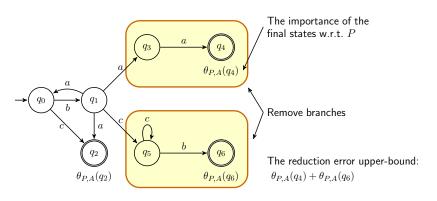


Comparing Languages and Reducing Automata Used in Network Traffic Filtering

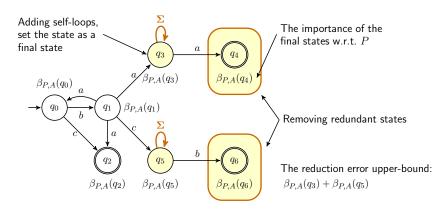
Ing. Vojtěch Havlena, supervisor: Prof. Ing. Tomáš Vojnar, Ph.D.

Motivation


- Hardware filtering of malicious network traffic. Suspicious packets are described by regular expressions, which are converted to nondeterministic finite automata and then implemented into HW.
- **Problem:** The size of an NFA stored in HW.
- The classical reductions that preserve language need not be sufficient. Therefore we propose approach based on **approximate reduction** of NFAs.

Proposed Methods

- The **pruning reduction** (under-approximation) and the **self-loop reduction** (over-approximation).
- Formal guarantees with respect to probabilistic distance.
- The probabilistic distance utilizes probabilistic distribution of the input strings represented by a **probabilistic automaton** (PA) to express similarity of regular languages.
- The reduction can be parametrized by a **maximal error** with respect to the probabilistic distance between the language of the input NFA and the reduced NFA.


Pruning Reduction

• The pruning reduction selects **branches** of the input NFA that are later removed. The branches are chosen according to the input PA.

Self-loop Reduction

• Adding self-loops to certain states and making these states final, followed by removing all other transitions from these states and trimming the modified automaton.

Experiments

- 1. Learning of PA from a traffic sample.
- 2. Reductions of automata describing attacks/protocols with respect to the learned PA.
- 3. Evaluation of the real traffic error.

Automaton	Number of states before/after reduction	Traffic error (packets)
info.rules	16/3 16/4	$\begin{array}{ccc} 0.00169 & (10^6) \\ 0.00089 & (10^6) \end{array}$
shellcode.rules	95/29 $95/48$	$\begin{array}{ccc} 0.000016 & (5\times10^5) \\ 0.000014 & (5\times10^5) \end{array}$
chat.rules	219/47 $219/66$	$\begin{array}{cc} 0.27 & (10^5) \\ 0.03 & (10^5) \end{array}$

• The considered automata can be reduced over 70 % of their size with the traffic error less than 3 %.