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Instructions

Hyper-parameter optimization methods try to find, in an effective way, an optimal configuration of a
machine learning algorithm. However, a large amount of models need to be trained to select a
configuration that maximizes predictive performance. Despite the growth of computational power, training
a model is still an expensive operation. One of the approaches to deal with the high cost of training a model
is to approximate performance of a given configuration without actually training the model.

1) Review and theoretically describe state of the art approaches for hyper-parameter optimization; focus
on methods that approximate configuration and model performance.
2) Use or implement at least three of the reviewed methods and experimentally compare their
performance on various data sets. Avoid implementing anew those methods that can be easily taken over
from available implementations.
3) Propose a direction for further improvement of reviewed hyper-parameter optimization methods.

References

Will be provided by the supervisor.





Master’s thesis

Model Performance Approximation in

Hyper-parameter Optimization
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Abstrakt

Ćılem automatické optimalizace hyper-parametr̊u je naj́ıt nastaveńı hyper-
parameter̊u uč́ıćıho algorithm bez lidské pomoci. Protože k vyhodnoceńı jed-
noho nastaveńı je potřeba natrénovat daný model, optimalizačńı metody které
se snaž́ı redukovat počet vyhodnoceńı jsou třeba. Užitečná technika jsou takz-
vané náhradńı modely, které aproximuj́ı přesnost modelu s danou konfiguraćı.

Tato práce zkoumá některé postupy optimalizace hyper-parameter̊u. Mezi
popsané metody patř́ı dvě tradičńı methody: mř́ıžková optimalizace a náhodná
optimalizace, a dvě nejpokročileǰśı metody: sekvenčńı optimalizace založená
na náhradńım modelu (Bayesovská optimalizace) a Hyperband. Dále je popsá-
no několik náhradńıch model̊u, které mohou být použity ke zlepšeńı optimal-
izace. Efektivita optimalizace a přesnost náhradńıch model̊u je porovnána
na dvou datasetech s r̊uzným stupněm obt́ıžnosti a algoritmu dopředných
umělých neuronových śıt́ı. Výsledky ukazuj́ı, že Hyperband dosahuje ne-
jlepš́ıch výsledk̊u na obouch datasetech. Analýza výsledk̊u také potvrzuje,
že náhradńı modely směřuj́ı hledáńı do slibných oblast́ı a t́ım urychluj́ı opti-
malizaci.

Kĺıčová slova optimalizace hyper-parametr̊u, náhradńı modely, approxi-
mace přesnosti model̊u, optimalizace s náhradńım modelem, Bayesovská op-
timalizace, Hyperband
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Abstract

Automatic hyper-parameter optimization aims to tune hyper-parameters of
machine learning algorithms without human effort. Due to necessity to learn a
model to evaluate a configuration, optimization methods that avoid excessive
amount of evaluations are desired for the task. A useful technique is to employ
a surrogate model which approximates performance of the trained model with
given configuration.

This thesis reviews some of the approaches that are being used for the
hyper-parameter optimization. The described methods include two traditional
methods: grid search and random search as a baseline, and two state-of-the-art
techniques: sequential model-based optimization (Bayesian optimization) and
Hyperband. Several surrogate models that can be used to improve the op-
timization are described. The performance of the methods and the surro-
gate models is compared using two datasets of different complexity and a
feed-forward artificial neural network as the machine learning algorithm. On
both tasks, Hyperband outperforms the other methods. The analysis also con-
firms that the surrogate models positively bias the search to promising regions
and, thus, speed up the optimization.

Keywords hyper-parameter optimization, surrogate modeling, performance
approximation, model-based optimization, Bayesian optimization, Hyperband
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Introduction

The purpose of machine learning algorithms is finding a general solutions for
complex problems using just a set of sample observations of the problem with
known solutions. This is achieved by learning a model which captures in-
formation from the observations and uses them to approximate the problem.
Variety of machine learning algorithms were proposed in recent years. These
algorithms have proven to handle a large number of complex problems like
object recognition in the image or prediction of market prices. However, flexi-
bility often comes with a price. In order to be able to train different models for
different tasks, a machine learning algorithm has some free parameters that
need to be set before training the model. These parameters have often signifi-
cant impact on algorithm behavior and in consequence on the performance of
the trained model. We refer to those parameters as hyper-parameters and the
process of identifying their optimal values as hyper-parameter optimization.

To determine whether the learning algorithm with given hyper-parameter
configuration produces a good model, we need to actually train the model
using this algorithm. Training a model is typically an expensive operation
which requires a lot of computational resources. Therefore, we want to avoid
training excessive amount of models. This prompts an interest in advanced
and efficient hyper-parameter optimization methods.

Traditionally, hyper-parameter optimization is performed by a human ex-
pert. The expert selects hyper-parameter configuration based on his knowl-
edge of the problem, the machine learning algorithm and largely on his ex-
perience. The expert trains the model using the algorithm with the selected
configuration. If the performance of the trained model is not sufficient, the
expert has to select a new configuration and train the model again with this
configuration. This procedure is repeated until the configuration with suffi-
cient performance is found.

Manual search is usually quite an efficient way for hyper-parameter opti-
mization. However, it requires manual effort of the human expert. It can be
very difficult for a non-expert user to find a good hyper-parameter configu-
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Introduction

ration. This limits the application of machine learning algorithms to a small
group of experts which is not desirable. The idea behind machine learning is
that the machine learns from the experience provided in the form of data and
does not rely on expert knowledge and intuition.

Methods for automatic hyper-parameter optimization aim to select a hyper-
parameter configuration without human assistance. Many optimization meth-
ods were proposed, ranging from the simpler methods like grid search and
random search to more sophisticated methods that use information gathered
during previous training to select next tested configuration.

One of the ways how to improve the optimization is to build a model,
called surrogate model, that approximates the performance of the original
model depending on its hyper-parameters. The surrogate model can then be
used to guide the optimization and reduce the number of trained models.

There are many surrogate models for hyper-parameter optimization. The
models differ in the type of returned value (point estimate or distribution
over possible values), construction method, time and memory requirements,
a number of hyper-parameter configurations which is needed to approximate
the performance well and many other properties.

The aim of this work is to compare different methods for hyper-parameter
optimization with a focus on methods which use model performance approx-
imation. Moreover, different models for performance approximation will be
described and compared.

The work is organized as follows. In theoretical part (Chapter 1), hyper-
parameter optimization problem is formally described in Section 1.1. Section
1.2 examines the methods for hyper-parameter optimization. The models for
performance approximation are described in Section 1.3. Section 1.4 cov-
ers other aspects which need to be considered before optimizing the hyper-
parameters. Experimental part in Chapter 2 focuses on methods comparison.
Section 2.1 contains experiments structure and specification. Short descrip-
tion of the implementation is given in 2.2. Results of the experiments and their
analysis can be found in Section 2.3. Chapter 3 contains discussion over the
results along with proposal to improvement. We conclude by summarization
of the work and achieved results.
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Chapter 1

Theoretical part

1.1 Hyper-parameter optimization

The aim of machine learning task Π is to use the set of observations Πtrain

and machine learning algorithm A to train a model which minimizes expected
loss.

The loss is defined as real-valued function L that quantifies the model per-
formance on given task for observation π. This loss function is constructed to
reflect a regret of inaccurate prediction. For example, if we use the trained
model to predict house price, the loss might be the difference between pre-
dicted price and real price for which the house was sold. We wish to minimize
the difference between the prices for all houses that can appear on the market,
i.e. the expected loss for all possible observations. We use a machine learning
algorithm to train such a model.

The machine learning algorithm A maps training set of the observations
Πtrain to the model. The algorithm behavior is parameterized by the set of
d hyper-parameters from hyper-parameter space X = X1 × X2 × . . . × Xd.

The hyper-parameter configuration x =
[

x1 x2 . . . xd

]T
can significantly

influence the trained model and in consequence the expected loss. Example of
learning algorithm can be an artificial neural network. The hyper-parameters
of this algorithm are the number of hidden units, type of activation functions,
or a learning rate.

The hyper-parameter value xi ∈ Xi can be of any type. It can be con-
tinuous (e.g. learning rate for neural network), discrete (number of layers) or
categorical (activation function). In some cases, its relevance is conditioned
by the value of another hyper-parameter (number of units in the second layer
is conditioned by the existence of the second layer).

The objective of hyper-parameter optimization is to find hyper-parameter
configuration x∗ that minimizes the expected loss L for task Π and algorithm

3



1. Theoretical part

A. Formally we want to find x∗ such as

x∗ = arg min
x∈X

Eπ∼Dπ
L(π; Ax(Πtrain))

where Dπ is distribution from which the observations are sampled. This dis-
tribution is given by nature of the problem and it is usually unknown.

To solve this problem we define a cost function f : X → R

f(x) = Eπ∼Dπ
L(π; Ax(Πtrain)).

The hyper-parameter optimization problem can be now written in a form

x∗ = arg min
x∈X

f(x)

Function f is a black-box function. An explicit formula is not known and
we do not have access to its derivation. We can only evaluate its value at
given point x.

In order to evaluate f , the model must be trained first. Therefore, it
is usually an expensive operation and we want to minimize the number of
evaluations. Moreover, the evaluation is noisy, because we cannot evaluate
the expectation over unknown distribution Dπ. Instead, we access a limited
set of observations Πvalid called validation set and approximate expected loss
and our cost function with mean over this validation set:

y =
1

|Πvalid|

∑

π∈Πvalid

L(π; Ax(Πtrain)) ≈ f(x).

The value of y is called validation loss.
For hyper-parameter optimization, this corresponds with cost function

evaluation given by:

y = f(x) + ǫ.

Noise value ǫ is assumed to come from Gaussian distribution with zero mean
and variance σ, ǫ ∼ N (0, σ). Moreover, the noise for one evaluation is assumed
to be independent on other evalations.

We can now treat the hyper-parameter optimization problem as a typical
global optimization problem of f with properties described above.

Note that we seek for minimum of the function. However, we could easily to
transform our minimization problem to maximization problem by tranforming
the cost function (for example we could use negative value of cost).

Hyper-parameters vs. model paramaters The core of the learning
procedure often lies in optimizing parameters of a family of functions to fit
the training data Πtrain via learning algorithm Ax. For example, we can
take linear functions defined as l(π) = a0 + π1a1 + . . . + πmam, where πi
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1.1. Hyper-parameter optimization

are individual components of π, and optimize the parameters a0, a1, . . . , am

using Ax. These parameters of the model are called model parameters [1]. It
is important distinguish them from hyper-parameters. The former refers to
the parameters whose optimization is a part of the learning procedure, the
latter has to be set before the learning. Thus, the learning represents the
“inner loop” optimization meanwhile the hyper-parameter optimization is the
“outer loop” optimization [2]. The objective of this work is hyper-parameter
optimization, thus the outer loop.

Related terms In the literature, we can encounter interchangeable terms
such as hyper-parameter optimization and algorithm configuration selection [3].
Similarly to hyper-parameter optimization, algorithm configuration selection
refers to selecting values for free parameters of an algorithm. However, algo-
rithm configuration is used for an arbitrary algorithm, meanwhile, the term
hyper-parameter optimization is established for parameters of the machine
learning algorithm. Another closely related term is algorithm selection, also
referred to as model selection. The term refers to the selection of a machine
learning algorithm A from the set of algorithms. Hyper-parameter optimiza-
tion and algorithm selection are often denoted and solved together due to
their similarity and close relationship [1]. Actually, the algorithm itself can be
considered as categorical hyper-parameter in join space algorithms and their
hyper-parameters. Moreover, the same or similar methods are used to solved
both tasks. The focus of this work is only on hyper-parameter optimization.

1.1.1 Notation

The literature for hyper-parameter optimization is missing any established
notation convention. The notation introduced above will be used in the rest
of the text unless stated otherwise. The symbols which will be used in most
of the text are stated here and their list is provided in Appendix A. Other
notation specific for individual topics will be defined in relevant sections.

The hyper-parameters are indexed with natural numbers from 1 to d. For
hyper-parameter i we define a space Xi, a value xi, xi ∈ Xi, and a set of values
as Xi, Xi ⊂ Xi.

The entire hyper-paramater space is denoted as X , X = X1 ×X2 × . . .×Xd.
For a hyper-paramater setting (configuration) we will use vector

x =

















x1

x2

...

xd

















,

x ∈ X .
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1. Theoretical part

An index set with n hyper-parameter configurations is referred to as X =
{x1, . . . , xn} and n = |X|. In some cases it will be useful to have X in a matrix
form

X =

















x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xd,1 xd,2 . . . xd,n

















=
[

x1 x2 . . . xn

]

where xi,j is the value of hyper-parameter i in configuration j.
The value of the cost function for the hyper-parameter configuration x

is denoted by f(x). For the indexed configuration xi we can shortly write
fi = f(xi). Function values for n indexed configurations will be jointly referred
to as a vector

f =

















f1

f2

...

fn

















.

Similarly, we will write

y =

















y1

y2

...

yn

















for vector of noisy evaluations of f for n configurations. Evaluation yi corre-
sponds with the configuration xi and therefore with the cost function value
fi.

We will refer to the pair of configuration and its evaluation as (x, y). An
indexed set of these pairs forms a dataset D = {(xi, yi)}

n
i=1 = (X, y).

