
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DETECTION OF ENZYMES INMETAGENOMIC DATA
VYHLEDÁVÁNÍ ENZYMŮ V METAGENOMICKÝCH DATECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. STANISLAV SMATANA
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ HON
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This thesis presents specification and implementation of a system for detection of enzymes
in metagenomic data. The detection is based on a provided enzyme sequence and its goal
is to search the metagenomic sample for its novel variants. In order to guarantee that
found enzymes truly have the desired catalytic function, the system employs a number of
catalytic function verification methods. Their specification, implementation and evaluation
is one of the main contributions of this thesis. Experiments have shown, that proposed
methods reach sensitivity as high as 89%, specificity of 95%, values of AUC metric above
0.9 and average throughput of 1,203 verifications per second on regular personal computer.
Evaluation of the system also led to discovery of a partial sequence of novel haloalkane
dehalogenase enzyme in a metagenomic sample from soil. The implementation is able to
work on a personal computer as well as on a grid computing environment.

Abstrakt
Hlavným cieľom tejto práce bolo navrhnúť a implementovať systém, ktorý by bol na zák-
lade vstupnej sekvencie enzýmu schopný vyhľadať v metagenomickej vzorke nové enzýmy s
rovnakou funkciou. Aby bolo možné garantovať, že nájdené varianty skutočne katalyzujú
rovnakú reakciu, je nutné ich katalytickú funkciu bližšie overiť. Jedným z hlavných prínosov
tejto práce je práve návrh, implementácia a testovanie metód pre verifikáciu katalytickej
funkcie. Experimenty ukázali, že navrhnuté metódy dosahujú senzitivitu 89%, špecificitu
95%, hodnoty metriky AUC nad 0,9 a v priemere dokážu na osobnom počítači vykonať
1 203 verifikácií za sekundu. Okrem toho bola počas testovania objavená čiastočná sekven-
cia nového enzýmu z rady halogénalkán dehalogenáz. Implementovaný systém je schopný
fungovať na osobnom počítači, ako aj na distribuovanom systéme typu grid.

Keywords
metagenomics, enzymes, enzyme detection, catalytic function verification, catalytic site,
novel enzymes, catalytic function, haloalkane dehalogenase, active site, catalytic residues

Klíčová slova
metagenomika, enzýmy, hľadanie enzýmov, overenie katalytickej funkcie, katalytické miesto,
nové enzýmy, katalytická funkcia, haloalkan dehalogenáza, aktívne miesto, katalytické rezí-
duá

Reference
SMATANA, Stanislav. Detection of Enzymes in Metagenomic Data. Brno, 2017. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Hon
Jiří.

Detection of Enzymes in Metagenomic Data

Declaration
Here I declare, that I have created this master’s thesis completely by myself under the
supervision of Ing. Jiří Hon. I have listed all the literary sources and publications, which I
have used to write this thesis.

. .
Stanislav Smatana

May 23, 2017

Acknowledgements
I would like to thank my supervisor, Ing. Jiří Hon, for his great help and support during
the creation of my master’s thesis. I would also like to thank experts from Loschmidt
Laboratories for providing support and knowledge in the area of protein engineering.

Computational resources were provided by the CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme "Projects of Large Research,
Development, and Innovations Infrastructures".

Contents

1 Introduction 2

2 Genetic Information and Its Role in Living Cells 4

2.1 Structure and Content of Deoxyribonucleic Acid 5
2.2 Protein Biosynthesis . 7

3 Proteins and Their Biological Significance 12

3.1 Structure of Proteins . 12
3.2 Enzymes and Metabolic Pathways . 13

4 Methods of Genetic Information Processing and Analysis 15

4.1 Assembly of Genomes . 15
4.2 Sequence Alignment and Homology Search 17

5 Design of the System for Detection of Enzymes in Metagenomic Data 22

5.1 Metagenomic Read Pre-Processing . 23
5.2 Search for Homologous Sequences . 25
5.3 Enzymatic Function Verification . 26

6 Implementation of the Proposed System 31

6.1 Metagenomic Read Pre-Processing . 31
6.2 Search for Homologous Sequences . 34
6.3 Enzymatic Function Verification . 37

7 Evaluation of the Proposed System 41

7.1 Homology Search in Metagenomic Data . 41
7.2 Catalytic Function Verification . 44

8 Conclusion 56

Bibliography 58

A Contents of the CD 62

B The Format of Quality Pre-Processing Configuration File 63

C The Format of Annotated Enzyme File 64

D Syntax of the Classification Method String Descriptor 65

E Example Working Session 67

1

Chapter 1

Introduction

Enzymes represent a class of protein molecules, which is essential to all living beings. They
are the “biological workhorses”, which catalyze the vast net of chemical reactions vital for
the survival of every cell [2]. Although, it is not only cells who benefit from their abilities.

In 2003, global sales of the enzyme-related industry reached 2.3 billion USD [34]. In-
dustrial uses of enzymes range from the production of pharmaceuticals to the laundry
detergent production, food applications and textile processing. All of these fields have a
constant hunger for novel enzymes. Furthermore, because of the recent strong global po-
litical drive to move from fossil fuels into the area of renewable resources, more and more
industries are expected to incorporate enzymes into their production processes [34]. En-
zymes, unlike many traditional industrial methods, are independent from fossil fuels and
are often able to produce biodegradable materials [17].

However, until recently, the search was limited to a small range of enzymes, which could
be extracted from bacteria cultivated in laboratory conditions. It was estimated, that only
0.01% of bacteria could be grown in this way, and therefore the success in the search for new
enzymes was becoming more and more rare [19]. The breakthrough came with the birth
of metagenomic methods, which allow extraction of genetic material even from organisms,
which could not be cultured. This, combined with modern high throughput sequencing
technologies, allows to explore all the valuable information contained in biological sample
using a computer [23].

The goal of my thesis is to exploit this novel source information and create a set of
tools, that would be able to find new enzymes in a metagenomic sample. The search should
be based on a provided sequence of some known enzyme, and its output should be a set
of novel enzymes with the same catalytic function. While their function will be the same,
found enzymes may have better chemical and physical properties and may be more suitable
for practical use.

The proposed system consists of three main elements – read pre-processing, homology
search and enzymatic function verification. While the first two are responsible for the
searching process, the task of the enzymatic function verification is to guarantee that only
enzymes, which truly have the desired catalytic function, will be outputted by the system.
Design and implementation of these methods is one of the main contributions of this thesis,
and is presented in the section 5.3. More information about the overall structure of the
system is presented in its specification, located in the chapter 5.

All specified elements of the system were successfully implemented and their function
was evaluated in a number of experiments. Details about the implementation are presented
in the chapter 6 and the analysis of experimental results is provided in the chapter 7. Apart

2

from that, all theoretical information that is necessary in order to understand working
principles of the system, is presented in chapters 2, 3 and 4.

3

Chapter 2

Genetic Information and Its Role

in Living Cells

With the advent of light microscopy, it became quickly apparent, that living organisms are
made out of small entities called cells. In a simplistic view, cell consists of a concentrated
mixture of chemicals, called cytoplasm, which is encompassed by a plasma membrane [2].

While cells come in vastly different shapes, sizes and functions, there are two basic
types of them – prokaryotes and eukaryotes. Prokaryotes are the less complicated of the
two classes, and are commonly encountered in the form of bacteria. Eukaryotes, on the
other hand, are much more complex and usually form multicellular organisms [2, 52].

In order to survive, a cell has to harvest chemicals provided by its environment and
transform them into useful molecules. This is possible thanks to a vast and tightly con-
trolled network of chemical reactions directed by a special class of protein molecules called
enzymes [2].

