
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 13, 2017

ASSIGNMENT OF MASTER�S THESIS

 Title: Informed DDoS mitigation based on reputation

 Student: Bc. Tomáš Jánský

 Supervisor: Ing. Tomáš Čejka

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

Study the principles of Distributed Denial of Service (DDoS) attacks and mitigation techniques against them.
Study the current existing version of Nework Entity Reputation Database (NERD), which gathers
information about suspicious network entities and computes so called reputation score.
Design a heuristic algorithm for cleaning the network traffic containing an attack against target address,
focus on efficiency of (malicious/evil) packet discarding and number of created rules for discarding. The
algorithm should select packets for discarding with priority according to information in NERD.
Create a software prototype of the designed algorithm.
Evaluate the created algorithm with synthetically generated data sets that represent various characteristics
of DDoS attacks.
In the cooperation with the supervisor of the thesis, integrate the algorithm into a scrubbing system that is
currently implemented in CESNET, a.l.e.

References

[1] http://nerd.cesnet.cz

Master’s thesis

Informed DDoS Mitigation Based on

Reputation

Bc. Tomáš Jánský

Department of Computer Systems

Supervisor: Ing. Tomáš Čejka

May 7, 2018

Acknowledgements

I would like to thank Ing. Tomáš Čejka for guidance, counseling, advice, and
comments while writing this thesis. I would further like to express my grat-
itude to CESNET a.l.e. for providing technical resources and also to my
colleagues at Liberouter who did a great job developing the applied security
tools. A special thanks belong to Mr. Pavel Šiška from the Brno University of
Technology for providing technical support with the deployment of the scrub-
bing center. A special recognition for their mental support during my studies
deserve my family, friends, and especially my girlfriend Gabriela Karfilátová.
Last but not least, I would like to thank Mr. Hanz Zimmer whose music themes
helped me to overcome desperate times while writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 7, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Tomáš Jánský. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jánský, Tomáš. Informed DDoS Mitigation Based on Reputation. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Mezi nejrozšířenější a zároveň nejnebezpečnější síťové útoky patří bezesporu
distribuované útoky odepření služby (DDoS). Tyto útoky jsou neustálou hroz-
bou všem poskytovatelům internetového připojení a jsou schopny vyřadit
z provozu síťovou infrastrukturu i těch největších společností. Cílem těchto
útoků je zpravidla zahlcení síťového zařízení, nebo dokonce sítě samotné, po-
mocí velkého množství provozu. Následkem toho dochází k nepředvídatel-
nému zahazování síťových paketů. Obrana proti DDoS útokům na základě
rozpoznávání škodlivých paketů je obtížnou výzvou, neboť ty se od legitim-
ních paketů mnohdy liší jen minimálně. Tato práce se zabývá návrhem heuris-
tiky, která filtruje síťový provoz během DDoS útoku a využívá k tomuto účelu
znalosti tzv. reputačního skóre síťových entit. Hlavním přínosem práce je
integrace takto navržené heuristiky do zařízení pro čištění síťového provozu
vyvíjeného sdružením CESNET z.s.p.o.

Klíčová slova amplifikační DDoS, mitigace DDoS, reputační skóre, čištění
provozu, víceklíčové řazení

vii

Abstract

Network attacks, especially DoS and DDoS attacks, are a significant threat
to all providers of services or infrastructure. The most potent attacks can
paralyze even large-scale infrastructures of worldwide companies. The objec-
tive of DDoS attacks is usually to flood the target network device or even the
network itself with a large number of packets. Such attack results in nonde-
terministic discarding of network packets. DDoS mitigation strategy based on
the recognition of malicious packets is a complex task due to the similarity
between legitimate and malicious packets. This thesis proposes a design of a
mitigation heuristic which utilizes the knowledge of the so-called reputation
score of network entities. The primary objective of this thesis is to integrate
the proposed heuristic into a scrubbing center developed by CESNET a.l.e.

Keywords amplification DDoS, DDoS mitigation, reputation score, traffic
filtering, multiple-key sorting

viii

Contents

Introduction 1

1 State of the Art 3

1.1 Distributed Denial of Service Attacks 3
1.2 Related Security Tools . 14

2 Analysis and Design 19

2.1 Requirements Analysis . 19
2.2 Augmented Mitigation . 20
2.3 Data Model Overview . 24

3 Implementation 27

3.1 Acquisition of Reputation Scores 27
3.2 Reputation Score Cache . 32
3.3 Sorting Algorithms . 34

4 Testing and Evaluation 37

4.1 Evaluation Metric . 38
4.2 Test Data Presumptions . 39
4.3 RepTopN Evaluation . 41
4.4 Implementation Performance 46

Conclusion 51

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

ix

List of Figures

1.1 Intensity and number of DDoS attacks 5
1.2 Amplification DDoS attack . 12
1.3 High-level architecture of DDoS Mitigation Device 16
1.4 Example of mitigation principle by DDoS Mitigation Device 17

2.1 DDoS Mitigation Device enhanced with augmented mitigation . . 20
2.2 RepTopN principle . 22
2.3 Augmented mitigation logical model 23
2.4 Augemnted mitigation data model 25

3.1 NERD API for bulk queries . 29
3.2 Thread-safe augmented mitigation system 31
3.3 Fast Hash Table implementation 33
3.4 Counting Sort . 34

4.1 Traffic composition . 38
4.2 Uninformed and fully informed RepTopN heuristic 40
4.3 Dependence of RepTopN on the number of identified attackers . . 42
4.4 Dependence of RepTopN on the amount of malicious traffic 43
4.5 Dependence of RepTopN on the reputation score reliability 46

xi

List of Tables

1.1 Amplification factors of certain abusable protocols 13

4.1 Dependence of RepTopN on the amount of malicious traffic 44
4.2 System information . 47

xiii

Introduction

Distributed Denial of Service (DDoS) attacks are among the most dangerous
threats on the Internet because an efficient defense against them proves to
be complex and expensive. The aim of attackers is to take down a service or
even a network so it cannot be reached and used by legitimate users. There
are many different types of DDoS attacks hence every mitigation technique
addresses only a portion of them. The group of DDoS amplification attacks –
notably their mitigation – represents nowadays a significant topic of interest
of many researchers and security companies.

The overall traffic during a DDoS amplification attack consists of legit-
imate packets and malicious packets which are mostly meaningless packets
with a sole objective – to flood a targeted device or a network. The malicious
packets consume bandwidth and victim’s other resources and consequently
cause nondeterministic packet discarding. Naturally, many legitimate packets
are discarded as well. Mitigation techniques aim to decrease the traffic vol-
ume so that it does not saturate the victim’s links. However, it is necessary to
reliably distinguish between legitimate and malicious traffic to avoid the dis-
ruption of legitimate connections. This task proves to be complicated, and a
perfect method to distinguish between a legitimate and a malicious packet has
not been discovered yet. Therefore, the current approaches to the mitigation
of DDoS attacks are based on heuristics.

One of the primary objectives of this thesis is to design a new heuristic
algorithm to mitigate DDoS amplification attacks. The proposed algorithm
is supposed to discard most of the malicious traffic while trying to minimize
the impact on legitimate connections. The heuristic utilizes the knowledge of
the previous harmful behavior of network entities to accomplish mentioned
goal. The previously observed malicious behavior of a network entity can
be summarized into a single real number – formally known as the reputation
score.

The second objective of this thesis is to integrate the proposed heuristic
into a mitigation device developed by CESNET a.l.e. and replace the previous

1

Introduction

mitigation heuristic, which is insufficient. CESNET a.l.e. is an operator of
the Czech national research and education network (NREN). The system for
mitigating DDoS attacks, called DDoS Mitigation Device (DMD), is deployed
in the network CESNET2 [1], which is a backbone network allowing high traffic
rate – up to 100 Gbps.

The thesis is organized as follows: Chapter 1 introduces Distributed Denial
of Service attacks, the related state-of-the-art mitigation techniques, and also
presents security tools developed by CESNET a.l.e which are essential for com-
pleting the determined thesis objectives. Chapter 2 proposes design changes
of DMD in order to replace the previously used mitigation technique with a
new one called RepTopN. Chapter 3 focuses on describing specific implementa-
tion details of the enhanced mitigation system, especially the communication
between DMD and the reputation database. Lastly, chapter 4 pursues the
goal of evaluating the efficiency of the whole new mitigation system as well as
the mitigation efficiency of the proposed RepTopN heuristic.

2

Chapter 1

State of the Art

This chapter introduces Denial of Service (DoS) attacks (especially the dis-
tributed version – DDoS) and briefly covers the history and modern trends of
DDoS attacks. The chapter also presents a possible taxonomy of DDoS attacks
and further focuses primarily on the characterization of DDoS amplification
attacks. Research in the field of the possible defense and mitigation of DDoS
amplification attacks is summarized in Sec. 1.1.3. Last but not least, the
chapter describes the research and development of two security tools, namely:

• Network Entity Reputation Database – a reputation database de-
scribed in Sec. 1.2.1

• DDoS Mitigation Device – a scrubbing center described in Sec. 1.2.2

The both mentioned security tools are developed by CESNET a.l.e. and
are closely related to the primary objective of this thesis – the implementation
of a mitigation system based on the knowledge of reputation score of network
entities.

1.1 Distributed Denial of Service Attacks

The initiator of a cyber-attack known as Denial of Service aims to render a
service, device, or even a network unavailable for its legitimate users. There
are numerous ways for the attacker to achieve such desired state. The most
common include:

• depletion of a network resource (e.g. bandwidth) by flooding the network
with otherwise pointless packets,

• disruption of critical systems of the network infrastructure, such as Do-
main Name System (DNS) server which affects all the network users,

3

1. State of the Art

• exploitation of a specific feature or implementation bug of a protocol
or application installed on the targeted device. Some protocols can be
exploited in a way that may lead to depletion of the device resources
(e.g., operation memory, CPU time, the maximum number of opened
ports) or undefined behavior of the system (e.g., deadlock or even a
crash).

If a DoS attack originates from multiple sources, it is called Distributed
Denial of Service attack. As described in [2], DDoS attacks have two stages.

Firstly, the attacker must recruit other devices on the Internet by infecting
them with malware which serves the attacker as a backdoor to the machine
in the future. The malware typically consists of a communication unit for
receiving commands from the attacker and a control unit which executes the
commands. The infected device is called “zombie” and group of zombies forms
botnet. There are multiple ways the malware spreads to other devices to
acquire the sufficient number of zombies:

• the attacker actively scans the Internet for machines running an appli-
cation with a known security hole which would allow the attacker to
upload the malware,

• the malware spreads via another medium (e.g. USB drives), can be
downloaded directly by a careless user in the form of an email attachment
or disguise itself under the impression of a useful application,

• many devices connected to the Internet use weak or even default au-
thorization credentials. This flaw is especially the case of the Internet
of Things (IoT) devices. Recent data [3] show that the number of IoT
devices connected to the Internet was about 8.4 billion in late 2017. The
total number of connected IoT devices have increased by 31 % compared
to the number in 2016, but experts suggest that the annual growth is
most likely to rise even further due to the increasing popularity of IoT
devices, despite the related security issues. The estimated number of
IoT devices is 20 billion in 2020.

The infected device may also attempt to recruit other machines automat-
ically. Such behavior speeds up the process of acquiring a massive botnet.

The second stage is the execution stage. The attacker specifies attack
characteristics (e.g., type of the attack, duration, victim) and informs all the
infected zombies. The communication between the attacker and zombies is
not usually direct since the discovery of a single compromised machine would
disclose the whole botnet. Botnet devices utilize some legitimate communica-
tion services – such as Internet Relay Chat (IRC) – to synchronize the attack.
Usage of IRC makes the botnet particularly hard to identify since the dis-
covery of a zombie may not lead further than the identification of the IRC

4

1.1. Distributed Denial of Service Attacks

server and the channel group name. Other observed means of communica-
tion between the attacker and other zombies are Web-based (using Hypertext
Transfer Protocol requests) or P2P-based.

1.1.1 Brief Evolution and Modern Trends

Although the first DDoS attacks date back to 1996 according to [4], one of the
first notable cases of a DDoS attack which attracted the attention of general
public happened in the year 2000. A 15-year-old hacker, who called himself
MafiaBoy, launched a series of DDoS attacks and successfully managed to
bring down multiple prominent websites including Yahoo, Amazon, or CNN
for several hours [5]. The FBI identified the hacker after he repeatedly claimed
the responsibilities for the attacks in IRC chatrooms and sentenced the hacker
to one year in a juvenile detention center.

During the last couple of years, the intensity and the number of DDoS
attacks has increased noticeably. Brian Krebs also confirms this trend in the
article [6]. Brian Krebs is a respected journalist, an investigative reporter, and
the owner of Krebs on Security website covering the activities of cybercrimi-
nals. Such status makes his website a frequent target of many DDoS attacks
as depicted in 1.1.