1.2 Hyper-parameter optimization methods

A typical hyper-parameter optimization algorithm selects a subset of configu-
rations X ⊂ X , evaluates a cost function f for all configurations from X, and
returns the best configuration xbest ∈ X.

In order to select the best configuration for a given set, we must define
what is best configuration from given set. A natural choice is a configuration
with the smallest observed value of the cost function f . In other words, it is
the configuration with the smallest validation loss.
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1.2. Hyper-parameter optimization methods

Selecting the subset of configurations that will be evaluated (X) is more
difficult task. We aim to minimize the size of X, to avoid too many evaluations.
Moreover, we want to minimize the validation loss of the best configuration
xbest ∈ X so that it was as close to the optimal loss as possible.

Various methods have been proposed in the literature. Probably, the most
widespread method in practice is manual search and manual search combined
with simple optimization method as grid search, coordinate descent, etc. [4].
The popularity of manual search is given mainly by the absence of technical
restrictions and a good trade-off between accuracy of the resulting model and
the number of trained models. Moreover, manual search provides the user
with some degree of insight to f . However, it is difficult to reproduce its
results which makes it difficult to apply, particularly, by users with limited
knowledge of the model and training algorithm. Automated hyper-parameter
optimization methods aim to overcome the difficulties in the application of
the search. The description of four such methods follows.

1.2.1 Grid search

Grid search is one of the most commonly used approaches for automatic hyper-
parameter optimization. The idea is to select a set of values for each hyper-
parameter and then test every possible combination of these values. More
formally, if we select the set of values Xi for each hyper-parameter i = 1, . . . , d,
we get the set of configurations X = X1 × X2 × . . . × Xd. We train the model
with all the configurations x ∈ X and then select the best.

The choice of Xi depends on the space of values and meaning of the
hyper-parameter i. Usually, we take the entire set Xi for categorical hyper-
parameters and sample Xi uniformly or exponentially (geometrically) for nu-
merical hyper-parameters.

The size of the selected configuration set is |X| =
∏d

i=1 |Xi| which makes
grid search to suffer from the curse of dimensionality. For example, if we
select 5 distinct values for each hyper-parameter then for 1 hyper-parameter
we test 5 configurations, for 2 hyper-parameters 25 configurations and for 5 it
is 3125 distinct configurations. With higher number of hyper-parameters, the
training of such amount of models can be computationally unfeasible.

If we look at the cost function f from the perspective of each input di-
mension, f might vary more for some dimensions than for the others. We
say that f has low effective dimensionality. The low effective dimensional-
ity means that f is more sensitive to values of some hyper-parameters and
we should use more unique values of these hyper-parameters to identify good
ones. However, the grid will cover only a finite number (|Xi|) of distinct values
for each hyper-parameter. Figure 1.1 shows the projection of a 2-dimensional
function with low effective dimensionality to each dimension. The left square
demonstrates a projection of the grid sampling. We can see that due to insuf-
ficient sampling in the important dimension we miss significant changes in the
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1. Theoretical part

function values. The solution could be to increase the size of Xi for important
hyper-parameters and reduce it for the others. Unfortunately, the importance
of each hyper-parameter is typically not well-known in advance. Even for the
same algorithm and hyper-parameters, different hyper-parameters are impor-
tant for different tasks Π [2].

Despite the negatives, grid search is a widely used technique mainly due
to its conceptual and implementation simplicity and easy parallelization (see
Section 1.4.2). It is a reliable choice for problems with low dimensionality
(1-d, 2-d) [2].

1.2.2 Random search

Random search generates configurations randomly and independently from the
each other. The hyper-parameter configuration x is taken as a random vector
with pre-defined distribution Dx, and the individual configurations xj , j =
1, . . . , |X| are i.i.d. samples drawn from Dx.

The implementation of random search allows updating a set of tested con-
figurations X during the algorithm’s runtime. We can add or remove the con-
figurations from X based on the current results, changes in the computational
resources (e.g. node in the distributed system fails), etc.

The right panel in Figure 1.1 shows how random search deals with low
effective dimensionality. In constrast with grid search, random search does not
limit the number of unique values for individual hyper-parameters. Therefore,
variations in function values depending on the effective dimension might be
better covered by the sampling.

Despite the conceptual simplicity, random search is a strong method for
hyper-parameter tunnig. The empirical results show superiority of random
search over grid search [2]. It is a widely used method and often serves as a
baseline for other hyper-parameter optimization methods.

1.2.3 Sequential model-based optimization

Sequential model-based optimization (SMBO) selects tested configurations
adaptively based upon a performance of already evaluated configurations.

We assume that the models teached by the algorithms with similar con-
figurations will have similar performance. Therefore, we can use results of
previous configurations to build a surrogate model which predicts the per-
formance of other configurations. When deciding which configuration will be
evaluated next, we examine the predicted performance and amount of infor-
mation the evaluation will give us. Naturally, we aim to select a configuration
with good predicted performance. Furthermore, we want to get a maximum
of new information to improve the accuracy of the surrogate model and in
consequence to support the next decision with more accurate prediction.

8



1.2. Hyper-parameter optimization methods

Figure 1.1: Function f(x, y) = g(x) + h(y) ≈ g(x) with low effective dimen-
sionality. Above and on the left side of each square we can see a projection
of f to each input dimension. Grid sampling in the left figure covers only
3 distinctive values for each dimension and does not capture f well. On the
other hand, random sampling in the right panel takes several distinctive values
for each dimension. It is not important that values in both dimension differ,
because we can write f(x1, y1) ≈ g(x1) and f(x1, y2) ≈ g(x1), thus the value
of y does not have a great impact on f [2].

1.2.3.1 General framework

SMBO is built around a regression model M, called surrogate model, that
approximates the optimized function. The model M accepts the parameters
of a function f as an input and outputs prediction of function value. In
hyper-parameter optimization, the function parameters are hyper-parameters
and M approximates the performance of the trained model depending on the
hyper-parameters of the machine learning algorithm. The training dataset
D which is used to learn M is formed by pairs (x, y) of already evaluated
configurations.

The surrogate model M helps us decide which configuration to evaluate,
i.e. which configuration should be added to X. Specifically, we select the
configuration that maximizes the so-called acquisition function a(x; M). The
acquisition function takes surrogate model M and configuration x as an input
and returns utility of x for the next evaluation. Typically, a is constructed
to balance exploration and exploitation 1. Thus x with a great value of the
acquisition function does not have to necessary have a good predicted value
of f , however, its evaluation can give us a lot of new information.

1The terms ‘exploration‘ and ‘exploation‘ refer to competing approaches which occur in
global optimization. Exploration gathers more information from the entire space (explores
the space), meanwhile exploitation looks closer to given region (focuses on the promising
area). Typically, we need to find a good trade-off between these approaches to find the
global optimum.

9



1. Theoretical part

The pseudocode of SMBO is given in Algorithm 1. At first, the initial
dataset D0 is created, i.e. some configurations are sampled and evaluated.
There are several methods how to select initial configurations. Their short
overview is given in Section 1.4.1. The main optimization loop starts in Line 2.
The algorithm iterates over four steps: building a surrogate model, maximiza-
tion of the acquisition function, evaluation of the cost function and adding
observed results to the dataset. The addition of pair (xk, yk) to dataset Dk−1

in last step results in a new dataset Dk and in consequence the neccessity to
build a new model Mk+1. Figure 1.2 shows an illustration of the optimization
loop in SMBO for three iterations. The algorithm terminates when a stop-
ping condition is met. We can limit the number of iterations, the time of the
optimization or we can stop the optimization loop if the performance of the
trained model is sufficient. Algorithm 1 terminates the loop after n iterations.
The configurations xj , j = 1, ..., n form the set of selected configurations
X = {x1, . . . , xn}. In the final step in accordance with our general hyper-
parameter optimization framework, we select the best configuration from X.

Algorithm 1 Sequential model-based optimization

1: Initialize dataset D0

2: for k = 1, 2, ..., n do
3: Build model Mk using dataset Dk−1.
4: Find xk = arg maxx∈X a(x; Mk).
5: Evaluate the cost function at a point xk.
6: Add xk and its observed cost yk to dataset Dk = Dk−1 ∪ {(xk, yk)}.
7: end for
8: Return configuration xbest from Dn with the lowest best cost.

1.2.3.2 Surrogate model

A surrogate model M is a regression model learned using an algorithm A′

(different from the algorithm A whose hyper-parameters we optimize) to ap-
proximate cost function f .

The data points used for training are already evaluated configurations. In
each iteration, a new data point is added to the dataset and the model has
to be trained again. Thus, when selecting the surrogate model M and the
algorithm A′ we need to consider the time overhead caused by the surrogate
training. Nevertheless, as long as the time required to learn M is negligible in
comparison to one evaluation of f , we can justify selection of a more expensive
and more accurate M. Moreover, the number of training points equals to the
number of evaluated configurations which means we have tens, maximum of
hundreds of points. The learning using such a small dataset is not an expensive
operation for most of the training algorithms.
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(a) k = 4
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(b) k = 5

2 0 2 4 6 8 10

x
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f(x
)

Target
Observations

Mean
95% confidence interval

0

1

2

3

4

5

ut
ilit

y

Utility
Next Best Guess

(c) k = 6

Figure 1.2: Illustration of sequential model-based optimization over three it-
erations. The objective is to minimize a target function f with one input
parameter x. SMBO builds a surrogate model that approximates the tar-
get function based on the observations. The plot shows distribution over f ,
visualized by mean value and 95% confidence interval, predicted using a prob-
abilistic model of the target function. Utility (acquisition) function returns a
utility of each point for evaluation. The utility balance exploitation, given by
the mean value, and exploration, given by the uncertainty of the prediction.
The point with the maximal utility is evaluated. In the next iteration, the
surrogate model is built again to fit a new observation.
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1. Theoretical part

Most research is focus on probability models which return a distribution
over the cost function value. The majority of these models use the Bayes
approach to get the predictive posterior distribution given the evaluated con-
figurations, p(f |x, D) (p(x) represents a density of the distribution over ran-
dom variable x). SMBO with such a model is called Bayesian optimization.
Another type of a surrogate model is a model which returns only point pre-
diction. Such model does not capture the uncertainty of the prediction, thus
it is less informative. Sometimes, we are forced to make a point prediction
even for probability models. If this occurs, we have to decide which value to
take. The mean value is commonly used for model point prediction in SMBO.

Some models used as surrogate models are described in Section 1.3. In
this section, we mention the surrogate models proposed for hyper-parameter
optimization using SMBO.

The surrogate model has a great impact on performance of SMBO. Many
models was proposed as surrogate model. A popular choice are Gaussian pro-
cesses. The posterior distribution for Gaussian processes is Gaussian which
results in calculations that are often analytically tractable. Moreover, Gaus-
sian processes are flexible and can be customized to include knowledge from
different tasks [5], or to use partial observations [6, 7]. Sequential model-
based algorithm configuration (SMAC) [3] is SMBO which uses random forests
as the surrogate. Bergstra et al. [8] proposed tree-structured parzen es-
timator (TPE). A tree-structured model used to get the posterior. Both
models are designed specially for the algorithm configuration selection and
they belong to the most used surrogate models for hyper-parameter optimiza-
tion [1, 9, 10]. Neural network was suggested as the surrogate model in [11, 12].
Radial basis functions (RBFs) and support vector regression (SVR) are used
as non-probabilistic models for surrogate modeling. Recently RBFs were used
for hyper-parameter optimization in [10] and [13].

1.2.3.3 Acquisition functions

The acquisition function a determines the policy for selecting the next tested
configuration. It measures the utility of evaluation for each configuration
based on the surrogate model. The configuration with the largest utility is
then evaluated.

An intuitive utility measure is the point prediction of the cost value. How-
ever, taking the configuration with the lowest predicted cost leads to con-
vergence to the local optimum, while it leaves large areas unexplored [14].
Figure 1.3 shows an example of this approach. The area where the global
minimum lies stays unexplored. There is no pressure to explore it due to the
inaccurate model which predicts the high cost in the area.

The measure of utility based only on the predicted cost is a pure ex-
ploitation approach. We need to incorporate exploration to ensure that no
promising area will be overlooked in our search. This is where the probability
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x

f(
x

)

prediction

target function

observations

Figure 1.3: SMBO with acquisition function that assigns the highest utility to
points with lowest estimated cost value. We start with an evaluation of three
highlighted points: lower bound for x (the left point), upper bound (the right
point) and in the middle of the interval. SMBO builds a model and evaluates
other points. Points for evaluation are selected to have minimal predicted cost.
The optimization ends with a green cross in a local minimum. The area where
the global minimum lies stays unexplored due to an inaccurate prediction.

surrogates benefit from the distribution over the cost function value. The dis-
tribution naturally provides us with information about the uncertainty of the
prediction. If some area remains unsampled, the uncertainty in this area will
be high. Therefore, if we assign high utility to the points with high uncer-
tainty, the area where these points lie will be explored. For non-probabilistic
surrogates, we need to force exploration in a different way. See [10] for an
example.

There is a rich literature on acquisition functions that aim to balance
exploitation and exploration. Most of them focus on models which return
the (Gaussian) distribution over f . Three of them which are often used for
hyper-parameter optimization are described here and their behavior is illus-
trated in Figure 1.4. Probability of improvement and expected improvement
belong to the so-called improvement-based policies. Lower confidence bound
acquisition function is so-called optimistic policy. There are other approaches
such as information-based acquisition functions [15] or acquisition function
that incorporates other costs such as time of the training [5]. Some authors
propose to take a portfolio of functions each of which provides a candidate
for the evaluation. We then choose among these candidates based on a meta-
criterion [16, 17].

