
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 7, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Reliable characterization of the existence of solutions of parametric systems of equations

 Student: Bc. Libor Vytlačil

 Supervisor: doc. Dipl.-Ing. Dr. techn. Stefan Ratschan

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2017/18

Instructions

The goal is to develop an algorithm and software to characterize the set of points p for which there is a real-
valued solution x to a parametric system of equations F(p, x)=0. The algorithm should be based on floating-
point arithmetic and robust wrt rounding errors.

1) Manually compute a few examples applying a solution existence test to systems of non-linear equations
based on the topological degree [1].
2) Design an algorithm for the characterization of the existence of solutions of parametric systems of
equations. To this end, combine the existence test with an algorithm for computing a sub-paving (i.e.,
decomposition into Cartesian products of intervals) of the parameter space [3].
3) Implement the resulting algorithm together with a user interface.
4) Test the implementation, e.g., based on systems of equations formed by intersections of ellipsoids and
hyper-surfaces.
5) Document the results.

References

[1] Peter Franek, and Stefan Ratschan: Effective Topological Degree Computation Based on Interval Arithmetic,
Mathematics of Computation, Volume 84, 2015, pp. 1265-1290.
[2] Peter Franek, Stefan Ratschan, and Piotr Zgliczynski: Quasi-decidability of a Fragment of the First-order Theory of
Real Numbers. Journal of Automated Reasoning, Volume 72, 2016, pp. 157-185.
[3] Luc Jaulin et. al.: Applied Interval Analysis, Springer, 2001.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Reliable characterization of the existence

of solutions of parametric systems of

equations

Bc. Libor Vytlačil

Supervisor: doc. Dipl.-Ing. Dr. techn. Stefan Ratschan

14th February 2018

Acknowledgements

I would like to thank my supervisor doc. Dipl. Ing. Dr. techn. Stefan Ratschan
for helpful consultations, his guidance and all the advice he offered me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 14th February 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Libor Vytlačil. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vytlačil, Libor. Reliable characterization of the existence of solutions of para-
metric systems of equations. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2018.

Abstrakt

Tato práce se zabývá charakterizací množin bodů p ∈ P , pro které exis-
tuje reálné řešení x dané parametrické soustavy rovnic fP (x, p) = 0, kde
fP : X ⊆ Rn → Rn je spojitá funkce zapsaná ve formě aritmetických výrazů
a X je box (součin uzavřených reálných intervalů).

Je navržen a implementován algoritmus typu branch and bound založený
na intervalové aritmetice a testu existence řešení pomocí Brouwerova topolo-
gického stupně. Implementace umožňuje několik způsobů manipulace s domé-
nou X a další parametrizace své činnosti. Intervalová aritmetika slouží jednak
k výpočtu odhadů obrazů funkcí, jednak k zajištění robustnosti vzhledem k za-
okrouhlovacím chybám. Implementace je poskytnuta v podobě samostatné
aplikace včetně uživatelského rozhraní (textového i grafického).

Na základě výsledků experimentů, které jsou uloženy ve formě skriptů
pro snadnou reprodukovatelnost, je naše implementace schopna produkovat
kvalitní výsledky a skončit v rozumném čase pro různorodé nelineární soustavy
až o třech rovnicích, které mohou obsahovat kombinace elementárních funkcí
jako exp, log, sin, cos, arcsin, arccos, n-tá odmocnina,

Přispíváme také k dosavadní práci týkající se praktického počítání topolo-
gického stupně popisem a použitím vlastní spolehlivé metody pro stanovení,
zda pro libovolné boxy X ′ ⊆ X, P ′ ⊆ P je definován stupeň deg(fp, X ′, 0) a
má pro každý parametr p ∈ P ′ stejnou hodnotu.

Klíčová slova intervalová aritmetika, topologický stupeň, existence kořene,
soustava nelineárních rovnic, dekompozice prostoru parametrů, Gaol, branch
and bound

ix

Abstract

This thesis deals with the problem of characterizing the sets of points p ∈ P ,
for which there exists a real-valued solution x to a given parametric system
of equations fP (x, p) = 0, where fP : X ⊆ Rn → Rn is a continuous function
formed by arithmetical expressions and X is a box (product of closed real
intervals).

A branch and bound like algorithm based on interval arithmetics and a
solution existence test using Brouwer’s topological degree is designed and im-
plemented. It allows several ways of manipulating the domain X and further
parametrization of its operation. Interval arithmetics is used for computing
estimates of function images, as well as for providing robustness with respect
to rounding errors. The implementation is provided in a form of self-contained
application including a user interface (both text-based and graphical).

Based on results of the experiments, that are stored in scripts for an easy
reproducibility, our implementation is capable of producing quality results
and terminate in reasonable time for various non-linear systems up to three
equations, possibly containing combinations of elementary functions like exp,
log, sin, cos, arcsin, arccos, n-th root,

We also enhance previous work related to the practical computation of
the topological degree by describing and using a custom sound method of
determining, if for arbitrary boxes X ′ ⊆ X, P ′ ⊆ P , the degree deg(fp, X ′, 0)
is defined and has the same value for every p ∈ P ′.

Keywords interval arithmetics, topological degree, root existence, system
of non-linear equations, parameter space decomposition, Gaol, branch and
bound

x

Contents

Introduction 1

Thesis goals . 1
Thesis structure . 2

1 Theoretical background 3

1.1 Floating point numbers . 3
1.2 Real intervals and boxes . 7
1.3 Interval arithmetic . 8
1.4 Topological properties of boxes 14
1.5 Topological degree . 17

2 Computing the topological degree 23

2.1 Overview . 23
2.2 The numerical phase . 24
2.3 The combinatorial phase . 30
2.4 Parametrized functions . 37
2.5 Reasons for providing a custom implementation 38

3 Developing the solving algorithm 41

3.1 Problem formulation . 41
3.2 Basic approach and decisions 42
3.3 Manipulating the input domain box to infer the existence of a

root . 44
3.4 The frame data structure . 46
3.5 Workflow of the parameter space decomposition using frames . 51
3.6 Static frames . 53
3.7 Bisect-only frames . 56
3.8 Bisect-and-keep frames . 58
3.9 Frames based on trees . 62
3.10 Frames based on grids . 65

xi

4 Choosing tools for implementation 77

4.1 Programming language used for the implementation 77
4.2 Interval arithmetic . 77
4.3 User interface . 79
4.4 Unit testing . 80

5 Application design and implementation 81

5.1 Intervals and boxes . 81
5.2 Sign vectors and sign coverings 84
5.3 Combinatorial phase of the topological degree computation . . 85
5.4 Representation of interval inclusion functions 86
5.5 Interpretation of interval inclusion functions 89
5.6 Frames and the parameter space decomposition 91

6 Testing and experimental evaluation 95

6.1 Testing environment . 95
6.2 Unit Testing . 96
6.3 Topological degree computation 97
6.4 Interpretation strategies . 100
6.5 The main algorithm . 101

Conclusion 109

Bibliography 111

A Compiling and running the implementation 115

A.1 List of executables . 115
A.2 Description of the provided GUI 116

B Acronyms 119

C Contents of enclosed CD 121

xii

List of Figures

1.1 Floating point numbers on the real axis. 4

1.2 Relationship between the directed rounding modes. 14

1.3 Boxes, faces and pavings. 15

1.4 Oriented cubical set and its boundary. 17

1.5 Visualisation of winding numbers. 19

1.6 Closed curves splitting the plane into distinct areas. 19

2.1 First example of a sufficient sign covering. 26

2.2 Second example of a sufficient sign covering. 27

2.3 Third example of a sufficient sign covering. 27

2.4 Adjusted workflow of the algorithm for computing the topological
degree. 28

2.5 Bisection of a box in the bounds set. 33

2.6 Demonstration of the combinatorial phase, the first example. . . . 34

2.7 Demonstration of the combinatorial phase, the second example. . . 35

3.1 Approximation of areas of non-rectangular shapes by boxes. 42

3.2 Manipulating the domain box to infer the existence of a root. . . . 45

3.3 Sample depiction of the core property (3.7) for frames. 47

3.4 Informal sketch of the intended interaction between the methods
manipulating frames. 48

3.5 Visual support for discussing frPrune corectness. 56

3.6 Sample life cycle of a bisect-and-keep frame. 59

3.7 Forward and backward prunings in tree frames. 63

3.8 Sample depiction of the grid of a grid frame. 67

3.9 Joining of two boxes in the grid into an oriented cubical set. 67

3.10 Edges in a grid of a grid frame. 68

3.11 Edge categories in the grid of a grid frame 69

3.12 Bisection of a box in the grid of a grid frame. 71

3.13 Example of joining of boxes in the grid. 73

xiii

3.14 Sign covering constructed during the joining in the grid. 76

5.1 AST for a sample function expression and its linearization. 89
5.2 AST with the bit-string information for a sample function. 91

A.1 GUI for our implemented solver. 116

xiv

List of Tables

1.1 Mapping of binary strings to floating point numbers. 5

3.1 Contract of functions retrieving properties of frames. 47
3.2 Contract of functions manipulating frames. 49
3.3 Possible actions taken when manipulating a box in the bisect-and-

keep frame’s item collection. 59

6.1 Execution times of the topological degree computation. 99
6.2 Max. resident set size during the topological degree computation. . 99
6.3 Execution times of sign covering computations executed with dif-

ferent interpretation strategies. 101
6.4 Relevant parameters for experiments involving our main algorithm. 105
6.5 The quality, time and max. resident set size for the main solving

algorithm. 106
6.6 The quality of the main solving algorithm for tree frames with

various capacity. 107
6.7 The quality of the main solving algorithm for grid frames with

various capacity. 107

xv

Introduction

Thesis goals

In engineering practice, there often occur systems of equations containing un-
certain parameters. It is then desirable to focus specifically on those parameter
values, for which the system has a solution. This requires a method, that can
explore the parameter space and localize such values.

In the scope of this thesis, we focus on designing, implementing and ex-
perimentally evaluating an algorithm, that allows characterizing points p of
such parameter space P . We consider the input equation system to be of the
form fP (x, p) = 0, where fP : X ⊆ Rn → Rn is a continuous function formed
by arithmetic expressions (generally non-linear) and X is a box (i.e. cartesian
product of closed real intervals).

Our aim is to provide an implementation based on floating point arith-
metic and ensure its robustness with respect to rounding errors by designing
the algorithm’s computations to make use of interval arithmetic. The use of
interval arithmetic also allows us to easily obtain sound estimates of function
images.

We should identify the pieces of the algorithm that are likely to have the
most influence on the solution quality, and allow them to be parametrized or
specialized in specific manners. We want to accompany the implementation
with a user interface, preferably with some option of visualizing results.

An important part of our algorithm is a solution existence test, that should
be carried out using the properties of Brouwer’s topological degree [1, Chap. 1].
To compute the topological degree, we want to make use of an existing al-
gorithm described in [2]. But its application to our problem domain is not
fully direct, mainly because we typically need to start the degree computation
without actually knowing, whether the degree is defined for the given input.
In addition, because the input function is parametrized, we are actually look-
ing for the degree with respect to a whole set of functions. We therefore focus
on adjusting the flow of [2] to suite our needs. It is mainly for this reason, that

1

Introduction

we also aim to provide our custom implementation of [2] (the other important
point is, that we want it to use the same libraries and frameworks as the rest
of our implementation).

In the end, we seek to test the correctness of our implementation and write
a series of reproducible experiments to test its performance.

Thesis structure

Chapter 1 provides the theoretical background related to the solved problem,
focusing mostly on interval arithmetic and topological properties of boxes.

Chapter 2 follows with describing the used algorithm for computing the
topological degree [2], supplied by several by-hand computed examples. There,
we also show how to adjust its flow to suit our needs and discuss its usage
with parametrized functions in a way we came up with.

Chapter 3 is dedicated to the development of our solving algorithm. We
start with general ideas followed by formulating its general workflow. After
that, possible specialization of its core components, that we designed, are
discussed in detail.

Chapter 4 and 5 are aimed at highlighting the relevant points regarding
the design and implementation of our application, that encapsulates our main
algorithm. The former presents the tools and code libraries we decided to use,
the latter talks about the design choices and implementation ideas.

Chapter 6 presents the results of our experimental evaluation and describes
the way we tested correctness of certain parts of our whole implementation.

In Appendix A, we explain how to run and use our provided GUI.

2

Chapter 1

Theoretical background

This chapter introduces notions used in the rest of the next. They are related
mainly to interval arithmetic, intervals, boxes and their properties, and the
topological degree. Newly introduced terms are typeset in italics. We also
provide several by-hand computed examples to better explain some of the
ideas and concepts.

1.1 Floating point numbers

Floating point numbers provide a way to represent finite subsets of rational
numbers. They can be expressed in the following notation

(−1)s ·m · βe,

with integer base β ≥ 2, fixed length significand m, fixed length integer expo-
nent e and sign s ∈ {0, 1}. If the base β is given, such numbers can be simply
written as triplets (s, m, e), [3, pp. 13–14].

Floating point numbers representation in computer environments is stand-
ardized by IEEE 754 technical standard [4], which specifies their possible
decimal and binary formats, arithmetic, interchange encodings, exceptions
and their handling, and more.

Given a precision p and an exponent length in bits w, binary formats are
encoded as bit strings consisting of three parts.

• Sign bit S.

• Sequence of bits E = E1E2 . . . Ew, called biased exponent.

• Sequence of bits M = M1M2 . . . Mp−1, called trailing significand.

3

1. Theoretical background

If we define bias b = 2w−1−1, most of the triplets (S, M, E) are then uniquely
mapped to x = (s, m, e) in the following manner.1,2

• If 0 < |E| < 2w − 1∧M 6= 0, then normal number x = (−1)S · (1 +M) ·
2|E|−b is represented.

• If |E| = 0∧M 6= 0, then subnormal number x = (−1)S · (0+M) · 2−b+1

is expressed.

The rest of the bit strings are reserved to represent special values.

• Triplets with E = 0 ∧M = 0 represent +0 for S = 0 and −0 for S = 1.

• Triplets with E = 2w − 1 ∧M = 0 represent +∞ for S = 0 and −∞ for
S = 1.

• Triplets with E = 2w − 1 ∧M 6= 0 represent values called NaNs (not a
number).

Example 1.1. Consider a set F of binary floating-point numbers in the format
given by p = 2, w = 3. The exponent bias is b = 2w−1 − 1 = 3. Apart from
±0,±∞ and NaNs, the set F contains following positive normal numbers

{1
4

,
3

8
,
1

2
,
3

4
, 1,

3

2
, 2, 3, 4, 6, 8, 12},

their negative counterparts and two subnormal numbers −1
8 , 1

8 . Some of these
numbers are depicted in Figure 1.1. Table 1.1 also shows corresponding binary
strings (S, M, E) for several numbers.

0
1
4

3
8

1
2

3
4 1

3
2 2 4 6−1

4

−3
8

Figure 1.1: Floating point numbers on the real axis. (Example 1.1).

One of the advantages of floating-point representation lies in its universal-
ity. The format’s precision is given, but it is up to us how we want to spend
it, i.e. on working with small numbers with small absolute roundoff errors or
on bigger numbers with bigger absolute roundoff errors.

1Notice how the first binary digit of m is determined by the value of E and thus does

not need to be stored. This shows why M is referred to as trailing significand and that only

p − 1 bits are needed to store p-bit precision.
2Storing e biased as E = e + b is done so that both positive and non positive values of

e can be stored without the need of using a signed integer representation for E.

4

1.1. Floating point numbers

S M E s m e (−1)s ·m · 2e

0 0 001 0 1.0 −2 1
4

0 0 011 0 1.0 0 1

0 1 011 0 1.1 0 3
2

1 1 100 1 1.1 1 −3
0 1 000 0 0.1 −2 1

8

Table 1.1: Mapping of binary strings (S, M, E) to floating point numbers from
Example 1.1.

1.1.1 Rounding

When performing an operation with floating-point numbers from a given set F ,
its exact result may not belong to F and needs to be rounded, i.e. substituted
by a member of F . A way of selecting such member is called a rounding mode.
We can think of rounding modes as functions R→ F . Four common rounding
modes, based on IEEE 754 [4] specification, are:

• Rounding down (toward −∞); δ(x) = max{y ∈ F ; y ≤ x}.

• Rounding up (toward +∞); ∆(x) = min{y ∈ F ; y ≥ x}.

• Rounding toward zero; σ(x) = δ(x) for x ≥ 0 and σ(x) = ∆(x) other-
wise.

• Rounding to nearest even; ϕ(x) is the floating-point number closest to
x. If two floating-point numbers are equally close to x, the one whose
representation has even trailing significand (i.e. its LSB is 0) is chosen.

Example 1.2. Consider the set F of floating-point numbers from the Ex-
ample 1.1. Then δ(1

2 + 3
8) = δ(7

8) =
3
4 , ∆(7

8) = 1 and σ(7
8) =

3
4 . Number 7

8 is
equally distant from 3

4 and 1, therefore ϕ(7
8) = 1, because 1 has even trailing

significand (see Figure 1.1).
Similarly, δ(−1− 3

8) = δ(−11
8) = −3

2 , ∆(−11
8) = −1, σ(−11

8) = −1. Closest
number to ϕ(−11

8) from F is −3
2 and so ϕ(−11

8) = −3
2 .

The rounding modes ∆ and δ are called directed rounding modes. They
are typically used for implementing sound interval arithmetic. As [3, Sec. 3.5]
explains, a rounding mode is typically specified globally for all subsequent
floating-point instructions via a control register. Setting it to a different value
requires carrying out extra instructions and causes the floating-point pipeline
to flush.

Directed rounding modes can also be mimicked programmatically to a
certain extent, by computing successors and predecessors of floating-point
numbers via bit manipulation, see [5, p. 3–4].

5

1. Theoretical background

Example 1.3. In C language (assuming C99 support), one possibility of ex-
plicitly switching rounding modes is via the floating-point environment, by
including the <fenv.h> header, see [6]. Current rounding mode can be re-
trieved via fegetround, and can be switched via fesetround. Consider the
following sample code.

#include <fenv . h>
#include <s td i o . h>
#pragma STDC FENV_ACCESS ON

int main () {
const int or ig ina lRounding = feget round () ;
f loat c = 0 . 1 ;

f e s e t round (FE_UPWARD) ;
int i ;
f loat d1 = 0 . 0 ;
for (i = 0 ; i < 2000 ; ++i) {

d1 += c ;
}

f e s e t round (FE_DOWNWARD) ;
f loat d2 = 0 . 0 ;
for (i = 0 ; i < 2000 ; ++i) {

d2 += c ;
}

p r i n t f (" d1␣=␣%f \n" , d1) ;
p r i n t f (" d2␣=␣%f \n" , d2) ;

f e s e t round (or ig ina lRounding) ;
return 0 ;
}

Compiling this code on Ubuntu 16.04.3 using gcc 5.4.1 with flags -O2

-std=c99 -lm, we obtain the output

d1 = 200.009155
d2 = 199.991653

Also, when disassembling the resulting object file, we find out, that calls to
fesetround and fegetround are not inlined, see below.

00000000004005b0 <main>:
4005b0 : 53 push %rbx
4005b1 : 48 83 ec 10 sub $0x10 ,%rsp

6

1.2. Real intervals and boxes

4005b5 : e8 b6 f f f f f f c a l l q 400570 <fegetround@plt>
4005ba : bf 00 08 00 00 mov $0x800 ,% ed i
4005 bf : 89 c3 mov %eax ,%ebx
4005 c1 : e8 9a f f f f f f c a l l q 400560 <fesetround@plt>
4005 c6 : 66 0 f e f c0 pxor %xmm0,%xmm0
4005 ca : b8 d0 07 00 00 mov $0x7d0 ,%eax
. . .

This implies, that this way of rounding mode accessing causes extra overhead
associated with performing function calls.

1.2 Real intervals and boxes

In this section, we define real intervals, boxes and interval functions. Chosen
notations listed in this section are mostly based on [7] and [8].

Closed real intervals are sets of the form

I = [x, x] = {y ∈ R |x ≤ y ≤ x}. (1.1)

We refer to them simply as intervals through the rest of the text and denote
the set of all intervals by I(R). Elements x, x are called endpoints of X and if
x = x, then X is a degenerated interval and we may denote it by [x] instead
of [x, x]

A generalization of an interval is a box in Rn, which we define for n ≥ 0
as

X = I1 × I2 × · · · × In, Ii ∈ I(R) (1.2)

and denote the set of all boxes in Rn by I(Rn). Interval Ii is the i-th component
of X and an endpoint of X is any endpoint of its components. Every interval
itself is a box in R1 and vice versa, i.e. I(R) = I(R1).

We also make a use of the notion of width defined respectively for an
interval I = [x, x] and a box X = I1 × · · · × In as

ω(I) = ω([x, x]) = x− x, (1.3)

ω(X) = max
i
{ω(Ii)}. (1.4)

1.2.1 Interval functions

Any function F : I(Rn)→ I(Rm) is called an interval function. The image of
a given box X ∈ I(Rn) under F is simply denoted by F (X). In addition, for
a point x = (x1, . . . , xn) in Rn, we assign the meaning of the notion F (x) to
be the same as for F ([x1]× · · · × [xn]).

We are interested in the following three properties interval functions can
have. F is said to be inclusion monotonic, if

∀X, Y ∈ I(Rn). X ⊆ Y =⇒ F (X) ⊆ F (Y), (1.5)

7

1. Theoretical background

and it is called an interval extension of function f : D ⊆ Rn → Rm, if

∀x ∈ D. f(x) = F (x). (1.6)

F is further said to be convergent on D ⊆ Rn, if for every sequence of boxes
Xk from D,

lim
k→+∞

ω(Xk) = 0 =⇒ lim
k→+∞

ω(F (Xk)) = 0. (1.7)

1.3 Interval arithmetic

Interval arithmetic is a system of computation with intervals and boxes via
interval functions designed to provide a way of reliable numerical calculation.
Inputs are packed into boxes, that bound possible input uncertainities, and
all functions used during computation are defined, so that the resulting box
is guaranteed to contain the exact punctual value of the result.

For our purposes, we like to look at interval arithmetic as a system, that
extends every function f of the form f : D → Rm, D ⊆ Rn, from the given set
of functions Ω, to an interval function F : I(Rn)→ I(Rm), while ensuring the
inclusion property

∀X. X ∈ I(Rn) =⇒ F (X) ⊇ f(X ∩D). (1.8)

A function F with this property is called an inclusion function of f .
It makes the most practical sense, when Ω contains standard real arith-

metic operations +,−, ∗, / and real elementary functions, and when their in-
clusion functions are both

• as tight as possible, i.e. they do not overestimate f(X ∩D) much,

• operational, which informally means that images F (X) can be computed
in a finite, bounded number of steps using functions from Ω.

Apart from the reliable way of numerical computations, inclusion functions
are then used to perform a reliable test, that a point x ∈ Rn does not belong
to the image f(X) of a given X ⊆ D, using the fact that

x /∈ F (X) =⇒ x /∈ f(X). (1.9)

It is sufficient for an interval function F to be an inclusion function of
a punctual function f , if properties (1.5) and (1.6) are satisfied for F and
f , see [8, p. 47]. This is also called The fundamental theorem of interval
arithmetic.

The property (1.6) lets us view the interval computation as a true extension
to punctual computations in the sense, that we do not need to make difference
between computing with points from Rn and degenerated intervals from I(Rn).

8

1.3. Interval arithmetic

Property (1.5) in combination with (1.7) is important for iterative meth-
ods, that start off with some box X, and keep splitting it into smaller boxes and
evaluating them, in order to prove some property of the original box X. The
property (1.7) itself counterweights the overestimation tendency, that interval
arithmetic computations might suffer from, as discussed in Subsection 1.3.3.
The property (1.5) is then useful, if a given iterative method involves the
property (1.9), as showing that x /∈ F (X) then implies x /∈ F (Y) for every
Y ⊆ X.

1.3.1 Extending arithmetic operations and elementary

functions

Here we use [7] and [8] to show the way standard binary operations +,−, ∗, /
and basic elementary functions are extended, so that their inclusion functions
have properties (1.5), (1.6) and (1.7). In addition, presented inclusion func-
tions are minimal, meaning that for any input X, they always produce the
smallest box containing the image of X under the corresponding punctual
function.

Let X and Y denote intervals [x, x] and
[

y, y
]

, respectively. Standard

operations +,−, ∗, / are extended as

X + Y =
[

x + y, x + y
]

,

X − Y =
[

x− y, x− y
]

,

X · Y =
[

min(xy, xy, xy, xy),max(xy, xy, xy, xy)
]

,

X/Y = X ·
[

1

y
,
1

y

]

, if 0 /∈ Y.

(1.10)

If f is a real function in one variable, defined and monotonic on an interval
D ⊆ R, it can be extended simply as

F (X) =







[f(x), f(x)] f(x) ≤ f(x),

[f(x), f(x)] f(x) > f(x).
(1.11)

In this manner, elementary functions exp, log, arcsin, arccos, arctan, n-th root
and odd power xn are extended, each on its respective domain.

Non-monotonic functions often need to be dealt with individually. For
example, the even power xn is extended in the following way;

Xn =



















[(x)n, (x)n] (x)n ≥ 0

[(x)n, (x)n] (x)n ≤ 0

[0,max{(x)n, (x)n}] otherwise

(1.12)

9

1. Theoretical background

Another examples are sin and cos functions, where the periodicity is taken
into account. The result of cos(X) is defined to be an interval [r, r], such that

r =







−1 ∃k ∈ Z | (2k − 1)π ∈ X,

min(cos(r), cos(r)) otherwise,
(1.13)

r =







1 ∃k ∈ Z | 2kπ ∈ X,

max(cos(r), cos(r)) otherwise.
(1.14)

Extending sin is similar to extending cos, see [7, p. 22].
An important point here is, that the presented extensions of each of the

discussed functions are computed very cheaply and actually operate only on
endpoints of particular input intervals.

Example 1.4. Some basic interval computations performed using inclusion
functions defined above are

[−2, 3] + [4, 9] = [2, 12] , [−2, 3] ∗ [4, 9] = [−18, 27] ,

[−2, 3]− [4, 9] = [−11,−1] , [−2, 3] / [4, 9] =

[

−1

2
,
3

4

]

,

[−3,−2]2 = [4, 9] , [2, 3]2 = [4, 9] ,

[−2, 3]2 = [0, 9] , [−3,−2]3 = [−27,−8] ,
[2, 3]3 = [8, 27] , [−2, 3]3 = [−8, 27] ,

sin

([

π

2
,
3π

2

])

= [−1, 1] , cos

([

π

2
,
3π

2

])

= [−1, 0] .

1.3.2 Natural inclusion functions

We will deal with equation systems of the form f = 0, f : Rn → Rn, where
each component fi of f will be a composition of standard arithmetic operations
+,−, ∗, / and elementary functions xn, sin, cos, exp, log, arcsin, arccos,

An interval function Fi obtained by taking fi and replacing each point vari-
able x with an interval variable X and each operator and elementary function
by a corresponding convergent inclusion monotonic interval extension function
(like the ones from Subsection 1.3.1) is called the natural inclusion function
of fi, or just the natural inclusion of fi. Furthermore if the component fi is
composed only from continuous functions, then the obtained interval function
Fi is also covergent.

In addition, properties of the interval function F = (F1, . . . , Fn) are de-
termined by its components to certain extent. Namely, if all components Fi

have any of the properties listed in 1.2.1, then so does F itself. Thanks to
this, we also call such function F the natural inclusion of f .

10

1.3. Interval arithmetic

Notice, that we did not define natural inclusions as unique entities (for
a given punctual function f), because in general, different convergent inclu-
sion monotonic interval extension functions can be used for the replacements.
However, when referring to natural inclusions in the rest of text, we will always
mean those formed of interval inclusions from the Subsection 1.3.1.

Example 1.5. Consider a function f(x1, x2) = (sin(x1)+1, x1 +2x2) defined
on X = R2, and the interval inclusions introduced in Subsection 1.3.1. Then
the function

F (X1, X2) = (sin(X1) + 1, X1 + 2X2),

where X1, X2 ∈ I(R), is the natural inclusion function of f .

1.3.3 Expression evaluation

When evaluating interval functions, the way they are written as expressions
matters, because not all identities known from real arithmetic hold for interval
arithmetic. Most notably, instead of the common distributive law, we can only
rely on a weaker property called subdistributivity, that can be expressed for
real intervals X, Y, Z as

X · (Y + Z) ⊆ X · Y + X · Z. (1.15)

Furthermore, both addition and multiplication have no inverse elements for
non-degenerate intervals.3

For a given expression, one can expect greater uncertainty of its result
the more times the same variable X appears in the expression. Intuitively,
interval arithmetic treats each occurrence of X independently of others and is
unable to capture the fact that they all bound the same exact value x.