Figure 1.1: Visualization of the size and frequency of DDoS attacks against
KrebsOnSecurity.com (source: [6])

A prominent example of the integration of IoT devices into a botnet is
the infamous Mirai botnet which was first identified in August 2016 [7]. The
Mirai botnet contained more than 400,000 devices and was offered for rent
by the creator which lead to multiple high rate DDoS attacks in the following
months. In October 2016, the DNS service provider Dyn was hit by a large-
scale Mirai attack resulting in the decommissioning of hundreds of web pages
for six hours including, for instance, Twitter or Netflix.

On February 28th, 2018, server Wired reported about a DDoS attack ex-
ceeding 1 Tbps in the article [8]. The target of the attack was the hosting
service GitHub. The attack lasted about 9 minutes and peaked at stunning

5

1. State of the Art

1.35 Tbps. GitHub managed to withstand this example of a DDoS amplifica-
tion attack – a specific type of DDoS attacks further described in Sec. 1.1.4.
Only a week later a 1.7 Tbps DDoS attack was reported in [9]. The attack
used the same pattern and was aimed at a US-based service provider. This
DDoS attack is the largest one that has ever been reported at the time of
writing this thesis.

It is evident that DDoS attacks have rapidly evolved in the last 20 years –
not only technically but also in the sense of attackers’ incentives. What began
as an attempt of individual hackers to prove themselves in the community
quickly turned into a large business. Currently, botnets are marketed as online
services which can be used to execute DDoS attacks by anybody who is willing
to pay the price in tens of dollars. According to [10, 11], the most common
motives of attackers include:

• Financial gain: This category covers the majority of attacks targeted
against corporations. The attackers are paid by corporations to attack
other competing corporations or may demand a ransom (usually in the
form of cryptocurrency, such as Bitcoin) from the victim to stop their
DDoS attack against the victim.

• Ideological belief: Attackers motivated by their ideological belief includ-
ing “hacktivist” groups, such as Anonymous which are responsible for
several significant DDoS attacks.

• Intellectual challenge: A relatively small category usually consisting of
hacking enthusiasts who try to improve their skills or prove themselves
in a community.

• Cyberwarfare: Military or terrorist organizations usually targeting gov-
ernment infrastructure of other countries. Attackers in this category
probably posses vast expertise, are well trained, and dispose of the vast
amount of resources provided by their organizations or countries.

• Cover for targeted attacks: A trend occurring more frequently in last
few years. A DDoS attack should divert attention from additional com-
promise, i.e., viruses, ransomware, and other malware.

1.1.2 Taxonomy

There are many possible classifications of DDoS attacks. Some of them are
presented by Mirkovic et al. [2], e.g., classification by the exploited weakness,
the validity of the attack source, victim type, or communication with devices
forming the botnet. What Mirkovic et al. classify as brute-force attacks, Zargar
et al. [10] further divide into smaller categories to describe individual weak-
nesses of transport and application layer protocols which can be exploited by

6

1.1. Distributed Denial of Service Attacks

the attackers to perform a DDoS flooding attack. Some of the most commonly
practiced DDoS attacks include:

L3 flooding attacks

Attacks which utilize transport layer network protocols, namely Trans-
mission Control Protocol (TCP), User Datagram Protocol (UDP), and
Internet Control Message Protocol (ICMP).

• Network flooding attacks: Attacks focused on flooding a target network
using meaningless packets, thus exhausting bandwidth of the network.
Packets of legitimate users are most likely discarded in the affected net-
work. These attacks are primitive to realize but can be highly effective.
UDP flood, which resides in sending an immense number of UDP pack-
ets on random ports of the victim, is a typical example of this category.
The victim realizes that no application listens on the specified port and
replies with an ICMP packet. If many hosts are targeted, the combina-
tion of UDP and ICMP packets can consume all bandwidth.

• Protocol exploitation flooding attacks: Attackers exploit specific features
or implementation bugs of L3 protocols to deplete specific resources of
the victim. Some TCP design features make this protocol particularly
vulnerable to exploitation. For instance, TCP SYN flood takes advan-
tage of the TCP “three-way handshake” by not initiating the TCP session
with the victim completely. Such behavior results in binding resources
of the server for a certain amount of time and may eventually deplete
all available resources of the victim. Therefore, legitimate users are not
able to establish a connection with the target server.

• Reflection-based flooding attacks: A reflector is an IP host that replies
when it receives a packet. Attackers may abuse reflectors by sending
them requests (e.g. ICMP echo request) with forged source IP address
(this technique is called IP address “spoofing”). If the attacker fills the
source IP address with the victim’s IP address, the reflector replies to the
specified forged IP address. Attackers using reflectors are much harder to
trace because, among others, a cooperation between the administrator of
the reflector and the administrator of the target device is necessary. For
instance, Smurf attack belongs to this category. The attacker broadcasts
a large number of ICMP packets in the network with victim’s spoofed
source IP address. If the devices in the network are not configured
to ignore such packets, they direct their response to the victim, thus
exhausting its resources.

• Amplification-based flooding attacks: Attacks which fall into this cate-
gory are a variation of the reflection-based attacks. The key difference
is that the response from the reflector is considerably larger than the

7

1. State of the Art

packet sent by the attacker, or the reflector sends multiple responses.
DDoS amplification attacks are the focus of this thesis; therefore, are
further elaborated in Sec. 1.1.4.

L7 flooding attacks

Attacks based on the exploitation of particular features of application
layer protocols (e.g., Session Initiation Protocol – SIP, DNS, HTTP).
These attacks focus on exhausting the victim’s resources (e.g., sockets,
CPU, memory, disk/database bandwidth, and I/O bandwidth) rather
than consumption of the network bandwidth. L7 flooding attacks are
generally harder to detect since they consume less bandwidth and the
malicious packets are almost indistinguishable from the legitimate ones.
However, the impact of these attacks is similar to those in using trans-
port layer protocols and appear to be popular among the community of
attackers.

• Reflection/amplification-based flooding attacks: The employed attack
technique is similar to the technique of reflection/amplification attacks
on the transport layer except for the exploited protocols. The most com-
mon attacks such as DNS flood and VoIP flood are thoroughly described
in Sec. 1.1.4.

• HTTP session/request flooding attacks: Attacks in this category can
be characterized with a high rate of HTTP requests oriented towards
the target HTTP server either in one or multiple sessions. The attacked
server eventually runs out of available resources due to the sheer number
of HTTP requests. Therefore, the request of legitimate users cannot be
processed or are processed with an unacceptable delay. The examples
include “excessive VERB” and “excessive VERB single session” attacks.

• HTTP Slow request/response attacks: The distinct characteristic of these
attacks is their slow communication with the HTTP server. All attacks
in this category attempt to exhaust the maximum number of opened
sockets. Attackers focus on establishing as many sessions with the HTTP
server as possible while trying to keep all the sessions in progress, so the
sockets never close. This effect can be achieved in many ways, e.g., slowly
updating the HTTP request headers (Slowloris attack), fragmenting the
request packets and sending individual fragments just before a timeout
would occur (HTTP fragmentation attack), or sending one byte of pay-
load at a time after specifying huge payload in the appropriate HTTP
header field (R-U-Dead-Yet attack).

8

1.1. Distributed Denial of Service Attacks

1.1.3 Mitigation Techniques

DDoS attacks have been known for more than 20 years. The nowadays fre-
quency of DDoS attacks prove that a reliable defense mechanism against DDoS
attacks has not been invented yet, despite the long attempt of researchers to
improve the situation. Mirkovic et al. in [2] debate the reasons why the de-
fense against DDoS attacks is difficult. The main issue is related to the design
of intermediate networks which provide best-effort packet forwarding service
but leave the deployment of security features and advanced protocols to the
communication endpoints. Every network has its own security policies since
the control over the Internet is distributed. Therefore, it is not possible to
enforce network managers to accept certain security policy or deploy partic-
ular security mechanism. The situation can improve if the systems directly
connected to the Internet are up-to-date and follow current security recom-
mendations. However, the reality is opposite which is proven by the number
of vulnerabilities from which IoT devices currently suffer. Lastly, DDoS at-
tacks are infamous because of the anonymity of attacker due to the IP address
“spoofing” technique (forging the IP address of the packet originator).

Specific techniques to identify attackers with spoofed IP address have been
summarized in [12]. A commonly used technique is Hop-by-Hop IP Traceback
which resides in accessing the router closest to the victim and determining the
upstream router which is forwarding the malicious packets. It is possible to
recursively discover the attack originator if the originator is located inside the
administrated network. The network borders are the main limitation of such
techniques. If the attack originates beyond the borders of the Internet Service
Provider (ISP), cooperation between multiple ISPs is necessary to trace the
source of the attack, and that is only possible if all ISPs possess the necessary
traceback technology. Even if one or more sources of the attack are discovered,
they are most likely just infected devices, and the identity of the master device
controlling discovered zombies remains unknown.

DDoS defense mechanisms usually consist of a detection heuristic and a
mitigation strategy in case an attack is detected. The options to mitigate a
DDoS attack are limited once it occurs. Mirkovic et al. in [2] present four
basic response strategies to mitigate the ongoing attack.

• Agent Identification: Various traceback methods which rely on success-
ful identification of the actual attack source fall into this category –
such as packet marking, link testing, or Hop-by-Hop IP Traceback de-
scribed in the paragraph above. Other approaches may utilize the ac-
tual IP address of the attacker to reduce the impact of the attack. The
main arguments for using such techniques are to make the actual source
of malicious packets accountable for the actions and cleaning the at-
tacking device of any malware afterward. The disadvantages of these
mechanisms include, e.g., limited accuracy, computational and network

9

1. State of the Art

overhead, and the necessity to have a sufficient number of routers that
support traceback before it is effective.

• Rate-Limiting: Systems which utilize rate-limiting mitigation strategy
place a restriction on the maximum number of allowed packets origi-
nating from the sources which have been identified as malicious by a
certain detection heuristic. Such restriction is not necessarily imposed
on all traffic originating from the misbehaving IP address but rather on
packets carrying a specific protocol or aiming at particular ports. This
mitigation strategy is usually deployed when the outcome of the used
detection heuristic is inaccurate in characterizing the ongoing attack
precisely. The downside of this technique is that it also allows some of
the malicious traffic to reach the victim.

• Filtering: Traffic filtering completely discards unwanted traffic streams
in the network. This response to a DDoS attack might be risky because it
can accidentally disrupt connections of legitimate users if the detection
mechanism produces false positives. Dynamically configured firewalls
often utilize this strategy.

• Reconfiguration: Reconfiguration is a less popular strategy which resides
in the reconfiguration of the network topology once an attack is observed.
This strategy aims to either add more resources to the victim or to isolate
the attack machines.

Zargar et al. [10] present a classification of various DDoS detection meth-
ods based on the deployment location. It is evident that the portion of DDoS
traffic is the highest in the attack destination. Therefore, the accuracy of
DDoS detection mechanisms increases with the decreasing distance between
the deployed DDoS detection mechanism and the victim of the DDoS attack.
The authors emphasize the importance of detecting the DDoS attack as close
to its source as possible before it depletes resources of DDoS defense mecha-
nisms.

An example of source-based defense mechanism is Ingress/Egress filtering.
Ingress respectively Egress filtering is a filtering mechanism of packets with
spoofed IP addresses forwarded in respectively out of the internal network.
Such filtering can be achieved thanks to the knowledge of peering networks.
However, the mechanisms are inapplicable in transit networks and also worth-
less if the spoofed IP address resides in the valid internal/external IP address
range. Other source-based detection algorithms include, e.g., comparing both
inbound and outbound traffic to predefined models, comparing the propor-
tion of inbound and outbound traffic rate, and reverse firewall – a firewall
which limits the forwarding rate of packets that do not reply to other packets
forwarded in the other direction.

10

1.1. Distributed Denial of Service Attacks

Dozens of DDoS detection mechanisms have been already proposed. Most
of them rely either on the detection of statistical abnormalities in observed
traffic or the recognition of malicious packets.

Statistical-based approaches

A continuous observation of statistics about various aspects of the net-
work traffic can aid in discovering specific DDoS attacks which are not
characterized by the increase in traffic volume. Most of the observed
DDoS attacks have a typical pattern describable with certain statistical
abnormalities in the observed traffic. Mapping specific statistics about
ICMP, UDP, and TCP packets to a predefined model of a specific DDoS
attack may lead to identifying the nature of the attack. Having such in-
formation during an ongoing DDoS attack greatly helps in choosing the
suitable mitigation strategy.

Recognition of malicious packets

These mechanisms usually utilize various characteristics of individual
packets placed in a broader context (e.g., the amount of traffic origi-
nating from the particular IP address or the IP address behavior history)
to decide whether the packet is malicious or not. The main disadvantage
of such mechanisms is that they are partially dependent on the scale and
strength of the attacks which unfortunately may result in the depletion
of resources of the defense mechanism (e.g., CPU time or memory).