Probability of improvement (PI) Probability of improvement measures
a probability that a function value at a point x will be lower than a given

13



1. Theoretical part

threshold τ :

aP I(x; M) = Ef✶(f < τ) = pM(f < τ),

where ✶ is an indicator function of f < τ . The distribution pM(f < τ) is
given by the surrogate model M. It comes from the posterior distribution of
f at a point x. A common distribution is Gaussian distribution for which PI
holds:

aP I(x; M) = Φ
(τ − µ(x)

σ(x)

)

,

where Φ is the cumulative distribution function of the standard Gaussian
distribution. Functions µ(x) and σ(x)2 are mean and variance of the predictive
posterior distribution.

There are various heuristics for the threshold value τ . However, in prac-
tice, it is hard to set τ to result in a good exploitation and exploration trade-
off. Wrong choice of τ leads to aggressive exploitation and thus poor perfor-
mance [15].

Expected improvement (EI) Expected improvement (EI), as well as PI,
measures the probability of improvement, however, EI takes the amount of
improvement into account. The acquisition function is defined as:

aEI(x; M) = Ef [(τ − f)✶(f < τ)] =

∫

∞

−∞

max(τ − f, 0)pM(f)df.

For the Gaussian distribution the formula is analytically tractable as:

aEI(x; M) = (τ − µ(x))Φ
(τ − µ(x)

σ(x)

)

+ σ(x)φ
(τ − µ(x)

σ(x)

)

,

where Φ is the cumulative distribution function of the standard Gaussian
distribution and φ is the standard Gaussian density function (see [18] for
derivation). An analytical formula can be derived for other distributions, as
for example in [19].

As with PI, we need to set the threshold τ , however, EI is not overly
sensitive to τ . In practise, a reasonable choice is to set τ adaptively to the
current best cost function observation τ = ybest.

Lower confidence bound (LCB) Lower confidence bound (or upper con-
fidence bound for maximization problems) assumes that the function holds
the lower bound value. Therefore, in the face of uncertainty is optimistic and
assumes the best case scenario. The value is calculated as

aLCB(x; M) = µ(x) − κσ(x)

where the parameter κ ≥ 0 is set by the user.
As with the other described functions, κ should be tuned to balance ex-

ploitation and exploration.
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Figure 1.4: Illustration of three acquisition functions: lower confidence bound
(LCB), probability of improvement (PI) and expected improvement (EI). Each
acquisition function measure the utility differently and thus finds a different
point for the evaluation.

1.2.3.4 Maximizing acquisition function

The objective of Step 4 in SMBO algorithm (1) is to find x which maximizes
the acquisition function. However, the acquisition function is often multi-
modal and maximization is not a trivial task. An exhaustive grid search or
Latin hypercube search can be used for the task. In contrast with the op-
timized cost function, the acquisition function is cheap to evaluate thus we
can afford many evaluations. Nevertheless, more efficient techniques were pro-
posed to use in practice. In [2], the covariance matrix adaptation evolution
strategy (CMA-ES) is used to optimize the acquisition function for continu-
ous hyper-parameters and the estimation of distribution (EDA) for discrete
hyper-parameters. Hutter et al. [3] combine a multi-start local search and a
random sampling. Many other methods were suggested. See [15] for overview.

1.2.4 Hyperband

As with other hyper-parameter optimization methods, Hyperband selects a set
of the configurations and returns the one with the lowest observed cost. How-
ever, unlike the other mentioned methods, Hyperband does not fully evaluate
all selected configurations. Instead, each configuration get allocated a number
of resources and is evaluated using only these resources resulting in partial
observations. A partial observation means that the model is not fully trained
using all available training data, thus the model might have poor performance.
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1. Theoretical part

The core of the Hyperband lies in Successive halving algorithm [20]. Suc-
cessive halving takes a set of configurations X and a budget of resources B
(e.g. time budget) as input. The algorithm evaluates each configuration from
X using a given part of the budget and discards poorly-performing configura-
tions. The remaining ones get allocated more resources from the budget for
further training. We iteratively alternate between training and dropping until
some models are fully trained.

The budget B is divided equally between iterations and all configurations
receives an equal number of resources in the iteration. At the end of each
iteration, a half of the configurations is discarded resulting in B/|X| resources
on average for a configuration from initial set.

The budget is usually fixed (e.g. we have limited amount of time). How-
ever, we need to choose the number of tested configurations n, n = |X|. We
can either (a) consider a large number of configurations with a small number
of resources or (b) consider fewer configurations with more resources. It is
not usually known a priori which option will be better for a concrete task. If
poorly-performing configurations can be distinguished with fewer resources,
we should take a large n. On the other hand, for problems where the sepa-
ration of good and poor configurations is difficult, we need to allocate more
resources to the individual configurations.

Hyperband aims to resolve the configurations/resources problem by search-
ing over different values of n. Thus, it consists of Successive halving run
(“inner loop”), called bracket, and searching over different n (“outer loop”).
In addition, Hyperband allows determining how many configurations will be
dropped in each iteration which is a feature missing in the original design of
Successive halving.

The algorithm has two parameters. A maximal number of resources R that
can be allocated to one configuration (e.g. maximal training time), and a fac-
tor η that controls the proportion of configurations dropped in each iteration
of Successive halving. Pseudocode of the algorithm is depicted in 2.

At first, we calculate the number of tested settings in outer loop, smax,
and the budget size B for each bracket (Line 2). We start the outer loop
with the largest n corresponding with the greatest exploration, i.e. we test
a large number of configurations with the small number of resources. The
parameter r calculated in Line 4 is a minimal number of resources allocated
to a configuration in the bracket.

We generate the set of configurations Xs with size n and evaluated them
with Successive halving. Poorly-performing configurations are removed and
only n/η configurations with the smallest observed cost are kept. In the next
iteration, the remaining configurations are evaluated with more (rη) resources.
We proceed with the next iteration evaluating nη−k best configurations with
rηk resources.

The outer loop sets different n and r in each iteration. The last loop
(s = 0) generates smax + 1 configurations each of which is evaluated using all
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1.2. Hyper-parameter optimization methods

Algorithm 2 Hyperband

1: Input R, η
2: Set smax = ⌊logη(R)⌋ and budget B = (smax + 1)R
3: for s = smax, smax − 1, . . . , 0 do
4: Calculate n = ⌈B

R
ηs

s+1⌉ and r = Rη−s

5: Generate n configurations Xs0

6: for k = 0, . . . , s do ⊲ Sucessive halving (bracket)
7: Set number of resources for iteration rk = rηk

8: Evaluate configurations in Xsk with rk resources and get partial
performance observations

9: Set nk+1 = ⌊nη−k⌋
10: Drop nk − nk+1 worst performing configurations from Xsk

11: end for
12: end for
13: Return configuration xbest with best performance

resources R resulting in the classical random search.

The inputs R and η are user-defined. The maximal number of resources
is usually naturally limited and this limitation is used to set the value of R.
The setting of factor η is less straightforward. Great η results in an aggressive
elimination of configurations and fewer iterations in both loops. The authors
of Hyperband [9] stress that Hyperband is not very sensitive to the choice of
η. The recommended value in practice is 3 or 4.

1.2.4.1 Resource types

As mentioned before, Hyperband allocates resources from the pre-defined bud-
get for each configuration. The more resources, the more accurate the obser-
vation will be, and the more computational power will be used for getting
the observation. There are various types of resources that can be used for
hyper-parameter optimization.

Time A run of an algorithm is often bounded by time. Thus, a fixed time
budget is a natural resource for the evaluation. It is particularly preferred
when the configurations differ in evaluation time. The time limit ensures that
each configuration will run for the same amount of time 2. Moreover, time
is understandable and easy to work with for any user. However, in order to
use time as a resource, the algorithm has to give meaningfull performance
information when interupting during the run which is not always possible.

2We assume that time limit is set as a fraction of time required for full evaluation so that
none of the partial evaluations finishes before this limit is reached. Therefore, all resources
all used without any rebalancing.
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1. Theoretical part

Iteration Many learning algorithms work in an iterative manner. The
learned model is improved using repeated learning loops. Such a loop can
be used as a resource. Epochs in neural network learning procedure are a
simple example. Training only a limited number of epochs gives us partial
information about the algorithm performance.

Dataset subsampling The learning algorithm uses a training set of obser-
vations Πtrain for the learning. The size of the training set has a great impact
on the algorithm runtime and performance. The larger the amount of data,
the more time we need, and the more accurate the learned model will be.
Thus a fixed-size subset of training set can be taken as the resource unit. The
limit for maximal resources R is the whole training set.

Feature subsampling Another possibility is feature subsampling. Each
observation from Πtrain is described using pre-defined features. Selecting a
subset of the features reduces the amount of data and thus speeds up the
evaluation. However, the missing information from other features will prob-
ably decrease the performance. The subset of features with a fixed size is
another candidate for resource unit. The whole feature set forms a natural
bound for R.

1.2.4.2 Configuration generation

Hyperband generates a set of configurations in each iteration and passes this
set to Successive halving which evaluates it. The exact policy for the config-
uration generation is not determined. A simple approach is to sample values
for each configuration independently from a prior distribution Dx, i.e. we use
the same policy as random search. More sophisticated methods which aim
to cover the configuration space more evenly are quasi-random methods like
Sobol sequence or Latin hypercube.

A different strategy is to incorporate information from the previous brack-
ets and favour promising configurations. The idea is similar as in SMBO.
A model which approximates the cost function is created and based on this
model, we can select configurations that are more likely to perform well. To
use all available information, the model should be able to work with partial
observations. This model-based approach is proposed in [21]. The authors use
Bayesian neural network for performance modeling. Candidate configurations
are generated uniformly and the ones with the lowest predicted cost form the
set for Successive halving. However, the model-based extension of Hyperband
is not limited to Bayesian neural networks and described generation policy.
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1.2. Hyper-parameter optimization methods

1.2.5 Other methods

Besides described methods, other approaches can be used for hyper-parameter
optimization. Two families which include many algorithms are gradient-based
optimization and evolutionary methods.

Gradient-based optimization Gradient-based optimization methods use
a gradient of the optimized function to obtain a search direction. The gradient
of a function is a vector which shows a direction of the greatest rate of increase
of the function from a given point. Thus, it gives us an idea about the function
behavior which can be use to choose a next point for evaluation. One of the
simplest strategies is to follow the gradient using small steps. The function is
thus evaluated in a sequence of points with increasing function value until it
convergates to a local maximum where the search stops.

An analytical expression to calculate the gradient of the cost function is
typically not available. However, the usual approach is to to approximate it.
A popular method is an automatic reverse-mode differentiation, a numerical
method which approximates the gradient from a training procedure [22]. Most
of the methods for the gradient approximation have similar time requirements
as the evaluation of f . Thus, a gradient approximation is an expensive opera-
tion. However, less expensive methods were proposed to compute the gradient
by reversing the dynamics of stochastic gradient descent with momentum [23],
or to approximate the gradient using a Hessian of the loss function with respect
to model parameters [24].

Evolutionary methods Evolutionary methods are a well-known group of
algorithms for global optimization. They are based upon an imitation of bio-
logical evolution. They work with so-called individuals which represent input
points. Each individual has assigned a score calculated using a fitness function
which determines a quality of the point. The goal is to breed individuals with
higher quality. The individuals form a population. A typical evolutionary
algorithm begins with an initial population and then alternates between three
steps: selection, crossover, and mutation. In selection, individuals are selected
based on their score, the higher the score, the greater probability of selection.
Crossover mixes the selected individuals and mutation randomly changes an
individual.

There are various evolutionary methods. They differ in a representation
of the individual, implementation of the basic operators, and the existence
of other operators. The evolutionary methods proposed for hyper-parameter
optimization with best results are CMA-ES ([25, 26]), and the particle swarm
optimization (PSO) ([27, 28]).
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1.3 Surrogate models

This section contains introduction to a problem of approximation of the algo-
rithm’s performance and its usage for hyper-parameter optimization.

The role of the performance approximation was already briefly mentioned
in sections 1.2.3.2 and 1.2.4.2. However, the performance modeling is a general
concept and its usage is not limited to a specific method nor optimization.

1.3.1 Introduction

Section 1.2 contains desriptions of several hyper-parameter optimization meth-
ods. As one might notice, some of them use a model which helps them decide
which point to evaluate. The model approximates a cost function behavior.
However, in contrast to the real function, it is cheap to evaluate. Therefore,
it can be queried many times without a significant overhead compared to one
evaluation of the cost function. Such model is called a surrogate model, or
simply surrogate (also response surface model, or meta-model).

Due to the black-box nature of the cost function, the surrogate is built
using data-driven process. The cost function is evaluated at points X, the
values y are observed, and these data are used to learn the surrogate. The
surrogate learning is similar to the learning of the original model whose learn-
ing algorithm’s hyper-parameters are optimized. That is, a model with free
parameters is taken and its parameters are adjusted using a machine learning
algorithm. However, the domains of the original and the surrogate models are
different. The original model models Π, the surrogate takes hyper-parameters
as inputs and predicts the performance of the original model. Thus, the models
and the training algorithms might differ. The surrogate predicts real values.
Such a model is called a regression model or simply regressor.

