
Introduction

Proposed method

The simulation of elastic wave propagation has many applications in ultrasonics,

including the classification of bone diseases and non-destructive testing. In biomedical

ultrasound in particular, elastic wave models have been used to investigate the

propagation of ultrasound in the skull and brain, and to optimize the delivery of

therapeutic ultrasound through the thoracic cage. Currently, there is an accurate elastic

wave model written in MATLAB as part of the open-source k-Wave toolbox. However, the

computational requirements of the model did not allow it to be deployed for realistic

simulation cases. Therefore, we decided to create a native implementation in CUDA to

accelerate the simulation.

The implementation of the native CUDA application follows the numerical model based on

the explicit solution of coupled PDEs using the Fourier pseudospectral method. This uses

the Fourier collocation spectral method to compute spatial derivatives, and a leapfrog

finite-difference scheme to integrate forwards in time. An example of such a calculation to

compute the derivative of the 3D stress field in x dimension is show in Eq. (1)

(1)

Here F{} and F-1{} are the 1D forward and inverse Fourier transforms over the x, i is the

imaginary unit, k
x

is the discrete set of wavenumbers in x dimension, and ∆x gives the

grid spacing assuming a uniform Cartesian mesh. The exponential terms are spatial shift

operators that translate the output by half the grid point spacing which improves the

accuracy of the model.

Experimental results

The performance of the developed native CUDA application was evaluated on several

Nvidia GPUs based on the Kepler, Maxwell and Pascal architectures with 4 to 24 GB of

on-board memory. The original Matlab implementation executed on one node of the

Anselm supercomputer 2 with 2 × 8 Intel Haswell E5-2660 CPUs and a Kepler K20 GPU

were taken as reference points. Fig. 2 shows the growth of the execution time of one

simulation time step with increasing domain size from 64
3

to 512
3

 grid points. Examining

Fig. 2, there is a significant difference between the native CUDA application and the

Matlab version caused by manual tuning of the simulation kernels, better spatial and

temporal data locality, and the use of optimized FFT kernels. Interestingly, there is a

remarkably low difference between different GPU architectures. Although the raw

computational performance grew by an order of magnitude between Kepler and Pascal

GPUs, the observed speed-up is close to 4. This suggests the code is strongly memory

bound, which can be supported by the nlogn time complexity of the FFT, and linear

complexity of other simulation kernels. The execution times copy the memory bandwidth

shown in the legend of Fig. 2. To highlight the benefits of our implementation, let us

mention that the performance of the native code is approx. 5.6 times higher compared to

the Matlab GPU code using the same GPU. The best speed-up was achieved on Pascal P100

GPU, which was on average 108 times faster than Matlab CPU version.

Fig. 2 also reveals that some simulation domain sizes cannot be executed on

particular GPUs. This is given by the memory requirements. Therefore, we derived an

analytic model, Eq. (2) predicting the GPU memory consumption

(2)

Conclusion

This paper has presented a GPU-accelerated implementation of the elastic wave

propagation in biological materials. The code has both significantly decreased the

simulation time and extended the range of manageable simulation scenarios. For

example, a elastic wave propagation simulation with 448
3

grid points and 4,655 time steps

can now be completed in 48 minutes, instead of several hours.

Figure 3: Comparison of the predicted and measured GPU memory consumption

Acknowledgement

This work was supported by The Ministry of Education,Youth and Sports from the

National Programme of Sustainability (NPU II) project IT4Innovations excellence in

science - LQ1602” and by the IT4Innovations infrastructure which is supported from the

Large Infrastructures for Research, Experimental Development and Innovations project

IT4Innovations National Supercomputing Center - LM2015070”. This work was supported

by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID pr14.

Figure 1: Comparison of electronic and simulation based time-reversal focusing.

Figure 2: Execution times for one simulation time step.

where A takes a value from < 0, 8 > depending on the heterogeneity of the medium, C

represents scratch place taken by the cuda FFT library and S describes the geometry of

the input source and the driving signal. This model was compared with the maximal

amount of memory consumed on the Pascal P40 GPU. Fig. 3 shows a close agreement

where the small difference is caused by the size of the executable and the CUDA driver.

	Slide 1