Example 1.6. Identities x3 = x · x · x, (x+ y)2 = x2 +2xy + y2 and sin 2x =
2 sin x cosx hold for every x, y ∈ R, whereas corresponding interval inputs
demonstrate the thought of the previous paragraph.

[−2, 3]3 = [−8, 27]

[−2, 3] ∗ [−2, 3] ∗ [−2, 3] = [−6, 9] ∗ [−2, 3] = [−18, 27]

([−1, 0] + [0, 1])2 = [−1, 1]2 = [0, 1]

[−1, 0]2 + [2] [−1, 0] [0, 1] + [0, 1]2 = [0, 1] + [−2, 0] + [0, 1] = [−2, 2]

sin([2] [0, π/4]) = sin [0, π/2] = [0, 1]

[2] sin [0, π/4] cos [0, π/4] = [2]
[

0,
√
2/2

] [√
2/2, 1

]

=
[

0,
√
2
]

3Commutativity and associativity of addition and multiplication still holds in interval

arithmetic.

11

1. Theoretical background

As a part of our main algorithm in Chapter 3, we will generally find
ourselves in a situation of having a punctual function f , its natural inclu-
sion F and a box X, such that 0 /∈ f(X), but 0 ∈ F (X), and will need to
keep splitting X into smaller boxes (sub-boxes, see Section 1.4), until for each
sub-box Xi, 0 /∈ F (Xi). Although the convergence property (1.7) gives us
a theoretical guarantee of success, the way F is written can still affect the
and influence execution time (because of the “speed” of convergence), used
memory and even the ability to keep splitting boxes, because it is impossible
to represent infinitely small boxes with computer floating-point arithmetic.

1.3.4 Parametrized functions

We also work with functions that are parametrized by some parameter box
P ⊆ Rm. If f is such function, we usually add the subscript P to it, that
is fP , to express the parametrization. Such function can be seen as a set of
functions {fp | p ∈ P}, where fp is a function obtained from fP , by replacing
its parameters with the concrete value p. For every x ∈ X, we define the value
fP (x) as

fP (x) =
⋃

p∈P

f(x, p). (1.16)

We also need the notion of inclusion function FP of parametrized function
fP . We simply say, that FP is an inclusion function of fP , if FP is an inclusion
function of fp, for every p ∈ P . To construct such inclusion function FP

of fP , we extend the process of constructing natural incusion function from
Subsection 1.3.2.

1. We replace each point variable xi in the prescription of fP with interval
variable Xi and each operator and elementary function with its corres-
ponding convergent inclusion monotonic interval extension function.

2. We replace each parameter pj with the j-th component of the parameter
box P .

Example 1.7. Consider a function fP = (x1 + p1, x1 + p2x2) defined on
X = R2, parametrized with P = [0, 1]× [0, 2]. Then the function

FP = (X1 + [0, 1] , X1 + [0, 2]X2),

where X1, X2 ∈ I(R), is an inclusion function of fP .

1.3.5 Interval arithmetic implementation

So far, we discussed interval arithmetic as a theoretical concept. Here, we
briefly mention core ideas behind its implementation in computer systems.

Representing an interval in a computer system is as simple as storing its
two endpoints, and for this purpose, floating-point numbers are typically used.

12

1.3. Interval arithmetic

This of course means, that only a certain finite subset I(F) (I(R) can be
represented. During a computation with intervals from I(F), we generally
may end up with an interval I /∈ I(F). To retain the inclusion property, such
interval I is substituted by a wider interval J , I (J , J ∈ I(F).

This can be achieved by using directed rounding (Subsection 1.1.1). When
computing a result of an interval operation or function, the current rounding
mode is first set towards −∞ and the lower endpoint of the result is computed.
Then, the rounding mode is switched towards +∞, and the upper endpoint of
the result is computed. For example, the result [x, y] of the sum [a, b] + [c, d]
would be computed in the following steps.

1. Set rounding mode towards −∞.

2. Compute x = a + c.

3. Set rounding mode towards +∞.

4. Compute y = b + d.

Written symbolically using the notation from Subsection 1.1.1,

[x, y] = [δ(a + b), ∆(c + d)] . (1.17)

Such computation requires two switches of the rounding mode (or even
three, if we wish to restore the original rounding mode, after the result is
obtained). Because switching rounding mode is costly, a good implementation
usually allows to significantly reduce the required number of switches in two
ways.

First, it makes use of the fact, that δ(−x) = −∆(x), for any x ∈ R, see
Figure 1.2. Computations of lower endpoints can then be carried out using
the rounding towards +∞, instead of towards −∞, eliminating the rounding
mode switch between the computation of lower and upper endpoint of the
result. For example, (1.17) becomes

[x, y] = [−∆(−(a + b)), ∆(c + d)] .

Notice, how the rounding mode switch is replaced by two negations. It is also
possible to store an interval [a, b] directly as a pair of numbers −a, b instead
of a, b, to reduce the number of negations.

Secondly, it provides a possibility to set the directed rounding mode at
the beginning of a series of consecutive interval computations, and restore its
original value only once, at the end of the last computation. This is called the
trust rounding mode (see also [9, p. 10]), because the user is trusted to change
the rounding mode appropriately by herself, should she need to mix inter-
val computation with some other operations, that require different rounding
mode.

13

1. Theoretical background

0 x ∆(x)−∆(x)

δ(−x)

−x

Figure 1.2: Relationship between the directed rounding modes. For x ∈ R,
the number ∆(x) is by definition the smallest floating-point number greater
or equal x. Therefore, −∆(x) is the greatest floating-point number smaller or
equal −x, that is −∆(x) = δ(−x). Similarly, −δ(x) = ∆(−x).

1.4 Topological properties of boxes

In this section, we explain some terms used to describe additional properties
of boxes, introduced in Section 1.2. They are mostly specialization of gen-
eral topological terms, but because it is not our goal to dwell deeper into
topology, we just stick to boxes, where those terms have reasonable intuitive
representation.

1.4.1 Dimension, sub-boxes and orientation

Consider an arbitrary box B = I1 × · · · × In. The dimension of B is the
number k of non-degenerate intervals among I1, . . . , In. We also say, that B is
a k-dimensional box, or just k-box. Any box B′, that has the same dimension
as B and B′ ⊆ B is called a sub-box of B.

An orientation is simply a number o ∈ {−1, 1}. If o = 1, we also say,
that o is the positive orientation. Otherwise, o is the negative orientation. A
pair (B, o) is called an oriented box, its dimension is the dimension of B. An
oriented box (B′, o′) is an oriented sub-box of (B, o), if B′ is a sub-box of B
and o = o′.

Example 1.8. Box B = [−1, 1]× [2] has dimension 1. Box C = [0, 1]× [2] is
a sub-box of B. Box D = [0] × [2] is not a sub-box of B, because although
D ⊆ B, the dimension of D is 0. Oriented box (C, 1) is a sub-box of oriented
box (B, 1), but not (B,−1).

1.4.2 Faces and sub-faces

Let B = I1 × · · · × In be some box. Let 1 ≤ j ≤ n and [aj , bj] = Ij , and
suppose Ij is the k-th non-degenerated component in the sequence I1, . . . , In.
Boxes

F −
j = {(x1, . . . , xn) |xj = aj}, F +

j = {(x1, . . . , xn) |xj = bj} (1.18)

are faces of B. Further, if we consider an orientation o, then oriented boxes

(F −
j , (−1)k), (F +

j , (−1)k+1) (1.19)

14

1.4. Topological properties of boxes

are called oriented sub-faces of (B, o) and we say, that their orientation is
induced from the orientation of (B, o). Any (oriented) sub-box of some (ori-
ented) face F is called a sub-face of F . See also Figure 1.3.

Example 1.9. Box B = [1, 2]× [1]× [3, 4] has four faces, namely

F −
1 = [1]× [1]× [3, 4] , F +

1 = [2]× [1]× [3, 4] ,

F −
2 = [1, 2]× [1]× [3] , F +

1 = [1, 2]× [1]× [4] .

If we consider the oriented box (B, 1), then oriented boxes (F −
1 ,−1), (F +

1 , 1),
(F −

2 , 1) and (F +
1 ,−1) are oriented faces of (B, 1). This is sketched in Fig-

ure 1.3a.

B(F −
1 ,−1) (F +

1 , 1)

(F −
2 , 1)

(F +
2 ,−1)

(a) Oriented box (B, 1) and its oriented faces,
that are depicted as oriented arrows.

B1

B2

B3

(b) Box paving of (B, 1) with three
oriented boxes.

Figure 1.3: Boxes, faces and pavings. Here and in further figures, we use
oriented arcs to sketch orientations of boxes and oriented arrows to depict
their oriented faces and sub-faces. Orientations of such arrows symbolize
induced orientations of corresponding faces or sub-faces.

1.4.3 Further notation regarding oriented boxes

In the rest of the text, we assume that any box we work with is oriented.
Therefore, we will often refer to any oriented box (B, o) simply as B, and only
explicitly write it as the pair (B, o) at points, where the actual value of o is
important. We will therefore use phrases like “Let B be an oriented box. . . ”,
etc, and often even drop the adjective “oriented”.

1.4.4 Box paving

Let D be a set of oriented n-boxes, all having the same orientation o. We
denote |D| the union of all boxes in D. Set of oriented boxes T̄ with the same
orientation o is called a box paving of D, if

• Intersection of any two boxes from T̄ has dimension at most n− 1.

15

1. Theoretical background

• Every box in T̄ is a sub-box of some box in D.

• |T̄ | = |D|.

See Figure 1.3b for a visual example.

1.4.5 Oriented cubical sets

An oriented cubical set Ω is a finite set of oriented boxes of the same dimen-
sion n and orientation o, such that the intersection of any two different boxes
from Ω has dimension at most n − 1. Values n and o are the dimension and
orientation of Ω, respectively.

The fact that every box in Ω has the same orientation ensures, that
whenever two boxes B1, B2 have an (n − 1)-dimensional intersection B12,
then the induced orientation o1 of B12 as a sub-face of B1 is opposite to the
induced orientation o2 of B12 as a sub-face of B2.

For a given oriented cubical set Ω, we denote |Ω| the union of all boxes
in Ω. Any box B can itself be viewed as an oriented cubical set {B} and
|B| = B. Any further terms defined for oriented cubical sets therefore also
apply for boxes.

1.4.6 Boundary of an oriented cubical set

The topological boundary of an oriented cubical set Ω is purely intuitively the
largest set, whose points can be reached both from the inside and from the
outside of a box (formalized for example in [10, Chap. 9]). We denote this set
by ∂|Ω|

As in [2, pp. 5–6], we also define an oriented boundary (or simply boundary)
of a given oriented cubical set Ω as a set ∂Ω of oriented boxes of dimension
n− 1, such that

• The intersection of any two boxes from ∂Ω is at most n− 2.

• For every F ∈ ∂Ω and every (n− 1)-dimensional sub-box F ′ of F , there
exists exactly one B ∈ Ω, s.t. F ′ is an oriented sub-face of B.

• ∂Ω is maximal, meaning that no other box can be added to it, so that
the other two points still hold.

For any boundary ∂Ω, the set |∂Ω| always corresponds to the topological
boundary ∂|Ω|. See also Figure 1.4.

1.4.7 Bisection of boxes

Consider a box B = I1 × · · · × In and let Ik = [a, b], a < b, for some fixed
1 ≤ k ≤ n. A bisection of B in its component Ik with bisection ratio 0 < r < 1

16

1.5. Topological degree

C1

C2

C3

(a) The topological boundary of Ω.

C1

C2

C3

b1 b2

b3

b4
b5

b6

b7
b8

b9

b10

b11

(b) One possible oriented boundary of Ω.

Figure 1.4: Oriented cubical set Ω = {C1, C2, C3}. Fig. 1.4a shows its (unique)
topological boundary as the thick line segments separating the inside and the
outside of |Ω|. Fig. 1.4b shows one possible oriented boundary ∂Ω of Ω as
the set of boxes b1, . . . , b11, depicted as oriented arrows. Notice, that |∂Ω|
corresponds to the topological boundary of Ω.

is a process of creating two sub-boxes B1, B2 of B,

B1 = I1 × . . . Ik−1 × [a, d]× Ik+1 × · · · × In,

B2 = I1 × . . . Ik−1 × [d, b]× Ik+1 × · · · × In,
(1.20)

where d = a + r(b− a).

1.5 Topological degree

As a part of the algorithm we develop in Chapter 3, we repeatedly need to be
able to decide, whether a given continuous Rn-valued function f defined on a
n-box X (or, more generally, on an oriented cubical set of n-boxes) has a root
in X. To this end, we use the notion and properties of Brouwer’s topological
degree [1, Chap. 1], [2, p. 4].

For a given Rn-valued function f , that is continuous on a given open
bounded set Ω ⊂ Rn, and a number d ∈ Rn, the topological degree deg(f,Ω, d)
is a unique integer of certain properties, whose value depends on the behavior
of f on the (topological) boundary of Ω. (The terms open and bounded set in
Rn are topological properties, see [10, Chap. 5].4) and as noted in [2, p. 6],
the notion can also be extended to boxes and oriented cubical sets, which we
make use of in our work.

This concept is rather formal. However, in the simplest case of n = 1 and
so called oriented edges, which are simply boxes of dimension 1, the topological
degree is closely related to Bolzano’s intermediate value theorem, which we
mention in Subsection 1.5.1.

4Intuitively, an open bounded set in Rn is a generalization of an open interval in R. A

set Rn is open, if it does not contain any of its boundary points, and is bounded, if there

exists some D ∈ R, such that the distance of any two points from the set is less than D ∈ R.

17

1. Theoretical background

Further, in the case of n = 2 (i.e. in a plane), there is a correspondence
between the degree deg(f,Ω, d) and the winding number of f(|∂Ω|) around d;
a notion that has a nice intuitive representation and we describe it in Subsec-
tion 1.5.2.

1.5.1 Computing the degree of oriented edges

In the case of oriented edges, the topological degree is closely related to
Bolzano’s intermediate value theorem [1, p. 8]. Its special case states, that if
f : [a, b] → R is a continuous function and sgn(f(a)) 6= sgn(f(b)), then there
exists x, a < x < b, such that f(x) = 0.

Now assuming that the interval (box) [a, b] (also denoted by
−→
ab) has pos-

itive orientation and m = 0, the degree is defined as

deg(f, [a, b] , 0) =
1

2
(sgn(b)− sgn(a)). (1.21)

Clearly, the degree is non-zero if and only if sgn(f(a)) 6= sgn(f(b)), which
means that a non-zero value of the degree implies the existence of x, a < x < b,
such that f(x) = 0.

Notice, that to soundly infer the existence of the root, only the information
about the behavior of f on the boundary of [a, b] was needed.

1.5.2 Informal description of the winding number

For a closed oriented curve C in R2 and a point d ∈ R2, that does not lie in
C, the winding number of C around d is a unique number denoted by ν(C, p),
characterizing the pair (C, d) and representing the number of times the curve C
travels around d. The direction of the travel is taken into account. Counter-
clockwise rotations are considered positive, whereas clockwise rotations are
considered negative.

We can visually determine ν(C, p) by drawing a semi-straight line starting
in the origin p and following the direction of the negative y-axis. Each time
this semi-straight line is crossed by the curve, we count 1, if the curve crosses
from left to right, or −1, if the curve crosses it from right to left. The total
count determines ν(C, p). See Figure 1.5.

The notion of winding number generalizes the idea of determining whether
a given point lies inside a given curve, or not. When we have a closed curve
that does not cross itself, we can by intuition naturally tell for each point
in the plane, whether it lies inside the curve or not. This is because such
curve C dividides its complement in a plane into two distinct areas, see Fig-
ure 1.6a. Such curves are called Jordan curves and their discussed property
is the subject of Jordan curve theorem. It is a nice example of a theorem that
is intuitively clear but it is not trivial to prove formally, see [11].

However, if the curve does cross itself, the idea of points lying inside or
outside of the curve starts being unclear. This is where the notion of winding

18

1.5. Topological degree

(a) ν(C, p) = 2. The curve
crosses the direction of the
negative y-axis from p two
times from left to right.

(b) ν(C, p) = −2. The curve
crosses the direction of the
negative y-axis from p two
times from right to left.

(c) ν(C, p) = 0. The curve
crosses the direction of the
negative y-axis from p two
times from left to right and
two times from right to
left.

Figure 1.5: Visualisation of winding numbers.

number comes in. In general, closed curves can split the plane into multiple
areas and the key property here is, that points lying in the same area have
the same winding number, see figure 1.6b.

(a) Any closed curve C that does not
cross itself (i.e. Jordan curve) splits its
complement R2− |C| into two distinct
areas.

(b) Non-Jordan curves generally splits
their complement R2 − |C| into mul-
tiple distinct areas. However, any two
points in the same area have the same
winding number.

Figure 1.6: Closed curves splitting the plane into distinct areas.

1.5.3 Definition and properties of topological degree

For a given Rn-valued function f , that is continuous on a given open bounded
set Ω ⊆ Rn, and a number d ∈ Rn, the topological degree deg(f,Ω, d) can be
defined axiomatically, by five axioms listed in [1, pp. 7–8]. For our purposes,
the most important of these axioms is so called solvability, stating that

deg(f,Ω, d) 6= 0 =⇒ ∃x ∈ Ω. f(x) = d. (1.22)

19

1. Theoretical background

For d = 0, this is one of the core ingredient of our algorithm in Chapter 3.
Another noticeable axiom is the one stating, that deg(f,Ω, d) is constant

on any connected component in Rn, that does not intersect the topological
boundary of Ω. We intuitively demonstrated this for winding number in Fig-
ure 1.6b.

In our problem domain, we work with boxes and oriented cubical sets. As
already mentioned, the notion of topological degree can be extended to them,
as noted in [2, p. 6].

In the case when a given function f is differentiable in Ω, and a given point
d is regular (meaning, that det f ′(y) 6= 0 for every y ∈ f−1(d)), the degree
deg(f,Ω, d) can be computed as

deg(f,Ω, d) =
∑

y∈f−1(d)

sgn det f ′(y), (1.23)

see [2, p. 4] or [1, p. 4].
Although the formula (1.23) is straightforward, it is kinda restrictive, due

to its assumptions and the numerical nature stemming from the need of com-
puting derivatives. In Chapter 2, we describe an algorithm for computing to-
pological degree, presented in [2], that specially computes values deg(f, X, 0),
where X is a box or an oriented cubical set and f is a continuous function
given in the form of arithmetical expressions. This algorithm requires neither
the assumptions of formula (1.23), nor does it rely on computing derivatives
or inverses.

1.5.4 Examples

Here, we provide three simple by-hand examples of computing the topological
degree via (1.23), whose results are discussed with respect to the solvability
property (1.22).

Example 1.10. Consider function f(x) = 2x on X = [−1, 1]. For every
q ∈ X, we have f ′(q) = 2, and so the point d = 0 is regular. Further,
f−1(0) = {0} and using (1.23), we get

deg(f, X, 0) = sgn det f ′(0) = sgn f ′(0) = 2 = 1.

Because deg(f, X, 0) 6= 0, the solvability property (1.22) can then be used
to deduce, that f has a root in X.

Example 1.11. Consider function f(x) = x2 − 1 on X = [−2, 2]. For d = 0,
we have f−1(0) = {−1, 1} and f ′(−1) = −2, f ′(1) = 2. Therefore, point 0 is
regular and (1.23) can be used to compute deg(f, X, 0). We get

deg(f, X, 0) = sgn det f ′(−1) + sgn det f ′(1) = −1 + 1 = 0.

This shows, that the converse of (1.22) does not hold, because numbers
±
√
2 are roots of f in X.

20

1.5. Topological degree

Example 1.12. Consider function f(x, y) = (x2 + y2 − 1, 3
2x− y) defined on

X = [−1, 1]2. It has two roots in X, namely (2
√

13
13 , 3

√
13

13) and (−2
√

13
13 ,−3

√
13

13).
However, as in the previous example, deg(f, X, 0) = 0, because

deg(f, X, 0) =
∑

(x,y)∈f−1(0)

sgn det

(

∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

)

=
∑

(x,y)∈f−1(0)

sgn det

(

2x 2y
3
2 −1

)

=
∑

(x,y)∈f−1(0)

sgn(−2x− 3y) = −1 + 1 = 0.

And so we se again, that the converse of (1.22) does not hold.

1.5.5 Parametrized functions

We also work with functions that are parametrized by some parameter box
P ⊆ Rm. From Subsection 1.3.4, we now that such functions fP can be
viewed a set of functions {fp | p ∈ P}, where fp is a function obtained from f ,
by replacing its parameters with a concrete value p.

Now, if a parametrized function fP is given, and for every two p, q ∈ P ,
both degrees deg(fp, X, 0), deg(fq, X, 0) exists and are equal, then we denote
this one value as deg(fP , X, 0).

21

Chapter 2

Computing the topological

degree

Here we describe the algorithm for computing the topological degree presented
in [2], which we studied and decided to make use of in our main algorithm in
Chapter 3. We provide a description of the algorithm’s workflow, sketching
out some of the theoretical results its actions are based on, and referring the
reader to particular parts of [2] for all the formal details and proofs. Further,
we provide a few example computations done by hand to demonstrate the
workflow in a clearer way.

An implementation of the algorithm is available in [12]. It is based on
floating point arithmetic. For reasons summarized in Section 2.5, we provide
our custom implementation (also based on floating point arithmetic), treat-
ing [12] as a reference one, especially when testing, if our own implementation
gives correct results, see Section 6.3. To better suit our needs of the design of
our solving algorithm (Chapter 3), we make a few adjustments to the workflow
of [2] and its implementation [12]. This is explicitly stated further in the text
and it is nothing that would violate the correctness of [2].

We also present our custom sound method of determining, if for arbitrary
boxes X ′ ⊆ X, P ′ ⊆ P , the degree deg(fp, X ′, 0) is defined and has the same
value for every p ∈ P ′. This is further used as a part of our main algorithm.

2.1 Overview

Let us start with a general overview of the algorithm [2] and then focus on
the details in further sections.

For a given oriented n-box B, or more generally, an oriented cubical set of
n-boxes and a continuous Rn-valued function f defined on B, that is nowhere
zero on the topological boundary ∂|B| of B, the discussed algorithm computes
the degree deg(f, B, 0) in two phases.

23

2. Computing the topological degree

In the first phase, the algorithm searches for an oriented boundary ∂B
of B, such that at least one component of the image of each element of ∂B
under f does not contain zero. This part is numerical, it requires evaluating
subsets of ∂|B| by f . A practical implementation substitutes f with a con-
vergent inclusion monotonic interval extension function F and performs these
evaluations using interval arithmetic, which simplifies them and ensures the
correctness of the result despite the underlying floating-point computations
performed. Section 2.2 is devoted to this phase.

The second phase is combinatorial and requires no further numerical eval-
uations. It computes the degree recursively from the result provided by the
numerical phase. This is the core, the main part of the algorithm and it is
described in Section 2.3.

2.2 The numerical phase

The goal of the first phase is to find an oriented boundary ∂B = {b1, . . . , bk}
of B, such that for each bj , j ∈ {1, . . . , k}, at least one component fi of f has
a constant sign on bj—that is, fi is either strictly positive, or strictly negative
in bj . Such oriented boundary, along with the sign information assigned to
each box bj , then forms the result of this phase. It is called a sign covering
and it is introduced in [2, pp. 7–8, 11].

We tend to use the notion of sign covering quite often both in the text,
as well as in our implementation, and so we rephrase the definition in the
following subsection for completeness.

2.2.1 Definition of a sign covering

A d-dimensional sign vector is a vector consisting of elements from {+,−, 0}.
We denote the l-th component of a sign vector v as vl.

If S = {B1, . . . , Bp} is a set of oriented (d − 1)-boxes, then a sign cov-
ering of S is defined as a list of pairs [(B1, v1), . . . , (Bp, vp)], where vi is a
d-dimensional sign vector. The dimension of a sign covering of S is the di-
mension of any box in S.

A sign covering of S is said to be sufficient, if each sign vector vi contains
at least one non-zero element, and is said to be with respect to (written shortly
as wrt.) a function

f :





⋃

i∈{1,...,p}
Bi



 ⊆ D → Rd,

if for every i ∈ {1, . . . , p} and j ∈ {1, . . . , d}, such that vj 6= 0, the component
fj of f has a constant sign vj on Bi. We follow by a simple example.

Example 2.1. Let B1 = [−2,−1], B2 = [−1, 1] and B3 = [1, 2]. Then

[(B1,
(−

+

)

), (B2,
(

0
+

)

), (B3,
(+

+

)

)]

24

2.2. The numerical phase

is a sufficient sign covering of {B1, B2, B3} wrt. function f(x) = (x, exp(x)).
Its dimension is 1.

Now we can say, that the goal of the numerical phase is to take the input
n-box or oriented cubical set B and the function f defined on B, that is
nowhere zero on ∂|B|, and compute a sufficient sign covering of some oriented
boundary of B wrt. f . This is then passed to the combinatorial phase of the
algorithm.

2.2.2 Sign covering computations

There is a slight difference of how our implementation and the reference
one [12] performs sign covering computations during the numerical phase of
the algorithm. The basic flow is similar for both and we focus at it first. The
difference is emphasized in the next subsection.

Supposing an input function f and a box or an oriented cubical set B, we
always start with some arbitrary initial oriented boundary ∂B of B. If B is a
single box, then ∂B is typically the set of all oriented faces of B. Every box
b in ∂B is then evaluated by an interval inclusion function F of f and gets
associated a sign vector v, such that its i-th component vi is determined by
the value of Fi(b) as follows (Fi is the i-th component of F).

vi =















− if Fi(b) < 0,

+ if Fi(b) > 0,

0 otherwise.

(2.1)

This creates an initial sign covering, which is wrt. F and therefore also wrt. f .
It may, however, not be sufficient.

Any box b, that has a zero vector 0 associated (that is any box, whose image
under F contains zero) is then bisected into a pair of smaller boxes b1, b2. In
our implementation, the bisection is always done along the longest component
of b5, with a ratio given in advance as a parameter. To our knowledge, the
reference implementation [12] also performs the bisection along the longest
component, but has the ratio hardcoded to 0.5.

Box b is then replaced by b1, b2. This creates a new oriented boundary
of B, which we often refer to as a refined oriented boundary. Boxes b1, b2 are
then reevaluated by F and new pairs of boxes and sign vectors, say (b1, v1)
and (b2, v2) are created, replacing the original pair (b, 0). This forms a sign
covering of the refined oriented boundary. This process then continues, until
a sufficient sign covering is obtained.

5If b = I1 ×· · ·×In has two or more components of the maximal width, then b is bisected

along the one with lower index.

25

2. Computing the topological degree

As long as the input contract of f not being zero anywhere on ∂|B| is sat-
isfied, the existence of a sign covering of the desired properties is guaranteed,
so the process terminates in a finite number of steps.6

We now apply these steps to compute a few examples by hand and present
them. For simplicity, we do not consider any interval inclusion function F and
simply perform all evaluations by f itself.

Example 2.2. Consider the function f(x) = exp(abs(x)) on B = [−2, 2],
where the orientation of B is 1. As Figure 2.1 shows, we consider the set ori-
ented faces S = {B−

1 , B+
1 }, which is an oriented boundary of B, and compute

a sign covering of S wrt. f using the rule (2.1). We get

L = [(B−
1 ,+), (B+

1 ,+)],

which is already sufficient and is therefore the desired result.

B−
1 B+

1

(

+
) (

+
)

B
box or.

B−
1 = [−2] −1

B+
1 = [2] 1

Figure 2.1: Example of a sufficient sign covering of an oriented boundary
{B−

1 , B+
1 } of B = ([−2, 2] , 1) with respect to f(x) = exp(abs(x)). Boxes B−

1

and B+
1 are the oriented faces of B.

Example 2.3. Let f(x) = (2x2 − y2 − 2, x2 + y2 − 4) be defined on the box
B = [0, 2] × [1, 2] with orientation 1. Let B−

1 , B+
1 , B−

2 , B+
2 denote the four

oriented faces of B. No sufficient sign covering wrt. f of the oriented boundary
{B−

1 , B+
1 , B−

2 , B+
2 } of B exists, because no component of f has a constant sign

on B−
2 and B+

2 as the following shows.

f(B−
2) = f([0, 2]× [1]) = ([−3, 5] , [−3, 1]),

f(B+
2) = f([0, 2]× [2]) = ([−6, 2] , [0, 4]).