There exist various models that can be used as a surrogate. The right
choice is undermined by the characteristics of the modeled function. Our cost
function was described as a black-box function about which a limited amount
of information is available. However, often we assume some properties a priory.
This information should be incorporated into a surrogate model selection.

The surrogate model can return a point prediction f̂(x; D) or a predictive
distribution over possible values of f , p(f |x, D). In case that only a point
prediction is required, a point have to be selected based on p(f |x, D). A
typical choice is a mean value µ(x), however, any value, such as a γ-quantile,
can be considered.

A popular choice of models that return a predictive distribution are mod-
els constructed using the Bayesian approach. Consider a variable A. As a
model for A, we choose a distribution (e.g. Gaussian distribution) with free
parameters θ (e.g. mean and variance). The goal is to establish a distribution
over values of the parameters θ. The Bayesian approach assumes that we have
a prior model for θ, p(θ), and we can take observations of A and use them
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to update the model. Based on the observations, a model of the data called
likelihood is formed, p(A|θ). Using Bayes’ theorem we get posterior

p(θ|A) =
p(A|θ)p(θ)

p(A)
.

The denominator p(A) is a normalizing constant which is not usually consid-
ered. Moreover, it is often computationally intractable. Thus, we model θ
as

p(θ|A) ∝ p(A|θ)p(θ). (1.1)

The posterior includes information from the prior model and observations
which make it more accurate than both inputs on their own.

1.3.1.1 Hyper-parameter space

In Section 1.1, hyper-parameters and hyper-parameter optimization problem
are defined. We said that hyper-parameters can have values of various types
and that they can be related. However, up until now, the hyper-parameters
were treated equally, and no assumption was made about their values, types, or
relations among themselves. Described optimization methods optimize a gen-
eral function with no assumption about its properties including properties of
its input space. Though, some methods (random search, Hyperband) require a
generation of hyper-parameter configurations from a pre-defined distribution
Dx. However, the distribution and the generation method are independent
of the optimization method. Surrogate models are more sensitive to input
values, therefore, more detail analysis will be given here.

A hyper-parameter can be either numerical or categorical. Numerical
hyper-parameters might be further divided into continuous and discrete. Typ-
ically, a continuous hyper-parameter have a value from a (closed) real interval,
a discrete numerical hyper-parameter from a subset of integers, and a cate-
gorical hyper-parameter from a set defined by enumeration.

As we saw, it may be convenient to consider the values of hyper-parameters
as random variables xi, i = 1, . . . , d, and define their joint distribution Dx,
also defined using a probability density function or a probability mass func-
tion, p(x) = p(x1, x2, . . . , xd). The initial joint distribution is formed by the
user based upon a prior knowledge of the hyper-parameters. The simpli-
est case is to define a marginal distribution over each hyper-parameter xi,
xi ∼ Dxi

, and assume that the hyper-parameters are independent, that is
p(x) = p(x1)p(x2) . . . p(xd). This can be applied, for example, if we optimize a
learning rate and a number of units of a neural network which might be consid-
ered independent. However, as we mentioned before, other hyper-parameters
such as a number of units in the second layer and a number of layers are
closely related, i.e. the number of units in the second layer is conditioned by
the existence of the second layer.
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Generally, the hyper-parameter xi can be conditioned by the value of xpi.
We will refer to xpi as a parent and xi as a child, and describe xi with respect
to its parent. Thus, instead of the marginal distribution p(xi) we define a
conditional distribution p(xi|xpi). Typically, as in our example, the child is
only relevant, also called active, if the parent has a specific value or values. An
inactive child is not included in the configuration and the joint distribution
p(x). Therefore, the hyper-parameter space can be viewed as an oriented
graph. The nodes represent the hyper-parameters, and the links represent the
conditionality. Theoretically, the graph might have any structure. However,
we restrict ourselves to tree-structured spaces as they are sufficiently accurate
and simple to work with.

Regarding the used distributions, a uniform or log-uniform are common
for continuous hyper-parameters, a discrete uniform for discrete numerical
hyper-parameters, and a vector of equal probabilities for categorical
hyper-parameters. However, there is no restriction on the distribution.

Some surrogate models handle various input types and complex structures
natively. Others have to be adjusted to the complex space, or relax on it and
treat it as all hyper-parameters are always active.

1.3.2 Models

This section contains a description of several models that can be used as
surrogates for hyper-parameter optimization.

1.3.2.1 Gaussian processes

A Gaussian process (GP) is a stochastic process that models a distribution
over function values for all input points.

There are two ways how to construct a prediction with a Gaussian process.
We can use a prior distribution for parameters of a general linear model or
we can define a prior distribution over functions. The prior distributions can
then be updated using observed data to get a posterior. Both approaches lead
to identical results. Their description follows. A detailed description of GP,
its properties and derivation of formulas used below is given in [29].

A general linear model of a function f is

f(x) = Φ(x)Tw,

where x is the input vector and w are parameters of the model, often referred
to as weights. The function Φ(x) = (φ1(x), . . . , φJ(x)) represents a projection
of the input space into J dimensional space using a given set of J basis func-
tions φj , j = 1, . . . , J . The projection increases expressiveness of the model.
For notation simplicity, for the rest of the section, we will write f = f(x),
φj = φj(x), Φ = Φ(x), and Φ = Φ(X) for the projection of a matrix with
multiple inputs.
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1.3. Surrogate models

The parameters w are modeled using a Bayesian approach. A Gaussian
distribution is taken as their prior distribution

w ∼ N (µ, Σ).

where µ is mean vector and Σ is covariance matrix. For notation simplicity we
will assume zero mean. However, the relations defined below apply even for
non-zero mean. In practice, the mean can incorporate an expert’s knowledge
about the modeled function.

As mentioned before, the observations y contain a normally distributed
noise ǫ ∼ N (0, σ2

n). A model for observations p(y|x, w) is derived from distri-
bution of the noise and the linear model resulting in a Gaussian distribution
with mean f = ΦTw and variance σ2

n. For multiple observations we have

y|X, w ∼ N (ΦTw, σ2
nI).

The parameters w can be marginalized out and the prediction for y is calcu-
lated as

p(y|X) =

∫

p(y|X, w)p(w)dw ∼ N (0, ΦTΣΦ + σ2
nI). (1.2)

The prior for w and the likelihood form the posterior for w as in 1.1. The
posterior distribution is again Gaussian

w|X, y ∼ N (
1

σ2
n

A−1Φy, A−1),

where A = σ−2
n ΦΦT + Σ−1.

The prediction for f is now gained using the model and the posterior for
parameters of the model. For a new point x we obtain distribution over the
cost function value

p(f |x, X, y) =

∫

p(f |x, w)p(w|y, X)dw (1.3)

∼ N (
1

σ2
n

ΦTA−1Φy, ΦTA−1Φ).

By rewriting the mean and the variance for the predictive distribution in 1.3,
we derive formulas where basis functions appear only in the form ΦTΣΦ′. By
defining a kernel function k(x, x′) = ΦTΣΦ′ for two points x and x′, we get
the distribution as

f |x, y, X ∼ N (µ(x), σ2(x)), (1.4)

where

µ(x) = k(x, x)(K + σ2
nI)−1y

σ(x) = k(x, x) − k(x)T(K + σ2
nI)−1k(x).
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Symbols k(x) and K denote the vector of values k(x)i = k(x, xi) and the
matrix of values Ki,j = k(xi, xj) respectively, where xi and xj i, j = 1, . . . , n
are points from the training dataset. The model now incorporates the prior
knowledge and the information gathered from the observations of the cost
function.

The derivation taken above results in Gaussian distribution over the func-
tion value. Alternatively, we can construct a process which defines a distri-
bution over the function values and updates it based on the observed values.
Short description of this approach follows.

A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution [29]. For Gaussian process
distribution we write

f(x) ∼ GP(m(x), k(x, x′)).

The distribution is fully defined by its mean function m(x) and a positive
definite covariance function k(x, x′). The mean function defines offset. It
is often set to zero (and further in this work, the zero mean function will be
assumed). The kernel function specifies covariance between a pair of variables.
The covariance of a pair f(x) and f(x′) is defined as a function of the inputs,
i.e. as relation between a pair of hyper-parameter configurations x and x′.

The definition of GP implies that a finite set of function values has Gaus-
sian distribution. Therefore, for training observations f in locations X we
have joint distribution

f |X ∼ N (0, K).

For noisy observations, the noise is added to covariance function k(x, x′)+σnδ,
where δ is 1 if x = x′ and 0 otherwise, which gives us a model

y|X ∼ N (0, K + σ2
nI).

Setting covariance as product of basis functions and covariance matrix
Σ as defined above will result in the same formula as in 1.2. The model is
constructed using only our prior knowledge which is included in the mean and
the kernel function just like the prior knowledge about w is included in the
prior model in 1.2.

We are interested in a model which will also incorporate the information
from observations. The joint distribution of these observations and a new
point x is





y|X

f |x



 ∼ N

(

0,





K + σ2
nI k(x)

k(x)T k(x, x)





)

.
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Figure 1.5: Panel 1.5a shows three functions drawn at random from a GP
prior. The dots indicate actually generated values of f . The lines represent-
ing the two other functions have been drawn by joining a large number of
generated values of f . Panel 1.5b shows three random functions drawn from
the posterior, i.e. the prior conditioned on the five noise free observations in-
dicated. In both plots the shaded area represents the pointwise mean plus and
minus two times the standard deviation for each input value (corresponding
to the 95% confidence region), for the prior and posterior respectively [29].

To get prediction for x with model that incorporates the observations y, we
condition the joint distribution and get

f |x, y, X ∼ N (µ(x), σ2(x))

with µ(x) and σ(x) same as in 1.3. Therefore, identical results were reached
with both approaches.

To better understand a distribution over functions, see Figure 1.5. Func-
tions of one parameter x from prior distribution are shown in Panel 1.5a. Three
samples were observed and used to define posterior distribution in 1.5b. The
figure shows how the distribution changed. Only functions that fit the data
are generated by the posterior distribution. Other functions are rejected.

Covariance of the Gaussian process As mentioned above, the covari-
ance function is one of the components which defines a Gaussian process. The
covariance describes properties of the model as smoothness, noisiness, peri-
odicity, etc. It is determined by a kernel function and a noise variance. The
noise is taken as normally distributed with variance σ2

n and it is independent
for each variable. The kernel function is more complex. A number of different
kernels was designed. Close attention should be paid to the selection of the
right one.

Matérn kernels [29] are a popular choice for hyper-parameter optimization.
They are parameteric functions parameterized by a smoothness parameter
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(b) (l, σf , σn) = (3.0, 1.16, 0.89)

Figure 1.6: Panel 1.6a data is generated from a GP with covariance param-
eters (l, σf , σn) = (0.3, 1.08, 0.00005), as shown by the + symbols. Using
Gaussian process prediction with these hyper-parameters we obtain a 95%
confidence region for the underlying function f (shown in grey). Panel 1.6b
again shows the 95% confidence region, but this time for covariance parameter
values (3.0, 1.16, 0.89) [29].

ν > 0. A special case is squared exponential kernel with ν → ∞ which is
given by

kse(x, x′) = σ2
f exp(−

1

2l2
‖x − x′‖2)

where ‖ · ‖ is the L2 vector norm. The parameter l is a characteristic lenght-
scale. It determines “closeness” of the points, in other words, how much
the points will infuence each other. The parameter σ2

f is a signal variance.
It says how much the function changes. If it is large, the function has a
high frequency. Different values of parameters can be used depending on
the problem instance. Figure 1.6 shows examples of the GPs with different
parameters of the squared exponential kernel and the noise variance. Other
popular choices for smoothness parameter are ν = 3/2 and ν = 5/2 which
corresponds with less smooth function which is often more realistic.

Other kernels were suggested directly for hyper-parameter optimization
often to address a specific problem like building in a knowledge from other
problem instances [5], or to include partial information gained during the
optimization [7].

Gaussian processes are not primarily suitable for other than real-valued
input spaces because standard kernels are defined for real-vectors. To use a
Gaussian process with different input types, special kernels need to be used.
This applies on conditional spaces as well [15].
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p(X4|X2)
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p(X3|X2)
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X5p(X5)

Figure 1.7: Tree-structure parzen estimator. Each node represents one
variable and holds the associated distribution. The variables x1 and
x5 are independent and always active. The variable x2 is conditioned
by value for variable x1. The variables x3 and x4 are conditioned by
x2. Joint probability of a point x with all variables active is given by
p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2)p(x5).

1.3.2.2 Tree-structured parzen estimator

A tree-structured parzen estimator (TPE) is a model proposed as a surro-
gate for hyper-parameter optimization by Bergstra et al. [8]. The probability
p(f |x) is modeled from separate models for p(y) and p(x|y) using Bayes’ the-
orem

p(f |x) =
p(y)p(x|y)

p(x)
.

The model for p(x|y) is a graph-structured process constructed based upon
a hyper-parameter space structure and distributions. This allows the TPE to
naturally handle various types of input variables including conditional vari-
ables. The construction of the graph is as follows.

• For each input variable xi, create a node xi.

• For each input variable xi with parent xpi, add link from node xpi to
node xi.