• Hop-count filtering: Most of the attackers attempt to spoof their IP
address to avoid accountability for their actions. However, IP address
spoofing can also backfire against the attackers. Such is the case of
using hop-count filtering technique which resides in storing the informa-
tion about the source IP addresses and their corresponding hop-count
when the device or network is not under attack. Afterward, during the
attack, the defense mechanism recognizes spoofed packets thanks to the
deviation between the source IP address and hop-count pair present in
the traffic and the expected value observed before. However, it is not
recommended to rely solely on this solution because attacks without the
use of IP address spoofing would carry out. Moreover, this solution may
result in disrupting legitimate connections if the topology of the network
changes.

• History-based IP filtering: These mechanisms filter inbound traffic dur-
ing a DDoS attack and usually follow one of two rules: either allow only
IP addresses which were previously seen communicating with the victim
or discard traffic of IP addresses which were previously observed par-
ticipating in other attacks. Such solutions are especially useful against
flooding attacks because it helps hosts in resource management during a

11

1. State of the Art

DDoS flooding attack. An example which falls into this category is pre-
sented by Peng et al. in [13]. Their proposed solution keeps track of IP
addresses which frequently communicate with the protected host. When
a DDoS attack occurs, the defense mechanism allows only the packets
of IP addresses which were already seen during a typical network state.
CESNET a.l.e. is developing the solution which utilizes history of mis-
behaving IP addresses which is further described in Sec. 1.2.1.

A popular way to implement destination-based defense mechanisms is to
integrate them into a scrubbing center [14]. A scrubbing center is a centralized
data cleansing station usually equipped with multiple different algorithms
utilizing deep packet inspection to detect known attacks and exploits (e.g.,
SQL injection, XSS, or DDoS). The scrubbing center is dedicated to handling
high volume DDoS floods, but it is also capable of protecting network users
from slow DDoS attacks, such as Slowloris. The scrubbing center is usually
passive, and the traffic to the scrubbing center is redirected only when an
attack is detected.

1.1.4 Amplification DDoS Attacks

Master

Botnet

IoT devices Routers

Servers

PCs

Amplification factor: 50
Reflectors & Amplificators

12x

1Mbps

1Gbps Victim

Gbps600

Figure 1.2: 600 Gbps amplification DDoS attack.

Previous section discusses some possibilities to trace a packet stream back
to its source even if the IP address is spoofed. Such packet tracing techniques
are worthless if the attacker decides to use reflectors to bounce off the attack
rather than sending the packet stream directly to the victim. A reflector is an

12

1.1. Distributed Denial of Service Attacks

Table 1.1: Amplification factors of certain abusable protocols. (Source: US-
Cert [16])

Protocol Amplification factor

Domain Name System 25 to 54
Network Time Protocol 556.9
Lightweight Directory Access Protocol 46 to 55
Steam Protocol 5.5
BitTorrent 3.8
Simple Service Discovery Protocol 30.8
Memcached 10,000 to 51,000

IP host that replies when it receives a packet. If the attacker fills the source
IP address with the victim’s IP address, the reflector replies to the specified
forged IP address. The victim does not require any traceback technique to
identify the sources of the attack since the source IP addresses present in
reflected packets are valid.

Furthermore, the response from the reflector can be considerably larger
in terms of bytes or packets than the message sent by the attacker. The
attack is therefore amplified, hence the terms amplificator and amplification
DDoS attacks. Figure 1.2 depicts the usual course of the DDoS amplification
attack. The attacker who is in control of the botnet (master) commands
devices in the botnet to target previously discovered amplificators. Every
zombie spoofs its IP address with the address of the victim. Therefore, the
amplificator aims its reply to the victim because it assumes the victim is the
host who issued the request. There are number of possible protocols which can
serve attackers’ purpose to amplify the attack. Each protocol has a different
amplification factor; however, the attacker must also find enough of vulnerable
reflectors supporting the chosen protocol to fully utilize the attack potential.
Some of the abusable protocols including the way of abuse to gain the desired
amplification effect are listed in [15]. Table 1.1 provides amplification factors
of some selected protocols.

The amplification factor ranges in the order of tens or hundreds for most
of the protocols – except for Memcached. Memcached is a distributed memory
object caching system often utilized to speed up dynamic web applications.
The misuse of improperly configured Memcached servers was the root of the
two largest DDoS attacks which are mentioned in Sec. 1.1.1. Although the
title of the most abused protocol held NTP and DNS for many years, recent
data published by Apnic [17] suggest that attackers have started to incline
to other protocols. However, the Internet consists of many obsolete devices
which support outdated protocol versions. Hence, the threat of certain attacks
is still present even though those means of abuse have already been resolved.

13

1. State of the Art

1.2 Related Security Tools

One of the contributions of this thesis is the application of reputation scores
from Network Entity Reputation Database in the scrubbing center DDoS

Mitigation Device for the purpose of informed mitigation of DDoS ampli-
fication attacks. This section briefly summarizes research about reputation
scores and discusses the relevance of the usage of reputation scores in the
scrubbing center. Furthermore, the section introduces both systems and de-
scribes their main principles.

1.2.1 Network Entity Reputation Database

It is a known fact that some network entities are more likely to attack than
others. The most likely attackers are presumably hosts infected with malware.
The affected hosts stay compromised for a certain amount of time. Thus, it is
probable to observe more security events originating from the affected hosts
until the malware is removed. The fact that the compromised hosts evince
such behavior is often used for assembling lists of known malicious IP ad-
dresses (blacklists), which are shared among the Internet community to block
the known attackers (e.g. blocking known sources of spam [18]). Moreover,
according to the articles by Shue et al. [19] or Moura [20, 21], the distribution
of malicious sources on the Internet is not uniform, and the sources exhibit
some spatiotemporal correlations. The work of Moura [21] suggests that not
only some hosts are more likely to attack than others, but the same can be
stated about larger entities (e.g., network prefixes, ISPs, and even countries).
Although his work focuses primarily on discovering the distribution of spam
sources, the presented concept of “Internet Bad Neighborhoods” can be fur-
ther generalized to other types of attacks. The spatiotemporal correlations in
other attack types (e.g., scans, ssh brute-force, syn floods) are examined by
Bartoš et al. in the study [22]. The authors discovered various correlations
even for a local network and proposed that such analysis should be the basis
for entity reputation modeling techniques.

The term reputation score was first introduced by Bartoš et al. in [23],
and is formally defined as follows:

“Reputation score of a network entity (e.g. an IP address) represents the
probability that the entity will perform a malicious activity in the near
future (e.g. next 24h), based on its past behavior and other information.”

The authors argue that – to achieve a reliable value of the reputation
score – the input of the prediction algorithm should be mainly a summary
of all detected security incidents in a past time window (e.g. a month) and
recommend the alert-sharing systems as suitable input data sources. However,
based on the previous findings regarding spatial correlations between attack-
ers, the incident history can be supplemented by various other inputs, such as

14

1.2. Related Security Tools

blacklists, geographical location, an autonomous system the entity belongs to,
or the reputation scores of other entities with the same network prefix. The
output of the prediction algorithm should be the probability that the given
entity behaves maliciously in the near future. Due to the sheer complexity of
the prediction algorithm and the number of possible factors which influences
the reputation score value, the authors’ approach utilized supervised machine
learning methods to infer the algorithm from the data. The results presented
in their work show that the created predicator accurately estimates the prob-
ability of future attacks of each evaluated entity, thus experimentally proving
that the machine learning methods are feasible for such task.

The reputation score can be utilized in various ways including, for instance,
alert prioritization or attack prediction, which are both essential methods for
coping with the increasing number of adversaries. Another possible use-case
of the reputation score is to assemble highly predictive blacklists frequently.
The size and restrictiveness of the blacklist can be controlled by the user –
either by taking a fixed number of the worst IP addresses or taking all IP
addresses with reputation score higher than a fixed threshold. Assuming the
probability estimation is accurate, it is guaranteed that such blacklist has the
highest hit count possible with the given length of the list. Such use-case of
the reputation score poses the topic of interest of this thesis – to utilize the
reputation score to identify probable attackers during a DDoS amplification
attack.

Different approaches for blacklist construction based on the evaluation of
the previous behavior of IP addresses were also proposed by various other
researchers, for instance, [24, 25].

Network Entity Reputation Database1 (NERD) is a system developed
by CESNET a.l.e. which serves as a proof of concept in the research regarding
reputation score modeling. NERD consists of two parts – the entity database
and the entity scoring. The entity database keeps information about network
entities (such as IP addresses, subnets, hostnames, autonomous systems, BGP
prefixes) that were reported as malicious by some of the contributing data
sources via a CESNET’s alert-sharing system Warden.2 However, any source
of such data is possible. The database records are further enriched by in-
formation from DNS and whois systems, various public blacklists and other
relevant databases. It aims to maintain a global database of known malicious
sources on the Internet, including all security-relevant information related to
them.

The main feature of NERD is evidently the ability to compute the reputa-
tion score for every single entity in the database to determine the probability
the entity behaves maliciously in the next 24 hours. NERD also computes

1https://nerd.cesnet.cz/
2https://warden.cesnet.cz/

15

1. State of the Art

the reputation score in different contexts, each predicting a different class of
attacks. Thus, each IP address gets assigned multiple reputations scores such
as RSscan or RSddos. NERD also aggregates the reputation score of individual
IP addresses to a reputation score of various IP address groups, such as BGP
prefixes and ASNs.

NERD is used as the source of reputation scores utilized in the proposed
mitigation heuristic since it is free and open on how it works, i.e., the list of
its data sources and methods for their processing is well documented which
may not hold for other reputation databases. However, any other reputation
system or database providing similar reputation metric may also be used for
the proposed mitigation heuristic.

1.2.2 DDoS Mitigation Device

CESNET a.l.e. has started to develop its own scrubbing center called DDoS
Mitigation Device (DMD) that can operate at 100 Gbps. The scrubbing center
is presented, for instance, in [26] or at webpage [27]. DMD is a commodity
hardware server with a dedicated network interface card equipped with an
FPGA chip. The DMD architecture is depicted in Fig. 1.3.

Card

FW

Server

SW

Select Block

Detect Control

Network

traffic

Legitimate

traffic

Logs,

stats

Figure 1.3: High-level architecture of DDoS Mitigation Device.

The FPGA chip implements fast-forwarding and filtering data plane that is
controlled by a software controller which continuously evaluates network traf-
fic parameters. As soon as a DDoS attack is detected, a heuristic algorithm
identifies offending IP addresses and the controller enables packet filtering in
FPGA immediately. The whole process of analyzing network traffic param-
eters, applying mitigation heuristic and updating filtering rules in FPGA is
called mitigation cycle, and repeats every second in the default settings.

16

1.2. Related Security Tools

DMD utilizes several heuristics to select packets that ought to be discarded
in order to protect the specified network prefixes during DDoS attacks. This
thesis is mainly focused on the mitigation heuristic for the specific family
of DDoS attacks called reflective amplification attacks which are described
in Sec. 1.1.4. In case of these attacks, the reflected packets hitting a victim
contain valid (i.e. not spoofed) source IP addresses of the reflectors. Therefore,
blocking the traffic of the particular source IP addresses is a sound strategy.
However, the crucial part is to identify only the IP addresses of the reflectors
correctly.

The approach of DMD to reflective attacks is to reduce the attack to
an acceptable intensity which can be handled by the victim server without
its outage. To this end, an operator of DMD defines a set of rules per each
protected network prefix (also called amplification rules). Such rule consists
of three parts: condition, limits and optimal traffic rates. The condition part
describes which packet can match the rule (e.g., dst_IP must match IP prefix
and dst_port number of a packet must match the dst_port number stated
by the condition). The limits define the number of packets/s or bytes/s that
must be exceeded to apply filtering of the traffic targeting the protected IP
prefix. Optimal traffic rates define the desired number of bytes/s or packets/s
the DDoS traffic should be reduced to.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 1011121314151617181920

DDoS

Legit.

Limit

Limit

Optimal

V
o

lu
m

e
 [

G
b

p
s]

Time [h]

Figure 1.4: Example of mitigation principle by DDoS Mitigation Device.

Upon the detection of a DDoS attack, the DMD mitigation algorithm
comes into play. The algorithm blocks traffic arriving from IP addresses pro-
ducing the most (by packets or by bytes) traffic, i.e., blocks top-n IP addresses
where n is selected so that the optimal traffic rate is achieved. Figure 1.4 shows

17

1. State of the Art

the application of a rule utilizing the plain top-n approach mitigation, pro-
vided the traffic of all top-n addresses belong to the attack, which is not always
the case in real-world situations. Therefore, a portion of the traffic of legit-
imate users might be discarded along with the malicious traffic in particular
situations. It is the primary objective of this thesis to design an extension of
the presented mitigation technique which would reduce this undesired effect.