So in this case, boxes B−
2 and B+

2 get zero vectors associated by (2.1) and
the initial boundary needs to be refined by bisecting these into sub-boxes.
Figure 2.2 shows one possible refined oriented boundary. The corresponding
sign covering is sufficient and contains 7 boxes.

6There is of course a chance, that although a sign covering of the desired properties

exists, the implementation may not find because of the limited precision of floating-point

numbers. For our purposes, we do not have to consider this case, however, because of the

way we adjust the input contract of the computation, see Subsection 2.2.4.

26

2.2. The numerical phase

(−
0

)

a
(+

+

)

b

(−
−
)

c1
(

0
−
)

c2
(

+
0

)

c3

(

0
+

)

d1

(−
0

)

d2

B

box or.

a = [0]× [1, 2] −1
b = [2]× [1, 2] 1
c1 = [0, 1]× [1] 1

c2 =
[

1, 3
2

]

× [1] 1

c3 =
[

3
2 , 2
]

× [1] 1

d1 = [1, 2]× [2] −1
d2 = [0, 1]× [2] −1

Figure 2.2: Example of a sufficient sign covering of an oriented boundary of
B = ([0, 2]×[1, 2] , 1) wrt. f(x, y) = (2x2−y2−2, x2+y2−4) from Example 2.3.
The depicted sign covering is made of 7 boxes: a, b, c1, c2, c3, d1, d2. Boxes
c1, c2, c3 are sub-faces of B−

2 , d1, d2 are sub-faces of B+
2 and a = B−

1 , b = B+
1 .

Example 2.4. Consider the function f(x) = (x2 + y2− 1, 3
2x− y) on the box

B = [−1, 1]× [−1, 1] with orientation 1. As in Example 2.3, no sufficient sign
covering of the oriented boundary {B−

1 , B+
1 , B−

2 , B+
2 } of B exists, because

no component of f has a constant sign on B−
2 and B+

2 . So again, some
refined boundary of B needs to be considered, like the one in Figure 2.3. The
corresponding sign covering contains 8 boxes.

(

0
−
)

a
(

0
+

)

b

(

+
0

)

c1
(

0
+

)

c2
(

0
+

)

c3

(

+
0

)

d1
(

0
−
)

d2
(

0
−
)

d3

B

box or.

a = [−1]× [−1, 1] −1
b = [1]× [−1, 1] 1

c1 =
[

−1,−1
2

]

× [−1] 1

c2 =
[

−1
2 , 0
]

× [−1] 1

c3 = [0, 1]× [−1] 1

d1 =
[

1
2 , 1
]

× [1] −1
d2 =

[

0, 1
2

]

× [1] −1
d3 = [−1, 0]× [1] −1

Figure 2.3: Example of a sufficient sign covering of an oriented boundary of
B = ([−1, 1]× [−1, 1] , 1) wrt. f(x, y) = (x2+y2−1, 3

2x−y) from Example 2.4.
The depicted sign covering is made of 8 boxes: a, b, c1, c2, c3, d1, d2, d3. Boxes
c1, c2, c3 are sub-faces of B−

2 , d1, d2, d3 are sub-faces of B+
2 , a = B−

1 , b = B+
1 .

2.2.3 Adjusting the input contract

When the reference implementation [12] computes a sign covering of an ori-
ented boundary of B wrt. f , it relies on the input contract, that 0 /∈ f(∂|B|).
If this condition is not satisfied by the input, then no sufficient sign covering of

27

2. Computing the topological degree

the desired properties exists, so the computation gets stuck in an infinite loop,
refining oriented boundaries of B, in the way described in Subsection 2.2.2,
over and over again.

This behavior is not suitable for our needs. For the purposes of our solving
algorithm discussed in Chapter 3, we rather want to simply drop the condition
0 /∈ f(∂|B|) and replace it with some parameter, that tells “how hard” to try
when looking for a sufficient sign covering before giving up and terminating.

We solve this by adding a stop condition to the process from Section 2.2.2.
It has the form of a number ref ≥ 0, called a refinement threshold, such that
no box of the width smaller or equal to ref is bisected further. When no box
in a currently computed sign covering can be bisected further, we terminate
the computation and return the currently computed sign covering. This is
guaranteed to be wrt. f , but it might not be sufficient.

Now what does this mean for the whole process of computing deg(f, B, 0)?
The algorithm, as specified in [2], requires the resulting sign covering from the
numerical phase to be sufficient so it can be passed to the combinatorial phase.
Because in our case we cannot always guarantee that the sign covering will be
sufficient, we need adjust the algorithm’s workflow by sort of separating the
two algorithm phases as depicted in Figure 2.4

In words, when performing the sign covering computation during the nu-
merical phase of computing the degree, we first need to check, if the obtained
sign covering is sufficient. If it is, then we can send it further to the com-
binatorial phase, otherwise, we must return some reserved value indicating a
failure.

Numerical

phase
Suff. sign cov. wrt Combinatorial

phase

Numerical

phase

Combinatorial

phase

Sign cov. wrt Is sign cov.

sufficient?

Y

N reserved special

value

Figure 2.4: Adjusted workflow of the algorithm for computing the topolo-
gical degree. The basic difference between the reference implementation [12]
(white background) of the algorithm [2] and our own implementation (gray
background) is shown. See Subsection 2.2.3.

28

2.2. The numerical phase

2.2.4 Pseudocode for sign covering computation

Here we formulate the steps for computing a sign covering discussed in Sub-
sections 2.2.2 and 2.2.3 into a pseudocode, so that we can reference it from
our solving algorithm in Chapter 3.

We introduce a function signCovering, that takes a given set boxes of
boxes and computes a sign covering of boxes wrt. a given interval inclusion
function F of a given input function f . It does so by using the helper function
signVector, that computes one pair of a box and sign vector in the con-
structed sign covering according to the rule (2.1). It then keeps refining the
set (that is, it repeatedly bisects its boxes into sub-boxes) and updating the
sign covering accordingly, until it is either sufficient or the width of each box
becomes smaller or equal to a given refinement threshold ref . The pseudocode
is in Algorithm 1.

Notice, that we formulated it more generally than just for the computa-
tion of a sufficient sign covering of some oriented boundary ∂B of a box or
an oriented cubical set B wrt. f . But it clearly can be used for this pur-
pose, because its output contract ensures, that as long as boxes is an oriented
boundary of B, then the returned sign covering sc is a sign covering of some
oriented boundary of B as well (possibly other, refined one). This follows from
the properties of box bisection (Subsection 1.4.7).

The resulting sign covering sc may not be sufficient and from Subsec-
tion 2.2.3 (also see Figure 2.4) we know, that we need a way to check it. This
is done by the function isSufficient. Its pseudocode is trivial and we include
it in Algorithm 2 mainly for completeness.

Algorithm 1 Construction of a sign covering of a set of boxes with respect
to a given function, using its interval inclusion function.

Input: Set boxes of boxes of dimension n−1; Implementation F of incl. func.
f : D ⊆ Rn → Rn; Refinement threshold ref ≥ 0.; Bisection ratio r with
default value 0.5.

Output: Sign covering sc of a set out wrt. f , such that every B′ ∈ out is a
sub-box of some box B ∈ boxes, ω(B′) ≥ ref and |boxes| = |out|.

1: function signCovering(boxes, F , ref , r = 0.5)
2: sc ← empty sign covering, st ← empty stack of boxes
3: push every box in boxes onto st
4: while st is not empty do

5: B ← pop the top box from st
6: sv ← signVector(B, F)
7: if sv contains a non-zero element or ω(B) ≤ ref then

8: append (B, sv) to sc ⊲ sv might be possibly a zero vector
9: else ⊲ sv is a zero vector and ω(B) > ref

10: (B1, B2)← bisect B in its longest component with ratio r
11: push B1, B2 onto st

29

2. Computing the topological degree

12: end if

13: end while

14: return sc
15: end function

16: function signVector(B, F)
17: range ← F (B)
18: for i ∈ {1, . . . , n} do

19: ri ← i-th component of range
20: vi ← if 0 ∈ ri then 0 else sign of ri

21: end for

22: return (v1, . . . , vn)
23: end function

Algorithm 2 Determining sufficiency of a sign covering.

Input: Sign covering sc of some set boxes of boxes.
Output: True, if sc is sufficient. Otherwise false.

1: function signCovering(sc)
2: for each (B, sv) ∈ sc do

3: if sv is zero vector then return false
4: end for

5: return true
6: end function

The correctness of Algorithm 1 with respect to the output requirement
|boxes| = |out| is based on the way box bisection is defined. Namely, if a box
X is bisected into X1, X2 (regardless of the ratio or along which component),
then X = X1 ∪X2.

2.3 The combinatorial phase

The second phase of computing the topological degree, called the combinat-
orial phase, requires no additional numerical evaluations. It accepts the sign
covering sc computed in the numerical phase, which is a sign covering of an
oriented boundary of the input n-box or oriented cubical set B of n-boxes
wrt. the given Rn-valued function f defined on B.

It then recursively extracts necessary information from sc and constructs
a new sign covering sc′ wrt. a particular function g constructed from f by
omitting one of its components, until it is left with a sign covering of 0-boxes
and with a function of only 1 component.

We denote the result of one level of this recursion step, that rebuilds some
sign covering L into L′, as deg(L). If L happens to be sc, then

deg(L) = deg(f, B, 0),

30

2.3. The combinatorial phase

which is the contract of the top level of this recursion.

This process has a rich theoretical background. We therefore think, that it
is best to first present the step-by-step workflow of deg(L) in Algorithm 3 and
then follow by some example computations before sketching the theoretical
background. There is a note we would like to mention.

The original [2, pp. 13–14] does not mention, how exactly boxes in Step 3b
of Algorithm 3 should be split. It does mention the goal of such bisections, but
leaves a systematic way of performing them up to concrete implementations.
We use a similar approach as the reference implementation [12], described
separately in Subsection 2.3.1 in order not to clutter the flow of Algorithm 3
too much.

Algorithm 3 Combinatorial phase of algorithm [2] (rephrased to better
match our notation.)

Input: Sign covering L of dim. m wrt. Rm+1-valued function f defined on all
boxes in L.

Output: Integer d. If L is a sufficient sign covering of some oriented boundary
∂B of B wrt. f , then d = deg(f, B, 0).

function deg(L)

1. If L is empty, set d = 0 and return. If it is a sign covering of 0-boxes,
then set

d =
1

2

∑

(b,v)∈L

orientation(b) · v (2.2)

and return. Otherwise, continue with the next step.

2. Choose a sign s ∈ {+,−} together with an index 1 ≤ l ≤ m + 1. The
sign covering L is partitioned into two sets, Lsel , that contains all the
pairs (a, v) from L, such that vl = s, and Lnon = L− Lsel .

3. Create an empty sign covering L′. For each box a in Lsel , perform the
following.

a) Create the set bounds of all oriented faces of a.

b) Iterate over the boxes in bounds. Each time you encounter a box b,
that has an (m− 1)-dimensional intersection with some box from
Lnon , yet at the same time is not its subset, bisect this box into
sub-boxes, replace it with the sub-boxes and reevaluate them.

The goal is to perform the bisections in such way, that eventually,
every box b′ in bounds is either a subset of some box from Lnon

or its intersection with every box from Lnon has dimension less
than (m− 1). See Subsection 2.3.1 for more details.

c) Take every box b in bounds, which is a subset of some element c
in Lnon and append the pair (b, v) to L′, where v is a sign vector

31

2. Computing the topological degree

associated to c (in the sign covering L) with omitted l-th compon-
ent.

4. Set d = s · (−1)l+1 · deg(L′) and return.

end function

2.3.1 Bisecting boxes in the set bounds

Let us return to Step 3 of Algorithm 3. The original [2, pp. 13–14] does not
state an exact systematic way of how to bisect boxes in the set bounds and
leaves this decision to concrete implementations.

We decided to use an approach similar to the one used by the reference
implementation [12] and here we describe it.

In the following, we use the notation from Algorithm 3. Let b ∈ bounds
and c ∈ Lnon . Both b and c are m-boxes. The dimension of the box b is m− 1
and the dimension of the box c is m. Suppose, that b is not a subset of c, yet
they have an (m− 1)-dimensional intersection.

The bisection is performed as follows (you may also refer to Figure 2.5 for
a visual aid). If b = I1 × · · · × Im and c = J1 × · · · × Jm, choose the lowest
index k ∈ {1, . . . , m}, such that Ik * Jk. Because of the assumptions, that the
dimension of b is m−1, the dimension of c is m and b has a (m−1)-dimensional
intersection with c, it holds that

• either Ik < Jk (and then also Jk < Ik ≤ Jk; this situation is depicted in
Figure 2.5),

• or Ik > Jk (and then Jk > Ik ≥ Jk).

In the former case, b is bisected into

b1 = I1 × · · · × Ik−1 ×
[

Ik, Jk

]× Ik+1 × · · · × In,

b2 = I1 × · · · × Ik−1 ×
[

Jk, Ik

]

× Ik+1 × · · · × In,
(2.3)

and in the latter case, b is bisected into

b1 = I1 × · · · × Ik−1 ×
[

Ik, Jk

]

× Ik+1 × · · · × In,

b2 = I1 × · · · × Ik−1 ×
[

Jk, Ik

]

× Ik+1 × · · · × In.
(2.4)

Notice, that in the former case, box b1 no longer has a (m−1)-dimensional
intersection with c, because the intersection of its k-th component

[

Ik, Jk

]

with

Jk is the degenerated interval
[

Jk

]

. In addition, the k-th component
[

Jk, Ik

]

of

b2 is a subset of Jk, because Ik ≤ Jk. Similarly for the latter case of bisection.

Bisection results b1, b2 then replace b in the set bounds and are then pro-
cessed in the same way as b. This whole process ensures, that the original

32

2.3. The combinatorial phase

I1I1 J1 J1

b

c

b1 b2

c

Figure 2.5: Bisection of a box b in the bounds set. Follow the text of Subsec-
tion 2.3.1. Here, both b ∈ bounds, c ∈ Lnon are 3-boxes, the dimension of b
is 2 and the dimension of c is 3. They have a 2-dimensional intersection (grey
color in the fig.), but b is not a subset of c. The first component of b is I1 and
the first component of c is J1. Boxes b1, b2 are the bisection results and b1 no
longer has a 2-dimensional intersection with c.

box b eventually gets replaced by boxes, that can be divided into two categor-
ies. Boxes in the first category will be subsets of some boxes from Lnon , while
boxes in the second category will not have an (m−1)-dimensional intersection
with any box from Lnon .

2.3.2 Example computations

Here we present a few by hand computed examples, in which we perform the
combinatorial phase and compute topological degrees. These examples use
the inputs and results from the examples from Subsection 2.2.2.

Example 2.5. The result of Example 2.2 was a sign covering L of an oriented
boundary of B = [−1, 1] with orientation 1 wrt. f(x) = exp(abs(x)), depicted
in Figure 2.1.

Boxes in this covering are of dimension 0, therefore no recursive reduction
is performed and the combinatorial phase just computes the formula 2.2 and
returns its value. So in total,

deg(f, B, 0) = deg(L) = 1 · 1 + (−1) · 1 = 0.

Example 2.6. Figure 2.2 displays a sign covering L of an oriented boundary
of B = [0, 2]× [1, 2] with orientation 1, wrt. function

f(x) = (2x2 − y2 − 2, x2 + y2 − 4).

This sign covering was the result of Example 2.3.

33

2. Computing the topological degree

Figure 2.6 then visually depicts, how a new sign covering L′ is constructed
from L in deg(L)

For the sign s = − and index l = 1, boxes a, c1, d2 are selected into Lsel.
For each of these boxes, the respective set bounds of oriented faces is then
constructed and examined. We come across six boxes in total, namely A−,
A+, C−, C+, D−, D+. Two of them, C+ and D− are subsets of non-selected
boxes, c2 and d1, respectively. From C+, D− and the sign vectors of c2, d1, a
new sign covering L′ is constructed. It contains two pairs, ((C+, 1),

(

−
)

) and
((D+,−1), (+

)

).

L′ becomes the input for the next recursive call. Because it is already a
sign covering of 0-boxes, this call is the bottom level of the recursion and it
returns

deg(L′) =
−1 · 1 + 1 · (−1)

2
= −1,

and altogether

deg(f, B, 0) = deg(L) = −(−1)1+1 · deg(L′) = −1 · (−1) = 1.

(−
0

)

a
(+

+

)

b

(−
−
)

c1
(

✁0−
)

c2
(

+
0

)

c3

(

✁0
+

)

d1

(−
0

)

d2

BLsel

D−A−, D+

A+, C− C+

((D+,−1), (+
)

)

((C+, 1),
(

−
)

)

Figure 2.6: One step of combinatorial for the input from Example 2.6. Ori-
entation of B is 1, newly constructed sign covering contains pairs pointed to
by dashed arrows. Lsel contains the boxes a, d2, c1. Their oriented faces are
denoted by capital letters.

Example 2.7. Consider the function f(x) = (x2 + y2− 1, 3
2x− y) on the box

B = [−1, 1]× [−1, 1] with orientation 1, discussed in Example 2.4. A sufficient
sign covering L of an oriented boundary of B wrt. f is in Figure 2.3.

The workflow of a call to deg(L), up to the point of constructing a sign
covering L′ of dimension 0, is in Figure 2.7.

For the sign s = + and index l = 1, boxes c1, d1 are selected into Lsel. For
each of these boxes, the respective set bounds of oriented faces is created and
examined. The total of four boxes are encountered, namely C−, C+, D−, D+,

34

2.3. The combinatorial phase

all of which are subsets of non-selected boxes, a, c2, d2 and b respectively.
From these, a new sign covering L′ is constructed, containing four pairs in
total, ((C−,−1), (−

)

), ((C+, 1),
(

+
)

), ((D−, 1),
(

−
)

) and ((D+,−1), (+
)

).
The sign covering L′ becomes the input to the bottom level recursive call,

that returns

deg(L′) =
−1 · (−1) + 1 · 1 + 1 · (−1) + (−1) · 1

2
= 0,

and altogether

deg(f, B, 0) = deg(L) = (−1)1+1 · deg(L′) = 1 · 0 = 0.

Notice, that a different selection of s = − and l = 1 causes Lsel = ∅, which
results in L′ = ∅, and the call to deg(L′) simply returns 0, without the need
of further computation. In general, the way of selecting the sign and index
matters and we discuss it more in Subsection 2.3.4.

(

✁0−
)

a
(

✁0
+

)

b

(

+
0

)

c1
(

✁0
+

)

c2
(

0
+

)

c3

(

+
0

)

d1
(

✁0−
)

d2
(

0
−
)

d3

B

Lsel

C− C+

D+
D−

((C−,−1), (−
)

)

((C+, 1),
(

+
)

)

((D+,−1), (+
)

)

((D−, 1),
(

−
)

)

Figure 2.7: One step of combinatorial phase for the input from Example 2.7.
Orientation of B is 1 and newly constructed sign covering contains pairs poin-
ted to by dashed arrows

2.3.3 Sketching the theoretical background

The following paragraphs are meant to sketch the general ideas involved in
Algorithm 3. Again, for all the in detail explanation and proofs, refer to [2].

Let s, l denote the sign and index, respectively, selected in the second
step of Algorithm 3. As explained in depth in [2, Theorem 2.9], if L is a
sufficient sign covering of an oriented boundary of B wrt. the input function
f , 0 /∈ f(|∂B|), then the boxes in Lsel can be partitioned into oriented cubical
sets D1, . . . , Dp and corresponding oriented boundaries ∂D1, . . . , ∂Dp, such
that for every i ∈ {1, . . . , p}, each box in ∂Di is a subset of some box in Lnon,

35

2. Computing the topological degree

and 0 /∈ f¬l(|∂Di|), where f¬l is a function formed from f by excluding its
l-th component. In addition, the degree can be expressed as

deg(f, B, 0) = s(−1)l+1
∑

i∈{1,...,p}
deg(f¬l, Di, 0). (2.5)

Now let c ∈ Lnon denote a box, that some fixed ∂Di is a subset of, and let v
denote the associated sign vector of c in the sign covering L. Because the
box c was not selected into Lsel , we necessarily have vl 6= s. Further, the
non-empty intersection of c with ∂Di implies, that vl cannot be the opposite
sign of s, because L is wrt. f . Therefore vl = 0, However, L is also sufficient,
and therefore v must have a non-zero sign at least at one position other than l.

And so a sufficient sign covering of ∂Di wrt. f¬l exists and the right hand
side of 2.5 can be computed recursively performing the same steps. This is
one of the core factors of the algorithm.

However, notice from the described steps of computing deg(L) in Al-
gorithm 3, that it actually does not construct the sign covering L′

i for each ∂Di

separately and does not compute the right hand side of 2.5 by performing p
recursive calls at the same level. Instead, it performs the call only once at
each level with the sign covering L′ (Step 4 in Alg. 2.5). The way L′ is con-
structed guarantees it to contain every box in each ∂Di. Apart from these, L′

may possibly contain some other boxes, namely some pairs of identical boxes
with opposite orientation. Nevertheless, as [2, Chapter 3] explains, deg(L′) =
∑

i deg(L′
i), and this approach yields the correct result.

By constructing and using L′ for the recursive computation of the degree,
the actual searching for the decomposition D1, . . . , Dp and ∂D1, . . . , ∂Dp is
elegantly bypassed and the number of recursive calls is reduced to one per
level.

Finally, the return value (2.2) for a sign covering with 0-boxes corresponds
to the fact, that the boxes in such sign covering are oriented faces of oriented

edges, and the topological degree of an oriented edge
−→
ab (interval [a, b] with

positive orientation) is given as

deg(f,
−→
ab, 0) =

1

2
(sgn(b)− sgn(a)). (2.6)

2.3.4 Sign-index selection strategy

The way the sign s and index l are selected in Algorithm 3 may impact the
running time of the computation. In [2], the authors state that according to
their numerical experiments, the computation tends to take more time as the
number of boxes selected into Lsel increases, and so it makes sense to select s
and l in each recursion step, so that the number of selected boxes is minimal.

We call any systematic way of selecting s and l a sign-index selection
strategy. The advantage of the one mentioned in the previous paragraph,

36

2.4. Parametrized functions

which we decided to call the least frequent sign-index selection strategy is,
that when no sign vector in the examined sign covering L matches a certain
combination of s and l, then this combination is selected, because it yields
Lsel = ∅. This then causes the constructed sign covering L′ to also become ∅,
and so the following call deg(L′) immediately returns 0 and the computation
ends. We have actually seen this already in Example 2.7.

2.4 Parametrized functions

In Chapter 3, when developing our solving algorithm, we work with functions
that are parametrized with some parameter box P ⊆ Rm. By ourselves, we
made a few considerations regarding parametrized functions and the topolo-
gical degree computation.

As already stated in Subsection 1.3.4, a function fP defined on X ⊆ Rn and
parametrized with P ⊆ Rm can be viewed as a set of functions {fp | p ∈ P},
where fp is a function obtained from f by replacing its parameters with one
concrete value p ∈ P . Therefore, we can say, that a given sign covering sc is
with respect to the function fP , if it is with respect to every function fp, p ∈ P .

It may then make sense to ask, whether for a box or an oriented cubical set
B, the degree deg(fP , B, 0) (Section 1.5) exists and how to compute it. Well,
if B together with each fp, p ∈ P satisfies the input properties for computing
deg(fp, B, 0), then we can pass this one sign covering sc to the combinatorial
phase. That is, we can make the call deg(sc), whose contract ensures, that the
single computed value is equal to deg(fp, B, 0) for any p ∈ P , because sc is a
sufficient sign covering wrt. every fp, p ∈ P . In other words, the deg(fP , X, 0)
exists and deg(sc) computes its value.

Notice, that the combinatorial phase does not have to know, that we ac-
tually work with parametrized functions. It is solely up to the numerical
phase to provide the sign covering with desired properties. And so to this
end, we simply enhance the input contract of our function signCovering

(Subsection 2.2.4), to accept interval inclusion functions FP of parametrized
functions fP (see Subsection 1.3.4).

Example 2.8. Consider the function f(x) = (x + p, y) on B = [1, 2]2 (with
orientation 1), parametrized by P = [−1, 1] (x, y denote the variables, p de-
notes the parameter).

We are interested in finding deg(fP , B, 0), if it exists. We first need to
find a sufficient sign covering of some oriented boundary of B wrt. fP . To
this end, we consider an interval inclusion function FP of fP in the sense of
Subsection 1.3.4 and the set S of all oriented faces of B. We then simply
perform the steps of Algorithm 1, passing FP and S as inputs. This mainly

37

2. Computing the topological degree

involves evaluating all boxes in S under FP , that is

FP (B
−
1) = FP ([1]× [1, 2]) = (1 + [−1, 1] , [1, 2]) = ([0, 2] , [1, 2]),

FP (B
+
1) = FP ([2]× [1, 2]) = (2 + [−1, 1] , [1, 2]) = ([1, 3] , [1, 2]),

FP (B
−
2) = FP ([1, 2]× [1]) = ([1, 2] + [−1, 1] , 1) = ([0, 3] , 1),

FP (B
+
2) = FP ([1, 2]× [2]) = ([1, 2] + [−1, 1] , 2) = ([0, 3] , 2).

Now, based on these evaluations, boxes in S get associated a sign vector
by the rule (2.1) (written in pseudocode as the function signVector in Al-
gorithm 1). This results in a sign covering sc of S wrt. FP (and therefore
also wrt. fP). The pairs in sc are as follows (boxes are written with their
orientations).

box sign vector box sign vector

(B−
1 ,−1) (

0
+

)

(B+
1 , 1)

(+
+

)

(B−
2 , 1)

(

0
+

)

(B+
2 ,−1) (

0
+

)

We see, that sc is sufficient, so the numerical phase ends and we pass
sc to the combinatorial phase. That is, we compute deg(sc) (Algorithm 3),
whose contract ensures, that the computed value is actually deg(fP , B, 0). To
compute deg(sc), we simply proceed as in the examples from Subsection 2.3.2.
We can do this in a smart way and perform the least frequent sign-index
selection strategy to select the sign s and index l. This results in setting s
to − and l to either 1 or 2, and so Lsel and subsequently the new sign covering
L′ constructed from it all become ∅. The recursive call deg(L′) then simply
returns 0. So we get

deg(fP , B, 0) = deg(sc) = −(−1)l+1 · deg(∅) = 0.

2.5 Reasons for providing a custom

implementation

In this section, we summarize the reasons that led us to provide a custom
implementation of the algorithm [2], some of which were already mentioned
in the previous text. The main reasons are the following.

• We wanted an implementation, that would use the same underlying
interval arithmetic library and all the structures we implemented, as
in our implementation of our main solving algorithm from Chapter 3.
We wanted to be able to call the topological degree computation directly
from our code.

• We needed to adjust the input contracts to better suit our particular
needs. See Subsection 2.2.3.

38

2.5. Reasons for providing a custom implementation

• We wanted to implement a possibility to execute a part of the combin-
atorial phase in parallel using threads.

• We thought, that it would be useful to allow more parametrization via
a user interface. For instance, we allow to set the bisection ratio during
the sign covering computation in the numerical phase or even the way
of performing function evaluations (we offer three different interpreters,
see Section 5.5).

• We wanted an implementation, that would consist of smaller and more
maintainable pieces for easier testing, compared to the reference one [12].

The reference implementation [12] does not meet these requirement to our
satisfaction. We used it mainly to test the correctness of our implementation
and we compared their performances, see Section 6.3.

39

Chapter 3

Developing the solving

algorithm

Here we describe all key steps and insights involved in the effort to develop
our solving algorithm. We start with general ideas and follow by formulating
the top level workflow. Then we present and analyze different specializations
of its core components, that encapsulate the logic impacting the quality of
the algorithm. These concepts are then captured into pseudocodes, which we
subsequently use as guidelines for our implementation.

3.1 Problem formulation

Let us first remind ourselves of the problem we are solving. We are given an
equation system fP (X) = 0 of n ≥ 1 equations and n real-valued variables
from an input box X ∈ I(Rn), parametrized by m ≥ 1 real-valued paramet-
ers from an input box P ∈ I(Rm). We are asked to characterize subsets of
points p ∈ P , based on whether an x ∈ X exists, such that fp(x) = 0 holds.
Our solution should be based on floating point arithmetic and be robust with
respect to rounding errors.

3.1.1 Notation

Throughout this chapter, we implicitly assign the meaning of letters X, P , fP

to the one from the paragraphs above to prevent the constant repetition of
restating it. In addition, we will use X ′, P ′ to express arbitrary sub-boxes
of X and P , respectively. Further, we denote FP ′ an inclusion monotonic
convergent interval extension function of fP ′ in the sense of Subsection 1.3.4
and refer to it simply as the inclusion function of fP ′ .