• Add associated distribution to each node. The associated distribution
will be p(xi) for the node xi without the parent node, and p(xi|xpi) for
the node xi with the parent xpi.

We are restricted on tree-structured spaces (Section 1.3.1.1), therefore, the
graph will also have a tree structure. The model captures a decomposition of
the joint distribution over all variables. Ilustration of a constructed model is
in Figure 1.7.

After collecting data D the model is updated by transforming the prior
process. The transformation replaces the prior input distributions in nodes
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with distributions derived from observations. Two separate densities l(x) and
g(x) are used to define p(x|y, D) so that

p(x|y, D) =

{

l(x) if y < τ

g(x) if y ≥ τ.

The threshold value τ is chosen as a γ-quantile of observed values y, i.e.
p(y < τ) = γ, where no specific distribution of p(y) is required [8]. The
separation results in two models which are formed using different parts of
the dataset. The points with y smaller than τ form l(x), the rest of the
points form g(x). Both models have the same structure as the prior model,
however, instead of prior hyper-parameter distributions, mixture distributions
are calculated from observations. Specifically, we construct the density l(xj)
in the node xj as follows.

The mixture distribution represented with a density function l(xj) for fi-
nite set of probability density functions p1(xj), p2(xj), . . . , pk(xj) with weights
w1,j , w2,j , . . . , wk,j , where

∑k
i=1 wi,j = 1, is defined as

l(xj) =
k

∑

i=1

wi,jpi(xj).

In our case, individual densities are formed using i-th point from indexed set
of points Sl, where Sl contains all training points with active variable j and
observed cost smaller than τ , and k = |Sl|. The weigths are all equal and the
densities pi(xj) come from the same parametric family. The parameters of the
distribution pi(xj) are given by the value xi,j . Bergstra et al. [8] suggested
following replacements for density l(xj).

• For continuous variables with original uniform distribution U(a, b), a
sum of truncated Gaussian distributions is used. The mean for each dis-
tribution pi(xj) is xi,j and the variance is set to greater of the distances
to the left and right neighbor for each point (xi, yi) ∈ Sl.

• For discrete variables with a prior vector of N probabilities pi, vector’s
new elements are proportional to Npi + Ci, where Ci is a number of
occurences of a value i in Sl.

The same method is used for all variables and g(x).

1.3.2.3 Random forests

A random forest regression model is an ensemble of tree-structured regressors
each of which returns a point prediction for a given input point. Averaging
these predictions, we get a point prediction of the target function with the
forest. An uncertainty of the prediction is calculated as a sample variance
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1.3. Surrogate models

of regressors predictions. A Gaussian distribution with this variance and the
average value as a mean is taken as a predictive distribution.

To construct a random forest with B regressors, called regression trees,
we first need to create a training dataset Dk for each tree, k = 1, . . . , B. The
dataset for k-th tree consists from n points sampled randomly with repetition
from the original dataset D. Each tree is then built independently on other
trees.

A learning algorithm for a tree hθ(D) requires a loss function L. Shortly,
we will write loss for point (x, y) as L(y, f̂(x)) = L((x, y); hθ(D)), where f̂(x)
is a point prediction of the trained model. An example of a loss function is a
mean squared error (MSE) defined for set of n points as

LMSE(y, f̂(X)) =
1

n

n
∑

i=1

(yi − f̂(xi))
2.

The learing algorithm constructs a tree by recursivly splitting given train-
ing dataset. Each split is represented by an internal node. The split in a node
is found as follows.

1. Select a random subset F of ⌈dp⌉ input variables, where p is a user-
defined parameter and d is a number of input variables.

2. For each variable x ∈ F , find a split of the data in the node which
mimimize loss.

3. Select variable x∗ ∈ F whose split has minimal loss. This variable will
be associated with the node and all input data will be passed on to the
following nodes according to the value which minimized the loss.

A split of data is realized as a division into two separate subset S1, S2.
The prediction for point x ∈ S1 is an average of the observed values from S1,
similarly for x ∈ S2 is an average of observed values in S2. Ordinal parameters
are split based upon one value, depending whether the input point’s value
is smaller or greater. For categorical parameters, a set of values is defined
and one data subset contains points with values from the set, and the other
contains points that have different values.

A new dataset S1 is passed to one of the following nodes, the other dataset
is passed to the other following node. The following nodes perform the same
procedure with given datasets. Thus, the input dataset is divided until a node
with number of training points smaller than a user-defined parameter nmin is
reached. The data is not split further and the node is marked as a leaf. Each
leaf is assigned a constant value equal to the average of leaf’s training points
observations.

The prediction for a point x is given by traversing the tree based on node’s
variables. When a leaf node is reached, the leaf’s constant is taken as a
prediction f̂(x).
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For random forest prediction, all regression trees yield a prediction f̂k(x).
Random forest prediction is then an average of f̂k(x) for each tree:

µ(x) =
1

B

B
∑

k=1

f̂k(x)

Moreover, we can calculate a variance estimate as

σ2(x) =
1

B − 1

B
∑

k=1

(f̂k(x) − µ(x))2.

The µ(x) and σ2(x) are interpreted as mean and variance of p(f |x, D).
The distribution is taken as Gaussian, thus the model is

f |x, D ∼ N (µ(x), σ2(x))

As one might notice, the random forests can work with various input types.
Moreover, the trees can learn to ignore inactive variables so the forest can
handle conditional spaces.

1.3.2.4 Artificial neural networks

Artificial neural networks are a well-known group of machine learning algo-
rithms that can be used for many tasks including surrogate modeling.

An artificial neural network consists of many simple units, called neurons,
which are organized into interconnected layers. A connections has a direction
and so-called weight which express a strenght of the connection. An output
of the source neuron is multiplied by the weight of the connection and the
product is used as an input for the target neuron. The target neuron takes
inputs from all input connections, sums them, and applies a function, called
activation function, on the sum. The output of the activation function is then
the output of the neuron. The network’s training algorithm optimizes the
weights of the connections so that the neurons in the last layer give a desired
output.

Neural networks can be used for surrogate modeling in various ways. Snoek
et al. [12] use a neural network which maps an input point to a vector of D

parameters, denoted as φ(x) =
[

φ1(x), . . . , φD(x)
]T

. The weights for the map-

ping are set via a standard neural network training procedure. The resulting
setting can be viewed as a maximum a posteriori estimate of the parameters 3.
For the purpose of training, there is the last linear layer which is removed af-
ter termination of the learning. The layer is replaced by a Bayesian linear
model (which takes φ(x) as an input) which estimates mean and variance of

3Maximum a posterior (MAP) estimate of parameter θ is value that maximize probability
of θ given the data, i.e. θMAP = arg maxθ p(θ|D).
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Figure 1.8: A learning curve for different neural networks

the cost function in a similar way to Gaussian processes. Therefore, we get a
prediction which estimates the expected cost and captures an uncertainty of
the prediction. The advantage of the model, called Deep networks for global
optimization (DNGO), over Gaussian processes is its smaller complexity given
a number of training points. The estimates of the mean and the variance of
GP in 1.4 require an inversion of n × n matrix, thus, the complexity increases
cubically with the number of training samples. In contrast, the Bayesian lin-
ear model in DNGO requires inversion of D ×D matrix, where D is size of the
last layer of the network which is not dependent on the number of training
points [12].

Klein et al. [21] proposed a model for iterative machine learning algorithms
where a loss function can be observed in different time points. Specifically,
suppose that for a full evaluation of f , we take an observation y in time T .
An iterative algorithm allows us to observe f in time t ∈ (0, T ] resulting in
a partial observation y(t). This observation will be even more noisy than y,
however, it still gives us some information. Moreover, for machine learning
algorithms, the validation loss improves over time which can be described by
so-called learning curve. An illustration of a learning curve is in Figure 1.8.

The proposed model aims to extrapolate a learning curve for given configu-
ration which allows to predict the loss at an arbitrary point in time. A predic-
tion for an asymptotic value of the loss and a weighted sum of D parametrized
basis functions are used to estimate the mean loss for an arbitrary point in
time

µ(x) = µ∞(x) +
D

∑

i=1

wi(x)φi(x)

where µ∞(x) is the predicted asymptotic loss, φi(x) is the i-th basis func-
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Figure 1.9: Architecture for the learning curve prediction using a Bayesian
neural network. The network learns simultaneously µ∞, parameters of basis
functions Θ = (θ1, . . . , θD), weights w = (w1, . . . , wD) and variance estimate
σ2. The prediction in time t is weighted sum of the basis functions with
learned parameters and µ∞ [21].

tion and wi(x) is its weight. The values for µ∞(x), wi(x) and φi(x), where
i = 1, . . . , D, are free parameters. These parameters are set with a Bayesian
neural network learned using observations of f including partial observations.
Moreover, the network also estimates a variance of the prediction. Thus, we
get a probability model which includes partial information. A graphical illus-
tration of the model’s architecture is in Figure 1.9. For a detailed description
of the model, see [21].

Neural networks work with numerical inputs. To handle categorical input
variables, the values have to be encoded so that a new set of input variables
is created. Moreover, Snoek et al. [12] succesfully used their network-based
model on a complex space with conditional variables.

1.4 Other aspects

This section covers some other aspects that need to be considered when per-
forming hyper-parameter optimization. These aspects can have negative im-
pact on the optimization or they can improve it. Moreover, they largely
depend on the problem being solved, amount of information we have, and
available computational resources.
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1.4.1 Initialization

By the initialization of the hyper-parameter optimization, we understand gen-
eration and evaluation of a set of configurations before the optimization algo-
rithm is employed. We can generate these initial configurations to explore the
space or to improve the optimization by testing promising configurations.

The exploration is related mainly to model-based algorithms as SMBO
or model-based Hyperband. An initial dataset which covers the important
parts of the space can be convenient when building the first surrogate models.
We can use a fixed pre-defined set, a random set or a quasi-random set of
configurations to form this initial dataset.

The initialization can be used to test some promising configurations. Such
configurations are usually the ones that performed well on similar tasks which
we already solved. The group of techniques that deals with searching similar-
ities between the tasks and algorithms performance is called meta-learning.
Feurer et al. [30] use meta-learning to initialize SMBO. Their framework gen-
erates initial configurations based on a similarity measure of features extracted
from a dataset referred to as meta-features. That is, the meta-features from
a dataset for the task Π are compared with the meta-features extracted from
datasets of previous tasks. The configurations that performed well on the
datasets with similar meta-features are then used for the initialization.

1.4.2 Parallelization

A machine learning task is often solved on a system with multiple computa-
tional nodes. In such case, we want to effectively parallelize the calculation in
order to use the all available resources. For hyper-parameter optimization, this
means that we want to parallelize optimization algorithm to use all available
nodes at once.

The most expensive operation is the cost function evaluation. Therefore,
trivial parallelization schema assigns a configuration to each node. The node
then evaluates given configuration independently from the other nodes, i.e. it
trains its own model.

The mechanism of assignment of a configuration to a free node depends on
the optimization method. Grid search knows the set of tested configurations
in advance, thus, a configuration from this set is given to the node. Random
search can generate a configuration at any time, therefore, when a node is
free, a new configuration is generated and assigned to it. Hyperband has two
options for parallelization. We can parallelize the outer loop, that is each
bracket will run on its own node. However, this is possible only for a static
generation method where each bracket is independent of results of the others.
The second option is to parallelize the inner loop. A drawback of this method
is that the number of function evaluations decreases exponentially, thus, a
more sophisticated job priority queue must be managed in later stages [9].
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The last described optimization method is sequential model-based opti-
mization. How the name suggests, SMBO is a sequential method. The em-
phasis is placed on gathering all information before a decision about a next
tested configuration is made. Thus in a parallel run, we should wait until
all currently running configurations finish before choosing a new one. This
approach would result into the waste of resources. To overcome this, we can
relax on gathering all information, ignore currently running configurations
and use only finished evaluations from all nodes as data for the surrogate.
Theoretically, when maximize acquisition function, the same global optimum
should be found and evaluted for all free nodes until a new obseravation is
added. However, the optimization usually finds only local optimum, thus, we
may count on stochasticity of the optimization that it will result in different
local optimas [8]. Different approach is to use so-called constant layer, i.e. to
assign a constant value of y to all currently running configurations and add
them to dataset. The acquisition function will not suggest these configura-
tions because they will appear as already evaluated. Nevertheless, ignoring
the running configurations can lead to a less effective search. Thus, more
effective parallelization schemas were proposed, see [15] for their review.

1.4.3 Optimization of multiple tasks

Up until now, we considered optimization of hyper-parameters for only one
task, that is we solved a specific problem such as digit recognition. How-
ever, we often have multiple different tasks (e.g. several different problems
such as digit recognition, animal classification, etc.) which can be related.
Thus, knowledge from one task can give us information about another task.
Typically, we have a set of already solved tasks and we want to incorporate
knowledge about their hyper-parameters to the optimization.

As already mentioned, one approach is to use meta-learning for the initial-
ization. Promising configurations are generated based on a similarity of the
datasets and their results.

A different approach is to create a joint surrogate model for multiple tasks.
This approach was considered mainly for Gaussian processes where covariance
function can be defined to measure both a similarity between a pair of points
and a similarity between tasks. Formally, for a pair of tasks Π and Π ′, and
two configurations x and x′, we define a kernel as a product of two separate
kernels

k((x, Π), (x′, Π ′)) = kX (x, x′)kΠ(Π, Π ′).

