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Abstract
This master’s thesis focuses on 3D reconstruction of vehicles passing in front of a traffic
surveillance camera. Calibration process of surveillance camera is first introduced and the
relation of automatic calibration with 3D information about observed traffic is described.
Furthermore, Structure from Motion, SLAM, and optical flow algorithms are presented.
A set of experiments with feature matching and the Structure from Motion algorithm is
carried out to examine results on images of passing vehicles. Afterwards, the Structure
from Motion pipeline is modified. Instead of using SIFT features, DeepMatching algorithm
is utilized to obtain quasi-dense point correspondences for the subsequent reconstruction
phase. Afterwards, reconstructed models are refined by applying additional constraints spe-
cific to the vehicle reconstruction task. The resultant models are then evaluated. Lastly,
observations and acquired information about the process of vehicle reconstruction are uti-
lized to form proposals for prospective design of an entirely custom pipeline that would be
specialized for 3D reconstruction of passing vehicles.

Abstrakt
Tato diplomová práce se zabývá 3D rekonstrukcí vozidel projíždějících před dohledovou
kamerou. V práci je nejprve představena kalibrace dohledové kamery a souvislost auto-
matické kalibrace s 3D informacemi o sledované dopravě. Dále jsou představeny algo-
ritmy Structure from Motion a SLAM, společně s metodami pro odhad optického toku.
Za účelem prozkoumání chování pro snímky projíždějících vozidel jsou provedeny experi-
menty s výpočtem korespondencí a algoritmem Structure from Motion. Následně je postup
algoritmu Structure from Motion upraven. SIFT příznaky jsou nahrazeny algoritmem
DeepMatching za účelem získání hustých bodových korespondencí pro následnou fázi rekon-
strukce. Rekonstruované modely jsou dále zpřesněny aplikováním dodatečných omezení,
která jsou specifická pro rekonstrukci projíždějících vozidel. Získané modely jsou poté vy-
hodnoceny. Veškeré zjištěné poznatky a informace o rekonstrukci vozidel jsou pak využity
k navržení dalších modifikací, které by vedly k vytvoření zcela vlastního rekonstrukčního
postupu, specializovaného přímo pro 3D rekonstrukci projíždějících vozidel.
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Chapter 1

Introduction

Deployment of high-resolution digital cameras in traffic surveillance has increased the
need for computer vision algorithms that automatically extract data from captured video
streams. When supplemented with computer vision methods, traffic surveillance cameras
can serve a wide range of purposes, such as counting of passing vehicles, their classifica-
tion, finding driving lanes, detecting traffic jams, and discovering drivers in the opposite
direction. Moreover, the primary aim of many traffic surveillance systems is to measure
the speed of passing vehicles. Nevertheless, many of the tasks cannot be achieved without
preceding camera calibration.

This work addresses the problem of reconstruction of 3D information about vehicles
passing in front of a surveillance camera. In existing algorithms developed for automatic
traffic surveillance, the only obtained 3D data about a passing vehicle is a bounding box
constructed using a segmented 2D vehicle blob. This work therefore aims to examine the
potential of acquiring more precise 3D representation of a vehicle captured in a video stream.
Such information is desired not only for visualization purposes, but may also be utilized to
determine the scale of the projected scene, and thus contribute to the camera calibration
process.

The primary aim of this thesis is to explore the possibilities for 3D reconstruction of
passing vehicles. Available 3D reconstruction tools are first examined and tested to find
out whether they could directly be used for the outlined task. Subsequently, a set of
experiments carried out with keypoint extraction is described. Moreover, additional con-
straints applicable to reconstruction of passing vehicles are inspected. The reconstruction
pipeline is then modified and the resultant point cloud models are evaluated with respect
to the intended use for scale inference in a traffic analysis system. Lastly, observations
and acquired information specific to the task of vehicle reconstruction are utilized to form
proposals for prospective design of an entirely custom pipeline that would be specialized
for 3D reconstruction of passing vehicles.

2



Chapter 2

Traffic Surveillance using

Monocular Camera and its

Calibration

Monocular cameras can be utilized in numerous tasks of traffic analysis and surveillance, one
of which is speed measurement of passing vehicles. Techniques for visual speed measurement
have been developed by various authors [27, 12, 6, 9, 28]. The growing importance of
this capability of roadside cameras is also illustrated by a recent comprehensive dataset
published by Sochor et al. [28] to address the lack of available data with reliable ground
truth, and to enable comparison of various speed measurement methods.

Nevertheless, many of the traffic surveillance tasks, especially accurate speed measure-
ment, require precise calibration of the particular roadside camera. This chapter therefore
focuses on the approaches to calibration of monocular camera employed in traffic surveil-
lance.

2.1 Traffic Camera Calibration

Traffic camera calibration can be performed either manually or fully automatically. As
standard pattern-based approaches (such as the one developed by Zhang [36]) cannot be
used [27], manual calibration requires user input of some information about the scene that
is viewed by the camera. Such approach often relies on physical measurements in the scene
or on placement of specific markers, and thus involves considerable amount of effort. This
renders manual calibration impractical for large-scale deployment of roadside cameras. It
is therefore desirable for the calibration to be fully automatic [8, 27].

Standard camera calibration process involves finding its intrinsic parameters (matrix K)
and extrinsic parameters (matrix [RT]) that form the projection matrix P:

P = K [RT] (2.1)

However, for the purpose of speed measurement in visual traffic surveillance, it is more
convenient to define the problem of camera calibration as finding the intrinsic parameters,
determining the road plane, and finding the scale of the road plane. This approach is more
suitable, as it enables direct speed measurement of vehicles driving on the road plane. This
concept of camera calibration can be considered equivalent and methods exist to convert
the obtained parameters to the above mentioned standard camera model [27].
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When determining the intrinsic parameters, the camera is expected to exhibit zero pixel
skew and to have principal point in the center of the image. This can be safely assumed in
case of practically used surveillance cameras [8]. The only remaining intrinsic parameter to
determine is therefore the camera’s focal length. This parameter can be calculated using
two vanishing points. Once vanishing points are determined, the parameters of the road
plane (without scale) can also be obtained. The scale of the road plane is thus the last
necessary parameter to infer [27].

2.2 Detection of Vanishing Points

Detection of vanishing points is the key part in finding camera’s focal length and parameters
of the road plane. Some methods, for example those developed by Cathley et al. [6] and
He et al. [12], are based on acquiring the information from lane markings. However, this
approach usually requires a high number of well-visible markings to be available.

Other methods, such as the one presented by Dubská et al. [8], base the detection of the
vanishing points on observed motion of vehicles. Dubská et al. [8] track feature points on
passing vehicles to form line segments that are subsequently accumulated in diamond space
(a scheme utilizing parallel coordinates and Hough transform), using which they obtain the
first vanishing point in the direction of the traffic flow. The second vanishing point, which
is perpendicular to the first direction, is then acquired by accumulating the edges on the
vehicles that do not aim towards the first vanishing point. Authors also point out that in
case the optics of the camera is not free from radial distortion, its compensation should
precede the camera calibration phase. Furthermore, an algorithm for radial distortion
correction using tracked vehicle paths is proposed.

Once positions of two vanishing points in the image space are obtained, focal length
of the camera can be calculated. Two vectors from the origin of the camera system can
then be constructed from the coordinates of the vanishing points and the focal length.
Cross product of these two vectors then yields the normal vector of the road plane. The
only remaining parameter is thus the distance of the road plane from the camera which
establishes the relation between the image and real-world units, i.e. the scale [27].

2.3 Determining the Scale of the Road Plane

In case of manual calibration, the scale of the road plane can be determined using input
of previously measured lengths within the viewed scene. Nevertheless, automatic methods
cannot rely on any static physical objects in the scene having precisely given dimensions,
and thus they have to infer the scale from observed traffic. Whenever passing vehicles are
used as the source of information to obtain the scale of the road plane, camera calibration
inevitably becomes closely related to 3D structure of the vehicles. The following subsections
summarize two significant approaches used to determine the scale of the road plane from
observed traffic flow.

2.3.1 Scale Inference Using 3D Bounding Boxes

Dubská et al. [9] use 3D bounding boxes of passing vehicles and statistical domain adap-
tation of their dimensions to infer scene scale. They first detect vehicle blobs using back-
ground modeling and foreground detection. Furthermore, shadows are removed. Bounding
box projection is then created for each vehicle blob. Lines that pass through vanishing
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points and that are tangent to the vehicle blob are constructed. The first three corner
points of the bounding box are obtained from intersections of these lines. Every remain-
ing corner of the bounding box is then found using intersection of two lines, each passing
through one of the already obtained corner points and through the corresponding vanishing
point. Steps of the bounding box construction are shown in Figure 2.1.

Figure 2.1: Construction of 3D bounding box of vehicle by Dubská et al. [9]. The method is
based on lines passing through vanishing points. The first three corner points are obtained
using lines that are tangent to the edges of the vehicle blob. The remaining corners are found
as intersections of lines passing through vanishing points and already obtained corners.

Once image coordinates of corners of the bounding box are known, it is possible to
project the base of the bounding box onto the road plane. As a result, coordinates of
the bounding box base in 3D space are acquired. The distance between these coordinates,
together with the information about the real-world dimensions of the vehicle, can be used
to determine the scale of the road plane. In other words, it is possible to calculate the scale
factor λ, which establishes the relation between relative units of the road plane and the
real-world units of length (e.g. meters) [9].

In order to determine the scale factor, Dubská et al. [9] collected statistical data about
sold cars and their dimensions, and subsequently formed a histogram of their bounding box
dimensions. Scene scale was then determined by fitting statistics of known dimensions and
the measured data from the observed traffic. The camera calibration process is therefore
automatic, and the only necessary input is the statistical information about dimensions of
sold cars.

