
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Incremental update of data lineage storage

in a graph database

Bc. Jan Sýkora

Supervisor: Ing. Michal Valenta, Ph.D.

26th April 2018

Acknowledgements

I would like to express my sincere gratitude to my advisor RNDr. Lukáš Her-
mann and to my supervisor Ing. Michal Valenta, Ph.D. who provided insight
and expertise that greatly assisted the research. I would like to also thank all
others who supported me and motivated me in overcoming numerous obstacles
I have been facing through my research.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 2373 of the Act No. 89/2012 Coll., the Civil Code,
I hereby grant a nonexclusive authorization (license) to utilize this thesis,
including any and all computer programs incorporated therein or attached
thereto and all corresponding documentation (hereinafter collectively referred
to as the Work), to any and all persons that wish to utilize the Work. Such
persons are entitled to use the Work in any way (including for-profit pur-
poses) that does not detract from its value. This authorization is not limited
in terms of time, location and quantity, is granted free of charge, and also
covers the right to alter or modify the Work, combine it with another work,
and/or include the Work in a collective work.

In Prague on 26th April 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Jan Sýkora. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sýkora, Jan. Incremental update of data lineage storage in a graph database.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Ćılem této práce je analýza a implementace inkrementálńıch aktualizaćı
úložǐstě data lineage v softwarovém nástroji Manta Flow. Obsahem této práce
je studium současného úložǐstě data lineage v Manta Flow, zkoumáńı exis-
tuj́ıćıch řešeńı inkrementálńıch atualizaćı v systémech ř́ızeńı verźı, zkoumáńı
inkrementálńıho zálohováńı v databáźıch, analýza a návrh nového řešeńı
inkrementálńıch aktualizaćı v Manta Flow a následná imlementace prototypu
a provedeńı výkonnostńıho testováńı. Výsledný prototyp je možné nasadit
do existuj́ıćıho produktu Manta Flow, a t́ım řádově sńıžit časovou složitost
aktualizaćı v úložǐsti data lineage.

Kĺıčová slova Inkrementálńı aktualizace, data lineage, datové toky, grafová
databáze, Manta Flow

Abstract

The purpose of this thesis is to analyze and implement incremental updates of
data lineage storage in the software tool Manta Flow. The basis of this work
is the study of current data lineage storage in Manta Flow, research of ex-
isting solutions of incremental updates in version control systems, research of
incremental backups in databases, analysis and design of a new solution of in-
cremental updates in Manta Flow and a subsequent prototype implementation

ix

and performance testing execution. The resulting prototype can be deployed
into the existing Manta Flow product, reducing time complexity of updates
in data lineage storage in orders of magnitude.

Keywords Incremental updates, data lineage, data flows, graph database,
Manta Flow

x

Contents

Introduction 1

1 Background 3

1.1 Manta Flow . 3

1.2 Graph database Titan . 4

1.3 Data model in Manta Flow . 8

1.4 Determination of a node’s resource 14

1.5 Graph structure . 15

1.6 Graph creation . 17

1.7 Source code files . 18

1.8 Interpolation . 20

1.9 Indexing . 21

1.10 Version control . 24

1.11 Analysis of the current implementation 29

1.12 Summary . 31

2 Related work and inspiration 33

2.1 Subversion . 33

2.2 Mercurial . 42

2.3 Incremental backups in databases 52

2.4 Observation . 54

3 Analysis and Design 59

3.1 Revision data representation . 59

3.2 Update . 73

3.3 Input . 82

3.4 Customization . 84

3.5 Summary . 91

4 Implementation 95

xi

4.1 Manta Flow server . 95
4.2 Manta Flow client . 103
4.3 Summary . 105

5 Performance Testing 107
5.1 Test cases . 107
5.2 Test data . 109
5.3 Measurement . 109
5.4 Summary . 113

Conclusion 115

Bibliography 117

A Acronyms 121

B Contents of enclosed CD 123

xii

List of Figures

1.1 High-level Titan architecture and Context 5

1.2 TinkerPop system architecture . 6

1.3 BigTable data model . 7

1.4 Titan data layout . 7

1.5 Edge and property layout . 7

1.6 Example of a property graph . 9

1.7 Example of a relationship between a node and resource 15

1.8 Example of a main graph hierarchy 16

1.9 Hierarchy of a graph with source code files 16

1.10 Hierarchy of a graph with revisions 17

1.11 Example of the source code file management 19

1.12 Example of interpolation . 20

1.13 Example of revisions in revision tree 24

1.14 Example of revision tracking in the main graph 26

1.15 Example of merged changed graph 30

2.1 Subversion basic operations . 34

2.2 Example of a working copy . 35

2.3 Initial state of repository . 39

2.4 Bubble-up method - example 1 . 40

2.5 Bubble-up method - example 2 . 41

2.6 Basic operations in Mercurial . 43

2.7 Metadata relationships . 44

2.8 Revlog layout . 46

2.9 Metadata hierarchy using the revlog structure 48

2.10 Parent revision of a working directory 49

2.11 Differential incremental backup . 52

2.12 Cumulative incremental backup . 53

2.13 Combined incremental backup . 54

xiii

3.1 Small change in the graph with closed end revisions 61
3.2 Large removal in the graph with closed end revisions 62
3.3 Small change in the graph with unclosed end revisions 63
3.4 Large removal in the graph with closed end revisions 64
3.5 Small change in the graph - incremental update 66
3.6 Large removal in the graph - full update 67
3.7 Example of a revision tree . 70
3.8 Full update - initial state . 75
3.9 Full update - merging resource and layer 75
3.10 Full update - merging node A . 76
3.11 Full update - merging node C . 76
3.12 Subgraph merge - initial state . 77
3.13 Merging resource and layer . 78
3.14 Merging nodes B and E . 79
3.15 Removing subgraph with the root node A 79
3.16 Merging subgraph with the root node A 80
3.17 Merging data flow from the node G to the node E 81
3.18 Input subgraph . 84
3.19 Script and procedure in the main graph 86
3.20 Input subgraph of the changed procedure 87
3.21 Script and procedure in the main graph after the merge 87

5.1 Merge time comparison of test cases 1, 2, 3 and 4 110
5.2 Merge time comparison of test cases 1, 2, 3 and 4 in a logarithmic

scale . 111
5.3 Delete time comparison of test cases 5 and 6 112

xiv

List of Tables

1.1 Summary of vertices’ control edges 25

2.1 Sample content of an index file in the revlog format 47

5.1 Input data for test cases 1, 2, 3 and 4 109
5.2 Input data for test cases 5 and 6 109
5.3 Average merge time of test cases 1, 2, 3 and 4 110
5.4 Average delete time of test cases 5 and 6 112

xv

Introduction

The ever-increasing number of applications and the complexity of software
systems is leading to significant growth in the total volume of data. Since
systems do not usually work with their own data, but with other applica-
tion data, interconnections between these systems arise and these data are
affected by each other. In the case of complex systems, bringing a single error
to the system may cause multiple problems.

This issue of data volume is addressed by Manta Flow. Manta Flow
is a software tool that allows automatic analysis of programming code and
the subsequent description of transformation logic contained therein. Manta
Flow is able to automatically process large amount of data and construct from
these data a visualized map of data flows across the BI environment, in other
words, data lineage.

Manta Flow stores results of the analyzed data, metadata, in a graph data-
base. Thanks to the thesis of Petr Holeček [1], temporality was implemented
in Manta Flow. Thus, it is possible to track history of stored metadata in time
(including time history of data flows).

Unfortunately, the implemented temporality in Manta Flow supports only
full update. When a change is made in the unprocessed data, all unprocessed
data (changed and unchanged) have to be processed and stored in database
to save the change in time. In other words, time spent on updating a change is
directly proportional to the overall size of the all data, regardless the change
size.

This size change insensitivity causes undesired consequences. When for
instance only 1 % of all data is changed, the update still requires processing
all 100 % of data. Therefore, in this case, the update takes about one hundred
times longer than necessary.

This thesis addresses the issue of change size insensitivity by introducing
incremental update. Incremental update is based on the principle of updat-
ing only the changed parts, avoiding unnecessary update of the unchanged
parts. Hence, when using incremental update, the update time is directly

1

Introduction

proportional to the change size, regardless the size of all data.
Since Manta Flow works with a large amount of data and changes in single

updates represent typically only a fraction all data, incremental update can
significantly reduce the time necessary for the update, thereby supporting
scalability with the growing data size.

The main goal of this thesis is to implement incremental update of data
lineage storage in Manta Flow. In the first phase, a study of the current data
lineage storage in Manta Flow is performed. On top of that, research of exist-
ing solutions of incremental updates is analyzed. Namely, incremental updates
in version control systems and incremental backups in databases have been re-
searched and can be used as the inspiration for incremental updates in Manta
Flow. In the second phase, based on the study and research from the first
phase, a new incremental update method in Manta Flow is analyzed and de-
signed. In the third phase, an implementation of a prototype supporting
the designed incremental update process is performed and finally a perform-
ance testing of the implemented prototype is carried out.

If the implemented prototype proves the expected update time reduc-
tion and does not indicate any negative side effects disallowing it for real
use, then the new incremental update method can be deployed and used
in the product version of Manta Flow.

2

Chapter 1

Background

In the first chapter, we will study software tool Manta Flow. We will focus
on themodule of persistent data flow storage. This module is responsible
for managing data and storing them in a graph database Titan in such
a specific way allowing it to track the data lineage.

We will learn about the architecture of graph database Titan, we will study
types of vertices, edges and their relationships and we will also cover types
of indices used in the database.

Finally, we will study the way the version control is implemented in
Manta Flow and we will analyze it for further improvements. In other words,
we will define what functionality we want to improve within this thesis and
why we want to improve it.

1.1 Manta Flow

Company Manta Tools introduced in 2013 one of its main products – Manta
Flow [2]. Manta Flow analyzes customers’ system metadata (for instance
Manta parses complex SQL scripts or ETL configuration), extracts informa-
tion of lineage and data flows and visualizes the entire path of data on a table
or column level [3].

Simply put, as Lukáš Hermann explains [4], Manta Flow can reduce very
complex SQL statements to a few simple rectangles connected by arrows.
It helps to quickly understand what source tables the SQL queries read,
what target tables they fill, what columns are involved in computing a partic-
ular column and how these columns are involved.

Therefore, Manta Flow is intended for clients with huge data warehouses
who need to get end-to-end data lineage. It allows them to improve their
data governance, fulfill compliance regulations and increase effectivity of their
current solutions [5].

3

1. Background

1.1.1 Manta Flow architecture

Manta Flow is a client-server based application. Communication between
client and server is performed via a specified communication interface using
the TCP/IP protocol.

Manta Flow client is a Java command line application. Manta Flow
client extracts database dictionaries, DDL scripts, work flows and configura-
tion files from user’s databases and repositories, analyzes the extracted data
and uploads all the gathered metadata to the Manta Flow server.

Manta Flow server is a java server application. Manta Flow server
processes metadata received from the client, stores them in a metadata repos-
itory, in the graph database Titan, and provides visualization of the stored
metadata.

Both client and server contain multiple modules. In this chapter, we will
focus solely on the module of persistent data flow storage. Module of the per-
sistent data flow storage is located on Manta Flow server. This module encap-
sulates persistent metadata storage and all logic related to the management
of this persistent storage.

1.2 Graph database Titan

Manta Flow uses for the persistent data flow storage a graph database Ti-
tan. Titan is a distributed graph database optimized for storing and querying
graphs represented over a cluster of machines [6]. However, in the Manta Flow
project the distributivity is not used. Every instance of Manta Flow is running
exactly on one machine.

Titan is also a transactional database. Every graph operation in Titan
occurs within the context of a transaction. Each thread opens its own trans-
action against the graph database with the first operation on the graph [7].
The support of transactions allows execution of queries of concurrent users
against the database at the same time, which is used in Manta Flow.

1.2.1 Titan architecture

Titan is a graph database engine. Titan is focused on compact graph serial-
ization, graph data modeling and efficient query execution. Moreover, Titan
utilizes Hadoop for graph analytics and batch graph processing. Titan imple-
ments robust, modular interfaces for data persistence, data indexing and client
access [8]. Figure 1.1 taken from the official Titan documentation [8] describes
Titan architecture.

Although Titan supports online analytical processing (OLAP), using Big
Data platforms such as Hadoop, none of these tools are used in the Manta
Flow.

4

1.2. Graph database Titan

Figure 1.1: High-level Titan architecture and Context

Titan has a pluggable storage architecture which allows it to build on
a proven database technology such as Apache Cassandra or Oracle BerkeleyDB
[6]. Manta Flow is using storage backend Persistit. Storage backend Per-
sistit runs in the same JVM as Titan and provides local persistence on a single
machine. As Dan LaRocque, a former co-developer on Titan, mentions in
the documentation [9], all data has to fit on the local disk and all frequently ac-
cessed graph elements have to fit into the main memory. Therefore, the graphs
stored in the Persistit are limited to hundreds of millions of vertices. Accord-
ing to Lukáš Hermann, the director of engineering and the project leader
of Manta Flow, the diagrams currently stored in the Persistit reach the max-
imum of millions of vertices. Hence, Persistit is fully capable of storing cli-
ent’s data on a single machine with a sufficient store for a new data.

Manta Flow is currently using Titan version 0.4.4. When designing
Manta Flow it was decided to use the storage backend Persistit. The Ti-
tan version 0.4.4 is the last version supporting the storage backend Persistit.
Therefore, the Titan version 0.4.4 was chosen despite the existence of newer
versions of Titan.

As mentioned in the Titan documentation [10], Titan natively implements

5

1. Background

the Blueprints interface1. Hence, Titan supports all of the open-source
technologies in the TinkerPop graph stack. The hierarchy of a graph comput-
ing framework TinkerPop is described in the figure 1.2.

Figure 1.2: TinkerPop system architecture

Applications, such as Manta Flow, are able to interact with Titan in two
ways: either executing Gremlin queries directly against the graph within
the same JVM or interact with a local or remote Titan instance by submit-
ting Gremlin queries to the server [8].

In Titan you can use both external index interface as well as the standard
index. The indexing in Titan and its specific implementation in Manta Flow
is explained further in detail in the section 1.9.

1.2.2 Physical data model

Titan stores a graph in any storage backend that supports the BigTable data
model [12]. BigTable is a distributed storage system for managing structured
data that is designed to scale to a very large size: petabytes of data across
thousands of servers [13].

In the BigTable data model, each table is a collection of rows. Each
row is uniquely identified by a key. Each row contains an arbitrary number

1Blueprints is an open source, community developed Java interface for graph databases
that expose a property graph data model [11].

6

1.2. Graph database Titan

Figure 1.3: BigTable data model

of cells. A cell is composed of column and value. Titan requires that cells
must be sorted by their columns. Additionally, depending on implementation
of BigTable by the storage backend, rows may be kept sorted in the order
of their key [12].

Using BigTable data model as a storage concept, Titan stores graphs
in the adjacency list format. In other words, a graph is stored as a col-
lection of vertices with their adjacency list. The adjacency list of one vertex
contains all of the vertex’ incident edges and vertex’ properties. Each edge and
property is stored as one cell with a predefined structured such that the byte
order of the column respects the sort key of the edge label (see figure 1.5) [12].

Figure 1.4: Titan data layout

Figure 1.5: Edge and property layout

7

1. Background

The disadvantage of the adjacency list format is that every edge is stored
twice – in vertex where the edge starts and in vertex where the edge ends.
On the other hand, the adjacency list format allows Titan to effectively tra-
verse large graphs, perform efficient insertions and deletions or use, for in-
stance, vertex-centric indexing (for more information about vertex-centric in-
dexing see section 1.9.3).

1.2.3 Logical data model

The logical (abstract) data model in Titan is a property graph. Since Titan
implements the Blueprints interface, we can entirely define the data model
accordidng to the Gremlin’s2 definition of a property graph [14]. Grem-
lin defines property graph as a key/value-based, directed and multi-
relational graph. The first term, key/value-based graph, refers to the fact
that both vertices and edges can have any number number of properties as-
sociated with them. The second term, directed graph, refers to the fact that
each edge is oriented. Finally, the third term, multi-relational graph, de-
scribes the fact that between two vertices can exist more than one edge.
Hence, between two vertices can exist more than one relationship. An ex-
ample of a property graph is in the figure 1.6.

1.3 Data model in Manta Flow

Using the property graph as a data model, Manta Flow defines its own struc-
ture and hierarchy of vertices and edges. In the following section we will
describe all types of vertices and edges in Manta Flow and explain their rela-
tionships.

1.3.1 Vertices

As mentioned above in the description of the abstract data model, vertices
can have any number of properties. Properties can also be used as a vertex
label. In other words, we can reserve one property to be defined in all vertices
to distinguish or categorize types or groups of vertices. This approach is used
in Manta Flow and this property is named vertexType. Currently, in Manta
Flow are defined nine vertex types, each with their own corresponding
properties:

• super root
– superRoot

• resource
– resourceName

2Gremlin is a graph traversal language of Blueprints TinkerpPop framework.

8

1.3. Data model in Manta Flow

Figure 1.6: Example of a property graph

– resourceType
– resourceDescription

• layer
– layerName
– layerType

• node
– nodeName
– nodeType

• attribute
– attributeName
– attributeValue

• revision root
– revisionRoot

• revision node
– revisionNumber
– revisionCommitted
– revisionEnd

• source root
– sourceRoot

9

1. Background

• source node
– sourceNodeLocal - local name of the source code file
– sourceNodeId - unique name of the source code file
– sourceNodeHash - hash code of the content of the source code file

Vertex vs. Node

It is important to distinguish between the terms vertex and node
in the Manta Flow terminology. Vertex is every vertex in the database.
Node is a type of vertex. It may be confusing due to the names of ver-
tex types revison node and source node that are not nodes but only
vertices.

Super root is the root of the stored metadata. Hence, all user’s metadata
are below super root in the vertex hierarchy. In the database exists only one
vertex of this type. Super root has only one property superRoot. This prop-
erty has no other usage than as a single-property index.

Resource represents a specific resource of metadata or its part in the re-
pository. It is a technology. Resource can be for instance Oracle, Teradata,
Hive or just a Filesystem. Every node belongs to a certain resource. To which
resource a node belongs to is defined either directly or indirectly. For more
information see section 1.4.

Layer represents a logical level of metadata stored in the database. Pur-
pose of the layer is to distinguish between different views of the modeled
reality. Thus, users are allowed to view their stored metadata from different
perspectives. Especially, users are allowed to view the data flows within a spe-
cific layer. For example, user has a modeled data on two levels: physical and
business layer. Then, user is able to view the same data flows on the physical
level (e.g. flows between tables) and on the business level (e.g. flows between
entities corresponding to the tables from the physical layer).

Node represents an object in the data flow graph. A node may be for in-
stance a database, schema, table or column. Node can also represent a proced-
ure, PLSQL script, file, directory or any other user defined object in the data
flow graph.

Node has two properties nodeName and nodeType. For instance node rep-
resenting a table has properties nodeName=EMPLOYEES and nodeType=Table.
Property nodeName is also indexed for a full-text search.

Attribute represents a supplementary information of a node. For in-
stance, when a column has a data type VARCHAR(20 BYTE), then in the data
model a node of nodeType=Column is connected with an attribute vertex and
this attribute vertex has two properties: attributeName=COLUMN TYPE and
attributeValue=VARCHAR(20 BYTE).

Revision root is the root of the tree with revision nodes. In the database
exists only one revision root. Revision root has only one property revision-

Root. It is a single-property index for quick search of the revision root.

10

1.3. Data model in Manta Flow

Revision node is, in the Manta Flow terminology, not a node but a ver-
tex, however this is the official name of this type of vertex, hence, we will
keep using this name. Revision node represents a revision (see section 1.10.1
for more information about revisions).

Revision node contains three properties. Property revisionNumber stands
for the number of revision, revisionCommitted is a boolean property and its
value is true, when the revision is committed, otherwise its value is false.
Finally, property revisionEnd represents time when the revision was com-
mitted.

Source root is the root of the tree with source nodes. In the database
exists only one source root. Source root has only one property sourceRoot.
It is a single-property index for quick search of the source root.

Source node is, in the Manta Flow terminology, not a node but a vertex,
however this is the official name of this type of vertex, hence, we will keep
using this name.

Source node represents a source code file. Source code files are typically
database scripts modifying user’s database, and thus affecting the data flows
in user’s database.

Source node contains three properties. Property sourceNodeLocal con-
tains name and path to the source code file in the user’s file system. Second
property, sourceNodeId, is a unique, randomly generated, name of the source
code file in Manta Flow. SourceNodeId is used for identification of the source
code file within the Manta Flow. Finally, property sourceNodeHash is a hash
code of content of a source code file. This hash code is used for check of change
during the asynchronous loading of source code files from user’s file system to
Manta Flow.

For more information about management of source nodes and source code
files in Manta Flow see section 1.7.

1.3.2 Edges

Edges in Titan can have both labels and properties. The only constraint is
that one edge can have at most one label. Manta Flow defines nine different
edge labels (i.e. edge types), each with their corresponding properties:

• hasResource
– childName
– tranStart
– tranEnd

• hasParent
– childName
– tranStart
– tranEnd

• hasAttribute

11

1. Background

– tranStart
– tranEnd

• directFlow
– targetId
– interpolated
– tranStart
– tranEnd

• filterFlow
– targetId
– interpolated
– tranStart
– tranEnd

• inLayer
– tranStart
– tranEnd

• mapsTo
– tranStart
– tranEnd

• hasRevision
– tranStart
– tranEnd

• hasSource
– sourceLocalName
– tranStart
– tranEnd

tranStart and tranEnd

Every label has two properties tranStart and tranEnd. These prop-
erties specify the validity of each object in time. It specifies, when
the object was created and removed. These properties are also indexed
(see section 1.9 for more information). Since storage of the time valid-
ity of objects in the database is the core of our thesis, these properties
are described in detail in the section 1.10.2.

HasResource edge connects node with its resource. This edge directly
defines node’s resource. The edge starts from the node vertex and ends
in the resource vertex. For more information about node’s resource see section
1.4.

The edge with label hasResource has one more special usage. It is also
connecting resource with super root. The edge starts from the resource vertex
and ends in the super root vertex.

In both cases described above, the edge with label hasResource has a prop-
erty childName. This property contains name of the source vertex, i.e. a name

12

1.3. Data model in Manta Flow

of the vertex from which the edge starts. This property is also indexed for
a quick search.

