 
coefficient for further depths than the observed ones during the major experiments. We have to 
emphasize that the function trend in the further depths is only an assumption and a forecast. Anyway, 
we overcame the shortfall of the depth range limitation of depth influence on visual attention as we had 
enough data to make the forecasting possible. Moreover, we assume that the trendline should possibly 
match the influence of depth on visual saliency even in more further depths while the trend of the 
function seems very promising. The function converges to zero from the depth of approximately 60 
metres which is a veracious assumption that can be proved in the real scenes with great variety of depths 
in the future. 
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Figure 7-18 Visualization of the most important portion of the proposed depth saliency coefficient 
function. The function definitions are listed below the trendline (for the interval (0;4.24>) and above 
the trendline (for the interval (4.24; ∞)). Notice, that the function converges to zero from the depth of 

approximately 60 metres, reflecting the expected coefficient function behaviour. 

7.5 Depth saliency coefficient evaluation 

We evaluated proposed depth saliency coefficient applied on the existing saliency model proposed by 
Olešová (Olešová, 2016). We chose this model because of similar approach of depth incorporation into 
the saliency modelling as we propose in this thesis and because of comparison possibilities with previous 
related work. We incorporated our depth saliency coefficient to the existing model with depth contrast 
by: 

• weighting the depth contrast coefficient of the superpixel by depth saliency contrast using mean 
superpixel’s depth (model further referenced as DC+SCC) 

• weighting each saliency map value by depth saliency coefficient using depth information at each 
point of the image (model further referenced as DC+SC). 

For each of the depth saliency coefficient incorporation methods we created a novel saliency model. 
There were three other saliency models proposed by Olešová that were used for results comparison (all 
described in Olešová, 2016): 

• model with no depth information incorporation (model further referenced as “no depth”), 
• model with depth contrast only (model further referenced as DC), 
• model with depth contrast and weighting of each saliency map value by the coefficient of depth 

influence on the visual attention, proposed by Olešová, using depth information at each point of 
the image (model further referenced as DC+OC). 
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We evaluated these models on the complete NUS-3D saliency dataset (Lang et al., 2012). More details 
about the dataset are provided in the Subchapter 4.1.3. The software module implemented for the 
evaluation purposes by Olešová (Olešová, 2016) was reused and modified for our model evaluation 
needs. Modification included support for whole dataset evaluation at once, computation of evaluation 
statistics over the complete dataset, integration with software module gSLICr for SLIC superpixel 
computation on graphic chip proposed by Birkus (Birkus, 2015) and corrections of evaluation formulas 
(general ROC/AUC formula replaced by the more widely used AUC-Judd (Judd et al., 2012)). Saliency 
map was generated by each of the mentioned models for each of the 600 images with real scenes in the 
dataset accompanied with the depth maps captured by Kinect device. The ground-truth images with 
fixation information for each 3-D image in the dataset were used to measure the evaluation metrics 
described in the following subchapter. 

7.5.1 Evaluation metrics 

We evaluated the visual attention models by a few common metrics for saliency model evaluation. We 
chose our evaluation metrics according to the paper by Bylinskii (Bylinskii et al., 2016).  

7.5.1.1 Area under the ROC curve 

Our key metrics for the model evaluation are the ones based on the receiver operating characteristic 
(ROC) which is the most widely used method to evaluate and compare saliency models. There is a 
measure strongly related to ROC called the area under the curve (AUC) which is considered in our 
evaluation, as well.  

Considering the saliency model as a binary classifier at different thresholds of saliency values, the model 
can be evaluated by the ROC metrics. Typical binary classifier characteristics are true-positive (RTP) and 
false-positive rates (RFP) summing up its performance. These rates are defined as: 𝑅𝐹𝑃 =  𝐹𝑃𝐹𝑃+𝑇𝑁 , 

𝑅𝑇𝑃 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁   
where TP (true-positive) denotes salient and fixated pixel, TN (true-negative) denotes non-salient and 
non-fixated pixel, FP (false-positive) denotes salient and non-fixated pixel, FN (false-negative) denotes 
non-salient and fixated pixel. The ROC curve means the trade-off between RFP and RTP at various 
thresholds. This trade-off can be easily visualized as on Figure 7-19. The higher RTP for every RFP value 
is, the better the model scores. 
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Figure 7-19: ROC curves from the evaluation of proposed model in the master thesis of Olešová 
(Olešová, 2016). Each ROC curve represents one saliency model performance. ND means ”no depth” 
module, DC means depth-contrast module and ODC means depth contrast module enhanced by the 

depth-saliency function proposed by Olešová. 