Evaluation of this method in Sochor et al. [28] shows that the mean error in case of
speed measurements is 10.89%. Nevertheless, the assessment of the method also suggests
that a significant part of the error is probably caused by improper localization of the second
vanishing point, and not only by the approach used for scene scale inference.

It is also important to note that when extraction of 3D information about observed
traffic is considered, bounding boxes have been so far the only 3D information obtained
about passing vehicles. Moreover, edges of the vehicle blobs tend to be bent, and thus
constructing the bounding boxes using lines tangent to these edges has negative influence
on the overall accuracy.
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Figure 2.2: Scene scale inference by rendering 3D vehicle models under known viewpoint
and aligning their 2D bounding boxes with the bounding boxes of detected vehicles. (Only
edges of the rendered models are shown.) Adapted from [27].

2.3.2 Scale Inference by 3D Model Alignment

Sochor et al. [27] infer the scene scale using 3D models of frequently passing cars. They
use fine-grained information about vehicle type (i.e. make, model, variant, model year) and
obtain 3D models for two vehicle types that are commonly observed. The 3D model with
available real-world dimensions is then used to infer the scene scale. An example is shown
in Figure 2.2.

The method starts with classification of vehicles in the video stream using a convolu-
tional neural network. When vehicle type with available 3D model is detected, it is further
processed. First, the method used by Dubská et al. [9] (described in Subsection 2.3.1) is
used to extract the 3D bounding box of the detected vehicle blob, and the center of its
base in image coordinates is obtained. Subsequently, the viewpoint vector from the vehicle
to the camera is computed. The 3D model of the particular vehicle class is then rendered
onto the image under the same viewpoint and at the same position. The only remaining
unknown parameter is its size. The image of the 3D model is therefore rendered in multi-
ple different scales and its 2D bounding box is matched with the 2D bounding box of the
detected vehicle blob using intersection-over-union metric (IoU).

Once the rendered 3D model is aligned to the detected vehicle in the image, two points
representing the front and the rear of the vehicle are projected to the road plane. Knowing
the real-world distance of these points from available vehicle dimensions provides sufficient
information for the scene scale to be calculated. To obtain the final scene scale, all sizes of
the rendered model (with IoU metric above given threshold) are taken into account, and
the final scale is computed using kernel density estimation. Evaluation of this approach

6



to scale inference (which also includes improved detection of the second vanishing point)
shows that the mean error of speed measurement is 1.39% [27].

2.4 Contribution of This Work to Camera Calibration Pro-

cess

As this work aims to reconstruct 3D information about vehicles passing in front of a surveil-
lance camera, the extracted 3D data can contribute to further improvement of the camera
calibration process. In particular, obtained 3D models could provide additional information
for the calibration phase in which scale of the road plane is computed.

Fine-grained classification of detected vehicles could be used to distinguish between
various vehicle models. Real-world dimensions would also be stored for each vehicle model.
Once particular vehicle with known dimensions is recognized, its detailed 3D reconstruction
may be created and utilized to infer the scene scale. Unlike the method where rendered
3D model alignment is used (as described in Subsection 2.3.1), this approach would only
require the information about vehicles’ dimensions to be available in the traffic surveillance
system, and no prior 3D model data would be necessary.
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Chapter 3

Utilized Computer Vision Methods

This chapter introduces computer vision algorithms that have been used throughout the
work on this thesis. First, Structure from Motion algorithm is described. Secondly, SLAM
(Simultaneous Localization and Mapping) is introduced. Thirdly, the concepts of optical
flow and DeepMatching are addressed.

3.1 Structure from Motion

Structure from Motion (SfM) is an algorithm used for 3D reconstruction from image collec-
tions. Several implementations of this reconstruction strategy exist, such as COLMAP [22],
Bundler [25], and VisualSFM [35]. This section introduces and describes individual phases
of incremental Structure from Motion algorithm. Provided information is based on Schön-
berger et al. [22].

The general pipeline of incremental Structure from Motion is shown in Figure 3.1. The
input to the SfM is a set of unordered images with projections of a scene that is to be
reconstructed. The first stage of the SfM pipeline consists of correspondence search and is
followed by the second stage that is represented by an iterative reconstruction component.
The output of SfM is sparse 3D reconstruction in the form of a point cloud. An example
of resultant SfM output is shown in Figure 3.2.

Figure 3.1: General pipeline of incremental Structure from Motion algorithm. Obtained
from [22].

3.1.1 Correspondence Search

The first stage of the Structure from Motion pipeline (Fig. 3.1) is correspondence search.
This stage involves extraction of local feature points, identification of corresponding pro-

8



Figure 3.2: Example of a point cloud of central Rome reconstructed using 21K photos by
COLMAP. Red dots represent positions of cameras. Obtained from [22].

jections of the same points in overlapping images (matching), and subsequent geometric
verification of the found matches.

Feature extraction encompasses detecting coordinates of feature points within each im-
age and representing the points using descriptors. These points need to be distinctive in
order to be uniquely recognized in multiple images, and thus SIFT [18] is a common choice
in many implementations, including COLMAP. Next, sets of feature points are matched
using similarity metric to find corresponding point pairs. Either all feature pairs within
every possible image pair can be considered, or approximate approaches can be used for
large image collections in order to avoid prohibitive computational complexity of the first
approach.

Obtained point correspondences are then geometrically verified. Verification consists of
estimating a transformation that maps a sufficient number of corresponding points between
images, and the remaining point pairs are filtered out. Since corresponding point pairs are
usually contaminated by outlier, estimation of the transformation requires techniques such
as RANSAC. The result of this step is a geometrically verified set of image pairs and their
associated inlier correspondences.

3.1.2 Incremental Reconstruction

The stage of incremental reconstruction receives the obtained set of image pairs with their
point correspondences and performs iterative reconstruction of the scene. Initialization by
carefully selected two-view reconstruction, typically from a location with many overlapping
cameras, is followed by a cycle in which additional images are registered to the already
reconstructed model and new points are triangulated. Furthermore, bundle adjustment is
employed to improve the precision of the model.

Image registration phase involves selecting the next image to be added to the recon-
struction. Image is registered to the current model by solving the Perspective-n-Point prob-
lem [33] using feature correspondences with already existing points in the model (2D-3D
correspondences). This task consists of estimating the pose of the camera. As the cor-
respondences often include outliers, methods based on RANSAC are usually utilized with
minimal pose solvers.

A newly added image observes existing scene points in the model and can also increase
the number of points in the model through triangulation (see Figure 3.3). Once a new
scene point is observed from a different angle by at least one more image, its coordinates
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can be triangulated and the point extends the current model. Triangulation is the key step
in SfM as it increases scene coverage and enables registration of more images by providing
additional 2D-3D correspondences.

Figure 3.3: Triangulation of 3D point X from two corresponding image points x and x′.
Camera centers are denoted by C and C ′, while e and e′ denote the epipipoles (projection
of camera center onto other camera’s image plane). Adapted from [11].

Imprecisions in estimation of camera pose propagate to triangulated points and vice
versa. Therefore, bundle adjustment is used for further refinement. This step is necessary
to prevent reconstruction from drifting into a non-recoverable state due to the accumulation
of uncertainties in pose estimations and errors in point coordinates. In bundle adjustment,
already reconstructed points are projected back into image space of their respective images.
The aim of bundle adjustment is then to perform non-linear minimization of the reprojection
error, and thus simultaneously refine the camera and point parameters [22].

3.2 SLAM – Simultaneous Localization and Mapping

SLAM (Simultaneous Localization and Mapping) is a problem from robotics and computer
vision, which aims to estimate the position of robot moving within unknown environment,
while creating a map of the environment at the same time. SLAM tasks are usually ex-
pressed using a graph structure. The vertices (nodes) of the graph represent state variables,
such as robot poses or locations of observed landmarks. Edges represent the observations
between the nodes they connect, i.e. the measurements that form constraints on these
nodes [14].

Knowledge about the environment encoded in the graph structure is used to define an
error function. The goal of SLAM algorithm is then to refine the state variables (e.g. the
positions of the robot and the locations of landmarks) based on the error function. In
other words, SLAM can be understood as a graph optimization, which aims to estimate
the values of state variables (nodes) that minimize the error determined by the constraints.
Optimization of the error function is usually carried out in the non-linear least squares
manner, using iterative Gauss-Newton or Levenberg-Marquardt methods [14].

10



An illustration of SLAM as a graph optimization task is shown in Figure 3.4, where xi
denotes vertices and eij denotes edges. In general, the structure can also form a hypergraph,
since one edge may connect more than two vertices in some cases.

Figure 3.4: SLAM problem expressed as a graph, in which vertices represent state variables
to be optimized and edges represent the observations that form constraints on the connected
vertices. Adapted from [14].

When used with visual data, i.e. images obtained by a camera mounted on the robot,
SLAM becomes related to the task of Structure from Motion in many aspects. Visual
data is preprocessed by frontend algorithm to create the graph representation which is
then refined by SLAM optimization. State variables (nodes) are the camera poses and the
3D positions of observed points in created point cloud representation of the environment.
Graph edges represent which points are seen by which camera pose, and also contain the
coordinates of the points in original images. The optimization then simultaneously refines
the positions of the 3D points and the locations of camera by reprojecting the observed
points and minimising the resultant projection error.

This approach to SLAM is often referred to as bundle adjustment, and its goal is,
indeed, exactly the same as the one of the bundle adjustment used in Structure from
Motion. Moreover, such point of view is beneficial, since more edges can be easily added
to the SLAM optimization graph in order to form additional constraints. Therefore, the
refinement process can be customized to fit the particular problem scenario. High level of
possible customization is for example offered by SLAM++ library, which is a fast graph
optimizer based on efficient usage of sparse block matrices [20], and which also supports
GPU acceleration [21].