HasParent edge connects child node with its parent node (predecessor).
The edge starts from the child node and ends in the parent node. Every node
has at most one predecessor. For example, a child node Column has a parent
node Table and node Table has a parent node Schema.

The edge with label hasParent has, as well as the edge hasResource,
a property childName. This property contains name of the child node. This
property is indexed for a quick search.

HasAttribute edge connects node with its attribute. The edge starts
from the node and ends in the attribute vertex.

DirectFlow edge represents a direct data flow from the source node
to the target node. A direct data flow is defined as a data flow from the source
node to the target node. These data may be transformed (filtered, sorted,
changed format etc.) on their way to the target, however, unlike the filter-
Flow, this data flow does not affect another data flow.

The edge directFlow connects only nodes on the lowest level of the graph
hierarchy (e.g. database columns or function parameters).

DirectFlow edge has two properties, targetId and interpolated. Tar-
getId property contains the automatically generated vertex id of the target
node. This property is indexed for a quick search. The second property,
interpolated, is a boolean property indicating whether the edge was inter-
polated (true) or not (false).

FilterFlow edge represents an indirect data flow from the source node to
the target node. Unlike the direct data flow, in case of the filter (indirect)
data flow, the source node affects, indirectly, what data flows to the target
node. For example, source node represents a part of the script where is the IF
statement. This statement decides, whether some data will flow to some target
node.

On the filterFlow edge are applied the same constraints (connecting
nodes on the lowest level) and properties (targetId and interpolated) as
on the directFlow edge.

InLayer edge connects a resource (source vertex) with a layer (target
vertex). This edge specifies, to what layer belong metadata from the same
specific resource (for more information see vertex layer in the section 1.3.1).

MapsTo edge represents relationship between nodes from different layers.
This edge specifies that the source node from layer X is mapped to the tar-
get node from layer Y. For edges mapsTo applies the same restriction as for
the edges directFlow and filterFlow that this type of edge can be present
only on the lowest level of the hierarchy in both layers.

HasRevision edge connects revision root (source vertex) with a revi-

sion node (target vertex). This edge has no other purpose than to only keep
the revision nodes accessible from the revision root.

13

1. Background

HasSource edge connects source root (source vertex) with a source

node (target vertex). This edge has no other purpose than to only keep
the source nodes accessible from the the source root. Additionally, this
type of edge has a property sourceLocalName. This property contains local
name of the source code (name of the source code file in the graph database).
This property is indexed for a quick search.

1.4 Determination of a node’s resource

As mentioned in the section Vertices, every node has some resource. It is
defined either directly or indirectly. Direct definition is performed simply
by the edge with label hasResource. When the node is not connected directly,
then its resource is derived indirectly by its predecessor. This is the complete
pseudo-algorithm of determining a node’s resource:

Algorithm 1 Find resource of a node

1: function getResource(node)
2: if node has hasResourceEdge then
3: resource← hasResourceEdge.targetV ertex

4: return resource

5: else if node has hasParentEdge then
6: parent← hasParentEdge.targetV ertex

7: return getResource(parent)
8: else
9: ERROR

10: end if
11: end function

As we can see from the algorithm 1, if a node does have a hasResource

edge, then its resource is represented by the end node of the hasresource edge.
Otherwise, we search for a resource of its parent node. Since every node has
an edge either to a parent node or to a resource, every node has one and only
one resource. In other words, if a node does not have a hasResource edge,
then some of its predecessors have this edge and we only need to find this
predecessor using edges with label hasParent.

For instance, in the figure 1.7 node B does not have a hasResource edge.
Therefore, we proceed to its parent node A. There we find out, parent node
A has a hasResource edge to the resource 1. Hence, node B has a resource
resource1.

However, it can happen a node has a different resource than some of its
predecessors. For example, in the same figure 1.7, node D has a resource
different from its parent node C.

14

1.5. Graph structure

Figure 1.7: Example of a relationship between a node and resource

1.5 Graph structure

In this section, we will describe the overall graph structure composed of
the previously defined vertices and edges. The graph structure in Manta Flow
is split into three unconnected graphs: main graph, graph with source
nodes and graph with revisions.

1.5.1 Main graph

Main graph contains all user’s stored metadata and all data flows between
them. The hierarchy of vertices and their relationships in the graph is shown
in the figure 1.8.

In our visualization, super root is always on top of the main graph. To
the super root are connected resources (e.g. Oracle or Teradata) and resources
are connected to their layer (e.g. physical or business layer). To the resources
are connected nodes and nodes may have some additional attributes. Finally,
all the nodes on the lowest level are connected by the flow edges representing
data flows between these nodes.

Depth of the main graph is derived from the complexity and granularity
of user’s metadata. Therefore, depth of the main graph is in general unlimited.
For instance, when representing relational database data model consisting only
of node types database, schema, table and column, the depth of the graph will
be at most 5 (super root is at depth 0, resource is at depth 1, database at depth
2, schema at depth 3, table at depth 4 and column at depth 5). On the other
hand, when representing a directory structure, depth of the graph depends
on the depth of the deepest subdirectory.

15

1. Background

Figure 1.8: Example of a main graph hierarchy

1.5.2 Graph with source nodes

Graph with source nodes consists of a source root and source nodes connected
to the source root. This simple structure is showed in the figure 1.9.

Figure 1.9: Hierarchy of a graph with source code files

Source code files are not stored in the graph database. Therefore, this
graph stores references to the physical location of source code files in the source
nodes.

16

1.6. Graph creation

For more information about relationship between source nodes and source
code files see section 1.7.

1.5.3 Graph with revisions

Graph with revisions has a similar structure as the graph with source code
files. On top of the graph is revision root. Revision root is connected with all
revision nodes. Revision nodes only hold information about a specific revision,
there are no other connections in this graph structure. This structure is showed
in the figure 1.10.

Figure 1.10: Hierarchy of a graph with revisions

Graph with revisions serves no other purpose than storing list of revisions
in Manta Flow. Version control itself is implemented in the main graph using
properties tranStart and tranEnd on the edges. See section 1.10 for more
information about version control in Manta Flow.

1.6 Graph creation

To visualize data flows of user’s metadata, we have to first create a graph of
metadata in Manta Flow Titan database.

First, on user’s side has to be created a local graph structure of his or
her metadata and data flows. Then this structure is linearized into the CSV
file and this file is sent to Manta Flow server. The received CSV file is
parsed to single vertices and edges and these vertices and edges are merged
one by one into Titan graph database.

Merging starts from the root and proceeds to the leaves as the processor
goes through the CSV file line by line. In the CSV file one line represents one
edge or vertex.

Merging is performed by database transactions, i.e. each edge or vertex
creation is performed by a single database transaction. It was empirically
observed the optimal number of transactions during graph creation is 500.
Therefore, during the creation of graph in the Titan database, 500 vertices
and edges are sent together to be created.

17

1. Background

Besides creating the metadata graph structure in Titan database, Manta
Flow also stores user’s source code files on the disk. User’s source code files
are sent asynchronously to reduce the server load and during the creation of
the graph structure in Titan, Manta checks whether these source code files
are already received or not. See the following section 1.7 for more information
about source code files and their storage in Manta Flow.

1.7 Source code files

Source code files are essential for visualization of data flows in Manta Flow.
Typically, source code files are user’s scripts determining data flows between
objects. For instance, user uses Oracle database. Then, source code files are
SQL scripts defining creation of tables, columns or views, insertions, selections,
imports and other usual database operations and procedures. Manta Flow
is able to visualize all these operations as data flows in user’s database.

Source code files are not stored in the Titan database. Source code files
are stored aside on the disk. Manta Flow stores in Titan only names of these
files in the source nodes (property sourceNodeId) in the source node graph.
However, source code files are for the purposes of data flows split into smaller
parts and these parts are represented by nodes in the main graph. For ref-
erencing to the source code file and identification of source code files within
Manta Flow is used the randomly generated sourceNodeId. SourceNodeId is
assigned to the source code file when it is imported to Manta Flow.

1.7.1 Example

For example, in the figure 1.11 we can observe how a script is represented
in the graph database. The whole script as a source code file is represen-
ted by source node under the source root. From this source node we can
find out what substitute name of the source code file is used in the database
(60CD105CA0AB416), in what folder at user’s storage the script was stored be-
fore the import to Manta Flow (C:\Manta\Procedures) and what hash of this
script was used during import to Manta Flow (93416a03a0d749186).

All scripts stored in Manta are located in one folder on a disk. If we
knew location of this folder, then we would find there a file (script) with name
60CD105CA0AB416.

This script (60CD105CA0AB416) is interpreted as a procedure. Therefore,
a node of type Procedure was created in the main graph. This procedure is
part of a package of procedures. Hence, a node of type PLSQL Package was
also created in the main graph and this package was set as its parent.

Furthermore, the Procedure node has two attributes: sourceEncoding

and sourceLocation. Thanks to these attributes, Manta Flow knows in what
file (script) can be found content of this Procedure.

18

1.7. Source code files

Figure 1.11: Example of the source code file management

19

1. Background

In Manta Flow, every script is partitioned into smaller logical parts and
these parts are ordered into a hierarchy. In this example, procedure consists
of blocks of codes (PLSQL Block) and each block consists of single opera-
tions (PLSQL ColumnFlow). In Titan database is stored position in the file
where these blocks and operations start and end. In this example, the insert
operation starts at line 7, column 5 and ends at line 81, column 18.

Finally, by partitioning scripts into smaller logical parts, Manta is able to
describe what operations are affecting what nodes, i.e. describe data flows.
In this example, there is an insertion into column SNAP DATE. This insertion
is indirectly affected by the column PARTY KEY. Therefore, there is created
a filterFlow from PARTY KEY column to SNAP DATE column.

1.8 Interpolation

According to the Manta Flow documentation [15], interpolation is a process
of creating new data flow edges in one layer derived from data flows in another
layer. Moreover, this process can create not only data flow edges but also new
nodes.

Figure 1.12: Example of interpolation

20

1.9. Indexing

For example, in the figure 1.12 were before the start of the interpolation
only two entities in the business layer: Party and Client. These entities were
mapped to their counterparts in the physical layer: SOURCE TABLE and
TARGET TABLE. The interpolation analyzed data flows in the physical layer
and created new data flows in the business layer according to the data flows in
the physical layer. The newly created data flows have the property interpol-

ated set to true. Additionally, the interpolation process is able to create new
nodes (in the example a process NAME CONCATENATE) in the interpolated
layer to truly mirror the mapped relationships.

The purpose of interpolation is to completely mirror data flows between
two layers of the identical metadata. Users do not want to analyze data
flows on the lower levels (e.g. physical layer) since data in these layers are
less readable than data on the higher levels (e.g. business layer). Therefore,
interpolation allows to display data flows in another layer in order to easy
analysis of metadata for users.

1.9 Indexing

Index is a data structure allowing a fast retrieval of elements by specified
property key/value pair(s). In Titan, it is possible to index both vertex and
edge property keys. Titan supports three types of indices: standard index,
external index and vertex-centric index. In this section, we will learn
about these index structures and then we will describe their usage in Manta
Flow.

1.9.1 Standard index

Standard index can be used for indexing either vertices or edges by indexing
one or more of their property keys.

Standard index is fast and available without any further configuration.
It is implemented directly against the configured storage backend. However,
standard index is limited only to the exact index matches. In other words,
standard index can only retrieve vertices and edges by matching one of their
properties exactly [16].

Standard index is also closely related to the uniqueness of a property
key. A unique property key is a key whose property value is always uniquely
associated with a vertex. In other words, it is impossible to set the same
property value of a unique property key for two different vertices. However,
declaring a unique property key requires a defined standard vertex index [17].

1.9.2 External index

External index is more flexible than standard index. It supports retrieving
vertices and edges by bounding their geo-location, properties allowing search

21

1. Background

by numeric range or matching tokens in full-text search [16]. As mentioned
in the section 1.2.1, Titan supports an arbitrary number of external index
backends.

However, unlike the standard index, the external index backends need to
be configured in the graph configuration before they can be used.

Titan in the version 0.4.4 supports two indexing systems: Lucene and
Elasticsearch. Lucene has a slightly extended feature set and performs bet-
ter in small-scale applications compared to Elasticsearch. Nevertheless, unlike
Elasticsearch, Lucene is limited to single-machine deployments [18]. There-
fore, Lucene is currently in use in Manta Flow since Manta Flow runs only on
a single-machine.

1.9.3 Vertex-centric index

Vertex-centric index is an index structure specific to a vertex, i.e. index
for a quick retrieval of adjacent vertices of a specific vertex. The purpose
of vertex-centric index is to sort and index the incident edges of a vertex
according to incident edges’ labels and properties [19]. Simply put, vertex-
centric indexing sorts edges of a vertex by their properties making it a label
as well. Sorting the edges may speed up lookup of next vertex from current
vertex, since there may be no need to go through all incident edges.

Unlike graph indices3, which are global to the graph (designed for fast
global lookups), vertex-centric index enables fast graph traversals by avoiding
linear scanning of incident edges at every visited vertex in a vertex query.

Vertex-centric indexing reduces time complexity of a adjacent vertex search
from linear complexity O(n), (n stands for the number of incident edges of
a vertex) to at most a logarithmic complexity O(log n). Therefore, vertex-
centric indexing is suitable, especially, for graphs with a large number of edges
[19].

Vertex-centric indexing is possible thanks to the storage of the graph
in the adjacency list format (see section 1.2.2. It allows to store the adjacency
list of each vertex in a concrete sort order defined by sort-key configurations
of the edge labels and properties.

1.9.4 Indices in Manta Flow

Following is the list of indices implemented in Manta Flow:

• Standard indices
– superRoot
– revisionRoot
– sourceRoot
– childName

3Both standard and external index are graph indices.

22

1.9. Indexing

– targetId
– sourceLocalName

• External indices
– nodeName
– tranStart
– tranEnd

• Vertex-centric indices
– hasResource sorted by {childName, tranEnd, tranStart}
– hasParent sorted by {childName, tranEnd, tranStart}
– directFlow sorted by {targetId, tranEnd, tranStart}
– filterFlow sorted by {targetId, tranEnd, tranStart}
– hasSource sorted by {sourceLocalName, tranEnd, tranStart}

SuperRoot index is a standard unique index created on vertices using
boolean vertex property superRoot. This index is created for fast retrieval of
super root vertex.

RevisionRoot index is a standard unique index created on vertices using
boolean vertex property revisionRoot. This index is created for fast retrieval
of revision root vertex.

SourceRoot index is a standard unique index created on vertices using
boolean vertex property sourceRoot. This index is created for fast retrieval of
source root vertex.

ChildName index is a standard index created on edges using edge prop-
erty childName. This index helps to faster look up a child node from its parent
node by the child’s name.

TargetId index is a standard index created on edges using edge prop-
erty targetId. This index helps to faster retrieve a target node (end node)
of the connecting edge.

SourceLocalName index is a standard index created on edges using edge
property sourceLocalName. This index helps to faster retrieve source nodes
with a specified name of the source code file.

NodeName index is an external, full-text search indexed created on ver-
tices using String property nodeName. This external index is using external
backend Lucene.

TranStart and tranEnd indices are external indices created on edges
using edge properties tranStart and tranEnd. The external index was created
for the purpose of interval search.

Vertex-centric indices are created as labels and are sorted by one spe-
cial property key and tranEnd and tranStart property keys in this order. For
instance, source root vertex has sorted all its outgoing edges first by property
sourceLocalName, then by property tranEnd and finally by property tran-
Start. Therefore, finding the latest version of a source code is faster when
using vertex-centric indexing, since the latest source node is reachable by
the first outgoing edge.

23

1. Background

1.10 Version control

Based upon analysis of Petr Holeček [1], a concept of revisions4 (temporal-
ity) was implemented in Manta Flow to capture changes in time, i.e. version
control.

The implementation of temporality allows users to store changes of objects
in time. That means, we can track changes of user’s metadata and data flows
in Manta Flow. For instance, user can find out what were the data flows in
his or her database in a specific revision or what was the impact of adding
a new database script in another specific revision.

1.10.1 Revisions

Version control system is based on the term of revisions. Revision represents
a point in time capturing an exact state of all objects in database.

Revisions are stored in the revision tree and each of them contain in their
vertex properties basic information about a specific revision.

Figure 1.13: Example of revisions in revision tree

In the figure 1.13 we can see three revisions with their properties (see sec-
tion 1.3.1 for description of the properties). Revision with number zero is also
called a technical revision, all other revisions are non-technical. Technical re-
vision is created at the beginning when no user’s data is imported. Therefore,
no data is tracked within this technical revision, i.e. technical revision has no
usage for data tracking.

1.10.2 Revision tracking in the graph

Manta Flow supports version control. When version control is enabled, all
objects in Manta Flow have specified their time validity by two points in
time: tranStart and tranEnd. TranStart is number of the revision in which
the object was created and tranEnd is number of the latest revision in which
the object still existed.

4In the Manta Flow terminology terms ”version” and ”revision” are interchangeable.

24

1.10. Version control

According to the design of version tracking by Petr Holeček [1], revision
validity of vertices is not stored in the vertices but in the control edges.
Each vertex has defined a direction and label of its control edge. Super root,
revision root and source root are the only exceptions. Root vertices have
undefined revision validity because these vertices are always present. Following
is the summary of control edges for each type of vertex used in Manta Flow:

Vertex Control edge

super root N/A

revision root N/A

source root N/A

resource outcoming hasResource

layer incoming inLayer

node outcoming hasParent or outcoming hasResource

attribute incoming hasAttribute

revision node incoming hasRevision

source node incoming hasSource

Table 1.1: Summary of vertices’ control edges

Each vertex should have defined only one control edge. For instance every
node has at most parent node (therefore, only one outcoming hasParent edge)
or every attribute is connected with only one node (therefore, only one incom-
ing hasAttribute edge).

We can track revision validity not only for vertices (e.g. nodes representing
tables, columns, attributes etc.) but also for edges (e.g. data flow edges).
Nevertheless, revision validity is always stored in the edges via the properties
tranStart and tranEnd.

In the figure 1.14, we can see an example of revision tracking in the main
graph. We suppose, there are created three non-technical revisions with re-
vision numbers 1, 2 and 3. Hence, the latest (current) revision is revision
number 3. All revisions are committed.

In this example, vertices resource, layer, node A, node B and node C
were all created in the revision number 1 (tranStart=1) and are still present
in the latest revision number 3 (tranEnd=3). As mentioned above, revision
validity of vertices is defined by the properties tranStart and tranEnd on
their control edges. For instance, node A has defined revision validity by its
outcoming edge hasResource and node B and node C have defined revision
validity by their outcoming edges hasParent.

Furthermore, attribute X was created in the revision number 1, however,
it was removed in the revision number 3. Thus, its latest valid revision is
revision number 2 (tranEnd=2). Similarly, directFlow between node B and
node C was created in revision 1 (tranStart=1) and removed in revision 3

25

1. Background

Figure 1.14: Example of revision tracking in the main graph

(tranEnd=2). Finally, attribute Y was created in revision 2 (tranStart=2)
and is still present in the latest version (tranEnd=3).

1.10.3 Operations with revisions

Users are allowed to manipulate with revisions in order to track history of
their data. Manta Flow currently supports these operations with revisions:
create a new revision, commit a revision, rollback a revision, prune
to a revision and prune the oldest revisions. Usage of these operations is
identical to usage of any other version control system. We will shortly explain
how these operations are implemented in Manta Flow.

Create new revision operation creates a new revision node in the re-
vision graph and sets its revision number greater by one than the previous
(highest, latest) revision number. The newly created created revision is un-
committed (revisionCommitted ← false). The newly created revision node
is connected to the revision root by hasRevision edge.

Commit revision operation only sets appropriate revision node proper-

26

1.10. Version control

ties to new values:

revisionCommitted← true

revisionEnd← currentDate()

The only restriction is you can commit only an uncommitted revision.

Rollback revision operation removes all changes from an uncommitted
revision and removes this revision node. Rollback can be performed only on
the uncommitted revision. Rollback operation traverses through the whole
graph and performs revision validation over all visited objects. Revision val-
idation checks object’s tranStart and tranEnd properties and performs appro-
priate operation:

• If the object was created in the last uncommitted revision, i.e.:

tranStart = tranEnd = last uncommitted revision

then the object is removed from the database.

• If the object was created in any previous committed revision and is valid
in the last uncommitted revision, i.e.:

tranStart < tranEnd ∧ tranEnd = last uncommitted revision

then tranEnd is set to the previous value:

tranEnd← tranEnd− 1

• If the object was created in any previous committed revision but was
also removed in some of the previous committed revisions, i.e.:

tranStart ≤ tranEnd < last uncommitted revision

then do nothing.

Prune to revision operation removes old revisions up to a specified re-
vision, including the specified revision. Removing a revision in this context
means not only removing a revision node. Especially, it means physically re-
moving from the database all vertices and edges valid only in the revisions to
be pruned. In other words, if tranEnd ≤ latest pruned revision, then the ob-
ject is removed from the database. Otherwise, the object is left unaffected.

For instance, we have ten revisions 1, 2, 3, ... 9, 10. If you want to remove
all old revisions up to revision 5 (including), you call pruneToRevision(5).
After this operation is performed, only revisions 6, 7, 8, 9 and 10 remain.

More specifically, if an object from the example above had tranStart = 1
and tranEnd = 5, it is removed. If another object had tranStart = 1 and

27

1. Background

tranEnd = 6, it remained unaffected. Revision nodes 1, 2, 3, 4 and 5 were
removed from the database as well.

Prune oldest revisions operation is similar to the prune operation de-
scribed above. We only specify how many newer revisions should remain. For
instance, we have ten revisions 1, 2, ... 9, 10. We want to have only 3 newest
revisions. Then we call pruneOldestRevisions(3). After this operation is
performed, only revisions 8, 9 and 10 remain.

1.10.4 Merge

Except the above described operations with revisions, user is allowed to pro-
pagate his or her local changes, i.e. to save changes made within the last
uncommitted revision. It is analogical process to the commit5 command in
SVN or push command in Git.

Merging process is same as the process of graph creation (see section 1.6).
As well as in case of graph creation, user first creates a local linearized graph
structure of his or her metadata. Then user merges this whole graph structure
into the current graph stored in Titan. Thus, the only difference is, user does
not merge into an empty graph (except root vertices and other supporting
structures) but into the graph containing all the previous versions of user’s
metadata.

When merging an object, two cases may happen: object exists in the data-
base or object does not exist in the database. Whether the object already
exists in the database or not is checked by equality criteria. Equality cri-
teria is defined for each object and may differ. For instance, two nodes are
equal when their properties nodeName and nodeType are equal and they have
the same parent vertex. Additionally, revision validity is considered for all
objects as well. If the same object existed in the database but was removed,
i.e. tranEnd < latest committed revision, it is also considered non-existing.