It is apparent that cell needs some way of storing information on how to produce enzymes
and how to regulate its reaction networks. Moreover, cells have ability to copy themselves,
and therefore this storage has to contain information about the structure of the whole cell.
All of these instructions are stored in the form of a special molecule called deoxyribonucleic
acid, or in short, the DNA. While in prokaryotes, the deoxyribonucleic acid floats freely in
the cytoplasm, in eukaryotes, it is encompassed within a special structure called nucleus [52].

peroxisome

Golgi
apparatus

endoplasmic
reticulum

vesicle

nuclear
envelope

lysosome

mitochondrion Figure 2.1: The eukaryotic cell con-
tains a number of structures that are
absent in its prokaryotic counterpart.
These are called organelles and are
shown on this diagram. The most im-
portant organelle for the purpose of
this thesis is the nucleus, which is sur-
rounded by the nuclear envelope and
contains the DNA. In prokaryotes, the
DNA floats directly in cytoplasm. Im-
age was taken from a book by Alberts
et al. [2].

4

= Adenine

= Thymine

= Cytosine

= Guanine

= Phosphate

 backbone

DNA

Figure 2.2: The DNA in cells has two
complementary strands which form a dou-
ble helix. This is possible thanks to the
Watson-Crick base pairing principle, which
states that adenine can only pair with
thymine and guanine with cytosine. The
image was taken from Wikimedia Com-
mons and is distributed under public do-
main with no restrictions.

2.1 Structure and Content of Deoxyribonucleic Acid

The deoxyribonucleic acid (figure 2.2) is a biological macromolecule created by chaining of
simpler molecules called nucleotides [52]. Chemically, each nucleotide contains phosphate,
sugar and a nitrogenous base. While sugar and phosphate create so called sugar-phosphate
backbone, which keeps the whole DNA together, the nitrous base is the part which distin-
guishes nucleotides of one type from another. In efect, the nitrous base serves as the carrier
of information [2]. Bases come in four basic types – adenine (A), thymine (T), cytosine (C)
and guanine (G). From the information perspective, DNA could be seen as a long string on
the alphabet {A,C, T,G}. Moreover, it is important to add, that ends of the “DNA string”
are distinguishable by their chemical properties and are commonly labeled as the 3’ end
and 5’ end [2, 52]. Thanks to this, it is easy to denote direction of a movement relative to
the molecule.

However, it is unusual for the DNA to reside in form of a single string. In living
organisms, it is much more common to find it as a double helix composed of two DNA
strings. This is possible thanks to the ability of nucleotides to form hydrogen bonds with
other nucleotides. Although, this bonding has strict rules – A can be only bonded with T
and G with C. This fact was first discovered by biologists Watson and Crick, and therefore
it is named after its discoverers the Watson-Crick base pairing [52]. Thanks to it, the two
chains of the DNA are complementary to each other.

Apart from the obvious benefit of redundancy, the complementarity allows each string
to be used as a template for synthesis of its counterpart. This synthesis process is called
replication and is performed by a large protein complex known as replisome [2]. The DNA
replication is crucial for the cell division and serves as the primary means of information
transfer from parent cell to its children.

One of the most important information contained within the DNA are instructions for
protein creation. Protein, like the DNA, is a linear sequence of elements, however, unlike
the DNA, these elements are not nucleotides, but molecules called amino acids. While there
are only 4 types of nucleotides, amino acids come in 20 standard variations. Therefore, the
cell has to somehow translate string in 4 symbol alphabet of nucleotides into a string in

5

the 20 symbol alphabet of amino acids. This is done by the transcription and translation
processes, which will be described in the next chapter. Input of these processes is a sequence
of nucleotides encoding one or a group of related proteins called gene [52].

While in prokaryotes, the gene is informationally dense and contains only nucleotides
relevant for the encoding of a protein, the eukaryotic gene is interspersed with long non-
coding sequences called introns. In fact, there are typically more non-coding introns, than
there are their coding counterparts called exons [3]. These non-coding parts are cut away
and degraded later in the process.

However, not all DNA is used for protein coding. There are also regions used for
regulation of gene expression, regions encoding functional RNA and regions of repetitive
sequences, which are introduced by mobile genetic elements called transposons [3].

Exon Exon ExonIntron Intron

Figure 2.3: The eukaryotic gene consists of coding exons (blue color) interspersed with
non-coding introns (red color). Later, after the gene has been transcribed, the introns are
removed and exons are glued together in a process called splicing. Result is a continuous
sequence of coding nucleotides.

2.1.1 Representation of Deoxyribonucleic Acid in a Computer

A sequence of nucleotides can be transferred from a DNA into a computer by process called
sequencing. However, contemporary sequencing methods are not able to transfer whole
molecule in one chunk and require it to be split into smaller parts called fragments.

While fragments can be processed by the sequencing instrument, it is not possible to
transfer their full sequence, but only small part of it. These parts are called reads, and
their typical length in contemporary methods ranges from 25 nucleotides to approximately
1000. While older technologies provided longer read lengths, newer methods, called Next
Generation Sequencing Methods, provide shorter reads with higher precision and lower
price [38].

Currently, there are two strategies of extracting reads from fragments – single read se-
quencing and paired read sequencing. In the single read mode, each fragment is sequenced
only from one side, resulting in one read per fragment. In contrast, the paired read sequenc-
ing (figure 2.4) extracts reads from both sides of the fragment, resulting in two reads per
fragment. The information about distance between reads in pair helps to improve results
of genome assembly [39]. The process of genome assembly is described in section 4.1.

Apart from the sequence itself, the output of an automated sequencer contains per
base estimates of sequencing quality (i.e. belief in correctness of a given base). The most
common data format used to store both quality and content of reads is the fastq file format
(figure 2.5) [13]. In fastq format, nucleotide sequences are denoted as strings over the

6

3' 5'

5' 3'

Forward read

Reverse read

Figure 2.4: In paired read sequencing, a
fragment is sequenced from both sides.
The distance between the pair of resulting
reads is known, and this fact helps with
genome assembly.

alphabet {A, C, T, G}, and their quality values are encoded as character strings of the
same length. Quality values are typically used for data pre-processing and afterwards,
when the information about quality is no longer needed, a fastq file can be transformed
into corresponding fasta file (figure 2.6). The fasta format is very similar to fastq, but omits
the quality information, and therefore requires less storage space.

@SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

AGCAATGCCAATA

+SRR014849.1

EIXKN4201CFU84 length=93 3+&$#"""""""""""7F@71,’";C?,B;?6B;:EA1EA

1EA5’9B:?:#9EA0D@2EA5’:>5?:%A;A8A;?9B;D@ /=<?7=9<2A8==

Figure 2.5: A record of one read in fastq format. First line of each record starts with
the character ’@’ and continues with the record title. Lines after it contain the sequence
written in ascii characters. After the sequence, the line with title can be repeated, but has
to start with the character ’+’ instead of ’@’. Finally, last lines of the record contain the
base quality estimates. Qualities are encoded as characters and the length of quality string
has to match the length of sequence [13]. Figure was taken from an article by Cock et
al. [13].

>SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

AGCAATGCCAATA

Figure 2.6: A record of one read in fasta format. First line starts with the character ’>’
and contains the name of the sequence. Following lines contain the sequence data. The
figure was created based on a figure from article by Cock et al. [13].

2.2 Protein Biosynthesis

Proteins are one of the most vital elements of cells, and every cell has to be able to produce
them as needed. Instructions for their building are encoded in the DNA. The process of
protein synthesis has two main steps – transcription (explained in the section 2.2.1) and

7

direction of
transcription

RNA polymerase
jaws in closed
configuration

ribonucleoside
triphosphates

ribonucleoside
triphos phate
tunnel

active site

DNA double
helix

short region of
DNA/RNA helix

newly synthesized
RNA transcript

RNA exit
channel5'

5'3'
Figure 2.7: RNA-polymerase
performing the transcription
process. The newly synthesized
RNA string floats freely, while
the unwinded DNA behind
the RNA-polymerase rapidly
reestablishes its prior double-
helical form. Note that the
transcription is always performed
in the 3’-5’ direction. Figure was
taken from book by Alberts et
al. [2].

translation (explained in the section 2.2.2). However, these processes are not the only way
in which genetic information can flow. All the possible genetic information transfers are
described by the central dogma of molecular biology, which is the subject of section 2.2.3.

2.2.1 The Process of Transcription

In the first step of protein synthesis, a gene is transcribed from DNA to a very similar type
of molecule called ribonucleic acid (RNA). Since the RNA molecules produced in cell can
have different functions, the type of RNA used in transcription is distinguished by the name
mediator RNA (mRNA).