18

Chapter 2

Analysis and Design

This chapter thoroughly summarizes requirements placed on the new mitiga-
tion heuristic algorithm, presents several assumed changes in the DMD design,
introduces the main idea of the new mitigation heuristic and describes in detail
the whole new mitigation process called augmented mitigation.

2.1 Requirements Analysis

Before designing a new mitigation heuristic algorithm for DDoS amplification
attacks, it is necessary to identify requirements resulting from the purpose of
the algorithm as well as from the deployment of the system. The following
requirements must be taken into consideration in the heuristic design:

• The algorithm receives data from DMD in the form of a table where
each row consists of an IP address and its contribution to the traffic.
The heuristic utilizes the reputation scores from NERD for its decision-
making process of selecting suitable IP addresses to block. The output
data consists of a list of IP addresses which packets should be discarded
used by DMD to mitigate the ongoing DDoS attack.

• The algorithm must meet time constraints to fit into a single mitigation
cycle of DMD even for DDoS attacks reaching up to 100 Gbps magnitude
(which is the current limit of the network interface card with FPGA).

• The algorithm must assume uncommon extreme scenarios such as when
the reputation scores are not present during a current mitigation cycle
(e.g. communication error with NERD) and always discard traffic de-
terministically (e.g. utilize the currently implemented top-n algorithm
as the mitigation heuristic).

• The algorithm must be easily merged with the current implementation
of DMD implemented in C programming language.

19

2. Analysis and Design

2.2 Augmented Mitigation

The proposed method is designed to work under the following conditions:

1. The source IP addresses in the DDoS attack are not spoofed.

2. The reputation score of an IP address in NERD corresponds to the
likelihood that it attacks in nearby future.

3. The IP addresses not present in NERD are assigned zero reputation
score and are considered as generally less likely to generate malicious
traffic contrary to those present in NERD.

The first condition originates from our focus on reflection attacks (other
mitigation methods are more suitable for attacks with randomly spoofed
source addresses). The other two conditions may not hold in practice if the
data in NERD are of low quality. In such case, the proposed algorithm may
give suboptimal results depending on the scale of violation of these conditions.
This issue is further elaborated in Sec. 4.3.3.

Figure 2.1: DDoS Mitigation Device enhanced with augmented mitigation.

Figure 2.1 depicts the proposed extensions to the existing mitigation sys-
tem. The main idea of DMD remains intact (described in Sec. 1.2.2). The
mitigation cycle still consists of the traffic sample selection, the creation of
a set of blocking rules based on used heuristic and the rules update in FPGA.
Only the process of creation of the set of blocking rules was modified and split
into two parts: data enrichment and RepTopN. The data enrichment stage
of the mitigation cycle handles the processing of the data sample received
from live traffic, communication with NERD and subsequent enrichment of
the traffic sample with the corresponding reputation scores. The enriched

20

2.2. Augmented Mitigation

data from this phase are passed to the next stage and processed with the Rep-
TopN heuristic. The RepTopN algorithm replaces the previously used top-n
algorithm, and unlike the top-n algorithm, RepTopN utilizes both the traffic
volume contribution and the reputation score from NERD of each IP address
present in the live traffic sample. The desired effect is to prioritize discarding
of packets from the sources with non-zero reputation score and thus possibly
preserve legitimate connections, which would otherwise be disrupted.

2.2.1 RepTopN Heuristic

DMD previously blocked the most contributing IP addresses during an attack.
Traffic filtering based solely on the traffic volume contribution of each IP
address is not efficient in certain cases. If the attack consists of many attackers
and the volume contribution of each attacker is not significant, the attackers
might not be sufficiently distinguishable from the perspective of the traffic
volume contribution. In such cases when the number of attackers is immense,
the probability of disrupting legitimate communication rises considerably even
to the point in which the most of the discarded traffic consists of legitimate
traffic.

The main idea behind the RepTopN heuristic is that the traffic sources
which were recently observed performing a malicious activity are more likely
to attack again than the sources with no attack history. This likelihood is
represented in the form of the reputation score. By prioritizing IP addresses
with non-zero reputation score in the discarding process, the mitigation system
ought to achieve a lower amount of discarded legitimate packets.

However, it is highly improbable that every attacker in the ongoing attack
was reported before, thus having a non-zero reputation score. Therefore, it
might not be sufficient to discard the traffic of IP addresses with non-zero
reputation score to reach the desired traffic rate. Regarding this, the combi-
nation of the reputation score and the traffic contribution must be utilized to
make the traffic discarding deterministic.

It is worth noting that the reputation score in NERD represents the likeli-
hood of an entity to attack in nearby future and not the probability that the
observed packets originating from the entity are malicious. For the purpose
of this research it is possible to consider both interpretations equal since it is
generally more likely that the higher the reputation score of a source is, the
more likely is the traffic of the source malicious during an attack. However,
this slight difference may be manifested in the following scenario. A company
administrates own DNS server. The traffic originating from the DNS server is
valid in the vast majority of cases. Nevertheless, once a day the DNS server
is used as a reflector for a DDoS attack. The DNS server would have a high
reputation score even though the most of its produced traffic is legitimate
throughout the day. Naturally, the packets originating from the mentioned
DNS server are present in the network traffic all the time. When a DDoS

21

2. Analysis and Design

attack occurs, blocking of this DNS server on the basis of the high reputa-
tion score might result in disrupting legitimate communication even though
the DNS server is not misused in the ongoing attack. Due to these extreme
cases, RepTopN offers a possibility to improve its decision-making process by
including blacklists and whitelists provided by the system administrator.

The method of an appropriate prioritization based on multiple attributes
is a complicated issue, and multiple approaches are possible to design a so-
lution. The proposed approach is multiple-key sorting which has multiple
advantages. Since DMD operates on networks with a high traffic rate – up to
100 Gbps, the processing time of the heuristic is emphasized, and the simplic-
ity of the proposed heuristic may prove beneficial. Another advantage resides
in its integration with the algorithm already implemented in DMD.

Figure 2.2: An example of a difference in discarded traffic depending on the
used heuristic.

Figure 2.2 shows the difference in discarded traffic depending on the used
heuristic. The current implementation of DMD constructs a Volume Table
(VT) by sorting the traffic sample table via the traffic volume contribution
column. RepTopN introduces a second stage in which the list of addresses
from the VT is queried in NERD and the resulting reputation scores are joined
with the information from the VT. The reputation score of every IP address
unknown to NERD is automatically set to 0. The new table containing both
the traffic volume contributions and the reputation scores is called Reputation
Score Table (RST). RST is always sorted according to the reputation score as
the primary key and, in case multiple addresses have the same score, according
to the traffic volume as the secondary key. After that, the algorithm selects
as many IP addresses from the top of the table for blocking as is needed to
get the total volume of the remaining addresses below the optimal level.

2.2.2 Design Overview

One of the advantages of RepTopN is that it requires minimal changes to
the existing mitigation system design. Figure 2.3 describes the augmented

22

2.2. Augmented Mitigation

mitigation system. The flowchart is simplified for a single mitigation rule,
and its highlighted parts represent the proposed design changes.

[asynchronous]

RST - Reputation Score Table
VT - Volume Table

3

All VT records
processed

[no]

Get next VT
record

IP present in
cache

Assign RS 0

[no]

Assign RS
from cache

[yes]

Add IP to
request

Contact
NERD

[yes]

NERD request
empty

[no]

Sort VT via
RS

Optimal traffic
rate reached

Get next
RST record

[no]
[yes]

Add blocking
rule to set

[no]

Export
rules

[yes]

IP is on a
whitelist

RS - Reputation Score

Parse
response

Get
response

Update
cache

[start]

[end]

Sort input table via
traffic volume

[yes]

Figure 2.3: Flowchart of the augmented mitigation simplified for a single
mitigation rule.

The system begins with sorting of an input table which represents live
traffic sample in descending order according to the traffic volume contribution
each IP address generates and thus creating a Volume Table (VT). Since
the number of IP addresses in VT may be considerable during an attack,
fetching reputation scores for all of them may take a significant amount of
time. Therefore, the process of acquiring reputation scores from NERD is
performed independently of the mitigation cycle, and a local cache is used
to acquire a reputation score for every IP address present in VT. If an IP
address is not found in the cache (e.g. when a new source contributes to the
attack), its reputation score is set to 0 during the current cycle, and the IP
address is added to a query which is later sent to NERD. After obtaining the
last reputation score, the assembled query is sent to NERD API, and VT is

23

2. Analysis and Design

sorted in descending order according to the reputation score column utilizing
a stable sort resulting in the creation of a Reputation Score Table (RST). IP
addresses occurring in the RST are subsequently added to the blocking set
(unless they are present on a whitelist) until the optimal traffic volume rate
is reached.

When the reputation scores are received after an inevitable time delay
(usually a few seconds), they are stored in the cache and used to assemble RST
in the next cycle. Naturally, the cache may be empty at the very beginning
of an attack. In such case, all reputation scores are set to 0 which leads to
the fact that only the traffic volume contribution is used to sort the table and
select addresses for blocking as in the standard top-n method. The advantage
of RepTopN begins to apply in the mitigation cycle following the reputation
cache update.

Based on the design of RepTopN it is apparent that the efficiency of the
RepTopN algorithm is directly proportional to the quality of the reputation
database and the number of IP addresses found in the reputation database.
If either of the following scenarios occurs:

• query result from NERD has not been processed yet,

• none of the queried IP addresses was found in NERD,

• a communication issue between DMD and NERD occurs,

the RepTopN heuristic acts like a simple top-n, thereby satisfying one of the
design requirements – to always discard traffic deterministically. Otherwise,
in the usual state RepTopN creates the set of blocking rules considering the
information about entities reputation.

2.3 Data Model Overview

Figure 2.4 summarizes an updated logical data model of the amplification
module in DMD. The parts highlighted with orange color represent added data
structures. Similarly, the red parts represent deprecated structures. Some
aspects of the data model essential for the augmented mitigation system design
are elaborated below.

• Amplification Module:

– a primary data structure which holds all the configuration and other
data structures

• Amplification Rule:

– represents one of the amplification rules for attack mitigation de-
scribed in Sec. 1.2.2.

24

2.3. Data Model Overview

• Augmented Mitigation:

– a data structure for storing all of the useful information for per-
forming the augmented mitigation (e.g. reputation score cache)

– contains necessary data for communication with NERD

• Reputation Score Table:

– a data structure representing a table with fixed maximum size

– contains records used for the RepTopN algorithm

– replaces Volume Table data structure

• RST Record:

– represents a record in Reputation Score Table

– contains the IP address (16 bytes to support IPv6), the traffic vol-
ume contribution in bytes or packets, and the reputation score

– replaces Volume Table Record data structure

Amplification Rule

traf_data
limit: uint64_t
opt_rate: uint64_t

1 .. *

1

1

1 .. *1

Amplification Module

amp_rules_cnt: uint16_t
blocking_rules: set
whitelist
blacklist

RST Record

ip_address: char[16]
traf_vol: uint64_t
rep_score: double

Augmented Mitigation

api_path: char*
auth_token: char[10]
reputation cache

Reputation Score Table

rec_count: uint32_t
max_size: uint32_t

1 .. *1
VT Record

ip_address: char[16]
traf_vol: uint64_t

Volume Table

rec_count: uint32_t
max_size: uint32_t

1

1

1

1

1

Figure 2.4: Simplified data model of the augmented mitigation system.

25

Chapter 3

Implementation

The contents of this chapter discusses specific implementation details of par-
ticular critical system components, namely the process of acquiring the rep-
utation scores from NERD, the implementation of the reputation cache and
the description of applied sorting algorithms. Each of the components men-
tioned above is elaborated and placed in the context of the rest of the DMD
implementation. Finally, the processing time complexity of each component
is discussed in this chapter since it is a crucial factor influencing most of the
implementation decisions.

3.1 Acquisition of Reputation Scores

The NERD system provides a RESTful API to communicate with other sys-
tems. The RESTful API is based on representational state transfer (REST)
technology. REST is an architectural style and approach to communications
often used in web services development. REST-compliant web services allow
the requesting systems to access and manipulate resources of the web service
by using a predefined set of stateless operations. The most common commu-
nication protocol related to RESTful APIs is HTTP or its encrypted variant
– HTTPS. By using predefined HTTP methods (e.g., GET, POST, PUT, DELETE),
systems are able to issue requests to the URI of the resource, execute the
desired operation and the REST-compliant web service sends a response in a
predefined format (e.g., XML, JSON).

NERD defines few API endpoints used primarily for requesting data about
the network entities in the database rather than for the data insertion or
erasure. Unless stated otherwise in the API endpoint definition, every response
is in the JSON format.