Hence, when a merged object does not exist in the database, i.e. the object
was either removed before or was never created, it is created: the object itself
is created in the database, in case a vertex is created an edge or edges are
created as well, and object’s revision properties are set to these values:

tranStart← new revision number

tranEnd← new revision number

When the merged object already exists in the database and was not re-
moved, i.e. tranEnd = last committed revision, we only update the current
object’s tranEnd property:

tranEnd← new revision number

5Commit in SVN is different from commit in Manta. Commit in SVN checks local
changes into the repository while commit in Manta only sets property revisionCommitted
to true in a revision node without checking data into the repository

28

1.11. Analysis of the current implementation

1.11 Analysis of the current implementation

A major ineffectiveness occurs in the current implementation. When a change
is made on the user’s side and user wants to see the impact of this change
(i.e. user wants to visualize a data flow diagram based on the new data),
these changes have to be updated in the Manta Flow graph database. However,
in the current implementation, it has the effect of traversing through the whole
graph to update all objects’ revision validity.

Let us show it on a simple example:

1. User changes an attribute in one column. For instance a column name
was changed

2. User wants to save this change in Manta Flow

3. The latest revision 3 is committed. Thus, a new revision 4 has to be
created first

4. A linearized local graph structure of user’s new metadata is created and
sent in the form of CSV file to Manta Flow server

5. The linearized graph structure is merged into the current graph structure
in Titan database

6. User commits the newly created revision 4

In this example (see figure 1.15), user disliked American English and
wanted to rename column with name Color to British English version Colour.
Therefore, only one vertex property value was changed in the whole graph
(property nodeName in the column 2) in the new revision 4.

Thanks to version control in Manta Flow, column 2 with the old name
Color remains (indicated by control edge hasParent with tranStart = 1 and
tranEnd = 3) and the changed name of column 2 is represented by the newly
created vertex (indicated by control edge hasParent with tranStart = 4 and
tranEnd = 4). For instance, if we wanted to know what name of column 2
was in the revision 3, we would get the old vertex with nodeName Color and if
we wanted to know name of column 2 in the revision 4, we would get the new
vertex with nodeName Colour.

However, to keep all information up-to-date, we had to update other tran-
End properties for all other objects. If we did not update their tranEnd
property from 3 to 4, it would look like all of them were removed in the new
revision 4. This update was performed by the merge process (see section 1.10.4
for detailed information about merging).

To summarize it, a whole graph structure had to be created and merged
into the current graph structure in Titan to update only one vertex property.
We can call this process a full update. In general, full update refers to

29

1. Background

Figure 1.15: Example of merged changed graph

a load of all data into a data storage, including data not changed since
the last data load. Contrary to the full update, incremental update refers
to a data load into a data storage based on changes made since the last
data load.

The advantage of incremental update is reduction of the amount of data
being transferred and saved in the data storage. Consequence of reducing
the amount of data is reduction of time complexity for performed up-
dates. This advantage may not be obvious for small amount of data. However,
it may become crucial when managing a large amount of data, where the time

30

1.12. Summary

complexity between full update and incremental update may differ by or-
ders of magnitude.

Currently, in Manta Flow is implemented only full update and our task
is to implement the incremental update in order to speed up updating data
in the graph database Titan.

1.12 Summary

In the first chapter, we learned about the Manta Flow project, especially,
about the persistent data flow storage module. This chapter not only de-
scribes how Manta Flow works but also unifies terms used in the current
implementation and documentation and gives a detailed summary of Manta
Flow data lineage storage. Therefore, this chapter can be used as well as
a comprehensive documentation of the persistent data flow storage module
in Manta Flow.

The last part of this chapter was dedicated to the analysis of a current
implementation of version control in Manta Flow. We found out, updating
changes in the graph database Titan are very ineffective since every update is
performed as a full update, i.e. even a small change update (e.g. adding one
vertex or edge) had the effect of traversal through the entire graph structure.
This process can take up to hours or even more, depending on the data size.
Hence, we introduced the idea of implementing incremental update to re-
duce the time complexity of the update. We will study different methods of
incremental update in the following chapters and based on these studies, we
will design an implementation of incremental update suitable for Manta Flow.

31

Chapter 2

Related work and inspiration

In this chapter, we will study the version control systems and incremental
backups in databases. We will focus on how these systems perform updating
their data. Purpose of this analysis is to find an inspiration for a design
of incremental update in Manta Flow.

There is a plenty of version control systems. Therefore, we have chosen
two entirely architecture different version control systems: Subversion (cent-
ralized VCS) and Mercurial (distributed VCS). Primarily, we will analyze
the way these VCSs store metadata and how they perform updates from revi-
sion to revision. We will not study the way these version control systems deal
with simultaneous collaboration of multiple users (such as branching, conflicts
solving, shared files locking, transactions, etc.).

2.1 Subversion

Subversion is an open-source centralized version control system (CVCS). Sub-
version contains two essential objects that users interact with: working copy
and repository. Working copy is an ordinary directory tree on the user’s local
system containing some project’s files. Repository is a shared storage of all
users working on the same project. Repository contains the complete history
of the project. Hence, it contains all changes made locally in the working
copies that were afterwards published into this repository [20].

Subversion uses revisions for tracking the data history. Revision repres-
ents one snapshot of the versioned data in a specific time. Each revision is
assigned a unique natural number, one greater than the number assigned to
the previous revision [21]. The same approach is used in Manta Flow (see
section 1.10.1).

The basic work cycle in Subversion can be divided into these steps:

1. Update local working copy according to the repository (update com-
mand)

33

2. Related work and inspiration

2. Make changes in the local working copy

3. Publish changes from the local working copy to the repository (commit
command)

This work cycle is similar to all version control systems. User first updates
his or her working copy to be up-to-date with the latest revision in the repos-
itory. Then, user makes some local changes in his or her working copy. When
user is finished with changes, he or she publishes (commits) these changes
to the repository.

Except these basic steps, users have to deal also with changes of other
users. Therefore, sometimes user has to merge changes (merge command)
and resolve potential conflicts, even before committing the changes back to
the repository, since user’s working copy has to be up-to-date with the latest
revision in the repository before publishing (committing) changes to the re-
pository. Subversion will not let you commit anything new until you deal
with any conflicts [22]. The basic operations in Subversion and their usage
in the Subversion schema is described in the figure 2.1.

Figure 2.1: Subversion basic operations

Now, when we have a basic knowledge how Subversion works, we will study
how the data is stored in both repository and working copy and we will learn
how both repository and working copy are designed internally.

2.1.1 Working copy

Working copy is a local copy of the versioned data in one specific state. It is
an ordinary directory tree on the local system containing a specific snapshot
of the versioned data.

34

2.1. Subversion

myProject

.svn...Metadata storage
wc.db.................SQLite database containing node metadata
pristine..................Sharded directory containing base files

000d061450a86f473c6108d.svn-base

001104134c9bb634dfcd764.svn-base

tmp......................Local directory for holding scratch work
src

foo.c

bar.c

doc

Figure 2.2: Example of a working copy

In the example of a working copy directory tree (see figure 2.2), we can see
a typical project (myProject) with its content (directories src and doc, source
code files foo.c and bar.c).

Every working copy contains an administrative directory .svn. This dir-
ectory is responsible for tracking the changes made in the working copy.

Prior to version 1.7, the .svn directory used to be in every subdirectory.
The idea behind this model was to keep track of directories’ own revision in-
formation. It was thought to be advantageous to the basic idea of Subversion,
where every file and directory can be versioned, thus enabling more effective
operations on the level of single files or subdirectories [23]. One disadvantage
of this old approach was that when a directory was deleted in the working
copy, files inside the directory were deleted. However, the empty directory
remained until this change was committed. This behavior was necessary since
Subversion held the information about the deleted directory right inside this
directory in its .svn directory.

The wc.db is a self-contained SQLite-based database containing all Sub-
version metadata. Every versioned item can be described by one or more
nodes. There are four types of nodes: BASE,WORKING,NODE DATA
and ACTUAL. These nodes are saved in the SQLite database under a com-
plex schema [24] [25].

BASE node represents the original item checked out from the repository
and is used for offline comparison of the changed data with the original content
without the need of connecting to the repository. BASE node corresponds to
a particular repository URL and revision.

WORKING node describes structural changes to BASE node. For in-
stance, when a new item is added to the working copy (e.g. created a new file),
a WORKING node is created. However, this node does not describe changes
in the content of this item.

NODE DATA node describes layered structural changes to WORKING

35

2. Related work and inspiration

node. For instance, directory A is replaced, another directory B is copied
into this replaced directory A and a file is added to the directory A. Then
the WORKING node describes replacement of directory A, one NODE DATA
describes the copied directory B into the directory A and second NODE DATA
describes the added file into the directory A.

ACTUAL node describes property changes and text changes of a modified
file content.

The pristine directory contains all the base files (represented by the
BASE nodes). These files are stored under the name of the hash of their
content. In this example (figure 2.2, the two C files have their original con-
tent from the repository stored in the pristine directory. These base files have
.svn-base extension and contain the original text.

The .svn directory may contain also another support files. However,
the most important is the database file wc.db containing all the metadata
and the original content files in the pristine directory.

Unfortunately, there is missing a proper documentation how Subversion
performs data changes in the working copy and the source code structure is
too messy6 to grasp the key principles of data updates without a deep code
analysis. However, we may use, at least, the information it is possible to
version not only files but also directories. This versioning may be performed
by one centralized database or the metadata can be saved in each directory
using flat files.

2.1.2 Repository

Repository is a central store of all the versioned data on the server side. Re-
pository consists of two main parts: Subversion file system and repository
logic wrapping the implemented file system.

Subversion provides two options for the underlying data storage each re-
pository uses: Berkeley DB and FSFS. Berkeley DB is a database envir-
onment initially used in the first versions. FSFS is a versioned filesystem
using the native OS file system directly. Both of these data stores have their
advantages and disadvantages. For instance, FSFS is platform independent,
has better scalability, has smaller disk usage and is insensitive to interrup-
tions. On the other hand, Berkeley DB is extremely reliable since it supports
backups and auto-recovery [27].

Regardless of the data storage used, we will now describe the repository
structure. When the repository structure is defined, we will explain the
bubble-up method which performs updates in the revisions file tree.

6As Greg Stein, one of the founding developers of Subversion, mentions [26], the working
copy library (libsvn wc) had grown over years into an unorganized bunch of code since
there was no proper design. Although, there were made fundamental changes in the design
in the version 1.7, no proper, publicly accessible documentation was created yet.

36

2.1. Subversion

2.1.2.1 Repository structure

Repository structure is basically only a list of directory trees (one tree for
one revision) and a table containing links to all versions of files and direct-
ories stored in these directory trees. Following is the list of objects defined7

in the repository [23]:

• text string
• string of bytes
• property
• property list
• node
• node number
• node table
• file
• directory entry
• directory
• revision
• history

The lowest data object used in all of the other objects is a text string
(a string of Unicode characters) and a string of bytes.

Property is a pair (name, value), where name is a text string and value is
a string of bytes. Property typically refers to some file or directory attributes.
For instance, files may have executable permissions or EOL style defined.

Property list is an unordered list of properties. No two properties
in an unordered list have the same name. In other words, property name
is a unique key within a property list. Each revision, file, directory and dir-
ectory entry has its own property list. Property lists are versioned as well.
Therefore, Subversion can detect changes not only in the file content or dir-
ectory structure but also changes in file or directory attributes.

Node is either a file or a directory. Every node has assigned a node
number. Node numbers are stored in the node table and are mapped
onto single nodes in this table. In other words, all files and directories are
represented by a node and are accessible by their node number from the node
table.

File consists of a property list (file attributes) and a string of bytes (con-
tent). Directory is an unordered list of directory entries and a property list.
Directory entry is a triple name, property list, node number. Hence, content

7This structural definition is taken from the initial version of Subversion, since there is
no newer documentation. Although, the structure could have changed, the substantial part
of this structure probably remained. Moreover, the bubble-up method, which is supposed to
be still up-to-date according to the developers’ notes, is also explained by using this inital
structure definition.

37

2. Related work and inspiration

of directory (files and subdirectories) is represented by an unordered list of
directory entries.

History is an array of revisions, indexed by a contiguous range of non-
negative integers containing 0. Revision is a node number and a property list.
Every revision has a root directory. The revision’s node number is therefore
node number of the root directory represented by a node. Revision 0 always
contains an empty root directory.

To sum it up, repository consists of history and node table. History is
an unordered list of revisions. Each revision refers to a root directory of
a directory tree representing a snapshot of files and directories in the specific
revision. Node table is a mapping of node numbers to all nodes (i.e. mapping
to all versions of files and directories) in the repository.

Moreover, directories can have more than one parent. Hence, the term
directory tree is incorrect and we should use term directed acyclic graph in-
stead. However, we will stick with the term directory tree, since it would
be distracting and unhelpful to replace this familiar term used everywhere
in the documentation.

2.1.2.2 Bubble-up method

Bubble-up method is a method used for adding new revisions (directory trees)
into the repository. The key idea of this method is to create only the nodes
affected by the change and link the newly created nodes with the unchanged
nodes. Let us show it on some examples from the Subversion developer notes
[23].

In the following examples, all boxes represent nodes. Blue boxes represent
directory nodes, green boxes represent file nodes. File nodes have a byte string
content, while directory nodes have a list of directory entries as a content. Line
represents relationship between a child node and a parent node. Node’s name
is stored only in its parent because a node with multiple parents may have
different names in different parents.

Assume, we have only one revision of the project (one commit) in the re-
pository (see figure 2.3). Hence, revision 1 refers to the root directory. This
root directory contains two directories A and B. Directory A contains a dir-
ectory fish and directory fish contains a file tuna. Directory B is empty.

In our first example, we want to modify file tuna and commit this change
into the repository (second commit). This triggers a series of steps (see figure
2.4):

1. A new file node is created. This node contains the modified content of
file tuna. This node is not connected to anything at the moment.

2. A new revision of parent directory (fish) is created and the previously
created file node for tuna is connected to new parent directory (fish).

38

2.1. Subversion

Figure 2.3: Initial state of repository

3. A new revision of parent directory (A) is created and the previously
created directory fish is connected to the new parent directory (A).

4. Finally, we reached the root directory. Hence, a new revision of root
directory is created and the directory A is connected to this root direct-
ory. However, directory B wasn’t changed at all. Therefore, directory B
from revision 1 is linked also to the new root directory.

5. Finally, all new nodes are created and connected. Thus, we link this
new directory tree to the revision 2 and the process is finished.

As we can see from the first example (figure 2.4), it is easy to locate
revision of a specific file or directory. For instance, to locate revision 2
of file tuna, we simply first find the revision 2 in the list of revisions (repository
history), locate its root directory and walk down to the file tuna.

Another advantage of this approach is writers do not interfere with
readers. When writer is trying to commit a new revision, first, he or she is
creating new nodes aside and the concurrent readers cannot see the work in
progress. The newly created tree becomes visible to readers after the writer

39

2. Related work and inspiration

Figure 2.4: Bubble-up method - example 1

makes its final link from the root directory to the specific revision in the re-
pository history.

In the second example (figure 2.5), we will demonstrate a structural
change. What happens if we rename file tuna to book and commit it into the re-
pository? We will bubble-up again from the changed node up to the root
directory following these steps:

40

2.1. Subversion

1. First, we create a new revision of directory fish. In the newly created
directory node we create a new directory entry book and we connect this
directory entry with the file node from previous revision. Thus, we will
not create a new file node, since content of the file has not changed.

2. We create a new revision of directory A and connect it with a new
revision of directory fish

3. We create a new revision of root directory and connect its directory entry
A with new revision of directory A. The directory entry B is connected
to the revision of directory B from the revision 1 because it has not
changed since then.

4. We link the new revision of directory root to the revision 3.

Figure 2.5: Bubble-up method - example 2

In the second example (figure 2.5), we can see why name of the node is not
saved in the node itself but only in its parent nodes. This way, it is possible
to track different names (tuna/book) of the same file.

The second example also demonstrates that Subversion is able to ver-
sion the file and directory structure. All file and directory modifications
(rename, move, add, delete) are part of the repository history.

41

2. Related work and inspiration

As mentioned in the Subversion notes [23], it would be space wasteful to
create an entire line of new nodes, including their content, in every commit.
Hence, Subversion stores changes as differences. Subversion does not
create entire copies of nodes. Instead, Subversion stores the latest revision as
a full text and previous revisions are stored as a succession of reverse diffs.
These diffs are called deltas and Subversion defines three kinds of deltas: tree
delta, text delta and property delta. Thus, when a file or directory from
an older revision is required, the appropriate deltas are applied on the latest
node version and the previous node version is returned.

2.2 Mercurial

Mercurial is a distributed version control system (DVCS). Hence, Mercurial
has no concept of a central repository. All users have their own local repository
and share their changes via a remote repository. Technically speaking, remote
repository and user’s local repository are equal and users are free to define
their own topology for sharing.

User’s repository consists of two logical parts: working directory and
local repository. In the working directory are stored user’s data such as
project files and directories, i.e. working directory contains data users manip-
ulate directly with. In the local repository is stored the complete history of
these tracked data from the working directory [28].

Repository vs. local repository

In Mercurial, the term repository may have different meanings, de-
pending on the context. First, the term repository may be used for all
the data and metadata on a user’s computer, i.e. a directory containing
both working directory and local repository. Second, strictly speaking,
only local repository (metadata files stored in the .hg directory) is
the real repository, since there is stored the complete history.
We will not bind the term repository neither to all files and directories
in the user’s local computer (i.e. local repository + working directory)
nor only to the local repository (only metadata files). It will be always
clear from the context or we will explicitly specify what we mean.

The basic work flow in Mercurial could be described by these five steps:

1. Check for changes in the remote repository using pull command

2. Update working directory using update command

3. Make some local changes in the working directory.

4. Commit changes to the local repository using commit command

42

2.2. Mercurial

5. Push changes from local repository to the remote repository using push
command

We can notice, the basic work flow is similar to the work flow in Sub-
version. The only difference is, in Mercurial it takes two steps instead of
one to propagate changes to or from the remote repository. For instance, in
Subversion command update updates local working copy. In Mercurial, this
functionality has to be performed by the combination of two commands pull
and update to first propagate changes to the local repository and then to
the working directory. Similarly, when propagating local changes to the re-
pository, in Subversion, you only need command commit while in Mercurial,
commit is a purely local operation whose effects are not shared with anyone
else until a push command is performed to distribute these changes [29].

Except these operations, Mercurial provides another operations such as
clone command for cloning the remote repository to the local repository,
merge command for merging two branches into the local repository, add
command for adding unversioned files in the working directory to the version
control, forget command for removing versioned files from version control and
many others. The overview of the basic operations is visualized in the figure
2.6.

Figure 2.6: Basic operations in Mercurial

Now, when we grasped the basic concept how Mercurial works, we will
study in detail, how the version control is implemented internally.

43

2. Related work and inspiration

2.2.1 Metadata structure and relationship

Mercurial defines three metadata objects for tracking the history: filelog,
manifest and changelog. These files are stored in the local repository.

Filelog stores history of a single file. Each entry in the filelog contains
enough information to reconstruct one revision of a tracked file. Filelog con-
tains two kinds of information: revision data and an index to help Mercurial
find a revision efficiently. Hence, every tracked file in the working directory
has its history tracked in a filelog [30].

Manifest collects together information about files it tracks, i.e. mani-
fest describes content of the repository at a particular changeset8. Primarily,
manifest contains a list of file names and revisions of these files [30].

Changelog contains information about all changesets. Each revision re-
cords who committed a change (committer), why was the change committed
(changeset comment), when was the change committed (commit date and
time), some other pieces of changeset-related information and finally, what
revision of manifest to use [30].

Figure 2.7: Metadata relationships

In the figure 2.7, we can see the visualized relationship between these
metadata obejcts. Names of the boxes in this example are used only for dis-
tinguishing different revisions of the same object. Therefore, in this example
is only one changelog file in four revisions (A, B, C and D) or there is one
manifest represented by its four revisions (α, β, γ and δ).

Within a changelog, a manifest or a filelog, each revision stores a pointer to
its immediate parent (or to its two parents in case of two merged revisions into
one revision) [30]. This relationship is represented by the horizontal arrows.

8Changeset is a collection of changes to files in a repository.

44

2.2. Mercurial

For instance, a changelog’s revision B has its previous revision A, or a filelog
in revision II has its previous revision I.

For every changeset in the repository, there is exactly one revision stored
in the changelog. Each revision of the changelog contains a pointer to a single
revision of the manifest. A revision of the manifest stores a pointer to a single
revision of each filelog tracked when the changeset was created [30]. Re-
lationship between changelog-manifest and manifest-filelog is represented by
the vertical dashed arrows. For example, changelog in revision C stores pointer
to the manifest in revision γ and manifest in revision γ points to two filelogs,
one in revision III and second in revision V I.

Notice, there is not a one-to-one relationship between changelog-manifest
and manifest-filelog. For instance, manifest revisions γ and δ both point to
the same revision V I of the second filelog. This means, a file has not changed
between the two revisions, hence, the entry for that file in the two revisions
of the manifest will point to the same revision of its filelog [30].

2.2.2 Revlog

All metadata objects in Mercurial (changelog, manifest and filelog) are us-
ing the same inner structure called revlog. Revlog represents all revisions
of a specific file in the repository. Each revision of a file is either stored com-
pressed in its entirety or it is stored as a compressed binary delta (difference)
relative to the preceding revision [31].

More detailed, every metadata object consists of two parts9 an index file
and a data file. Index file contains a list of fixed-size records for each version
of the metadata object and each record in the index file determines where
exactly can be found the specific revision of the meatadata object in the data
file. Hence, a data file contains all revisions of one file (metadata object)
in the form of compressed deltas and compressed contents.

An example of the revlog layout is in the figure 2.8. In this example,
Mercurial registers five revisions of a file in the index file and these revisions
are stored in the data file. To reconstruct a specific revision, you must first
read the closest snapshot and then apply all the left deltas up to the target
revision. For instance in the figure 2.8, if you want to retrieve revision 5
of the tracked file, you need to read the snapshot from revision 4 and then
apply the delta from revision 4 to revision 5.