As in the case of DNA, the cornerstone of every RNA molecule is a sugar-phosphate
backbone. However, the RNA molecule is synthesized using a different type of sugar called
ribose and usually comes in a form of a single string, which is significantly shorter than
typical DNA molecule [2]. Morover, the RNA does not contain the base thymine, but a
different kind of base called uracil instead [2]. Like thymine, uracil pairs with adenine, and
therefore enables the synthesis of complementary RNA for a given DNA. In effect, the RNA
could be viewed as a string over the alphabet {A,C,U,G}.

The transcription of DNA into RNA is performed by an enzyme called RNA-polymerase.
In prokaryotes, the RNA-polymerase binds to the start of transcribed segment and unwinds
a small portion of the DNA. Afterwards, it moves along one strand, continues to unwind
the DNA in front of it and synthesizes the complementary RNA chain. Synthesized RNA is
not bound to the DNA and floats freely in the surrounding space. The DNA behind moving
polymerase rapidly reestablishes its prior double-helical form. This setup allows multiple
polymerases to proceed immediately after each other (i.e. form a “convoy”) and transcribe
one region at the same time [2].

In order to transcribe genes correctly, the RNA polymerase has to somehow determine
where the gene starts and where it ends. This is denoted by two special nucleotide sequences
on the DNA called promoter and terminator [52]. During its lifespan, the RNA-polymerase
randomly collides with the DNA. Upon collision, it forms a bond with it, however, un-
less this bond is formed with the promoter sequence, it is not strong enough and rapidly
disintegrates. The promoter region is asymmetrical and ensures that the transcription is
conducted only in one direction and only on one DNA strand. The strand and direction can
be different for each gene. On the opposite end, the terminator results in polymerase being
detached from the DNA and the synthesized RNA being released into the cytoplasm [3].

8

Exons

Variant A

Variant B

1 2 3 4 5

Figure 2.8: Alternative splicing of an eukaryotic gene. The set of exons can be assembled
in multiple ways. For instance, the variant A has the second exon absent while the third
exon is present. In contrast, the variant B has it the other way around. Thanks to the
alternative splicing, one eukaryotic gene can code for a number of similar proteins.

While in the case of prokaryotes, the released mRNA directly proceeds to the translation
step, the mRNA in eukaryotes has to be transported out of the nucleus through nuclear
pore. Apart from that, it also undergoes multiple post-processing steps. Many of them
increase the stability of the molecule and allow it to be safely transported. However,
there is a significant post-processing step called splicing [2]. As it was mentioned earlier,
the typical eukaryotic gene has its coding regions interspersed with non-coding regions
called introns. These are removed in the splicing step by a protein-RNA complex called
spliceosome [3]. The resulting set of exons can be assembled in a number ways. This
phenomenon is called alternative splicing and it allows a single eukaryotic gene to encode
multiple similar proteins [2].

It may be argued, that the transcription stage of protein synthesis is unnecessary, be-
cause it would be simpler for the cell to synthesize proteins directly from the DNA. However,
the transcription allows to create multiple copies of the synthesis template, which in turn
allows massive parallelization of protein production. Also, the mRNA serves as a basic
regulator of protein synthesis, because different genes tend to be transcribed into different
amounts of mRNA [2]. In the following section, I will describe the second step of protein
synthesis called translation.

2.2.2 The Process of Translation

In order to create a protein, its gene, written in the alphabet of nucleotides, must be
rewritten into the alphabet of protein building blocks – the amino acids. Every amino acid
is encoded by a triplet of nucleotides called codon [3]. This leads to 43 or 64 possible coding
words. As a result, the mapping between 64 codons and 20 amino acids is not bijective and
some amino acids are encoded by more than one distinct codon. This mapping is commonly
referred to as the genetic code [3].

In reality, it is provided by a special adapter molecule called transfer RNA or the
tRNA [2]. It is an L-shaped molecule that contains an “anticodon” – a sequence comple-
mentary to a given codon [3]. Thanks to the ability of nucleotides to form bonds with other
nucleotides, the anticodon can form a bond with its complementary codon. Moreover, be-
cause the opposite end of the tRNA can bind amino acid corresponding to its anticodon,
the tRNA molecule provides a full physical realization of the genetic code mapping. This
amino acid, however, is not a part of the molecule and has to be added via a chemical

9

A
C
G
C
U
U
A
A

G A C A C
C

C

U A

G

T Y
GUGUCC

U
G
GAG

G
U
C
Y
A

Y
AAG

U
C
A
G
A

G
C
C

CGAGAGG
G
D

D G
A CUC G

A
U
U
U
A
G
G
C
G

attached amino
acid (Phe)

3' end

5' end

anticodon

anticodon
loop

D loop
T loop

Figure 2.9: Illustration of the
tRNA molecule. The most im-
portant parts of the tRNA are
the 3’ end and the anticodon.
While the 3’ end binds an amino
acid, the anticodon is bound to
the RNA. The binding is real-
ized according to the Watson-
Crick base pairing. For example,
the anticodon “GAA” on the fig-
ure will be bound to the codon
“CTT”. Figure was taken from
book by Alberts et al. [2].

reaction mediated by one of the aminoacyl-tRNA-synthetase enzymes [2]. Usually, there is
a different enzyme for every amino acid [3].

While the tRNA provides the necessary mapping, it is not able to form the polypeptide
chain on its own. This reaction is conducted by a complex molecule consisting of RNA and
proteins called ribosome.

Since there are 3 nucleotides encoding one amino acid, there are 3 possible offsets, from
which the translation can begin. These offsets are called reading frames. If we take into
account, that genes can be stored on both strands of the DNA1, there is a total number of
6 possible reading frames. While in theory, every reading frame could encode a different
protein, living organisms usually use only one reading frame per gene [3].

As in the case of transcription, the beginning and end of translation is signaled by one
of the distinct nucleotide sequences – the start codon (AUG) and one of the stop codons
(UAA, UAG, UGA)2 [2]. While the start codon results in a special initiator tRNA with the
amino acid methionine being added to the beginning of the chain, the stop codons result
only in polypeptide chain release and ribosome disintegration without further addition of
amino acids into the chain.

Like in the case of RNA-polymerases, multiple ribosomes can translate one mRNA
molecule at the same time. In case of prokaryotes, where the mRNA does not have to be
transported from the nucleus, the translation can begin even before the transcription is
finished. This results in a significant speedup of prokaryotic protein synthesis [3].

2.2.3 The Central Dogma of Molecular Biology

In the preceding section, it was shown, that the typical flow of genetic information in
living organisms begins with a nucleic acid (e.g. DNA) and ends with some protein or
some functional RNA. Apart from that, there are viruses that can rewrite their RNA into
host’s DNA, and, in laboratory conditions, it is even possible to synthesize proteins directly
from the DNA [37, 51]. However, genetic information never flows from proteins back to

1Genes from different strands are stored in opposite direction because the transcription can only proceed
from the 5’ end towards the 3’ end of the molecule.

2It is important to keep in mind that the promoter, terminator, start codon and stop codon are all
different sequences.

10

any nucleic acid. This important statement is known as the central dogma of molecular
biology [51].

Figure 2.10: The central dogma of molecular biology. The typical flow of genetic information
goes from a nucleic acid to a protein sequence. Transfer from DNA to DNA (replication),
RNA to RNA (RNA viruses) and RNA to DNA (retroviruses) is also possible. However,
transfer from protein to RNA or DNA was never observed. Transfer from DNA to a protein
is denoted by a dotted line, because it was only observed in laboratory conditions outside
of a living cell [37].

11

Chapter 3

Proteins and Their Biological

SigniĄcance

Proteins are one of the most important elements of living organisms. They form the largest
part of the dry mass of all cells and perform a great number of functions necessary for cell’s
survival [3]. These functions are ranging from a transport of molecules and their storage to
chemical reaction catalysis and gene regulation [2].

While the section 3.1 focuses on the relationship between the function of an enzyme and
its structure, the second section of this chapter (3.2) looks more deeply into the catalytic
function of proteins and describes a very important class of proteins called enzymes.