3.3 Optical Flow

Optical flow belongs to the set of algorithms used for motion estimation between two (or
more) images. While other methods exist for simple movements, optical flow is the most
general technique. The aim of optical flow is to compute an independent estimate of motion
at each pixel [33].

In other words, the task of optical flow is to find a vector for every pixel that defines
the displacement of the pixel between two images. A simplified (sparse) illustration of the
concept is shown in Figure 3.5. For visualization purposes, color coding is often used (see
Figure 3.6). An example of resultant optical flow estimation is presented in Figure 3.7.
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Figure 3.5: The aim of optical flow is
to find motion vectors for pixels between
two images. The movement between
images (a) and (b) is represented by
(sparse) vectors shown by (c). Adapted
from [30].

Figure 3.6: Color coding used for opti-
cal flow visualization. The central pixel
represents zero movement. Every other
pixel denotes a vector from the center,
where the orientation and the magnitude
are represented by hue and saturation.
Obtained from [17].

Figure 3.7: An example of optical flow prediction. Overlaid original image pair is shown on
the left. The image on the right presents the resultant estimation of optical flow. Adapted
from [10].

There are two classic approaches to estimating optical flow. The first is based on
calculations using local window (patch-based approach). The second is variational approach
using smoothness constraint [33]. Moreover, other methods and improvements have recently
been presented.

In their work, Fischer, Dosovitskiy, Ilg et al. [10] approach the problem of optical flow
calculation as a supervised learning task and they train a convolutional neural network to
perform optical flow estimation. In order to obtain a sufficient amount of training data, they
use synthetically generated datasets for training, and subsequently fine-tune the network
on more realistic samples. Evaluation presented by the authors shows results that are
competitive with other state-of-the-art methods for optical flow.

3.3.1 DeepFlow and DeepMatching

In order to address the problem of large displacements contained within the two input
images, some authors incorporate descriptor matching component into the variational ap-
proach. The main idea is to guide optical flow estimation by providing correspondences
from sparse descriptor matching. Weinzaepfel et al. [34] argue that even though this mo-
dification significantly improves the results of optical flow algorithm, standard methods for
feature point extraction only produce points for salient image locations. Therefore, in their
method for optical flow, named DeepFlow, Weinzaepfel et al. [34] enhance the variational
approach with a custom descriptor matching algorithm called DeepMatching.
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The proposed DeepMatching algorithm aims to retrieve quasi-dense point correspon-
dences for later optical flow calculation phase. DeepMatching is strongly inspired by non-
rigid 2D warping and deep convolutional networks. SIFT descriptors based on histogram
of oriented gradients with 4× 4 cells are used. However, instead of keeping the fixed 4× 4
grid, it is divided into 4 quadrants and each of the quadrants is allowed to move inde-
pendently in order to yield non-rigid matching. This approach is then applied recursively
together with max-pooling and convolution [34]. As a result, DeepMatching produces point
correspondences with very high density, as can be seen in Figure 3.8.

Figure 3.8: Example of quasi-dense point correspondences found by DeepMatching algo-
rithm. Obtained from [34].
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Chapter 4

Experiments with SIFT Features

and Structure from Motion Tools

Throughout the first part of the work on this thesis, a series of preliminary experiments was
carried out in order to evaluate to what extent the current state-of-the-art Structure from
Motion algorithms can be used when solving the problem of 3D reconstruction of passing
vehicles. For this purpose, two Structure from Motion tools were selected, COLMAP [22]
and VisualSFM [35]. However, before examining the performance of SfM tools, one more
set of experiments was carried out. Since both of the selected SfM tools base their corre-
spondence search stage on SIFT features [18], experiments were first performed to evaluate
the behaviour of SIFT feature extraction and matching on images of vehicles.

In this chapter, data obtained for experimenting are first described. Next, experiments
with SIFT features are discussed. Subsequently, the results of Structure from Motion
reconstructions are presented.

4.1 Obtained Test Data

Several image sequences of passing vehicles were obtained for experiments presented in this
chapter. In order to ensure sufficient quality and resolution, images were captured using
stationary reflex camera (Nikon D3200 with Nikon AF-S DX 18-105mm f/3,5-5,6 G ED
lens) used in burst mode. Therefore, images in each sequence represent frames that would
be extracted from a video at different points in time. Each created sequence contains from
7 to 15 images. For the purpose of experiments, a sample containing sequences of 6 different
cars, 2 vans, and 1 truck was selected. Additionally, all images in the selected sequences
were cropped to include the vehicle with only a small border containing the background.
Examples from two image sequences are shown in Figure 4.1.

Considering the fact that Structure from Motion algorithms expect a static scene and
moving photographer, another set of image sequences was obtained using a stationary car
with camera moving around. It is therefore possible to compare the results of inputs
containing stationary and moving vehicles.
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Figure 4.1: Examples of obtained sequences of images with a passing vehicle.

4.2 Experiments with SIFT Feature Extraction and Match-

ing

Characteristics of extracted SIFT keypoints and correspondences were examined on ob-
tained image sequences using SIFT implementation in OpenCV1 library. First, positions
of detected SIFT keypoints were inspected on single images. Secondly, found feature cor-
respondences between pairs of images in each sequence were studied. In this case, various
image pairs with different steps between images (i.e. different distances of the images
within the sequence) were considered. All experiments were carried out on sequences of
both stationary and passing vehicles, with equivalent results.

When SIFT keypoint detection algorithm is applied, vast majority of obtained keypoints
is located on the front part of the vehicle (mainly on the grilles and the license plate). The
remaining parts of the vehicle are covered very sparsely, as only low numbers of feature
points are detected there. Furthermore, when feature point matching is performed, correct
correspondences are often found only for small steps between the images in the particular
sequence (i.e. small changes in vehicle orientation). Larger steps between images result into
significant numbers of incorrectly calculated correspondences, especially for points which
are not on the front part of the vehicle (grilles and license plate). An example of computed
SIFT correspondences is shown in Figure 4.2.

The results of experiments with SIFT features indicate that algorithms for 3D recon-
struction that rely on SIFT in their correspondence search stage are very likely to have
only small numbers of feature points for subsequent reconstruction phase. Moreover, the
number will probably be further reduced by incorrectly found correspondences.

1http://opencv.org/
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Figure 4.2: Example of found SIFT point correspondences on a static vehicle (30 best
matches are shown). Vast majority of feature points is detected on the front part of the
vehicle. Moreover, a significant number of incorrect matches can be observed.

4.3 Experiments with Structure from Motion

Experiments with 3D reconstruction were performed using COLMAP tool, which was re-
leased in 2016 and is currently the state-of-the-art Structure from Motion implementa-
tion [22]. Reconstruction process was tested for all created image sequences of both sta-
tionary and passing vehicles.

First, experiments with image sequences of the stationary vehicle were performed. Out
of 11 experiments, reconstruction was successfully completed only in six cases. In the re-
maining cases, the SfM algorithm failed to produce any result at all, reporting that no
good initial image pair was found. Only three of the successful reconstructions contained
recognizable points that belong to the original vehicle. The best achieved result is pre-
sented in Figure 4.3. One of the remaining successful reconstructions shows an attempt of
the algorithm to reconstruct the background scene instead of the vehicle, while other two
successful reconstructions resulted in a point cloud with no meaningful structure.

Figure 4.3: The best obtained result using COLMAP Structure from Motion tool for a
sequence of images containing a stationary vehicle. Point cloud model (on the right) includes
partially recognizable front part of the vehicle (especially its license plate) and the front
wheel. Remaining parts of the vehicle are not included at all, or reconstructed incorrectly.
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Next, COLMAP was used on the image sequences of passing vehicles. Out of six image
sequences of cars, only one reconstruction was successfully completed and a point cloud
model was produced, whereas all other reconstructions failed (again, the algorithm reported
that no good initial image pair was found). As expected, only the front part of the car is
partially recognizable in the successfully created model. Reconstruction process also failed
in case of image sequences of both vans. Nevertheless, a successful reconstruction was
obtained for image sequence of passing truck, where a significant portion of the front part
is recognizable. The resultant model is shown in Figure 4.4.

Figure 4.4: The best obtained result using COLMAP Structure from Motion tool for image
sequence of passing vehicle. Resultant point cloud (on the right) contains recognizable front
part of the truck.

The results of the Structure from Motion algorithm confirm the conclusions drawn from
the previous experiments with SIFT features. As expected, reconstructed models are often
severely incomplete. In a vast majority of cases, the reconstruction process either failed
entirely, or the resultant point cloud contained no meaningful structure. Apart from the
presented tests using COLMAP, several experiments were also carried out with VisualSFM
tool, producing comparable results.
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Chapter 5

Improvement of the 3D

Reconstruction Process

Based on the experiments described in the previous chapter, two main aspects hindering
the 3D reconstruction process can be identified. The first problem is insufficient number
of feature correspondences, as standard SIFT features are not a suitable input for recon-
struction of passing vehicles. The second significant problem is represented by points and
point correspondences located in the image background. In this chapter, changes to the
reconstruction process are proposed and applied in order to improve the overall quality of
the resultant 3D model.

5.1 Substitution of SIFT Features

In order to increase the number of point correspondences located on vehicle, it is necessary
to substitute SIFT features with a different method for keypoint extraction and matching.
In particular, a method producing matches with higher density is desirable. One option
would be to use the output of an algorithm for optical flow calculation, which would produce
a vector that estimates movement of each pixel in an image pair. Nevertheless, in order to
address large displacements, optical flow methods often utilize feature matching algorithms,
too. It is therefore more beneficial to inspect the feature matching approaches used within
optical flow, rather than entire methods for optical flow themselves.