The decision whether to store a full version or a delta is decided by how
much data would be needed to reconstruct the file. That means, once the cu-
mulative amount of deltas stored since the last snapshot exceeds a fixed
threshold, a new snapshot is created instead of a delta. This system al-
lows Mercurial to effectively store files since it does not require huge amounts
of data to reconstruct any version of file [31] [30].

9When a file is small, the index file and the data file are combined into one file.

45

2. Related work and inspiration

Figure 2.8: Revlog layout

Mercurial defines a format of a revlog index record in the following
way10:

• offset (4 bytes)
• compressed length (4 bytes)
• base revision (4 bytes)
• link revision (4 bytes)
• nodeid (20 bytes)
• first parent nodeid (20 bytes)
• second parent nodeid (20 bytes)

Offset specifies, where to begin read in the data file. Compressed
length defines, how much data we will read from the offset position to re-
trieve the delta or snapshot. Base revision specifies the last revision where
the entire file is stored. Link revision points to the corresponding changeset.
First parent nodeid is nodeid of the first parent, second parent nodeid
is nodeid of the second parent. Finally, nodeid is the nodeid of the revision
itself [31].

Nodeid is a unique identification of a revision. Nodeid is computed by
the SHA-1 function which generates 160 bits (20 bytes). This hash is com-
puted using content of the file and its position in the project history. Position

10Mercurial introduced a new format RevlogNG. This new format is eliminating some
deficiencies in the original Revlog format (see [32] for more details). However, we will describe
the original Revlog format since the same logic remains and it is easier to understand.

46

2.2. Mercurial

in the project history means using the first parent nodeid and the second parent
nodeid, since parent revisions define the position of the revision in the pro-
ject history. Thanks to this approach, when a file is modified, the change
is committed, and then modified back again to restore the original content
and committed, the content of the file is same but the parent revisions are
different. Hence, a file with the same content will get a new nodeid [33].

In case of the first revision, both parent nodeids are empty (all zeros,
also called a nullid), i.e. there is no previous revision. In case of revision
created by merge of two previous revisions, both parent nodeids are non-
empty, i.e. revision has two parents. Otherwise, only first parent is non-empty
and the second parent is nullid, i.e. revision has only one parent.

rev offset length base linkrev nodeid parent 1 parent 2
0 0 467 0 10 a7bdd2379 000000000 000000000
1 467 168 0 12 692932a95 a7bdd2379 000000000
2 635 173 0 15 f1d9cb420 692932a95 000000000
3 808 476 0 17 d238a6113 f1d9cb420 000000000
4 1284 491 0 18 b71d29927 f1d9cb420 000000000
5 1775 470 0 19 4a7ebb32f b71d29927 d238a6113
6 2245 64 0 20 6b99ca4dd 4a7ebb32f 000000000
7 2309 177 0 21 33557d969 d238a6113 000000000
8 2486 213 0 22 e4d67566a 6b99ca4dd 33557d969
9 2699 102 0 23 ab4bcfb96 33557d969 000000000
10 2801 384 0 24 86d19e47e e4d67566a 000000000
11 3185 88 0 25 4969c00e0 86d19e47e ab4bcfb96

Table 2.1: Sample content of an index file in the revlog format

In the table11 2.1, you can see a sample content of an index file in the revlog
format. In this example, when the file was created in its revision 0, its offset
in the data file is 0 and length is 467. Therefore, if you want to retrieve revision
0 of the file, you would only need to go to the beginning of the data file and
read 467 bytes. Also notice, when at the revision 0, file has no parents, because
it was newly added to the repository, and thus, it has no previous history at
this point.

Moreover, in the example above, all revisions have a base revision 0.
That means, only one snapshot was created in the revision 0 and all other
revisions are deltas. Also notice, link revision points to the changesets with
higher numbers. The implication is file was not changed during each com-
mit. For instance, the first revision of file was added to the repository within
the tenth changeset (commit).

11A keen reader will surely notice nodeids (SHA-1 160-bit hashes) in the table are signi-
ficantly shorter. These hashes were shortened only for the aesthetic purposes to fit the width
of the table within the page.

47

2. Related work and inspiration

Finally, we can observe in the table 2.1 usage of branching and merging.
In the revision 4, file has the same parent as in the revision 3. It is rather
obvious, a branch was created in the revision 4. Afterwards, in the revision
5, file has two parents from revision 3 and revision 4, meaning it was merged
back after the previous one-night branch.

Now, when we understand in detail the Mercurial metadata objects, we
can put it all together and see how it works. In the figure 2.9, we can see how
all the metadata objects are linked together using the revlog structure.

Figure 2.9: Metadata hierarchy using the revlog structure

If you want to look up a given revision of file, you need to proceed through
these steps [34]:

1. Look up the changeset in the changelog index

2. Reconstruct the changeset data from the data file

3. Look up the manifest nodeid from the changeset in the manifest index

4. Reconstruct the manifest for that revision from the data file

5. Find the nodeid for the file in that revision

6. Look up the revision of that file in the filelog index

7. Reconstruct the file revision from the data file

On the other hand, if we want to find a changeset associated with a given
file revision or a manifest, we simply follow the linkrev.

48

2.2. Mercurial

2.2.3 Committing changes

How does Mercurial saves changes from the working directory to the repos-
itory? In other words, what happens, when you want to commit changes
from the working directory to the local repository? Short answer: committing
changes to the repository involves updating all three types of the metadata
objects: all modified files (their filelogs), the manifest and the changelog.

Changeset commit is a two-stage process. The first stage walks from top
to bottom, from the changelog, to the manifest and to the filelogs. The second
stage goes back up from filelogs, to the manifest and finally ends at the change-
log [35]. Let us examine it in detail.

2.2.3.1 First stage - top to bottom

Purpose of the first stage is to retrieve the parent revision of the repository.
Parent revision is a specific revision checked out (updated) from the local
repository to the working directory. Parent revision is the initial state of
the working directory, i.e. a state before no file was modified in the working
directory.

Changes in the working directory are tracked in the file dirstate. This file
is stored in the local repository. In the figure 2.10, you can see a working
directory that was checked out from the revision 2 (initial state) and some
changes were performed. Revision 2 is the parent revision then.

Figure 2.10: Parent revision of a working directory

The first step is to get the changelog from the parent revision. As we men-
tioned before, every metadata file is stored in the revlog format. Thus, even
a changelog is versioned and we need to retrieve the content of the changelog
from the parent revision. Hence, we need to first search in the changelog index

49

2. Related work and inspiration

file how to retrieve the specific parent revision content of the changelog from
the changelog data file.

Every changelog entry (a changeset) contains basic information about
the commit such as name of the committer, when it was committed, why
it was committed, list of modified files and a corresponding manifest nodeid.
In the listing 2.1, you can see a sample content of a changeset from a specific
revision.

changeset: 3:5024 abf2219fa1f3715a0e3b3c065bfffadbb

parent_1: 2:58 af277f6ffa709a04264613add2466c36508

parent_2: -1:0000000000000000000000000000000000000

user: jsykora

date: Thu Dec 14 10:55:48 2017 +0100

description: Added foo functionality.

manifest: 3:67 ef48ead0a1749cdc20f695018255eb45dba

files_added: foo.c

foo.h

Listing 2.1: Sample content of a changeset

The second step is to get the manifest related to the retrieved changeset
from the first step. Once we extracted the changelog of the parent revision and
got the specific changeset, we get a nodeid of the specific manifest revision.
This manifest nodeid is used for searching in the manifest index file to retrieve
the content of the manifest in the parent revision from its manifest data file.

A specific version of manifest describes content of the repository at a spe-
cific revision. Manifest contains a list of filenames and revisions of files that are
present. In other words, manifest describes the project state by listing each
file and its nodeid and by specifying a particular version of each file.

In the listing 2.2 you can see a sample content of a manifest refering to
a specific changeset. According to this manifest, there were these four files
present in the repository in the specific revision.

foo.c b80de5d138758541c5f05265ad144ab9fa86d

foo.h 45 e6ecbd6b23f0a7fbe854e07e7f6af6a76bf

main.c d9e856ee2adeb1f8442ce5523d2879cd6b4a6

README 393 afd3c554af1676a684268f0be33c55bdef

Listing 2.2: Sample content of a manifest

The third and the last step is to retrieve the files specified in the manifest
that have been modified in the current working directory. We will get parent
versions (the unmodified version) of the currently modified files.

To sum it up, purpose of the first stage is to retrieve the parent versions
of changelog, manifest and all modified files. These parent versions are saved
in the memory.

50

2.2. Mercurial

2.2.3.2 Second stage - bottom to top

Purpose of the second stage is to update revlogs of the changelog, manifest
and all the modified files (their filelogs). Thus, the second stage constructs
new entries for each of the affected revlogs.

Every revlog entry (metadata object) is determined by its nodeid. Nodeid
of a metadata object is constructed by hashing the nodeids of its two parent
versions and the content of the new version of the file. This way of nodeid
construction is the reason, why Mercurial cannot update repository during
the first stage. For instance, to create the new nodeid of the changelog, you
need to have not only its parent nodeids (which you have) but you also need
its new content. New content of the changelog has to contain a new changeset.
The new changeset has to contain the new manifest nodeid (see listing 2.1).
However, you do not have the new manifest nodeid yet. Therefore, you cannot
generate the new changelog nodeid, and thus, you cannot create a new version
of the changelog. Similarly, to create a new version of manifest nodeid, you
also need its new content. However, manifest has to contain new nodeids of
the new (modified) files (see listing 2.2). Thus, you are not able to generate
nodeid of a manifest until you create new nodeids of the modified files. Hence,
you are forced to start updating from the bottom (from the filelogs).

The first step is to generate new nodeids of all new metadata. As we
explained, we have to start by generating nodeids of the modified files. Then
the manifest is updated with these new nodeids and a new version (content)
of the manifest is created. With the new version of manifest prepared, a new
manifest nodeid can be computed. Finally, this allows us to generate a new
version of the changelog and then the new nodeid of that changelog.

The second step is the actual commit, i.e. the update of revlogs by adding
new entries of the modified files. We could not perform the actual update of
revlogs before generating the new changelog nodeid because the changelog
nodeid is present in every revlog index entry as a changeset ID (as the old
good attribute linkrev12).

Thus, after the new changelog nodeid is created, we update all affected
filelogs, manifest and changelog. For each affected metadata object, we simply
append a new record into the revlog index file and append the new delta (or
the whole compressed content of the file) to the revlog data file. We start from
the logfiles and proceed up to the manifest ending up with the changelog.

Updating in the order from bottom to top (filelogs → manifest →
changelog) is more safe because the newly added revision is valid if only
and only if the changelog contains the new changeset entry. Therefore, when
the new revision is in the process of committing (creating nodeids, append-

12In the example table 2.1 you can see a linkrev is not a 160-bit hash but a regular revision
number. This is because a revision number can be used as a shorthand within a single
repository. However, revision number may not be unique within other users’ repositories
and only the 160-bit hash is unique across all repositories.

51

2. Related work and inspiration

ing entries to the revlog files, etc.), no one knows about this revision and
the process of committing does not affect any other previous data (it is ap-
pending information only at the end of revlog files). Similar behavior can be
observed in the bubble-up method used in Subversion (see section 2.1.2.2),
where the whole tree structure is not visible as a new revision to anyone, until
the root directory is connected with a revision from the list of revisions.

2.3 Incremental backups in databases

The purpose of an incremental backup is to back up only data changed since
the previous backup. The reason of this concept is to save not only space but
also time needed for the backup.

There are 2 basic approaches to the incremental backups in databases - dif-
ferential incremental backup and a cumulative incremental backup.
You can also combine these two approaches in a combined incremental
backup. Let us examine in the following sections the way each of these ap-
proaches perform the backup.

2.3.1 Differential incremental backup

Differential incremental backup backs up all changes since the last backup,
regardless of the type of the last backup. For instance, you make make a full
backup of your database every week, let us say every Sunday, and you are ap-
plying a differential incremental backup. Then, on Monday, you back up only
changes since Sunday’s full backup. On Tuesday, you back up only changes
since Monday’s backup. On Wednesday, you back up only changes since Tues-
day’s backup and so on, until you reach Sunday. On Sunday, you make a full
backup and start repeating the whole cycle [36]. See figure 2.11 for the over-
view of differential incremental backup.

Figure 2.11: Differential incremental backup

52

2.3. Incremental backups in databases

Differential backups are created quickly because less data is backed up.
However, restoration from differential backups takes longer since you have to
compute all the changes starting from the latest full backup. Another disad-
vantage is a potential impossibility of a data restoration in case a differential
backup is missing. For instance, it is Saturday and we lose a differential
backup from Wednesday (assume, we are still applying the backup plan from
above, where a full backup is performed every Sunday). It is possible to re-
cover data from Tuesday by applying the incremental backups from Monday
and Tuesday on the full backup from Sunday. Nevertheless, it is impossible
to recover data not only from Wednesday but also from Thursday and Friday.
To recover data from Thursday, you need all previous backups from the last
full backup, i.e. from Monday, Tuesday and Wednesday.

2.3.2 Cumulative incremental backup

Cumulative incremental backup contains all changes since the last full backup.
For example, you make a full backup of your database every Sunday. Then,
on Monday, you back up all the changes since Sunday (until here, it is a same
logic as in the differential backup). On Tuesday, you back up all changes from
Sunday and Monday. On Wednesday, you back up all changes for Sunday,
Monday and Tuesday. And so on, until the full backup on next Sunday [36].
See figure 2.12.

Figure 2.12: Cumulative incremental backup

Cumulative backups are slower and take more space than differential back-
ups since you have to backup more changes. On the other hand, recovery is
faster because you do not have to combine all the previous backups. Another
advantage is also less vulnerability to the loss of incremental backups. For
instance, it is Saturday and you lose Wednesday’s backup. You can still restore
the database to Monday and Tuesday, but most importantly, you can restore

53

2. Related work and inspiration

database also to Thursday or Friday, since you have accumulated changes
made before Thursday and Friday, i.e. changes included in the Wednesday’s
lost backup.

2.3.3 Combined incremental backup

You can also combine differential and cumulative incremental backup for
greater flexibility. For example, you can perform a full backup monthly, a cu-
mulative backup weekly and a differential backup daily.

Figure 2.13: Combined incremental backup

For instance, in the figure 2.13, you can see a combined incremental
backup. Full backup is performed every Sunday, on Monday, Tuesday and
Wednesday is performed a differential backup, on Thursday a cumulative
backup and on Friday and Saturday again a differential backup. Hence, if you
want to recover database to the Saturday state, you apply the cumulative
backup from Thursday on the full backup from Sunday and then you apply
the following differential backups from Friday and Saturday.

2.4 Observation

We have studied two version control systems, Subversion and Mercurial, and
incremental backups in databases. In this last section, we will observe how
these systems update data and evaluate results of this observation for an in-
spiration in the design of incremental update in Manta Flow.

2.4.1 Data changes

There is an essential conceptual difference between Manta Flow and these
analyzed systems. Version control systems or databases are saving directly the
user’s data they work with, while Manta Flow does not only save the user’s

54

2.4. Observation

data but, primarily, Manta Flow generates new data (data flows) from
the user’s data and these generated metadata have to be stored as well.

Version control systems need to only manage and store content of the user’s
project files and the directory tree. On the other hand, Manta Flow has to save
not only the content of files and their data structure, but also has to generate
data flows, depending on the content of these files. This brings a lot more
complexity. For instance, one file change in a version control system produces
only one change in the file itself (or one structural change in the directory
tree). In Manta Flow, one change in a file produces not only a change on
the file level but also generates changes in the data structure and new data
flows. For instance, adding a single insert statement into a database script
results into the creation of a new node for the insert statement, new nodes
for the variables, columns and tables used in this insert statement and new
data flows representing the insertion of data from source table to the target
table13.

In consequence of this fundamental difference of the managed data, Manta
Flow client does not currently track changes of the users data. To un-
derstand, why it is not so simple to track the changes on the client’s side, we
have to explain how the Manta Flow client works. According to the docu-
mentation [37], Manta Flow client application does sequentially these three
steps for each source system:

1. Extracts database dictionaries, DDL scripts, workflows and configura-
tions from the source systems

2. Performs data flow analysis on both of the extracted and the provided
user’s data

3. Exports the resulting metadata in the form of a linearized graph in
the form of the CSV files

If we wanted to track the changes on the client’s side, Manta Flow would
have to not only check for the changes in the scripts, but it would also have
to connect to the databases to retrieve, for instance, changes in the database
schema. What more, Manta Flow would have to perform an impact analysis
to check what impact the particular changes had on the data flow.

Consequently, Manta Flow cannot automatically produce an input rep-
resenting changes between single revisions. Therefore, changes for the incre-
mental update in Manta Flow have to be specified manually and from these
manually specified changes will be created an input in the form of a subgraph
for the incremental update.

13See in the section 1.7, how the source code files are stored in Manta Flow

55

2. Related work and inspiration

2.4.2 Repository update

We can observe, the methods of the incremental update in Subversion and
Mercurial are creating the changes aside, avoiding conflicts with other
users reading the repository.

In Subversion, the bubble-up method is creating a new revision as a dir-
ectory tree aside the repository structure. The unchanged parts of the new
directory tree are linked to the existing repository structure. Until the new
directory tree is linked to the list of revisions, the changes in the repository
are invisible for all other reading users.

In Mercurial, changes are written at the end of the metadata files. Thanks
to the structure of these metadata files (changelog → manifest → filelog),
changes written at the end of these files are also invisible for all other reading
users until a new changeset (i.e. a new revision) is written to the changelog.

Manta Flow metadata structure allows similar behavior. Current un-
changed data revision validity is either extended or their revision validity is
not changed at all and a newly added data is appended to the current structure
with a revision validity starting from the newly committed revision. In any
case, users reading any previous, already committed, revision are unaware of
the changes being made within the new revision thanks to the revision validity
represented on the edges.

Another observation of the methods used by the above described version
control systems reveals, the changes are applied from bottom to top. How-
ever, we cannot directly apply some of these methods due to the nature of en-
tirely different data used by Manta Flow. Nevertheless, when designing a new
method of the incremental update, we may analyze the possibility of merging
a subgraph into the main graph from bottom to top, instead of the current
way of updating from top to bottom.

2.4.3 Incremental backups

The second part of this chapter belonged to the analysis of the methods of
incremental backups in databases. There are two basic methods, differen-
tial and cumulative incremental backup. Additionally, these methods can be
combined.

Incremental backups aim to save the changes made in some specific time
period and when needed, these changes are applied on the latest full backup to
reconstruct a particular state. However, as we explained in the section 2.4.1,
it is difficult and currently impossible to save all the changes made within
a specific time period. Moreover, the idea of saving changes made between
revisions, having only one revision in the database and applying these changes
when another revision is required, is unsuitable for the data structure in Manta
Flow. The data structure in Manta Flow is built for versioning the data using
revisions, not for applying changes.

56

2.4. Observation

2.4.4 Summary

Manta Flow works with a complex data where one change in a file may in-
voke more than one change in the whole structure. Consequentially, we are
currently unable to track all the changes and automatically create inputs
representing these changes on the client’s side without an impact analysis.
The current way-out is to limit the variety of changes for incremental update
and users will be forced to select these changes manually. Nevertheless, it
still disallows us to directly apply any of the methods of incremental update
in version control systems or any of the methods of incremental backup in
databases.

The only useful inspiration for the incremental update in Manta Flow is
using the method of update from bottom to top applied in the version control
systems instead of the expected update from top to bottom. We will analyze
usefulness of this approach in the new design of the incremental update in
Manta Flow.

57

Chapter 3

Analysis and Design

Purpose of this chapter is to analyze the possibilities of incremental
update in Manta Flow and subsequently design a new method of incre-
mental update based on this analysis.

Important criteria of the analysis is the number of necessary changes in
a graph, the ability to find data flows related to a certain time interval and
the amount of time necessary for querying.

3.1 Revision data representation

Petr Holeček, author of the current design of version control in Manta Flow [1],
studied different revision data representations in Manta Flow. Petr Holeček
examined three options of storing revision data in the graph database Titan
used by Manta Flow:

• Revision data stored on the data vertices

• Revision data stored on separate vertices

• Revision data stored on the edges

First option, storing revision data on the data vertices, allows effective
revision tracking only of the data vertices but not of the data flows. Tracking
revision validity of the data flows is impossible without application of an-
other support structures, such as vertex duplication. However, application of
these structures leads to an unacceptable redundancy and querying complex-
ity. Therefore, storing revision data on the data vertices was rejected due to
the ineffective data flow revision trackability.

Second option, storing revision data on separate vertices, is even more
ineffective than the first option. Storing revision data on separate vertices also
requires extra support structures for data flow revision tracking. Moreover,
storing revision data on the special vertices requires additional connection of

59

3. Analysis and Design

data vertices and data flows to these separate vertices. That leads to an even
higher data redundancy and querying complexity. Hence, neither this option
was accepted.

The third option, storing the revision data on the edges, was accepted
as the most suitable. This option does not generate redundant vertices or
edges, since it uses the already existing edges. Also, storing revision data
on the edges allows a natural data flow revision tracking. On top of that,
thanks to the usage of vertex-centric indexing, querying on the database and
searching for the valid vertices and edges is effective as well.

Considering results of Petr Holeček’s analysis, we will keep the revision
data representation on the edges. Moving revision data either to the data
vertices or to the separate vertices would not bring any advantage. However,
the current revision data representation is incapable of performing the incre-
mental update. Hence, we will analyze different revision data representations
on the edges in the graph database Titan and we will choose the most suitable
one.

3.1.1 Closed end revision

In the current Manta Flow version, the end revision, i.e. the last valid revision
of the tracked metadata object, is represented by the parameter tranEnd.
This parameter always holds an explicitly specified revision number.
Therefore, this type of end revision is called a closed end revision.

We have partially examined the closed end revisions at the end of the first
chapter, in the section 1.11. We observed, adding changes to the main graph
within a new revision results into the update of end revisions of all other
valid nodes and edges from the latest revision in order to keep the revision
history consistent. In the following text, a deeper analysis of this revision data
representation will be performed.

In the figure 3.1, is an example demonstrating a small change in a ver-
sioned graph. This graph holds metadata history from revisions 1, 2 and 3.
We decide to remove a node D (red color) and add a new node α (green
color). Therefore, a new revision 4 is created and an update is performed at
all affected nodes and edges.

Notice, the first number on the edge represents the first valid revision, i.e.
the parameter tranStart. The second number stands for the latest valid revi-
sion, i.e. the parameter tranEnd. Also notice, root node of the whole graph,
node A, is always present in all revisions, i.e. it is a super root. Therefore, we
may ignore this node when committing a new revision.