3.1 Structure of Proteins

Similarly, like in the case of the DNA, proteins are strings composed of elementary building
blocks. However, the building blocks of proteins are amino acids and not nucleotides. These
elements are bonded together by a chemical bond called peptide bond and therefore, the
string of amino acids is sometimes referred to as the polypeptide [3].

The peptide bond is flexible1 and allows arbitrary rotation of its elements. This allows
the string to be freely folded. However, proteins in living organisms do not randomly change
their fold from one to another. On the contrary, they have a stable shape. Stability of a
given shape is ensured by additional chemical bonds between side chains of amino acids,
which are weaker and more rigid than the peptide bond2 [3]. Polypeptide always folds into
form which has the lowest energy called conformation [2]. However, if the stabilizing bonds
are destroyed, for example by heat or some acid, the protein unfolds back into the form of
a string. This process is called denaturation [3].

A protein can have a set of stable conformations and it can change its state from one
to another. Sometimes, this change is induced by the binding of a foreign molecule onto
a special region on the protein surface called binding site. This binding is realized by the
same type of bonds as bonds, which stabilize the protein conformation. Since these bonds
are weak, there has to be a great number of them in order to properly stabilize the molecule
on a binding site [3]. As a result, the surface of the foreign molecule (referred to as the

1Chemically speaking, the peptide bond is a type of a covalent bond [2].
2These bonds are non-covalent and are one of the three types – hydrogen, electrostatic attraction or Van

Der Waals [2].

12

Figure 3.1: An example of a
polypeptide chain folded into
conformation. The polypep-
tide consists of a single string
of amino acids, which auto-
matically folds into the shape
with lowest energy. The ex-
act shape depends on the
chemical and physical prop-
erties of polypeptide’s amino
acids. This example illus-
trates conformation of cat-
alytic domain of botulinum
neurotoxin serotype A (PDB
accession 4ZJX). The side
chains of amino acids are not
shown. The figure was gener-
ated by software PyMol [15].

ligand) has to closely follow the surface of the binding site. This ensures that binding of
ligands is highly specific [2].

3.1.1 Representation of Peptide Sequences in Computers

Since, like the deoxyribonucleic acid, protein is a sequence of successive elements, the
same file format can be used for its storage. However, while there are only 4 types of
nucleotides, the group of naturally occurring amino acids has 20 members. Because of this,
the International Union of Pure and Applied Chemistry developed a standard one-letter
notation of different amino acids, which I will refer to as the IUPAC alphabet [1]. Figure 3.2
shows an example of a protein stored in the fasta format using the IUPAC alphabet.

>5LKA:A|PDBID|CHAIN|SEQUENCE

SLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRNIMPHCAGLGRLIACDLIG

MGDSDKLDPSGPERYAYAEHRDYLDALWEALDLGDRVVLVVHDWGSALGFDWARRHRERVQGIA

YMEAIAMPIEAADLPEQDRDLFQAFRSQAGEELVLQDNVFVEQVLPGWILRPLSEAEMAAYREP

FLAAGEARRPTLSWPRQLPIAGTPADVVAIARDYAGWLSESPIPKLFINAEPGALTTGRMRDFC

RTWPNQTEITVAGAHFIQEDSPDEIGAAIAAFVRRLRPAHHHHHH

Figure 3.2: Haloalkane Dehalogenase linB (PDB accession 5LKA) amino acid sequence in
fasta format. Amino acids are encoded using the IUPAC alphabet.
.

3.2 Enzymes and Metabolic Pathways

Binding sites are the key elements of an important class of proteins called enzymes. En-
zymes have special binding sites called active sites. Ligands bound to them are called

13

substrates and are transformed by the catalytic function of the enzyme into different chem-
ical compounds called products. This process is conducted by some of the amino acids,
which are located at the active site and are commonly called catalytic residues [3]. The
exact type of amino acids involved is depended on the type of catalyzed chemical reaction.
In the absence of enzymes, these reactions would be slow or totally impossible. Chemically
speaking, enzymes lower the energy needed for a given chemical reaction to start (i.e. the
activation energy) [2].

However, complex chemical reactions often require cooperation of multiple enzymes. In
this setting, an output of one enzyme becomes the input of some other one, and in turn, the
output of the second enzyme becomes an input of the third, etc. These chains of enzymes
are called metabolic pathways and may include an arbitrary number of enzymes and have
an arbitrary level of branching [2, 52].

Enzymes are not only important in living organisms, but also in industrial applications.
One such example is a class of enzymes called haloalkane dehalogenases, which I use in my
master thesis as the model enzyme class.

Halogenated compounds are compounds containing one of the halogen atoms - fluorine,
chlorine, bromine, iodine and astatine. These are often by-products of industrial chemical
reactions and can be toxic and carcinogenic to living organisms [55]. Haloalkane dehaloge-
nases catalyze dehalogenation, or in other words, the removal of halogen atoms. Resulting
compounds are usually less toxic then their halogenated precursors [55].

C

Cl

+ H
2
O C

OH

HCl+

Figure 3.3: Reaction scheme of hydrolytic dehalogenation. Chlorine is detached and substi-
tuted by an OH group from a water molecule. The result is an alcohol and the hydrochloric
acid. This reaction would not be possible without the presence of a dehalogenase. Figure
was taken from an article by Van Pee [55].

14

Chapter 4

Methods of Genetic Information

Processing and Analysis

After a genetic material was successfully transferred into a computer, it can undergo a
further analysis. Algorithms for this analysis belong to the domain of bioinformatics. In
this section, I will describe methods, which solve two important problems – genome assembly
and homology search.

As the sequencing process is unable to read a whole DNA molecule and its output is
usually very fragmented, bioinformaticians have developed strategies to assemble fragments
back into the original sequence. These are discussed in the section 4.1.

Apart from the original sequence, biologist may be interested in identification of proteins
in newly obtained reads. This is the goal of homology search methods and alignment
algorithms described in section 4.2.

4.1 Assembly of Genomes

Genomic assembly is a process of reconstruction of an original genome from a set of short
fragments called reads. In practice, there are two main classes of algorithms, which deal
with this problem - the Overlap-layout-consensus class of algorithms (section 4.1.2) and the
class of algorithms based on a De Bruijn graph (section 4.1.1) [33].

4.1.1 Methods Based on De Bruijn Graph

Contrary to the intuition, the first step of an assembly using a De Bruijn graph is further
fragmentation of reads [33]. Firstly, reads are fragmented into k-mers (strings of the equal
length k). This is performed using a sliding window approach, in which a window of length
k moves base by base from one end of a read to the other and extracts a string of length k
at every position. In effect, k-mers in the resulting set share a lot of overlap. Next, these
k-mers are further subdivided into (k-1)-mers (strings of the length k-1). This results in
exactly two (k-1)-mers per every k-mer: a left (k-1)-mer and a right (k-1)-mer.

The set of all (k-1)-mers is used for the construction of a De Bruijn graph, which is the
central data structure of these methods. A De Bruijn graph is a directed multigraph1, where
each node represents a (k-1)-mer. It is important to note, that there is exactly one node for
every distinct (k-1)-mer even when there are multiple occurrences of it. For each original

1Multigraph is a type of graph where multiple instances of each edge are allowed.

15

k-mer, an edge from the node representing its left (k-1)-mer to the node representing its
right (k-1)-mer is added. Please refer to the figure 4.1 for an example of a De Bruijn graph.

ACTAGACTAA

{ACT, CTA, TAG, AGA, GAC, ACT, CTA, TAA}

{AC, CT, TA, AG, GA, AA}

AC CT TA

AGGA AA

Sequence:

K-mers:

Distinct

(k-1)-mers:

Figure 4.1: Example De Bruijn graph for the sequence ACTAGACTAA. In this example,
the sequence ACTAGACTAA is split into reads which exactly correspond to the set of
k-mers for k=3. Each of these is divided into left and right (k-1)-mer. Directed edge is
added in between every left and right (k-1)-mer node. The original sequence corresponds
to an Eulerian walk (a walk which visits every edge exactly once) through the De Bruijn
graph. In this example, it is the walk through nodes AC, CT, TA, AG, GA, AC, CT, TA
and AA. However, the situation is more complex in a real assembly process, because k-mers
do not correspond to reads exactly, and the graph is not guaranteed to be Eulerian [47].