The AUC metric is the area under the ROC curve which better summarizes the mentioned RTP - RFP 

trade-off and describes the model score as a single value. It may be computed as an integral of the trade-
off function in the range <0;1> or simply as an approximation of the area under the curve. The 
approximation sums up the areas under the discrete tuples of the trade-off values and is accurate enough 
for our evaluation purposes.  

An ideal saliency model, perfectly predicting the saliency values, should have the AUC value equal to 
one. Completely random saliency model, not able to distinguish saliency better than the random 
distribution of saliency values, has the AUC value equal to one half (baseline on Figure 7-19). Practical 
meaning of the AUC metric may be in praxis interpreted as a task for the model when given two locations 
the model has to choose the one corresponding to fixation (Bylinskii et al., 2016).  

7.5.1.2 Normalized scan-path saliency 

Different metric for more complex model evaluation is normalized scan-path saliency metric (NSS). 
With the help of a simple interpretation of the metric by Bylinskii, we can say that NSS is the average 
normalized saliency at fixation locations:  

NSS(P, QB )  =  1𝑁 ∑ 𝑃𝑖̅𝑖 × 𝑄𝑖𝐵 

where P is the saliency map, QB is the ground-truth map of fixation locations and N is the number of 
fixated pixels (Bylinskii, 2016). 
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7.5.2 Evaluation results 

We evaluated our visual attention models and the comparative state-of-the-art ones described in the 
Subchapters 7.4 and 7.5 using the metrics described in the Subchapter 7.5.1. The ROC curves of the 
visual attention model results on the complete NUS-3D saliency dataset are visualized on Figure 7-20. 
We can see that the ROC curves, for models proposed by Olešová, differ from the ones on Figure 7-19 
in the previous subchapter. The difference is caused by our decision to use the official published AUC-
Judd ROC metrics (Judd et al., 2012), rather than the AUC implementation by Olešová (Olešová, 2016). 
The AUC-Judd scores and the NSS metric comparisons are visualized side-by-side on Figure 7-21.  

 

Figure 7-20 ROC curves of the five evaluated visual attention models of which two are ours, 
implementing the proposed depth saliency coefficient (DC+SCC and DC+CS). Three other models 
evaluated for comparison purposes (Olešová, 2016) are long-dashed and baseline of pure random 

model is black-dotted. 
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Figure 7-21 Normalized saliency scan-path and AUC-Judd metrics (Judd et al., 2012) visualized for 
each of the evaluated visual attention models. Two of the models (DC+SSC, DC+SC) implement our 

proposed depth saliency coefficient, others are listed for comparison. 

We can see from the provided ROC curve diagram on Figure 7-20 that nearly all the evaluated models 
have better results than the baseline, meaning a model returning fully randomized distribution. The worst 
results encountered were the one of the depth contrast saliency model enhanced with the depth influence 
function proposed by Olešová (DC+OC). Resulting curve of the model is even below the curve of 
saliency model where the depth information is not incorporated at all. This means that the proposed 
function by Olešová was not accurate enough to provide good results on the evaluation dataset. We have 
to emphasize a significant step forward in the depth-saliency function modelling as our proposed models 
enhanced with the depth saliency coefficient both outperforms the model incorporating depth influence 
function proposed by Olešová.  

Another important comparison milestone for our evaluation is the mentioned model where the depth 
information is not incorporated at all. Our goal was to outperform this one and not to score worse because 
of our claim that depth plays significant role as an aspect of human visual attention. The goal was nearly 
achieved by one of our models – the depth contrast model enhanced with weighting each saliency map 
value by depth saliency coefficient using depth information at each point of the image (DC+SC). The 
ours DC+SCC model scored worse due to considering mean superpixel depth during the saliency 
coefficient computation which may not be accurate in most cases. 

Looking at the AUC-Judd score visualization on Figure 7-21, we can say that the performance of the 
models was nearly equivalent. However, the DC+SC provided worse results as the basis for this model 
before the depth enhancement- the depth contrast one (DC). The results are worse by only approximately 
0.02 of AUC-Judd score which is a very little difference that can be considered as a tie of the results. 
This implies that we were not able to enhance performance where the depth information was already 
implemented in a relative way. We, however did not make the results worse. By looking at the 
histograms of AUC-Judd scores evaluated on the dataset (Figures 7-22 and 7-23), we can say that our 
proposed model has nearly a normal distribution of scores, unlike the DC model which has the 
distribution more concentrated around the mean value of 0.5981 and has some outliers with very low 
scores. Therefore, we state that we successfully normalized the DC model performance on the dataset 
with our enhancement. 
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Figure 7-22 Histogram of AUC-Judd scores by our proposed DC+SC model on the NUS-3D dataset. 
The histogram shows nearly normal Gaussian distribution of the scores. 