To ensure confidentiality of the data in the database NERD implements a
token authorization mechanism and an access control list (ACL). Every API
request must include an HTTP header with the authorization token. The to-
ken is a ten characters long string consisting of random alphanumeric symbols

27

3. Implementation

(62 characters: A−Z, a−z, 0−9), and therefore the total of 6210 = 8.39×1017

different permutations exist. Assuming an online brute-force attack with the
rate of 1, 000 guesses per second, the search space would be exhausted in 2.66
hundred thousand centuries. Moreover, the server can utilize a countermea-
sure techniques such as fail2ban to prevent massive guessing attacks. NERD
receives the authorization token in the request, authenticates the user and
verifies his privilege to access the resource using ACL.

It is vital to ensure a proper manipulation and storage of the NERD au-
thorization token in DMD. Therefore, the authorization token is kept (along
with other NERD API information) in a configuration file separately from
the program itself. The configuration file with the authorization token has
the least possible access permissions, and the path to the configuration file is
passed as a parameter during the DMD startup.

The communication with NERD via HTTPS with the aim to obtain a large
number of reputation scores is in DMD realized by using the libcurl library3.
The semantics and the details of the bulk API queries are further elaborated
in the following subsection.

3.1.1 Bulk Queries API

The design of the augmented mitigation system described in Sec. 2.2.2 an-
ticipates the possibility of sending bulk queries to the NERD API to acquire
the reputation scores of an immense number of IP addresses. Sending a re-
quest with multiple IP addresses is undoubtedly more efficient than requesting
reputation scores one by one. Unfortunately, NERD API currently does not
support bulk queries, and therefore a new endpoint needs to be implemented.

An API endpoint /nerd/api/v1/ip/bulk/ is designated for the bulk rep-
utation score querying. The IP addresses in DMD are stored in 16 bytes long
arrays, however, they are represented as strings in NERD. Which means that
the necessary conversion from bytes to string needs to be performed in one of
the systems. To broaden the possible usage of the bulk query endpoint (not
limited only for the connection with DMD) and to save the precious computa-
tional time in DMD, the API endpoint for bulk queries supports two possible
input and output data formats – plain text and binary.

Figure 3.1 depicts an example of potential usage of NERD API for bulk
queries. The figure shows the basic differences between the two possible use-
case scenarios depending on the chosen data format. The API endpoint is
implemented as follows:

1. Receive an incoming HTTP request.

2. Perform authentication and authorization of the request based on the
authorization token present in the HTTP header.

3https://curl.haxx.se/libcurl/

28

3.1. Acquisition of Reputation Scores

POST /nerd/api/v1/ip/bulk/ HTTP/1.1
Authorization: token ABCDefg123
Content-Type: application/octet-stream
Data (HEX) - 12 bytes:
0a0000010a000002

POST /nerd/api/v1/ip/bulk/ HTTP/1.1
Authorization: token ABCDefg123
Content-Type: text/plain
Data (ASCII) - 17 bytes:
10.0.0.1,10.0.0.2

HTTP/1.1 200 OK
Data (HEX) - 16 bytes:
cdcccccccc4ceb3f
d98ffdd88ffdb83f

HTTP/1.1 200 OK
Data (ASCII) - 29 bytes:
0.853125
0.09761904761904762

DMD NERD

DMD NERD

Binary API

Text API

Figure 3.1: Example of NERD bulk queries API usage.

3. The format of the input data is deducted from the HTTP header field
Content-Type. Expected values are application/octet-stream or
text/plain.

4. Individual IP addresses are decoded from the raw payload data. If the
format is text/plain, the raw data are decoded using ASCII encoding,
and a comma separates individual IP addresses. The second option is
the application/octet-stream format. In that case, NERD assumes
that every 4 bytes (using network byte order) represent an IPv4 address
(NERD does not currently support IPv6 entities). Therefore, no entity
separator is necessary, and NERD performs conversion of each IP address
from the binary format to the textual format.

5. NERD creates a dictionary of reputation scores using the IP addresses
in the request as keys. Every IP address is assigned with the reputation
score 0.0 by default in case the requested IP address is not present in
the database.

6. A single bulk Mongo database query is formed and executed.

7. The query result is processed, and the reputation scores in the dictionary
are updated accordingly.

8. A response is created in the same data format as the request. The
response contains only a list of reputations scores for each IP address

29

3. Implementation

queried in the same order as the IP addresses were passed to API. If
the data format is text/plain, the reputation scores (in the form of a
string) are separated by a newline. If the application/octet-stream

data format is used, every 8 bytes (using network byte order) represent
a C double precision data type, and no separator is necessary.

Using the textual data format is slightly more time efficient because it is
not necessary to convert the requested IP addresses to their textual represen-
tations. However, the size of the request is significantly larger when using the
textual variant of the API endpoint. The textual representation of an IPv4
address might consist of up to 16 bytes (including the separator) while the
binary representation will always be only 4 bytes long. The maximum number
of IP addresses in a single bulk query from the perspective of DMD is capped
to 217 entries (the maximum number of records in RST). In such case, the size
of the request in the textual format would be around 2 MB while the size of
the request in the binary format would be four times lower – about 512 KB.

3.1.2 Communication with NERD

The communication channel for requesting and obtaining reputation scores
from NERD via HTTPS is implemented using the libcurl library. It is a free
client-side URL transfer library supporting many different internet protocols
(e.g., HTTP, FTP, IMAP). The main benefits of using the libcurl library are that
it provides a simple interface and is thread-safe. The usage of the libcurl
library in the augmented mitigation system is straightforward.

Since the libcurl library is thread-safe, multiple requests to NERD can be
issued at the same time. With respect to the design described in Sec. 2.2.2,
it is convenient to establish and maintain a session for every protected net-
work (amplification rule) specified in DMD. To ensure that multiple connec-
tions with NERD can be maintained simultaneously, each of the mitigation
rules must keep its session handle and data structures (such as buffers for
sending and receiving data). The curl session handles are created using
curl_easy_init() function during an initial phase of the amplification mod-
ule along with other necessary data structures. Most of the HTTP request
is formed in the initiation phase as well: specifying target URL, appending
header field with the authorization token and defining the data format in the
request using the Content-Type header field. The libcurl library also requires
the programmer to specify CURLOPT_WRITEFUNCTION and CURLOPT_WRITEDATA

variables. Otherwise, the response received from NERD would be written to
the standard output by the libcurl library. A pointer to a write callback
function is passed to the libcurl library via CURLOPT_WRITEFUNCTION. The
CURLOPT_WRITEDATA option is closely related to the callback function since its
purpose is to pass a pointer to custom data to one of the callback function
arguments. When processing the live data sample of the currently served am-

30

3.1. Acquisition of Reputation Scores

plification rule, the NERD bulk query is formed containing all IP addresses
which are present in the Volume Table but not in the reputation cache. If the
query is not empty, a separate thread is deployed to merge the query with the
rest of the prepared HTTP request and sends it to the designated NERD API
endpoint using curl_easy_perform() function. The thread detached from
the mitigation cycle is in a blocking state until the first data from NERD
are received. The specified write callback function is repeatedly called, con-
tinuously storing parts of the response of various size to the prepared buffer.
When the whole response from NERD is processed, the HTTP response code is
checked for the value of 200 OK. Subsequently, both the request buffer and the
response buffer are parsed simultaneously, individual IP addresses are matched
to the relevant reputation scores, and the pairs are stored to the reputation
cache. The detached thread terminates at this point without a return value.
The whole process is summarized in Fig. 3.2.

Mitigation Cycle 1

main thread

time tt = 0

Mitigation Cycle 2 Mitigation Cycle M + 1

1 2 M + 1M

R2R1 R3 R2R1 R3R2R1 R3

. . .

. . .

. . .

. . .

.

Amplification
Rule (R1)

Amplification
Rule (R2)

Amplification
Rule (R3)

NERD

detached thread

[start] [wait] [wake] [exit]

reading from cache
writing to cache

Figure 3.2: Thread-safe augmented mitigation system for 3 different amplifi-
cation rules.

As proposed, multiple detached threads can simultaneously handle the
HTTP session as long as each thread is associated with a different amplification
rule (a different DDoS attack). A problem arises when multiple threads at-
tempt to use the same resources, thus resulting in a possible data race. The
problem can be illustrated with the following example.

Let us consider a large-scale DDoS attack. The reputation cache is empty
in the first mitigation cycle; therefore, a large bulk query is formed. A dedi-
cated thread is launched to acquire the reputation scores using the resources
(buffers and the curl session handle) of the currently serviced amplification
rule. Since the number of attackers contributing to the DDoS attack is im-

31

3. Implementation

mense, the response from NERD might not be acquired before the next mitiga-
tion cycle. This delay results in the creation of a similar (attack characteristics
might vary slightly – e.g. new attackers) bulk query because the reputation
cache still does not contain any information about IP addresses present in VT.
At this point a second thread would be launched using the same resources as
the previously launched thread, thus resulting in undefined behavior. The
implemented solution to this problem is to set a flag for every amplification
rule indicating whether a detached thread is already attempting to acquire
reputation scores from NERD. The main thread drops the flag right before
the dedicated thread is launched and the detached thread raises the flag again
once it updates the reputation score. In the next mitigation cycle, the main
thread does not launch another dedicated thread if the flag is still down.

Some measurements were performed during the implementation stage re-
garding the possible delay between sending a request to NERD and receiving
the reputations scores. Though it would seem that the delay scales in corre-
spondence to the number of IP addresses in the bulk query, the main corre-
lation resides in the quantity of queried IP addresses present in NERD. Such
behavior is caused by the fact that in the NERD’s Mongo database the IP
addresses are indexed. Therefore, searching whether an IP address is stored
in the database is quite fast. However, if the IP address is present in the
database, reading its reputation score is noticeably slower. If DMD sends a
query consisting of 217 IP addresses (the default size of VT) which are not
present in NERD, the response arrives in less than a second. On the other
hand, if all the 217 IP addresses are present in NERD, it can take up to 12
seconds to receive a reply.

It is worth mentioning that such case is theoretical and most of the queries
would be processed in few seconds in practice. Further tests with DMD used
in a real environment are required to measure the average time delay between
the request and the response. If it proves to be problematic, one of the possible
solutions to this problem is to limit the number of IP address in the bulk query
and the reputation scores would be acquired using multiple requests. The
thesis does not further elaborate this problem since it is more related to the
reputation database itself than to the augmented mitigation and recommends
this issue as a topic of future research and development.

3.2 Reputation Score Cache

The reputation score cache proves to be an essential component of the whole
augmented mitigation system design. Every thread handling the acquisition
of the reputation scores from NERD accesses the cache to insert the newly
acquired reputation scores using the 128-bit key representing the correspond-
ing IP address. The main thread can perform an immense number of cache
lookups in each mitigation cycle. Based on these observations, the data struc-

32

3.2. Reputation Score Cache

ture implementing the reputation score cache must be thread-safe, and both
insert and get operations must have a constant asymptotic time complexity
– O(1).

An implementation of a hash table with a stash called Fast Hash Table4

applied in many CESNET projects meets both requirements. The Fast Hash
Table utilizes MurmurHash3 5 as a hash function for fast table lookups.

3.2.1 Fast Hash Table

Item 1 Item 2 Item 4Key 1

Item 1 Item 2 Item 4Key 2

Item 1 Item 2 Item 4Key M

.

.

.

.

.

.

.

.

.

.

.

.

Lock
Item 1

Item 2

Item K

.

.

.

Stash

Item 3

Item 3

Item 3

.

.

.

Figure 3.3: Scheme of the Fast Hash Table implementation.

Figure 3.3 depicts the implementation scheme of the Fast Hash Table.
The number of rows of the table and the size of the stash are set during the
initialization. Each indexable row can contain up to 4 different items with the
same hash value of their respective key. Each row of the table has a hidden
vector of flags indicating which item in the row is the least recently used. The
vector of flags is updated every time one of the items in the row is read or
written. If all columns in the row are occupied, a newly inserted item replaces
the least recently used item which is subsequently placed in the stash. The
stash is implemented as a circular buffer, therefore, if the stash is already full,
the replaced item is written to the first place of the stash. Fast Hash Table
also provides functions which can bypass the stash entirely; therefore, any
data replaced in the table with these functions would be definitely lost.

Thread safety of the Fast Hash Table resides in locking the individual
rows. Reading or writing an item in the row ultimately locks the whole row
for the duration of the operation. However, other threads may freely update
other rows. This approach is significantly better than locking the whole table
each time a thread is about to use it, which would have a dire effect on the
performance time of the main thread.

MurmurHash3 is the latest version in the series of MurmurHash functions
published on Github by the author aappleby. It is a general-purpose hash

4https://github.com/CESNET/Nemea-Framework/tree/master/common/
5https://github.com/aappleby/smhasher/wiki/MurmurHash3

33

3. Implementation

function for producing 32-bit and 128-bit hash values. It is highly efficient in
comparison with some other commonly used hash functions and optimized for
keys which size is divisible by 8 (IP address data structure in DMD has a size
of 16 bytes).