We also implicitly suppose, that the box X and all its considered sub-boxes
have the same implicitly given orientation. Its value is not really important. It

41

3. Developing the solving algorithm

is just utilized by the algorithm for computing topological degree introduced
in Chapter 2.

3.2 Basic approach and decisions

3.2.1 Choosing the way of characterization

Because both input sets X and P are entered as boxes, it makes sense to
present our output using boxes as well. Boxes (Sections 1.2 and 1.4) are easy
to implement and to work with, they posses little memory footprint and are
suitable for recursive bisecting into sub-boxes, which allows to approximate
areas of non-rectangular shapes with sufficient amount of small-enough boxes,
see Figure 3.1.

Figure 3.1: Approximation of areas of non-rectangular shapes by boxes in 2D
space, where the boxes are simply rectangles.

We will therefore want the output of our algorithm in the form of two lists
of boxes N and Y , that meet the following properties,

∀P ′ ∈ N. P ′ ⊆ P ∧ ∀p ∈ P ′.∀x ∈ X. fp(x) 6= 0, (3.1)

∀P ′ ∈ Y. P ′ ⊆ P ∧ ∀p ∈ P ′.∃x ∈ X. fp(x) = 0. (3.2)

In other words, we are grouping points p ∈ P into boxes of two mutually ex-
clusive types; one that contains points p, for which fp(x) = 0 for some x ∈ X,
and one, for which fp(x) 6= 0 for every x ∈ X. Note, that property (3.1) is
equivalent to

∀P ′ ∈ N. P ′ ⊆ P ∧ 0 /∈ fP ′(X). (3.3)

Whenever we have enough information to put a box P ′ ⊆ P into either Y
or N , we say that P ′ is decided.

We want the lists Y , N to provide as much information as possible, mean-
ing the more points from P are grouped into a box belonging to either Y
or N , the better. We consider this the major criterion of a solution quality
and restate it in a more formal way during our testing, see Subsection 6.5.3.
For two solutions of similar quality, we could consider a minor criterion in
the form of the sizes of the lists Y and N and prefer the one with lesser
memory footprint—that is the one containing less but bigger boxes (in terms
of volume).

42

3.2. Basic approach and decisions

3.2.2 Computing with boxes

We would like to use the convenient properties of boxes stated in 3.2.1 not
only for presenting outputs, but also during all intermediate computations.
Therefore we need some system of computation with boxes. Namely, we must
have a way of obtaining box approximations of images fP ′(X ′). To this end,
we will use interval arithmetic (see Section 1.3), and perform all computations
with an interval inclusion function FP ′ instead. Apart from providing a con-
venient way of approximating results fP ′(X ′) with boxes, computing with FP ′

also bounds possible round-off errors, allowing the process of deciding P ′ ∈ Y
or P ′ ∈ N to be sound wrt. rounding.

The biggest disadvantage of this approach is probably the over-estimation
tendency of FP ′ (see Section 1.3.3). Approaches of how to counter-weight it
are discussed throughout the rest of the chapter.

It is not our goal to provide out own implementation of interval arithmetic.
Instead, we perform a survey on existing implementations and choose the one
most suitable for our purposes, see Section 4.2.

3.2.3 The idea of showing that a box belongs to the N list

To decide whether P ′ ∈ N , it just suffices to confirm that 0 /∈ fP ′(X) (prop-
erty (3.3)). Working with FP ′ instead of fP ′ comes in handy here, because
its inclusion property ensures, that 0 /∈ FP ′(X) implies 0 /∈ fP ′(X). In addi-
tion, testing 0 /∈ FP ′(X) is cheap, as it only involves at most 2n comparisons
between 0 and the endpoints of n components of FP ′(X).

In general, however, the way fP ′ is prescribed together with the dia-
meter of X may cause the overestimation of FP ′ to become big enough, so
that 0 ∈ FP ′(X) will hold, while actually 0 /∈ fP ′(X). In such cases, we may
reduce the overestimation by considering a box paving T̄ of X containing
small enough sub-boxes of X, and evaluate FP ′(X ′) for every X ′ ∈ T̄ . If none
of the results FP ′(X ′) contains zero, then also no fP ′(X ′) contains zero, and
because T̄ is a box paving of X, it follows that 0 /∈ fP ′(X).

Example 3.1. Consider the function fP (X) = x2
1 − x1 + p1 on X =

[

5
4 , 2
]

,

parametrized by P = [0, 1]. We want to show, that P ∈ N . To this end, we
consider the natural inclusion function FP of fP (see Subsections 1.3.2 and
1.3.4) and compute

FP (X) =

[

25

16
, 4

]

−
[

5

4
, 2

]

+ [0, 1] =

[

− 7

16
,
15

4

]

. (3.4)

We got 0 ∈ FP (X), which means no luck, so we pave X with X1 =
[

5
4 , 6

4

]

43

3. Developing the solving algorithm

and X2 =
[

6
4 , 2
]

and perform two separate evaluations.

FP (X1) =

[

25

16
,
36

16

]

−
[

5

4
,
6

4

]

+ [0, 1] =

[

1

16
, 2

]

, (3.5)

FP (X2) =

[

36

16
, 4

]

−
[

6

4
, 2

]

+ [0, 1] =

[

1

4
,
7

2

]

. (3.6)

This time, we have 0 /∈ FP (X1) and 0 /∈ FP (X2). Because X = X1∪X2 and FP

is an inclusion function of fP , we have that 0 /∈ fP (X), and thus P ∈ N .

3.2.4 The idea of showing that a box belongs to the Y list

To show that P ′ ∈ Y , we make use of the notion of topological degree and its
property of solvability from Section 1.5.

For a given sub-box P ′ ⊆ P we always try to compute a sufficient sign
covering of an oriented boundary ∂X of X wrt. the given inclusion function FP ′

of the parametrized function fP ′ defined on X via the function signCovering

(Section 2.2). On success, we pass such sign covering to the function deg, that
computes deg(fP ′ , X, 0) (Sections 2.3 and 2.4).

If deg(fP ′ , X, 0) 6= 0, then the solvability property ensures, that for every
parameter value p ∈ P ′, the function fp, has a root in X, and therefore P ′ ∈ Y .

Instead of the domain X, we can again consider some box paving T̄ of X.
To show that P ′ ∈ Y , it is then sufficient if deg(fP ′ , X ′, 0) 6= 0 for at least
one X ′ ∈ T̄ . However, while the process of deciding P ′ ∈ N benefits from
splitting X into smaller sub-boxes, it may not always be beneficial for showing
that P ′ ∈ Y . We describe it in more detail in Section 3.3.

3.3 Manipulating the input domain box to infer

the existence of a root

We have mentioned in Subsection 3.2.3, that splitting the input variable do-
main box X into some box paving T̄ helps to decide, if a sub-box P ′ of the
parameter domain P belongs to the list N satisfying (3.1).

On the other hand, when deciding if P ′ belongs to the list Y (having
the property (3.2)) using the solvability property of the topological degree as
described in Subsection 3.2.4, splitting the domain X can both help and hurt.
Let us demonstrate it on a simple example.

In Figure 3.2a, we show some arbitrary function g : [a, b] → R. Although
0 ∈ g([a, b]), we get deg(g, [a, b] , 0) = 0, because g(a) > 0, g(b) > 0, and we
cannot deduce the root existence from the solvability property.

But a splitting of [a, b] into [a, c] and [c, b], such that g(c) < 0, as depicted
in Figure 3.2b, allows us to infer the existence of a root on [a, b], because the
degree on either of the subintervals is non-zero. The performed splitting was
helpful here.

44

3.3. Manipulating the input domain box to infer the existence of a root

In Figure 3.2c, however, a different scenario is shown. Because g(a), g(b)
have different signs different from each other, the degree deg(g, [a, b] , 0) is non-
zero and the solvability property can be immediately applied to show the root
existence on [a, b]. Notice now, what would happen, if we would instead split
this interval into [a, c], [c, b], where g(c) = 0 like the figure shows. Because c
is zero, neither deg(g, [a, c] , 0), nor deg(g, [b, c] , 0) is defined and so this time,
the splitting did not help us and sticking with the original interval [a, b] was
the key.

Within our problem domain, we in general work with parametrized func-
tions. Figure 3.2d pictures a situation, where g is parametrized by some para-
meter box P . When deducing the existence of a root on [a, b] for every para-
meter p ∈ P , the situation in Figure 3.2c comes to pass, whenever gp(c) = 0
for at least one p.

a b
x

y

+ +

(a) The degree of [a, b] is 0, because
g(a) > 0, g(b) > 0.

c

+

a b

x

y

+

(b) Splitting of [a, b] with c. The degree
of both [a, c] and [c, b] is non-zero.

ca b

x

y

+0

(c) Different triplet of points a, b, c. De-
gree of [a, c] and [c, b] is undefined, be-
cause g(c) = 0.

d
a

x

y

0
b

e

(d) Function g is parametrized by some
box P . Any c ∈ [d, e] results in the scen-
ario in 3.2c for some p ∈ P .

Figure 3.2: Manipulating the domain box to infer the existence of a root
informally demonstrated on an arbitrary R-valued function. Follow the text
of Section 3.3.

As we now see, the difficulty lies in the fact that for an arbitrary sub-

45

3. Developing the solving algorithm

box X ′ of X, the image of its boundary under the given input function fP ′

may contain zero, causing the particular topological degree not to be defined.
Handling the domain box X therefore needs to be done more carefully, which
we focus on next.

3.4 The frame data structure

When deciding sub-boxes of P , we will use the methods mentioned in Subsec-
tions 3.2.3 and 3.2.4. To this end, especially to deal with the issue described
in Section 3.3, we introduce a generic data structure called frame. Frames are
meant to encapsulate the logic of manipulating the input box X. Here, we
describe their general properties, and provide concrete specializations later.

A frame instance is always created with respect to (using notation from
Section 3.1)

• The input domain n-box X.

• A parameter sub-box P ′ of the input parameter m-box P .

• An implementation FP ′ of an inclusion function of the input function fP ′ ,
defined on X.

Every frame stores some collection C of sub-boxes of X, also called the items
collection of the given frame. There are no general requirements on the un-
derlying structure used to store, access and modify C. The only mandatory
things are, that its elements are allowed to be iterated over in a loop, and that
it always satisfies the following property

0 /∈ fP ′(X − |C|), (3.7)

where |C| denotes the union of all boxes in C. See also Figure 3.3.
The motivation behind this is the typical way we want the frame’s items

collection to be processed, which consists of manipulating the set C, so that
|C| becomes progressively smaller by removing its subsets that are guaranteed
not to contain a root under fP ′ , which is the requirement expressed by (3.7).
Notice, that (3.7) implies

C = ∅ =⇒ P ′ ∈ N, (3.8)

and this idea forms the basics of the process of determining that P ′ ∈ N .

3.4.1 The capacity of the frame’s items collection

We assume that every frame’s items collection has a certain fixed capacity
of how many items it can store. In this chapter, we do not care about its
exact value, and we suppose, that every frame ever created, within a given

46

3.4. The frame data structure

X

(a) Actual sub-boxes (light gray) of X
in frame’s item collection C.

X

(b) Largest subset S of X (dark gray),
s.t. 0 /∈ fP ′(S). S must be a superset of
X − |C| (white areas in Fig. 3.3a).

Figure 3.3: Sample depiction of the core property (3.7) for frames.

algorithm run, has the same capacity. We just bear in mind, that the way of
working with the frame structure may depend on whether it is able to store
more items or not. We discuss this in more detail later. We deal with the
concept of capacity mainly because we want to study the effect of limited
resources on the quality of the results of our algorithms.

3.4.2 Working with frames

To work with frames, we use several functions, that can be divided into two
categories. The first category contains functions through which we access
some attributes or properties of frames. The second one contains functions
that create new frames of certain properties.

The general contract of functions in the first category is in Table 3.1.
Apart from noting, that the function frHasRoom is our interface to the
capacity of the items collection wrt. Subsection 3.4.1, these require no further
explanation, behave always the same and their code is only affected by the
structural properties of the underlying items collection. We therefore do not
list their specializations for concrete frame structure designs and just implicitly
assume, that they are provided.

Table 3.1: Contract of functions retrieving properties of frames.

Function frPBox

Input: Frame frame.
Output: The underlying parameter box P ′, P ′ ⊆ P , this frame is
associated with.

Function frFunc

Input: Frame frame.
Output: The underlying interval inclusion function FP ′ of fP ′ this

47

3. Developing the solving algorithm

frame is associated with.

Function frItems

Input: Frame frame.
Output: The underlying items collection C of sub-boxes of X, that

can be iterated over.

Function frEmpty

Input: Frame frame.
Output: Boolean b = true, if the underlying items collection is empty,

otherwise b = false.

Function frHasRoom

Input: Frame frame; Integer i.
Output: Boolean b = true, if the underlying items collection of frame

has enough capacity to store i more items (boxes), otherwise b = false.

The second category comprises of five functions named frInit, frPrune,
frHasRoot, frRefine and frBisect. In Figure 3.4, we informally sketch
the intended interaction between these functions when processing frames.
Table 3.2 then shows the general contract of the functions in the second cat-
egory.

frInit

frPrune frHasRoot

frRefinefrBisect

initframe

prunedfr

procfr

refframe

child1 child2

Figure 3.4: Informal sketch of the intended interaction between the methods
manipulating frames. In the light-gray part, the items collections are processed
and modified, while in the dark gray part, associated parameter sub-boxes are
processed and bisected.

The idea is, that an algorithm which uses frames to solve a problem from
our problem domain (Section 3.1) creates one initial frame using the func-
tion frInit at the very beginning and every other frame is then created by
processing some other frame via the rest of the functions.

The function frBisect is used to create child frames of the same proper-
ties as the given parent frame, only associated with smaller parameter boxes.
Working with the child frames instead of the original frame allows the inter-

48

3.4. The frame data structure

val inclusion function to produce less overestimated results in general. This
function is meant to work the same way for every specialized design of frames
introduced later. We decided to always perform the bisection along the longest
component of the particular box and with the given ratio passed as parameter.

Both functions frInit and frBisect require no further explanation and
we simply assume, that they are provided and work the same for each special-
ized frame design.

This leaves us with three functions, that, along with the structural prop-
erties of items collection, encapsulate the behavior dictating the quality of
result our algorithm provides—that is the portion of P it will be able to de-
cide to belong to either Y or N . We decided to split the encapsulation into
these three functions mainly for better maintainability. Their bodies are later
covered for each frame design separately.

• Function frPrune. This is used for deciding P ′ ∈ N in a way we
sketched when we were discussing property (3.7), which we later elab-
orate on.

• Function frHasRoot. This function is meant to make use of the
signCovering and deg functions (Sections 2.2 and 2.3) to look for
a box X ′ in the items collection, such that deg(fP ′ , X ′, 0) is non-zero,
which would imply (using the solvability property of the topological de-
gree), that P ′ ∈ Y . We also intentionally introduce the possibility to
return a modified frame (procfr), as we think this may be useful in some
specializations to express particular ideas.

• Function frRefine. This one is meant to be used in concrete designs to
create frames with modified items collections, typically by bisecting some
of its boxes, in order to provide more precise information for subsequent
calls to frPrune and frHasRoot. This is also the function, whose
behavior may depend on the capacity of the underlying items collection.

Table 3.2: Contract of functions manipulating frames.

Function frInit

Input: n-box X; m-box P ; Implementation FP of incl. function of
fP : X ⊆ Rn → Rn parametrized by P .

Output: New frame structure initframe associated with X, P and FP

with the items collection C = {X}.
Function frBisect

Input: Frame frame; Bisection ratio 0 < r < 1.
Output: Pair of frames (child1, child2) associated with X, P ′

1, FP ′

1
and

X, P ′
2, FP ′

2
, respectively, where P ′

1 and P ′
2 are results of bisecting P ′

along its longest component with the ratio r. Both child1 and child2

49

3. Developing the solving algorithm

have the exact same items collection and all other properties as frame.

Function frPrune

Input: Frame frame.
Output: Frame prunedfr associated with the same P ′, FP ′ as frame,

having no box X ′ in it items collection, for which 0 /∈ FP ′(X ′).

Function frHasRoot

Input: Frame frame with the items collection C; Refinement threshold
ref ≥ 0 to pass to the signCovering function.

Output: Frame procfr associated with the same X, P ′, FP ′ as frame
and whose items collection C ′ satisfies |C| = |C ′|;
Boolean b, s.t. b = true implies that there exists some X ′ ∈ C,
s.t. deg(fP ′ , X ′, 0) is defined and non-zero.
Notes: This function is meant to use the signCovering and deg

functions (Sections 2.2 and 2.3).

Function frRefine

Input: Frame frame with the items collection C.
Output: Frame refframe associated with the same X, P ′, FP ′ as frame

and whose items collection C ′ satisfies |C| = |C ′|.

3.4.3 Proving the correctness of the functions manipulating

frames

When considering a concrete design of frames in the subsequent sections, we
will need to show, that the following properties are fulfilled.

1. No manipulation with frames violates (3.7).

2. Functions from Tables 3.1 and 3.2 are designed to keep their respective
contracts.

As for the first point, we intentionally made all the functions manipulating
frames never to modify their inputs, but to return modified copies instead (if
applicable). This means, that this verification is reduced only to the those
spots, where new frames are created. Based on Table 3.2, there are five
ways new frames can be created—as the results of calls to frInit, frBisect,
frPrune, frHasRoot and frRefine.

For the result of frInit, property (3.7) holds trivially, because its items
collection is C = {X}, and so X − |C| = ∅. For the resulting frames of
frBisect, the property (3.7) holds, whenever it holds for its input frame, as
no changes to the underlying items collection is made. These two functions
thus do not need further examination. The other three functions are then
inspected further in the text, for each concrete design individually.

50

3.5. Workflow of the parameter space decomposition using frames

With regard to the other point, we make sure to check the three core
functions frPrune, frHasRoot and frRefine, as these are the ones whose
bodies are specialized in each concrete frame design.

3.4.4 A remark on the finite precision of floating point

representation

In practice implementations based on floating point arithmetic (which also
includes our own implementation), a bisection of a box may not always suc-
ceed, because the box can be so small, that the limited precision of floating
point representation could no longer distinguish between the parent box and
the results of its bisection.

In this chapter, we do not consider such scenarios and assume implicitly,
that every bisection succeeds, and postpone addressing this issue until our
implementation, where the way of dealing with such scenario is to take the
exact steps, as if the items collection were having insufficient capacity to store
the bisection result (the two new child boxes).

3.5 Workflow of the parameter space

decomposition using frames

Our approach is to use the previous sections and introduce a top-level function,
whose general workflow can stay the same regardless of any concrete specializ-
ation of the frame data structure, so that the inner variable parts of the logic
can be moved under these specializations as intended. Implementation-wise,
this allows for better code usability and maintainability, which we consider to
be the main benefit of such approach

At the core of our top-level function, we employ a branch and bound
like technique on P using DFS, which realizes a systematic parameter space
decomposition. The stack is manipulated in pre-order manner. Elements
managed by the stack are instances of the frame data structure, introduced
in Section 3.4. The manipulation of frames is designed wrt. Subsection 3.4.2,
see especially Figure 3.4.

The initial frame is created by a call to frInit, passing in the whole box P
itself, and the function frBisect is used afterwards to spawn child frames by
bisecting associated sub-boxes of P . Depth of DFS is dictated by specifying
the minimal possible width of sub-boxes of P .

When a frame frame is popped from the stack, its associated sub-box P ′

of P is examined using calls to frPrune and frHasRoot, in a hope to
gain enough information to be sure, that either P ′ ∈ N , or P ′ ∈ Y . If this
attempt is successful and we therefore know, that P ′ belongs either to the
list N or Y , then any P ′′ ⊆ P ′ must also belong to the same list as P ′ (see

51

3. Developing the solving algorithm

Subsection 3.2.1), so we no longer need to bisect the frame via frBisect, and
the DFS branch rooted at frame can be pruned (removed).

Algorithm 4 summarizes this top-level workflow in a pseudo-code.

Algorithm 4 The top-level branch and bound like parameter space
decomposition.

Input: Implementation FP of inclusion function for fP : X ⊆ Rn → Rn para-
metrized by P ⊆ Rm; Bisection ratio r; Box width threshold d ≥ 0; Face
refinement modifier E > 0.

Output: Lists of boxes N, Y satisfying 3.1 and 3.2, respectively.
1: function solve(FP , X, P , d, E)
2: Y ← empty list, N ← empty list, st ← empty stack
3: initframe ← frInit(X, P, FP)
4: push initframe onto st ⊲ root stack element containing initframe
5: while st is not empty do

6: frame ← pop frame from st
7: P ′ ← frPBox(frame) ⊲ extract param sub-box
8: prunedfr ← frPrune(frame)
9: if frEmpty(prunedfr) = true then

10: append P ′ to N
11: else

12: ref ← getFaceRefThreshold(X, P, P ′, E)
13: (procfr , b)← frHasRoot(prunedfr , ref)
14: if b = true then

15: append P ′ to Y
16: else if ω(P ′) > d then

17: ⊲ Underlying box P ′ is not decided, but still wide enough
18: refframe ← frRefine(procfr)
19: child1 , child2 ← frBisect(refframe, r)
20: push child1 , child2 onto st
21: end if

22: end if

23: end while

24: return N ,Y
25: end function

26: function getFaceRefThreshold(X, P , P ′, E)
27: return (ω(P ′)/ω(P)) · (ω(X)/E)
28: end function

3.5.1 Remark on the face refinement threshold

Let us closer discuss the meaning of the parameter E in Algorithm 4. As we
know from Subsection 3.4.2, frHasRoot is supposed to make use of the func-
tion signCovering to compute sign coverings (Algorithm 1). The function

52

3.6. Static frames

signCovering accepts the parameter ref , that dictates the extent to which
the constructed sign covering is refined in order to create one that is sufficient.

During the execution of Algorithm 4, the widths of the processed sub-boxes
of P as well as the sub-boxes of X in items collection of frames are meant to
get smaller over time. Because of that, we wanted the value of ref to be
computed adaptively to somehow reflect the ratios of the widths of currently
processed sub-boxes and the widths of the input boxes. We also wanted it to
be adjustable from the outside and its computation to be easy.

Our solution is to compute it as

ref =
ω(P ′)
ω(P)

· ω(X)

E
, (3.9)

which basically allows ref to become smaller, hand in hand with widths of
parameter sub-boxes P ′ getting smaller. This dependence is then customizable
by the passed modifier E. In Algorithm 4. we encapsulated (3.9) into the
function getFaceRefThreshold.

3.5.2 A discussion of correctness of the core algorithm

We need to be assured that Algorithm 4 is sound wrt. putting parameter
sub-boxes into the lists N and Y , meaning that it never puts a box P ′ into
a list, which it actually does not belong to. We assume, that all functions
manipulating frames are correct wrt. Subsection 3.4.3.

Consider the contracts of the frame functions from Table 3.2. First of
all, the output frames frame, prunedfr , procfr , refframe all have the same
underlying parameter box P ′, because the only function, that creates frames
with a different parameter box is frBisect. Therefore it is fine to extract P ′

from frame on line 7, and then use it on lines 10, 12, 15 and 16. In other
words, if we would use a call to frPBox right before each of those lines, with
the particular frames listed above as inputs, it would always yield the same
box P ′.

The rest is then simple. If frEmpty(prunedfr) is true on line 9, then we
have P ′ ∈ N thanks to property (3.8). Correctness of line 15 then follows
immediately from the contract of frHasRoot and the solvability property
of the topological degree.

3.6 Static frames

Static frames are our simplest specializations of the generic frame data struc-
ture. Its items collection can be based on any structure that allows adding
new elements one by one and iterating over its elements in a loop. We usually
think of it as a list (and this is the way we use in our actual implementation),
but it is not necessary. No particular order of boxes in items collection is
required.

53

3. Developing the solving algorithm

The main characteristic of a static frame is, that boxes in its items col-
lection never get bisected, which can be expressed by making its frRefine

function to simply return its input frame with no changes. This means, that
if we use the Algorithm 4 with static frames, we only ever work with frames,
whose items collection is a one element list containing the input variable do-
main box X.

The specialization of the function frPrune for static frames can be think
of as a base for more complicated designs introduced later. Here, it simply
scans the items collection of the input frame and returns a new frame that
has no such box in its items collection, whose image under FP ′ contains zero.
The pseudocode is in Algorithm 5.

Algorithm 5 Basic version of frPrune. (Contract in Table 3.2)

1: function frPrune(frame)
2: FP ′ ← frFunc(frame) ⊲ get the associated interval func.
3: prunedfr ← a copy of frame with an empty items collection
4: for each X ′ in frItems(frame) do

5: if 0 ∈ FP ′(X ′) then add X ′ to items collection of prunedfr
6: end for

7: return prunedfr ⊲ prunedfr contains no boxes X ′, s.t 0 /∈ FP ′(X ′)
8: end function

The specialization of the function frHasRoot again serves as a base for
more complex designs. The pseudocode is in Algorithm 6 and it captures the
main idea of how to soundly decide, if the parameter sub-box P ′ associated
with the given input frame belongs to the list Y . The input frame’s items
collection is iterated over in order to find a box X ′, such that deg(fP ′ , X ′, 0) is
defined and non-zero. To this end, the algorithm for computing the topological
degree is used and it is executed using our custom adjusted workflow we
introduced earlier (see Figure 2.4). (Functions signCovering, isSufficient

and deg are parts of this workflow and are described in Section 2.2 and 2.3.)

You may notice, that the resulting frame procfr is identical to the input
frame frame. In this version of frHasRoot, we simply do not make use of
the possibility to return a modified frame, in compliance with the respective
contract from Table 3.2.

3.6.1 Discussing the correctness of the frame manipulating

functions

We need to make sure, that the introduced specializations of the frame ma-
nipulating functions are correct in terms of fulfilling both points from Subsec-
tion 3.4.3.

54

3.6. Static frames

Algorithm 6 Basic version of frHasRoot. (Contract in Table 3.2)

1: function frHasRoot(frame, ref)
2: FP ′ ← frFunc(frame) ⊲ get the associated interval func.
3: procfr ← an exact copy of frame
4: for each X ′ in frItems(frame) do

5: bnd ← any oriented boundary of X ′

6: sc ← signCovering(bnd, FP ′ , ref)
7: if isSufficient(sc) then

8: if deg(sc) 6= 0 then

9: return (procfr , true) ⊲ no need to examine the rest
10: end if

11: end if

12: end for

13: return (procfr , false)
14: end function

Function frRefine This one requires no discussion, as all it does is that it
simply returns its unchanged input.

Function frPrune Consider Algorithm 5. The output contract of the func-
tion is met, because items collection of prunedfr contains no box X ′, such
that 0 /∈ FP ′(X ′).

As for the property (3.7), the core argument is, that Algorithm 5 cop-
ies every sub-box X ′, such that 0 ∈ FP ′(X ′) from input frame frame to its
resulting frame prunedfr .

For a more detailed explanation, take into account Figure 3.5. Let C1, C2

denote items collections of frame and prunedfr , respectively, and assume frame
satisfies the property (3.7), that is 0 /∈ fP ′(X − |C1|). Let S be an arbitrary
subset of X, such that S ⊆ X − |C2|. If also S ⊆ X − |C1|, then 0 /∈ fP ′(S),
thanks to the assumption, that (3.7) holds for frame.

If on the other hand S * X − |C1|, then let S′ = S ∩ |C1|. Then for any
box X ′ ∈ C1, such that X ′ ∩ S′ 6= ∅ (like X ′

1, X ′
2 in Fig. 3.5), we necessarily

have X ′ /∈ C2. But the only way for X ′ /∈ C2 to hold is, that 0 /∈ FP ′(X ′),
because of how the algorithm works. Inclusion property of FP ′ then implies
0 /∈ fP ′(X ′). Because X ′ was arbitrary, we get 0 /∈ fP ′(S′), and therefore also
0 /∈ fP ′(S), as (S − S′) ∩ |C1| = ∅. Because S was also arbitrary, we have
altogether, that (3.7) holds for prunedfr as well.

Function frHasRoot Consider Algorithm 6. If the input frame frame sat-
isfies (3.7), then so does resulting frame procfr , because it is its exact copy.

As for the contract of the function, the only way of returning b = true is
by executing line 9. But if that happens, then it is assured that a sub-box X ′

55

3. Developing the solving algorithm

S

X

X'

X'1

2

Only in |C1|

In both |C1|, |C2|

S'

S

Figure 3.5: Visual support for discussing frPrune corectness in Subsec-
tion 3.6.1.

of the domain box X exists, such that deg(fP ′ , X ′, 0) is non-zero thanks to
lines 5 to 8, which form our workflow of executing the algorithm for computing
the topological degree, discussed in Chapter 2. (See especially Figure 2.4.)