As described in Section 3.3, optical flow algorithm DeepFlow employs a custom feature
matching procedure called DeepMatching to calculate quasi-dense point correspondences
before smoothing them using variational approach to obtain optical flow estimation. The
power of DeepMatching algorithm, even though originally designed for optical flow, could
be harnessed to provide a high number of point matches for subsequent 3D reconstruction
of passing vehicles. An illustration of point matches found by DeepMatching algorithm is
shown in Figure 5.2.

5.2 Filtering of Obtained Correspondences

The second necessary modification of the correspondence extraction procedure is removal of
those point matches that belong to the scene background, as these points can be considered
outliers, and thus negatively affect the reconstruction process. Obtained correspondences
should therefore be filtered using a foreground mask of every individual image, so that only
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matches located on the vehicles in both images of a particular image pair are taken as an
input for reconstruction phase. An example of the original image and its respective fore-
ground mask is shown in Figure 5.1, filtered correspondences are illustrated by Figure 5.2.

Figure 5.1: Original image of a passing truck and its foreground mask.

Figure 5.2: Correspondences for two images of passing truck calculated using the Deep-
Matching algorithm and filtered with foreground masks.
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5.3 Implementation of the Proposed Modifications

Implementation of the modifications proposed in Sections 5.1 and 5.2 requires a possibility of
defining custom keypoint locations and point correspondences as an input to the following
stage of incremental reconstruction. A suitable interface is offered by VisualSFM and
application of presented modifications was therefore realized using the VisualSFM tool.
The original correspondence search stage provided by VisualSFM is substituted by modified
correspondence search, as shown in Figure 5.3.

Images

Feature Extraction

Geometric Verification

Matching

Correspondence Search

Initialization

Outlier Filtering

Triangulation

Image Registration

Bundle Adjustment

Incremental Reconstruction Reconstruction

Matches Obtained with DeepMatching

Modified Correspondence Search

Filtering Using Foreground Mask

Figure 5.3: Standard pipeline of incremental Structure from Motion algorithm (top) and
modified correspondence search stage (bottom), which employs DeepMatching to obtain
quasi-dense point correspondences and applies filtering with foreground masks to prepare
input for the subsequent reconstruction phase.

Correspondences are first calculated using the DeepMatching algorithm for all possible
pairs of images in an image sequence. Next, foreground masks are created and applied
to perform filtering of point matches. A file with locations of matched points is then
generated for every image. It should be noted that unlike standard SIFT keypoint detection,
DeepMatching can obtain slightly different sets of points for one particular image when
matching this image with several other images. Therefore, union of the obtained point sets
is performed before the output file with keypoint coordinates is created. Furthermore, one
file containing information about all found matches is generated. The described procedure
replaces the first stage of the SfM pipeline, in which correspondence search is performed.

Information stored in the generated files was then used as the starting point for the 3D
reconstruction stage of VisualSFM tool. Examples of successfully created resultant models
can be seen in Figure 5.4. When compared to the reconstruction obtained with original
SfM algorithm, the results of the proposed modifications significantly improve completeness
of the resultant point cloud model.

Nevertheless, even with the applied modifications, it is still not guaranteed that a mean-
ingful 3D reconstruction will be produced. In particular, the reconstruction process has
shown to be sensitive not only to the initial image pair selection, but also to wrong estima-
tion of camera pose during the incremental reconstruction stage. It is therefore necessary
to study the characteristics of the outlined reconstruction problem and determine further
constraints that could be applied to achieve additional improvements.
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Figure 5.4: Resultant 3D reconstructions obtained when proposed modifications to Struc-
ture from Motion pipeline are applied.

5.4 Examination of Additional Constraints

Commonly, the input to a Structure from Motion algorithm is a set of images of a static
scene. Cameras are expected to move freely and therefore their position and rotation can be
arbitrary. In the most general cases, such as reconstruction from photos taken by tourists,
each camera is considered to be independent and has its own intrinsic calibration parame-
ters. Nevertheless, reconstruction of passing vehicles exhibits several specific characteristics
that can be used to constrain the level of freedom the reconstruction algorithm is given,
and thus prevent wrong estimations and assumptions during the reconstruction process.

The first and most straightforward constraint arises from the fact that all images in a
vehicle sequence are taken by the same camera. Therefore, the intrinsic parameters are
shared by all estimated cameras in 3D reconstruction. This constraint has already been
applied to obtain the results presented in the previous section.

More significant constraints emerge when the characteristics of the observed motion is
considered. Unlike the traditional use of Structure from Motion to obtain a reconstruction
of a static object by moving camera, the vehicle in our scene is moving while the camera
remains fixed. Nevertheless, by applying the foreground masks to obtain only the feature
points belonging to the vehicle, we can understand the task as a standard Structure from
Motion scenario. In other words, we can consider the vehicle to be a stationary object and
assume the camera to be moving while capturing the images. This approach enables us to
derive two additional constraints that can be applied in the vehicle reconstruction task.

First, it can be assumed that the camera is observing a straight part of a road and
therefore the motion of a vehicle follows a line. Once the vehicle is considered to be station-
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ary, the trajectory of camera movement has to represent the original straight movement of
the vehicle. More precisely, estimated positions of camera in 3D space have to belong to a
line. This assumption also requires that the vehicle is not changing lanes in case there are
multiple road lanes observed (in practical usage, such cases could be detected and filtered
out).

Second, the original camera is stationary and the vehicle itself does not perform any
kind of rotation. Therefore, the overall rotation of camera during its virtual movement in
space should remain constant, i.e. there should be no relative rotation between consecutive
camera poses.

Both of the above mentioned assumptions are illustrated by Figure 5.5. Moreover, if
the speed of the vehicle stays constant, or its change is only small or gradual, the distance
between the camera centers should be approximately the same for three successive camera
poses. This could also be used as another constraint.

Figure 5.5: Illustration of additional constraints applicable to the outlined task of 3D
reconstruction of a passing vehicle. The assumption that the original motion of the vehicle
is straight and that the position of the roadside camera is fixed is shown on the left. When
the vehicle is considered to be stationary by the Structure from Motion algorithm, it is the
camera that should follow the original liner movement, as shown on the right. Furthermore,
the rotation of the camera should remain the same for all estimated camera poses.1

Close inspections of obtained reconstructions revealed that the aforementioned con-
straints are often not fulfilled. As a consequence, produced point clouds contain significant
numbers of points with incorrect positions. Even though some of these points may originate
from outliers generated by the correspondence search stage, most of the incorrectly posi-
tioned points are caused by wrong localization of one or more camera poses. This situation
is demonstrated by an example in Figure 5.6. Additionally, when the camera rotations are
wrongly estimated, the entire model structure degenerates into a rather flat surface, instead
of preserving the right angle between the front of the vehicle and its side. This effect is
shown by Figure 5.7.

1Free vector graphics of the car used in Figure 5.5 was obtained from Vecteezy.com
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Figure 5.6: Points affected by wrongly estimated camera position, which is not aligned with
other camera poses. The points and the camera are marked in red.

Figure 5.7: Top view of a reconstructed model showing wrongly estimated camera rotations
that result into almost flat shape of the model, rather than producing points on the vehicle
that would form a right angle.
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5.5 Application of Motion Constraints

Violation of the identified constraints has shown to severely affect the quality of recon-
structed point clouds. Further refinement is therefore necessary in order to improve pre-
cision (in cases where a meaningful 3D model was created). For the purpose of imposing
the previously described constraints, customizable bundle adjustment module of SLAM++
library1 is used.

Reconstruction obtained with modified VisualSFM pipeline is first converted into graph
representation, which is suitable for processing by SLAM++, using a converter distributed
together with the library. As described in Section 3.2, nodes of the graph represent camera
poses and positions of 3D points, while graph edges contain the relations between the points
and cameras. In order to apply the motion constraints identified in the previous section,
additional edges are added to the graph when being loaded by SLAM++.

Since the constraints apply to camera movement, additional graph edges need to connect
the vertices that represent camera poses.2 More precisely, the three identified constraints
described in the previous section are implemented in the following way:

• Connected camera poses are forced to gradually become collinear.

• Camera rotation is pressed towards its average value to ensure zero relative rotation.

• The distances between camera centers are pushed to become equal.

The first part implements the requirement for the camera path to represent the originally
straight vehicle trajectory. The second part is related to the fact that no rotational move-
ment takes place, and thus no rotation should occur between camera poses. It should also
be noted that the third constraint assumes minimal or no change in vehicle’s speed.

Nevertheless, the described constraints are not implemented in the way that one single
edge would connect all camera nodes. Instead, one graph edge connects three consecutive
camera poses. These three cameras are then forced to fulfil the constraints. Such edges
are then added in a sliding-window manner for every three consecutive camera nodes.
The constraints (collinearity, etc.) therefore propagate among the entire camera sequence.
Apart from being easy to apply, another advantage of this approach is that the initial
reconstruction can contain an arbitrary number of camera poses. The only requirement for
this principle to work is sorted camera sequence.

The described constraints are all applied together in every iteration of the SLAM opti-
mizer. Edges representing the newly added constraints become part of the error function,
and thus each step of SLAM++ performs the corresponding refinement together with the
standard bundle adjustment task. In other words, the minimization of error expressed by
the new constraints, for example the distance of camera centers from a straight line, is
carried out jointly with the refinement of reprojection error, which is given by projecting
the 3D points back to the original image coordinates. As a result of the optimization, cam-
era poses should align to respect the original movement of the observed vehicle and their
rotation should converge to become approximately the same. Consequently, this should im-
prove the precision of the points in the reconstructed model. The camera alignment effect
is demonstrated in Figure 5.8, showing the initial and final state of the refinement process.
Figure 5.9 illustrates the improvement of the corresponding point cloud reconstruction.