3.3 Sorting Algorithms

The need for the use of one or more sorting algorithms is evident since the
whole RepTopN heuristic is based on multiple-key sorting. A sorting al-
gorithm is initially applied to the live traffic data sample to create a Volume
Table – a table sorted by the traffic volume contribution of each IP address.
The traffic volume contributions data have no unique characteristics which
would allow to utilize a sorting algorithm which is not based on the compare
and exchange principle. Therefore, the standard Quicksort implementation
provided by the glibc library is used for the VT creation. The Quicksort algo-
rithm takes on average O(n log n) comparisons to order n items; however, it
might require O(n2) comparisons in rare cases.

The second sorting is performed once the data in VT are extended with
the related reputation scores. The value of a reputation score is a real number
in a range 〈0; 1〉. That theoretically means there are infinite possible values
of the reputation score. However, if we round the reputation score to a fixed
number decimal places (let us assume two), then each reputation score can
obtain only one of 101 possible values. The slight reduction of the reputation
score precision has barely any noticeable effect on the RepTopN heuristic. The
advantage of this adjustment is the possibility of utilizing Counting Sort for
the creation of Reputation Score Table.

Counting Sort is a stable (maintains the relative order of items with equal
values) out-place (requires additional memory) sorting algorithm introduced
by Harold Seward in 1954 in [28]. It does not rely on the compare and exchange
principle but employs the knowledge of the minimum and the maximum values
of sorted items. The algorithm is demonstrated in Fig. 3.4 and can be divided
into the following steps (assuming n items and k possible item values):

9 6 0 3 0 2 9 3 5 5

2 0 1 2 0 2 1 0 0 2

1 1 2 4 4 6 7 7 7 9

0 0 2 3 3 5 5 6 9 9

frequency of
appearance

input array

output array

highest index

++-1 .

Figure 3.4: Demonstration of an array sorting using Counting Sort.

34

3.3. Sorting Algorithms

1. A histogram of the number of times each item value occurs within the
input array is assembled. – O(n)

2. The prefix sum computation is performed over the histogram to deter-
mine, for each item value, the highest position index in the output array
of the items having that value. – O(k)

3. The input array is iterated backward to achieve stability of the sorting
algorithm. Every item is used as an index in the count array, thus
obtaining index in the output array where the item should be copied. It
is important to decrement the value in the count array so that the next
item would not overwrite the previously inserted item with the same
value. – O(n)

Counting Sort is suitable for sorting arrays where items can obtain a known
finite range of values. Furthermore, it maintains the relative order of items
with equal values (is so-called stable) which is a necessity for performing the
desired multiple-key sorting. The most apparent advantage of Counting
Sort is the time complexity. Assuming n items and k possible item values,
the overall time complexity of Counting Sort is O(n + k). That is superior to
every sorting algorithm based on the compare and exchange principle, which
asymptotic function cannot be better than O(n log n). The disadvantages
include an additional O(n + k) memory space, the inapplicability to data
with unknown minimum and maximum possible values, and the necessity of
having discrete data values (meaning it is, for instance, not applicable to real
numbers). However, neither the additional memory space requirement nor the
discrete value requirement proves to be a problem in DMD (since a limit was
placed on the range of possible values of the reputation score). Therefore,
its variation for sorting in descending order is applied to create RST in every
mitigation cycle.

In general, if two algorithms have different asymptotic functions, it means
that the time difference in their execution time scales with the number of items
sorted. However, the highly optimized Quicksort implementation in glibc has
probably a better performance for a smaller number of items. So the ques-
tion arises whether the number of records in VT is high enough to notice the
difference when using the proposed Counting Sort implementation. Several
measurements have been executed to answer this question. The speedup be-
comes noticeable for 4, 096 (212) items. For the maximum possible VT size,
which is implicitly 131, 072 (217) items, the Counting Sort implementation is
already several times faster than the Quicksort implementation provided by
the glibc library.

35

Chapter 4

Testing and Evaluation

The final chapter of this thesis presents a variety of different test and mea-
surement results based on which the following subjects are evaluated:

• the impact of the number of IP address with a known reputation score
on the RepTopN heuristic quality in Sec. 4.3.1,

• the impact of the amount of malicious traffic during an attack on the
RepTopN heuristic quality in Sec. 4.3.2,

• the impact of the reputation database data reliability on the RepTopN
heuristic quality in Sec. 4.3.3,

• the processing time of the proposed augmented mitigation system in
Sec. 4.4,

• the memory requirements of DDoS Mitigation Device related to the
changes in the DMD design in Sec. 4.4,

• the efficiency of the presented RepTopN heuristic implementation in
comparison to the expected theoretical mitigation efficiency in Sec. 4.4.

Most of the subjects of evaluation mentioned above are assessed in com-
parison either to the previous implementation of DDoS Mitigation Device or
the top-n algorithm. Such comparison is made to emphasize the benefits of
the proposed mitigation system and heuristic enhancements. The performed
tests and measurements cover all aspects of the RepTopN heuristic and the
augmented mitigation system itself which are considered to be relevant by the
author of the thesis. The comprehensive test results provide valuable feed-
back about the assets and the shortcomings of the proposed heuristic and the
system.

37

4. Testing and Evaluation

4.1 Evaluation Metric

It is necessary to choose one or more suitable evaluation metrics to evaluate
the performance of the RepTopN heuristic. Before introducing one such eval-
uation metric, the composition of data used in the evaluation tests needs to
be described.

Figure 4.1: Traffic composition during a DDoS attack from the perspective of
DDoS Mitigation Device.

Figure 4.1 shows the potential components of the traffic that ought to
be cleaned by DDoS Mitigation Device during a DDoS amplification attack.
Naturally, the overall traffic (T) consists of the legitimate (green) traffic (TL)
and the malicious (red) traffic (TM). Since the heuristic algorithms have no
prior knowledge of the sources of the malicious traffic, there is a probability
that some legitimate packets are discarded (TDL). On the other hand, it is
also possible that some malicious packets are forwarded instead of discarded.
Such scenario could happen either because the optimal traffic volume rate (L)
is reached by discarding enough of other traffic or because the forwarded ma-
licious packets are a residue of the mitigated attack. The amount of discarded
traffic (TD) tends to be slightly higher than it is necessarily required by the
specified optimal traffic volume rate. The difference is a direct consequence
of the usage of the traffic discarding based on IP addresses because more traf-
fic can be discarded than necessary by discarding the overall traffic of n-th
IP address. The following equations summarize the vital parts of the traffic
composition:

• T = TM + TL

• TD = TDL + TDM

• TD ≥ T − L

38

4.2. Test Data Presumptions

Since the primary objective of RepTopN is to mitigate DDoS amplification
attacks with the minimal possible disruption of the legitimate communica-
tions, it is convenient to define the evaluation metric as the ratio of discarded
legitimate traffic to overall discarded traffic – TDL

TD
. However, there might be

a case in which the data do not contain enough malicious traffic to satisfy the
need to reach the optimal traffic volume rate; therefore, some legitimate traffic
must also be filtered. The metric naturally takes this case into account, but it
should be rare in practice due to a reasonable configuration by an expert who
does not set up the optimal traffic volume rate below the legitimate traffic
volume rate.

The following function includes the TD > TM option:

f1(TM , TDL, TD) =

{

TDL

TD
TD ≤ TM

TDL−(TD−TM)
TD

TD > TM

(4.1)

By combining both cases of the function f1, the resulting function f as
defined in (4.2), is the evaluation metric used for the evaluation of RepTopN
and top-n in this chapter.

f(TM , TDL, TD) =
TDL − max(TD − TM , 0)

TD

(4.2)

It is evident from the definition of the function f that the range of the
function f is 〈0, 1〉. The lower the value of f is, the lower the amount of the
unnecessarily dropped legitimate traffic.

4.2 Test Data Presumptions

A complex data set with many different characteristics would be required
to measure the influence of every possible traffic aspect. Therefore, several
presumptions about the test data must be set out so that the individual traffic
aspects reliably manifest during evaluation tests. As we are interested in
discovering the performance of RepTopN compared to top-n, there are three
potentially interesting scenarios:

Scenario 1: If each of the attacking IP addresses generates significantly more
traffic than any of the legitimate IP addresses, RepTopN produces as
good results as top-n regardless of the number of IP addresses with
known reputation score (neglecting false positive reputation scores).

Scenario 2: If all the attacking IP addresses generate significantly less traffic
than the legitimate sources, top-n fails to discard malicious packets.
On the contrary, RepTopN performs well in this scenario in case the
malicious sources have a non-zero reputation score.

39

4. Testing and Evaluation

Scenario 3: If all IP addresses generate approximately the same volume of
traffic, top-n degenerates to a heuristic which discards random packets.
An informed packet filtering (RepTopN) can help in this scenario.

Figure 4.2: Expected outcome of the uninformed and fully informed RepTopN
heuristic.

The scenarios 2 and 3 were the fundamental motivation of RepTopN. The
non-trivial scenario 3 is depicted in Fig. 4.2. The figure describes the worst
and the best expected possible outcomes of RepTopN depending on the ratio
of malicious IP addresses with known reputation score to all malicious IP
addresses. This scenario is ideal for measuring the efficiency of RepTopN
compared to top-n.

The test data simulating the traffic during a DDoS amplification attack
used in the experiments described throughout this chapter meet the following
criteria:

• The traffic volume of each IP address is randomly chosen according to
Gaussian statistical distribution to simulate the scenario 3.

• IP addresses with a non-zero reputation score generate only malicious
traffic.

• IP addresses that generate legitimate traffic always have the reputation
score equal to zero.

• IP addresses with zero reputation score may generate either only legiti-
mate or only malicious traffic.

Note that the assumptions regarding the reputation scores are not applied
when measuring the impact of the reputation database data reliability on the
RepTopN heuristic quality in Sec. 4.3.3.

40

4.3. RepTopN Evaluation

4.3 RepTopN Evaluation

This section presents the RepTopN evaluation results in comparison to the
top-n results using the evaluation function f defined in Sec. 4.1 and the test
data described in Sec. 4.2.

The test data simulate a DDoS amplification attack with the rate of ap-
proximately 10 Gbps produced by 1, 000 individual IP addresses unless stated
otherwise. The overall traffic volume rate is not a fixed constant since it de-
pends on the parameters of the Gaussian distribution used to determine the
traffic volume of each IP address, and therefore is the cumulative sum of the
contribution of all (1, 000) IP addresses. The traffic volume contribution of
each IP address is randomly chosen according to Gaussian statistical distri-
bution with the mean µ = 10 Mbps and the standard deviation σ = 1.5 Mbps.
The resulting traffic volume contribution of each IP address may vary from
around 5 Mbps to 15 Mbps. The exact values of the traffic volume each IP
address generates are different every time a test instance is created.

Each of the following subsections focuses on a different aspect of the sim-
ulated traffic to assess the impact of the aspect on the RepTopN heuristic.

4.3.1 Number of Identified Attackers

This section assesses the impact of the number of IP addresses with a known
reputation score on the heuristic quality. One of the following test data pa-
rameters is modified for each test instance to achieve the stated goal:

• the number of IP addresses generating malicious traffic

• the portion of malicious IP addresses with a known (non-zero) reputation
score

Each tested data configuration is launched multiple times, and the average
result is used to reduce the measurement deviation.

Figure 4.3 summarizes the obtained results. As expected, the RepTopN
algorithm performs better with a higher number of identified malicious IP
addresses. Test instances in which no reputation score is known to RepTopN
(the most rear curve) correspond to the performance of the top-n algorithm.
The results confirm the anticipation that top-n behaves as a random IP address
filter if the attacking IP addresses are not distinguishable at first sight based
solely on the traffic rate analysis.

The mitigation efficiency of the presented RepTopN heuristic is superior to
the top-n algorithm in 99 % of cases. In the worst case scenario, the RepTopN
heuristic performs as bad as the top-n algorithm. The 3D graph peaks for
the instance where 700 malicious IP addresses are present in the traffic while
none of them is in the reputation database. Such result is closely related to the
optimal traffic volume rate L = 3 Gbps because in this particular instance the

41

4. Testing and Evaluation

IPs producing malicious traffic

0
200

400
600

800
1000 %

 m
al

.
IP

s
w

it
h
 k

n
ow

n
 r

ep
.
sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

f
-

u
n

n
e
ce

ss
a
ri

ly
 b

lo
ck

e
d

 l
e
g

it
.
tr

a
ff

ic

0.0

0.1

0.2

0.3

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

Figure 4.3: 3D graph representing the dependence of the RepTopN efficiency
on the number of identified attackers for a fixed value of the optimal traffic
volume rate L = 3 Gbps.

amount of the legitimate traffic volume is similar to the optimal traffic volume
rate (TL ∼ L). Instances where TL ∼ L represent scenarios in which all the
malicious traffic can be discarded without any residual malicious traffic. When
using the presented evaluation function f , all of the malicious packets would
have to be identified so that no discarded legitimate traffic could be replaced
by previously not discarded malicious traffic for the heuristic to reach the best
possible score. Both RepTopN and top-n perform the worst in such scenarios.