The kernel kX measures relationship between configurations and kΠ relation-
ship between tasks. Their product then can be used for a multi-task model [5].
Other methods were also considered, see [15] for their review.
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Chapter 2

Experimental part

2.1 Experiments design

In this section, performed experiments will be described. The aim of the
experiments is to compare different hyper-parameter optimization methods in
terms of convergence and selected configurations on various problems. Results
and their analysis is given in the section 2.3.

2.1.1 Hyper-parameter optimization problems

A hyper-parameter optimization problem aims to find best hyper-parameters
of a machine learning algorithm to train the model for given data. The dataset
and the machine learning algorithm used in the experiments are described in
the following subsection. Hyper-parameters of the machine learning algo-
rithms that are optimized are described in the next subsection.

2.1.1.1 Datasets

Two datasets are used in the experiments: MNIST and its variation MRBI.
MNIST dataset is choosen due to its simplicity which allows deep analysis of
the hyper-parameter methods behavior. The MRBI dataset is more difficult
thus more challenging for hyper-parameter optimization. Both datasets come
from the same domain and are related which allows us to compare the opti-
mization method behavior on problems with various degrees of complexity.

MNIST The MNIST digit recognition dataset is well-known image dataset,
often used for testing of various machine learning techniques. The dataset
consists of 28×28 pixels, gray-scale images of handwritten digits ranging from
0 to 9. A digit in each image is written in white, and it is size-normalized
and centered on a black background. The aim of the classification task is
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to recognize the digit in a given image, i.e. to classify an image to classes
0 − 9 [31].

The MNIST dataset is usually divided into a training set of size 50000
images and a test set with 10000 images. However, in order to speed up the
experiments, a partition adopted from [4] is used in this work, that is 10000
images is used for training, 2000 for validation and 50000 for testing.

MNIST rotate background (MRBI) The MRBI dataset is a variation
on MNIST constructed by Larochelle et al. [4]. A digit in each MNIST image
is rotated by an angle chosen randomly between 0 and 2π. Moreover, the
black background is replaced by a random, 28 × 28 pixels, black and white
image. The classification task remains the same, to assign correct digit to
given image. However, the variations performed with the images change the
task’s behavior and increase its complexity.

The training, validation and testing dataset partition is the same as for
the MNIST, that is a training set consists of 10000 images, a validation set
from 2000 and a test set from 50000 images.

2.1.1.2 Machine learning algorithms

An artificial neural network is used as machine learning algorithm which trains
models.

Artificial neural networks are a group of algorithms that were successively
used for wide range of tasks. However, they come with a large number of
hyper-parameters that need to be tuned. The hyper-parameter setting is a
non-trivial task due to the complexity of the hyper-parameter space and the
fact that the training can be time-consuming – a training of one network often
takes hours or days depending on the network’s structure and the task being
solved.

A neural network consists of structured network model and optimization
algorithm. The network’s hyper-parameter space is formed by a mixture of
optimization algorithm’s parameters and parameters of the model.

In this work, a feed-forward neural network with stochastic gradient de-
scent (SGD) optimization is used for both datasets. In order to simplify the
task and make it computationally feasible, only a subset of hyper-parameters
is selected for hyper-parameter optimization. The subset covers real, integer
and categorical hyper-parameters. For MRBI dataset some hyper-parameters
are conditioned by others.

The classification of the MNIST dataset is not very difficult, thus a net-
work with only one hidden layer is trained. The space of optimized hyper-
parameters consists of five variables:

• An initial learning rate for SGD.
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• A learning rate decay for SGD which decreases the learning rate in each
epoch 4. A learning rate lr for an iteration t is derived from the initial
rate lr0 and the learning rate decay d as lrt = lr0

1+dt
.

• A number of units in the hidden layer.

• An activation function for the units in the hidden layer.

• A weight distribution from which are initial weights generated.

The types, values and prior distributions for the hyper-parameters are given
in Table 2.1. The network is trained for 1000 epochs. An early-stopping
criterion can be used to stop the training if the network’s performance is not
improving.

The MRBI dataset is more complex, thus a network can have from one up
to three hidden layers each of which comes with hyper-parameters: a number
of units, an activation function in the units, a weight initialization distribution.
The values of these parameters are conditioned by the existence of the layer.
Each hidden layer is followed by another layer with probability 0.5, that is the
second layer exists with probability 0.5 and the third layer with probability
0.25. In order to prevent overfitting of larger networks, a technique called
dropout is employed [32]. The dropout introduces a new hyper-parameter to
each hidden layer and the input layer: a dropout rate. The optimized hyper-
parameters for SGD are the same as for MNIST: a learning rate and a learning
rate decay. The hyper-parameter space is thus formed by 17 hyper-parameters
some of them conditioned by others. Their values are specified in Table 2.1.
The network is trained for 2000 epochs but can be stopped if the performance
is not improving.

The output layers of the networks for both tasks has 10 units corresponding
to digit 0−9. As activation function softmax is used in all units. The networks
are trained to yield a probability of each digit being in the image. Categorical
cross-entropy loss function is used to train the network for these probabilities.

2.1.2 Compared hyper-parameter optimization methods

In theoretical part (Chapter 1), several hyper-parameter optimization meth-
ods are described including surrogate models that can be used to guide the
optimization. In the experiments, five combinations of the methods and sur-
rogates are compared:

4An epoch of a neural network is a training unit in which all training data are processed,
i.e. all training data are used to adjust network’s model parameters. A typical neural network
runs iteratively a large number of these epochs and thus sees the training data several
times. After each epoch, the model can be used for prediction. However, its performance
does not have to be sufficient, therefore, the training continues with other epochs until the
performance is sufficient or a maximal number of epochs is reached.

5 Only for the MRBI dataset.
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Hyper-parameter Type Values

Learning rate Real log U(0.001, 10)

Learning rate decay Real log U(10−5, 10−3)

Dropout rate 5 Real U(0, 0.6)

Number of units in a layer Integer log U(18, 1024)

Activation function in a layer Categorical U({tanh, sigmoid})

Weight inicialization for a layer Categorical U({U(−1, 1), N (0, 1)})

Next layer exists 5 Categorical U({True, False})

Table 2.1: The optimized hyper-parameters, their types, values, and prior dis-
tributions. The notation U(a, b), where a < b, denotes continuous or discrete
uniform distribution over values from a to b. For categorical hyper-parameters
U(S) denote that all values from set S have equal probability. The notation
log U(a, b) is used for log-uniform distribution, i.e. values are generated in log-
arithm domain between log a and log b, where 0 < a < b. For integer variables
the generated values in logarithm domain are transformed back and rounded
to the nearest integer.

• random search

• sequential model-based optimization with surrogates

– Gaussian processes

– random forests

– tree-structured parzen estimator

• Hyperband

The random search and SMBO iteratively generate and evaluate 10 con-
figurations for the MNIST experiment and 30 configurations for the MBRI ex-
periment. The number of configurations are determined based on the number
of optimized hyper-parameters, available computational resources, and empir-
ical tests. Hyperband does not use the same iterations as random search and
SMBO. It does not fully evaluate all generated configurations, thus for the
same budget of resources, a larger number of configurations can be generated.
The number of generated configurations is given by its resource parameters
r, R, and η factor. Therefore, the values of these parameters are chosen to
give Hyperband similar computational resources as to the random search and
SMBO.

The experiments focus strictly on the optimization methods comparison.
No technique described in Section 1.4 as meta-learning or multi-task is used
and the optimization run sequentially for all methods.
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2.1.2.1 Methods setting

This section describes settings of individual hyper-parameter optimization
methods.

Random search Random search has no other setting except a number of
generated configurations and prior distribution.

SMBO SMBO and each surrogate model have several parameters. Expected
improvement is used as acquisition function for all surrogates along with ran-
dom sampling for its optimization. In each iteration, 10000 random configu-
rations are sampled and the one with the highest EI is used for training.

Matérn kernel with smoothness parameter ν = 5/2 is used for Gaussian
processes as suggested in [33]. The length-scale for each hyper-parameter and
noise level are optimized to fit the data. The Matérn kernel is defined for real
variables, therefore, the non-real hyper-parameters have to be transformed.
Integer hyper-parameters are treated as real in the surrogate and they are
rounded to nearest integer before using for training the network. Categorical
hyper-parameters are encoded using one-hot encoding. The kernel is not de-
signed to handle conditional variables, thus, all variables are considered always
active.

The random forest model constructs 100 trees. A minimal number of
points in a leaf is three and all hyper-parameters are considered to be split
upon in each node corresponding with p equal one. These values are taken from
implementation in [34] as well-founded. As for the forest size, as Breiman [35]
points out, random forests do not overfit and their performance increase with
a number of trees. The only drawback is that with increasing size of the
forest, the computational complexity increases. However, for the performed
experiment, the time for training 100 trees is insignificant in comparison to
the time required by one cost function evaluation. The dataset for the forest
is small, thus, the number of leaf points is set to small number.

Tree-structured parzen estimator implementation is taken as suggested
by Bergstra et al. [8].

Hyperband As mentioned before, the neural network algorithm runs in
iterations called epochs. These epochs are used as a resource for Hyperband.
However, twenty epochs are set as one resource unit instead of one epoch in
order to reduce the number of generated configurations. Moreover, a typical
network takes several epochs to change significantly its performance, therefore,
using more than one epoch as a resource is well-founded. A maximal number of
resources R is thus set to 50 for the MNIST and 100 for the MRBI dataset. The
last parameter η is set to four and three for MNIST and MRBI, respectively.
The values for η are chosen based on a recommendation in [9] and so that the
Hyperband trained in total a similar number of epochs as other methods for all
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trained networks together. The configurations for Hyperband are generated
randomly from a given prior distribution.

2.1.3 Evaluation

To quantify a neural network model’s performance, classification accuracy is
used. The accuracy is defined as proportion of correctly classified input points

acc(Π) =
1

|Π|

∑

(π,c)∈Π

✶(ĉ = c)

where π is input vector, c is its class, and ĉ is class predicted by the model.
The accuracy can be transformed to loss function, called error rate or simply
error, by substraction from one

L(Π) = error(Π) = 1 − acc(Π).

which measures proportion of missclassified inputs. As mentioned above, the
model outputs probabilities of individual digits. We then take a digit with
maximal probability as prediction ĉ.

The error rate is calculated for training, validation and testing dataset
separately. For hyper-parameter optimization, the error on the validation
set is used as a cost function. The optimization then recommends a model
with a minimal validation error. The models founded by hyper-parameter
optimization are compared using the error rate on the test data.

All compared methods include a random element, thus, with different ran-
dom generator settings, the optimization can have different results. In order
to reduce the randomness, each method is run ten times with different random
seed for the generator.

2.2 Implementation

The experiments are written in Python language version 3.66. Python is a
high-level open-source language often used for machine learning tasks due
to its simplicity, which allows quick prototyping, and availability of many
scientific packages. The experiments use some of these packages:

• SciPy [36] – a package for numerical operations.

• NumPy [36] – a package for working with N-dimensional arrays, linear
algebra operations and random number capabilities.

• Pandas [36] – a package for handling structured data.

6https://docs.python.org/3/index.html
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• scikit-learn [36] – a package for machine learning algorithms.

• Matplotlib [36]– a plotting package.

• Seaborn [37] – a package for statistical visualization built on top of
Matplotlib.

• Plotly [38] – a plotting library which provides interactive graphs.

• TensorFlow [39] – a package for numerical computations and machine
learning modeling.

• Keras [40] – high-level API for neural network modeling. The model in
Keras can be built using several different packages which implements
the neural network functionality.

A full list of dependencies is specified on attached CD.

The experiments were prototyped in Jupyter Notebooks7 – a web applica-
tion which allows run interactive code, visualizations, and text writing.

The neural networks for both tasks are implemented using Keras with
TensorFlow backend for the network functionality. Keras allows a simple
definition of the network and an interface for its training and prediction. It
also allows saving and loading the neural network’s model. The further is used
for optimization with Hyperband where partially trained models are saved and
loaded if the training should continues.

Two packages which implement functionality for hyper-parameter opti-
mization with described methods are used – Scikit-Optimize [34] and Hy-
peropt [41]. Scikit-Optimize implements sequential model-based optimization
with various surrogate models. Its implementation of SMBO with Gaussian
processes and random forests is used in this work. Hyperopt is a package
which implements random search and SMBO with tree-structured parzen es-
timator both of which are used in the experiments. My own implementation
of Hyperband is used in the experiments.

2.3 Results

In this section, results of the experiments are described. Each experiment is
analyzed in separate subsection. Subsection 2.3.3 contains summary of the
results. A discussion of results follows in Chapter 3.

Note, that in all figures and tables below, hyper-parameters with prior
log-uniform distribution are visualized with a logarithm scale.

7http://jupyter.org/
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validation error (%) test error (%)

method mean median std mean median std

RANDOM 7.14 6.90 1.19 8.44 8.48 1.38

GP 8.27 7.95 2.30 9.07 8.58 2.42

TPE 7.94 7.97 1.08 9.05 8.99 1.10

RF 7.35 7.58 1.37 8.39 8.11 1.61

HYPERBAND 6.25 6.43 0.78 7.46 7.38 0.96

Table 2.2: The error rate in percentages for the MNIST dataset for configu-
rations found by individual hyper-parameter optimization methods

2.3.1 MNIST

In the first experiment, a configuration of a neural network for the MNIST
dataset is seeked. The optimization methods are compared in terms of found
configurations and ways how they reach the solution, meaning what configu-
rations and regions of hyper-parameter space the methods focus on.