1https://sourceforge.net/projects/slam-plus-plus/
2An example code with additional constraints was kindly provided by Lukáš Polok, author of the

SLAM++ library.
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Figure 5.8: Inaccurately estimated camera poses (left), and the resultant alignment (right)
achieved by refining the reconstruction with SLAM++ using additional constraints applied
to camera motion.

Figure 5.9: Top view of initial point cloud model (left) and improved reconstruction ob-
tained after refinement with SLAM++ (right). Especially noticeable is the rectification of
the right angle between the front part and the side of the vehicle.

Since the optimization itself is done in the least-squares manner, it is important to point
out that not all constraints have to be entirely fulfilled. Moreover, the refinement process
aims to minimize the error in the sense of local optimization, and therefore a satisfactory
result is not always guaranteed. The outlined rectification of the point cloud by additional
constraints is thus applicable only in cases where camera poses are already estimated to
be moderately close to the aligned configuration. Imposing the motion constraints on a
reconstruction with camera positions being too far from the expected straight trajectory,
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or with significantly incorrect rotations, fails to improve the vehicle model, or even degrades
its quality. This observation motivates several proposals for future work, which are covered
in full detail in Chapter 7.

Before the reconstruction results are evaluated, it should be reminded that only one
monocular camera was used for acquiring the vehicle sequences. Therefore, only the front
part and one side of the vehicle can be seen. As a result, only these parts of the vehicle are
reconstructed in the point cloud, which can be noticed in the presented figures, e.g. Fig-
ure 5.9. Nevertheless, the information contained within the point cloud is entirely sufficient
for the intended task of traffic camera calibration, as the other side of the vehicle would
not contribute any additional information that could be utilized for calibration purposes.
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Chapter 6

Evaluation

In this chapter, evaluation of the proposed approach to 3D reconstruction of passing vehicles
is performed. The evaluation primarily focuses on distance measurement in the observed
scene in order to assess the ability of the method to be utilized for real-world measurements.
Subsequently a discussion of general limitations of the method is provided.

6.1 Distance Measurement

Since the prospective usage of the reconstructed model is determining the scale of the road
plane in the observed scene, a distance measurement was selected as the most suitable
method of evaluation. Therefore, it was necessary to make a real-world measurement of a
distinctive object within the road plane. For this purpose, a clearly visible road marking
was selected, as shown in Figure 6.1.

Figure 6.1: Road marking used for measurement evaluation. The ground truth length of
the highlighted line is 2.85 meters.
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The measurement procedure is performed in the following manner. When reconstruction
of a vehicle is completed and refined, it is first necessary to determine the 3D position of
the road plane. For this purpose, three points reconstructed at the base of the vehicle
are selected. These points uniquely determine a plane in the virtual 3D space of the
reconstruction, which represents the real-world road plane. 2D coordinates of the end
points of the road marking with known length are then obtained from the original image
of the scene. Afterwards, camera poses are retrieved from the 3D reconstruction, including
the respective points that define image plane positions in the 3D space. These points are
subsequently used to compute the image plane locations for the 2D coordinates of the road
marking ends. Once the 3D locations of the road marking ends are available, a ray for
each point can be cast from the camera into the scene. More precisely, the ray is cast
from camera’s center of projection through the 3D location of the corresponding image
plane position of the particular road marking end. Two rays are therefore cast, one for
each road marking end. Intersections of these rays with the road plane are then calculated.
The distance between the two intersection points represents the relative length of the road
marking in the virtual scene, as illustrated by Figure 6.2.

Figure 6.2: Illustration of the distance measurement method used for evaluation of vehicle
reconstructions. Rays are cast the from camera center through road marking ends in the
image plane. Intersections of these rays with the road plane determine the position of the
line in the relative world of the 3D reconstruction. Scale of the road plane is then used to
obtain the real-world length of the measured line.1

To compute the actual size of the road marking, it is also necessary to determine the
scale of the road plane, i.e. the relation of the virtual and real-world units. At this point,
the reconstructed model is utilized again. Two points with known dimensions are selected
from the point cloud, and their distance is used to obtain the scale. For some models,
these points were at the front and the rear part of the vehicle. Nevertheless, in more cases,
the wheelbase (the distance between the centers of the front and the rear wheels) was
used instead. This was necessary since the rear part of the vehicle was missing in some
reconstructions due to imprecise foreground masks. Another reason for using wheelbase is
the fact that the exact length of the entire vehicle can sometimes differ depending on the
production year of the particular vehicle model due to facelift changes. The wheelbase,
however, remains the same. Once the scene scale is obtained, the virtual length of the road
marking can easily be converted into measurement in real units of size.

1Free vector graphics used in Figure 6.2 was obtained from Vecteezy.com
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Table 6.1: Distance measurements of a road line computed using reconstructed vehicle
models. Each measurement was calculated as an average value measured by first three
camera poses in order to minimize the effect of possible slight inaccuracies in camera pose
estimation. Ground truth length of the road line is 285 cm.

Vehicle Measurement [cm] Absolute error [cm] Relative error

1 293.1 8.1 2.8%
2 261.8 23.2 8.1%
3 289.0 4.0 1.4%
4 310.0 25.0 8.8%
5 269.5 15.5 5.4%
6 273.7 11.3 4.0%
7 322.7 37.7 13.2%
8 297.3 12.3 4.3%
9 256.4 28.6 10.0%

Mean 285.9 18.4 6.5%

Measurement of the line shown in Figure 6.1 was performed using vehicle reconstructions
obtained from three video sequences (recorded with Full HD camera) using the approach
described in the previous chapter. Only reconstructions of vehicles going towards the cam-
era were selected. Moreover, unsuccessful reconstructions which resulted into a meaningless
point clouds were excluded. Subsequently, it was necessary to classify the vehicles. Pre-
cise information about vehicle make and model was determined by manual examination
of vehicle images acquired from the original video. Furthermore, corresponding vehicle di-
mensions were retrieved, when available. Altogether, nine successful vehicle reconstructions
with known real-world dimensions were obtained. Each of these vehicles was then used to
calculate an estimate of the road marking length. The measurement results are presented in
Table 6.1 together with respective absolute and relative errors. Absolute error is calculated
as the absolute value of the difference between the measurement and the ground truth value.
Relative error is calculated using Equation (6.1), where the gt represents the ground truth
measurement and lenght represents the calculated estimate of the road marking length.

erelative =
|length− gt|

gt
(6.1)

Each measurement in Table 6.1 was calculated as the average value of lengths obtained
from the first three camera poses within the particular reconstruction, i.e. the poses closest
to the point cloud model. This approach was chosen in order to minimize the possible effect
of minor inaccuracies in estimated camera positions and rotations. The presented data
shows that the line measurements are above, as well as below the ground truth value. The
best achieved error is only 4 cm (1.4%), while the worst length estimate is 37.7 cm (13.2%)
away from the real line size. Moreover, mean value of all measurements was computed.
It can be seen that aggregation of all estimates in the form of mean value yields a result
that is very close to the ground truth distance: 285.9 cm (calculated) vs. 285 cm (ground
truth). The mean of the absolute error is 18.4 cm, which represents 6.5% of the ground
truth length.
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It is also desirable to examine the histogram of all measurements included in the cal-
culation of the resultant mean value. This histogram is shown in Figure 6.3 and contains
the original measurements obtained for each of the first three camera poses in all recon-
structions used for the evaluation. It can be observed that estimated lengths do not form
a clear peak near the ground truth value, but are rather scattered around it. Nevertheless,
the data can be expected to create a more distinctive peak in case of larger dataset sizes.
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Figure 6.3: Histogram of estimates of the line length obtained from the first three camera
poses in each reconstruction.

As described above, the measurement calculation has been obtained by averaging the
values obtained for the first three camera poses, which are the closest to the reconstructed
point cloud model. Since there are generally more camera poses in every reconstruction,
it is also interesting to inspect how the road marking length estimation changes with the
camera pose being further away from the point cloud model. The graph with relative change
of the measurement from the average value computed from the first three poses is shown
in Figure 6.4.

While measurements from some reconstructions show only small relative change in cal-
culated values and remain rather stable even with rising distance of the camera pose from
the point cloud, other reconstructions exhibit a more steeper rise of the difference from the
road marking length obtained using the first three camera poses. The rise in the measure-
ment change is most likely caused by imprecise road plane position. The road plane in
the reconstruction space may be slightly slanted, which will affect the measurements in the
more distant camera poses more significantly than the near ones. Another possible cause
which can contribute to gradual rise of relative difference is less accurate estimation of more
distant poses, since a smaller number of feature points is available in images with lower
resolution of the vehicle (when the vehicle is further away from the camera). Imprecise
pose estimations also explain the fluctuations in observed trends.
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Figure 6.4: Relative difference of the road marking length measured by more distant camera
poses from the average value obtained using the first three camera poses. Each colour
represents poses from one reconstruction. The graph only shows the more distant camera
poses, i.e. the first three poses used for calculation of the average value are not included.
For each camera pose, its approximate distance from the reconstructed model is computed.
It should also be noted that pose distances can vary between the reconstructions, as image
sequences capture vehicles at different positions on the road, and thus at different distances
from the camera.

When interpreting the graph in Figure 6.4, it is necessary to consider the original sce-
nario of moving vehicles and static position of the camera. In general, the graph indicates
that the measurement precision is likely to gradually decrease with increasing distance of
the measured object from the static camera location.