It is apparent that by using the top-n algorithm in the scenario depicted
in Fig. 4.3 where L = 3 Gbps (which is 30 % of the overall traffic), up to 30 %
of the discarded traffic may consist of the legitimate traffic. However, based
on the previously mentioned observations, there might be some scenarios in
which most of the traffic discarded using the top-n algorithm consists of the
legitimate traffic when, for instance, the algorithm is required to mitigate 80 %
of the overall traffic. In such scenarios, the RepTopN heuristic can significantly

42

4.3. RepTopN Evaluation

reduce the amount of the unnecessarily discarded legitimate traffic with the
efficiency related to the number of identified attackers thanks to the reputation
score.

4.3.2 Ratio of Legitimate and Malicious Traffic

The previous tests results show that RepTopN is the most valuable in situa-
tions where the legitimate traffic volume rate is similar to the optimal traffic
volume rate (TL ∼ L). Such situations are highly likely to appear in practice.

1 2 3 4 5 6 7 8 9
legitimate traffic volume rate [Gbps]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f
-

u
n

n
e
ce

ss
a
ri

ly
 b

lo
ck

e
d

 l
e
g

it
.

tr
a
ff

ic

0%

30%

60%

90%

Figure 4.4: The dependence of the RepTopN efficiency on the amount of
legitimate traffic and the sampled portion of identified attackers. Assuming
L ∼ TL, T ∼ 10 Gbps.

Figure 4.4 further examines the RepTopN benefits depending on the ratio
of legitimate and malicious traffic. Each line in the graph represents how
well the RepTopN heuristic is informed – the portion of attackers RepTopN
managed to identify. The line labeled as “0 %” represents the performance of
the top-n algorithm. As we can see, the RepTopN heuristic does not perform
significantly better than top-n for larger attacks since top-n would also block
most of the identified malicious IP addresses. However, the graph shows that
the top-n algorithm is the less effective the less amount of traffic is needed to

43

4. Testing and Evaluation

Table 4.1: Sampled results of tests focused on the ratio of legitimate and
malicious traffic. Assuming L ∼ TL, T ∼ 10 Gbps.

TL : TM Ident. attackers f TDL [Gbps] TDM [Gbps]

2 : 8 0 % (0 IPs) 0.2 1.6 (80 % TL) 6.4 (80 % TM)
2 : 8 30 % (240 IPs) 0.18 1.44 (72 % TL) 6.56 (82 % TM)
2 : 8 60 % (480 IPs) 0.16 1.28 (64 % TL) 6.72 (84 % TM)
2 : 8 90 % (720 IPs) 0.07 0.56 (28 % TL) 7.44 (93 % TM)

5 : 5 0 % (0 IPs) 0.5 2.5 (50 % TL) 2.5 (50 % TM)
5 : 5 30 % (150 IPs) 0.41 2.05 (41 % TL) 2.95 (59 % TM)
5 : 5 60 % (300 IPs) 0.28 1.4 (28 % TL) 3.6 (72 % TM)
5 : 5 90 % (450 IPs) 0.09 0.45 (9 % TL) 4.55 (91 % TM)

8 : 2 0 % (0 IPs) 0.8 1.6 (20 % TL) 0.4 (20 % TM)
8 : 2 30 % (60 IPs) 0.6 1.2 (15 % TL) 0.8 (40 % TM)
8 : 2 60 % (120 IPs) 0.35 0.7 (8.75 % TL) 1.3 (65 % TM)
8 : 2 90 % (180 IPs) 0.1 0.2 (2.5 % TL) 1.8 (90 % TM)

discard. Therefore, the advantages of RepTopN become noticeable for weaker
DDoS attacks (e.g., 1:1 ratio between legitimate and malicious traffic).

Table 4.1 summarizes some findings from Fig. 4.4 and puts them into a
broader context. The table is focused on three different scenarios (based on the
ratio of legitimate and malicious traffic) which are examined in more detail.
The second column represents the number of attackers the heuristic would
have to identify to achieve the presented results. The third column contains
RepTopN evaluation score which can be simplified to TDL

TD
in these scenarios

since there is never the need to discard legitimate traffic. The last two columns
of Tab. 4.1 show the absolute value of discarded legitimate respectively mali-
cious traffic and also their relative value with respect to the total legitimate
respectively the total malicious traffic.

A disturbing observation can be made by looking at the first row of the
table. Results in the first row are expected during large-scale DDoS ampli-
fication attacks with a massive number of reflectors. The data suggest that
even though the top-n algorithm manages to mitigate most of the attack, it
discards most of the legitimate traffic as well. Using the top-n algorithm in
such case may have fatal consequences, and the ongoing DDoS attack can be
considered successful. RepTopN achieves slightly better score depending on
the number of known attackers. However RepTopN would require identifying
around 75 % of the attackers to preserve at least 50 % of the legitimate con-
nections, which may prove difficult for the DDoS amplification attacks with a
massive number of reflectors. For milder DDoS attacks (assuming TM ≤ TL)
the RepTopN heuristic manages to preserve a reasonable amount of legitimate
traffic for the necessary number of attackers it needs to identify.

44

4.3. RepTopN Evaluation

It is worth noting that the rows with 90 % of identified attackers work
in theory. However, such situations are hardly ever achievable in practice
especially for large-scale DDoS amplification attacks (regarding the number
of reflectors). It would require a thorough and extensive reputation database
with highly accurate reputation scores, or the attacker would have to use a
similar set of reflectors across the attacks.

An additional observation related to the presented results can be stated.
The efficiency of the RepTopN heuristic does not scale linearly but polyno-
mially with the number of successfully utilized reputation scores. Therefore,
RepTopN can become a potent tool to mitigate DDoS amplification attacks if
high-quality data are guaranteed in the reputation database.

4.3.3 Reputation Score Reliability

The quality of the RepTopN heuristic highly depends on the number of attack-
ers identified thanks to the reputation score. However, further experiments
are necessary to discover the relation between RepTopN efficiency and the
quality of the reputation scores. As previously stated – for the purpose of the
augmented mitigation system – it is possible to perceive a reputation score
from NERD as a probability that the observed traffic of an IP address is ma-
licious. However, the actual probability that a particular packet stream is
malicious could vary if the data are incomplete in the reputation database.

A sophisticated test dedicated solely to this purpose has been launched
and the results are shown in Fig. 4.5. The graph contains multiple lines. Each
line represents the dependence of the RepTopN efficiency on the possible devi-
ation of reputation score from the actual probability the IP address generates
malicious traffic for a certain amount of IP addresses acquired from the repu-
tation database (total of 1, 000 IP addresses in every test instance). Every tick
on the x-axis represents a possible deviation of the reputation score from the
actual probability which means, for instance, that if an IP address reputation
score states 0.2 and deviation is 0.1, the actual probability that the traffic is
malicious lies within the range between 0.1 and 0.3. The actual probability
is used to determine whether the IP address belongs among the attackers or
not. A fixed value of 10 % is used to decide whether an IP address with an
unknown reputation score produces malicious traffic. Defining attackers in
this manner causes that the amount of malicious traffic differs in every test
instance. Therefore, even the optimal traffic volume rate had to be adjusted
in every instance to ensure that L ∼ TL. It is apparent from the above test
description that much uncertainty is present in the test results in an attempt
to simulate a behavior which is likely to appear in practice. Each test instance
is launched 1, 000 times to reduce the data fluctuation, and the average results
are used in Fig. 4.5.

Apparently, the RepTopN heuristic performance results are relatively sim-
ilar to the ideal scenario for the deviation value less or equal to 0.2. Never-

45

4. Testing and Evaluation

0.0 0.1 0.2 0.3 0.4 0.5
possible deviation of attack probability from rep. score

0.00

0.05

0.10

0.15

0.20

d
is

ta
n

ce
 o

f
e
va

lu
a
ti

o
n

 m
e
tr

ic
 v

a
lu

e
 f

ro
m

 o
p

ti
m

a
l

va
lu

e
100 known rep. scores

500 known rep. scores

900 known rep. scores

Figure 4.5: The dependence of RepTopN efficiency on reputation score relia-
bility. Assuming L ∼ TL, T ∼ 10 Gbps.

theless, a degradation of the heuristic can be observed for deviation values
higher than 0.25, and the higher number of reputation scores are acquired in
the test, the more affected the RepTopN becomes.

To summarize the observations RepTopN is relatively resistant to unreli-
able reputation scores if they differ up to 20 % which should be a reasonable
limit for every reputation database.

4.4 Implementation Performance

All performed experiments in this section utilize Spirent TestCenter6 as a
source of traffic which is sent directly to DMD. System information about the
server operating DMD and used compiler are listed in Tab. 4.2.

According to the numerous tests, the implementation of the RepTopN
heuristic reaches the expected theoretical results presented in Sec. 4.3.1 once
the reputation cache is filled with acquired reputation scores. Slightly sub-
optimal results are observed for tests with a large number of attackers when
more than four IP addresses have the same hash value. This situation results

6https://www.spirent.com/Products/TestCenter

46

4.4. Implementation Performance

Table 4.2: System information about server with deployed DMD.

Operating System Scientific Linux 7.4
Linux Version 3.10.0-514.26.2.el7.x86_64
Procesor(s) 2× Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz
CPU(s) 24
Operation Memory RAM 64 GiB
Compiler gcc v. 4.8.5
Optimizations -O3

in rewriting reputation scores of certain IP addresses in the reputation cache
and subsequently suboptimal mitigation results.

The processing time of RepTopN and also of the whole augmented mit-
igation system is strongly emphasized when dealing with DDoS attacks of
magnitudes up to 100 Gbps. Assuming n is the number of IP addresses com-
posing the overall traffic during a DDoS attack, the asymptotic time complex-
ity of the previous top-n heuristic can be divided into the following individual
components:

• creation of Volume Table using QuickSort – O(n log n) in an average
case, rarely O(n2)

• selection of m (m ≤ n) IP addresses which traffic is to be blocked by
inserting them into a list – m × O(1) = O(m)

Since m ≤ n, then O(m) ≤ O(n) and therefore the overall asymptotic time
complexity of the top-n heuristic is the asymptotic time complexity of the
QuickSort algorithm. A similar break down can be done for RepTopN :

• creation of Volume Table using QuickSort – O(n log n) in an average
case, rarely O(n2)

• lookup to the reputation cache for every IP address – n × O(1)

• creation of a request to NERD regarding l (l ≤ n) IP addresses which
reputation score is not present in the reputation cache – O(l)

• creation of Reputation Score Table using Counting Sort – O(n + k)
(already described in Sec. 3.3), assuming that k is the number of possible
values of the reputation score

• selection of m (m ≤ n) IP addresses which traffic is to be blocked by
inserting them into a list – m × O(1) = O(m)

Since l ≤ n, m ≤ n and k = 101 in the implementation which is significantly
lesser than the expected number of IP addresses present in the traffic n, the

47

4. Testing and Evaluation

asymptotic time complexity of the RepTopN heuristic is

O(RepTopN) = O(n2) + 4 × O(n) = O(n2)

in the rare worst case and O(n log n) in an average case.
It is evident that top-n and RepTopN have the same asymptotic time

complexity which is caused by the QuickSort algorithm in both cases. Never-
theless, the previous system with top-n is expected to be slightly faster due to
the negligences made during the computation of the asymptotic time. A stress
test of both versions of DMD composed of 130,000 attackers with the cumu-
lative traffic rate 100 Gbps proved this expectation. In this extreme scenario,
the previous version of DMD is on average faster by 30 – 50 ms. However,
some mitigation cycles were slightly slower – around 90 ms. This behavior is
probably caused by the frequent usage of the reputation cache by both threads
due to the sheer number of IP addresses present in the test. Such deviations
from the average values were not observed in a smaller test with 30,000 IP
addresses.

Memory consumption of the augmented mitigation system does not in-
crease with the number of IP addresses present in live traffic. That is because
all necessary data structures are created during the initialization phase with
a fixed size which is either implicitly defined or specified in a configuration
file. This solution is reasonable since no additional dynamic memory alloca-
tion, which costs precious computational time, is needed for the rest of the
DMD runtime. Sizes of most of the data structures are derived from the max-
imum possible number of blocking rules which can be uploaded into FPGA
and from the number of amplification rules. Assuming n is the number of IP
addresses in the live traffic sample and k is the number of amplification rules,
the memory analysis of the augmented mitigation system can be described as
follows:

• size of RST = n× RST row: IP address (16 B), traffic volume contribu-
tion (8 B), reputation score (1 B) – 32n bytes if we consider 7 bytes of
alignment; which is twice the size of VT

• data structures necessary for communication with NERD is k× request
buffer with IPv4 addresses (4n B), response buffer with reputation scores
(8n B), and other items which are negligible in comparison with the ones
already mentioned – the total of ∼ 12nk B

• size of the reputation score cache: n×k rows of Fast Hash Table without
using a stash, which can be further estimated with the knowledge that
the table has 4 columns, size of the key is 16 B and size of the reputation
score is 1 B – approximately 86kn B

In summary, the augmented mitigation system requires around 16n+98nk

more bytes of operation memory than the previous version of DMD. For the

48

4.4. Implementation Performance

default values of n = 217 and k = 1, the estimated additional memory require-
ment is around 15 MB. Note that most of the required memory is due to the
size of the reputation cache to limit the number of cache misses. Therefore,
the mitigation heuristic is able to achieve better results and the reputation
database does not get overloaded with large requests.