The assembly problem in a De Bruijn graph is reduced into the problem of finding an
Eulerian walk through the graph [47]. An Eulerian walk is a type of walk in which every
edge is visited exactly once. There exists a number of algorithms, such as Fleury’s algorithm
and Hierholzer’s algorithm, which can find an Eulerian path in a given graph.

However, in real situations, a De Bruijn graph is not guaranteed to be Eulerian. For
this reason, modern assemblers usually output partial sequences, called contigs, which were
unambiguously assembled, instead of a whole genome assembly. Regions containing ambi-
guities need further analysis and the situation may even need a help of a human expert.

4.1.2 Overlap-Layout-Consensus Class of Assembly Methods

Apart from methods based on a De Bruijn graph, there is another major family of assembly
algorithms called Overlap-layout-consensus methods (OLC methods). These methods were
very popular in the past, but with the advent of Next Generation Sequencing, the rate of
their usage has dropped significantly [39, 33]. The main reason behind their decline is their
computational cost, which is caused by the need to find overlaps between all reads in a
dataset [33].

Overlaps have to be found in order to construct an overlap graph, which is the central
data structure of OLC methods. Similarly, like a De Bruijn graph, the overlap graph has
directed edges. However, unlike the De Bruijn graph, the nodes of this graph represent
whole reads and not only substrings of reads [39]. The edges of the overlap graph connect
nodes which share a common overlap longer then a set threshold. The direction of an edge
goes from a read with an overlapping suffix to a read with an overlapping prefix. Both,

16

the overlap calculation and the overlap graph creation, are a part of the overlap step of an
OLC method.

After the graph has been constructed, its content is used in the layout step to assemble
a genome. In the context of an overlap graph, the solution is a walk through the graph in
which every node is visited exactly once [33]. This type of walk is called the Hamiltonian
walk. Unfortunately, the problem of finding a Hamiltonian walk is NP-hard [33].

Finally, the overlapping parts of the sequence are aligned, and a final consensus sequence
is determined for every one of them. This is the purpose of the consensus step, which is
the final step of the whole method.

4.2 Sequence Alignment and Homology Search

Most of the modern biological applications, like the analysis of transcriptome, the study
of methylation patterns, or the search for related sequences, require methods of sequence
alignment and homology search [31].

The cornerstone of these methods is a dynamic programming alignment algorithm pro-
posed by Needleman and Wunch and its later variant for local alignment proposed by Smith
and Waterman. Both of these are described in the section 4.2.1.

While the dynamic programming method is able to provide the optimal alignment of
two sequences, it is not fast enough to be used for a large-scale comparison of sequences in
a database. The solution to this problem came in a form of an heuristic algorithm called
Basic Local Alignment Tool, described in section 4.2.2, and later, in a form of methods
based on the Profile Hidden Markov Model, which are the subject of section 4.2.3.

4.2.1 Dynamic Programming Algorithm for Global and Local Sequence

Alignment

In general, a dynamic programming algorithm solves problems by their subdivision into
smaller subproblems. These subproblems are easily solved and their partial results are then
evaluated to solve the original problem. This approach was firstly used for exact sequence
alignment by Needleman and Wunch [41].

Their algorithm represents the whole problem as a matrix of integers (figure 4.2). Given
an arbitrary sequence A and sequence B, the matrix contains as many columns as there
are symbols in the sequence A; and as many rows as there are symbols in the sequence
B. However, in practice, one extra column and one extra row is added. Alignment is
represented as a path in this matrix. Diagonal movement corresponds to comparison of
symbols, movement from left to right corresponds to the insertions of gaps into the sequence
B and vertical movement corresponds to insertion of gaps into the sequence A [56].

The first row and the first column of the matrix are filled by multiples of a gap penalty
value δ. Rest of the matrix is filled row by row using the values that were calculated in
previous steps. Formally, a value of matrix cell in the row i and the column j is calculated
as

Mi,j = max(Mi,j−1 − δ,Mi−1,j − δ,Mi−1,j−1 + S(Ai, Bj))

where δ is the gap penalty and S is a scoring function which provides a comparison score
of two symbols [26]. Gap penalties were introduced, because insertions and deletions of
amino acids are rare, while substitutions of one amino acid for another are much more
common [56].

17

Figure 4.2: Dynamic programming ma-
trix of the Needleman-Wunch global
alignment algorithm. In the first step,
the first row and column is initialized to
multiples of the gap penalty (-1 in this
case). Matrix is then filled row by row
until the bottom right cell is reached. In
the final step, the algorithm backtracks
through the matrix, obtaining the result-
ing alignment. This figure was taken
from Wikimedia Commons and is dis-
tributed under public domain with no
restrictions.

The preceding example have illustrated the use of the constant gap penalty model.
However, this model does not represent reality, because the start of a new gap is less
probable then extension of an existing one [26]. This fact led to the introduction of the
affine gap penalty model, which uses different penalties for the gap creation and the gap
extension. Given a gap creation penalty γ and a gap extension penalty δ, the total penalty
of a given gap can be calculated according to the formula

W = γ + δ(k − 1)

where k is the length of this gap [56].
The last element of the alignment algorithm is a scoring function S. In its simplest form,

it may simply evaluate to 1 if the two symbols are equal and to 0 if they are not. However,
in practice, a special substitution matrix may be used in its place. This is done in order
to achieve higher quality alignment [56]. The two most commonly used families of scoring
matrices for an alignment of amino acid sequences are the Point Accepted Mutation (PAM)
family of matrices and the Blocks Substitution Matrix (BLOSUM) family of matrices. Both
of these families were empirically derived [26].

In the final step, the algorithm backtracks through the dynamic algorithm matrix from
the bottom rightmost position towards the top leftmost position using the highest scoring
path. This path represents the optimal alignment that was found by the algorithm [26].
Typically, both the alignment and an alignment score, which is the value of the rightmost
cell on the bottom, are outputted.

The described algorithm is commonly referred to as the global sequence alignment, be-
cause it tries to align both sequences over their whole length. However, it is unsuitable
in situations, where the user wants to find occurrences of a shorter sequence in a longer
sequence (e.g. when the task is to find a gene in a whole genome) [26]. For this purpose,
the semi-global alignment algorithm was introduced. The semi-global alignment follows
the same steps as the global alignment, but the first row and column are initialized to 0,
instead of the multiple of a gap penalty, and insertions of gaps at ends of sequences are
not penalized. In effect, the algorithm allows addition of leading and trailing gaps without

18

penalization, and therefore allows arbitrary positioning of the shorter sequence along the
longer one [26].

The last modification of the global alignment algorithm, called the local alignment al-
gorithm, was proposed by Smith and Waterman [53]. As in the case of the semi-global
alignment, the first row and column of the dynamic programming matrix is initialized to 0.
However, unlike the global and semi-global alignment, the local alignment does not allow
negative scores in matrix cells and saturates negative values to zero. Another difference is
in the backtracking method. While the global and semi-global alignment always backtracks
from the bottom rightmost cell of the matrix, the local alignment backtracks from all cells
with the maximal value. Moreover, the backtracking stops, when the first zero value is
reached [53].

4.2.2 The Basic Local Alignment Search Tool Algorithm

While the local alignment algorithm can be used for search in a big database of sequences
with optimal results, its time complexity prevents its effective use for this task. This was
one of the main motivations, which led to the invention of the Basic Local Alignment Search
Tool (BLAST) algorithm [4].

BLAST is a heuristic algorithm, which performs search over a database of sequences
using an input sequence in order to obtain its homologues. Contrary to the case of dynamic
programming, the result is not guaranteed to be optimal, however, it has reasonable quality
and the searching process is significantly faster [4]. The algorithm has a number of steps
which will be described in the rest of this section.