6.2 Comparison with Existing Approaches

To evaluate the performance of the proposed method, obtained results are compared with
the results of other existing methods for scene scale inference. As described in Section 2.3,
two important approaches exist. The first method presented by Dubská et al. [9] relies
on 3D bounding boxes constructed around 2D vehicle blobs and it determines the scene
scale using statistical domain adaptation (see Subsection 2.3.1 for details). The second
approach proposed by Sochor et al. [27] infers the scene scale by aligning 2D bounding
boxes of rendered 3D models with the 2D bounding boxes of observed vehicles. The method
utilizes two obtained 3D models with known dimensions (see Subsection 2.3.2). Both of
these approaches are thoroughly evaluated by Sochor et al. [27], including the evaluation of
distance measurements. This enables comparison with the method explored in this thesis.
However, it should be noted that the evaluation of the existing approaches was obtained on a
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different dataset, and therefore the presented comparison conclusions should be interpreted
with caution.

As shown in Table 6.1, the mean relative distance measurement error of the proposed
approach based on 3D vehicle reconstruction is 6.5%. The error is therefore lower than
the 9.62% mean relative measurement error reported for the first of the existing methods.
This suggests that the scene scale inference using reconstructed 3D models should provide
superior results than the method based on bounding boxes constructed around 2D vehicle
blobs.

On the other hand, the relative error reported for the second existing method is only
2.33%. It can therefore be stated that the presented method based on 3D reconstruction
is currently not capable of outperforming this existing approach. Further improvements of
the 3D reconstruction process are thus necessary for this method to achieve better results.
To this end, specific suggestions are outlined in Chapter 7.

It should also be pointed out that the presented method and the second existing ap-
proach both share a similar idea of using the real 3D information about passing vehicles.
Nevertheless, the existing approach relies on previously obtained 3D models that are ren-
dered and aligned with observed vehicles. This gives the method presented in this thesis
an important advantage in case of prospective practical usage, since the 3D models are
reconstructed and therefore do not need to be obtained beforehand. Only the real-world
dimensions need to be available.

6.3 General Limitations of the Reconstruction Method

To conclude the evaluation, this section aims to summarize and discuss the general limita-
tions of the proposed method for 3D reconstruction of passing vehicles. As it is usual with
camera-based system, results of the algorithm are dependent on the visual quality of the
input. The method can therefore be expected to fail in situations where the quality of the
supplied input images degrades, such as in case of dark and poorly-lit scenes, and during
foggy or rainy weather. Moreover, several other limitations can be identified:

Straight road assumption. The method assumes that the trajectory of observed ve-
hicles is a straight line (see Section 5.4 for more details). In other words, the camera is
expected to be observing a straight part of the road. This implies an important restriction
on selection of camera placement.

Good quality of input segmentation. The method expects a reasonably good quality
of the input vehicle segmentation, i.e. the foreground masks. Supplied masks should only
contain the vehicle and should not include any part of the background. On the other hand,
significant portions of the vehicle should not be missing when the mask is applied. Problems
are also likely to be caused by overlapping vehicles, or vehicles segmented together as one
object.

Time consumption. The method is not devised to work in real time. Both the cor-
respondence search and the reconstruction phase are time-costly processes, and the entire
reconstruction of one vehicle can take up to several minutes. Moreover, the reconstruction
process can start only after all images of the particular vehicle have been obtained.
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View orientation. The reconstruction method expects the overall view of the camera to
be set so that both the front part and the side of a passing vehicle are captured. Otherwise,
a vast portion of 3D structure of the vehicle would not be available for the reconstruction
process, and the reconstruction might fail, or produce a severely incomplete model.

However, most of the above mentioned limitations do not pose any major restrictions
on practical usage of reconstruction of passing vehicles. Selecting a straight part of the
road for camera placement is usually not a significant limitation. Moreover, instead of
being a restriction, the last requirement of camera orientation can in fact be perceived as
an advantage. It allows the camera to be mounted near the roadside, which considerably
lowers the difficulty of its deployment and maintenance.

Furthermore, the aforementioned time aspect of the method should be briefly addressed.
Most importantly, it might seem that the calculation not being performed in real time may
hinder any practical usage of the method. Nevertheless, the primary aim of examining the
topic of vehicle reconstruction is to contribute to automatic camera calibration process,
particularly to determining the scene scale. Since camera calibration phase does not have
to be carried out in real time, vehicle reconstruction taking up to several minutes is not
a serious drawback. Once calibrated, the camera can be used for traffic analysis tasks
for a longer period of time, before re-calibration is necessary. Therefore, the fact that the
algorithm is not capable of real-time performance does not prevent its practical application.
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Chapter 7

Proposals for Further

Modifications of the

Reconstruction Pipeline

Based on the experiments performed with the 3D reconstruction applied on passing vehicles,
this chapter aims at providing detailed proposals and suggestions for further modifications of
the reconstruction pipeline. The observations about reconstruction process and outcomes
are first summarized. Subsequently, the concepts of possible further improvements are
presented.

7.1 Summary of Observations

Throughout the performed experiments with 3D reconstruction of passing vehicles, the
standard incremental Structure from Motion pipeline was gradually modified, as described
in Chapter 5. In the final reconstruction pipeline, three main parts can be identified.
First, the pipeline includes custom correspondence search stage instead of the original one.
Secondly, unchanged incremental reconstruction stage is utilized. Thirdly, the reconstructed
model is refined using additional motion constraints.

Experiments with this pipeline design have revealed important parts within the recon-
struction process that should be given further attention. These are often closely related to
the iterative reconstruction phase, which is so far left unmodified, and thus allows a high
level of freedom to enable general reconstruction scenarios. When the described reconstruc-
tion pipeline was used, the following situations were observed.

Firstly, Structure from Motion algorithms are known to be sensitive to selection of the
initial image pair [24]. This has also proved to be a significant factor when reconstructing
passing vehicles. Reconstruction outcome has shown to heavily depend on the initial two-
view reconstruction selected by the algorithm. Moreover, Necker reversal of the point
cloud [24] (the generalised version of the optical illusion where two 3D interpretations of
2D drawing of a cube are possible; see Figure 7.1) could sometimes be observed. This
resulted in a vehicle reconstruction where camera poses were all localized below the vehicle,
rather than above. An example of a correct and reversed model of the same car are shown
in Figure 7.2 and Figure 7.3, respectively.
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Figure 7.1: Necker cube (left). An optical illusion where 2D drawing of a cube has two
possible 3D interpretations, as shown in the center and on the right.

Figure 7.2: An example of a successfully reconstructed model where the reversal did not
occur. The camera poses are viewing the vehicle correctly – from above.

Figure 7.3: An example of Necker reversal. The camera poses are located below the model,
and the vehicle is reconstructed as is if being viewed from inside.
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Secondly, in the vast majority of cases, camera poses were imprecisely estimated. Instead
of respecting the original linear vehicle movement (see Section 5.4 for motion constraints
discussion), camera poses were often placed away from the expected aligned configuration.
Nevertheless, severely incorrect estimation of a camera pose early in the reconstruction
process can have a devastating effect on the entire reconstruction result, since misplaced
3D points added to the point cloud by such camera pose are likely to be later used for other
pose estimations, and thus prevent them from being localized correctly as well.

Applying the additional motion constraints to enforce the alignment of the camera poses
has been carried out by subsequent refinement by the SLAM++ library. However, this has
only shown to be applicable in cases where camera poses were already estimated moderately
close to the correct positions. Imposing the motion constraints on a reconstruction with
camera positions far from the expected straight trajectory did not yield desired improve-
ments. The reconstruction process can, however, generally result into such situations. This
observation leads to an important suggestion of incorporating the constraints directly into
the incremental reconstruction phase, as described in full detail in the following Section 7.2.
This step can be expected to significantly improve the overall stability and success rate of
the reconstruction pipeline.

Moreover, in cases where successful reconstruction was obtained and refined, it could be
seen that the overall precision of the point cloud could still be improved. This is also sup-
ported by the evaluation provided in Chapter 6, which indicates that improvements in the
precision of the reconstructed model are desirable in order to achieve better measurement
results. Therefore, the proposals provided in the following sections are not only aimed at
enhancing the stability of the reconstruction process, but also at upgrading the precision
of the resultant point cloud.

7.2 Outline of a Custom Pipeline Structure

The observations presented in the previous section suggest that attention should be fo-
cused on the incremental reconstruction phase, which tends to violate the related motion
constraints. Therefore, it would be beneficial to design an entirely custom 3D reconstruc-
tion pipeline, which would consider and exploit the prior knowledge that can be applied to
the problem of passing vehicle reconstruction.

In this specialised pipeline structure, the modified correspondence search stage (as de-
scribed in Section 5.3) could be used. Subsequently, it would be necessary to deal with the
initialization of the reconstruction process. Afterwards, the modified iterative reconstruc-
tion together with bundle adjustment can take place. Both the initialization and iterative
reconstruction phase are now addressed.

7.2.1 Selection of Initial Image Pair

Initialization of the Structure from Motion algorithm is done by selecting two images for
which the corresponding camera poses are estimated from the positions of matched feature
points. From these two views, the first 3D points in the model are triangulated. The
initialization step is therefore a critical part of the incremental reconstruction stage, as all
subsequent pose estimations and point triangulations are directly affected by the quality of
the initial two-view reconstruction.