 

Figure 7-23 Histogram of AUC-Judd scores by compared DC model (proposed by Olešová) on the 
NUS-3D dataset. The histogram shows unequally distributed scores with some outliers. 

We analysed the evaluation outputs of our best performing model- the DC+SC one. By visual analysis 
with the help of AUC-Judd score chart for the whole dataset, we made some assumptions on the aspects 
that may influence the results of our model. We can see on Figure 7-24 that our model was able to 
perform very good on certain images (AUC-Judd score above 0.85) and was enhancing the DC model 
significantly. This was the case when both our basis DC model provided satisfactory results and the 
depth map of the scene was accurate. One can also spot that reliable results were achieved indoors with 
the scenery depth range approximately matching the one of our laboratory where the major experiment 
took place. This could be because of best results of Kinect depth maps in such conditions but also 
because of the depth saliency coefficient variance on the depth range of the scene.  

The first possible reason- quality of the Kinect’s depth map- influenced the results of our model on the 
dataset significantly. We consider part of the dataset as inappropriate for publishing along with the depth 
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map as the depth map was captured in sceneries with the depth range significantly out of the Kinect 
depth map range (scenery range from 0 to 50 meters in some cases; Kinect depth map range of 
approximately 0.4 to 8 meters with certain inaccuracies from about 4 meters14). The information about 
depth of the scene is essential source of information for our proposed depth saliency coefficient. The 
weak side of the NUS-3D dataset is, however, the depth information captured by Kinect and stored as 
grayscale images with 8-bit depth. The 8-bit resolution with no additional information about each of the 
depth maps (depth range in the depth map, calibration value, etc.) makes the depth values only 
informative, rather than exact for such a computation as our depth saliency coefficient. Unfortunately, 
datasets with the exact depth information captured by high quality devices are not available, nowadays. 
Therefore, we cannot provide the evaluation results with higher confidence than just the informative and 
approximative one. The example of unusable depth maps in the NUS-3D dataset are visualized on Figure 
7-26. 

The second plausible reason for our enhanced model scores- depth saliency coefficient variance on the 
depth range of the scene- is a wider research problematic that resulted in our assumption that we state 
as one of the conclusions in our work. The most salient depth exists, and it might be greatly influenced 
by the depth range of the scene. Thus, further research should be focused on the scene’s depth range 
influence on the most salient depth and its application on the existing models to make them invariant on 
the scene size. The inaccurate saliency maps, partially due to the various depth ranges of the scenes, are 
captured on Figure 7-25. 

There are a few other factors that have certain impact on the evaluation results of our enhanced visual 
attention models that are listed in this subchapter. One of them is the reliability of the visual attention 
model that we took as the basis for our enhanced model including weighting by the depth saliency 
coefficient. The output of the DC model is far not as good as the current state-of-the-art visual attention 
models and is not reliable in many cases, with scores that are often worse than the baseline (in 
approximately 1/3 cases as on Figure 7-23). The fact is, that depth saliency coefficient cannot improve 
these inaccurate results in a significant way and, thus, is not scoring better on at least 1/3 of the dataset. 
The example of bad scoring DC model and, hence, bad scoring ours, enhanced model is visualized on 
Figure 7-25. As we stated before, the DC model was chosen as the basis for our enhanced models 
because of the comparison purposes with the previous work we built upon. Hence, we should implement 
our depth saliency coefficient in currently best saliency models (these are listed in MIT saliency 
benchmark15) for more accurate and reliable evaluation and results. The best model’s implementations 
are, however, not public in most cases. 

Overall, we conclude, regarding the evaluation results, that they are informative, approximative, and 
serve as a comparison with the previous work we built upon and as a proof of depth saliency coefficient 
relevancy when applied on the existing saliency model. Our evaluation shortfall is the strong 
dependency of our proposed model enhancement on reliable results of the existing saliency model and 
on the accurate information about the depth of the scene. Moreover, we claim that there are no 
possibilities to evaluate the depth saliency coefficient in the environments it was proposed for (real 
environments), nowadays. Datasets for studying human visual attention in real environments from the 
egocentric perspective of view, including the depth information, are not available these days (except the 
novel dataset used for depth saliency coefficient proposal).  