3.7 Bisect-only frames

A bisect-only frame design is a specialization almost identical to the static
frame specialization. The only difference lies in the way the function frRe-

fine is designed.

A bisect-only frame has its frRefine function designed, so that it simply
bisects each box X ′ in the items collection of its input, and passes the bisection
result X ′

1, X ′
2 to the items collection of the resulting frame, omitting the parent

box X ′. This is where its name originates from. It is a sort of opposite behavior
a static frame has. There is no explicit rule dictating how exactly the bisection
should be done. In our implementation, the default behavior is to bisect X ′ in
its longest component with the ratio 0.5. This is also true for all subsequent
specializations of this function presented later.

The intended goal of this approach is to reduce the overestimation tend-
ency of interval evaluations by working with generally smaller boxes in the
items collections of frames.

Function frRefine for bisect-only frames is in Algorithm 7. It also shows
how to deal with a possibly finite capacity of the items collection (see also
Subsection 3.4.1). It starts with bisecting every box in the items collection
of the input frame, passing the resulting sub-boxes (which we also call the
children) to the resulting frame. But if it is found, that the result could not
hold all the children, the iteration simply falls back to a simple copying of
non-bisected boxes. For keeping track of the remaining room, we use the
function frHasRoom along with a counter variable c is that stores the number
of additional room needed by the resulting frame compared to the input frame.
The function ensures, that for every box X ′ in the items collection of the input

56

3.7. Bisect-only frames

frame frame, the result refframe gets either both children X ′
1, X ′

2, or the parent
X ′ (and no children).

Algorithm 7 frRefine for the bisect-only frames. (Contract in Table. 3.2)

1: function frRefine(frame)
2: refframe ← a copy of frame with an empty items collection
3: c← 0 ⊲ The total additional room ideally needed in refframe
4: for each X ′ in frItems(frame) do

5: c← c + 1 ⊲ replacing parent with 2 children needs 1 more room
6: if frHasRoom(frame, c) then

7: X ′
1, X ′

2 ← result of bisecting X ′

8: add X ′
1, X ′

2 to refframe
9: else ⊲ no more room for children, just store the parent instead.

10: add X ′ to refframe
11: end if

12: end for

13: return refframe
14: end function

In a practical implementation, we expect a computation of Algorithm 4
based on bisect-only frames to give a better quality of the resulting list N than
a computation based on static-frames, because working with smaller boxes in
items collections should reduce the overestimation tendency of interval eval-
uations. On the other hand, the resulting list Y provided by the bisect-only
approach might be of a poor quality for certain inputs due to the complete
inability to undo a bisection and the fact, that a reckless bisection may not
always be beneficial, as be pointed out in Section 3.3. We provide results of
related practical experiments in Section 6.5.

3.7.1 Discussing the correctness of the frame manipulating

functions

As in the previous section, we should make sure, that both points from Sub-
section 3.4.3 are fulfilled for the specializations of the frame manipulating
functions.

Functions frPrune, frHasRoot These functions are identical to the ones
of the static frame specialization, therefore see Subsection 3.6.1.

Function frRefine Consider Algorithm 7 and let the input frame frame
satisfy (3.7). Denote C1, C2 the items collections of frame and refframe,
respectively. The algorithm ensures, that for every box X ′ ∈ C1, C2 contains
either both children X ′

1, X ′
2, or the parent X ′ itself. Because X ′

1∪X ′
2 = X ′ (the

definition of bisection), we have |C1| = |C2|, and so refframe satisfies (3.7).

57

3. Developing the solving algorithm

This also means, that frRefine satisfies its output contract, as refframe is
a copy of frame in all other aspects.

3.8 Bisect-and-keep frames

Bisect-and-keep frames represent a slightly more complex specialization that
is aimed to deal with the type of situations discussed in Section 3.3. This
design builds upon the bisect-only frame design with the main difference, that
the frRefine function adds parent boxes X ′ from the items collection of the
input frame into the resulting frame along with their children.

To prevent bisecting the same box X ′ over and over in subsequent calls to
frRefine, we assign a boolean flag isLeaf to every box in the items collection
and bisect only those boxes, that have this flag set to true. After a bisection
is performed, the children created from the parent X ′ will have the flag set to
true, while the parent’s flag will become false. We call a box with the flag set
to true a leaf. This concept is demonstrated by Example 3.2.

Example 3.2. Figure 3.6 show a sample life-cycle of a bisect-and-keep frame
along a particular DFS branch in Algorithm 4, starting from the root. At the
beginning, an initial frame is created by calling frInit(X, P, FP), Figure 3.6a.

Assume that no boxes from the items collection are removed during the
following call to frPrune and that the call to frHasRoot returns false. The
next call to frRefine causes box 1 to be split into boxes 2 and 3. Box 1 is
then no longer a leaf, Figure 3.6b.

Under the same assumptions, the next iteration leads to the situation in
Figure 3.6c. Finally assume that the following call to frPrune removes all
boxes but 1 and 3. This scenario is in Figure 3.6d. Notice, that the frame has
no more leaves now, so any further refining will just return the same frame,
with the items collection unchanged.

Consider now a particular frame frame with the underlying parameter
box P ′. Besides only ever splitting the leaves of frame, we also do not want
to keep around those non-leaf boxes X ′ in its items collection, for which it
was found during a call to frHasRoot, that deg(fP ′ , X ′, 0) is zero. Why?
Because their zero degree prevents them from being used to soundly decide
that P ′ ∈ Y via the solvability property, so they are useless in this way. Note
that a removal of a non-leaf box does not violate the property (3.7), as it
must have already been bisected into sub-boxes that were stored in the items
collection.

To this end, we introduce a second boolean flag rem assigned to all boxes.
Its value is always false for newly created boxes, and for a certain box X ′, it
becomes true only when deg(fP ′ , P ′, 0) = 0 is found out to hold when scanning
the items collection inside the frHasRoot function.

58

3.8. Bisect-and-keep frames

1

T

box

isLeaf
1

(a) The frame created by frInit.

1

T

box

isLeaf
2 3

2 3

TF

(b) Box 1 was bisected into 2 and 3 by
frRefine and is no longer a leaf.

1box

isLeaf

2 3

F

4

5

6

7

4 5 6 7

T T TTF F

(c) A further bisection of leaves 2 and 3
by a subsequent call to frRefine.

1box

isLeaf F

4

5

6

7
F

3

(d) A call to frPrune removed all
boxes except from 1 and 3. Because
neither is a leaf, no other bisecting is
performed in the following frRefine.

Figure 3.6: Sample life cycle of a bisect-and-keep frame along one particular
DFS branch in Algorithm 4, starting from the root.

The function frRefine then checks the value of this flag of every box X ′

in the items collection and aims to remove X ′, if its rem flag is true. However,
if X ′ is a leaf, it is removed only after it has been bisected into children. If
the bisection cannot be performed due to an insufficient capacity of the items
collection to hold the children, then X ′ is kept (despite of having rem set
to true), as it would otherwise may violate the property (3.7). The actions
performed on X ′ in frRefine based on the values of rem, isLeaf and the
capacity of the items collection are listed in Table 3.3.

isLeaf rem sufficient capacity bisect X ′ remove X ′

true true yes yes yes
false true yes no yes
true false yes yes no
false false yes no no
true true no no no

false true no no yes
true false no no no
false false no no no

Table 3.3: Possible actions taken when manipulating a box X ′ in the bisect-
and-keep frame’s item collection C based on the flags isLeaf and rem of X ′

and the capacity of C to hold the bisection results of X ′. Notice that a leaf is
never removed if the capacity of C is insufficient.

Structurally, we understand the assignment of isLeaf and rem flags to the
box X ′ simply as an ordered triplet (X ′, isLeaf , rem), although it is not strictly

59

3. Developing the solving algorithm

required. The items collection, apart from being able to store these triplets,
requires no extra structural properties compared to bisect-only frames.

3.8.1 Pseudocode of the frame manipulating functions

Let us now focus on the code of the three main functions of interest, that is
frPrune, frHasRoot and frRefine.

The function frPrune is simple. It ignores both isLeaf and rem flags and
behaves exactly like for static and bisect-only frames, that is Algorithm 5.

Funcion frHasRoot also behaves like the one for the static and bisect-
only design in Algorithm 6. The only exception is, that it sets the flag rem
for boxes, for which a sufficient sign covering of their boundary wrt. FP ′ was
computed and the corresponding topological degree was found to be 0. Flag
isLeaf is ignored and just passed unchanged. This results in Algorithm 8

Algorithm 8 Function frHasRoot for bisect-and-keep frames. (Contract
in Table 3.2)

1: function frHasRoot(frame, ref)
2: FP ′ ← frFunc(frame)
3: procfr ← a copy of frame with an empty items collection
4: for each (X ′, isLeaf , rem) in frItems(frame) do

5: bnd ← any oriented boundary of X ′

6: sc ← signCovering(bnd, FP ′ , ref)
7: if isSufficient(sc) then

8: if deg(sc) 6= 0 then

9: return (procfr , true) ⊲ no need to examine the rest
10: else

11: ⊲ Mark X ′ for removal.
12: add (X ′, isLeaf , true) to the items collection of procfr
13: end if

14: else

15: add (X ′, isLeaf , rem) to the items collection of procfr
16: end if

17: end for

18: return (procfr , false)
19: end function

Finally, the pseudocode for frRefine is in Algorithm 9. It utilizes the
isLeaf and rem flags according to Table 3.3 and ensures, that for every box X ′

in the items collection of the input frame frame, the resulting frame refframe
contains either X ′, or both its bisection results X ′

1, X ′
2, or all three of these

boxes.

The counter variable c is used to keep the track of the additional room the
resulting frame needs compared to the input frame. It may become negative,

60

3.8. Bisect-and-keep frames

should the resulting frame end up with less boxes in its items collection than
the input.

Algorithm 9 Function frRefine for bisect-and-keep frames. (Contract in
Table 3.2)

1: function frRefine(frame)
2: refframe ← a copy of frame with an empty items collection
3: c← 0 ⊲ The total additional room ideally needed in refframe
4: for each (t← (X ′, isLeaf , rem)) in frItems(frame) do

5: if isLeaf = true then

6: if rem and frHasRoom(frame, c + 1) then

7: c← c + 1 ⊲ t is not kept and one children replaces it
8: X ′

1, X ′
2 ← the result of bisecting X ′

9: add X ′
1, X ′

2 to refframe
10: else if not rem and frHasRoom(frame, c + 2) then

11: c← c + 2 ⊲ t is kept along with the children
12: add t to refframe
13: X ′

1, X ′
2 ← the result of bisecting X ′

14: add X ′
1, X ′

2 to refframe
15: else ⊲ no more room to store the children
16: add t to refframe
17: end if

18: else

19: if rem = true then

20: c← c− 1 ⊲ one room freed
21: else

22: add t to refframe
23: end if

24: end if

25: end for

26: return refframe
27: end function

3.8.2 Limitations of the bisect-and-keep approach

Let us return back to the Example 3.2. It indicates the most obvious limitation
of bisect-and-keep design approach.

First, if a box X ′ from items collection is about to be removed in frPrune,
there is no way to also remove all of its sub-boxes X ′′ without the need of
(pointlessly) evaluating FP ′(X ′′) (P ′ is the underlying parameter box asso-
ciated with the frame). This is because there is no underlying parent-child
relationship structure and no order, that would guarantee to evaluate the
parent before its children. This is the situation of the parent box 2 and its

61

3. Developing the solving algorithm

children 4, 5 in Figure 3.6. We only know, which boxes have not yet been
bisected (leaves), but that is it.

Secondly, if the items collection contains some box X ′ and some other
boxes X ′

1, . . . , X ′
p, that form a box paving T̄ of X ′, then as soon as all the

boxes from T̄ are removed, the X ′ itself can be removed as well. But as
in the previous situation, there is no underlying structure that would allow
us to do so without explicitly evaluating FP ′(X ′). But what is worse, this
time, X ′ may not be removed at all, because the over-approximation of FP ′

may cause 0 ∈ FP ′(X ′) to actually hold. This is the situation of boxes 3, 6, 7
in Figure 3.6—although 6 and 7 got removed in Figure 3.6d, box 3 did not.

3.8.3 Discussing the correctness of the frame manipulating

functions

Function frRefine As the function frRefine works the same for bisect-
and-keep frames as for static and bisect-only frames, arguments presented in
Subsection 3.7.1 apply with regard to its correctness.

Function frHasRoot Arguments from Subsection 3.7.1 are also valid for
frHasRoot function, because its specialization for bisect-and-keep frames
possibly only modifies flags of the boxes in the items collections and other-
wise keep them unchanged, which does not affect the output contract of this
function, nor the validity of property (3.7).

Function frRefine Correctness of this function is also supported by the
content of Subsection 3.7.1. The key point is, similar to the case of bisect-
only frames in Section 3.7, that the resulting frame refframe always contains
either the box X ′ from items collection of the input frame, or both its bisection
results X ′

1, X ′
2, X ′

1 ∪X ′
2 = X ′, or all three of these boxes.

By introducing the counter variable c in Algorithm 9 to monitor the ad-
ditional room the resulting frame will need, we ensure in each iteration of the
for loop that there is always a room to copy the parent box X ′ into the items
collection of the result, if needed.

3.9 Frames based on trees

This approach structurally enhances the bisect-and-keep design by capturing
the whole parent-child relationship of boxes in the items collection, giving us
more ways to manipulate it. We therefore see the items collection as a tree,
whose nodes are identified with the sub-boxes of the input domain box X.
The tree is initially rooted at the input domain box X itself. Child nodes are
then results of bisecting sub-boxes of X in the frRefine function. In this

62

3.9. Frames based on trees

1

2
3

A

B

C D

E

(a) The forward pruning at B removes the
nodes C, D.

1

2

3
4

5

I

J

K L

M

(b) The backward pruning of node J al-
lows to remove it, although 0 ∈ FP ′(J).

Figure 3.7: Forward and backward prunings in tree frames. Node X ′ is colored,
iff 0 /∈ FP ′(X ′). The dotted arrow shows in which order nodes are visited
during a pre-order traversal and evaluated with FP ′ .

section, we use the term node as a synonym to an arbitrary box from the items
collection.

Using a tree-like structure, we address the limitations from Subsection 3.8.2.
When a node X ′ is about to be removed in the function frPrune, we can
immediately remove all sub-boxes of X ′, using only the structural informa-
tion without the need of evaluating them with FP ′—so called forward pruning
at X ′. And the other way, once all sub-boxes of X ′ have been removed, we
may safely remove X ′ itself as well—again, without the need of evaluating
it with FP ′ . This is called the backward pruning of X ′. The typical way we
iterate through our tree based items collection, in order to carry out both of
these operations, is by performing a pre-order traversal starting from the root.
See Figure 3.7 for an example.

The previously discussed designs did not require support for deleting items
from their items collections, because their modification could always be ex-
pressed in terms of creating a new resulting frame, and then iterating through
the original one, adding only suitable items to the result. Here, we want the
items collection to support an actual item removal, mainly to comfortably
express and then further implement the backward pruning.

The isLeaf flag from the bisect-and-keep design is obsolete here, as it can
be figured out from the tree structure itself. The other flag, rem, is used in
the same way.

3.9.1 Note on terminology

We base our tree related terminology on [13, p. 279–280], namely the notions
of a child, leaf, descendant and ancestor, but we believe these are quite in-

63

3. Developing the solving algorithm

tuitive and generally known. We therefore present them only via examples
using Figure 3.7. Nodes B, E are children of A. Node A has four descend-
ants B, C, D, E, nodes C and D are not its children. Nodes B and A are
ancestors of nodes C, D. Nodes C, D, E are leaves and do not have any
descendants.

Since we identify the tree nodes with sub-boxes of domain box X they are
associated with, we may say, that Z is a child of X ′, if Z is one of the two
results of bisecting X ′. We will also denote desc(X ′) the set of all descendants
of node X ′, so for instance desc(B) = {C, D}.

3.9.2 Pseudocode of the frame manipulating functions

The functions frHasRoot and frRefine are practically the same as for
the bisect-and-keep frames, with the only difference that a tree instead of a
simple list is traversed, so implementations must ensure correctly rebuilding
the parent-child relationship in the resulting frames. Also no boolean flag is
required to tell, whether a node is a leaf. We may therefore refer to Subsec-
tion 3.8.1. (The other boolean flag rem is used in the same way.)

What is different is the frPrune function, which is, as already stated,
designed to address the content of Subsection 3.8.2. The main idea is as
follows. The function traverses the tree from the root in a pre-order manner
and if it finds out, that 0 /∈ FP ′(X ′), it performs the forward pruning at X ′,
removing X ′ as well as desc(X ′).

If the forward pruning could not be performed, X ′ is still observed further.
If X ′ was originally not a leaf, but has become one after its descendants had
been processed, then the backward pruning of X ′ can be done.

The pseudocode is in Algorithm 10. A significant work is done by the
procedure process, which is recursive and modifies its prunedfr argument in
place.

3.9.3 Discussing the correctness of the frame manipulating

functions

Out of our three functions of interest, frPrune, frHasRoot and frRefine,
only frPrune differs from its version designed for bisect-and-keep frames, so
we focus our attention on this one.

Consider Algorithm 10 and first, let us focus on the output contract of
frPrune from Table 3.2. We need to show, that the resulting frame prunedfr
contains no node X ′, such that 0 /∈ FP ′(X ′). Scanning through the algorithm,
we see, that line 10 ensures, that every visited node X ′ (i.e. a node X ′ passed
as input node to process) is removed from prunedfr , if 0 /∈ FP ′(X ′).

What about a node Z ′, that does not get visited (i.e. Z ′ is not passed as
input to process procedure)? Well, for this to happen, Z ′ must be removed
on line 10 as a member of desc(Z) for a particular ancestor node Z, because

64

3.10. Frames based on grids

Algorithm 10 frPrune for tree frames. (Contract in Table 3.2)

1: function frPrune(frame)
2: prunedfr ← an exact copy of frame incl. the items collection.
3: root ← the root of the items col. of prunedfr
4: FP ′ ← frFunc(frame)
5: process(prunedfr , FP ′ , root)
6: return prunedfr
7: end function

8: procedure process(prunedfr , FP ′ , node)
9: if 0 /∈ FP ′(node) then

10: remove desc(node) ∪ {node} from prunedfr ⊲ forward pruning
11: else if node is not a leaf then

12: for each child child of node do

13: process(prunedfr , FP ′ , child)
14: end for

15: if node is leaf then

16: remove {node} from prunedfr ⊲ backward pruning
17: end if

18: end if

19: ⊲ else keep the leaf node
20: end procedure

lines 12 to 14 otherwise ensure visiting every child of a node, that did not get
removed. But then 0 /∈ FP ′(Z), which implies 0 /∈ FP ′(Z ′), as we suppose, that
function F is inclusion monotonic (Subsection 3.1.1). Therefore the output
contract of frPrune is satisfied.

As for the property (3.7), we want to show, that no node Z ′ in the input
frame frame, such that 0 ∈ FP ′(Z ′), gets removed from the result prunedfr .
Then the same arguments as in 3.7.1 can be used to justify the correctness of
frPrune wrt. (3.7). But this just requires the same argumentation as above.
The only way for a node Z ′ to be removed is by executing line 10 for either Z ′

itself, or some of its ancestor Z. This necessarily means, as already stated,
that 0 /∈ FP ′(Z ′).

3.10 Frames based on grids

Frames based on grids, or grid frames for short, offer a more advanced ap-
proach. The core feature we provided in this specialization is the ability to
temporarily join the boxes in the items collection into oriented cubical sets,
which gives more possibilities to soundly decide, that a certain parameter sub-
box P ′ belongs to the list Y . The idea of joining is inspired by [14, p. 10–11].

65

3. Developing the solving algorithm

Let us start with an informal introduction. A grid frame’s items collection
is indeed a grid of sub-boxes of the input domain box X, that can be depicted
as in Figure 3.8a. We use the term grid as a synonym for the items collection
of a grid frame. Unlike a tree farme (Section 3.9), a grid frame does not
directly introduce the parent-child relationship structure among boxes in is
items collection. In fact, boxes in its items collections that are bisected are
always replaced by the results of the bisection, so the parents are not stored
at all—like for the bisect-only frames (Section 3.7). Instead, the grid captures
a relationship of neighbourhood between its boxes. This is intuitively shown
in Figure 3.8a with dashed arrows.

The neighbourhood relationship can be exposed to temporarily join adja-
cent boxes into oriented cubical sets. This is useful when dealing with a box
X ′ from the grid, for which we are unable to find a sufficient sign covering
of its oriented boundary wrt. FP ′ (either because it does not exist, or FP ′

overapproximates too much).

In such case, we can join X ′ with some of its neighbours (ideally along
the problematic sub-faces, that could not be sufficiently covered), forming an
oriented cubical set Ω. We then try to compute a sufficient sign covering of
an oriented boundary of Ω instead. If we are still unlucky, we continue this
process, examining and possibly adding neigbours of boxes currently in Ω,
that have not been added yet. We stop, as soon as an oriented cubical set
with sufficient sign covering of its oriented boundary is obtained, or there are
no suitable neighbours to join with. Figure 3.8b visualizes a sample oriented
cubical set in the grid and Figure 3.9 depicts one simple step in such joining.

We can summarize that the goal of joining is to temporarily replace each
box X ′ in the items collection with the smallest oriented cubical set (in terms
of box count), for which we are able to find a sufficient sign covering of its
oriented boundary.

To be able to algorithmically express these ideas, we need to capture the
concept of neigbourhood more formally, which we focus on next.

3.10.1 The concept of neighbourhood and edges

Here we focus our attention on the concept of neighbouring boxes and edges
in the grid. An edge should be an entity capturing the fact, that two boxes
in the grid are neighbours and it should store information useful for potential
joining of the neighbours and their boundaries.

The way we decided to design edges is visualized in Figure 3.10. Edges
connecting actual boxes are actually pairs of two connections, one originating
from the first box and one originating from the other. This way, there is no
ownership ambiguity, as each neighbour owns one edge from the pair. As
indicated in the figure, the connections are meant to be realized via sub-faces
of oriented faces of the neighbours.

66

3.10. Frames based on grids

1 2

3

4

5

6

7

8 9 10

(a) Sample grid.

1 2

3

4

5

6

7

8 9 109

5

(b) Or. cubical set of boxes 2, 3, 5, 8, 9.

Figure 3.8: Sample depiction of the grid of a grid frame. Arrows depict
adjacency between boxes. Crossed out boxes are no longer part of the grid.
Fig. 3.8b shows an example of a or. cubical set, that can be created by exposing
the adjacency of boxes.

+

0

+

0

0

+
0

()

)

)

)

(

(

(

0
0)(B1 B2

+

0

+

0

0

+
0

()

)

)

)

(

(

(

B1 B2

+

0

+

0

0

+
0

()

)

)

)

(

(

(

B1 B2

+
0)(+
0)(

0()0()

()()

Figure 3.9: Joining of two boxes in the grid into an oriented cubical set. We
see that a sign covering of an oriented boundary of B1 was computed, but it
is not sufficient. B1 is therefore joined along the problematic face with B2,
forming an or. cubical set Ω. A sign covering of ∂Ω is then computed instead.

The figure also shows our intention to be able to express, that a box in
the grid might not always be fully surrounded by other boxes. Initially, this
is the case of the boxes lying on the margin of the grid. But if some boxes
are removed from the grid, this becomes true for other originally inner boxes
as well (compare Fig. 3.10a with 3.10b). To this end we introduce special
edges without endpoints, so that they fill those “no-neighbour gaps”. The
idea behind this becomes clearer later.

Let us now formalize the concept of edges. Let a frame with grid G is
given and let the dimension of the boxes in G be n. For a given box X ′ ∈ G,
we call an oriented sub-face of some oriented face of X ′ simply a wall of X ′.
The dimension of any wall is therefore n− 1.

An edge of X ′ ∈ G is either

• Any pair (b, Z), where Z ∈ G and b is a maximal (in terms of set

67

3. Developing the solving algorithm

1 2

3

4

8

(a) A closeup of box 2 from Fig. 3.8.

1 2

3

4

58

(b) A removal of box 2 from the grid.

Figure 3.10: Edges in a grid of a grid frame. Full arrows are oriented sub-
faces, dotted ones symbolizes edges. Boxes are connected by a pair of edges.
Arrows with a crossed endpoint represent an edge without endpoint. When a
box is removed, edges need to be updated.

inclusion) wall of X ′, such the box c = b with the orientation opposite
to b is a wall of Z. We then define

opposite(b, Z) = (c, X ′). (3.10)

• Any pair (b, ∅), where b is a maximal (in terms of set inclusion) wall of
X ′, s.t. the intersection of b with any box in the grid other than X ′ has
dimension at most n−2. We call such edge as an edge without endpoint.

We introduce edges without endpoints, so that for any box X ′ from the
grid the following holds,

⋃

(b,Z)∈edges(X′)

b = ∂|X ′|, (3.11)

where edges(X ′) denotes the set of all edges of X ′.
When later expressing our considerations in forms of pseudocodes and

when writing an actual implementation, we also find it useful to be able to
divide the edges of X ′ into categories, based on (informally) along which com-
ponent and direction they realize the connection between X ′ and its neigh-
bours.

This idea is sketched in Figure 3.11 and formalized as follows. Consider i ∈
{1, . . . , n} and let [a1, a2] be the i-th non-degenerated component of X ′. We
then denote loEdges(i, X ′) the set of all edges of X ′ with the wall having their

68

3.10. Frames based on grids

2

loEdges(0, B2)

hiEdges(0, B2)

loEdges(1, B2)

hiEdges(1, B2)

x1

x2

Figure 3.11: Edge categories in the grid of a grid frame, based on along which
component and direction they make the connection. Box 2, referred to as B2

here, from Fig. 3.10 is shown.

i-th component degenerated and equal to a1, and similarly hiEdges(i, X ′) the
set of all edges of X ′, with the wall having their i-th component degenerated
and equal to a2. Let us also demonstrate this on a example.

Example 3.3. Consider again Figure 3.10a. Suppose that each box mark i
is mapped to an actual box Bi as follows.

mark box mark box

1 B1 := [−1, 0]× [0, 1] 3 B3 := [1, 2]× [1/2, 1]
2 B2 := [0, 1]× [0, 1] 4 B4 := [1, 2]× [0, 1/2]
8 B8 := [0, 2]× [−1, 0]

Then we have (omitting the orientation of boxes for simplicity)

loEdges(1, 2) = {([0]× [0, 1] , B1)},
hiEdges(1, 2) = {([1]× [0, 1/2] , ∅), ([1]× [1/2, 1] , B3)},
loEdges(2, 2) = {([0, 1]× [0] , B8)},
hiEdges(2, 2) = {([0, 1]× [1] , ∅)}.

We now focus in more detail on how we specialize the frame manipulating
functions in the grid frame design.

3.10.2 Initialization and pruning

For grid frames, the initial call frInit(X, P, FP) creates a grid with only one
box, X itself, having 2n edges without endpoints. Each wall in those edges is
actually an oriented face of X.

Unlike for tree frames, the function frPrune for grid frames is not based
on any particular order, in which boxes are iterated, and is in fact the same
as for static and bisect-only frames, i.e. Algorithm 5. Implementations only
need to take care of correctly turning any edge (b, X ′) of an adjacent box

69

3. Developing the solving algorithm

Z into (b, ∅), if X ′ is the box about to be removed, just like it is shown in
Figures 3.10a and 3.10b.

In a pseudocode, such edge updating could be for example expressed as
in Algorithm 11. Notice, that because each substituting edge (line 8) has the
same wall as the substituted one (line 7), meaning that if the neighbours of X ′

satisfied (3.11) before processing X ′, they continue to do after the processing
of X ′.

Algorithm 11 Updating edges in the grid of a grid frame before removing a
box.

Input: A box X ′ from the grid of a given grid frame.
1: procedure detach(X ′)
2: for each (b, Z) in edges(X ′) do

3: if Z 6= ∅ then ⊲ this edge has an endpoint
4: (c, Z ′)← opposite(b, Z)
5: assert Z ′ = X ′

6: ⊲ replace the original edge with a one without endpoint
7: remove (c, Z ′) from edges(Z)
8: add (c, ∅) to edges(Z)
9: end if

10: end for

11: end procedure

3.10.3 Bisecting boxes in the grid

Bisecting boxes in the grid of grid frames by the frRefine function works
the same as for items collection of bisect-only frames, that is Algorithm 7. If
the grid has enough capacity, then a box X ′ is bisected into sub-boxes X ′

1, X ′
2

and they are stored instead of X ′. If the capacity is insufficient for storing
those two child boxes, X ′ is kept instead.

