Approximate Pattern Matching in Sparse Multidimensional Arrays Using Machine Learning Based Methods

Anna Kucerova, supervisor Ing. Lubos Krcal
Faculty of Information Technology, Czech Technical University in Prague

Introduction

Sparse multidimensional arrays are
a common data structure for effective
storage, analysis and visualization
of scientific datasets. Approximate pattern
matching and processing is essential
in many scientific domains.

Previous algorithms focused
on deterministic filtering and aggregate
matching using synopsis style of indexing.
Example of these algorithms is the work
of G. Navarro and R. Baeza-Yates, who
theoretically designed some of the
comparing algorithms used in this thesis,
which were improved with the help
of Locality Sensitive Hashing.

Solution of this work uses binary format
and can be used in a commercial array
database.

Solution
(implemented algorithms)

Exact Pattern Matching

Brute Force - Systematically finds all exact
matches in the whole dataset.

Navaro Baeza-Yates - Splits one dimension
of data based on the size of the pattern.

Approximate Pattern Matching

(1) Approximate Brute Force -
Systematically finds all exact matches in the
whole dataset with the possibility to specify
the allowed error.

(2) Fast Filter - Splits pattern across every
dimension and searches for sub-patterns.
Potential solutions are checked using
dynamic programming.

(3) Stricter Filter - Identical to Fast Filter with
added fast preverification before dynamic
check.

(4) SimHashed Stricter Filter - Identical
to Stricter Filter but hashes the data before
comparison using SimHash.

(5) LSB Hash Stricter Filter - Identical
to SimHashed Stricter Filter but uses LSB
(Least Significant Bit) Hash instead.

Figure 1: Filtering process of the implemented solution

o

Reads headers of both pattern and data and
checks if they match. (1, 2, 3, 4, 5)

mmmEmen i

-

i W
S R A e e

Initialization Split

Splits pattern into predefined parts and
creates a virtual grid over the data with the

same proportions. (2, 3, 4, 5) (4. 5)

Hashes all parts of the pattern and parts of
the data used in comparison in the next step.

Evaluation

Parameters

database size 256 MB

density of data 50%

number of dimensions in the dataset 3
pattern occurences 0,1%

The find phase (see Figure 1)
is shorter when using hashing,
because of faster comparison
and reusability of hashes (Figure 2),
but on the other hand the overall
performance is worse than without
hashing (Figure 3), effect caused
by a large number of collisions. This
problem may be addressed
by optimizingthehashingmethod.

All tested properties:

Database size (256 MB, 4 GB)

Density of the data (2%, 50%, 100%)

MNumber of dimensions in the dataset (2, 3, 4)
Mumber of pattern occurrences (0,01%; 0,1%";
150)

The tests were performed on integer hypercubic
data.

(’:ﬁ’
=
S

.\':' l&'\‘ﬁ'\; et

Figure 2: Duration of the find phase

seconds
Bl —=— Stricter Filter
+— SimHash Stricter Filter
25 —=— LSE Hash Stricter Filter |
e
i
20 ]
e
- L‘U‘r WUV,
J 1 1 1
B Tty (VP YR B P
Wl vl N
10 HOCTe el rediinite |
i 20 an 6l BD 100 120

Errar

Figure 3: Duration of the whole process

seconds
a7 —=— Stricter Filter
i SimHash Stricter Filter
| —=— LSB Hash Stricter Filter
30-
ot
25- ] e
" M V,.‘:-F’;H’W
20- 1 |
A Am
ol o g
s .“'ﬁ:{} R, *
15- BT N S T, PP
[} 70 a0 &0 a0 100 120

error

Find Preverification
Finds soluticns systematically using all parts
of the data. (1)

or

Finds potential candidates using all parts of
pattern, but anly "boltam-right” corners of the
split data. (2, 3, 4, 5)

Werifies potential candidates using simple
linear comparison. (3, 4, 5)

Dynamic Check

Uses dynamic programming
alignment to finalize found solutions.
(2,3,4,5)

Baeza-Yates, R.; Navarro, G. New models and algorithms for multidimensional approximate pattern matching. J. Discret. Algorithms, volume 1, no. 1, 2000: pp. 21-49.