We can see in the figure 3.1, we had to update end revisions of all nodes
and edges remaining in the revision 4 (orange color). If we did not update
their end revisions from 3 to 4, they would be absent in the new revision 4.
For instance, if we did not update end revision of node G from 3 to 4, this
node would be absent in the revision 4.

60

3.1. Revision data representation

Figure 3.1: Small change in the graph with closed end revisions

On the other hand, we did not have to update any of the nodes or edges
absent in the revision 4. Naturally, we ignored the node H since this node was
already absent in the revision 3. Moreover, we also ignored the node D. Thus,
node D was indirectly removed in the new revision 4.

In the next example, we will perform a substantial removal. We will use
the same graph from the first example. This time, we will remove all nodes
and edges but the node B. Additionally, we will add again the node α. See
the figure 3.2.

Obviously, in the figure 3.2, only nodes B and α had to be updated. Rest
of the nodes remained in the revision 3. Thus, rest of the nodes was indirectly
removed in the revision 4. For instance, node C is valid only up to the revision
3 (including), since its tranEnd parameter remained set at the revision number
3.

To summarize it, when using revisions representation with closed ends,
revision data has to be updated at all nodes and edges present in the new
revision. On the other hand, revision data of nodes and edges either remaining
in the latest revision or already removed in some of the previous revisions can

61

3. Analysis and Design

Figure 3.2: Large removal in the graph with closed end revisions

be ignored. In other words, we do not have to set the end revisions of nodes
and edges absent in the new revision. We only have to update end revisions
of nodes and edges present in the latest revision and remaining in the new
revision as well. And, of course, we also have to create the newly added nodes
and edges and set their revision data.

3.1.2 Unclosed end revision

Unclosed end revision represents the latest revision of all revisions. That
means, a node or an edge with an unclosed end revision is definitely present
in the latest revision, even though, the latest revision number is not explicitly
specified. Let us study the impact of unclosed end revisions closely.

Assume, we have three revisions 1, 2 and 3. Main graph holds the revision
data on the edges, using the unclosed end revisions. The unclosed end revision
is represented by the∞ symbol. Again, we decide to perform a small change.
We will remove the node D and add a new node α. Hence, a new revision 4 is
created and an update is performed within the newly created revision 4. See
the figure 3.3.

62

3.1. Revision data representation

Figure 3.3: Small change in the graph with unclosed end revisions

We can immediately observe the difference when using unclosed end revi-
sions instead of the closed end revisions. We only had to add the node α, set
end revision of the node D to the revision number 3 and also set end revision
of its outgoing flow edge to the number 3. That means, we had to update
only the changed nodes and edges.

Apperently, only the changed nodes and edges had to be updated. As we
know, incremental update is built on the idea of updating only the changed
parts. Therefore, using unclosed end revisions seems as an effective revision
data representation for incremental update.

Nevertheless, using only the unclosed end revisions may be ineffective when
performing a substantial removal in the graph. We will demonstrate it in
the next example. Assume, we have three revisions 1, 2 and 3. We have still
the same graph, using the unclosed end revisions. We decide to remove all
nodes and edges except the node B. Additionally, we also append the node α

to the node B. As in the previous examples, we create a new revision 4 and
perform update of the graph. See the figure 3.4.

This time, update had to be performed at all the removed nodes and edges.

63

3. Analysis and Design

Figure 3.4: Large removal in the graph with closed end revisions

End revisions of all the removed nodes and edges had to be set to the revision
number 3, i.e. they were set to their latest valid revision. If the end revision of
any removed node was left unchanged, i.e. at the value (∞), this node would
seem still present in the revision 4.

In conclusion, when using the unclosed end revisions, the number of ne-
cessary updates is directly proportional to the number of changed nodes and
edges. Therefore, unclosed end revisions allow effective small updates. How-
ever, the greater the change, the more steps has to be performed. In the ex-
treme cases, such as removal of all nodes and edges, the update has to be
performed at all nodes and edges. Degrading incremental update into a full
update.

3.1.3 Two-level revision

We observed in the previous examples, closed end revisions are suitable when
a large portion of the graph is removed. However, closed end revisions are
unsuitable for the small updates. On the other hand, unclosed end revisions
are suitable when the low number of changes is performed but they are un-

64

3.1. Revision data representation

suitable when a large portion of the graph is removed. Obviously, these two
approaches are complementary. Therefore, we combine closed and un-
closed end revisions in such a way to benefit from both of their advantages
and avoid the drawbacks natural for each of them.

Instead of two revision parameters tranStart and tranEnd, there will be
four revision parameters14 majorStart, majorEnd, minorStart and minorEnd.
Parameters majorStart and majorEnd represent major revisions. Paramet-
ers minorStart and minorEnd represent minor revisions. Major revisions
will keep the system of the closed end revisions. Minor revisions will use
the unclosed end revisions.

We can interpret major revisions as integers and minor revisions as their
decimal part. Hence, now we will not have only integer revisions 1, 2, 3, . . .
but we will have revisions 1.0, 1.1, 1.2, 2.0, 2.1, . . . and so on.

When a full update is performed, then it is a transition from one ma-
jor revision to another major revision. For instance, when performing a full
update from a revision 1.5, the new revision will be 2.0. On the other side,
when an incremental update is performed, it is a transition from one minor
revision to another minor revision. For example, performing an incremental
update from a revision 1.5 results into a new revision 1.6.

Let us demonstrate this two-level revision data representation on the fol-
lowing examples. As you would expect, the same graph from the previous
examples will be used. Nevertheless, this time, our graph contains revisions
1.0, 1.1, 1.2, 2.0 and 2.1. We will add new node α and we will remove node D
within an incremental update. Thus, a new revision 2.2 will be created.
See the figure 3.5.

We can see in the figure 3.5, only the changed nodes had to be updated.
According to the revision data on the edges15, node α was added in the revision
2.2 and its last valid revision is also 2.2. How do we know its latest revision is
2.2? Because∞ stands for the latest subrevision within its major end revision
(i.e. majorEnd parameter). And since the latest subrevision within the major
revision 2 is .2, the last valid revision of node α is 2.2.

To complete our list of examples, we will demonstrate usefulness of major
revisions when a substantial part of a graph is removed. We will remove all
nodes except the node B. On top of that, we will append α node to the node
B. Again, assume, we have revisions 1.0, 1.1, 1.2, 2.0 and 2.1. But this time,
we will perform a full update. Hence, a new revision 3.0 will be created. See
the figure 3.6.

Again, we can clearly state, we only had to update the two remaining
nodes B and α. Since major revisions are superior to minor revisions, we had
to update only major revisions of the changed nodes and we could have left all

14For the simplicity, we will shorten the name of parameters by removing the ”Tran”
word

15On the first line are major revisions. On the second line are minor revisions.

65

3. Analysis and Design

Figure 3.5: Small change in the graph - incremental update

the other minor revision data unaffected. Therefore, removing a substantial
part of a graph, using the major revisions, requires the minimum of update
steps to keep the history of the graph database consistent.

When a node is removed, its minor end revision (parameter minorEnd) is
set to a specific value. For instance, when a node H was removed in the sub-
revision 2.2, its minor end revision was set to 1, i.e. its end revision was set to
2.1. However, in case of transition to the major revision 3, we left the minor
end revisions of the removed nodes unclosed. For example, node D was re-
moved but its minor end revision is left unclosed (i.e. ∞). Nevertheless, its
major end revision was left at the value of 2. Thus, there was no reason to
close the minor end revision. In other words, leaving the minor end revi-
sion of a removed node unclosed when performing full update did not bring
any inconsistency to the graph since minor revision is inferior to the major
revision.

To sum it up, combining closed and unclosed end revisions in the system
of major and minor revisions allows us updating only the necessary nodes

66

3.1. Revision data representation

Figure 3.6: Large removal in the graph - full update

and edges. Using this system of subrevisions allows us to perform effectively
both full update and incremental update. Therefore, we will use the two-level
revision data representation for the new method of incremental update as well
as for the current method of full update in Manta Flow.

3.1.4 Integer vs Decimal

Representing two-level revision by four attributes (majorStart, majorEnd,
minorStart and minorEnd) brings unnecessary complexity when searching for
the nodes and data flows related to a certain revision interval.

For instance, if we want to find all child nodes of a specific node that
are valid in the revision interval 2.3–4.5, we have to filter only nodes, whose
revision properties are fulfilling the following condition:

67

3. Analysis and Design

[[majorStart < 4] ∨ [majorStart = 4 ∧minorStart ≤ 5]]

∧

[[majorEnd > 2] ∨ [majorEnd = 2 ∧minorEnd ≥ 3]]

This expression cannot be more simplified due to the nature of the two-
level integer system. However, when filtering child elements in a vertex query,
we cannot directly apply a disjunction within one query. Hence, we have to
convert this expression into a disjunctive normal form (DNF), where each
clause represents one filter query:

[majorStart < 4 ∧majorEnd > 2] ∨

[majorStart < 4 ∧majorEnd = 2 ∧minorEnd ≥ 3] ∨

[majorEnd > 3 ∧majorStart = 4 ∧minorStart ≤ 5] ∨

[majorStart = 4 ∧minorStart ≤ 5 ∧majorEnd = 2 ∧minorEnd ≥ 3]

Obviously, we have to perform four queries. Performing four queries would
take definitely longer time than performing only one query. If we wanted to
perform only one query, we would have to create a new class representing
this two-level revision (containing all four revision attributes), store it as an
edge property, implement its own comparison method and use these property
objects for revision comparison.

Titan allows storing custom objects as properties on both edges and ver-
tices. However, Titan supports indices allowing interval search (mixed indices)
only for a certain set of data types. For instance, Titan supports indices al-
lowing interval search for integers, floats, doubles, dates etc. Custom data
types can be used as index keys only for the standard (composite) indexing,
which support searching based only on the equality.

That means, Titan would not be able to perform interval search when
using our custom object property as an index key. Since interval search is
fundamental to the revision validity querying, we cannot use custom class to
avoid the issue of multiple queries when filtering elements according to their
revision validity.

Nevertheless, there is an elegant solution to this issue. We can use two
numbers with decimal part instead of four integers. That means, we will
have again only two revision properties representing start and end revision.
The integer part represents the major part and the decimal part represents
the minor part.

The update logic remains the same. When performing full update, only
the integer (major) part is affected, when performing incremental update, only
the decimal (minor) part is affected.

68

3.1. Revision data representation

Moreover, querying is more effective since mixed indices can be used and
also only one query has to be performed when searching for elements within
a specific revision interval. For example, when searching for the child nodes
valid within the revision interval 2.3–4.5, the following condition has to be
fulfilled:

start ≤ 4.5 ∧ end ≥ 2.3

The only disadvantage of this solution is in the maximum number
of minor revisions within one major revision. The maximum number of
minor revisions within one major revision is defined by the maximum value
in the decimal part. The maximum value in the decimal part is derived from
the data type used for this property.

When using integer (as in the rejected option with four revision attributes),
the maximum number would be INTEGER.MAX VALUE. However, when storing
float or double data type to the database, Titan cuts their decimal part during
serialization. Floats are stored with up to three decimal digits (maximum
value is .999) and doubles are stored with up to six decimal digits (maximum
value is .999999) [38]. Thus, when using float data type, we can perform up to
thousand incremental updates within one major revision. Analogically, when
using double data type, we can perform up to million incremental updates
within one major revision.

Titan allows storing floats and doubles in their entirety without any deci-
mal digits cuts using special attributes FullFloat, resp. FullDouble. However,
these attributes do not allow vertex-centric indexing. Since vertex-centric in-
dexing is essential for us when querying, we cannot use these special attributes.
Also notice, the reason why floats and doubles are cut of their decimal parts
when serialized, is due to their potential usage as index keys. Cutting decimal
parts of floats and doubles allows more effective vertex-centric indexing.

Since we expect some users using only incremental update, we will choose
the double data type because it allows creation of million of minor revisions
(within one major revision) in contrary to the maximum of one thousand
minor revisions when using the float data type.

3.1.5 Revision tree

In the current implementation, revisions are stored in a standalone graph,
in the revision tree. Revision tree has on top a revision root. From this
revision root lead hasRevision edges to the revision nodes.

We have to change the data type of revision number, saved in the revision
node, from Integer to Double. Rest of the logic, such as creation of a new
revision or committing the latest revision, remains the same. We only have to
distinguish between an incremental update and a full update, to always create
a correct revision number.

69

3. Analysis and Design

Additionally, we will add new properties to the revision root and to
the revision node to speed up querying. We will add properties latestCom-
mittedRevision and latestUncommittedRevision to the revision node and we
will add properties previousRevision and nextRevision to the revision nodes.

Next, we will define technical revision (the first revision created at
the beginning) as a revision with number 0.000000. Depending on the next
type of update, either a non-technical revision 1.000000 or a non-technical
revision 0.000001 is created next.

Finally, we will keep tranStart and tranEnd properties on the hasRevision
edges. These properties are useful when the whole revision node needs to
be retrieved while knowing only its revision number. For instance, when we
want to know when a specific revision was committed, we can quickly find its
revision node specified by its revision number and retrieve the commit time
property from this revision node.

Figure 3.7: Example of a revision tree

In the figure 3.7 is an example of revision tree. In this example are three re-
visions. Technical revision 0.000000 and two non-technical revisions 1.000000
and 1.000001. Clearly, revision 1.000000 was created as a new major revi-
sion (full update) and revision 1.000001 was created as a new minor revision
(incremental update).

Since the latest revision 1.000001 is not committed yet, revision root re-
gisters revision 1.000000 as the latest committed revision and revision
1.000001 as the latest uncommitted revision. If all revisions were com-
mitted, i.e. no uncommitted revision exists, a special value -1.0, indicating
an empty (null16) value, would be saved as the latest uncommitted revision in

16Null cannot be set as a property value. Therefore, a value -1.0 is used instead.

70

3.1. Revision data representation

the revision root.

Obviously, when searching for the latest committed revision, we have to
retrieve only one property from the revision root instead of retrieving all re-
vision nodes and searching for a committed revision node with the highest
revision number.

The special value -1.0, indicating an empty (null) value, is used also in
the properties storing previous revision and next revision. Previous revi-
sion is an immediately preceding revision and next revision is an immediately
following revision.

In the figure 3.7, revision 0.000000 has no previous revision -1.0 and
the next revision is 1.000000. Analogically, revision 1.000000 has previous
revision 0.000000 and next revision 1.000001 and revision 1.000001 has previ-
ous revision 1.000000 and no next revision.

Saving number of the previous and next revision is important, because
the new system of mixed revisions does not follow any sequence. The old re-
vision system (with integer revision numbers) followed an arithmetic sequence
with difference 1. Hence, it was possible to determine previous and next revi-
sion from the current revision number. For instance, when you have revision
5, the previous revision has, without doubts, number 4 and the next revision
has definitely number 6.

The new system of major and minor revisions does not follow any sequence.
When you have revision 1.000000, you cannot determine from this revision
number, whether the next revision is 1.000001 or 2.000000. Without saving
previous and next revision number directly in the revision node, we would have
to iterate through a subset of revision nodes to find the one with maximum
or minimum revision number, to find the previous or next revision number.

For example, when searching for the previous revision number of the revi-
sion node 2.000000, we would have to retrieve all revision nodes that are less
than 2.000000 and find the one with the maximum number. The more revi-
sions we have, the longer this operation may take. Therefore, we introduced
new properties previousRevision and nextRevision solving this issue.

The previous and next properties can be used especially when pruning old
revisions. For instance, when we want to remove all revisions and keep only
the three latest committed revisions, we need to know number of the latest
revision that is to be removed as well. We will get this number the following
way:

1. Get revision root and get the latest committed revision number

2. Find the latest committed revision node (using tranStart and tranEnd
edge properties)

3. Get previous revision node number and find the the previous revision
node

71

3. Analysis and Design

4. Get previous revision node number and find the the previous revision
node

5. Get previous revision node number→ this is the revision number we are
looking for

Once we have the revision number of the latest revision to be removed,
we simply perform removal of all revisions less than or equal to this revision
number.

3.1.6 Full update vs incremental update

When using the two-level revision data representation, we always have to de-
cide, whether the update should be performed on the level of major revisions
or on the level of minor revisions. In other words, we always have to choose
between the full update or the incremental update. Luckily, we can unam-
biguously define what level the update should be performed on, if we know
how many nodes and edges is present in the latest revision and how many
nodes and edges will be removed in the new revision.

Let closed be the number of nodes and edges necessary to update when
closed end revisions are used and unclosed be the number of nodes and edges
necessary to update when unclosed end revisions are used. Next, we want
to compare these two functions. Let us find out, when it is more effective
to perform an update using closed end revisions than using unclosed end
revisions. That means, we want to find out when the number of updates using
closed end revisions is less than the number of updates using the unclosed end
revisions:

closed < unclosed (3.1)

Let before be the number of nodes and edges valid in a graph before the up-
date, add be the number of nodes and edges we want to add to the new revi-
sion and del be the number of nodes and edges we want to remove in the new
revision.

Next, closed end revisions require to update only nodes and edges valid in
the new revision. Those are nodes and edges valid in the original revision, ex-
cept the removed nodes and edges but also additionally extended by the newly
added nodes and edges. On the other hand, unclosed end revisions require to
update only newly added or removed nodes and edges. Hence, substituting to
the inequality 3.1, we get:

before+ add− del < add+ del (3.2)

Removing the add variable on both sides of the inequality 3.2, followed by
a simplification, we proceed to:

72

3.2. Update

before < 2del (3.3)
⌊

before

2

⌋

< del (3.4)

When simplifying the inequality 3.3, we divided it by 2 to clearly demon-
strate in the final form 3.4 the following claim:

Claim 1 Removing more than half of nodes and edges from a graph, when
transitioning to a new revision, requires less updates when using closed end
revisions than unclosed end revisions.

Notice, the effectiveness of both representations is unaffected by the num-
ber of added nodes and edges. It is a logical implication, since creating a new
node or an edge always requires an update. Moreover, if we only add new
nodes or edges, update using the closed end revisions would be still less ef-
fective due to the already existing nodes and edges before the update.

Also notice, we did not consider the already removed nodes and edges.
Already removed nodes and edges do not need to be updated. Therefore, we
could ignore these.

Finally, in the last form of the inequality 3.4, we used the floor function.
We could have also left this inequality without the floor function and it would
be still correct. However, we wanted to emphasize we work with integers,
with the number of updates. If we used the ceil function (higher integer),
the inequality would be incorrect in case of removal the ”smaller half” from
graphs with odd number of nodes and edges.

Nevertheless, the inequality 3.4 is only a rough estimation. We con-
sidered only the number of necessary changes. We did not distinguish between
updating nodes and updating edges. We did not include the complexity of cre-
ation of the input, although, each approach requires different input. And most
importantly, we did not consider how these changes would be applied.

3.2 Update

Having chosen a suitable revision data representation allows us to proceed to
the most essential part of this analysis, the update. Update is responsible for
propagation of user’s new revision data into Manta Flow graph database.

Update in Manta Flow consists of these three steps:

1. Create a new revision

2. Update user’s changed data within the new revision

3. Commit the newly created revision

73

3. Analysis and Design

Creation and commit of a new revision will not differ from the current
implementation. A new revision node is created in the revision tree, its revision
number property is set to a proper value and once the update of user’s changed
data is finished, its commit attributes are set to proper values as well. Since
logic of these operations in the revision tree remain the same and are pretty
straightforward, we will focus only on the update of user’s changed data.

We will describe two types of updates, full update and incremental
update. Our primary focus should be directed only towards the incremental
update. However, due to the change of revision data representation, we have
to also slightly rework the full update. Therefore, in the following text, we will
describe changes in the full update and then we will describe a new method
of the incremental update.

3.2.1 Full update

Full update receives on the input the whole new version of the main graph.
This new graph is merged to the versioned graph in Manta Flow in the or-
der order it comes from the input, i.e. first resources and layers are merged,
then nodes and attributes and the data flows are merged last. When source
code files are sent to be stored as well, they are being send asynchronously
via multiple threads.

Merging single vertices and data flows is almost the same as explained in
the first chapter, in the section 1.10.4. We only have to incorporate changes
of revision data properties on the edges.

When a metadata object is merged, it is first checked, whether it exists in
the latest revision or not. As we already know, comparison of two metadata
objects is performed via their equality criteria.

If the merged object does not exist in the latest revision, it is newly created.
Its start revision parameter is set to the new revision number (both integer and
decimal part). Its end revision parameter is set to the new revision number
(integer part) but its minor part (decimal part) is set to the maximum value.
Hence, the new object will have these revision properties:

start← newMajor.000000

end← newMajor.999999

If the merged object does exist in the latest revision, its start revision para-
meter (both integer and decimal part) remains unaffected, major part (integer
part) of its end revision parameter is incremented by one and the minor part
remains unaffected. Hence, the updated object will have these revision prop-
erties:

start← unchanged.unchanged

end← newMajor.unchanged

74

3.2. Update

Let us demonstrate the description of full update on an example. Notice,
we will use shorter form (two digits) of the minor revisions .00 and .99. As-
sume, in the database is only one revision 1.00. A new input is merged by full
update within a revision 2.00. Below is described the merge process step by
step in single figures 3.8, 3.9, 3.10 and 3.11.

Figure 3.8: Full update - initial state

Figure 3.9: Full update - merging resource and layer

Obviously, full update performed transition to the revision 2.00 as ex-
pected. All objects from the input had their revision parameters updated
according to the description from above. Node B was missing in the input.
Therefore, it was ignored during the merge. Consequentially, node B was
removed together with its data flow and is no longer valid in the revision 2.00.

Also notice, resource and layer were merged at once. Layer vertex has
no parent vertex. Therefore, it has to be merged together with one of its
resources. All other vertices have their parents clearly defined. Hence, all
other vertices are merged individually.

To sum it up, full update will be performed almost identically as it has
been performed until now. The only difference is, we update exclusively the
major parts (integer parts) and we leave minor parts (decimal parts) unaf-

75

3. Analysis and Design

Figure 3.10: Full update - merging node A

Figure 3.11: Full update - merging node C

fected. The only exception is an object creation. The start revision is set to
the newly created revision always starting with minor revision zero (major.00,
and the end revision is set to the maximum value in the new major revision.

3.2.2 Incremental update

Subgraph merge within incremental update is a combination of full-
update-like graph merge and subgraph removal. The input subgraph17

is merged node by node until a specially marked node is reached. This marked
node indicates, a change has been performed somewhere in the subgraph start-
ing with this marked node.