However, the edge manipulation associated with the bisection, that im-
plementations need to deal with, is a little more complex here than during
a box removal (Subsection 3.10.2), so we better analyse in more detail, what
happens with edges during a bisection of some box in the grid.

Figure 3.12 depicts this visually. The goal is to correctly distribute all
edges of the parent box X ′ between its children X ′

1, X ′
2 and update edges of

adjacent boxes accordingly. Some edges may get replaced by a pair of new
ones, associated with smaller walls (in terms of set inclusion). The children
also must get connected to each other.

More formally, consider a box X ′ from the grid. Let I1, . . . , Im be its
non-degenerated components and for j ∈ {1, . . . , m}, let Ij = [aj , bj]. Choose
i ∈ {1, . . . , m} and suppose that the i-th non-degenerated component of X ′ is

70

3.10. Frames based on grids

8

1 2

3

4

(a) Before the bisection.

8

1

3

4

2'

2''

(b) After bisecting box 2 into 2′ and 2′′.

Figure 3.12: Bisection of a box in the grid of a grid frame. Same legend as in
Fig. 3.10 is used. After a bisection, edges must be correctly redistributed to
the children. Some edges may be replaced by a pair of new ones (like between
boxes 2, 3 and 2, 1). The children must also get connected to each other.

about to be bisected into [ai, s] and [s, bi] . The edges of X ′ must be updated
considering the following three points.

1. The results of the bisection are boxes

X ′
1 = I1 × · · · × Ii−1 × [ai, s]× Ii+1 × · · · × Im,

X ′
2 = I1 × · · · × Ii−1 × [s, bi]× Ii+1 × · · · × Im.

(3.12)

2. For the i-th component, we have

loEdges(i, X ′
1) = loEdges(i, X ′),

hiEdges(i, X ′
2) = hiEdges(i, X ′),

hiEdges(i, X ′
1) = {(d, X ′

2)},
loEdges(i, X ′

2) = {(e, X ′
1)},

(3.13)

where both d and e are boxes I1× · · · × Ii−1× [s]× Ii+1× · · · × Im with
mutually opposite orientation.

3. For every other component k 6= i, let (d, Z) ∈ loEdges(k, X ′). Let the
i-th component of wall d is [v, w]. Then

w ≤ s =⇒ (d, Z) ∈ loEdges(k, X ′
1),

s ≤ v =⇒ (d, Z) ∈ loEdges(k, X ′
2),

v < s < w =⇒ (d1, Z) ∈ loEdges(k, X ′
1)

∧ (d2, Z) ∈ loEdges(k, X ′
2),

(3.14)

71

3. Developing the solving algorithm

where d1, d2 are the results of bisecting d along its i-th component.
Wall d1 has [v, s] as its i-th component, and d2 has [s, w]. The very
same also applies for the edges from hiEdges(k, X ′). The situation
v < s < w is the case of edges between boxes 2, 3 and 2, 1 in Figure 3.12.

Edges of adjacent boxes then need to be updated in the same manner. Typic-
ally, as one loops through the edges of X ′ updating them, calls to opposite

are meant to be used to mirror the updates in opposite edges.

3.10.4 The existence of a root

Finally, the frHasRoot function is the most innovated function of the grid
frame specialization. The idea is to temporarily replace each box X ′ in the
items collection with the smallest oriented cubical set (in terms of box count),
for which a sufficient sign covering of its oriented boundary was found. Let us
discuss such this process of creating oriented cubical sets.

Suppose a grid frame, whose associated parameter box is P ′. The workflow
of frHasRoot can be expressed as follows. Boxes from the grid are iterated
over and for each particular box X ′, we consider all of its edges—that is the
set edges(X ′). We then take each edge (b, Z) from this set and compute a
sign covering of the wall b wrt. FP ′ . If we union these sign coverings into
one set, we get a sign covering of some oriented boundary of X ′, because we
intentionally designed the concept of edges, so that (3.11) holds.

Now this sign covering might not be sufficient, but by creating it as a union
of the coverings of the walls, we can easily localize those walls, that could not
be covered sufficiently, and join the corresponding neighbouring boxes to X ′

creating an oriented cubical set Ω. Then, we can instead attempt to compute
a sufficient sign covering of some oriented boundary ∂Ω of Ω and we do not
have to do this from scratch, as we can reuse all the former sign coverings of
the walls of X ′, that were sufficient.

The process then similarly continues by examining the newly joined boxes
by trying to find sufficient sign covering of their walls possibly joining other
neighbours if such coverings are not found. Figure 3.13 visualizes the process.

When no more boxes can be added this way, the joining ends. To put it
more formally, it ends when no box X ′ in the constructed oriented cubical set
has an edge (d, Z), such that Z is not in the set and no sufficient covering
of d was found. At that point we end up with some resulting oriented cubical
set Ω and we examine the constructed sign covering of its oriented boundary.
Two situations can follow.

• The sign covering is sufficient and we can follow by computing the
deg(fP ′ ,Ω, 0) using the function deg from Section 2.3.

• The sign covering is not sufficient, which happens if we reached the end
of the grid during the construction of Ω. In other words, there was an

72

3.10. Frames based on grids

edge whose wall did not have a sufficient sign covering, but the edge
had no endpoint we could join. The degree will not be computed in this
case.

If the degree could not be computed or is zero, we restart the whole process by
moving to some other not yet visited box. If there is no such box, frHasRoot

ends, unable to soundly decide, if FP ′ has a root in the input domain X.

+

0

+

0

0

+
0

()

)

)

)

(

(

(

0
0)(B1 B2

+

0

+

0

0

+
0

()

)

)

)

(

(

(

0
0)(B1 B2

B3 B3

()()

+
0)(

+

0

+

0

0

+
0

()

)

)

)

(

(

(

B1 B2 B3

()()

+
0)(

()()

0()

+
0)(

Figure 3.13: Example of joining of boxes in the grid. The initial box here is
B1. Each of its walls (depicted as arrows) is covered separately. The covering
of one wall of B1 is not sufficient, so B1 is joined to its neighbour B2, forming
an oriented cubical set Ω2. We then compute a sign cov. of ∂Ω2 instead, but
can reuse the gray-colored coverings. This covering is again not sufficient, so
a neighbour B3 of B2 is joined forming or. cubical set Ω3.

We can summarize, that by such process, the items collection gets par-
titioned into non-overlapping oriented cubical sets and the process stops, as
soon as an oriented cubical set Ω for which deg(fP ′ ,Ω, 0) was found out to
be defined and non-zero is found, or until we exhaust boxes to construct the
partitions from.

The pseudocode for function frHasRoot utilizing all the ideas from this
subsection is in Algorithm 12. The inner loop represented by the function
join takes care of constructing an oriented cubical set from the initial box X ′

as described above.
Notice especially lines 27 to 31. They dictate under which conditions will

another box be added to the constructed oriented cubical set cubSet. The
following are the two cases in which the currently examined endpoint will not
be added to the oriented cubical set.

73

3. Developing the solving algorithm

• Z = ∅. This is obvious, because in this case the examined edge simply
has no endpoint and there is no box that could be added.

• isSufficient(subfaceCov). This condition expresses our aim to come
up with possibly the smallest oriented cubical set for which sufficient
sign covering can be computed. So as soon as some wall can be covered
sufficiently, we simply do not extend the oriented cubical set with the
corresponding endpoint.

The outer loop written directly in frHasRoot always adds all the boxes
from the recent cubSet into the set visited, so that no other box from cubSet
is used to initiate the joining by the join function, because that would lead
to pointlessly recomputing the same oriented cubical set.

3.10.5 Note on the correctness of the joining process

Here we want to address an important note on the joining process as we
introduced in the previous paragraphs and expressed it in Algorithm 12.

Sometimes during the joining, the following can happen. Suppose that X ′
1

is currently examined box in the constructed oriented cubical set Ω, that has
a neighbour Z which is not yet in Ω. Suppose further that a sufficient sign
covering of the wall d in the edge (d, Z) of X ′

1 is actually found. This causes
Z not to be added to Ω in this step and the covering of d to be added to the
continually constructed resulting sign covering sc.

However, box X ′
1 might cause some other box X ′

2 to be added to Ω, and
X ′

2 may cause box X ′
3 to be joined and so on, until come across a box X ′

k,
which causes Z to be added to Ω.

Now, as a part of the processing of Z, an attempt to find a sufficient
sing covering of the opposite edge to (d, Z) will be performed. This of course
succeeds, because the walls of (d, Z) and opposite((d, Z)) are the same boxes,
only with different orientation. This covering is then added to sc.

Now we ended up with a sign covering sc, that is actually not a covering
of any oriented boundary of Ω, because it contains a pair of extra boxes with
opposite orientation. This scenario is shown in Figure 3.14.

So if we perform the joining process as we devised it, then each time
we obtain some oriented cubical set Ω, the associated sign covering sc we
continually build might actually not be of some oriented boundary ∂Ω of Ω,
but instead of the set Ψ = ∂Ω ∪ Φ, where Φ only contains some pairs of
identical boxes differing only in orientation.

However, it follows from what we indicated in Section 2.3, and from what
is thoroughly explained in [2, chapter 3], that it is ensured during the combin-
atorial phase of the topological degree computation, that deg(∂Ω) = deg(Ψ).

We take this approach to the joining process, because it is easier to con-
struct such set Ψ, than actual ∂Ω, as the latter requires checking every sub-

74

3.10. Frames based on grids

Algorithm 12 frHasRoot for grid frames. (Contract in Table 3.2)

1: function frHasRoot(frame, ref)
2: ⊲ this specialization returns simply the unmodified input frame
3: procfr ← an exact copy of frame
4: visited ← an empty set of boxes
5: FP ′ ← frFunc(frame)
6: for each X ′ ∈ frItems(frame) do

7: if X ′ ∈ visited then continue

8: (sc, cubSet)← join(X ′, FP ′ , visited, ref)
9: add all boxes from cubSet to visited

10: if isSufficient(sc) and deg(sc) 6= 0 then

11: return (procfr , true)
12: end if

13: end for

14: return (procfr , false)
15: end function

16: function join(X ′, FP ′ , visited, ref)
17: ⊲ attempts to find an or. cubical set and its suff. sign. cov. wrt. FP ′

18: sc ← an empty sign covering, st ← an empty stack of boxes
19: cubSet ← an empty set of boxes ⊲ the constructed or. cub. set
20: push X ′ onto st
21: while st is not empty do

22: Xc ← pop the top box from st
23: if Xc ∈ cubSet then continue

24: insert Xc into cubSet
25: for each (d, Z) ∈ edges(Xc) do

26: subfaceCov ← signCovering({d}, FP ′ , ref)
27: if Z = ∅ or isSufficient(subfaceCov) then

28: append subfaceCov to sc
29: else

30: push Z onto st
31: end if

32: end for

33: end while

34: return (sc, cubSet).
35: end function

75

3. Developing the solving algorithm

face, that is about to be added into ∂Ω, whether there is already the same
sub-face with opposite orientation (and if yes, remove both).

0

+

0

0

+
0

+
+

+
0

0

+
0

+
0

(

(

((

(

((

(

(())

)

)

))

)

))

)

X'

X'

X'

Z

1

2

3

Step1Step2

Step3

Step4

b1b2

b3

b4

b5
b6

b7

,

,,,

,

,
,

,

b8,
d1

d2,

,

Figure 3.14: Sign covering constructed during the joining in the grid. The
oriented cubical set Ω was created. Its construction was initiated with X ′

1

(Step 1), which caused X ′
2 to be added (Step 2) and that caused X ′

3 to be
added (Step 3) and this box finally caused Z to be added (Step 4). Because a
suff. sign cov. for the wall between X ′

1 and Z was actually found, the result of
the joining is a sign covering of ∂Ω ∪Ψ instead of just ∂Ω, where Ψ contains
a pair of identical boxes with opposite orientation.

76

Chapter 4

Choosing tools for

implementation

In this chapter, we discuss the main tools we used for implementing our ap-
plication, that encapsulates the main algorithm from Chapter 3 as well as the
algorithm for computing the topological degree [2] from Chapter 2.

4.1 Programming language used for the

implementation

We choose to write our implementation in C++. One of the main reasons is,
that the interval arithmetic library of our choice (see Section 4.2), Gaol [9], is
written in this language. We make use of the C++ standard library and aim
our implementation to comply with C++11 standard.

We further made use of Java Swing [15], to implement a GUI for our
algorithm and we use Python for writing scripts related to testing and exper-
imental measurements.

4.2 Interval arithmetic

We are looking for a suitable library implementing interval arithmetic, that
our implementation can make use of. The requirements are, that it must
provide all standard interval operations and functions, it should be open-
source, reasonably up-to-date, well documented and tested. After considering
several available libraries, briefly mentioned in the following subsections, we
choose to use Gaol [9].

77

4. Choosing tools for implementation

4.2.1 Boost interval arithmetic

This IA’s implementation is a part of Boost free peer-reviewed C++ source
libraries, available from [16], distributed under the Boost Software License [17].

It aims to provide a flexible framework for defining interval computations
with both native floating-point and user defined data types and allows to spe-
cify custom rounding and checking policies7 For intervals with native floating-
point endpoints (float and double), inclusion property of algebraic functions
is guaranteed on platforms listed in [18]. Rounding of transcendental func-
tions depends on their implementation in the C++ standard library, which
we consider limiting and non-robust for our purposes.

The advantage is, that this is a header-only library, and thus requires no
installation. It just suffices to include particular header files into one’s project
and then it is ready to use.

4.2.2 Filib++

This is a library written in C++, that is actually an extension to a former
library Filib, developed at the University of Karlsruhe. It is documented
in [19]. It provides methods for working with intervals with either float or
double precision and supports sound evaluations of interval inclusion functions
for a comprehensive set of elementary functions. It offers multiple rounding
modes to be set for computations.

4.2.3 IAMath

IAMath is an interval arithmetic implementation written entirely in Java. It
does not rely on any support for a hardware rounding mode switching, and
instead performs manual bit manipulations of Java’s double type, to compute
successors and predecessors of a given number, to ensure the inclusion property
of interval computations. It is available at [20], and it is for example used in
an application IASolver, described in detail in [21].

4.2.4 Gaol

Gaol is an IA library written in C++, available at [22], and documented in [9].
It is available under the GNU Lesser General Public License [9, pp.73–80].

Gaol is designed as a collection of classes and template methods that allow
computations with intervals with double endpoints. It relies on an underlying
mathematical library, either APMathlib or CRlibm, see [9, p. 4], that provide
correctly rounded elementary functions, which may otherwise not be available
directly by the standard library on the given platform. We consider this as
an advantage.

7A checking policy is a setting, that defines how interval computations will deal with

cases like empty intervals, unbounded intervals, NaNs etc.

78

4.3. User interface

Another advantage is, that it provides methods for constructing intervals
by parsing them directly from string literals. For example, if we want to
construct an interval constant [0.1, 0.3], we can write

i n t e r v a l sample (" [0 . 1 , 0 . 3] ") ;

instead of using a constructor, that simply takes two double values as respect-
ive endpoints, i. e.

i n t e r v a l sample (0 . 1 , 0 . 3) ;

This is important, as the latter way of construction may not ensure the in-
tended inclusion property, because the passed endpoints may not be exactly
representable in the underlying binary floating-point format and they will be
rounded at compile time, presumably using the default round to nearest mode.
The parsing is actually not restricted just to simple literals, and can handle
more complicated interval expressions, see [9, chap. 10]. It guarantees the
inclusion property, as long as all number literals in the string do not exceed
15 digits.

Gaol allows to use the trust rounding mode (see Subsection 1.3.5 or [9,
p. 10]), which we make use of in our implementation. It is initiated with the
call gaol::init() and ended with gaol::cleanup(). Note, that for this to
work, Gaol must be compiled with the --preserve-rounding=no flag, read
more in [9, p. 5].

4.3 User interface

We provide a standard command line interface to be used to execute our im-
plementation with different inputs. We expect inputs to be created in separate
text files, that will be then used to feed the standard input.

Apart from that, we also make use of Java Swing technology [15] to provide
a simple GUI, that collects the user input via graphical components and then
sends it directly to the command line interface, processing its output after-
wards. From the nature of our algorithm (Chapter 3), it makes sense to
present its results (sets of boxes) visually, where applicable. To this end, we
again decided to use Java Swing and its graphics capabilities, as well as a
specialized software called VIBes, see the following subsection.

4.3.1 VIBes

VIBes, which stands for Visualizer for Intervals and BoxES, is a software
allowing interactive visualization of intervals and boxes. It is available at [23]
and described in [24]. The software consists of two parts.

• The VIBes server, which is the actual visualization program, that allows
users to view or export existing figures and interact with them.

79

4. Choosing tools for implementation

• Application programming interfaces for several languages (C, C++, MAT-
LAB, Python), through which clients send drawing requests to the server.
We use API for C++, which is provided via header files, that are simply
included to one’s project.

The server and client programs communicate through named pipe and all the
messages being sent are in a human-readable format, which makes it conveni-
ent for debugging. Resulting figures can be easily exported.

4.4 Unit testing

We want to incorporate unit testing to our development process to verify,
that our classes and utility functions comply to their public interfaces. To
this end, we choose a C++ framework named Catch, which we already have
some experience with.

4.4.1 Catch

Catch is an automated test framework for C++ and Objective-C, available
from [25], distributed under the Boost Software License 1.0, see [17]. It re-
quires no installation, as it is written completely in a series of header files, that
can be directly included in one’s projects. Apart from the standard library, it
has no other external dependencies.

Catch implements test cases environment, assertions and logging via mac-
ros. A test case can be further divided into sections, which are nested into
it, and are executed independently one from another. This behavior effect-
ively substitutes classic test fixtures and allows writing simple tests with less
code. Basic support for matchers is also provided. For full feature overview,
see [26].

80

Chapter 5

Application design and

implementation

This chapter describes relevant design and implementation decisions we made
when implementing our final application, that encapsulates the solving al-
gorithm we developed in Chapter 3. Its main and stand-alone part is written
in C++ language with the use of the standard library and Gaol interval arith-
metic library [9]. We also supply a GUI written using Java Swing [15] which
serves as an adapter to the C++ application. (How to use the GUI from a
user perspective is described in Appendix A.)

Our design is mostly object-oriented, containing separate classes for each
significant entity type. We tried to keep the class hierarchy shallow and broad,
rather than deep and thin. The primary intention is to encapsulate common
code for reuse and to define public interfaces convenient for accessing and unit
testing each entity.

In some cases, where polymorphic behavior was needed, we make use of
class inheritance—for example when using the visitor pattern [27, pp.634–637]
to process ASTs of parsed function expressions. We also aimed to make every
non-leaf class abstract, as suggested in [28, item 35].

In the following, we mostly focus on describing the most significant classes
we designed, map their functionality to the concepts from previous chapters
and discuss relevant implementation details.

The details about compilation and running the application are summarized
in Appendix A.

5.1 Intervals and boxes

Intervals and boxes are the basic entities and every complex functionality of
our implementation makes extensive use of them. We represent and manip-
ulate intervals via class Component and boxes via class Box which we cover

81

5. Application design and implementation

separately. We also mention representation of bisectors as they are closely
related to boxes.

5.1.1 Class Component

This class represents a closed interval [a, b] with floating point endpoints and
provides an interface for performing sound interval arithmetic computations.

More technically, an instance of Component encapsulates an instance of
gaol::interval [9] and defines binary operators and methods, which serve
as adapters to the corresponding interval arithmetics operations provided by
Gaol. Apart from that, various utility methods are included (like getting the
width of the interval, bisecting it etc.).

We introduced this extra level of indirection, so that only this one class
(apart from a few unit tests) needs to know about the concrete underlying
interval arithmetic library. This makes it easy to make a change, if we would
decide to use a different IA library in the future.

Component is designed and implemented as a mutable class, which is a
decision we made to achieve a better efficiency of resources usage, as manipu-
lations with its instances are the very base of every significant action or step
our solving algorithm performs.

It is important to mention, that the class contains the following static
methods.

• static void Component::init().

• static void Component::cleanup().

The first one is meant to be called prior to any manipulation with its instances
to execute an initialization code which ensures retaining the inclusion property
in subsequent interval computations. This is simply an adapter to the call
gaol::init() to initialize the trust rounding mode (Subsection 1.3.5). The
latter one is meant to execute a cleanup code needed to be able to perform
any subsequent floating point computation in the standard round to nearest
mode. Similarly to the first method, this an adapter for gaol::cleanup()

(see [9, p. 10]).

5.1.2 Class Box

This class represents an oriented box in Rn of a given dimension. For efficiency
purposes, this class is designed to be mutable, allowing callers to change its
components, which is especially useful during a bisection, because the bisected
box can itself become one of the resulting child boxes and only one extra in-
stance needs to be created (to store the other child), instead of two. Important
instance methods are

82

5.1. Intervals and boxes

• void getComp(int i) const; void setComp(int i);

Gets and sets, respectively, the i-th component of the box.

• void getTopologicalDimension() const;

Returns the dimension of the box.

• bool containsZero() const;

Returns true, if and only if the point 0 is contained in the box.

• SignVector computeSignVector() const;

Computes a sign vector (as an instance of class SignVector) of n ele-
ments, whose i-th element is the sign of the i-th component of the box,
or 0, if the component contains zero.

• std::list<Box> computeInducedBoundary() const;

Creates and returns a list containing all oriented faces of the box.

• Box bisectBy(const IBisector &bis);

Attempts to bisect this box using the given IBisector instance, which
encapsulates both logic and data to select the dimension and ratio of
the bisection. The calling box is mutated into one of the child boxes,
while the other child becomes the return value.

5.1.3 Class IBisector and derived classes

Class IBisector is a base class providing a common interface related to box
bisections. We currently offer one specialization, class Bisector, which im-
plements a bisection of a given box along its longest component with a given
ratio. The bisection ratio defaults to 0.5 and its value is passed as a parameter
during the instantiation.

Another important parameter passed during the instantiation is the bi-
section threshold, which maps to the parameter d in Algorithm 4 and it is
therefore used to specify the lowest width of the box that will be bisected.

The Bisector instances do not actually perform the bisections them-
selves. What they do is they examine the passed box and return instances
of BisectionResult containing information about which component of the
given box and at which ratio should be bisected. This information is then used
by Box instances to actually bisect themselves (via their method bisectBy).

Callers access the functionality of bisectors via the following virtual in-
stance method.

• virtual BisectionResult bisect(const Box &box) const;

83

5. Application design and implementation

Examines the given box, whether it can be bisected according to the
underlying rules of the bisector. In the case of the Bisector special-
ization, this locates the longest component of the box and checks, if
it is wider than the underlying threshold. It returns the information
about how (and if) the bisection should be performed as an instance of
BisectionResult.

5.2 Sign vectors and sign coverings

Here we cover the representation of sign vectors and sign covering, which is
rather simple. The actual computation of sign coverings via our Algorithm 1
was made part of the IFunction interface, see 5.4.2.

5.2.1 Class SignVector

Instances of this class encapsulate sign vectors. Like Box, class SignVector is
mutable. They are internally represented as std::vector<Sign>, where Sign

is an enumeration type containing three values plus, minus, zero.

The sign vector elements are accessible by the subscript operator [], which
acts as an adapter to the subscript operator of the underlying vector.

Very often, we make use of the instance method for determining, if the
sign vector contains at least one non-zero entry.

• bool isSufficient() const;

Returns true, if the instance contains at least one non-zero entry, and
false otherwise.

The combinatorial phase of the topological degree computation also makes
use of the ability to remove an entry from the vector at the given position,
reducing its size.

• void removeAt(int index);

Removes the sign at the given position from this instance.

5.2.2 Structures used to express sign coverings

To express sign coverings, our code introduces and uses two typedefs.

• typedef std::pair<Box, SignVector> BoxSignVectorPair;

Pair of a box and a sign vector used to represent a pair in a sign covering.

• typedef std::list<BoxSignVectorPair> SignCoveringList;

List of BoxSignVectorPair instances used to represent sign coverings.

84

5.3. Combinatorial phase of the topological degree computation

To determine if a given sign covering represented by a SignCoveringList

instance is sufficient, the following function (which is defined outside of any
class, in the namespace called boxes) is used.

• bool isSignCoveringListDetermined(const SignCoveringList &sl)

const;

Returns true, if the given sign covering is determined and false otherwise.
This is an implementation of Algorithm 2.

5.3 Combinatorial phase of the topological degree

computation

This section covers classes that implement the function deg from Section 2.3
and provides a public interface to perform the combinatorial phase of the
topological degree computation.

5.3.1 Class ISignSelectionStrategy and derived classes

This class represents the strategy for selecting the index and the sign during
the combinatorial phase of the topological degree computation. It has two
specializations.

• class DefaultSelectionStrategy; Implements a default strategy of
simply selecting the first index and the sign +.

• class LeastFrequentSelectionStrategy; Implements the least fre-
quent selection strategy (Subsection 2.3.4).

We almost exclusively use the least frequent strategy selection and we
introduced the default one mostly for debugging purposes.

5.3.2 Class IDegree and derived classes

These classes encapsulate our implementation of the combinatorial phase of
the algorithm for computing the topological degree, that is the recursive
method deg (Section 2.3). Class IDegree is a base class with common inter-
face. It has two specializations. Class Degree contains an actual implementa-
tion and class ParallelDegree is its enhancement with the ability to process
the sets of selected faces Lsel in parallel using the given number of worker
threads (see further).

Instances of these classes are immutable and once its they are constructed,
they can be used repeatedly for computations via the instance method deg,
which forms their public interface.

85

5. Application design and implementation

• int deg(const SignCoveringList &cov,

const ISignSelectionStrategy &st) const;

Executes the combinatorial phase of the degree computation using the
given sign and index selection strategy. This is an implementation of
Algorithm 3 and uses the same contract as presented with the pseudo-
code.

The parallelization ability offered by ParallelDegree is straightforward.
Before the set Lsel is processed (Step 3 in Algorithm 3), it is evenly partitioned
into k subsets, where k is the number of worker threads. Every thread then
works separately and writes its results into its own reserved list. As soon as
every worker thread finished, these lists are appended together by the main
thread using std::splice method from the standard library.

To operate with threads, we use the POSIX thread library pthreads [29].

5.4 Representation of interval inclusion functions

Our implementation allows to parse and store definitions of mathematical
functions formed by arithmetic expressions containing constants, variables,
standard binary operators and elementary functions. The stored functions
can be repeatedly evaluated (interpreted) with different inputs and they are
treated as interval inclusion functions, meaning that the evaluation is sound
wrt. rounding errors.

Here we cover the classes responsible for creating and storing the internal
representation. In Section 5.5, we talk more about the way we implement
their interpretation.

5.4.1 Class Input, Scanner and Parser

These three classes are used to scan the input function definitions and parse
it into an intermediate representation in the form of an AST, which can then
be further adjusted by the particular interpreter chosen to perform the eval-
uations. (Section 5.5).

The caller does not need to know the details of these classes, because their
functionality can be used transparently from the IFunction class covered in
Subsection 5.4.2. Let us however discuss the form the function definition must
have.

The function definition starts with the enumeration of its formal arguments
(mathematical variables) in square brackets. Their total number determines
the input dimension of the function.

This is then followed by a comma separated list, again enclosed in square
brackets, of arithmetics expressions which may involve the formal arguments

86

5.4. Representation of interval inclusion functions

specified, constants, binary operators and elementary functions and their com-
positions. It can even contain interval expressions. The size of this list de-
termines the output dimension of the function.

For example, the result of parsing the string

• [x, y, z][x+1, sin(z) + [y, y+1]

would be the internal representation of the interval function F defined as

F (x, y, z) = (x + 1, sin(z) + [y, y + 1])

Using Extended Backus–Naur form [30], we can express the underlying
grammar used for parsing as follows (leaving out the productions for nonter-
minals like numbers, identifiers etc. to keep it short).