In the first step, the input sequence is divided into a number of smaller sequences of
constant length W called words. The division is performed using a sliding window approach,
in which a window moves base by base from one end of the input sequence to the other [26].
At its every position, a sequence of length W is extracted. The parameter W is one of the
input parameters of the whole algorithm. Since it is more probable to find occurrences of
a small string, the smaller the value of parameter W is, the more matches will be found by
the algorithm [4].

Next, for every word obtained in the previous step, a set of alternative words is created
by various substitutions. These alternatives are compared with the original word using
a chosen scoring matrix. Only alternatives, with the comparison score above a threshold
T, are kept in the set, while the others are discarded [26]. T is another parameter of the
algorithm, which regulates how similar a found sequence has to be in order to be reported [4].

Afterwards, all the words from the set of both original and alternative words are searched
for in the database. Every match serves as a basis for an alignment between the input
sequence and a sequence in the database. This alignment is iteratively extended on both of
its sides. After every extension, an alignment score is calculated using the scoring matrix,
and if it is higher then a predefined threshold S, the alignment is added into the set of high
scoring pairs. The extension continues until the score drops below another threshold X [26].

In the final step, the high scoring pairs are filtered with respect to their statistical
significance. The statistic used in this process is called E-value, and it represents the
expected number of sequences with the score S or higher, which would be found in the
database by a mere chance [26, 4]. The score S represents the alignment score of a high
scoring pair. The user can choose the maximal allowed E-value for a search result. High
scoring pairs which pass this test are the resulting output of the BLAST algorithm.

19

Figure 4.3: Graph representation of a
simple HMM. Two states s1 (s1) and
s2 (s2) are represented as nodes of the
graph. Each state has its observation
probability distribution over symbols a
and b written below. The edges show
all the possible transitions of states with
their associated transition probabilities.

4.2.3 Homology Search Based on ProĄle Hidden Markov Model

Another family of methods of homology search is based on a statistical model called the
Hidden Markov Model (HMM). The HMM models a system, which can be described as
being in one discrete state from its set of states at every time instant [48]. Naturally, the
state of the system changes over time. However, the state transition is not deterministic
and is governed by a probability distribution over the set of its states. The exact shape of
this distribution must be dependent only on the current state of the system. Otherwise,
the system would violate the Markov property and would not be describable by any Markov
model [49]. The choice of the starting state is governed by the initial probability distribution
over the set of all states.

An outside observer is not able to perceive the exact state of the system at any time [49,
48]. The only things, which are visible, are system’s observations. Observations are symbols
from the observation alphabet of the system, which can be emitted to the outside world.
This emission is not deterministic and, like in the case of the state transition, it is governed
by a probability distribution over the alphabet of observation symbols. The emission can
happen once after every state transition, or, in the case of a null state, it may not happen
at all [27]. The whole system can be represented in a graph form as illustrated on the
figure 4.3.

Formally, the HMM can be defined as a 5-tuple

(Q, V,A,B, π)

where Q = {q1, q2, . . . , qn} is the set of states, V = {v1, v2, . . . , vn} is the set of possible
observations, A = {aij}; aij = Pr(qj , at t + 1 | qi at t) is the transition probability
distribution over the set of states for a transition from the state qi, B = {bi(k)}; bi(k) =
Pr(vk at t | qi at t) is the probability distribution over the set of observations for the
state qi and π = {πi}; Pr(qi at t = 1) is the initial probability distribution over the set of
states [48].

Model of a system in the format of HMM can be used to answer a number of problems.
Typical inferential tasks, that can be solved using an HMM, include questions like: “Given
a sequence of observations, what is the most likely sequence of states the system went
through ?” or “How likely it is, that a given sequence was generated by this HMM ?” [48, 49].

The most common HMM model used in bioinformatics is called the profile HMM [27].
It is a special case of a linear HMM, which is typically constructed from a multiple sequence
alignment, and in which the time domain is represented by a position in the sequence [27].

20

V K -

V G M

A N M

V * M

I

M1 M2

D

B E
1

1

1

1

0

1/3

2/3

V: 2/3

A: 1/3

*: 0

M: 1

*: 0

K: 1/3

G: 1/3

N: 1/3

*: 0

NULL

NULL NULL

Figure 4.4: An example of a profile HMM created from a multiple sequence alignment.
States B and E represent the beginning state and ending state of the HMM, M1 and M2
are match states, I is an insert state and D is a delete state. Emission probabilities are
shown below each state. Transition probabilities are shown above edges. The word NULL
denotes a state with no emissions. The multiple sequence alignment which served as the
base for this example is shown on the left side.

The profile HMM model has three basic types of states: match states, insert states and
deletion states. While match states represent the most conserved columns in a multiple
sequence alignment, insert states represent less conserved regions, which may vary between
proteins of the same family. The last group of states, deletion states, model the situation,
when some of the sequences in the multiple sequence alignment have a gap at a highly
conserved position. Apart from these, there is exactly one beginning state and one end
state with no emission [27].

The emission and state transition probabilities are estimated by analyzing frequencies
of residues in the multiple sequence alignment. For instance, if a given highly conserved
position in the multiple sequence alignment contains valine (V) in 5 of 6 sequences and
methionine (M) in one sequence, the emission probability of V in the corresponding state
will be 5/6 = 0.83. Similarly, the probability of M will be 1/6 = 0.17. After the model
was constructed, the alignment can be performed using the Viterbi algorithm and the
alignment score can be calculated using the Forward algorithm [27]. Detailed description
of these algorithms is beyond the scope of this master thesis. For further details, please
refer to the article by Rabiner and Juang [48].

As in the case of a general-purpose HMM, the profile HMM can be represented in the
form of a graph. Example of this representation is shown on the figure 4.4.

21

Chapter 5

Design of the System for Detection

of Enzymes in Metagenomic Data

The primary goal of my master thesis is to create a set of tools for detection of enzymes
in metagenomic data. However, the toolset should not detect arbitrary enzymes, but the
ones, which are homologous to a query enzyme provided by the user. In this way, the tool
allows to search for new enzymes, which have the same function, as some known enzyme.
While the function may be the same, the found homologue can have better chemical and
physical properties and can be interesting for protein engineering. In order to meet this
goal, the toolset must be able to perform three main functions: read pre-processing, search
for homologues and enzymatic function verification (figure 5.1).

The proposed toolset should work directly with the output of sequencing and should
not require data to be pre-processed in any way. However, if the pre-processing was to be
completely ignored, sequencing errors contained within the data may significantly decrease
the quality of further analysis [38]. Because of this, the first task of the toolset is to pre-
process the data with regards to its quality and output it in a format suitable for searching.
I will refer to this format as a metagenomic database in the rest of my master’s thesis.
Further details of this process are described in the section 5.1.

After the pre-processing, the data can be used for detection. The detection is conducted
using a protein sequence or a multiple sequence alignment provided by the user and its result
is a set of homologues of the input sequence (multiple sequence alignment) contained within
the metagenomic sample. The additional option of using multiple sequence alignment allows
user to search for new enzymes which belong to the same enzymatic class as enzymes form
the alignment. Moreover, the use of multiple sequence alignment emphasizes conserved
regions and therefore allows to search for more distantly related enzymes [11]. Details of
the searching method are the subject of the section 5.2.

While enzymes found by homology search have at least some level of structural similarity
to the input query enzyme, they may still perform a different catalytic function. Therefore,
in the last step, the toolset uses enzyme function verification methods to check whether
found homologues have the same catalytic function as the input enzyme. Since the catalytic
function of an enzyme is strongly depended on the configuration of its catalytic residues,
this process requires user to provide information about their position on the input enzyme
in the form of catalytic region annotation. Its format and details of proposed enzymatic
verification methods are the subject of the section 5.3.

22

Figure 5.1: The architecture of the toolset for enzyme detection in metagenomic data.
Inputs of the tool, shown in gray, are metagenomic reads, an input sequence or multiple
alignment and an annotation of catalytic regions. The main functions of the toolset — data
pre-processing, homology search and enzymatic function verification — are shown in blue.
The orange box represents the final output of this toolset – homologous enzymes with the
same catalytic function as the input query.