                                                      
14 Available on 21/04/2018 at: https://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges 
15 Available on 22/04/2018 at: http://saliency.mit.edu/results_mit300.html 
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Image DC DC+SC Ground truth 

 

Figure 7-24 Saliency maps generated from the input image (a) by the DC model (b), DC+SC model (c) 
and the ground truth of human fixations on the stereoscopic 3-D image (d). The depth saliency 

coefficient improved the accuracy of the DC model significantly. Even better results may be achieved 
if we would build upon a reliable saliency module and would have accurate depth information. 
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Image DC DC+SC Ground truth 

 

Figure 7-25 Saliency maps generated from the input image (a) by the DC model (b), DC+SC model (c) 
and the ground-truth of human fixations on the stereoscopic 3-D image (d). We can see that the depth 
saliency coefficient does not perform well in the scenes with different depth range than the one of the 
laboratory where our research was held (the first and second image). Influence of the depth range of 
the scene on the depth saliency coefficient is an open research topic. Moreover, our enhancement of 
the DC module does not perform well if the results from the base model are not accurate enough (the 

third and fourth image). 
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Image Depth map DC DC+SC 

 

Figure 7-26 Saliency maps generated from the input image (a) and the depth map (b) by the DC model 
(c), DC+SC model (d). We can see that the depth saliency coefficient is directly dependent on the 

accurate depth information of the scene. However, the depth information for some images in the NUS-
3D dataset is unusable and mispresent the results of our proposed module. 
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8 Conclusions 

We provided the analysis on the theory base related to human visual attention in the analytical part of 
this thesis. We focused the analysis on visual attention modelling and its techniques and approaches to 
study the human visual attention from the technical point of view. We thoroughly studied numerous 
state-of-the-art research papers related to the visual attention modelling. We chose a few strongly related 
papers to this thesis and described them in the state-of-the-art part of the thesis which we further built 
upon. We emphasized novelties and trends in the visual attention modelling and pointed out open topics 
related to the visual attention which are under active research, nowadays. Based on the knowledge 
obtained from the analytical part of our work, we summarized the knowledge we built upon to set goals 
and state assumptions for our research. 

We proposed a novel method to conduct user studies for the research of visual attention in real world 
environments and introduced a new approach to study visual attention on a real scene in a laboratory 
with possibility of dynamic changes at the scene. We proposed our solution as an automated and 
adjustable methods including the user study methodology and the user study setup proposal. Our 
proposal introduces repeatable, scalable and versatile user studies with human visual attention in real 
environments, suitable not only for this thesis but also for future research of various aspects affecting 
human visual attention in everyday life. To achieve such a goal, we introduced several own procedures, 
algorithms and modifications of the existing ones using knowledge and principles of computer vision.   

Our research method proposal, including software modules necessary for supporting the user studies, 
were implemented, tested during numerous experiments and used for extensive user studies. We held 
the major experiments following our proposed method in a laboratory with 37 participants to create a 
novel dataset for further research of the human visual attention in real environments from the egocentric 
perspective of view. Using the created dataset, we focused our research on the aspect greatly influencing 
visual attention from the perspective of the observer in real environments-  depth of the scene. 

We summed up the results of our research by statistical evaluation of the first fixations of the observers 
after occurrence of dynamic changes at the scene. Results of the evaluation are visualized and discussed. 
Our research supports the claim that depth plays significant role as the aspect greatly influencing human 
visual attention. We claim that the influence can be approximated as a so-called depth saliency 
coefficient applicable on existing models of human visual attention. Moreover, we claim that there exists 
the novel phenomenon called the most salient depth- range of the distances from the observer where 
objects have the highest saliency for the observer. The saliency of the objects then decreases 
significantly with their distance from the most salient depth.  

The results of the depth saliency coefficient applied on the state-of-the-art saliency model, considering 
the saliency from the camera perspective, are summed up in the last chapter of this thesis. We claim that 
we were able to define the absolute depth influence on human visual attention better than any of the 
known state-of-the-art models. The best scoring among our proposed models was the depth contrast 
model enhanced with the depth saliency coefficient (incorporating originally only the relative depth of 
the captured image). The results of our models were satisfying and could have been even better if the 
depth saliency coefficient was applied on more reliable visual attention model and evaluated on the 
dataset with high quality information about the depth of the scene, or on the dataset studying human 
visual attention in real environments. Unfortunately, this kind of dataset is not available, nowadays, and 
the one created by us is a novelty in the field of the visual attention modelling.  
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We assume that application of the knowledge in this thesis on the existing models of visual attention 
will produce more accurate models of human visual attention and better reflect saliency of the objects 
in real environments. However, further research using our proposed method is necessary to prove our 
assumption. The proposed depth saliency coefficient should be applied on a reliable saliency model and 
evaluated on the dataset of a higher quality, mainly speaking about the depth information and ground 
truth data better reflecting observations of the scene in reality. Moreover, further extensive user studies 
following our research method proposal could lead to novel knowledge about human visual attention 
and may denote how to better incorporate knowledge from such a research into the existing saliency 
models. In the end, we claim that the most salient depth exists at a scene and that it might be greatly 
influenced by the depth range of the scene. Thus, future research may be focused on the scene’s depth 
range influence on the most salient depth and its application on the existing models to make them 
invariant on the scene size. 
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