The two images selected for the reconstruction initialization should contain a high num-
ber of point correspondences and should also have a large baseline, i.e. the distance between
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Figure 7.4: The uncertainty in estimation of the 3D point location rises with the decreasing
angle between the projected rays, caused by smaller distance between the camera centers.
In general, points are less precisely localized when rays become more parallel. The yellow
dot marks the original 3D point. However, the point can be triangulated anywhere within
the uncertainty region (shaded area). This is caused by the fact that the position of the cor-
responding feature points within the images are affected by noise and their 2D coordinates
can therefore be imprecise.

the camera centers [24]. The requirement of a large baseline is crucial, since small distance
between camera poses results into rays becoming closer to parallel during the triangulation
of 3D points. This enlarges the uncertainty region and thus increases the possibility of
imprecise point localization, as demonstrated by Figure 7.4.

It is important to note that the demand for selecting initial images with the highest
possible amount of matched points and the need for these images to be far apart are, to some
extent, two contradictory requirements in case of reconstruction of passing vehicles. This
is due to the fact that the biggest number of corresponding points is likely to be acquired
for the last two images of the passing vehicle, where the vehicle is close to the camera, and
therefore the images provide a view with the best resolution1. However, such image pairs
will inevitably have extremely small distance between the centers of the respective camera
poses. Selecting such pair for initialization can thus be expected to produce very inaccurate
two-view reconstruction.

In order to achieve higher precision of the resultant point clouds, it will be necessary
to relax the requirement on the number of matched feature points and instead focus on
rejecting images that are too close in the obtained image sequence. For this purpose, the
knowledge about the order of images within the sequence can be utilized. Moreover, it is
very probable that a reasonable choice for one of the two initial images will be the last

1Note that only the images where the entire vehicle is seen are considered. Images with incomplete
vehicle (e.g. when the vehicle is leaving the scene and is already partially away from the image) are not
included in the sequence.
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image of the sequence (the one with the closest view of the vehicle). This image could then
be paired with other remaining images and the fitness of each pair for the initialization
should be assessed.

To this end, the approach of Beder and Steffen [1] could be integrated. In their work,
Beder and Steffen propose a statistically motivated metric for automatic evaluation of the
quality of candidate image pairs. The metric is based on expressing the uncertainty region,
within which a 3D point can be localized, using an ellipsoid. The shape of the ellipsoid is
determined by the point correspondences and respective camera poses, and can therefore be
used for assessment of the given image pair. More precisely, the roundness of the ellipsoid
(the ratio of its smallest and longest axis) is used as a measure of quality. Higher value
of the roundness metric then implies that the particular image pair is more suitable for
initializing the reconstruction.

As already suggested, the first image in the vehicle sequence could be fixed to become
one of the initial images, and would subsequently be paired with other images to obtain
possible candidates for initialization. The approach based on the roundness metric can then
be used to evaluate each of these pairs. The image pair with the best score would then be
selected to initialize the reconstruction.

7.2.2 Recovering Intrinsic Parameters

The initialization step is also closely related to intrinsic parameters of the camera, more
specifically its focal length. (Other intrinsic parameters are expected to be known – the
principal point is assumed to be at the center of the image and the pixels are expected to
exhibit zero skew). In order to enable 3D reconstruction initialization using the 5-point
algorithm, intrinsic parameters need to be available, including the focal length. Never-
theless, the value of the focal length often remains unknown in many practical situations
where manual camera calibration cannot be performed. This is also applicable to the task
of reconstruction of passing vehicles, since the camera calibration process is desired to be
fully automatic.

For cases where the focal length is unknown, approaches based on 6-point algorithm have
been developed in order to obtain the focal length value together with the initial two-view
reconstruction [2, 16, 4]. These are often referred to as auto-calibration or self-calibration
methods. Adding one more point correspondence to the original 5-point solver provides
the necessary constraint which allows solving the additional unknown parameter within the
initialization step. The 6-point algorithm applies to cases with constant focal length, for
example a situation when all images were taken using the same camera without changing
the settings. One seemingly possible option would therefore be using an existing 6-point
algorithm to simultaneously obtain the initial two-view reconstruction and the unknown
focal length.

However, several authors, such as Sturm [32] and Kahl [13], have studied the inherent
limitations of self-calibration and identified the conditions under which the retrieval of
focal length is impossible or ambiguous. Such conditions can arise from specific camera
movements within the scene and are thus called critical motion sequences. One of the
described critical motion sequences, for which any self-calibration approach will inevitably
fail, occurs when optical axes of all camera poses are parallel. In other words, a situation
where the camera underwent a purely translational movement. As shown in Section 5.4
(especially Figure 5.5), this is exactly the case with the reconstruction of passing vehicles.
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It is therefore evident, that within the task of 3D reconstruction of passing vehicles, no
self-calibration algorithm can be utilized to automatically recover the focal length jointly
with the reconstruction process. This is an important limitation to be considered when
implementing the custom reconstruction pipeline. As a result, it will be necessary to retrieve
the focal length before the initialization step of the iterative reconstruction phase. For this
purpose, a method based on vanishing points detected in the viewed scene can be used. The
most suitable candidate is the approach proposed by Dubská et al. [8] and later improved
by Sochor et al. [27], which determines the vanishing points from the observed traffic flow
and provides a reliable focal length value.

7.2.3 Coping with Necker Reversal

Necker reversal is another problem associated with the initialization step [24]. If the initial
reconstruction from the first two selected images produces a reversed point cloud, the
entire reconstruction outcome will be reversed. Since this phenomenon could sometimes be
observed in case of vehicle reconstructions, it is necessary to overcome this problem inside
the initialization process of a custom pipeline design.

To deal with Necker reversal, Brown and Lowe [3] suggest to try both of the possible
3D interpretations and use the one which minimizes the reprojection error. They first per-
form regular initialization, run bundle adjustment on the initial two-view reconstruction,
and save the result. Afterwords, they swap the camera positions and flip the depth of the
reconstructed points to acquire the reversed interpretation. Bundle adjustment applied on
the second case converges to a different local minimum than in the first one. The interpre-
tation which minimizes the resultant error is then kept for the subsequent reconstruction
process.

7.2.4 Direct Application of Motion Constraints

The key modification in the custom pipeline design should arise from the motion constraints
specific to the task of reconstructing passing vehicles, as identified in Section 5.4. Instead of
refining the model after the iterative reconstruction to enforce the motion constraints, the
constraints should become an inseparable part of the iterative reconstruction phase. More
precisely, the fact that the camera undergoes pure translation and no relative rotations
occur, should be directly incorporated. This applies to both the estimation of the initial
two-view poses, as well as the iterative step where a new camera pose is added. This is now
elaborated on in the following subsections.

7.2.5 Determining the Relative Pose of the Initial Image Pair

The relation between the two initial camera poses is determined by epipolar geometry and
encoded using fundamental matrix F (which does not encompass camera calibration) and
essential matrix E, which can be formed from the fundamental matrix using the calibration
parameters of the corresponding cameras. In general, the relation between the essential and
the fundamental matrix, given the matrices K

′T and K that contain intrinsic parameters
of the two cameras, can be expressed as [11]:

E = K
′T ∗ F ∗K (7.1)

From the essential matrix, the relative translation and rotation between the two camera
poses can be extracted. Commonly, five-point algorithms are used, such as the one proposed
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by Nistér [19] or Stewénius [31], to compute the essential matrix and subsequently perform
its decomposition to obtain the camera poses for the initial two-view reconstruction. These
standard approaches assume arbitrary orientation of the two cameras.

However, instead of solving the entire non-linear system to obtain the general-case
essential matrix, the prior knowledge of the relative rotation between the camera poses being
zero can be exploited. As a result, the initial pose estimation will be given less freedom,
and it will thus be less prone to contaminating the initialization by incorrect estimate.
Moreover, the assumption of no change in rotation between the poses will significantly
simplify the original system of equations necessary for obtaining the relative pose.

Firstly, purely translational movement of the camera results into coinciding epipoles
in both images (i.e. their location in both images will be the same). This fact, together
with the rotation becoming identity matrix, leads to an important simplification of the
fundamental matrix, which can in this case be expressed as [11]:

F = [e]× (7.2)

with e being the epipole, and where the notation [a]× denotes a skew-symmetric matrix
(matrix representation of vector product), which is defined for vector a = (a1, a2, a3) as:

[a]× =





0 −a3 a2
a3 0 −a1
−a2 a1 0



 (7.3)

At this point, knowing the location of the epipole is enough to build the fundamental
matrix, which could then be used to calculate the essential matrix using Equation (7.1).
The essential matrix could subsequently be decomposed with the same method as is used
for the matrices obtained by regular five-point algorithms to obtain the relative camera
poses.

Nevertheless, this approach should not be necessary, since it is possible to simplify the
pose estimation even further. This simplification becomes more straightforward when the
usual assumptions made during the initialization process are considered.

When initializing the iterative reconstruction phase using the standard five-point algo-
rithms, the following assumptions are commonly made to prevent ambiguities during the
decomposition of the essential matrix. The first camera pose is assumed to be positioned at
the center of the 3D coordinate space, and its rotation is expressed as an identity matrix.
The rotation of the second camera pose is then expressed relative to the first one. The
same applies to translation, with one additional assumption. Since no information about
the scale of the reconstruction is available, the relative translation vector is chosen to have
unit length.

Fixing the first camera pose at the center of the 3D world, in combination with the
assumption about the translation vector having unit length, can be utilized to directly
obtain the second camera pose from the location of the epipole, without the necessity to
compute the essential matrix. As stated, the first camera pose will be positioned at the
center of the 3D space. Its known focal length and the coordinates of the epipole in the
image plane can then be used to express a 3D direction vector from the camera center
towards the epipole. Normalizing the vector to unit length will then result into obtaining
the location of the second camera pose. This can also be seen from Figure 7.5.