When this marked node is reached, the whole subgraph starting from this
marked node is removed. The removal is performed simply by setting the end
revision property to the latest revision:

start← unchanged.unchanged

end← unchanged.latestMinor

17Input for the incremental update is described in detail in the section 3.3.

76

3.2. Update

Once the subgraph is removed in the main graph, the merging process
continues from this marked node. Hence, the new version of this removed
subgraph is merged to the main graph. If the removed node or an edge is
absent in the new revision, it will remain removed. If the removed node or
an edge is present in the new revision, i.e. it will be in the input subgraph, it
will be merged back by setting the minor end revision back to the maximum
value .99. This way, we properly update in the main graph only the referring
marked part of the input subgraph.

Let us demonstrate it on an example. Again, we will use the shorter, two-
digit form of the minor revisions for the simplicity. Assume, in the Manta
Flow server is a main graph containing two subgraphs with root nodes A and
B. All vertices and edges were added during revision 1.00. No other revisions
were committed yet. See the main graph in the figure 3.12.

Figure 3.12: Subgraph merge - initial state

A small change was performed on user’s side. As a consequence, in the sub-
graph with the root node A, a node D was removed and a new node α was
added. However, it cannot be detected at this point, what exact nodes and
edges were added or removed. The only available information is, a subgraph
with the root node A was changed. Therefore, when creating an input for
the incremental update, node A was marked (red color). See the input sub-
graph in the same figure 3.12.

Next, the input subgraph is sent to the Manta Flow server and the update
to the revision 1.01 begins. First, resource and layer are merged. Since incre-

77

3. Analysis and Design

mental update is performed, we operate only on the level of minor revisions
(decimal parts). Therefore, merging unchanged resource and layer will have
no effect. We do not have to change neither minor nor major end revision to
any specific value. See the figure 3.13.

Figure 3.13: Merging resource and layer

Depending on the topological order of the input, either the subgraph with
the root node A or the subgraph with the root node B is merged next. Without
loss of generality, assume, the subgraph with the root node B is being merged
next. That means, the node B and its child node E are being merged, in this
order.

Again, merging unchanged nodes B and E is having no effect as well. Their
start revisions (1.00) remain unchanged as well as their end revisions (1.99).
Notice, in the input subgraph are missing child nodes F and J. These nodes
have nothing in common with the change in the subgraph with root node A.
Therefore, nodes F and J are missing in the input subgraph. Thus, they are
simply skipped. See the figure 3.14.

Next, the node A is reached. Manta Flow detects, the node A is marked.
Therefore, the whole subgraph of the root node A is removed. Latest revision
is revision 1.00. Hence, all nodes and their data flows have their minor end
revision parameters set to the latest minor revision .00. See the figure 3.15.

Notice, after the subgraph was removed (figure 3.15), we did not have
to remove the root node A. Node A is already in the input. Thus, node A
is, without doubts, present in the new revision and removing it would be

78

3.2. Update

Figure 3.14: Merging nodes B and E

Figure 3.15: Removing subgraph with the root node A

79

3. Analysis and Design

meaningless. Nevertheless, node A may have some attribute nodes. If some
attribute of the node A was absent in the new revision (i.e. the attribute was
removed), it would be absent in the input subgraph as well. If we did not
remove the node A and we also forgot to remove all attributes of the node A,
the removed attribute would remain in the new revision. The database would
be inconsistent. Node removal operation guarantees, all connected nodes and
edges are removed as well. Therefore, if we decide to not remove the marked
root node (as in this example), we have to make sure, all its connected nodes
and data flows, including attribute nodes, were removed.

Once the subgraph is completely removed, merging process can continue.
Nodes C, G and α are merged to the main graph. Nodes C and G were
not changed. Therefore, their minor end revision parameters are set back to
the maximum value .99. Node α is new. Hence, its start revision is set to 1.01
and end revision is set to 1.99. See the figure 3.16.

Figure 3.16: Merging subgraph with the root node A

Notice, when the merge is performed, we always check for the nodes and
edges valid in the latest revision. If the merged node or edge has its end
revision set as the latest revision and is also in the input, it is not newly
created because it would lead into a redundancy. Instead, its end revision is
set back to the maximum value .99.

As we can see in the figure 3.16, node D and its data flow to the node E
remained removed in the new revision 1.01. This is the desired behavior, since
the node D and its data flow to the node E are absent in the new revision.

80

3.2. Update

We can also observe in the figure 3.16 (after the subgraph with the root
node A was merged), the data flow from the node G to the node E is absent in
the new revision 1.01, although, this data flow should be present in the revision
1.01. This is not a mistake. We only wanted to emphasize that data flows
are merged at the end.

That means, first are merged all layers, resources and nodes. Hence, if
we remove a marked subgraph during the traversal and then we continue in
merging, the incoming and outcoming data flows to or from this subgraph are
not merged together with nodes of this subgraph. In this case, data flow from
node G to node E is not merged together with the nodes C, G and α.

Since we merged all nodes from the input subgraph, our last step is
the merge of data flows from the input subgraph. In the input subgraph
is only one data flow from the node G to the node E. This data flow is merged
the same way as any other node. Its minor end revision is set back to .99. See
the figure 3.17.

Figure 3.17: Merging data flow from the node G to the node E

Finally, we finished the whole merging process. All nodes and edges were
successfully updated and the database now holds history of revisions 1.00 and
1.01.

The newly designed merge method is not the optimal method for the in-
cremental update. The optimal method would traverse solely to the changed
nodes and edges and would change only their minor revision data. However,
the inability of producing the optimal input for the update limits us in imple-

81

3. Analysis and Design

menting the optimal method.

We are only able to know what subgraph has changed. This limited know-
ledge makes us to first remove the old revision of the changed subraph and
then merge the new revision of this changed subgraph.

At first glance, it might seem, a more effective solution would be not
removing the whole graph but instead, finding the difference between the old
and new revision of the changed subgraph. However, this would leads us back
to the problem of finding differences between two graphs. This problem can
be converted to the well-known graph isomorphism problem, which belongs
to the NP complexity class. On the other hand, traversal through all nodes
and edges of the old and new subgraph has obviously a linear complexity.
Therefore, we decided to first remove the marked subgraph (the old version)
and then merge in the new version of this subgraph.

Time complexity of this method is directly proportional to the number of
nodes and edges from the input subgraph (including the marked subgraph)
plus the number of nodes and edges of the old version of subgraph in the main
graph.

Presuming, only small changes will be performed18, time complexity of
this merge method is approaching time complexity of the optimal incremental
update method.

3.3 Input

As we already know, the new method of the incremental update requires a new
type of input. Since no changes need to be performed in the input for the full
update, we will focus exclusively on the input for the incremental update.

Input for the incremental update is a subgraph representing changes
in the new revision. However, the input subgraph does not consist only of
the changed nodes and edges. The input subgraph only contains the changed
data. For instance, a new line of code was added into a script. Then, we do
not receive on the input only the nodes and edges representing the newly ad-
ded line. We receive a graph structure of the whole script including the newly
added nodes and edges.

Next, each node in the input subgraph has to have unambiguously defined
a full path to its resource. We need to know, where exactly each node be-
longs to. We cannot send on the input a subgraph consisting only of the nodes
and edges without their context. For instance, we want to perform an incre-
mental update of a changed procedure. Then, we have to add to the input
subgraph representing the changed procedure also a schema, database, re-
source(s) and layer(s), where this procedure belongs to. If the procedure
affects another objects by its data flows, such as columns, we also have to

18According to Lukáš Hermann, number of the changed nodes and edges in the incre-
mental update will be only a fraction of all the nodes and edges present in the main graph.

82

3.3. Input

include parents of these objects up to their resource(s) and layer(s). In other
words, we have to be able to find out in the input subgraph for every node its
resource.

Since we receive on the input for the incremental update a subgraph con-
taining not only the changed nodes and edges, we have to indicate what
has changed. We already know, marking only the added or removed nodes
and edges is currently impossible. We can use for the indication of changes in
the input subgraph only information from the newer version of the changed ob-
ject (e.g. a procedure or a script), without knowing what exactly has changed.

Therefore, we will mark a root node of a subgraph in the input subgraph
that definitely contains the change. We do not have to mark all the nodes
and edges in the changed subgraph. In general, when a node is changed, all
its successors and their edges are inherently changed as well. Therefore, we
need to mark only a root node of the changed subgraph.

We will most probably mark some unchanged nodes and edges. This will
slightly increase complexity of the update, since we will probably update some-
thing unchanged. However, we have no other option due to the inability of
creating a graph delta (explained in the previous chapter, in the section
2.4.

Let us demonstrate all the mentioned information from above on an ex-
ample. Assume, we have a procedure assigning an input parameter into an out-
put parameter. This procedure is enriched by another line of code, insertion
of the input parameter into the LOG table. See the listing 3.1.

PROCEDURE proc(IN I, OUT O) {

O = I;

INSERT INTO LOG(MES) VALUES(I);

}

Listing 3.1: Procedure - insert statement added

Next, user wants to perform an incremental update of this small change.
Therefore, an input subgraph representing this change had to be created first.

The input for the incremental update will be created the same way as
the input for the full update. First, the extraction of user’s data is per-
formed. Second, the data flow analysis of the extracted and other provided
data is performed. Finally, the resulting metadata are exported in the form
of a linearized graph. The only difference is, the provided data will be only
the changed data. Hence, the input subraph will contain mostly the changed
part. See the figure 3.18 for the graphic illustration of such an input.

As we can see in the figure 3.18, the input subgraph meets all the require-
ments defined above. On the input is not only the change of the procedure
(i.e. nodes INSERT and MES and their edges) but there is the whole proced-
ure. What more, there is not only the procedure but also their parents up to

83

3. Analysis and Design

Figure 3.18: Input subgraph

the root. Each node has one and only one full path to its resource. Thus, each
node is unambiguously identifiable. Finally, the changed part of the subgraph
is represented by the red nodes and edges. Since we only know the procedure
has changed but we cannot closely specify what nodes and edges were added
or removed, we simply marked the whole procedure body subgraph, starting
from the node BODY.

3.4 Customization

The newly designed incremental update requires special modifications to fit
all the specifics of Manta Flow. These modifications reflect the expected use
cases and the specificity of the data Manta Flow works with, in particular,
the data flows.

Also, the expected usage of Manta Flow should be respected in the new
design. Especially, to optimize querying in the graph database. We will also
cover all these modifications in the following section.

3.4.1 Inconsistency

When designing the input for the incremental update, you probably wondered,
why we did not mark in the example of the changed procedure (figure 3.18)
the whole procedure subgraph, i.e. why we did not mark the node Procedure.

84

3.4. Customization

If we marked the node Procedure, we would remove all nodes and edges
during the merge, including the incoming and outcoming data flows. How-
ever, it can easily happen, we do not receive on the input all data flows we
removed during the merge. Hence, this operation can bring inconsistency
to the database. We will demonstrate it in the following example.

Assume, we have the old version of the procedure from the example above.
This time, we know, this procedure is called by another script. User has this
procedure and script only in the form of files. See the listings 3.2 and 3.3.

PROCEDURE proc(IN I, OUT O) {

O = I;

}

Listing 3.2: Procedure

BEGIN

proc(I, O);

END;

Listing 3.3: Script

Procedure and script are also stored in the graph database in Manta Flow.
Since there is a dependency between the script and procedure, the appropriate
data flows were created between them. Assume, the graph database has only
one revision 1.00 and both the script and the procedure are valid in this
revision. See the snapshot of this procedure and script from the revision 1.00
in the figure 3.19.

As we can see in the figure 3.19, there two data flows between the script
and the procedure. One data flow leads from the script parameter I to the pro-
cedure input parameter I. Another data flow leads from the procedure out-
put parameter O to the script parameter O. Hence, these data flows refer to
the value passing between the script and the procedure.

Next, user renames in the procedure the input parameter I to J and the out-
put parameter O to P. See the listing 3.4.

PROCEDURE proc(IN J, OUT P) {

P = J;

}

Listing 3.4: Procedure - renamed parameters

Since renaming parameters in one procedure is a small change, user de-
cides to perform an incremental update to propagate this change to the graph
database.

85

3. Analysis and Design

Figure 3.19: Script and procedure in the main graph

First, the input has to be created. Because we know, only the procedure
was changed, we create the input subgraph based only on the analysis of
the procedure. Notice, the script content has not changed at all. Therefore,
we assume, there is no need in the analysis of the script. See the input in
the figure 3.20.

This time, we had to mark the whole procedure subgraph, starting from
the node Procedure. If we did not mark the whole procedure subgraph, we
would ignore the fact that the parameters I and O were renamed also in
the procedure declaration.

The input is prepared. Thus, the incremental update may begin. Server
starts merging the input subgraph to the main graph. Once the node Pro-
cedure is reached, the whole subgraph, starting from the node Procedure, is
removed. The data flows between the script and the procedure are removed
as well.

After the procedure subgraph is removed in the main graph, server pro-
ceeds in merging the new procedure subraph from the input. When all
the nodes and attributes from the input are merged to the main graph, server
completes the whole process by merging the data flows from the input to
the main graph. See the result of the incremental update in the figure 3.21.

We can clearly see in the figure 3.21 that the data flows between the script
and the procedure are missing in the new revision 1.01. This is caused by not
knowing about the call of the changed procedure from the script.

The issue described above is a problem of the interface change. When

86

3.4. Customization

Figure 3.20: Input subgraph of the changed procedure

Figure 3.21: Script and procedure in the main graph after the merge

an interface is changed, there is a risk of bringing inconsistency to the system.
In this case, we lost the information about data flows. We did not respect
the potential dependencies of the changed objects.

If we wanted to perform a proper incremental update, we would have to
search for all occurrences of the changed object and create an input subgraph

87

3. Analysis and Design

extended of the missing data flows. We would have to perform an impact
analysis to cover all the dependencies of the changed database object.

We do not have currently a tool for the impact analysis. And even if
we had such a tool, it could take a lot more time since the analysis would
have to search through all the user’s data to make sure no dependencies were
ignored. Nevertheless, this is just a rough observation. A deep analysis about
the usage of impact analysis in Manta Flow should be performed before making
any further statements about its time complexity.

For now, we will have to deal with the incompleteness of incremental up-
date in Manta Flow by specifying individual rules and constraints for specific
cases.

One approach is not to allow users to perform incremental update when
there is a dependency. For instance, when a procedure declaration was changed
or when a script, upon which some other scripts are dependent, is changed.

Consequentially, we will have to customize input for the incremental up-
date depending on the type of the changed object. For example, when a pro-
cedure is changed, only the procedure body will be marked as changed, since
we presume, only the body of the procedure is allowed to be changed.

Another approach is to allow users perform incremental despite a depend-
ency change, but a data flow restoration has to be performed. A suitable
usage for such a case is a column addition. User adds a column to a table
but we do not know what column that was, we only know what table has
changed. Hence, we will mark the whole table node in the input subgraph.
Once this node is reached during the merging process, the table subgraph is
removed. As we know, this subgraph removal will remove all children nodes
also with their data flows. That means, all data flows to or from the columns
will be removed. However, when the table with all its columns is merged back,
we will additionally not only update end revision of the column nodes, but
we will update end revisions of their data flows from the latest revision as
well. Hence, we will restore data flows of the columns still present in the new
revision.

Clearly, data flow restoration may produce the opposite side effect. No
data flows will be lost but some data flows may be accidentally added to
the new revision. For instance, some script was changed and consequentially,
a data flow from a column should no longer exist in the new revision. Simul-
taneously, in the same table was created a new column, hence, a new column
node should be present in the new revision. Assume, these two changes,
script change and column addition, are updated together within one revision.
If the change of the script is updated first and the column addition is updated
afterwards, the removed data flow remains in the new revision.

In conclusion, users have to be aware of the risk of bringing inconsistency
to the database when an incremental update is performed. Anyway, users
will be allowed to perform incremental update at their own risk, but they
need to be either sure their change is independent on the other objects so no

88

3.4. Customization

inconsistency may occur or they accept the risk of bringing inconsistency to
the database in the exchange for a fast update.

3.4.2 Object creation and removal

When designing the incremental update method, we considered only an object
change but not its entire creation or removal. For instance, we studied
only a change of the procedure body or procedure interface. Nevertheless, we
did not consider such cases, when a new procedure is created or removed.

Object creation and its subsequent propagation to the database does
not require any modification of the update input or of the update method.
Merging a newly created object can follow the same algorithm as if only a part
of the object was changed.

First, the analysis of the newly created object is performed and the input is
created. During the input creation, the appropriate part of the newly created
object is marked as if it was changed. Then, the incremental update merge
method is performed. Due to the logic of the merge algorithm, the whole
input is merged to the database, including the unmarked part of the object.
Since the input contains the whole object, it is guaranteed, the whole object
is stored in the database.

For instance, a whole new procedure is created and the incremental update
is to be performed. The input for the incremental update contains the whole
procedure structure, including the procedure interface. Also, the procedure
body node in the input subgraph is marked as changed. During the merge,
the interface is newly added to the main graph. When the marked procedure
body node is reached, the whole procedure body subgraph is first removed
from the main graph. However, there is no procedure body in the main graph
yet. Therefore, there is nothing to remove and the merging can immediately
continue. When the merge is finished, the whole procedure is in the main
graph.

Object removal and its subsequent propagation in the database may be
performed in two ways.

First option would be to follow the same algorithm as if the object was only
changed. We would create an input subgraph containing the removed object
and put a special mark on the root node of the removed object. Then, this
input subgraph would be merged in the incremental mode to the main graph.
Once the specially marked root node would be reached during the merge, it
would be removed together with all its successors and their edges.

The problem is, server must not merge back the removed subgraph. Hence,
either a special mark has to placed on all the nodes and edges of the removed
subgraph so the server did not merge them back or during the input creation
only the root node would be created.

Second option would be to simply send to the server a path to the root
node of the subgraph to be removed and server would only find this node and

89

3. Analysis and Design

then remove it together with all its successors and their edges. For instance,
we would send to the server a concrete sequence Resource → Database →
Schema → PLSQLPackage → Procedure, server would find it and remove
the whole subgraph starting from the node Procedure.

Sending only a path to a concrete node is definitely faster than creating
a special input subgraph. Also, there is no need in merging the input subraph.
The input subgraph may include not only the subgraph to be removed and
its parent nodes but it may also include other affected nodes and their parent
nodes. If the procedure affected other columns and tables, we would have to
walk through these as well. It may be significantly faster to traverse only to
the root node of the subgraph we want to remove. On top of that, we would
also have put an extra indication that the marked root node should not be
merged back so we avoided the so called zombie node.

Considering all the advantages of sending only a path to root node of
the removed object, we will implement an extra method of the incre-
mental update only for the case of object removal.

3.4.3 Overflow

Some users may perform frequent incremental updates and never perform a full
update. For example, some users perform every day multiple of small changes
that they want to immediately propagate to Manta Flow to see the impact of
these changes on data flows. In this case, there is a high risk, the maximum
number of minor revisions (one million) may be insufficient and once this
maximum is reached, an overflow may happen.

On top of that, some users may be unable to quickly generate input for
the full update and they may be limited only by the incremental update.
Hence, they cannot perform full update to automatically transition to the new
major revision.

To prevent this situation, we have to perform a manual transition to
a new major revision to start a new series of minor revisions.

The idea is simple. We will increment major end revision of all nodes and
edges valid in the latest revision to the new major revision, before we start
merging the input subgraph. Let us demonstrate it on an example.

Assume, we have major revision 1, we can have exactly one hundred minor
revisions at maximum. We have already performed one hundred incremental
updates. That means, we have committed revisions 1.00, 1.01, . . . , 1.98, 1.99.

Next, user wants to perform another incremental update but we cannot
create revision 1.100. Therefore, we create a new revision 2.00 and we update
end revision of all nodes and edges valid in the latest revision (1.99) to 2.99.

Following is the standard merging process. When it comes to a subgraph
removal of the changed subgraph, we have to set the end revision of the re-
moved nodes and edges to the latest revision, revision 1.99. When merging
the new subgraph back, we also have to search for the nodes and edges valid in

90

3.5. Summary

the latest revision 1.99. If the node or edge is still present in the new revision
2.00, then its end revision is set back to 2.99.

Obviously, the logic of incremental update remains the same, although, we
have to manipulate not only with minor part but also with major part of end
revisions of the affected objects.

Unfortunately, transition to the new major revision is asymptotically com-
parable with the full update, since we have to visit every node and edge valid
in the latest revision and set its end revision to the new major revision. Nev-
ertheless, it is an inevitable operation to keep the database consistent in case
the maximum number of minor revisions is reached and it is impossible to
perform a full update.

3.5 Summary

The fundamental idea of the newly designed method of incremental update
is based on the principle of major and minor revisions. This two-level
revision system allows effectively perform both full update and incremental
update over the same graph data model.

The new concept of two-level revision system led to the series of necessary
changes in the current design of version control in Manta Flow. Following are
the most important changes:

• Changed data type of revision number

• New merge method for the incremental update

• New input for the incremental update

Properties tranStart and tranEnd have their data type changed from
Integer to Double. Double data type allows effective usage of both major
and minor revisions. The integer part represents major part of the revision,
the decimal part represents the minor part of the revision.

Important difference between the major and minor part is in the usage
of closed and unclosed end revisions. Major part is using the system of
closed end revisions, where the latest valid revision number is always explicitly
specified. Minor part is using the unclosed end revisions, where the latest valid
revision number can be implicitly specified by the highest possible minor revi-
sion number. Thanks to the indirectly specified latest minor revision number,
only a part of the graph can be updated without the need of updating the rest
of the whole database graph.

The highest possible minor revision number is .999999. This is due to
the fact, Titan graph database stores Double data type values only up to six
decimal digits. Hence, the maximum number of minor revisions within one
major revision is one million.

91

3. Analysis and Design

When the maximum number of minor revisions is reached, we have to per-
form a transition to the new major revision in order to avoid the over-
flow. Either a full update is performed, which naturally performs transition
to the next major revision. Or an incremental update is performed, during
which the transition to the next major revision is performed before the mer-
ging phase starts. The merge process then operates within the new major
revision, preceding the issue of overflow.

The new merge method of the incremental update is a modified merge
method of the full update. This new merge algorithm merges nodes and edges
from the input the same way as the full update does. The only difference is,
when a specially marked node is reached, its whole subgraph is removed,
including all the incoming and outcoming data flows to or from this subgraph.
Then, the new version of the subgraph is merged back. Since the marked
subgraph represents the change and the old version is removed and the new
version is merged back, the changed graph is successfully saved in the graph.