Table 2.2 and figures 2.1 and 2.2 show validation error (cost function) and
test error for configurations found by each method. Note that the common
approach is to compare methods using a mean error, however, the mean may
be biased by distant values. In that sense, the median error is more repre-
sentative and thus is used in plots below. The table and figures contain the
mean and the median (the solid line marks the median, the dashed line repre-
sents the mean) as well. A standard deviation is given to represent sensitivity
to initialization. As we can see, Hyperband found the best configurations.
Moreover, it has a low variance. There are two reasons for this. Hyper-
band generates a larger number of configurations than other methods, thus,
the hyper-parameter space is explored better resulting in less dependence on
random generator setting. Furthermore, as the results show, the poorly per-
forming configurations are easily distinguished, thus Hyperband drops them
in initial stages leaving more resources for the promising configurations. The
performance of other methods is slightly worse. We may notice, that SMBO
with Gaussian processes has a high variance. The cause is a small number of
evaluations which results in the dependence of the model’s accuracy on the
initial sampling. As we will see in the experiment for the MRBI dataset, once
enough data points are given to sufficiently represent the hyper-parameter
space, the variance decreases. In general, there are small differences between
methods which suggest that the task is easy to solve.

To see a progress of the optimization, a convergence is shown in Figure 2.3.
The plot uses logarithm scale on the y-axis to emphasize the differences. Note
the due to early stopping used for the networks, the optimization times differs
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Figure 2.1: The validation error of the best found configurations for the
MNIST dataset.
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Figure 2.2: The test error of the best found configurations for the MNIST
dataset.
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Figure 2.3: MNIST convergence.

depending on which configurations is generated in particular run. However, in
average, the methods require similar time. As we can see, Hyperband found
a good solution fast and then did not improve it. We will see below, that the
bracket that find the best configurations is usually the most exploratory one.
In the Hyperband’s implementation this bracket runs as the first one, thus,
gives the results at the beginning of the optimization. The convergence of the
remaining methods is similar to one another.

In order to analyze configurations generated by individual methods, a five
percent of the best performing configurations are explored. The values of the
top configurations are visualized by a parallel plot in Figure 2.4. The color
corresponds with the method which found each configuration. As we can see,
the top configurations cover a large part of the space and none of the methods
seems to focus on a specific area.

As for the values of these top configurations, a learning rate has narrow
range suggesting that it is the most important hyper-parameter. To con-
firm this, automatic relevance determination (ARD) using Gaussian processes
with Matérn kernel with smoothness parameter ν = 5/2 was performed. The
Matérn kernel belongs to a group of kernels that allows determining the im-
portance of each input variable based on the optimized model parameters.
Specifically, the training with Matérn kernel optimizes parameter length-scale
for each input variable. This length-scale then determines the influence of the
variable. The lower it is, the more relevant the variable is. For ARD of hyper-
parameters the data sampled by random search were used. The training was
repeated 50 times with 80% random points from 100 configurations. Table
2.3 shows median of inverse lenght-scale, i.e. the relevance measure. From
the results, we can see that the learning rate is the most important parameter
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hyper-parameter 1/lenght-scale

learning rate 3.77

learning rate decay 0.63

number of hidden units 2.18

activation 0.91

weights initialization 0.47

Table 2.3: The relevance of each hyper-parameter as determined by Gaussian
processes with Matérn kernel for the MNIST dataset.
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Figure 2.4: The best found configurations for the MNIST dataset.

(1/lenght-scale = 3.77), the second most relevant parameter is the number of
hidden units (2.18). The other parameters have inversed length-scale smaller
than one meaning that they are not considered relevant. The most relevant
hyper-parameters have the highest impact on optimization results, thus, the
analysis focus on them.

The behavior of individual methods is illustrated by pair plots for nu-
merical hyper-parameters and validation error. Each pair plot contains all
configurations generated by all runs. The red color in each pair plot marks
the top configurations.

2.3.1.1 SMBO with Gaussian processes

The Gaussian process model is very accurate in prediction and uncertainty
estimate. Figure 2.5 shows a pair plot of generated configurations by this
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Figure 2.5: Sampled values by SMBO with the Gaussian process model for
the MNIST dataset.

method. As we can see from diagonal histograms for hyper-parameters, the
method often samples border values of the configuration space. Even the
scatter plots for pairs of hyper-parameters contains a large number of points
on the edges. This is caused by the the uncertainty estimate which forces the
optimizer to explore the space when a small number of data points is given.
The sparsity of the dataset results in regions with high uncertainty and, in
consequence, in high acquisition function for these regions. The points with
boundary values are usually the furthest from already sampled points, thus
they have the highest uncertainty.

As already said, the Gaussian processes-based optimization has high vari-
ance which is caused by the initial exploration. If the configurations sampled
at the beginning are not representative, they can bias the search to regions
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Figure 2.6: Sampling by SMBO with the Gaussian process model for two
different intitializations.

with suboptimal configurations. The optimization is given relatively little
time, thus the model does not have enough time to correct this. In the left
bottom panel in Figure 2.5 we can notice points that have high learning rate
and high validation error. These points can confuse the model to think that
high learning rate is not desirable, even though the top configurations have
high learning rate as illustrated by the red points. Figure 2.6 illustrates this
for two optimization runs with different intitialization. The figure shows the
learning rate and the validation error in individual iterations (visualized by
color, the darker the color, the higher the iteration number). In the left panel,
a run where good configurations are sampled at the beginning is shown. This
sampling results in a focus on the region with high learning rate, thus, the
optimization yields a good configuration. On the other hand, the second panel
shows a run where two configurations with high learning rate and validation
error are sampled at the beginning (the two top right points). The search then
focuses on low values of learning rate and does not find good configuration.

2.3.1.2 SMBO with random forests

Random forests are not so accurate in uncertainty estimates as Gaussian pro-
cesses. Therefore, the borders are not sampled the same way as with the
Gaussian process model (see Figure C.1). The optimization results have lower
variance than Gaussian processes-based optimization. Similarly to Gaussian
processes, unsuitable initial configurations can bias the search towards subop-
timal regions. However, the majority of the poorly performing configurations
with high learning rate is placed on the borders of the hyper-parameter space
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which is not sampled so often by SMBO with random forests, thus the variance
is smaller.

A little more samples were generated in the region with high learning rate
which contains the top configurations. However, the changes are inconclusive,
probably due to lack of time given to optimization.

2.3.1.3 SMBO with tree-structured parzen estimator

The first thing to notice in pair plot for the TPE in Figure 2.7 is that the
model often generates correlated values for different hyper-parameters (see
for example panel for the learning rate and the number of hidden units in the
first column and the third row). It is even more clear from Figure 2.8 which
shows sampled values for one run where this correlation appeared between
the learning rate and the number of hidden units. To find the cause, we have
to look at the way how TPE is built. Each evaluated configuration changes
the prior distribution. Specifically, for uniform (or log-uniform) distribution,
the prior distribution is replaced with truncated Gaussian mixture model with
means of individual Gaussian distributions in sampled values and variances
set to a greater of the distances to the left and right neighbor for each input
point. Therefore, if values for two independent variables with uniform prior
distribution lie in the same region of the distribution, the change in their
distributions will be the same up to scaling. Thus, their shapes will be the
same and they will produce correlated values. This is the reason of the poor
results and low variance of TPE – many runs encounter into this problem.
Especially, it is a problem when the two correlated hyper-parameters are the
two most important ones, the learning rate and the number of hidden units,
which however have different optimal values (lies in different regions of the
prior distribution). To prevent this, the optimization should be initialized
with more than one random point. The more initial random points, the lower
probability that the posterior distributions will have the same shape.

2.3.1.4 Hyperband

The Hyperband’s setting for MNIST results in 3 brackets (Successive Halving
runs) with a different trade-off between a number of generated configurations
and resources given to each configuration. The first bracket generated 16 con-
figurations, the second 6 and the third 3 configurations with median validation
error of the best configurations 6.48%, 8.03%, and 8.58%, respectively. As we
can see, the best bracket is the one which generates a large number o con-
figurations and assigns them a small number of resources (epochs). Thus we
see, that the good configurations are easy to distinguish even after only a few
epochs.

A pair plot in Figure 2.9 shows all configurations that finished the eval-
uation, that is they used a maximal number of resources or were stopped
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Figure 2.7: Sampled values by SMBO with tree-structured parzen estimator
for the MNIST dataset.

prematurely because the performance did not increase. In panels in the left
column, we can notice a focus on large learning rate which corresponds to
values for the top configurations. Thus, Hyperband keep the best configura-
tions for a full evaluation. It is important to note that the learning rate has a
great impact on the convergence rate. This might be partly the reason for the
concentration on the large learning rate and the smaller number of units (we
can notice that in the panel for learning rate and number of hidden units in
the left column on the third row). These parameters influence the convergence
of the network (the higher the learning rate the faster the convergance, and
the smaller network the faster the training). The fact that high learning rate
turned out to be optimal could be one of the causes why the first bracket is
good. It prefers networks that learn fast. If the lower values were better, the

49



2. Experimental part

10-3 10-2 10-1 100 101

learning rate

102

103

nu
m

be
r 

of
 u

ni
ts

Figure 2.8: The correlation of sampled values for the learning rate and the
validation error SMBO with tree-structured parzen estimator.

good configurations could be discarded prematurely by this bracket.

2.3.2 MRBI

The second experiment optimizes a neural network for the MRBI dataset.
In Table 2.4 we can see the validation and the test error of the best-found
configurations (box plots are given in Appendix C). As in case of MNIST, Hy-
perband found the best configurations. SMBO with different models yielded
similar performance. However, as we can see in contrast to MNIST, Gaus-
sian processes have low variance and, on the other hand, random forests have
high variance. Moreover, this task proved to be more difficult which results in
the worst performance of random search. The search space is larger and the
prior distribution forces random search to explore it uniformly. On the other
hand, as we will see, the SMBO methods change the distribution to sample
the promising regions more often and Hyperband assign more resources to the
promising configurations.

The convergence for all methods is shown in Figure 2.10. Hyperband again
quickly finds a good configuration. Random search and SMBO are comparable
at the beginning of the optimization. However, around 15th iteration, SMBO
starts to outperform random search. The convergence for different surrogates
is similar, however as we will see, there are differences in the optimizer’s
behavior depending on the selected model.

As with the MNIST experiment, in order to explore the methods, the best
configurations are explored. However, a larger number of configurations is
generated for MRBI, thus, only three percent of the best configurations are
selected. This results in 42 top configurations. From these configurations, 37
have only one layer suggesting that one-layer networks are the most suitable
for the task. Table 2.5 shows the percentage of configurations with different
numbers of layers generated by random search and SMBO. According to prior
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Figure 2.9: Sampled values by the Hyperband for the MNIST dataset

validation error (%) test error (%)

method mean median std mean median std

RANDOM 62.62 62.88 1.52 63.57 63.50 2.04

GP 60.65 60.90 1.53 61.65 61.15 1.67

TPE 61.62 60.90 1.95 63.07 62.18 2.44

RF 61.35 60.70 2.86 62.57 61.29 2.92

HYPERBAND 60.15 60.05 1.42 61.16 60.90 2.15

Table 2.4: The error rate in percentages for the MRBI dataset for configura-
tions found by individual hyper-parameter optimization methods
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Figure 2.10: MRBI convergence.

50% of configurations should have one layer, and 25% two and 25% three
layers. The random search indeed follows the prior. However, model-based
methods alters the distribution to focus on one-layer networks. This is even
more obvious for the last 10 iterations where the model changes the distribu-
tion the most. The Hyperband’s configurations are shown in Table 2.6. The
table contains only configurations that finished the evaluation. As we can see,
for all brackets the numbers follow the prior, however, this is largely caused
by the later brackets which behave as random search. For the first three most
aggressive brackets, we can see that one-layer networks receive more attention.

2.3.2.1 SMBO

Figure 2.11 shows histograms for sampled values of the learning rate for op-
timization with SMBO. Each panel shows sampled values for the first (left
column) and the last (right column) ten evaluations using individual models
(rows). The red lines marks values for the top configurations, thus, the regions
which the optimization should focus on. As we can see, the frequency of dif-
ferent values changes during the search. All models bias the search to regions
where the best performing configurations are found. However, the exact shape
of the histogram is dependent on the model.