The key part of the initialization process will therefore be determining the epipole
location in the selected image pair. Even though only two point correspondences are enough
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Figure 7.5: When camera undergoes pure translation, the direction vector towards the
epipole directly defines the direction of the translational movement. F1 and F2 are the
camera centers. P1 and P2 are the points used to determine the epipole location. The
translation direction is shown by vector T . (Note that the epipole can also be positioned
within the image plane, but outside of the original image.) Adapted from [5].

to obtain the epipolar lines that uniquely define the epipole, it is desirable to consider more
corresponding points to minimize the effect of noise, and use e.g. the method proposed by
Chen et al. [7].

However, the epipole location in case of pure translation also coincides with the position
of a vanishing point [11]. This knowledge can be readily used to avoid the need of using any
additional methods for its retrieval. As described in Subsection 7.2.2, it will be necessary
to integrate a method for obtaining focal length of the camera. Since a suitable approach
for this task (proposed by Dubská et al. [8] and improved by Sochor et al. [27]) is based
on finding the vanishing points, the coordinates of the epipole can be directly obtained by
retrieving the location of the respective vanishing point from this method.

7.2.6 Iterative Reconstruction

After the initialization is completed, the iterative reconstruction phase takes place. Sim-
ilarly to the initial pose estimation, motion constraints should be applied whenever new
camera pose is added. Again, exploiting the knowledge of no relative change in camera
rotation should significantly simplify the pose estimation process.

Estimation of additional camera pose with known orientation results into a linear prob-
lem where only 1.5 point correspondences would suffice (solving only for the unknown po-
sition, which has three degrees of freedom, leads to a situation where only three out of four
coordinates of two selected corresponding points are necessary, hence 1.5) [15]. However, us-
ing only such a small amount of information is not a suitable approach. An outlier-rejection
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scheme was presented for precisely this case by Larsson et al. [15] to avoid estimating the
pose based on spurious matches. The remaining points after filtering can then be used to
over-determine the problem and compute the pose robustly.

One of the important parts of the iterative reconstruction is the selection of the next view
to be added. Schönberger and Frahm [22] show that high quality of resultant point cloud
model is achieved when the feature points that correspond to the already reconstructed 3D
points are uniformly distributed within the added image. They propose a method which
evaluates candidate images with a score that reflects the number of observed feature points
together with the extent to which they are clustered or uniformly distributed.

However, practical usage of this approach in reconstruction of passing vehicles may be
limited by the fact that the vehicle is only seen within a small portion of the image, where all
detected point correspondences are located, and the remaining parts of the image contain
no feature points. Therefore, for the task of 3D reconstruction of passing vehicles, it will be
necessary to carry out further experiments to determine the best strategy for the selection
of the next image to be added.

An inseparable part of the iterative reconstruction is the bundle adjustment step, which
refines the reconstruction by optimizing reprojection error. This step can be run multiple
times during the reconstruction process to prevent accumulation of error. However, bundle
adjustment is known to be costly in large-scale Structure from Motion tasks and therefore
there is a tendency to minimize the number of times this step is applied. Commonly, bundle
adjustment is only run after adding several new camera poses or after the size of the point
cloud rises by a predefined percentage. This is also true for VisualSFM [35].

Since reconstruction of a vehicle deals with a rather small model (compared, for example,
to reconstruction of central Rome from thousands of images), bundle adjustment could
be applied after every newly added camera pose, in order to maintain high accuracy of
reconstructed points. Moreover, the bundle adjustment step should also include the already
mentioned motion constraints to enforce them directly inside the iterative reconstruction.
More specifically, only the alignment of the camera poses can be considered for refinement,
as the rotation of the poses will already be set to remain the same by the pose estimation
step.

For the purpose of bundle adjustment the customizable SLAM++ library can be used,
similarly as in Section 5.5. It will also be beneficial to relax the constraint which assumes
negligible change in the speed of passing vehicles to enable usage of the reconstruction
pipeline in a wider range of more general settings, where vehicles may accelerate or decel-
erate significantly, for example when the camera is placed next to a crossroad.

7.3 Using the Pipeline with Two Sets of Matches

An additional proposal for experimenting with the reconstruction of passing vehicles is
using the pipeline outlined in this chapter with two sets of keypoint matches. This idea
is motivated by the fact that the overall quality of 3D reconstruction is often negatively
affected by imprecise feature points that can, to some extent, remain within the filtered set
even after using methods such as RANSAC. Moreover, most parts of vehicle surface have
proven to be challenging for precise localization of keypoints due to the lack of distinctive
texture.

It may therefore be interesting to extend the proposed approach based on DeepMatching
(see Section 5.3) to include another feature extraction algorithm that would aim at providing
a smaller but extremely reliable set of matched points. The entire reconstruction pipeline
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would then be first used with this set of matches to obtain an estimate of all camera poses
with high accuracy. Once all the poses are known, the quasi-dense matches obtained by
DeepMatching would be added to the reconstruction to improve the completeness of the
point cloud.

In other words, only a very sparse point cloud would firstly be created, with the aim of
obtaining a precise estimation of camera poses. The point cloud would then be extended by
matches obtained by DeepMatching to produce a model with high density of 3D points. As
a result, the overall precision of the reconstruction could be improved, while maintaining
high coverage of the final model structure.

It should be noted that once the camera poses are estimated, adding more points to the
reconstructed model is simplified to triangulating the new points by casting rays for the
particular keypoint locations from respective camera poses and solving for the intersection
of the rays to find the 3D positions of the given points. Since the rays will generally not
intersect at one precise point in space, the solution should be obtained in a least-squares
manner. Subsequently, the points with large residual error (i.e. the points where the rays
were rather far from the computed optimal location) could be rejected as outliers and
eliminated to prevent contamination of the point cloud with inaccurate points.

The additional set of feature points could be obtained by detecting highly reliable key-
points and by their subsequent tracking in the captured video. In this way, the knowledge
that the image sequence is ordered would be directly exploited, and thus the risk of incor-
rectly matched points would be lowered. For the purpose of tracking, Good Features to
Track [23] or similar method could be used. These feature extractors are usually based on
corner structures, and therefore should also be applicable in case of passing vehicles, where
significant corners are present, for example around windows, doors, lights, etc. Moreover,
it might be useful to experiment with tracking in a sequence with reversed order. In other
words, to start with the last image of the vehicle (where the vehicle is closest to the camera
and therefore has the best resolution), and continue with previous images in the sequence.
Additionally, tracking in both directions could be used to check for consistency.

7.4 Prospective Utilization of Vehicle Reconstructions in Traf-

fic Analysis System

Prospective practical usage of 3D reconstruction of passing vehicles is in a camera calibra-
tion module of a traffic analysis system. More specifically, the main contribution of the
vehicle reconstruction is in determining the scale of the observed scene. Once the scene
scale is determined the traffic analysis system can be used for various purposes, including
speed measurement of observed vehicles.

The camera calibration module would contain the following parts (as shown in the
diagram in Figure 7.6). First, focal length of the camera would be determined. Passing
vehicles would then be detected and segmented to obtain image sequence for each vehicle
from the video stream. The image sequence would then be passed to the 3D reconstruction
pipeline in order to obtain the vehicle model. At the same time, classification of the vehicle
would be performed using the original images in the sequence. The result of the classification
would be a precise identification of vehicle make and model. This information would then
be used to select the corresponding entry from a database of vehicle dimensions. As the
last step, the dimensions of the vehicle would be coupled with the reconstructed model to
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Figure 7.6: Diagram of prospective camera calibration module for traffic analysis system.

determine the scale of the observed scene. Additionally, scale information computed from
more vehicle models can be combined to improve precision.

To acquire the focal length, the method proposed by Dubská et al. [8] is a suitable
candidate. Background subtraction algorithms can be used for vehicle segmentation. For
fine-grained classification of vehicle images, Sochor et al. [26, 29] devise an approach based
on convolutional neural networks. The database with vehicle dimensions would then be
created using data available from vehicle blueprints. The remaining building block is the
reconstruction of vehicle model addressed in this thesis.
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Chapter 8

Conclusion

In this thesis, reconstruction of 3D information about vehicles passing in front of a surveil-
lance camera was addressed. The possibilities for reconstruction of passing vehicles were
explored and evaluated. In addition, proposals for potential further advancements were
summarized.

First, a set of experiments with SIFT feature matching and Structure from Motion
algorithm was carried out in order to examine their results on images of passing vehicles.
SIFT features were found to be unsuitable for images of vehicles when 3D reconstruction is
to be performed. Therefore, modifications to the correspondence search stage of Structure
from Motion pipeline were proposed. SIFT features were substituted by DeepMatching
in order to obtain quasi-dense correspondences for the subsequent reconstruction phase.
Moreover, filtering of the computed correspondences using foreground masks was involved to
eliminate points that are not located on the vehicle. Implementation of these modifications
significantly improved the overall completeness of the reconstructed point cloud models.

Furthermore, the models were refined by enforcing additional motion constraints that
are specific to the task of vehicle reconstruction. The resultant point clouds were then
evaluated with respect to the intended use for scene scale inference. Lastly, observations
and acquired information about the process of vehicle reconstruction were utilized to form
proposals for prospective design of an entirely custom pipeline that would be specialized
for 3D reconstruction of passing vehicles.

This thesis was presented at Excel@FIT 2017, a student conference organized at Faculty
of Information Technology of Brno University of Technology, and was awarded by one of
the industrial partners of the conference. The work was also presented at Central European
Seminar on Computer Graphics 2017 (CESCG) and won 2nd best paper award and 1st best
presentation award.

Prospective practical application of 3D reconstruction of passing vehicles is within the
camera calibration module of a traffic surveillance system. Reconstructed vehicle models
can be combined with their real-world dimensions to determine the scale of the observed
scene. The surveillance camera can then be utilized for various traffic analysis tasks, in-
cluding speed measurement.
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