This new merge method is performed from top to bottom. Although,
applying the merge method in some other systems from bottom to top may
bring an advantage, the specificity of the graph data in Manta Flow disallows
to perform merging from bottom to top. The input subgraph is always in a to-
pological order, starting from the root node. Moreover, traversing in the graph
database is also performed from top to bottom. Therefore, it would be un-
natural and ineffective to perform the merge method from bottom to
top.

Simultaneously with the design of a new merge method, a suitable input
for the incremental update had to be designed as well. The input for
the incremental update is a subgraph containing the changed data.

However, input for the incremental update cannot be easily created
for every change performed. Some changes have a further, currently undetect-
able, impact. When these changes are propagated via the newly designed
incremental update method, an inconsistency may be brought to the data-
base. Therefore, users are allowed to incrementally update only some types
of changes and some special cases can be dealt with individually.

Currently, the problem of potential inconsistency can be solved only by
performing a full update, where the new revision contains certainly no in-
consistency. In the future, this problem can be solved by the application of
impact analysis on the performed change followed by the creation of a proper
input for the incremental update.

Nevertheless, some users may prefer the risk of bringing a small incon-
sistency to the database in an exchange for a fast update. Therefore, it is
acceptable to implement this method of incremental update.

Furthermore, when studying the new merge method and input for the in-
cremental update, it was observed that in case of a whole data structure
removal is more effective to simply perform a subgraph removal instead

92

3.5. Summary

of performing a merge to the database. Therefore, an extra method of incre-
mental update will be created for the case of a whole data structure removal.

Finally, querying to the database should show the similar performance
as in the current Manta Flow version. We will use the same index structure,
allowing a fast graph traversal. We will use in the index structure the same
property keys tranStart and tranEnd. The only difference is in the switching
from the Integer data type to the Double data type.

In conclusion, based on the analysis and design from this chapter, the in-
cremental update in Manta Flow should significantly speed up propagation of
small changes to the graph database. Furthermore, the update time complex-
ity should be directly proportional to the change size and the querying time
complexity in the graph database should show the similar time complexity as
in the current implementation.

93

Chapter 4

Implementation

Based on the design from the previous chapter, a prototype supporting both
incremental update and the already existing full updated was implemented.
This prototype was implemented as a branch, based on the latest Manta Flow
version 1.20.

Technologies used for the prototype implementation are the same techno-
logies used in the current Manta Flow product. That means, the prototype
is running on Java platform (version 1.7), using the Spring framework and
the graph database used is the well known graph database Titan from the first
chapter (version 0.4.4).

In the following text, we will describe changes performed in the prototype
branch on both logical parts of Manta Flow, on Manta Flow client and Manta
Flow server.

Shortened source codes

Source codes showed in this chapter are shortened and simplified to
reduce unnecessary lines of code for description and to save space.
For original source codes see directory src in the attachment to this
thesis.

4.1 Manta Flow server

Graph database (the metadata repository) is located on server. Therefore,
main logic of the graph database update is managed on server side. Thus,
most of the changes were performed on the Manta Flow server.

The most important changes were made in the modules Core, Connector
and Merger. Additionally, some minor changes had to be performed also in
other modules such as Exporter, Dump or Viewer. However, we will describe
only changes in Core, Connector and Merger.

95

4. Implementation

4.1.1 Core

Module Core defines data model of the graph database in Manta Flow and
other core data structures used in Manta Flow server.

According to the new design of revision tree (section 3.1.5), in class Data-
baseStructure were created new vertex properties:

• latestCommittedRevision in revision root

• latestUncommittedRevision in revision root

• previousRevision in revision node

• nextRevision in revision node

Additionally, in class DataflowObjectsFormat, which is defining format
of vertices and edges in the CSV file sent from client to server, was extended
node format to support new optional node property FLAG.

Apart from these structural changes no other changes were made in this
module.

4.1.2 Connector

Module Connector encapsulates graph database and provides interface for
basic operations over this graph database. Hence, a new revision logic and
other graph operations were implemented in this module.

The most important changes were made in classes IndexCreator, Graph-
Creation, GraphOperation and RevisionRootHandler.

IndexCreator class creates indices. The only change made in this class
is changing index data type of edge properties tranStart and tranEnd from
Integer to Double.

Revision number data type has been changed from Integer to Double also
in all other classes and modules working with revisions. Nevertheless, it will
not be mentioned explicitly any more, if not important, since logic of working
with revision numbers is still the same.

GraphCreation class is responsible for creation of vertices and edges in
the database. In this class were performed these changes:

• Revision end (tranEnd property) is set to the maximum minor revision

• Set previous and next revision nodes of the newly created revision node
and the revision root

According to the design from the previous chapter (section 3.1.4, every
created edge or vertex has its end revision newly set to the maximum minor
revision in its major revision. The maximum minor revision is revision with
revision number ”major.999999”.

96

4.1. Manta Flow server

Due to the new design of revision tree (section 3.1.5), every revision node
has saved in its properties numbers of its previous and next revision nodes
and revision root has saved in its properties numbers of the latest committed
and uncommitted revision number. Thus, when creating a new revision node,
these properties have to be set as well. See listing 4.1.

1 pub l i c s t a t i c Vertex createRevis ionNode (Vertex rev i s ionRoot ,
Double revNumber , Vertex prevRevNode , Vertex nextRevNode)
{

2 . . . // some more s t u f f
3 // s e t prev ious r e v i s i o n number
4 i f (prevRevNode == nu l l) {
5 newRevisionNode . se tProper ty (”prevRevNumber” , −1.0) ;
6 } e l s e {
7 newRevisionNode . se tProper ty (”prevRevNumber” ,

prevRevNode . getProperty (”revNumber”)) ;
8 prevRevNode . se tProper ty (”nextRevNumber” , revNumber) ;
9 }
10
11 // s e t next r e v i s i o n number
12 i f (nextRevNode == nu l l) {
13 newRevNode . se tProper ty (”nextRevNumber” , −1.0) ;
14 } e l s e {
15 newRevNode . se tProper ty (”prevRevNumber” , nextRevNode .

getProperty (”revNumber”)) ;
16 nextRev . se tProper ty (”prevRevNumber” , revNumber) ;
17 }
18
19 // s e t r e v i s i o n root
20 i f (isCommitted) {
21 rev i s i onRoot . s e tProper ty (”latestCommRevNumber” ,

revNumber) ;
22 } e l s e {
23 rev i s i onRoot . s e tProper ty (”latestUncommRevNumber” ,

revNumber) ;
24 }
25 }

Listing 4.1: Method createRevisionNode

GraphOperation is a class providing graph operations in database. In
this class were created three methods:

• setSubtreeTransactionEnd

• deleteSubtree

• performTransition

97

4. Implementation

Method setSubtreeTransactionEnd sets transaction end of a subtree.
This method is invoked during incremental update when a node has a special
flag indicating that its whole subtree has to be ”removed” before merging
proceeds (see section 3.2.2).

In this method, all vertices in the subtree (and their edges) valid in a spe-
cific (walk-through) revision have their end revision (tranEnd) set to a new
value (newTranEnd). Vertices and edges absent in the specified (walk-through)
revision are ignored. Subtree is specified by its root vertex and the traversal
is performed over the hasParent edges. See listing 4.2.

1 pub l i c s t a t i c void setSubtreeTranEnd (Vertex rootVertex ,
Double walkthroughRev , Double newTranEnd) {

2 Edge contro lEdge = getControlEdge (rootVertex) ;
3 Double t ranSta r t = contro lEdge . getProperty (” t ranSta r t ”) ;
4
5 i f (newTranEnd < t r anSta r t) {
6 de l e t eSubt r e e (rootVertex) ;
7 re turn ;
8 }
9
10 // r e c u r s i v e l y repeat f o r a l l d i r e c t ch i l d r en nodes
11 I t e r ab l e<Vertex> ch i l d r en = getD i r e c tCh i ld r en (rootVertex ,

walkthroughRev) ;
12 f o r (Vertex chi ldNode : ch i l d r en) {
13 setSubtreeTranEnd (childNode , walkthroughRev ,

newTranEnd) ;
14 }
15
16 // s e t tranEnd o f a l l the rootNode ’ s edges
17 I t e r ab l e<Edge> edges = getAdjacentEdges (rootVertex ,

D i r e c t i on .BOTH, walkthroughRev) ;
18 f o r (Edge edge : edges) {
19 Double edgeTranStart = edge . getProperty (” t ranSta r t ”) ;
20 i f (newTranEnd < edgeTranStart) {
21 i f (edge . getLabe l () . equa l s (” hasAttr ibute ”)) {
22 // d e l e t e node a t t r i b u t e
23 Vertex nodeAttr ibute = edge . getVertex (

D i r e c t i on . IN) ;
24 nodeAttr ibute . remove () ;
25 }
26 edge . remove () ;
27 cont inue ;
28 }
29 setEdgeTransactionEnd (edge , newTranEnd) ;
30 }
31 }

Listing 4.2: Method setSubtreeTransactionEnd

98

4.1. Manta Flow server

Notice, when the new end revision (newTranEnd) is less than the start
revision (tranStart), the edge or vertex is removed19. When performing up-
date, new revision has always the highest revision number and this case never
happens (newTranEnd is always greater than any tranStart).

However, when performing update in a system without version control
(there is one and only one revision 0.0, no new revision is ever created), then
the same method can be used for the incremental update.

Also notice, when a hasAttribute edge should be removed, first its target
vertex (node attribute) has to be removed first. Otherwise, the target node
attribute would be unreachable.

Method deleteSubtree deletes all vertices and edges regardless their re-
vision validity. This method performs the same traversal as method setSub-

treeTranEnd. The only difference is, it simply removes all nodes and vertices
without setting saving the history. As we already know, this method is used
when performing incremental update in a system without version control.

1 pub l i c s t a t i c void de l e t eSubt r e e (Vertex rootNode) {
2 I t e r ab l e<Vertex> ch i l d r en = getD i r e c tCh i ld r en (rootNode , ”

EVERY REVISION INTERVAL”) ;
3 f o r (Vertex chi ldNode : ch i l d r en) {
4 de l e t eSubt r e e (chi ldNode) ;
5 }
6
7 I t e r ab l e<Edge> edges = getAdjacentEdges (rootNode ,

D i r e c t i on .BOTH, ”EVERY REVISION INTERVAL”) ;
8 f o r (Edge edge : edges) {
9 i f (edge . getLabe l () . equa l s (” hasAttr ibute ”)) {
10 Vertex nodeAttr ibute = edge . getVertex (D i r e c t i on .

IN) ;
11 nodeAttr ibute . remove () ;
12 }
13 edge . remove () ;
14 }
15 rootNode . remove () ;
16 }

Listing 4.3: Method deleteSubtree

The third implemented method performTransition performs transition
from an old revision to a new revision in the whole repository. That means,
all nodes and edges in the main graph and in the source code graph have their
end revision (oldRev) set to a new end revision (newRev). See listing 4.4.

19In case of vertex its whole subtree is removed, see method deleteSubtree, listing 4.3

99

4. Implementation

1 pub l i c s t a t i c void per formTrans i t ion (Double oldRev , Double
newRev , TitanTransact ion t r an sa c t i on) {

2 Vertex superRoot = getRoot (t r an s a c t i on) ;
3 Vertex sourceRoot = getRoot (t r an s a c t i on) ;
4 setSubtreeTransact ionEnd (superRoot , oldRev , newRev) ;
5 setSubtreeTransact ionEnd (sourceRoot , oldRev , newRev) ;
6 }

Listing 4.4: Method performTransition

RevisionRootHandler is a class responsible for management of revision
tree. In this class were created new methods createMajorRevision and cre-

ateMinorRevision. These methods replaced the original method createRe-

vision, to clearly distinguish what type of next revision will be created.
Both of these methods create a new revision node. The only difference is

the way these methods generate next revision number. Method createMinor-

Revision adds 0.000001 to the latest revision and method createMajorRe-

vision uses next integer number.
Additionally, method createMinorRevision checks for the potential over-

flow. Thus, when a maximumminor revision is reached and new minor revision
creation is requested, a transition to the next major revision context has to be
performed first (see listing 4.4. After the transition is performed, incremental
update process proceeds unchanged.

Moreover, to ensure correct behavior, class BigDecimal is used for oper-
ations with floating point. For instance, when adding 0.000001 to another
decimal number when generating next minor revision number, BigDecimal is
used. See an example in help method getNextMinorRevNumber (listing 4.5).

1 /∗∗ Maximum s c a l e up to 6 decimal d i g i t s ∗/
2 In t eg e r SCALE = 6 ;
3 /∗∗ Rounding down when cut t i ng r e s t o f d i g i t s ∗/
4 RoundingMode ROUNDINGMODE = RoundingMode .DOWN;
5 /∗∗ The increment value f o r a next minor r e v i s i o n ∗/
6 BigDecimal MINOR REVISION DELTA = new BigDecimal (” 0 .000001 ”) .

s e t S c a l e (SCALE, ROUNDINGMODE) ;
7
8 p r i va t e Double getNextMinorRevNumber (Double

latestCommRevNumber , Double latestUncommRevNumber) {
9 . . .
10 BigDecimal latestCommRevBD = BigDecimal . valueOf (

latestCommRevNumber) . s e t S c a l e (SCALE, ROUNDINGMODE) ;
11 re turn latestCommRevBD . add (MINOR REVISION DELTA) .

doubleValue () ;
12 }

Listing 4.5: Method getNextMinorRevision

100

4.1. Manta Flow server

4.1.3 Merger

Merger Server Logic20 provides logic for advanced operations such as contrac-
tion, unification, interpolation, merging, edge propagation, view back links
creation, prune revisions, rollback revisions and others.

Some of these operations required minor changes due to the change of
revision logic. However, there were performed only two important changes in
these classes:

• StandardMergerProcessor (merging logic)

• OneFileDeleter and its private class ProcessPathTransactionCall-

back (delete logic)

StandardMergerProcessor is responsible for merging objects (vertices
and edges) to the metadata repository. It simply receives one vertex or edge
(together with its context, so it knows exactly where to merge the object)
and merges it to the graph.

According to the analysis and design, the only difference from merging
in full update is that some nodes may have additional flag indicating a spe-
cial operation has to be performed (see section 3.2.2). Hence in the method
processNode were added checks for these flags. See listing 4.6.

1 protec t ed ResultType processNode (S t r ing [] itemParameters ,
ProcessorContext context) {

2 // get node ’ s f l a g (i f any)
3 f l a g = itemParameters [NodeFormat .FLAG. getIndex ()] ;
4 // merging r e v i s i o n number
5 Double newRev = context . ge tRev i s i on () ;
6 // r e v i s i o n number ”major .999999”
7 Double newEndRev = getMaxMinorRevNumber (newRev) ;
8 // l a t e s t committed r e v i s i o n
9 Double latestComRev = getLatestCommRevNumber () ;
10 . . .
11 i f (f l a g . equa l s (” remove mysel f ”)) {
12 // remove node ’ s subt ree (i n c l ud ing t h i s node)
13 setSubtreeTranEnd (node , latestComRev , latestComRev) ;
14 } e l s e i f (f l a g . equa l s (”remove”) {
15 // remove node ’ s subt ree (i n c l ud ing t h i s node)
16 setSubtreeTranEnd (node , latestComRev , latestComRev) ;
17 // merge t h i s node back
18 setVertexTranEnd (node , newEndRev) ;

20Merger module is obtained in both client and server parts of Manta Flow. It consists
of multiple smaller logical units such as such as Model, Server Logic, Client, Server Service
or Server Titan. Changes were performed only in Merger Client and Merger Server

Logic. Merger Client will be explained in the context of Manta Flow Client (section 4.2).
Thus, in this section will be examined changes only in Merger Server Logic.

101

4. Implementation

19 } e l s e {
20 // no f l ag , only merge node (s e t i t s tranEnd)
21 setVertexTranEnd (node , newEndRev) ;
22 }
23 . . .
24 }

Listing 4.6: Method processNode

Notice that thanks to the usage of flags, incremental update is using
the same merging processor as full update. No other important changes were
performed in Merger module.

Additionally, in Merger Server Logic was created a new logic for deleting
vertices specified by their path. For this purpose was created a delete

package. The essential class in this package is class OneFileDeleter.

OneFileDeleter is responsible for deleting all vertices specified in an in-
put file. In this file each line represents path to a target to be deleted. Each
line is in format:

name/name/name/.../targetName[,type/type/type/.../targetType]

Thanks to this format it is possible to remove every node specified by its
parent nodes. Additionally, to avoid ambiguity, node types can be added as
well.

Oracle/ORCL/METADATA/DF_NODE

Oracle/ORCL/METADATA/removeSpecChars ,*/*/*/ Function

Teradata/db/table2/t2c1 ,Teradata/Database/Table/Column

Listing 4.7: Input file for deleting single vertices

For instance, in listing 4.7 are specified three vertices to be deleted. First
vertex DF NODE represents a table to be removed. Second vertex removeSpec-

Chars represents a function to be removed. Third vertex t2c1 represents
a column to be removed.

Notice, the second and the third vertex are specified also by their type (and
all their parent node’s as well). Moreover, a special character ’*’ (asterisk)
can be used to represent any type. This way, user can specify only types of
selected nodes.

Finally, logic of deleting vertices by their path is very simple. First,
the input file is parsed in class OneFileDeleter. Second, for each line is
called private class ProcessPathTransactionCallback. This class traverses
from super root up to the target vertex. Once the target vertex is reached,
the well-known method SetSubtreeTransactionEnd is called which removes
this vertex with its whole subtree. See the listing 4.8.

102

4.2. Manta Flow client

1 pub l i c OneDeleteResult cal lMe (TitanTransact ion t r an sa c t i on) {
2 Vertex parentVertex = getSuperRoot (t r an s a c t i on) ;
3 S t r ing parentName = ”superRoot ” ;
4 Vertex ch i ldVer t ex = nu l l ;
5 // walkthrough r e v i s i o n i n t e r v a l <rev , rev>
6 Rev i s i on In t e r va l r e v I n t e r v a l = new Rev i s i on In t e r va l (rev ,

rev) ;
7
8 f o r (i n t i = 0 ; i < names . l ength ; i++) {
9 St r ing childName = names [i] ;
10 Lis t<Vertex> ch i l d r en = getChildrenWithName (

parentVertex , childName , r e v I n t e r v a l) ;
11 ch i ldVer t ex = getChi ldVertex (ch i ld r en , parentName ,

childName , i) ;
12 parentName = childName ;
13 parentVertex = ch i ldVer tex ;
14 }
15 // l a s t c h i l d ver tex i s the t a r g e t ver tex to be de l e t ed
16 Vertex targe tVer tex = ch i ldVer tex ;
17 // d e l e t e ver tex by s e t t i n g i t to the prev ious r e v i s i o n
18 Double newEndRev = getPrev iousRev i s i on (rev) ;
19 setSubtreeTranEnd (targetVertex , rev , newEndRev) ;
20 }

Listing 4.8: ProcessPathTransactionCallback - callMe method

4.2 Manta Flow client

To build a fully functional prototype, input for the incremental update has to
be created first on the client side. Hence, also logic of the input creation and
sending it to the server had to be changed in Manta Flow client.

These changes were performed in the module Merger Client. In this
module these three new tasks were created:

• NodeFlagTask

• IncrementalDeleteTask

• DeleteVerticesTask

These tasks are invoked during the incremental update on client side, de-
pending on type of update (see section 3.4.2).

4.2.1 NodeFlagTask

NodeFlagTask is used during the process of creation of the input subgraph
representing new or modified scripts. Its purpose is to only add the ”re-
move” flag to all nodes specified by their type.

103

4. Implementation

NodeFlagTask iterates through all nodes in the generated input subgraph
(result of data flow analysis) and if the node is of a specified type, then a ”re-
move” flag is appended in form of a node attribute to this node.

Node attribute is created only temporarily for the purposes of correct input
creation. Before the input subgraph is sent to server, another class responsible
for creating the input CSV file, MergerWriter, reads the input subgraph and
if a node has node attribute containing flag, then this node attribute is ignored
and only this flag is written to the CSV file to the node that is to be flagged.

4.2.2 IncrementalDeleteTask

IncrementalDeleteTask is used during the process of creation of the input
subgraph representing removed scripts.

IncrementalDeleteTask creates a new graph containing only direct pre-
decessors of the specified nodes. Only necessary data (path to the node to
be removed) is sent. Additionally, it appends a flag ”remove myself ” to these
specified nodes, so these nodes are removed in the new revision, (including
the flagged node).

This is implemented in three steps:

1. Find all specified nodes and save their path (their list of direct prede-
cessors)

2. Clear the whole graph (remove all nodes and edges)

3. Create a new graph containing only nodes with their direct predecessors

• Append flag ”remove myself ” to the specified nodes (as a node
attribute)

Thus, the main difference between IncrementalDeleteTask and Node-

FlagTask is that IncrementalDeleteTask appends different type of flag and
the input subgraph consists only of direct predecessors of a node to be removed
(and this node of course).

On the other hand, inputs generated from both of these tasks can be pro-
cessed by the same merger processor (StandardMergerProcessor, see section
4.1.3, listing 4.6).

4.2.3 DeleteVerticesTask

DeleteVerticesTask only sends to server a file containing vertices to be de-
leted. This file is then processed by OneFileDeleter in Merger (see section
4.1.3, listing 4.8).

This task does not contain almost any logic. It simply sends a file to server
and waits for a response from server. Hence, all additional work such as file
format checking or line filtering is also done on server.

104

4.3. Summary

4.3 Summary

A prototype based on the design from previous chapter was successfully imple-
mented, including necessary modifications of existing unit tests and creation
of new unit tests.

Manta Flow newly allows update of changed scripts in the metadata re-
pository. New and modified scripts are analyzed and merged in the form
subgraphs to the metadata repository. Removed scripts can be either merged
to the repository in the form of subgraphs or removed directly by specifying
their path in the repository.

The whole incremental update process can be summed up into the follow-
ing steps:

1. Extraction phase (optional)

2. Create a new minor revision

3. Analytic phase - applied only on the selected (changed) scripts. De-
pending on type of change, following tasks are invoked during the input
creation:

• New or modified script - NodeFlagTask

• Removed script - IncrementalDeleteTask

4. Post-processing phase (optional)

5. Commit the new minor revision

Incremental update is currently limited by updating only the changed
scripts. Current implementation does not support update of database dic-
tionaries. However, result of the update may vary, depending on the type
of change in script. For instance, when a new table or a view is created21,
a new table or a view is created in the repository and correct data flows are
created as well. On the other hand, when a column is removed from a table
22, the removed column will be still present in the repository, although, it will
not be connected to the lineage (data flow to the table definition will no longer
exist).

