
Introduction

Proposed method

The simulation of elastic wave propagation has many applications in  ultrasonics, 

including the  classification  of bone diseases  and  non-destructive  testing.  In biomedical 

ultrasound in particular, elastic wave models have been used to  investigate  the  

propagation  of  ultrasound  in  the  skull and brain, and to optimize the delivery of 

therapeutic ultrasound through the thoracic cage. Currently, there is an accurate elastic 

wave model written in MATLAB as part of the open-source k-Wave toolbox. However, the 

computational requirements of the model did not  allow  it  to  be  deployed  for  realistic  

simulation  cases. Therefore, we decided to create a native implementation in CUDA to 

accelerate the simulation.

The implementation of the native CUDA application follows the numerical model based on 

the explicit solution of coupled PDEs using the Fourier pseudospectral method. This uses 

the Fourier collocation spectral method to compute spatial derivatives, and a leapfrog 

finite-difference scheme to integrate forwards in time. An example of such a calculation to 

compute the derivative of the 3D stress field in x dimension is show in Eq. (1)

(1)

Here F{} and F-1{} are the 1D forward and inverse Fourier transforms  over  the x, i is  the  

imaginary  unit, k
x 

is  the discrete set of wavenumbers in x dimension, and ∆x gives the 

grid spacing assuming a uniform Cartesian mesh. The exponential terms are spatial shift 

operators that translate the output by half the grid point spacing which improves the 

accuracy of the model.

Experimental results

The performance of the developed native CUDA application was evaluated on several 

Nvidia GPUs based on the Kepler, Maxwell and Pascal architectures with 4 to 24 GB of 

on-board memory. The original Matlab implementation executed on one  node of  the 

Anselm supercomputer 2 with  2 × 8  Intel Haswell E5-2660 CPUs and a Kepler K20 GPU 

were taken as reference points. Fig. 2 shows the growth of the execution time of one 

simulation time step with increasing domain size from 64
3 

to 512
3

 grid points. Examining 

Fig. 2, there is a significant difference between the native CUDA application and the 

Matlab version caused by manual tuning of the simulation kernels, better spatial and 

temporal data locality, and the use of optimized FFT kernels. Interestingly, there is a 

remarkably low difference between different GPU architectures. Although the raw 

computational performance grew by an order of magnitude between Kepler and Pascal 

GPUs, the observed speed-up is close to 4. This suggests the code is strongly memory 

bound, which can be supported by the nlogn time complexity of the FFT, and linear 

complexity of other simulation kernels. The execution times copy the memory bandwidth 

shown in the legend of Fig. 2. To highlight the benefits of our implementation, let us 

mention that the performance of the native code is approx. 5.6 times higher compared to 

the Matlab GPU code using the same GPU. The best speed-up was achieved on Pascal P100 

GPU, which was on average 108 times faster than Matlab CPU version. 

Fig. 2 also reveals that some simulation domain sizes cannot be executed on 

particular GPUs. This is given by the memory  requirements.  Therefore,  we  derived  an  

analytic model, Eq. (2) predicting the GPU memory consumption

(2)

Conclusion

This paper has presented a GPU-accelerated implementation of the elastic wave 

propagation in biological materials. The code has both significantly decreased the 

simulation time and extended the range of manageable simulation scenarios. For 

example, a elastic wave propagation simulation with 448
3 

grid points and 4,655 time steps 

can now be completed in 48 minutes, instead of several hours.

Figure 3: Comparison of the predicted and measured GPU memory consumption
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Figure  1:  Comparison  of  electronic  and  simulation based time-reversal focusing.

Figure  2:  Execution  times  for  one  simulation  time step.

where  A  takes  a  value  from < 0, 8 > depending  on  the heterogeneity  of  the  medium, C 

represents  scratch  place taken by the cuda FFT library and S describes the geometry of 

the input source and the driving signal. This model was compared with the maximal 

amount of memory consumed on the Pascal P40 GPU. Fig. 3 shows a close agreement 

where the small difference is caused by the size of the executable and the CUDA driver.
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