5.1 Metagenomic Read Pre-Processing

A set of reads, which is the result of a sequencing process, is not guaranteed to be completely
error-free. Luckily, modern sequencing methods are able to provide quality estimation (i.e.
belief of correctness) for every base in sequenced data. The pre-processing module exploits
this information and transforms the set of reads into a searchable metagenomic database.
The input file may be provided directly by the user, as a result of his own sequencing
effort, or it might be downloaded from a public database, such as the NCBI Sequence
Read Archive [29]. Its format should be compliant with the fastq format, which is a de
facto standard for the storage of read sequences and their quality estimates [13]. Most
metagenomic studies I have encountered were using paired read layout (reverse and forward
reads); therefore I have decided to design the pre-processing tool primarily with respect to
this type of data layout.

The first goal of the pre-processing stage is to remove regions within reads, which
have insufficient quality, by a process called trimming. If the low-quality regions would
be ignored, the result could be detrimental for further analysis and may lead to false
interpretations of data [14]. In my design, I have decided to use a sliding window trimming
approach, which was invented by Bolger, Lohse and Usadel [9].

During the trimming process, a window of constant size moves base by base from the
5’ to the 3’ end of every read (figure 5.2). In each position, the average quality of bases
contained within the window is calculated. If the result is below a set quality threshold,
the whole sequence from the beginning of the window to the end of the read is removed. If
the removed portion is too long, the read can become too short to be useful in any further
analysis. In order to keep the data as clean as possible, all reads with the length smaller
then a set threshold are discarded. In the case of paired reads, this can result in some reads
losing their partner from pair and become unpaired reads.

Nevertheless, low quality regions are not the only type of sequence, that should be
removed. Many of the Next Generation Sequencing methods use special, short, artificially
produced sequences, called technical sequences, to support the sequencing process. However,
their presence could negatively affect the quality of subsequent analysis, because they were

23

T A T A A T

20 30 10 4 726

5' 3'

Cutting position

Window position

Quality

Sequence

Figure 5.2: Trimming approach using a sliding window. The window (blue frame) advances
from the 5’ end to 3’ end of the current read. If the average quality of bases in window falls
below a set threshold, the whole sequence from the beginning of the window to the end of
the read is removed. In this case the threshold was set to 10 and the average quality in
current window is (10+4+7)/3 = 21/3 = 7. As a result, the read is cut at current position
(denoted as “Cutting position”). The method was taken from paper by Bolger et al. [9].

not originally contained within the sample [9]. I have decided to use two techniques of
their removal described in paper by Bolger, Lohse and Usadel [9] – the general method1

and the palindromic method. While the first one is usable with any type of data layout,
the second one is specific to the paired read data. The specificity of palindromic method
provides higher accuracy for the paired data layout [9].

In general mode (figure 5.3), a known technical sequence is divided into a set of smaller
substrings called seeds by the same windowing algorithm, as in the case of k-mers in the
De Bruijn graph assembly method (subject of section 4.1.1). Reads are scanned from the
5’ end to the 3’ end and at each position, all seeds are compared with the current region.
This comparison is not completely exact and allows a set number of mismatches. If any of
the seeds matches, the match is extended using a local alignment algorithm and yields a
local alignment score. Finally, if the alignment score exceeds a set threshold, the sequence
is considered to be technical, and the read is cut from the beginning of the aligned region
to the end of the whole read.

The palindromic mode (figure 5.4) is designed to remove short technical sequences, called
adapters, which can appear at the end of a read [38]. Normally, these should not be present
in data, however, if a read length is longer than a length of some of the DNA fragments,
the reading process can go past the valid data into the adapter region. This problem is
commonly referred to as the adapter read-through [9]. Since in the paired sequencing, each
fragment is sequenced two times using both strands of the DNA, the adapter read-through
can be easily detected. If it have happened, valid data regions of both reads in pair will be
reverse complementary, equal in length, and both will end with a technical sequence [9].

In the first step of the algorithm in palindromic mode, both reads in pair are prepended
with their respective adapter sequences. Then, reads are aligned, so that the prepended
adapter of the second read follows immediately after the adapter of the first read. After-
wards, the overlap between the reads is continually extended and at each extension, a global
alignment score is calculated. If the score is high enough, the reads are considered to be

1In the original article referred to as the simple method.

24

Figure 5.3: In the general mode, reads
are scanned from the 5’ end to the 3’
end base by base and at every position
an alignment score is used to determine
whether a technical sequence is present.
If it is, a region beginning from the start
of the scanning window to the end of
the whole read is cut (depicted in red).
Situations in A, B, C, and D show dif-
ferent cutoffs based on a position of the
match. The image was taken from pa-
per by Bolger et al. [9].

Figure 5.4: In the palindromic mode,
reads in a pair are prepended with their
adapters and aligned using a global
alignment algorithm with iteratively in-
creasing overlap. If the alignment score
raises above a set threshold, ends of
both reads are cut accordingly. Dia-
grams A, B, C, and D show situation
for different length of overlap. The im-
age was taken from paper by Bolger et
al. [9].

aligned and each read is trimmed from the first base aligned with the prepended adapter
of the other read.

In the final step of the pre-processing, unpaired reverse reads are reversed, complemented
and merged with unpaired forward reads into a set of single reads. Sets of single reads,
paired forward reads and paired reverse reads are translated into amino acid sequences
using all six possible reading frames and results are merged into a set of protein sequences.

To summarize, the output of the pre-processing step is the set of protein sequences, the
set of single reads, the set of paired forward reads and the set of paired reverse reads.

5.2 Search for Homologous Sequences

After pre-processing, the database is ready for searching. The search process expects either
a query sequence or a multiple alignment of sequences. The first task of the search tool is
to find homologues to the provided query in the metagenomic database.

Even though there is a number of homology search algorithms, I have decided to use the
method based on the profile Hidden Markov Model (profile HMM) as the primary search
method, because it is able to work with multiple sequence alignments directly [27].

In the first step, an alignment or a sequence is converted into a corresponding HMM.
The obtained model is than used to search through the set of protein sequences (translated
reads). Since it is very unlikely to find a whole enzyme in one short read, the search is

25

limited only to protein domains of the input query. The result is a set of translated reads,
in which some parts resemble the sequence of some domain from the input enzyme.

In the next step, untranslated versions of matching reads are extracted from the set
of paired forward reads, paired reverse reads and single reads. These are then assembled
into longer contigs using the assembly method based on the De Bruijn graph. Contigs can
be much longer than plain New Generation Sequencing reads, and therefore the chance of
finding a whole enzyme in one translated contig is significantly higher.

Finally, all contigs are translated into amino acid sequences using all six reading frames
and are subjected to another search using the same profile HMM as was used in the search
for protein domains. However, this time the search is not limited to protein domains and
tries to find the whole enzyme. Matching sequences are the resulting output of the search
pipeline.

5.3 Enzymatic Function VeriĄcation

Enzymes outputted from the homology search are not always true homologues to the pro-
vided search query. For instance, a found enzyme may be missing some small region, which
is not long enough to make a difference in homology search, yet it can be critical for its
catalytic function. Even if the found enzyme is complete, the result could still be incor-
rect. This is due to the fact, that enzymes with very similar structure (and usually similar
sequence) may perform very different function [45].

In order to address this situation, I have decided to incorporate enzymatic function
verification as the last filtering step of the processing pipeline. In this step, the user provides
an annotation of catalytic regions on the query enzyme. By the term catalytic region, I will
refer to an area on the sequence of enzyme, which contains one or more catalytic residues
following immediately after each other. Their annotation has to contain a position of the
beginning and end of each region. More formally, the annotation can be defined as a set
A = {(b0, e0), (b1, e1), . . . , (bn, en)}, where bn is a position of the first catalytic residue of
the region, and en is a position of the first residue following immediately after the region.
Program uses this annotation to verify enzymatic function of found enzymes. In following
sections, I propose a method of verification based on a normalized cross-correlation and a
group of methods based on an alignment.

For the sake of clarity, in the following descriptions, I will refer to the enzyme, which
was found in homology search and its function is to be verified as an enzyme candidate.
The enzyme, which serves as the base for verification and whose catalytic regions are given
in the annotation will be referred to as a query enzyme.