We could identify multiple of such inconsistencies and these may also dif-
fer by technologies used or other processes included during the update (e.g.
whether a new database dictionary was extracted). To update these changes
properly, data flow analyzer (responsible for creation of the input subgraphs)

21Command "CREATE OR REPLACE TABLE/VIEW ..." is added to a DDL script and this
script is updated

22Command "ALTER TABLE table name DROP column name" is added into a DDL script
and this script is updated

105

4. Implementation

has to be customized for such changes. Therefore, the current implement-
ation of incremental update may produce specific changes in the metadata
repository and user has to be aware of such behavior.

106

Chapter 5

Performance Testing

Performance testing was performed, to test the the implemented incremental
update in Manta Flow and compare its expected effectiveness with the original
full update effectiveness. On top of that, we have also tested effectiveness
of script removal during incremental update using either a direct path to
the script root node or merging input subgraph representing the removed
script.

Testing was performed on a following configuration:

• Operation system - Windows 10 Pro (64 bit)

• Processor - Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz 2.70GHz

• RAM - 8 GB

• Manta Flow version - product version 1.20 / prototype (originating
from version 1.20)

5.1 Test cases

All of these test cases follow the same scenario:

1. Empty database (revision 0)

2. Create new PL/SQL scripts

3. Add these scripts to the database using full update (revision 1)

4. Change some scripts (at maximum 10 % of all scripts)

5. Perform full/incremental update (revision 2)

The only difference between these test cases is in the update from the first
revision to the second revision. Some cases perform full update and some
cases perform incremental update:

107

5. Performance Testing

Case 1 Full update integer

• Revision 1: Full update – add all scripts

• Revision 2: Full update – update all scripts

Case 2 Full update double

• Revision 1: Full update – add all scripts

• Revision 2: Full update – update all scripts

Case 3 Incremental update all

• Revision 1: Full update – add all scripts

• Revision 2: Incremental update - update all scripts

Case 4 Incremental update only changed

• Revision 1: Full update – add all scripts

• Revision 2: Incremental update – update only changed scripts

Case 5 Remove by graph

• Revision 1: Full update – add all scripts

• Revision 2: Incremental update – update removed scripts using
merging (IncrementalDeleteTask)

Case 6 Remove by path

• Revision 1: Full update – add all scripts

• Revision 2: Incremental update – update removed scripts using
path (DeleteVerticesTask)

In all test cases is always performed the same full update in the first
revision. Second update is different for each test case but the result is always
the same. Scripts that were created after first revision are present only in
the second revision and scripts removed after the first revision are absent in
the second revision. The only difference is the way the update is performed.

Test case 1 is testing full update on the Manta Flow version using integers
for revision numbers (the old version without incremental update). Test cases
2 – 6 are all tested on the new version using double data type for revision
numbers.

Test case 2 is testing the same full update as test case 1 but using the new
version (with doubles).

Test case 3 performs incremental update in the second revision but the in-
cremental update is applied on all scripts, including the unchanged scripts.

108

5.2. Test data

Test case 4 performs incremental update but on the input are only
the changed scripts.

Test cases 5 and 6 also perform only incremental update but all changed
scripts are removed. The only difference between test cases 5 and 6 is, what
method is used for script removal.

5.2 Test data

For performance testing were used only Oracle PL/SQL scripts, provided by
supervisor. Test cases 1 – 4 were run on three different sizes of data:

Scenario name #Scripts #Nodes + edges #Changed scripts

small 400 124 000 20

big 3 100 220 000 145

large 3 700 405 000 29

Table 5.1: Input data for test cases 1, 2, 3 and 4

Column Scripts stands for the number of scripts stored in database after
the first update. Nodes + edges column represents a total number of objects
in database after the first update. Notice, every script can be represented by
a different number of nodes and edges, depending on script’s complexity.

Changed scripts column stands for a number of scripts that were either
newly added or removed in the second revision. The number of changed scripts
was always chosen to be significantly smaller than the overall number of scripts
stored in the database. Also, changed scripts were chosen to be of a similar
complexity (so differences of update times of each script were similar).

Test cases 5 and 6 were run for a different size of input (2 000 scripts, 96 000
nodes + edges) and there were performed incremental updates to the second
revision removing three different numbers of scripts each time:

Scenario name #Scripts #Nodes + edges #Removed scripts

smallRemove 2 000 96 000 5

mediumRemove 2 000 96 000 25

largeRemove 2 000 96 000 125

Table 5.2: Input data for test cases 5 and 6

5.3 Measurement

All test cases from above were measured only for the time spent on updat-
ing the graph database on server (test cases 1-4 merge time, test cases 5
and 6 merge/delete time). In these tests were not included times necessary for

109

5. Performance Testing

extraction, data flow analysis, input creation, sending input to the server and
other processes connected with the whole update (edge propagation, backlinks
creation, pruning revisions, exporting etc.).

For each data size (small, big and large) were performed in each test case
5 runs. Hence, test cases 1-4 were run 5 times for the small input, 5 times for
the big and 5 times for the large input. Following table summarizes average
merge times of second update (second revision) for test cases 1-4:

Scenario name Case1 [ms] Case2 [ms] Case3 [ms] Case4 [ms]

small 78 930 89 870 100 095 1 918

big 197 771 218 181 244 790 13 453

large 373 503 379 400 399 525 2 790

Table 5.3: Average merge time of test cases 1, 2, 3 and 4

0

50 000

100 000

150 000

200 000

250 000

300 000

350 000

400 000

450 000

case 1 case 2 case 3 case 4

M
e

rg
e

 t
im

e
 [

m
s]

Merge time comparison

small big large

Figure 5.1: Merge time comparison of test cases 1, 2, 3 and 4

From table 5.3 and its visualization in figure 5.1 (and 5.2) are obvious
the following points:

1. Full update using Double (case 2) instead of Integer (case 1) is only
slightly slower. What more, the bigger the input, the smaller the impact
on merge time (small input is slower by 13 %, big input is slower by 10
%, large input is slower by 1%)

2. Performing incremental update as full update (case 3) is also only slightly
slower than the regular full update (case 2). Although, this ”dummy”
incremental update would be expected to be significantly slower than

110

5.3. Measurement

1

10

100

1 000

10 000

100 000

1 000 000

case 1 case 2 case 3 case 4

M
e

rg
e

 t
im

e
 [

m
s]

Merge time comparison (logarithmic scale)

small big large

Figure 5.2: Merge time comparison of test cases 1, 2, 3 and 4 in a logarithmic
scale

the same full update (since it is incrementally updating all scripts and
not only the changed ones) it is not (small input is slower by 11 %, big
input is slower by 12 %, large input is slower by 5 %). The reason is,
the additional operation invoked at every script in the database during
incremental update (setSubtreeTranEnd) does not actually delete ver-
tices and edges representing the script. It only sets values of tranEnd
properties and this operation is not significantly time-consuming.

3. Incremental update applied only on the changed scripts (case 4) is work-
ing exactly as expected. Its merge time is directly proportional to the size
of the changed scripts:

1918ms

13453ms

.
=

20scripts

145scripts

1918ms

2790ms
=

20scripts

29scripts

This is the most desired ability of incremental update, since it is inde-
pendent on the total volume of data present in the new revision.

The next table 5.4 captures time spent on deleting scripts from database
either by merging (case 5) or by specifying their path in database (case 6):

From table 5.4 and its visualization in figure 5.3 is obvious that:

1. Removing a small number of scripts (in this case less than 25) is faster
when using their direct paths (case 6)

2. Removing a higher number of scripts (in this case more than 25) is faster
when using merging mechanism (case 5)

111

5. Performance Testing

Scenario name Case 5 [ms] Case 6 [ms]

smallRemove 817 252

mediumRemove 1 463 1 325

largeRemove 4 255 6 522

Table 5.4: Average delete time of test cases 5 and 6

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

smallRemove mediumRemove bigRemove

D
e

le
te

ti

m
e

 [
m

s]

Delete time comparison

case 5 case 6

Figure 5.3: Delete time comparison of test cases 5 and 6

This is a natural behavior. Removing one script just by searching for its
root node (remove by path) is definitely faster than also applying the mer-
ging process before reaching this root node (see analysis of Object removal in
section 3.4.2).

However, when applying removal by path on 125 scripts, this process has
to be repeated 125 times. Hence, the scripts’ root nodes have to be located
125 times, each time starting traversal from super root. If all 125 scripts are
located in the same subtree in database, then a traversal up to their common
direct parent node is performed each times.

On the other hand, when all these 125 scripts are to be deleted by merge
and all are located in the same subtree in database, then the traversal to their
common direct parent node is performed only once23. Moreover, thanks to
the preparation on client’s side (IncrementalDeleteTask), only the direct
path to the script’s root node is created. Thus, no redundant merges are
performed during the merge-removal.

23The traversal is performed only once because the input subgraph created by dataflow
analyzer is a one complete subgraph containing all scripts’ common predecessors only once.

112

5.4. Summary

To sum it up, due to the redundant traversals, the removal by path is slower
than the removal by merge when a higher number of scripts from the same
location is to be removed. Nevertheless, this testing does not include the time
necessary for preparation of the input subgraph for the merge process, and
thus, the overall removal time may significantly vary in all three cases.

5.4 Summary

Performance testing proved expectations of the implemented incremental up-
date in Manta Flow. Incremental update merge time is directly proportional
to the size of the input (change size). Moreover, change of revision num-
ber data type from Integer to Double causes only a slight slowdown. Hence,
the implementation of incremental update does not exclude simultaneous us-
age of full updates with incremental updates. Therefore, the implementation
of incremental update in Manta Flow can be considered as successful and can
be deployed to the product version.

113

Conclusion

The goal of this thesis was to design and implement incremental updates of
data lineage storage in a graph database. New incremental update methods
have been successfully designed, implemented and tested. Performance testing
proved assumptions of the analysis. When using incremental update instead of
full update, the update time is directly proportional to the size of the change.
Thus, the update time is significantly decreased in case of updating minor
changes.

Moreover, performance testing also proved only a slight slowdown when
the same amount of data is updated by incremental update instead of full
update. This applies also for a large amount of data. Therefore, the imple-
mented incremental update can be deployed to the product version of Manta
Flow, and thus, significantly reducing time necessary for updating changes in
the data lineage storage.

Due to the nature of data processed by Manta Flow, the new incre-
mental update methods cannot be currently applied on all possible changes.
Moreover, inconsistencies may be brought to the data lineage storage, if in-
cremental update methods are not used correctly. Both of these issues can
be solved by performing an impact analysis on the changed data, followed
by creation of the correct input for the incremental update. The downside
of the impact analysis is that it may cause an equal, or even higher, time
complexity of the whole incremental update process rather than using only
a full update method. Therefore, follow-up to this work may include an ana-
lysis of a more suitable incremental update input creation process that would
eliminate the potential inconsistencies in a reasonable time.

115

Bibliography

[1] Holeček, P. Temporálńı data v grafové databázi v projektu Manta. Mas-
ter’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, 2015.

[2] Company – MANTA. Oct 2017, [Cited 2017-11-08]. Available from:
https://getmanta.com/company/

[3] Manta Flow. 2017, [Cited 2017-11-08]. Available from: https://

marketplace.informatica.com/solutions/manta flow

[4] Hermann, L. How To Inspect Raw Data Lineage With Manta Flow. Jan
2017, [Cited 2017-11-08]. Available from: https://getmanta.com/how-

to-inspect-raw-data-lineage-with-manta-flow/

[5] Manta Flow. [Cited 2017-11-08]. Available from: https:

//www.capterra.com/p/145178/Manta-Flow/

[6] Home. [Cited 2017-11-15]. Available from: http://

titan.thinkaurelius.com/wikidoc/0.4.4/Home.html

[7] Transaction Handling. [Cited 2017-11-15]. Available from:
http://titan.thinkaurelius.com/wikidoc/0.4.4/Transaction-

Handling.html

[8] Architectural Overview. [Cited 2017-11-15]. Available from: http://

s3.thinkaurelius.com/docs/titan/1.0.0/arch-overview.html

[9] LaRocque, D. Using Persistit. Apr 2014, [Cited 2017-11-15]. Avail-
able from: http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-

Persistit.html

[10] LaRocque, D. TinkerPop Graph Stack. Apr 2014, [Cited 2017-11-
15]. Available from: http://titan.thinkaurelius.com/wikidoc/0.4.4/
TinkerPop-Graph-Stack.html

117

https://getmanta.com/company/
https://marketplace.informatica.com/solutions/manta_flow
https://marketplace.informatica.com/solutions/manta_flow
https://getmanta.com/how-to-inspect-raw-data-lineage-with-manta-flow/
https://getmanta.com/how-to-inspect-raw-data-lineage-with-manta-flow/
https://www.capterra.com/p/145178/Manta-Flow/
https://www.capterra.com/p/145178/Manta-Flow/
http://titan.thinkaurelius.com/wikidoc/0.4.4/Home.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Home.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Transaction-Handling.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Transaction-Handling.html
http://s3.thinkaurelius.com/docs/titan/1.0.0/arch-overview.html
http://s3.thinkaurelius.com/docs/titan/1.0.0/arch-overview.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-Persistit.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-Persistit.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/TinkerPop-Graph-Stack.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/TinkerPop-Graph-Stack.html

Bibliography

[11] Blueprints interface. Apr 2014, [Cited 2017-11-15]. Available from:
http://titan.thinkaurelius.com/wikidoc/0.4.4/Blueprints-

Interface.html

[12] LaRocque, D. Titan Data Model. Apr 2014, [Cited 2017-11-15]. Available
from: http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-Data-

Model.html

[13] Chang, F.; Dean, J.; Ghemawat, S.; et al. Bigtable: A Dis-
tributed Storage System for Structured Data. 2006, [Cited 2017-11-
15]. Available from: https://static.googleusercontent.com/media/

research.google.com/en//archive/bigtable-osdi06.pdf

[14] Musso, J.-B. Defining a Property Graph. Jul 2016, [Cited 2017-11-
15]. Available from: https://github.com/tinkerpop/gremlin/wiki/

Defining-a-Property-Graph

[15] Kratochv́ıl, E. Vrstvy a interpolace hran. Apr 2017, [Cited 2017-11-20].
Available from: https://mantatools.atlassian.net/wiki/spaces/

MTT/pages/62652429/Vrstvy+a+interpolace+hran

[16] LaRocque, D. Indexing Backend Overview. Apr 2014, [Cited 2017-11-
15]. Available from: http://titan.thinkaurelius.com/wikidoc/0.4.4/
Indexing-Backend-Overview.html

[17] LaRocque, D. Type Definition Overview. Apr 2014, [Cited 2017-11-
15]. Available from: http://titan.thinkaurelius.com/wikidoc/0.4.4/
Type-Definition-Overview.html

[18] LaRocque, D. Using Lucene. Apr 2014, [Cited 2017-11-15]. Avail-
able from: http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-

Lucene.htmls

[19] LaRocque, D. Vertex Centric Indices. Apr 2014, [Cited 2017-11-15]. Avail-
able from: http://titan.thinkaurelius.com/wikidoc/0.4.4/Vertex-

Centric-Indices.html

[20] Collins-Sussman, B.; Fitzpatrick, B. W.; Pilato, C. M. Version Control
Basics. 2011, [Cited 2017-12-07]. Available from: http://svnbook.red-

bean.com/en/1.7/svn.basic.version-control-basics.html

[21] Collins-Sussman, B.; Fitzpatrick, B. W.; Pilato, C. M. Version Control
the Subversion Way. 2011, [Cited 2017-12-07]. Available from: http:

//svnbook.red-bean.com/en/1.7/svn.basic.in-action.html

[22] Collins-Sussman, B.; Fitzpatrick, B. W.; Pilato, C. M. Basic Work
Cycle. 2011, [Cited 2017-12-07]. Available from: http://svnbook.red-

bean.com/en/1.7/svn.tour.cycle.html

118

http://titan.thinkaurelius.com/wikidoc/0.4.4/Blueprints-Interface.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Blueprints-Interface.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-Data-Model.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-Data-Model.html
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph
https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph
https://mantatools.atlassian.net/wiki/spaces/MTT/pages/62652429/Vrstvy+a+interpolace+hran
https://mantatools.atlassian.net/wiki/spaces/MTT/pages/62652429/Vrstvy+a+interpolace+hran
http://titan.thinkaurelius.com/wikidoc/0.4.4/Indexing-Backend-Overview.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Indexing-Backend-Overview.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Type-Definition-Overview.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Type-Definition-Overview.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-Lucene.htmls
http://titan.thinkaurelius.com/wikidoc/0.4.4/Using-Lucene.htmls
http://titan.thinkaurelius.com/wikidoc/0.4.4/Vertex-Centric-Indices.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Vertex-Centric-Indices.html
http://svnbook.red-bean.com/en/1.7/svn.basic.version-control-basics.html
http://svnbook.red-bean.com/en/1.7/svn.basic.version-control-basics.html
http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html
http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html
http://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html
http://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html

Bibliography

[23] Subversion Design. 2002, [Cited 2017-12-07]. Available from:
https://svn.apache.org/repos/asf/subversion/trunk/notes/

subversion-design.html

[24] WC-NG Nodes. 2002, [Cited 2017-12-07]. Available from: https://

svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/nodes

[25] WC-NG Design. 2002, [Cited 2017-12-07]. Available from: https://

svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/design

[26] What is Subversion’s WC-NG? April 2010, [Cited 2017-12-07]. Available
from: http://prng.blogspot.cz/2010/04/what-is-subversions-wc-

ng.html

[27] Collins-Sussman, B.; Fitzpatrick, B. W.; Pilato, C. M. Strategies for
Repository Deployment. 2011, [Cited 2017-12-07]. Available from: http:
//svnbook.red-bean.com/en/1.7/svn.reposadmin.planning.html

[28] Repository. March 2013, [Cited 2017-12-14]. Available from: https://

www.mercurial-scm.org/wiki/Repository

[29] Buehlmann, A. CVS Concepts. November 2012, [Cited 2017-12-14]. Avail-
able from: https://www.mercurial-scm.org/wiki/CvsConcepts

[30] O’Sullivan, B. Behind the scenes. [Cited 2017-12-14]. Available from:
http://hgbook.red-bean.com/read/behind-the-scenes.html

[31] Bruna, W. Revlog. February 2012, [Cited 2017-12-14]. Available from:
https://www.mercurial-scm.org/wiki/Revlog

[32] Bullock, K. RevlogNG. March 2015, [Cited 2017-12-14]. Available from:
https://www.mercurial-scm.org/wiki/RevlogNG

[33] Lippincott, K. Nodeids. December 2015, [Cited 2017-12-14]. Available
from: https://www.mercurial-scm.org/wiki/Nodeid

[34] Jagula, M. Design. October 2013, [Cited 2017-12-14]. Available from:
https://www.mercurial-scm.org/wiki/Design

[35] Changeset. January 2017, [Cited 2017-12-14]. Available from: https:

//www.mercurial-scm.org/wiki/ChangeSet

[36] Incremental backup and restore. [Cited 2017-12-14]. Available from:
https://developer.couchbase.com/documentation/server/3.x/

admin/Tasks/tasks-backup-restore-incremental.html

[37] Fechtner, T.; Toušek, J. Manta Flow Client Architec-
ture. Dec 2017, [Cited 2017-11-20]. Available from: https:

//mantatools.atlassian.net/wiki/spaces/MTKB/pages/8650854/

Manta+Flow+Client+Architecture

119

https://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html
https://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html
https://svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/nodes
https://svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/nodes
https://svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/design
https://svn.apache.org/repos/asf/subversion/trunk/notes/wc-ng/design
http://prng.blogspot.cz/2010/04/what-is-subversions-wc-ng.html
http://prng.blogspot.cz/2010/04/what-is-subversions-wc-ng.html
http://svnbook.red-bean.com/en/1.7/svn.reposadmin.planning.html
http://svnbook.red-bean.com/en/1.7/svn.reposadmin.planning.html
https://www.mercurial-scm.org/wiki/Repository
https://www.mercurial-scm.org/wiki/Repository
https://www.mercurial-scm.org/wiki/CvsConcepts
http://hgbook.red-bean.com/read/behind-the-scenes.html
https://www.mercurial-scm.org/wiki/Revlog
https://www.mercurial-scm.org/wiki/RevlogNG
https://www.mercurial-scm.org/wiki/Nodeid
https://www.mercurial-scm.org/wiki/Design
https://www.mercurial-scm.org/wiki/ChangeSet
https://www.mercurial-scm.org/wiki/ChangeSet
https://developer.couchbase.com/documentation/server/3.x/admin/Tasks/tasks-backup-restore-incremental.html
https://developer.couchbase.com/documentation/server/3.x/admin/Tasks/tasks-backup-restore-incremental.html
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/8650854/Manta+Flow+Client+Architecture
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/8650854/Manta+Flow+Client+Architecture
https://mantatools.atlassian.net/wiki/spaces/MTKB/pages/8650854/Manta+Flow+Client+Architecture

Bibliography

[38] LaRocque, D. Titan Limitations. Apr 2014, [Cited 2017-11-20]. Avail-
able from: http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-

Limitations.html

120

http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-Limitations.html
http://titan.thinkaurelius.com/wikidoc/0.4.4/Titan-Limitations.html

Appendix A

Acronyms

JVM Java virtual machine

SQL Structured Query Language

CSV Comma-separated values

PLSQL Procedural Language/Structured Query Language

SVN Apache Subversion

VCS Version control system

CVCS Centralized version control system

DVCS Distributed version control system

121

Appendix B

Contents of enclosed CD

src....................................... implementation source codes
thesisLATEX source codes of the thesis

graphs.................................XML source codes of graphs
images..images used in thesis

testing performance testing directory
DP Sykora Jan 2017.pdf.....................thesis text in PDF format
readme.txt...........................file with CD contents description

123

	Introduction
	Background
	Manta Flow
	Graph database Titan
	Data model in Manta Flow
	Determination of a node's resource
	Graph structure
	Graph creation
	Source code files
	Interpolation
	Indexing
	Version control
	Analysis of the current implementation
	Summary

	Related work and inspiration
	Subversion
	Mercurial
	Incremental backups in databases
	Observation

	Analysis and Design
	Revision data representation
	Update
	Input
	Customization
	Summary

	Implementation
	Manta Flow server
	Manta Flow client
	Summary

	Performance Testing
	Test cases
	Test data
	Measurement
	Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