S ::= ARGS , RET_STATEMENT

ARGS ::= ’[’ , [IDENT , [SEPARATOR]] , ’]’

RET_STATEMENT ::= ’[]’ |

(’[’ [EXPRESSION , SEPARATOR] , EXPRESSION ’]’)

EXPRESSION ::= E1 , { (+ | -) , E1}

E1 ::= E2 , { (* | /) , E2 }

E2 ::= E3 , { ^ , E3 }

E3 ::= ((+ | -) , E3) | E4

E4 ::= NUMBER | INTERVAL | IDENT | UNARYFUNCCALL |

NULLARYFUNC | (’(’ , EXPRESSION ’)’)

INTERVAL ::= ’[’ , EXPRESSION , SEPARATOR , EXPRESSION , ’]’

UNARYFUNCALL ::= UNARYFUNC , ’(’ , EXPRESSION , ’)’

SEPARATOR ::= ’;’ | ’,’

The nonterminal UNARYFUNC produces strings matching particular element-
ary functions, like sin or arctg. Let us note, that to express a square root,
one writes sqrt and to express an n-th root, one writes sqrtn, where the n is
the actual number, like sqrt4.

The nonterminal NULLARYFUNC produces strings matching mathematical
constants, pi for π and e for e.

5.4.2 Class IFunction and derived classes

These classes provide the algorithmic representations of interval inclusion func-
tions obtained by parsing and processing given function expressions. They
allow to repeatedly evaluate the stored functions with different given inputs.
IFunction is the base class and its specializations differ in the underlying
interpreter they use to perform evaluations.

The derived classes are designed to be used polymorphically via references
and pointers to the base class. We make use of the typedef UPtrIFunction

which is a unique pointer (std::unique_ptr) to IFunction. Instances of
these classed are mean to be created via the factory methods from IFunction

class.

87

5. Application design and implementation

• UPtrIFunction parseRecursive(std::string s) const;

Parses the given function expression and returns a unique pointer to an
instance of IFunction, allowing it to be repeatedly interpreted with the
recursive interpreter (Subsection 5.5.1).

• UPtrIFunction parseLinear(std::string s) const;

Parses the given function expression and returns a unique pointer to an
instance of IFunction, allowing it to be repeatedly interpreted with the
linear interpreter (Subsection 5.5.2).

• UPtrIFunction parseLinearCached(std::string s) const;

Parses the given function expression and returns a unique pointer to an
instance of IFunction, allowing it to be repeatedly interpreted with the
linear cached interpreter (Subsection 5.5.3).

Overloads accepting std::istream are also supplied.

The actual scanning and parsing processes are performed via our by hand
written scanner and parser, that are encapsulated in Scanner and Parser

classes, respectively. See Subsection 5.4.1.

The actual evaluation of the stored function expression is done via the
function eval. This function accepts an instance of Box that must have the
same number of components as the input dimension of stored function and
evaluates it using the underlying interpreter, returning the result as another
instance of Box.

When modeling (mathematical) parametrized functions, we expect the
caller to treat the first m formal arguments of the stored algorithmic imple-
mentation as variables and the remaining k of them as parameters. If the
caller then maintains the m-box representing the variable domain and the
k-box representing the parameter domain separately, she can make use of an-
other overload of eval that accepts two instances of Box instead of one. It is
a convenient method which behaves as if the passed boxes B1 = I1 × · · · × Im

and B2 = J1 × · · · × Jk were actually forming a single box

B = I1 × · · · × Im × J1 × · · · × Jk.

Other than that, IFunction also contains virtual methods implementing
the actual sign covering computations (Algorithm 1).

• SignCoveringList computeSignCovering(Box box, ...);

Implements a call to signCovering (Algorithm 1), passing in just the
one given box box.

• SignCoveringList computeSignCovering(

std::list<Box> boxList,...);

88

5.5. Interpretation of interval inclusion functions

Implements a call to signCovering (Algorithm 1), passing in an arbit-
rary list of boxes.

• SignCoveringList computeBoundarySignCovering(Box box,...);

Starts by computing a list of oriented faces of box, and then passes it
to the particular overload of computeSignCovering.

These methods make use of eval and the actual bisections performed during
the computation are dictated via IBisector instance (omitted for clarity in
the previous list).

5.5 Interpretation of interval inclusion functions

To perform repeated evaluating of the stored algorithmic representations of
interval inclusion functions with different inputs, we decided to write three
custom interpreters. Each of them is encapsulated in a particular IFunction

specialization (Subsection 5.4.2). The interpreter dictates both the way the
parsed function expression is stored, as well as the actual way of interpretation.

The parsed function expression is always passed to the interpreter in a form
of a standard AST, like the one in Figure 5.1. Each node of the AST is an
instance of some specialized class derived from base class Node, representing
a particular element in the function expression like constant, variable, binary
operator etc.

*

Ret

+
x

y

+
+

2
x y

y *

Ret

+
x

y

+
+

2
x y

y

1 2

3 4

5 6

7 8

9
10

1 2 3 4 5 ...

Figure 5.1: AST for the function f = (xy + y, x + y + 2) and its linearization
by post-order traversal.

It this then up to the particular interpreter to preprocess this AST so it will
suit its needs. We implemented three different interpreters, whose efficiency
in terms of execution speed we compared in Section 6.4.

To construct an instance of IFunction associated with a certain type of
the interpreter, the factory methods described in 5.4.2 can be used.

89

5. Application design and implementation

5.5.1 Recursive interpreter

This interpreter simply evaluates the function’s AST by recursively traversing
it in post-order. Double dispatching via the visitor pattern is used to this end
(see [27, pp.634–637]).

5.5.2 Linear interpreter

During its construction, this interpreter takes the input AST, performs a one-
pass post-order traversal on it, creating a linear sequence of its nodes (Fig-
ure 5.1), which it then internally stores as a list. Evaluation of the function
with certain inputs is then done by simply iterating this list. The informa-
tion about child-parent relationship from the tree is still used, but no more
recursive double dispatching is required. Any intermediate values are stored
directly in the corresponding nodes.

5.5.3 Linear cached interpreter

This implementation enhances the linear interpreter, by exposing the nature of
our problem domain. During the solving algorithm computation, it is expec-
ted, that two consecutive function evaluations will be often done with inputs
that will not be completely different and unrelated, but will instead match in
some components. This is in general happening in two scenarios.

• When performing the parameter space decomposition in Algorithm 4, it
is expected, that for a given parameter sub-box P ′ ⊆ P , several evalu-
ations of the function, with possibly different variable sub-boxes X ′ ⊆ X,
are performed. These are all the evaluations that happens for a currently
processed frame during the processing of its items collection.

• When computing a sign covering using Algorithm 1, the parameter sub-
box P ′ is again the same during the whole process, so at least the para-
meter sub-box components will always match.

Therefore, this interpreter always remembers its last input, and keeps all
intermediate values of nodes from the last evaluation stored. When a new
evaluation is requested, it first finds out, whether any components of the
current and previous input match. If they do, this fact is noted, and subtrees
of the function’s AST, that make use only of these matched components, are
not re-evaluated.

Every node is associated with a bit-string, providing information about
which components (variables) values are required to successfully compute this
node. The leaves get either 00 . . . 0, if they represent constants, or a bit-strings
with exactly one 1, if they represent a variable. The tree root gets a bit-string
11 . . . 1. See Figure 5.2 for a simple example.

90

5.6. Frames and the parameter space decomposition

*

Ret

+
x

y

+
+

2
x y

y

10

10

01

01
01

11

11

11

01

11

00

Figure 5.2: AST with the bit-string information for f = (xy + y, x + y + 2).
When two consecutive inputs have the same second component (variable y),
then the colored sub-trees do not need to be reevaluated the second time, as
the cached intermediate results can be directly used.

5.6 Frames and the parameter space

decomposition

This section presents the classes related to the implementation of Algorithm 4
for parameter space decomposition and to the frame data structure its special-
izations that parametrize its functionality and were introduced in Chapter 3.

5.6.1 ISolver and derived classes

The Solver class is an abstract class encapsulating and implementing the
parameter space decomposition in Algorithm 4). It has five derived classes
(adapters), each of which is used to initiate the solving process with one
concrete frame data structure design from Chapter 3.

These classes are stateless and once their instances are constructed, they
can be used for the computation repeatedly, via the instance method solve.
This method is the entry point of the solving process and has the following
parameters.

• const Box &vars; Input variable domain box X in Algorithm 4.

• const Box ¶ms; Input parameter domain box P in Algorithm 4.

• const IBisector &bisector; Instance of IBisector that encapsulates
the parameter d (box width threshold) in Algorithm 4.

• double faceRefModifier; Face refinement modifier E in Algorithm 4.

• int capacity; Capacity of the items collection of frames. Every frame
ever created during the computation will have the same capacity spe-
cified by the passed argument.

91

5. Application design and implementation

• IFunction &function; Instance of IFunction which represents the in-
put function FP in Algorithm 4 as well as the underlying interpreter
used for its evaluations.

• const IDegree &dc; Instance of IDegree encapsulating the combinat-
orial part of the degree computation. For example, it stores the sign and
index selection strategy to be used.

• Boxlist &yesList; List of boxes which is used to store the contents of
the resulting list Y . It must be passed in empty.

• Boxlist &noList; List of boxes which is used to store the contents of
the resulting list N . It must be passed in empty.

5.6.2 IFrame and derived classes

These are implementations of the different frame data structures designs in-
troduced in Chapter 3, with IFrame representing their common interface.

• class StaticFrame; Static frame implementation from Section 3.6.

• class BisectOnlyFrame; Bisect-only frame implementation from Sec-
tion 3.7.

• class BisectAndKeepFrame; Bisect-and-keep frame implementation from
Section 3.8.

• class TreeFrame; Tree frame implementation from Section 3.9.

• class GridFrame; Grid frame implementation from Section 3.10.

5.6.3 Core structure

The core structure of frames is encapsulated in the base class IFrame. In-
stances of this class stores a private member of class Box representing the
associated parameter sub-box F . Another private member is a reference to
IFunction instance representing the underlying associated interval inclusion
function FP ′ .

For managing the ownership of frames within ISolver instances, we use
typedef UPtrIFrame, which is a unique pointer (std::unique_ptr) to IFrame.

The base class contains the implementation of the frBisect function (re-
call the frame manipulating functions from Table 3.2). This function is used
by ISolver instances when performing the parameter space decomposition.

• UPtrIFrame bisect(const IBisector &bisector);

Bisects the underlying parameter sub-box P ′ into P1 and P2. This in-
stance will be modified to now hold P1, and then cloned to another

92

5.6. Frames and the parameter space decomposition

instance holding P2, which will be returned via an (UPtrIFrame) in-
stance.

The implementation of the other significant frame manipulating functions
is left to the specialized classes. For efficiency purposes, all the derived clases
are designed as mutable classes and the frame manipulating functions are
implemented as private methods changing the actual state of the underlying
frame.

The chain of the calls to frPrune, frHasRoot and frRefine frame ma-
nipulating functions is accessible by the public virtual method hasSolution,
which returns and enumeration Solution, that can have the values no, yes,

unknown.

• virtual Solution hasSolution(IBisector &bisector,

const IDegree &dc);

Executes the chain of frPrune, frHasRoot and frRefine frame ma-
nipulating functions, as expressed in Algorithm 4. The passed bisector

encapsulates the face refinement threshold for sign covering computa-
tions and dc encapsulates the combinatorial phase of the topological
degree computation.

The return value maps to the conditions in Algorithm 4 as follows. If no

is returned, the the items collection of the instance has become empty.
If yes is returned, then a non zero degree was found for some box in the
items collection. Otherwise neither is true.

The actual structure of the items collection is another thing specific to the
derived classes. We will discuss it briefly in the following subsection.

5.6.4 Structure of the items collection

Classes StaticFrame, BisectOnlyFrame and BisectAndKeepFrame simply
use an instance of std::list<Box> to store boxes in their items collection.

The use of std::list allows for easy iteration over the items collection
and cheap inserting of new boxes into the list.

The items collection of TreeFrame is implemented as a unidirectional tree
of nodes, where parents contains pointers to their children. Every node cor-
responds to one box in the items collection and is represented by the inner
class Node, which stores an instance of Box and std::list containing point-
ers to children of this node. To express the parent-child relationship and the
ownership of boxes by nodes, we make use smart pointers, std::unique_ptr

and std::shared_ptr.

GridFrame instances store their items collection as a std::list of in-
stances of their inner class Node (the same name as for TreeFrame). Atop

93

5. Application design and implementation

of this list, the grid structure of neighbours is built. Each Node again cor-
responds to a single box in the items collection and therefore stores one Box

instance.
To realize the concept of edges, we use std::map and std::list instances.

Namely, each Node instance has associated instances of EdgeMap and EdgeList

that are given as follows.

• typedef std::shared_ptr<Box> SPtrBox;

• typedef std::map<Node*, SPtrBox> EdgeMap;

• typedef std::list<SPtrBox> EdgeList;

EdgeMap represents edges whit actual endpoints. The first template argu-
ment is a pointer to the endpoint, while the second one is a pointer the wall
over which the edge is realized (see Section 3.10).

EdgeList then represent edges without endpoints. The template argument
is the wall along which there is no neighbour.

To support retrieving edges from a certain direction only (recall the func-
tions loEdges and hiEdges from Section 3.10), every Node instance actually
stores a separate instance of EdgeMap and EdgeList for every possible direc-
tion. When working with n-dimensional boxes, this makes the total of 2n
instances of each. They are stored in an array and accessed via index, that
we map to a particular direction.

This definitely could be done more efficiently, but we have focused more
on the correctness and the concepts we created in Section 3.10 turned out to
be implemented rather easily using this approach.

94

Chapter 6

Testing and experimental

evaluation

This chapter presents the results of the experimental evaluation of our im-
plementation of the main algorithm we designed in Chapter 3 together with
all the specializations of the frame data structure presented there. Our cus-
tom implementation of the algorithm for computing the topological degree
(Chapter 2) is evaluated as well. We also describe how we tested the correct-
ness of our implementations.

6.1 Testing environment

All tests and experiments were carried out on a computer with Intel Core i7
5500U @ 2.40GHz (2 cores / 4 threads) with 8GB of RAM, running Ubuntu
16.04 LTS 64-bit.

Execution time was measured using the GNU time utility, combined with
the program chrt, to run our measurements with higher priority than other
processes. Typical command had the form of

sudo chrt -f 99 /usr/bin/time [flags] [command to measure]

Memory consumption was also measured with GNU time, as the maximum
resident set size. When measuring execution time, we aimed to select difficult
enough inputs, so that the results were not affected by the limited precision of
the underlying timers. We also repeated every measurement, typically from 2
to 10 times.

6.1.1 Reproducibility of the experiments

To make our tests and measurements reproducible, we encapsulated them into
Python scripts, located in the folder ./scripts. These contain both the logic

95

6. Testing and experimental evaluation

for the given experiment, as well as the input data and all parameters, like
path to executables, number of repeats etc. To run these, Python version 3.5
or above is required, because of the modules we are using in the scripts.

Tests, that need direct access to the implementation, like unit tests or our
correctness test of the main algorithm, were compiled as the part of the main
C++ project, and are stored in the file tests/tests.o.

6.2 Unit Testing

We have used Catch framework, discussed in Section 4.4, to write unit tests
to ensure that our implementations of “building blocks” like boxes, bisectors
or interpreters comply to their public interfaces.

6.2.1 Running the unit tests

Unit tests are compiled into the file tests/tests.o. To run the all tests,
simply execute the file with no parameters. Use the flag -h to display help
and lists of available Catch flags to run the tests with.

6.2.2 Tests overview

This is the overview of the unit tests. We divided their sources into separate
files, containing related test cases. Each test file has its unique tag, that can be
used to run tests.o with, to execute only tests having this flag, for example

./tests/tests.o "[box]"

runs the unit tests with the flag [box]. The complete list of source test is the
following.

• filename boxtest.cpp; tag [box] This file contains tests for verifying the
functionality of basic properties of our implementation of boxes and ori-
ented boxes and related operations like computing faces, oriented bound-
ary etc.

• filename signvectortest.cpp; tag [signvec] Tests the creation, ma-
nipulation and property setting/accessing of the sign vector implement-
ation.

• filename bisectortest.cpp; tag [bisector] Tests the bisection related
operations provided by Bisector and Box classes.

• filename scannertest.cpp; tag [scanner] Verifies, that inputs (expres-
sions, function definitions) are scanned into correct sequences of tokens.

96

6.3. Topological degree computation

• filename evaltest.cpp; tag [eval] Tests the correctness of our imple-
mentation of our function interpreters against gaol numerical expression
evaluation capability, [9, p. 43–45].

We form strings representing scalar numerical expressions, covering all
building block our functions can be build of (bin. operators, elementary
functions, constants), and possibly containing variables, and let them
evaluate using our implemented interpreters. Then we evaluate the same
inputs directly via gaol, replacing particular variable values directly in
the input string, and check, that the results represent the same set of
numbers via gaol::interval::set_eq, see [9, p. 22].

• filename signselectionstrategytest.cpp; tag [signstrategy] Tests
the implemented strategies for selecting the sign and index during the
combinatorial phase of the topological degree computation. We imple-
ment the least frequent selection strategy mentioned in Subsection 2.3.4
and a default one, that always selects the sign + and the index 0. The
default one, however, was used only during debugging.

• filename signcoveringtest.cpp; tag [signcovering] Verifies the con-
tract of the implementation of Algorithm 1 for computing sign coverings,
which is the core of performing the numerical phase of the topological
degree computation. We execute test cases that check if the implement-
ation correctly returns a sign covering of some permissible set and if the
sign covering is wrt. to the given function and is either sufficient or not
depending on the particular input.

6.3 Topological degree computation

Because we provided our custom implementation of algorithm [2] for com-
puting the topological degree, for the reasons summarized in Section 2.5, we
wanted to perform some tests regarding its correctness and execution speed.

6.3.1 Correctness

To test correctness of our implementation, we took the reference implement-
ation [12], that accompanies [2], prepared a suite of inputs consisting of func-
tions f : Rn → Rn and associated domains B ⊆ Rn, computed deg(f, B, 0)
using both implementations and compared the results.

This test together with the input suite is encapsulated in the script file
degree_test.py for easy reproducibility. We took the sample inputs provided
by [12] and added some other of our own, aiming to cover different types of
functions f , like linear, polynomial, trigonometric, logarithmic etc.

We also kept in mind, that our implementation offers more parametrization
than the reference one, so we introduced more test cases with the same f and

97

6. Testing and experimental evaluation

B, but different parameters for our implementation. Namely, we tested all of
our three function interpreters and both sequential and parallel execution of
the combinatorial phase of the algorithm.

In all cases, the results of both implementations were identical. You are
free to rerun the test by executing degree_test.py, or just see its output
located in the same folder as the script.

6.3.2 Execution time comparison

We compared the execution speed our implementation with the reference im-
plementation [12] on certain examples, that were complex enough to take
enough time on both implementations to surpass the possibly limited preci-
sion of timers provided by the GNU time utility.

Again, all the measurements are reproducible by running the same script
degree_test.py, as for the previous subsection. Here, we present the follow-
ing examples. As in [2], we considered the function f = (f1, . . . , fn) defined
as

f1 = x2
1 − x2

2 − · · · − x2
n

f2 = 2x1x2

. . .

fn = 2x1xn,

for various n and the input box B = [−1, 1]n. This function has a root x = 0,
whose degree is 0 for n odd and 2 for n even([2, p. 21]).

Then, we considered the function g = (arctan(f1), . . . , arctan(fn)), again
for various n and the same input box B. The root x = 0 of this function has
the same properties as the one of f .

We measured the time both implementation take to compute the topo-
logical degrees of f and g on domain B. Our implementation was run with
recursive interpretation mode, with the combinatorial part of the algorithm
executed sequentially. The results are presented in Table 6.1.

Our implementation turned out to be several times faster, especially when
more function evaluating is involved (compare the results from Table 6.1 for
functions f , g). As n gets higher and the combinatorial part therefore starts
being the major part of the computation, the difference tends to lessen, but
the ratio between the execution times is still significant.

6.3.3 Memory consumption

We also compared the memory consumption between ours and the reference
implementation [12], in terms of the maximum resident set size, measured
again by the GNU time utility. The general observation was, that for simple

98

6.3. Topological degree computation

Func. n our (s) ref (s) ref /our

f
8 0.220 2.43 11.03
9 1.65 16.9 10.28
10 13.0 102 7.835

g
8 0.223 4.20 18.82
9 1.61 22.5 13.92
10 13.1 119 9.057

Table 6.1: Execution time of the topological degree computation via our cus-
tom implementation (our) and the reference one [12] (ref).

Func. n our (MB) ref (MB) ref /our

f
8 8.14 16.7 2.05
9 14.2 43.5 3.06
10 27.9 109 3.90

g
8 8.23 16.7 2.03
9 14.4 42.6 2.96
10 28.0 109 3.89

Table 6.2: Max. resident set size during the topological degree computation
via our implementation (our) and the reference implementation [12] (ref).

inputs, for which our implementation terminates almost immediately8, our
implementation tended to have its maximum resident set size around 4MB,
which was around 2–4 more, than the reference implementation required for
the same inputs.

For more complex inputs, where the computed sign coverings start getting
larger and the combinatorial part takes more time to finish, both implement-
ations’ memory requirements naturally increase. However, in the experiments
we performed, we found out, that the maximum resident set size grew slower
for our implementation than for the reference one. If the input was com-
plex enough, our implementation ended up requiring less memory than the
reference one did.

We attribute this behavior to the way we manipulate lists in our imple-
mentation during the combinatorial phase. Mainly, we use several mechanisms
provided by C++ to avoid unnecessary copying, like passing by reference or
pointer wherever possible and splicing lists via std::list::splice.

In Table 6.2, we present measured results regarding functions f and g
from Subsection 6.3.2, again for the input box B = [−1, 1]n and various di-
mensions n. As for previous subsections, the experiment can be reproduced
by running degree_test.py script.

8meaning, that the running time was so small, that the timer provided by GNU time

was unable to measure the exact time and returned 0.

99

6. Testing and experimental evaluation

6.4 Interpretation strategies

Among our unit tests (Subsection 6.2.2), we covered the verification of cor-
rectness of all our three function interpreters. We are further interested in
comparing their performance in terms of computation speed. Although we
perform all of our other experiments with each of our interpreters, so we have
plenty of examples to compare, we want to also specifically choose some more
difficult inputs, that put our interpreters under higher load, but that are oth-
erwise not suitable for the rest of our experiments.

To this end, we browsed the demonstration database for PHCpack [31],
containing systems of polynomial equations and their approximated solutions
computed by PHCpack solver [32]. We took systems f : Rn → Rn presented
there and computed sufficient sign coverings sc of some ∂B wrt. f . We tailored
the input boxes B using the information about roots of f , that is part of the
database, so that sc contained enough boxes for a single computation to take
tens of seconds on average.

6.4.1 Examples

The script script/interpreters.py can be run to repeat all of our meas-
urements regarding this section. Here we present the result of three selected
experiments.

One of the function we picked was a function f titled “A neural network
modeled by an adaptive Lotka-Volterra system, n = 5” (referred to as noon5
in [31]). It is a function R5 → R5 with components defined as follows,

f1 = x1x2
2 + x1x2

3 + x1x2
4 + x1x2

5 − 1.1x1 + 1

f2 = x2x2
1 + x2x2

3 + x2x2
4 + x2x2

5 − 1.1x2 + 1

f3 = x2x2
1 + x2x2

3 + x2x2
4 + x2x2

5 − 1.1x2 + 1

f4 = x4x2
1 + x4x2

2 + x4x2
3 + x4x2

5 − 1.1x4 + 1

f5 = x5x2
1 + x5x2

2 + x5x2
3 + x5x2

4 − 1.1x5 + 1.

For the input box Bf = [−0.8, 0]5, the sufficient sign we covering sc we com-
puted contained the total of 5 671 265 boxes.

Other function we chose was a function g known as “The 5-dimensional
system of Reimer” (referred to as reimer5 in [31], originating in [33]). This is
a function R5 → R5 having the following components,

g1 = −1 + 2x2 − 2y2 + 2z2 − 2t2 + 2u2

g2 = −1 + 2x3 − 2y3 + 2z3 − 2t3 + 2u3

g3 = −1 + 2x4 − 2y4 + 2z4 − 2t4 + 2u4

g4 = −1 + 2x5 − 2y5 + 2z5 − 2t5 + 2u5

g5 = −1 + 2x6 − 2y6 + 2z6 − 2t6 + 2u6.

100

6.5. The main algorithm

Func. Boxes in sc. Interpretation Exec. time (s)

f 5 671 265
Recursive 19.31
Linearized 14.75
Lin.-cached 10.07

g 11 117 615
Recursive 42.52
Linearized 31.65
Lin.-cached 19.47

h 11 117 615
Recursive 72.42
Linearized 60.98
Lin.-cached 49.87

Table 6.3: The time required for computing a sufficient sign covering sc
wrt. functions f, g, h from Subsection 6.4.1 using different interpretation
strategies.

For the input box Bg = [0.1, 1]5, the sufficient sign we covering sc we computed
contained the total of 11 117 615 boxes.

Finally, we considered function h : R5 → R5, whose components are defined
as

hi =
3

√

arctan(gi)

Function h is intentionally defined this way, so that the computation difficulty
increases, without introducing new AST nodes with variables. Because at least
one variable changes its value during back-to-back evaluations, the lin. cached
interpreter must evaluate both the square root and the arctan function. For
the input box Bh = [0.1, 1]5, the number of boxes in the computed sufficient
sign covering is the same as in the case of function g with the input box Bg.

Table 6.3 summarizes the measured execution times of the computations
of sufficient sign coverings wrt. the presented functions on their respective
domains. When experimenting with systems from [31], linearized interpreta-
tion strategy tended to be somewhat around 20–25% faster than the recursive
one, like computations with f and g shows. The lin.-cached strategy is more
dependent on the form of the function. Typically, it gave better results the
more higher powers occurred in the function’s prescription.

The experiment with function h indicates, that when the computation dif-
ficulty starts shifting from traversing the function’s AST to the actual compu-
tation the interval arithmetic library performs, the differences in performance
between the interpretation strategies tend to diminish.

6.5 The main algorithm

This section describes the tests and experiments related to our main algorithm
from Chapter 3, which consists of the implementation of Algorithm 4 and all
the specializations of the frame data structure we designed and implemented.

101

6. Testing and experimental evaluation

6.5.1 Correctness

The first thing we wanted to test was if our implementation complies to the
output specification in Section 3.2. Namely, we wanted to verify (to certain
extent, at least), that no point p ∈ P , where P is the input parameter box,
ends up being incorrectly assigned to Y or N , when it actually does not belong
there.

To this end, we wrote a simple black-box repetition test (see [34, p. 87]),
which runs our main algorithm implementation with such input parametrized
equation systems, for which we know their solutions (because they can be
computed simply by hand, for example).

For each such particular input system fP (X) = 0, the algorithm imple-
mentation is run and the resulting lists Y and N are saved. Then within a
given time limit, the test repeatedly and pseudo-randomly chooses a point
from some box in the list Y , and using our knowledge about the correct solu-
tion, it verifies, that the chosen point was correctly assigned to this list. The
same then goes for the list N . These steps are repeated with every frame data
structure specialization.

We did not want to encapsulate this test into a python script, because that
would require serialization and deserialization of the results, possibly causing
a loss of the inclusion property provided by interval arithmetic, to which we
would no longer have access from the python script.

That is why we included this test directly in our C++ project, and make
it build as a part of the unit tests executable tests.o (simply to avoid intro-
ducing a new separate executable). The repetition test can be run simply as
follows.

./tests.o –reptest [time in seconds]

The given time limit specifies, how long should the repetition steps be per-
formed for each input system and each frame specialization.

Let us demonstrate the idea of this test on a single example.

Example 6.1. On a simple example, we show the workflow of our repetition
test. Consider the parametrized equation system fP (X) = 0, with variables
x, y and parameters a, b defined as

ax + 3y − 1 = 0

bx + 2y − 3 = 0.

For 3a = 2b, the system has no solution, and for 3a 6= 2b, it has exactly
one solution

(x, y) =

(

7

3b− 2a
,

b− 3a

3b− 2a

)

. (6.1)

Our test first chooses a frame data structure specialization and uses it to
execute the Algorithm 4 for f and certain input boxes X, P (these boxes are

102

6.5. The main algorithm

part of the particular test case) and stores the resulting lists Y , N . Then it
starts the actual testing, whose inner form depends on the particular input
equations system. For the considered system fP (X), this is as follows.

For the list Y : Different points p = [a′, b′] from different boxes in Y are
repeatedly selected.

First, it is checked, whether 3a′ = 2b′. If this holds, the test logs fail,
because that means the system does not have a solution for p, and p was
therefore incorrectly placed into Y .

Otherwise, it needs to be checked, if the solution (x, y) for p, given by
(6.1), is a part of the input box X. If so, then p was placed into Y correctly
and the test logs success. Otherwise, p was misplaced and the test logs fail.