49

Conclusion

The theoretical part of this thesis introduces certain DDoS attacks (especially
DDoS amplification attacks) and summarizes the research on the mitigation
of DDoS attacks. It also discusses the research behind reputation scores and
suggests a method of utilizing the reputation scores during the mitigation
process of DDoS amplification attacks. The idea behind the inclusion of the
reputation scores into the mitigation process is to eliminate the undesirable
disruption of the portion of legitimate connections, which is the shortcoming
of the majority of mitigation heuristics. The last section of the theoretical
part is dedicated to the description of the reputation database (Network en-
tity Reputation Database – NERD) and the scrubbing center (DDoS Mitiga-
tion Device – DMD). Both mentioned security tools, which are developed by
CESNET a.l.e., are used for the implementation and the evaluation of the
proposed heuristic.

The new mitigation heuristic, called RepTopN, was designed based on the
requirements analysis. The RepTopN heuristic combines the traffic volume
contribution of the observed IP addresses with the knowledge of their reputa-
tion score to effectively mitigate the ongoing attack while preserving most of
the legitimate connections. The contribution of this thesis also resides in the
implementation of NERD API endpoint for bulk queries which was necessary
in order to achieve a reasonable way of communication between DMD and
NERD. The severity of the processing time was emphasized in the design and
implementation of the whole augmented mitigation system. Therefore, several
steps (e.g., reputation score cash, additional detached threads) were employed
to reduce the processing time of the system since the CPU time is essential
for the mitigation of large-scale DDoS attacks.

The RepTopN heuristic respectively the augmented mitigation system were
practically evaluated and compared with the previous version of the mitiga-
tion heuristic respectively DMD. The experiments confirmed the expectations
that the performance of the RepTopN algorithm is directly proportional to
the number of IP addresses found in the reputation database. The proposed

51

Conclusion

heuristic is not very sensitive to the inaccuracy of reputation scores unless
the deviation of a specific reputation score exceeds 0.2. Overall, the mitiga-
tion efficiency of the augmented mitigation system with the proposed Rep-
TopN heuristic is considerably higher than the efficiency of the previously
used heuristic in most of the tested cases while the rise of the CPU time is
negligible. Therefore, the proposed system offers a solution to DDoS amplifi-
cation attacks since it may reduce the amount of discarded legitimate traffic
several times.

There are several topics which should be recommended for future research
and development. It is necessary to assess certain aspects of the augmented
mitigation system (e.g. size of the requests sent to NERD) during real DDoS
attacks and adjust these parameters accordingly. Based on the research behind
reputation scores, it would be worth exploring the possibility to integrate
reputation scores of other entities, such as subnets, ASNs, or BGP prefixes
into the RepTopN heuristic.

52

Bibliography

[1] CESNET a.l.e. CESNET / CESNET2 Network. [cit. 2018-04-24]. Avail-
able from: https://www.cesnet.cz/services/ip-connectivity-ip/

cesnet2-network/?lang=en

[2] Mirkovic, J.; Reiher, P. A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms. SIGCOMM Comput. Commun. Rev., volume 34, no. 2, Apr.
2004: pp. 39–53, ISSN 0146-4833, doi:10.1145/997150.997156, [cit. 2018-
04-24]. Available from: http://doi.acm.org/10.1145/997150.997156

[3] Gantner. 8.4 Billion Connected "Things" Will Be in Use in 2017. [cit.
2018-04-27]. Available from: https://www.gartner.com/newsroom/id/

3598917

[4] Arbor Networks. The History of DDoS. [cit. 2018-04-27]. Available from:
https://www.arbornetworks.com/the-history-of-ddos

[5] Rosencrance, L. Teen hacker ’Mafiaboy’ sentenced. [cit. 2018-04-28].
Available from: https://www.computerworld.com/article/2583318/

security0/teen-hacker--mafiaboy--sentenced.html

[6] Krebs, B. Akamai on the Record KrebsOnSecurity Attack. [cit. 2018-04-
28]. Available from: https://krebsonsecurity.com/2016/11/akamai-

on-the-record-krebsonsecurity-attack/

[7] Kolias, C.; Kambourakis, G.; et al. DDoS in the IoT: Mirai and Other
Botnets. Computer, volume 50, no. 7, 2017: pp. 80–84, ISSN 0018-9162,
doi:10.1109/MC.2017.201, [cit. 2018-04-26].

[8] Newman, L. H. GitHub Survived the Biggest Attack Ever Recorded. [cit.
2018-04-26]. Available from: https://www.wired.com/story/github-

ddos-memcached/

53

https://www.cesnet.cz/services/ip-connectivity-ip/cesnet2-network/?lang=en
https://www.cesnet.cz/services/ip-connectivity-ip/cesnet2-network/?lang=en
http://doi.acm.org/10.1145/997150.997156
https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917
https://www.arbornetworks.com/the-history-of-ddos
https://www.computerworld.com/article/2583318/security0/teen-hacker--mafiaboy--sentenced.html
https://www.computerworld.com/article/2583318/security0/teen-hacker--mafiaboy--sentenced.html
https://krebsonsecurity.com/2016/11/akamai-on-the-record-krebsonsecurity-attack/
https://krebsonsecurity.com/2016/11/akamai-on-the-record-krebsonsecurity-attack/
https://www.wired.com/story/github-ddos-memcached/
https://www.wired.com/story/github-ddos-memcached/

Bibliography

[9] Ferguson, S. Arbor Networks: 1.7Tbit/s DDoS Attack Sets Record.
[cit. 2018-04-28]. Available from: https://www.securitynow.com/

author.asp?section_id=613&doc_id=741202

[10] Zargar, S. T.; Joshi, J.; et al. A Survey of Defense Mechanisms Against
Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communi-
cations Surveys Tutorials, volume 15, no. 4, Fourth 2013: pp. 2046–2069,
ISSN 1553-877X, doi:10.1109/SURV.2013.031413.00127.

[11] Trusted Knight. DDoS Atacks: 3 Common Motivations. [cit. 2018-
04-28]. Available from: https://www.trustedknight.com/blog/ddos-

attacks-3-common-motivations/

[12] Aly, A. A.; Barka, E. Tracking and Tracing Spoofed IP Packets to Their
Sources. College of IT, aly@ uaeu. ac. ae, 2005.

[13] Peng, T.; Leckie, C.; et al. Protection from distributed denial of service
attacks using history-based IP filtering. In Communications, 2003. ICC
’03. IEEE International Conference on, volume 1, May 2003, pp. 482–486
vol.1, doi:10.1109/ICC.2003.1204223.

[14] Stratusly. What is a DDoS Scrubbing Center? [cit. 2018-05-3]. Available
from: https://stratusly.com/what-is-a-ddos-scrubbing-center/

[15] Rossow, C. Amplification Hell: Revisiting Network Protocols for DDoS
Abuse. In NDSS, 2014.

[16] US-Cert. TA14-017A: UDP-Based Amplification Attacks. [cit. 2018-05-4].
Available from: https://www.us-cert.gov/ncas/alerts/TA14-017A

[17] Gavrichenkov, A. Understanding the facts of memcached am-
plification attacks. [cit. 2018-05-4]. Available from: https:

//blog.apnic.net/2018/03/26/understanding-the-facts-of-

memcached-amplification-attacks/

[18] Moura, G. C. M.; Sadre, R.; et al. Internet Bad Neighborhoods: The
Spam Case. In Proceedings of the 7th International Conference on Net-
work and Services Management, CNSM ’11, Laxenburg, Austria, Aus-
tria: International Federation for Information Processing, 2011, ISBN
978-3-901882-44-9, pp. 56–63, [cit. 2018-04-24]. Available from: http:

//dl.acm.org/citation.cfm?id=2147671.2147681

[19] Shue, C. A.; Kalafut, A. J.; et al. Abnormally malicious autonomous sys-
tems and their internet connectivity. IEEE/ACM Transactions on Net-
working (TON), volume 20, no. 1, 2012: pp. 220–230.

54

https://www.securitynow.com/author.asp?section_id=613&doc_id=741202
https://www.securitynow.com/author.asp?section_id=613&doc_id=741202
https://www.trustedknight.com/blog/ddos-attacks-3-common-motivations/
https://www.trustedknight.com/blog/ddos-attacks-3-common-motivations/
https://stratusly.com/what-is-a-ddos-scrubbing-center/
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://blog.apnic.net/2018/03/26/understanding-the-facts-of-memcached-amplification-attacks/
https://blog.apnic.net/2018/03/26/understanding-the-facts-of-memcached-amplification-attacks/
https://blog.apnic.net/2018/03/26/understanding-the-facts-of-memcached-amplification-attacks/
http://dl.acm.org/citation.cfm?id=2147671.2147681
http://dl.acm.org/citation.cfm?id=2147671.2147681

Bibliography

[20] Moura, G. C. M.; Sadre, R.; et al. Internet bad neighborhoods
aggregation. In 2012 IEEE Network Operations and Management
Symposium, April 2012, ISSN 1542-1201, pp. 343–350, doi:10.1109/
NOMS.2012.6211917.

[21] Moura, G. C. Internet bad neighborhoods. Dissertation Thesis, University
of Twente, 2013.

[22] Bartos, V.; Zadnik, M. An analysis of correlations of intrusion alerts in
an NREN. In Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), 2014 IEEE 19th International Workshop
on, IEEE, 2014, pp. 305–309.

[23] Bartoš, V.; Kořenek, J. Evaluating Reputation of Internet Entities. Cham:
Springer International Publishing, 2016, ISBN 978-3-319-39814-3, pp.
132–136, doi:10.1007/978-3-319-39814-3_13, [cit. 2018-04-24]. Available
from: https://doi.org/10.1007/978-3-319-39814-3_13

[24] Zhang, J.; Porras, P. A.; et al. Highly Predictive Blacklisting. In USENIX
Security Symposium, 2008, pp. 107–122.

[25] Soldo, F.; Le, A.; et al. Blacklisting recommendation system: using
spatio-temporal patterns to predict future attacks. IEEE Journal on Se-
lected Areas in Communications, volume 29, no. 7, 2011: pp. 1423–1437.

[26] Puš, V.; Kučera, J.; et al. Protector: DDoS mitigation at 100G. 2017.

[27] CESNET, a.l.e. DDoS Protector. [cit. 2018-04-24]. Available from:
https://www.liberouter.org/technologies/ddos-protector/

[28] Seward, H. H. Information sorting in the application of electronic digi-
tal computers to business operations. Dissertation thesis, Massachusetts
Institute of Technology. Department of Electrical Engineering, 1954.

55

https://doi.org/10.1007/978-3-319-39814-3_13
https://www.liberouter.org/technologies/ddos-protector/

Appendix A

Acronyms

ACL Access Control List

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASN Autonomous System Number

BGP Border Gateway Protocol

CPU Central Processing Unit

DDoS Distributed Denial of Service

DoS Denial of Service

DMD DDoS Mitigation Device

DNS Domain Name System

FBI Federal Bureau of Investigation

FPGA Field-programmable Gate Array

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IMAP Internet Message Access Protocol

IoT Internet of Things

IP Internet Protocol

57

A. Acronyms

IRC Internet Relay Chat

ISP Internet Service Provider

JSON JavaScript Object Notation

NERD Network Entity Reputation Database

NREN National Research and Education Network

NTP Network Time Protocol

P2P Peer-to-Peer

REST Representational State Transfer

RS Reputation Score

RST Reputation Score Table

SIP Session Initiation Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

VT Volume Table

XML Extensible Markup Language

XSS Cross-site Scripting

58

Appendix B

Contents of enclosed CD

readme.txt........................the file with CD contents description
src

impl the directory of implementation sources
thesis..............the directory of LATEX source codes of the thesis

text

DP_Jánský_Tomáš_2018.pdf...........the thesis text in PDF format
thesis_assignment.pdf........the thesis assignment in PDF format

59

	Introduction
	State of the Art
	Distributed Denial of Service Attacks
	Related Security Tools

	Analysis and Design
	Requirements Analysis
	Augmented Mitigation
	Data Model Overview

	Implementation
	Acquisition of Reputation Scores
	Reputation Score Cache
	Sorting Algorithms

	Testing and Evaluation
	Evaluation Metric
	Test Data Presumptions
	RepTopN Evaluation
	Implementation Performance

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