Similarly, as in the MNIST experiment, the Gaussian process surrogate
forces the optimizer to explore the space at first focusing on the border val-
ues (the top left panel). However, for the MRBI experiment the optimization

52



2.3. Results

method
number of

layers
all iterations

(%)
last 10

iterations (%)

RANDOM

1 51 54

2 22 18

3 26 28

GP

1 65 76

2 16 10

3 19 14

TPE

1 71 74

2 16 17

3 13 9

RF

1 68 77

2 15 13

3 17 10

Table 2.5: The percentage of configurations with 1, 2, and 3 layers generated
by random search and SMBO for MRBI dataset

method
number of

layers
all brackets

(%)
first 3

brackets (%)

HYPERBAND

1 55 65

2 25 22

3 20 13

Table 2.6: The percentage of configurations with 1, 2, and 3 layers that finished
evalution with Hyperband for MRBI dataset
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Figure 2.11: Sampled values for learning rate by SMBO with different models
for the MRBI dataset.
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Figure 2.12: The convergence of SMBO with Gaussian processes for the the
MRBI dataset.

receives more iterations. Thus, after several iterations, the uncertainty de-
creases and the optimization starts to focus on the promising region (the top
right panel). Thanks to the initial exploration phase, Gaussian processes have
a low variance. The initial exploration gives us global information which is
not dependent on initialization. A price we pay for this information is high
error and variance at the beginning as shown Figure 2.12. The figure contains
the median error for the best model from individual runs (the line) and the
region around it with the width corresponding with the value of standard devi-
ation. This width is large at the beginning, however, in later iterations, it de-
creases. Note that thanks to the fact that one-layer networks reported the best
performance, Gaussian processes can consider conditional hyper-parameters
irrelevant which simplifies the optimization.

Random forests do not explore the space as Gaussian processes. The model
does not sample the borders (left panel in the second row of Figure 2.11).
Moreover, it often starts to focus on the specific area from the beginning
which results in fast convergence to local optima making the optimization
more sensitive to initialization. Scatter plots in Figure 2.13 illustrate this for
two different runs with the number of hidden units in the first layer (denoted
as L1). In Panel 2.13a, the search focuses on a larger number of hidden
units which is indeed the area where the best models are found. However,
for a different run, shown in the second panel (2.13b), the main focus is on
a smaller number of units. Moreover, if we would look at the sampled values
depending on iteration for the second run (Appendix C.4), we might notice
that the configurations with the larger number of hidden units are generated
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Figure 2.13: Sampling by SMBO with the random forest model for two runs
with different intitializations.

in later iterations. The first iterations focus only on small networks. However,
the fact that the search starts to generate higher values in the last iterations
suggest that it would escape from the local optima if given more time. The
higher exploitation causes the higher variance of the results due to its higher
sensitivity on the initialization.

SMBO with TPE is initialized with one random point which sometimes
results in generation of configurations with correlated values for some hyper-
parameters. However, in most cases the values are not completely correlated
and after several iterations, the distributions are different enough to generate
different values. Example of such case can be found in Appendix C.

In Figure 2.11, TPE corresponds with the last line. As we can see, SMBO
with TPE samples the borders similarly to Gaussian processes suggesting that
the uncertainty estimate is more accurate than random forest estimate. How-
ever, it starts to focus on a specific area earlier and on the other hand, it is
less focused on optimal values in the last iterations.

2.3.2.2 Hyperband

The Hyperband finds best results in the first bracket as shown in Figure 2.14
suggesting that good configurations are easily distinguished. The box plot
shows validation error of the best configurations found by individual brack-
ets. Clearly, the first bracket, denoted according to the number of generated
configurations as n = 81, has the lowest error. With decreasing number of
configurations (and increasing number of resources for each of it) the error
increases. Partly, this can be caused by the fact that 1-layer networks, which
learn quickly, turned out to be the best. If the optimal networks had more
layers, other brackets might be better.

As for the configurations that finished the evaluation, they are similar to
the ones that SMBO concentrates on. Histogram of sampled values for the
learning rate is shown in Figure 2.15. Each panel shows finished evaluations
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Figure 2.15: Sampled values for the learning rate by the Hyperband for MRBI
dataset.

for one bracket. As we can see, only the last bracket (n = 5) which finishes
all generated configuration does not concentrate on the good values.

2.3.3 Summary

In the previous section, five hyper-parameter optimization methods are com-
pared on two datasets. In both experiments, Hyperband outperforms other
methods yielding the smallest validation and test error. Moreover, the vari-
ance of the results from different optimization runs is low for Hyperband. The
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reason behind it is an easy separation of the poorly performing configurations
from the good ones. Hyperband recognizes these poor configurations, discards
them, and assigns more resources to the promising configurations.

Different surrogate models in SMBO yields a similar performance. How-
ever, there are differences in variance and overall behavior of SMBO with
different surrogates.

Gaussian processes force the optimizer to explore the space which results
in high variance for a small number of evaluations and, on the other hand,
a low variance for later iterations when optimized space is sufficiently sam-
pled. Random forest-based optimization is less exploratory. Due to inaccurate
uncertainty estimate from random forests, the optimization focus on a local
area. This often results in high performance due to the larger proportion of
time spent in the promising region. However, in some cases, the optimization
get stuck in a suboptimal region. The tree-structured parzen estimator can
cause sampling of correlated values for different input variables. Thus, if the
well-performing configurations do not have these hyper-parameters correlated,
the optimization ends with a high validation error. However, as the experi-
ment with MRBI shows, SMBO with TPE explores the space in a similar way
to Gaussian processes.

Random search is used as a baseline. The experiments shows that for a
simple problem, random search is comparable to other methods. However,
for more complicated problem, it yields worse performance due to wasting of
resources on poorly-performing configurations.
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Chapter 3

Discussion

In the previous chapter, five hyper-parameter optimization methods are used
to optimize hyper-parameters of a feed-forward neural network. Overall sum-
mary of the results is given in 2.3.3. However, there are some points worth to
discuss in more detail.

The first thing to note is that both used datasets come from image do-
main which is only one of the domains where machine learning methods are
being used. Similarly, feed-forward networks represent only a small fraction
of neural networks and machine learning algorithms in general. For example,
so-called convolutional neural networks yield state-of-the-art performance on
many image datasets, such as the ones used in this work. Feed-forward net-
works were choosen as good representant to evaluate how the optimization
works, however there is space to experiment with further architectures and
datasets.

On both presented problems, Hyperband outperforms other methods. How-
ever, as analysis shows, both of these tasks have a rather convenient optimal
setting for Hyperband – the good configurations corresponds with smaller
networks (1-layer network for MRBI) and higher learning rate. Both of these
facts cause that the learning converges quickly making the optimal configura-
tions easily distinguish from the poor ones at the beginning of the training.
It is a question, whether Hyperband would perform so well if a more diffi-
cult problem in terms of model complexity and slower learning was presented.
Similarly, Gaussian process model performs well on given tasks with mixed
numerical, categorical and conditional hyper-parameters even though it is not
designed for them. However, the numerical hyper-parameters turned out to
be the most relevant.

In the theoretical part, another group of surrogate models is described –
artificial neural networks. The SMBO in experiments does not use this sur-
rogates. It might be interesting to compare its behavior against the other
models. For example the DNGO model should be able to handle conditional
variables and have similar properties as Gaussian processes. Comparation
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on both low dimensional problems with independent variables and high di-
mensional mixed space could show whether DNGO would behave similar or
outperformed GPs. In general, neural networks might learn interesting fea-
tures without complicated specification of kernels as in case of GPs.

As mention, the two techniques that proven to be useful in terms of being
resource efficient are a partial evaluation of the configurations which provides
an insight into configuration’s performance for a small price and altering the
input distribution using a surrogate model. These two approaches are not in
conflict, thus, further research on combination both seems to be promising.
Some steps were already taken in this direction. As mentioned in theoretical
part, Klein et al. [21] use a neural network model which attemps to model
a learning curve for the training and use this model for Hyperband configu-
ration generation. Recently, Falkner et al. [42] combined TPE model with
Hyperband.

Perhaps the simplest approach might be to provide SMBO several partially
evaluated configurations as initial points. This could help to initialize the
optimization. How the experiments showed, the performance of the models at
the beginning of the optimization is dependent on initial sampling. Typically,
it takes several steps before SMBO starts to give good results not influenced
by initial configuration. In setting where one function evaluation may take
hours or days, we would like to reduce the number of these initial steps. A
promising direction seems to be meta-learning – using results from previous
tasks to warm-start the optimization. As described in section 1.4 already
proposed methods include selecting a list of configuration based on results
from previous datasets [30], or building a surrogate model that incorporates
information from previous tasks [5, 43, 44].
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Conclusion

This work deals with a problem of finding a hyper-parameter setting for ma-
chine learning algorithms. The problem is formulated as an optimization prob-
lem which seeks a minimum of a loss function depending on hyper-parameters
of the training algorithm. The complexity of hyper-parameter space and cost
of one evaluation makes this optimization non-trivial task.

Four methods that aim to automatically optimize given function are re-
viewed in theoretical part – grid search, random search, sequential-model
based optimization and Hyperband. Some of them use a surrogate model that
approximates the optimized function. This model improves the optimization
by directing the search to promising regions of optimized space. Several such
models – Gaussian processes, random forests, tree-structured parzed estima-
tor, and neural networks – are described as well.

Practical part focuses on methods comparison. Five combinations of the
described methods and models are evaluated and their behavior is analyzed
on two datasets with various degrees of complexity.

The results shows that Hyperband outperformed other methods on both
tasks owing its success to a large number of generated configurations and dis-
carding the poorly performing ones. Sequential-model based optimization is
another compared method. Three surrogate models are used. The analysis
shows that the models transforms the distribution from which the configura-
tions are sampled resulting in concentration on configurations that are likely
to perform well. The main drawback is a higher variance of the optimization
results which is caused by the bias of some runs to suboptimal regions. The
problem arise especially if only a few function evaluations are allowed. Dis-
cussed solutions includs partial evaluation similar to Hyperband evaluations
and meta-learning which can bias the search based on information from sim-
ilar tasks. Random search has proven to perform well on a simple problem,
however, for the more complex problem, the optimization wastes resources on
poorly-performing configurations.

Machine learning methods are a tool for gaining useful information from
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Conclusion

data. With the development of complex models, the hyper-parameter setting
is a crucial part of the usage of these models on concrete problems. This
work confirmed, that automatic hyper-parameter optimization methods are a
useful tool for tuning this setting. Nevertheless, there is still a large space for
improvement of these methods, such as speeding up the initial phase of the
search, to yield state-of-the-art performance in reasonable time.
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Appendix A

Notation

A machine learning algorithm

Ax machine learning algorithm with configuration x

d dimension of hyper-parameter space

D training set of configurations {(xi, yi)|i = 1, . . . , n}

DΠ distribution of task Π

Dx joint distribution of hyper-parameters

E expected value for given random variable

f(x), f cost function (expected loss) for configuration x

f(xi), fi cost function (expected loss) for training configuration
xi

f expected loss for all training configurations fT =
[

f1 f2 . . . fn

]

f̂(x) point prediction for f(x)

✶ indicator function

L loss function

L(π; Ax(Πtrain)), L(π) loss for sample π and algorithm A with configuration x

trained on set of samples Πtrain

M surrogate model

n number of training data points (configurations)

N (µ, Σ) Gaussian (normal) distribution with mean µ and co-
variance matrix Σ

p(y|x), y|x conditional random variable y given x and its proba-
bility (density)

π, (π, c) sample (instance) of Π, for classification task c is the
class label of π
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A. Notation

Π machine learning task

Π data sampled from Π

R real numbers

U(a, b) uniform distribution on interval (a, b)

xi i-th hyper-parameter

x data point (configuration)

xi i-th training point (configuration)

X an index set of hyper-parameter configurations

X d×n matrix of training points (configurations) {xi}
n
i=1

Xi set of values for hyper-parameter i

X hyper-parameter space

yi observed value of f for training configuration xi

y observed value of f for all training configurations
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Appendix B

Acronyms

ARD Automatic relevance determination

CMA-ES Covariance matrix adaptation evolution strategy

DNGO Deep networks for global optimization

GP Gaussian process

EDA Estimation of distribution

EI Expected improvement

LCB Lower confidence bound

MSE Mean squared error

MRBI MNIST rotate background

PI Probability of improvement

PSO Particle swarm optimization

RANDOM Random search

RBF Radial basis function

RF Random forest

SGD Stochastic gradient descent

SMBO Sequential model-based optimization

SVR Support vector regression

TPE Tree-structured parzen estimator
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Appendix C

Experiments Results
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C. Experiments Results
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Figure C.1: Sampled values by SMBO with the random forest model for the
MNIST dataset.
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Figure C.2: The validation error of the best found configurations for the MRBI
dataset.
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Figure C.3: The test error of the best found configurations for the MRBI
dataset.
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C. Experiments Results
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Figure C.4: Sampling by SMBO with the random forest model which focused
on values with suboptimal cost separated to first and last iterations.
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Figure C.5: The correlation of sampled values for learning rate and validation
error SMBO with tree-structured parzen for MRBI.
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Appendix D

Contents of CD

README.adoc ...................... the file with CD contents description
data.........................................the dataset files directory
docs..........................................the thesis text directory

figures..................the directory with figures presented in text
tables........................ the directory with tables used in text
sections...... the directory with source code for individual sections
DP Juzlova Marketa 2018.texthe LATEX source code files of the thesis
DP Juzlova Marketa 2018.pdf....the Diploma thesis in PDF format

environment.yml..the conda environment file with Python dependencies
notebooks..............the Jupyter notebooks with Python source code

visualization..............................the figures source code
modeling...................the model and optimization source codes
evaluation.............................the evaluation source codes
reports .................................. the the results evaluation

results ..................... the CSV files with the experiments results
mlp on mnist.....................the results for the MNIST dataset
mlp on mrbi ....................... the results for the MRBI dataset

hyperparameter optimization..the scripts with Python source code for
the experiments
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