We do this check soundly using interval arithmetic. Both components of
(x, y) are computed from (6.1) using interval arithmetic as intervals Ix, Iy,
guaranteed to contain exact values of the respective components. The test
then logs fail, if and only if C = Ix×Iy is guaranteed to lie completely outside
of X (that is C ∩X = ∅).

For the list N : Different points p = [a′, b′] from different boxes in N are
repeatedly selected and steps, that are sort of complementary to processing
Y are taken. First, if 3a′ = 2b′ holds, the test logs success. Otherwise, (x, y)
is computed for p again as a box C, and the test logs fail, if and only if C
is guaranteed to lie completely inside of X, that is C ⊆ X holds, or in other
words the system is ensured to have a solution for p inside the domain X.

6.5.2 Inputs for the further measurements

In the following subsections, we consider implementations of all five differ-
ent designs of frame data structure from Chapter 3 and present and discuss
measured results related to the quality of the computed solution, execution
time and memory consumption. All these experiments can be rerun using the
script solver.py, which contains both the logic and input suite. Here, we
selected some concrete inputs from the suite, which we further work with. In
the following, x, y, z denote variables and a, b denote parameters.

• The system of two linear equations flin with two variables and two para-
meters from Example 6.1; that is

ax + 3y − 1 = 0

bx + 2y − 3 = 0

The input domain boxes are Xlin = [0.75, 1]2 and Plin = [−3,−1]× [1, 2].

103

6. Testing and experimental evaluation

• System of equations ftrig with two variables and two parameters, con-
taining the trigonometric function sin and the inverse trigonometric
function arccos, defined as follows.

arccos(ax + b)− 0.5 = 0

sin(ay + b)− 0.5 = 0

The input domain boxes are Xtrig = [−2, 2]2 and Ptrig = [−1, 1]2.

• System of equations fhyp2 with two variables and two parameters, given
as follows.

a(x− 1)2 + by2 − 1 = 0

bx2 + a(y − 1)2 − 1 = 0

Each equation represents an ellipsis and every solution of this system
is their intersection. The input domain boxes are Xhyp2 = [−2, 2]2 and
Phyp2 = [−2, 4]2.

• System of equationsfhyp3 with three variables and two parameters, given
as follows.

a(x− 1)2 + by2 + z2
√

a2 + b2 − 1 = 0

bx2 + (y − 1)2
√

a2 + b2 + az2 − 1 = 0

x2
√

a2 + b2 + by2 + a(z − 1)2 − 1 = 0

Each equation represents an ellipsoid. The input domain boxes are
Xhyp3 = [−2, 2]2 and Phyp3 = [−2, 2]3.

6.5.3 Measuring the quality of the solution

One of the main aspects we aim to measure and compare is the quality of the
solution. We think that from the nature of our solved problem, it makes the
best sense to measure the solution quality in terms of how much volume of
the input parameter box P were covered by both of the resulting lists Y , N .
Such approach allows us to compare two solutions to the same input and see,
which one provides more quality.

For a solution (Y, N), we define

pave(Y) =

∑

P ′∈Y volume(P ′)
volume(P)

, pave(N) =

∑

P ′∈N volume(P ′)
volume(P)

, (6.2)

and consider one solution (Y1, N1) to provide a more quality list Y for the
given input than another solution (Y2, N2) for the same input, if pave(Y1) >
pave(Y2). Similarly for the N list. We also consider the size of lists Y , N
(meaning the number of boxes in them). Out of two solutions providing more
or less the same quality, we consider the one with fewer boxes better.

104

6.5. The main algorithm

Parameter Meaning

Frame type Which frame design implementation to use.
Bisection threshold Limits the depth of the parameter space decom-

position (parameter d in Alg. 4).
Bisection ratio The ratio in which parameter sub-boxes are bi-

sected (parameter r in ALg. 4).
Face ref. modifier Dictates the extent of refinement during sign

covering computations (parameter E in Alg. 4).
Capacity Capacity of the frame’s items collection (see

Subsec. 3.4.1)
Interpreter The interpretation strategy to use.

Table 6.4: Relevant parameters for experiments involving our main algorithm.

6.5.4 Summary of relevant parameters

With respect to the designs from Chapter 3, our implementation allows certain
parametrization. Table 6.4 summarizes those parameters, that are relevant to
us in the following experiments.

6.5.5 Experiment comparing the different specialization of

frames

We took each of the inputs presented in Subsection 6.5.2 and run the main
algorithm with each specialization of the frame data structure. We collected
data about the solution quality, execution time and memory usage (expressed
as the maximum resident set size).

Other parameters were identical for each frame specialization. Bisection
threshold was set to d = 0.0125, bisection ratio to r = 0.5, capacity to c = 32,
face refinement modifier to E = 1, and recursive interpretation strategy was
used (Table. 6.4). The result is in Table 6.5.

In general, the grid frame provides the most quality solution. Although
its pave(Y) and pave(N) values can be close to those of bisect-and-keep and
tree frames, grid frame design often provides a solution containing less boxes
with bigger volume. The downside is the running time, which is usually the
highest out of all frame types. However, we found out, that the grid frame
specialization often requires less capacity of its items collection than the other
frame designs to provide solution of more or less the same quality.

6.5.6 Experiment exploring the impact of limited capacity

Here, we focused on the tree and grid frame designs and the impact of the
capacity of their items collection on the quality of their solutions and the exe-
cution time. Bisection threshold (Table. 6.4) was set to d = 0.0125, bisection

105

6. Testing and experimental evaluation

In
p
u
t

F
ram

e
ty
p
e

p
ave(Y

)
(%

)
p
ave(N

)
(%

)
cou

n
t(Y

)
cou

n
t(N

)
tim

e
(s)

m
em

(M
B
)

f
lin

S
tatic

32.94
28.52

569
166

0
.13

4
.18

B
isect-on

ly
0
.0

64.53
0

700
0
.66

4
.23

B
isect-an

d
-keep

32.94
64.60

569
709

0
.32

4
.28

T
ree

32.94
64.31

569
679

0
.33

4
.26

G
rid

32.94
64.75

569
605

0
.64

4
.60

f
sq

r

S
tatic

57.03
19.82

6660
1
3
18

0
.18

5
.03

B
isect-on

ly
0
.0

36.02
0

8
8
36

7
.97

5
.01

B
isect-an

d
-keep

57.03
35.63

6660
9
4
30

1
.68

5
.94

T
ree

57.03
35.0

6660
9
4
34

2
.47

5
.85

G
rid

57.03
35.45

6600
9
8
95

9
.19

6
.13

f
tr

ig

S
tatic

24.98
45.56

300
288

0
.38

4
.25

B
isect-on

ly
0.08

45.56
756

288
1
.53

4
.30

B
isect-an

d
-keep

52.60
45.56

1441
288

0
.67

4
.53

T
ree

52.60
45.56

1440
288

0
.68

4
.50

G
rid

53.27
45.56

724
288

1
.03

4
.88

f
h
y
p
2

S
tatic

26.71
13.07

2246
382

1
.29

4
.39

B
isect-on

ly
61.91

31.77
3391

2
9
82

2
.05

4
.87

B
isect-an

d
-keep

67.17
31.70

1271
1
8
20

1
.03

4
.43

T
ree

67.18
31.53

1215
2
1
78

1
.43

4
.41

G
rid

67.29
31.95

813
1
2
07

4
.5

4
.83

f
h
y
p
3

S
tatic

28.83
0
.51

9301
133

3
1.2

5
.18

B
isect-on

ly
87.22

5
.01

10617
4
7
60

2
4.8

5
.72

B
isect-an

d
-keep

90.11
5
.55

5683
3
1
04

2
3.9

5
.10

T
ree

90.30
6
.28

5790
2
5
61

21.02
5
.16

G
rid

90.67
7
.35

2514
2
1
34

25.43
5
.46

T
ab

le
6.5:

Q
u
ality,

tim
e
an

d
m
ax

.
resid

en
t
set

size,
m

em
,
for

th
e
m
ain

solv
in
g
alg

orith
m
.

106

6.5. The main algorithm

Input Capacity volume(Y)
volume(P) (%) volume(N)

volume(P) (%) Time (s)

ftrig

8 47.26 45.57 0.70
32 52.60 45.56 0.68
128 52.60 45.57 0.88

fhyp2

8 66.42 30.54 0.91
32 67.18 31.53 1.46
128 67.21 31.71 4.38

fhyp3

8 87.28 4.37 18.4
32 90.30 6.28 21.0
128 90.43 6.37 44.7

Table 6.6: The quality of the main solving algorithm for tree frames with
various capacity.

Input Capacity volume(Y)
volume(P) (%) volume(N)

volume(P) (%) Time (s)

ftrig

8 53.26 45.56 0.15
32 53.27 45.56 1.03
128 53.27 45.56 9.86

fhyp2

8 67.18 30.83 0.97
32 67.29 31.95 4.50
128 67.30 32.08 54.6

fhyp3

8 89.48 4.55 14.2
32 90.67 7.35 25.4
128 90.79 7.81 233

Table 6.7: The quality of the main solving algorithm for grid frames with
various capacity.

ratio to r = 0.5, face refinement modifier to E = 1 and recursive interpretation
strategy was used.

The results are summarized in Tables 6.6 and 6.7. The grid frame special-
ization seems to scale worse with growing capacity, but in our experiments, it
typically required lesser capacity to provide results comparable to other frame
specializations with bigger capacity.

107

Conclusion

In the scope of this thesis, we developed and implemented an algorithm for
characterizing the sets of points p ∈ P , for which there exists a real-valued
solution x to the given parametric system of equations fP (x, p) = 0, where
fP : X ⊆ Rn → Rn is a continuous function formed by arithmetic expressions
and X is a box (product of closed real intervals).

The algorithm is designed to make use of floating point based interval
arithmetics for computing sound estimates of function images and for ensuring
robustness with respect to rounding errors caused by finite precision of floating
point numbers. The top-level of the algorithm is a branch and bound based
parameter space decomposition that sets the core workflow of the algorithm,
but can be highly parametrized.

We observed, that the overall quality of our solving algorithm is determined
by the way the domain X is manipulated. We therefore introduced a data
structure called frame intended to encapsulate such manipulation behind a
generic interface, and then designed several concrete specializations of this
structure with a specific behavior. The most complex one, the grid frame
specialization, maintains a grid of sub-boxes of X, that can be temporarily
merged into various oriented cubical sets. When explaining the concepts we
developed, we aimed to provide both informal description, often accompanied
by visual aids, as well as more technical details.

Our algorithm further uses the solution existence test based on the solv-
ability property of the topological degree. For the actual computation of the
topological degree, we made use of the algorithm [2]. However, the application
was not straightforward as we had to figure out certain details specific to our
problem domain.

Most notably, our working with parametrized functions led us to enhance
previous work related to practical computation of the topological degree by
creating a custom sound method of determining, if for arbitrary boxes X ′ ⊆ X,
P ′ ⊆ P the degree deg(fp, X ′, 0) exists and has the same value for every p ∈ P ′.
This consists of computing sign coverings that are wrt. the whole set of func-

109

Conclusion

tions {fp; p ∈ P ′} and reusing the combinatorial phase of the algorithm [2].
For this and other reasons summarized in Section 2.5, we provided a cus-

tom implementation of the existing algorithm [2], that according to our ex-
periments outperforms its reference implementation [12] in terms of execution
time. Our implementation proved to be around ten times faster on average in
our experiments. For more complex inputs, our implementation also uses less
memory compared to the reference one. In addition, our implementation can
execute the combinatorial phase of the algorithm in parallel using threads.

We provided the implementation of our solving algorithm as well as the
algorithm for computing the topological degree in C++. We created a CLI
for both and for our solving algorithm also a GUI written in Java Swing [15],
capable of visualizing the results. We used Gaol [9] as the underlying interval
arithmetic library and Catch framework [25] for writing unit tests. On the
enclosed DVD, an Oracle VM VirtualBox [35] image with our precompiled
ready-to-use application is available.

One of the implementation highlights is that using the underlying interval
arithmetic library, we wrote our custom interval inclusion functions interpret-
ers. The most complex one is specifically tailored to our problem domain,
and makes use of the fact, that inputs for consecutive evaluations of the same
function often share some components, which allows to bypass evaluation of
some subtrees in the expression’s AST and use cached values instead. In ad-
dition, it is not recursive, but instead linearizes the function’s AST during
its initialization and then performs any evaluation using a simple linear code.
In our experiments, this strategy proved to be faster than evaluating without
caching.

We performed several tests and experiments related to the correctness,
solution quality and time/memory requirements of our implementation. We
encapsulated them into Python scripts so that they can be reused anytime.

As a part of our experiments, the quality and resource requirements of all
frame data structure specialization were measured. The grid frame specializ-
ation provided particularly good results in terms of quality, but it also often
took the longest time, because of all the manipulation within the grid struc-
ture. In general, our implementation is capable of producing quality results
and terminate in reasonable time for various non-linear systems up to three
equations, possibly containing combination of elementary functions like exp,
log, sin, cos, arcsin, arccos, n-th root, In higher dimensions, the execution
time starts to be a limiting factor, if we aim to preserve the solution quality.

As one possibility of future work, we suggest increasing the efficiency of
the implementation of the grid frames. We aimed mainly for correctness and
tended to use higher abstractions (mostly in form of structures provided by
the C++ standard library), to express our ideas and intentions more clearly.
The downside to that is the overhead this brings. Implementing some sort
of copy on write mechanism, when passing the frames to child nodes in the
parameter space decomposition process could also be beneficial.

110

Bibliography

[1] O’Regan, D.; Cho, Y. J.; et al. Topological Degree Theory and Ap-
plications. Boca Raton, FL: Chapman & Hall/CRC, 2006, ISBN 978-
1584886488.

[2] Franek, P.; Ratschan, S. Effective Topological Degree Computation Based
on Interval Arithmetic. CoRR, volume abs/1207.6331, 2012. Available
from: http://arxiv.org/abs/1207.6331

[3] Muller, J. M. Handbook of Floating-Point Arithmetic. Boston:
Birkhäuser, c2010, ISBN 978-0-8176-4705-6.

[4] IEEE Computer Society. IEEE Standard for Floating-Point Arith-
metic. IEEE Std 754-2008, Aug 2008: pp. 1–70, doi:10.1109/
IEEESTD.2008.4610935.

[5] von Gudenberg, J. W. OOP and Interval Arithmetic—Language Sup-
port and Libraries. In Numerical Software with Result Verification: In-
ternational Dagstuhl Seminar, Dagstuhl Castle, Germany, January 19-
24, 2003. Revised Papers, edited by R. Alt; A. Frommer; R. B. Kearfott;
W. Luther, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ISBN
978-3-540-24738-8, pp. 1–14, doi:10.1007/978-3-540-24738-8_1. Available
from: https://doi.org/10.1007/978-3-540-24738-8_1

[6] Floating-Point Environment. June 2015, [Online; Accessed 21
June 2017]. Available from: http://en.cppreference.com/mwiki/

index.php?title=c/numeric/fenv&oldid=78965

[7] Jaulin, L.; Kieffer, M.; et al. Interval Analysis. In Applied Interval Ana-
lysis: With Examples in Parameter and State Estimation, Robust Con-
trol and Robotics, London: Springer London, 2001, ISBN 978-1-4471-
0249-6, pp. 11–43, doi:10.1007/978-1-4471-0249-6_2. Available from:
https://doi.org/10.1007/978-1-4471-0249-6_2

111

http://arxiv.org/abs/1207.6331
https://doi.org/10.1007/978-3-540-24738-8_1
http://en.cppreference.com/mwiki/index.php?title=c/numeric/fenv&oldid=78965
http://en.cppreference.com/mwiki/index.php?title=c/numeric/fenv&oldid=78965
https://doi.org/10.1007/978-1-4471-0249-6_2

Bibliography

[8] Moore, R. E.; Kearfott, R. B.; et al. Introduction to Interval Analysis.
Philadelphia, PA: Society for Industrial and Applied Mathematics, c2009,
ISBN 978-0-89871-669-6.

[9] Goulalard, F. Gaol 4.2.0 Documentation. May 2015, [Online; Accessed
7 Septemer 2017]. Available from: http://frederic.goualard.net/

software/gaol-4.2.pdf

[10] Sutherland, W. A. Introduction to Metric and Topological Spaces. Oxford:
Oxford University Press, second edition, 2009, ISBN 978-0-19-956307-4.

[11] Berg, G.; Julian, W.; et al. The Constructive Jordan Curve The-
orem. Rocky Mountain J. Math, volume 5, 1975. Available from: http:

//projecteuclid.org/euclid.rmjm/1250130636

[12] Franek, P.; Ratschan, S.; et al. TopDeg. Program for Topological De-
gree Calculation. August 2012, [Online; Accessed 28 September 2017].
Available from: http://www.cs.cas.cz/~franek/topdeg/topdeg.html

[13] Thareja, R. Data Structures Using C. New Delhi: Oxford University
Press, second edition, 2014, ISBN 978-0-19-809930-7.

[14] Franek, P.; Ratschan, S.; et al. Quasi-decidability of a Fragment of the
First-Order Theory of Real Numbers. Journal of Automated Reasoning,
volume 57, no. 2, Aug 2016: pp. 157–185, ISSN 1573-0670, doi:10.1007/
s10817-015-9351-3. Available from: https://doi.org/10.1007/s10817-

015-9351-3

[15] Oracle and/or its affiliates. Swing (JavaTM Foundation Classes).
2018, [Online; Accessed 11 January 2018]. Available from: https://

docs.oracle.com/javase/7/docs/technotes/guides/swing/

[16] Boost. Boost Downloads. December 2017, [Online; Accessed 20 November
2017]. Available from: http://www.boost.org/users/download/

[17] Boost. Boost Software License. 2017, [Online; Accessed 16 December
2017]. Available from: http://www.boost.org/users/license.html

[18] Melquiond, G. Interval Arithmetic Library. December 2006, [Online; Ac-
cessed 30 November 2018]. Available from: http://www.boost.org/doc/

libs/1_66_0/libs/numeric/interval/doc/interval.htm

[19] Lerch, M.; Tischler, G.; et al. Filib++, a Fast Interval Library
Supporting Containment Computations. ACM Transactions on Math-
ematical Software (TOMS), volume 32, no. 2, 2006: pp. 299–324,
doi:10.1145/1141885.1141893. Available from: https://dl.acm.org/

citation.cfm?doid=1141885.1141893

112

http://frederic.goualard.net/software/gaol-4.2.pdf
http://frederic.goualard.net/software/gaol-4.2.pdf
http://projecteuclid.org/euclid.rmjm/1250130636
http://projecteuclid.org/euclid.rmjm/1250130636
http://www.cs.cas.cz/~franek/topdeg/topdeg.html
https://doi.org/10.1007/s10817-015-9351-3
https://doi.org/10.1007/s10817-015-9351-3
https://docs.oracle.com/javase/7/docs/technotes/guides/swing/
https://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://www.boost.org/users/download/
http://www.boost.org/users/license.html
http://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm
https://dl.acm.org/citation.cfm?doid=1141885.1141893
https://dl.acm.org/citation.cfm?doid=1141885.1141893

Bibliography

[20] IAMath—a 100% Java, Verifiable Implementation of Interval Arithmetic.
2003, [Online; Accessed 16 December 2017]. Available from: http://

interval.sourceforge.net/interval/java/ia_math/README.html

[21] Hickey, T. J.; Qju, Z.; et al. Interval Constraint Plotting for Interact-
ive Visual Exploration of Implicitly Defined Relations. Reliable Com-
puting, volume 6, no. 1, Feb 2000: pp. 81–92, ISSN 1573-1340, doi:
10.1023/A:1009950630139. Available from: https://doi.org/10.1023/

A:1009950630139

[22] Goulalard, F. Gaol: Not Just Another Interval Arithmetics Library.
November 2016, [Online; Accessed 9 November 2017]. Available from:
https://sourceforge.net/projects/gaol/

[23] ENSTABretagneRobotics. Visualizer for Intervals and Boxes. 2017,
[Online; Accessed 4 December 2017]. Available from: http://

enstabretagnerobotics.github.io/VIBES/

[24] Drevelle, V.; Nicola, J. VIBes: A Visualizer for Intervals and Boxes.
Mathematics in Computer Science, volume 8, no. 3, Sep 2014: pp. 563–
572, doi:10.1007/s11786-014-0202-0. Available from: https://doi.org/

10.1007/s11786-014-0202-0

[25] Nash, P. Catch2 Repository. 2017, [Online; Accessed 16 December 2017].
Available from: https://github.com/catchorg/Catch2

[26] Nash, P. Catch2 Tutorial. 2017, [Online; Accessed 9 December 2017].
Available from: https://github.com/catchorg/Catch2/blob/master/

docs/tutorial.md

[27] Freeman, E.; Robson, E.; et al. Head First Design Patterns. Beijing:
OReilly, 2014, ISBN 978-0596007126.

[28] Meyers, S. More Effective C++. Boston: Addison-Wesley, 2014, ISBN
978-0201633719.

[29] Kerrisk, M. Linux Programmer’s Manual. February 2018, [Online; Ac-
cessed 14 February 2018]. Available from: http://man7.org/linux/man-

pages/man7/pthreads.7.html

[30] Garshol, L. M. BNF and EBNF: What are they and how do they work?
August 2008, [Online; Accessed 14 February 2018]. Available from: http:

//www.garshol.priv.no/download/text/bnf.html

[31] The Database of Polynomial Systems. 2017, [Online; Accessed 10
November 2017]. Available from: http://homepages.math.uic.edu/

~jan/demo.html

113

http://interval.sourceforge.net/interval/java/ia_math/README.html
http://interval.sourceforge.net/interval/java/ia_math/README.html
https://doi.org/10.1023/A:1009950630139
https://doi.org/10.1023/A:1009950630139
https://sourceforge.net/projects/gaol/
http://enstabretagnerobotics.github.io/VIBES/
http://enstabretagnerobotics.github.io/VIBES/
https://doi.org/10.1007/s11786-014-0202-0
https://doi.org/10.1007/s11786-014-0202-0
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2/blob/master/docs/tutorial.md
https://github.com/catchorg/Catch2/blob/master/docs/tutorial.md
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://homepages.math.uic.edu/~jan/demo.html
http://homepages.math.uic.edu/~jan/demo.html

Bibliography

[32] Verschelde, J. PHCpack Documentation. Release 2.4.47. 2017, [On-
line; Accessed 16 November 2017]. Available from: http://

homepages.math.uic.edu/~jan/PHCpack.pdf

[33] Noonburg, V. W. A Neural Network Modeled by an Adaptive Lotka-
Volterra System. SIAM Journal on Applied Mathematics, volume 49,
no. 6, 1989: pp. 1779–1792, ISSN 0036-1399, doi:10.1137/0149109. Avail-
able from: http://epubs.siam.org/doi/10.1137/0149109

[34] Patton, R. Software Testing. Indianapolis: Sams, 2001, ISBN 0-672-
31983-7.

[35] Oracle and/or its affiliates. Oracle VM VirtualBox. 2017, [Online;
Accessed 1 February 2018]. Available from: http://www.oracle.com/

technetwork/server-storage/virtualbox/overview/index.html

[36] Kitware. CMake. 2018, [Online; Accessed 20 January 2018]. Available
from: https://cmake.org/

114

http://homepages.math.uic.edu/~jan/PHCpack.pdf
http://homepages.math.uic.edu/~jan/PHCpack.pdf
http://epubs.siam.org/doi/10.1137/0149109
http://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
https://cmake.org/

Appendix A

Compiling and running the

implementation

In the following text, we show how the user can try out our final application.
Significant attention is given to the description of our provided GUI.

Our application is intended to be run on GNU/Linux. It depends on
Gaol interval arithmetics library [9] and POSIX threads [29]. To quickly and
conveniently try out our application, we recommend to use the Oracle VM
VirtualBox image [35] we prepared, that contains the application already pre-
compiled and ready to be run. The image is located on the enclosed DVD.

Another option is to build the project from sources, which is intended to
be done via CMake [36]. Prior to the compilation, the libraries mentioned
above must be present. In order to install Gaol, follow the steps in [9]. Once
gaol is installed, navigate to the source folder of our project and type

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release ..

make

If everything works fine, three executables will be generated.

A.1 List of executables

After a successful build, the build folder contains following executables.

• ./degree; Command line interface for computing the topological degree
of a given function on a given domain.

• ./solver; The main part of our implementation, solving the problem
from Chapter 3. It provides a command line interface for executing
Algorithm 4 and allows its parametrization, including to choose the spe-
cialization of the frame data structure to be used.

115

A. Compiling and running the implementation

• ./tests/tests; Unit tests (Section 6.2) and the repetition test from
Section 6.5.

Description of the command line interfaces can be found on the enclosed
DVD. Apart from those executables, the file ./gui/solvergui.jar (relative
to the source dir.) is our graphical user interface serving as an adapter to
./solver. It is written in Java and allows the user to collect the input via
Java Swing [15] components, execute the solver, and wait for its output, which
it then visualizes either via VIBes (Subsection 4.3.1), or via a simple built-in
painting method we provided.

The folder ./scripts contains Python scripts that can be run to reproduce
our tests and measurements. These contain both the logic as well as all the
input data. The top lines of the scripts can be edited to adjust the paths to
the compiled executables etc.

A.2 Description of the provided GUI

To try out the solver, we recommend doing it so via the provided user interface
in ./gui/solvergui.jar. Upon running, the main window (Figure A.1) is
displayed, where the input can be entered. The purpose of the particular

Figure A.1: GUI for our implemented solver.

components numbered in the figure is following.

1. Text field to enter the list of identifiers of variables and parameters.
They are separated by space, comma or semicolon and the whole list is

116

A.2. Description of the provided GUI

enclosed in square brackets. An Identifier name can contain any com-
bination of letters and numbers and must start with a letter.

2. Text area to enter the function (equation system) body. This is made
of a list of arithmetical expressions, each representing one function com-
ponent, separated by a comma or semicolon. The whole list is enclosed
in square brackets. To build expressions, you can use the following.

• Identifiers of the variables and parameters.
• Binary operators +, −, ∗, ˆ, unary operators +, −, parentheses (,).
• Strings to denote the elementary functions: exp, log, sin, cos, tan,
acos, asin atan, abs, sqr (sqr(x) is equivalent to x2), sqrt, sqrtn (to
compute n-th root; replace the letter “n” with an actual positive
integer).
• Constants π, e, numerical punctual constants (like 0.2,−4, etc.).
• Intervals, whose endpoints are expressions, like [−1, 1], [x + 2, x + 8],

etc.

See also Section 5.4.1.

3. Spinner to choose how many of the introduced identifiers represent para-
meters, counting from the end of the list. In Figure A.1, the number is
2, meaning that the last two identifiers, p and q are parameters, while x
and y are variables.

4. Text field to enter domains as list of intervals, separated by commas or
semicolons. The list must be enclosed in an extra set of square brackets.
The n-th interval in the list is the domain of the n-th defined identifier.

5. Combo box for selecting which frame type from Chapter 3 to use.

6. Combo box for selecting the capacity of the items collection of frames
(Section 3.4).

7. Combo box for choosing the type of interpreter to use (Section 5.5).

8. Text field to dictate the depth of the parameter space decomposition
(parameter d in Algorithm 4). This number represents the minimal
width of parameter domain sub-boxes to be further bisected. Lesser
values tend to increase solution quality, but the execution time as well.

9. Text field to select the ratio, in which parameter domain sub-boxes will
be bisected (the parameter r in Algorithm 4). This must be strictly
between 0 and 1.

10. Text field to set the modifier of the face refinement threshold (the para-
meter E in Algorithm 4, see also Subsection 3.5.1). It must be greater
than 0.

117

A. Compiling and running the implementation

11. Combo box to select the output mode. The result can either be presen-
ted via the built-in combination of visual and textual information we
implemented, or send to VIBes server to receive an interactive plot (Sub-
section 4.3.1). Note that the second option requires the VIBes server to
be already running.

12. Button to bring up a file dialog to choose path to solver executable, that
is to the file ./solver.

13. Button that starts computation on a worker thread.

14. Button to stop the currently running computation.

118

Appendix B

Acronyms

AST Abstract syntax tree

IA Interval arithmetics

CLI Command line interface

DFS Depth-first search

GUI Graphical user interface

LSB Least significant bit

119

Appendix C

Contents of enclosed CD

app...main project directory
src..application source files
test..unit tests source files
script scripts encapsulating experiments and tests
build....................................directory with executables
gui................................GUI client written in Java Swing

readme.txtdescription of this DVD’s content
thesis..................................directory containing the thesis

src....................LATEX source code of the thesis and resources
thesis.pdf.................................the thesis in pdf format

virtual...VirtualBox image with pre-compiled ready-to-run application

121

