Extension of a Machine Learning Experiment Management Tool

The Sacred Infrastructure for Computational Research

Martin Chovanec
Czech Technical University in Prague

chovamar@fit.cvut.cz

Abstract
The aim of the project was to extend Sacred, an existing software tool for computational research that helps

machine learning researchers with managing configuration, running, and maintaining results of their experi-
ments. New functionality to Sacred has been added to provide its users with a standardized way of tracking
experiment metrics and to simplify work with Sacred and the TensorFlow computational library. Furthermore,
a web dashboard for Sacred has been created to enable browsing the collected results: the Sacredboard.

Introduction

A major part of machine learning research involves a number of computational experiments run
with many different hyperparameter settings. Due to deadline pressure and the inherently unpre-
dictable nature of research, there is usually little incentive for researchers to build robust infras-
tructures. As a result, research code often evolves quickly and compromises essential aspects like
bookkeeping and reproducibility.

Sacred aims to fill the gap for tackling different aspects of the process by providing a central in-
frastructure for running computational experiments. Sacredboard is a user interface for browsing
the Sacred data.

Main Objectives

1. Implementing a new Sacred API for collecting experiment monitoring information.
2. Simplification of using the tool with the TensorFlow library for computational intelligence.

3. Developing a dashboard to provide overview of running and past experiments and exploring
their results

1 Sacred

Sacred 1s an open source Python framework to solve some of the frequent challenges of compu-
tational research. It 1s independent of the choice of machine learning libraries, aiming to offer
maximum convenience while minimizing boilerplate code. Its configuration process allows inte-
gration with other tools, such as Labwatch for hyperparameter optimization. Through storage of
run information in a central database, query and sorting functionality for bookkeeping becomes
available. This further enables downstream analysis and allows other tools, such as Sacredboard,
to provide a user interface for organizing results.

1.1 Configuration

An 1mportant goal of Sacred 1s to make 1t convenient to define, update and use hyperparameters,
called the configuration of the experiment. The main way to set up the configuration is through
decorated functions:

Listing 1: Configuration

dex.config
def cfg():
learning_rate = 0.1
log dir = "log/NN{}’.format (learning_rate)

dex.automain
def main(learning rate, log_dir):
<= experiment code here
return 42

This experiment is ready to be run and would return a result of 42. It already features an au-
tomatically generated command line interface, collects relevant information about dependencies
and the host system, and can do bookkeeping.

Supervisor: Klaus Greff
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)

1.2 Bookkeeping

Sacred accomplishes bookkeeping through attaching observers of the experiment. Partial data is
captured even in the case of failures.

Sacred ships with observers for MongoDB, SQL database, or locally file storage. The interface
18, however, extensible.

2 Sacredboard

Sacredboard provides a convenient way for browsing runs of experiments stored in a Sacred Mon-
goDB database. It consists of a lightweight Flask-based web server that can be run on any machine
with access to the database. The hosted web-interface shows a table view of both running and fin-
1shed experiments, which are automatically updated. Sacredboard shows the current state and
results, and offers a detail view that includes configuration, host information, and standard output
of each run.

2.1 Filtering

Experiments can be filtered by status to, for example, quickly remove failed experiments from the
overview. Sacredboard also supports filtering by config values, in which case the user specifies a
set of properties names and conditions.

Sacredboard

Filter runs:

config.? | hidden_size - j 250 Add filter

experiment.name regex "German” [X] config.hidden_size >= 250 [X]

Experiments Run Overview
Legend: |8 Running, " 8 Completed,] L Failed, | 8 Interrupted,] ? @ Probably dead, [j & Queued Refresh

Experiment Last
Id name Command Start time activity Hostname Result
- 14 German nouns runExperiment 12:38:15 12:39:41 vmminti8

30.3.2017 30.3.2017

+ 13 German nouns runExperiment 12:29:32 12:29:32 vmmint18
30.3.2017 30.3.2017

Figure 1: Sacredboard Interface

2.2 The Details View

Clicking on any of the displayed runs expands the row to a details-view that shows the hyperpa-
rameters used, information about the machine, the environment where the experiment was run,
and the standard output produced by the experiment. The view 1s organised as a collapsible table,
allowing dictionaries and arrays to be easily browsed. If TensorFlow tracking was enabled during
the run, t 1s possible to launch TensorBoard directly from the Run detail view.

Sacredboard can also visualize metrics such as accuracy or loss if they are tracked using the

Sacred Metrics API.

Listing 2: Capturing Metrics Data in Sacred Metrics API

_run.log_scalar ("test.accuracy", 35.25, step=50)

FACULTY

OF INFORMATION
TECHNOLOGY
CTUIN PRAGUE

Details for: MNIST (id 49

Metrics

~
—

Test.Ccross_entropy
#| test.cross_entropy . oy

|_| test.accuracy

Xx-axis type 1.5
® steps "
=

time ©
y-axis type
® linear

logarithmic -

0 100 200 300 400
step
Figure 2: Sacredboard Metrics Plot
[
Conclusion

Sacred 1s an open source Python framework which aims to provide infrastructure for computa-
tional experiments with minimal boilerplate code and maximum convenience. It was, however,
missing a proper user interface and its users had to rely on their own database queries to access
records of the experiments. To solve the issue, the Sacredboard web dashboard has been created
as a part of the thesis and Sacred itself has been extended to track new types of information.

Possible improvements include support for more complex experimental setups, like having sep-
arate training and evaluation scripts as 1s common with large TensorFlow models.

Sacredboard should be extended to fully support other Sacred backends, to better handle auto-
matic updates and ideally, to integrate with the TensorFlow library in a way that does not depend
on TensorFlow internals.

References

[1] Google Inc. Tensorflow. [online]. [Online; accessed 06-June-2017].

[2] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jiirgen Schmidhuber. The Sa-
cred Infrastructure for Computational Research. In Katy Huff, David Lippa, Dillon Niederhut,

and M Pacer, editors, Proceedings of the 15th Python in Science Conference, pages 49 — 56,
2017.

[3] MongoDB, Inc. Mongodb, 2017. [Online; accessed 06-June-2017].

Acknowledgements

Access to computing and storage facilities owned by parties and projects contributing to the Czech
National Grid Infrastructure MetaCentrum provided under the programme Projects of Large Re-
search, Development, and Innovations Infrastructures (CESNET LM2015042) 1s greatly appreci-
ated.

The text of the poster 1s mostly based on our paper. [2]

The work of authors of Sacred has partly been supported by the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme under grant
no. 716721, by the Euro- pean Commission under grant no. H2020-ICT-645403-ROBDREAM,
and by the German Research Foundation (DFG) under Priority Programme Autonomous Learn-
ing (SPP 1527, grant HU 1900/3-1). Their research was supported by the EU project INPUT
(H2020-ICT-2015 grant no. 687795).