5.3.1 Methods Based on Alignment

All of the alignment methods follow the same basic algorithmic scheme presented in the
algorithm 1. This scheme can be divided into three main steps - alignment, offset array
calculation and iterative scoring. The input common to all of the proposed methods is
the set of catalytic region annotations A, the sequence of an enzyme candidate S1 and a
sequence of a query enzyme S2. In case of multiple sequence alignment, the user can provide
its consensus sequence, or a sequence of arbitrary enzyme from the alignment in place of
the input S2.

Firstly, each of these methods starts with an alignment of the sequence of the enzyme
candidate with the sequence of the query enzyme. This is the purpose of the function

26

align, which takes two strings S1 and S2 over the standard IUPAC alphabet and produces
two aligned strings G1 and G2 over the alphabet IUPAC ∪ {−}, where the character “–”
represents a gap in the alignment. I have decided to use Needleman-Wunch global alignment
algorithm, however, it is possible to use different method. Strings G1 and G2 have to have
the same length, and all gaps resulting from the alignment should be denoted by the gap
character.

input : A = {(b0, e0), (b1, e1), . . . , (bn, en)}, String S1, String S2, Scoring matrix M,
Catalytic region weight wa

output: p – score of the verification; value from interval [0, 1]
p = 0;
i = 0;
(G1, G2) = align(S1,S2);
arr = offsetArray(G2);
for (b,e) in A do

b = b + arr[b];
e = e + arr[b];
(W1,W2) = window(E1,E2,b,e,sw);
p += score(W1,W2, b, e,M,wa) ;
i++;

end

p = p/i;
Algorithm 1: Basic algorithmic scheme of methods based on alignment. In the first
step, both, the sequence of an enzyme candidate and the sequence of a query enzyme,
are aligned. Then, a helper data structure, called offset array, is created and used for
adjustment of catalytic region positions in the aligned query enzyme sequence. The
algorithm iterates over all catalytic regions of the query enzyme and uses windowing
and scoring to estimate likelihood that the input sequences S1 and S2 belong to the
same family of enzymes. Resulting scores are summed and divided by the number of
catalytic regions.

The insertion of gaps into the query enzyme sequence, which frequently happens during
the alignment process, can change the positions of its catalytic regions. Because of this, the
coordinates of catalytic regions have to be adjusted. This is the purpose of a helper data
structure which I will refer to as the offset array.

Given a string over the alphabet IUPAC ∪ {−}, the value of the offset array at index i
represents the number of gaps (“–” symbols) between the beginning of this string and i-th
non-gap symbol (valid IUPAC symbol). For example, given a string “M--I-SSISIPI” with
starting index 1, the value of the offset array at the index 2 is 2, because the second IUPAC
symbol “I” is preceded by two gaps. Analogically, the value at index 3 is 3, because the
third IUPAC symbol “S” is preceded by three gaps.

In general, if there was a symbol in the query sequence at some position j and the
alignment algorithm inserted some gaps on preceding positions, the position of the symbol
in the aligned version will be advanced by the number of gaps inserted. More formally, the
new position will be equal to j′ = j + n, where n represents the number of preceding gaps.
The number n is equal to the value of the offset array at the index n, and therefore the
offset array can be used to adjust the beginning and ending position of a catalytic region.

27

N L K G T5' 3'D

Critical residue

T G K T5' 3'
_ _

Scoring window

N L K G T5' 3'D

Critical residue

_ G K T5' 3'
_

Scoring window

N

Figure 5.5: Two proposed windowing strategies – the fixed window and the soft window
approach. In the first one, catalytic regions (bright red) and n amino acids on both sides
of them (dim red) are included into the window. In the second approach, positions where
any of sequences contains the gap character are omitted.

After the adjustment, substrings containing catalytic regions are extracted from the
query enzyme. Apart from the catalytic region itself, a defined number of extra symbols
from both sides of it is included into every substring. I will call this extraction process
windowing, and I propose two strategies of it – the fixed window method and the soft
window method.

In the first, straightforward approach, the catalytic region and a fixed number of neigh-
boring symbols is included into the substring. In the second approach, only positions where
both, the candidate sequence and the query sequence, contain valid amino acid symbol are
included. The difference is illustrated on the figure 5.5. Substring corresponding to the
same window is also extracted from the candidate enzyme sequence. These two substrings
are the input of all scoring methods.

Finally, after the corresponding regions have been extracted in the windowing process,
the scoring function (in the algorithm 1 named score) calculates a value between 0 and 1,
which represents the likelihood of the query enzyme and the candidate enzyme having a
same catalytic function. I propose three scoring methods: simple scoring method, matrix
scoring method and weighted matrix scoring method.

The simple scoring method compares residues between substrings one by one and divides
the number of matching ones by the total length of substrings2. In effect, the result is a
ratio of matches to the number of all symbol comparisons.

This method can be easily enhanced by the use of a scoring matrix. In this extension,
called the matrix scoring method, residues are compared one by one like in the previous
case, but instead of a match count, values from the scoring matrix corresponding to each
compared pair are summed up. Having the sum of scores s, the resulting score p is calculated
as

p =
s

nm

where n is the length of the window and m is the maximal value from the scoring matrix.
In effect, the preceding term calculates the ratio of obtained score to the maximal score,
that could have been obtained by the use of particular scoring matrix.

The catalytic function of enzymes strongly depends on the configuration of their active
sites. This effect can be reflected in the scoring approach by giving the catalytic region
higher importance during comparison. This is the purpose of the weighted matrix scoring
method. Its scoring algorithm is exactly the same, like in the case of the matrix method,
but while the scores from the outside of the catalytic region are added to the sum directly,

2Both substrings have the same length.

28

Figure 5.6: Alignment of a sperm
whale (Physeter macrocephalus; shown
in blue) myoglobin and leghaemoglobin
from Lupinus luteus (shown in red).
While both of them are responsible for
oxygen transport and are very similar
in structure, they yield only 19.46% se-
quence similarity. The figure is based
on an example from an article by Gao
and Li [18].

the scores of residues within the catalytic region are multiplied by a weighting coefficient
w ≥ 1. Formally, this results in the equation

p =
s

n0m+ n1mw

where n0 is the number of residues outside the catalytic region and n1 is the number of
residues contained directly within the catalytic region.

As the final adjustment, the score p can be multiplied by a partial score of the catalytic
region in order to further highlight its importance. The equation in this case becomes:

p =

(

s

n0m+ n1mw

)

sa

where sa is the score of a catalytic region.
Finally, the scores of all catalytic regions are summed and the result is divided by the

total number of regions on the query enzyme. The resulting value is compared with a
predefined threshold, and if it is higher, the candidate enzyme is considered to have the
same catalytic function as the query enzyme.

5.3.2 Method Based on Normalized Cross-Correlation

While it is commonly believed, that structurally similar proteins have also very similar
sequence, recent studies provide examples of proteins, which are structurally very simi-
lar, yet their sequences are very different (figure 5.6 illustrates an example of this phe-
nomenon) [18, 2]. If this difference is in residues belonging to some active site, alignment
verification methods from the preceding section may not work correctly.

This problem can be solved by the use of a better descriptor for amino acids, which
would provide more information about the residue than a plain symbol does. One of the
possible descriptors was proposed in article by Kidera et al. [25]. In their research, authors
have measured 10 different chemical and physical properties of each of the 20 naturally
occurring amino acids. As a result, every amino acid can be represented as a vector of 10
dimensions, where every dimension corresponds to one chemical or physical property, and
the whole sequence can be expressed as a matrix (table 5.1). If every amino acid from the
sequence corresponds to one column, the resulting matrix will have 10 rows and number of
columns equal to the length of the amino acid sequence.

29

The matrix representation of a sequence allows use of different comparison methods.
One such method, called normalized cross-correlation, was used for protein structure com-
parison by He et al. [20]. Originally, this method was developed for applications in computer
vision and first introduced in article by JP Lewis [30]. Given an image f and a template t,
the normalized cross-correlation corr of template t and image f at coordinates u and v is
equal to:

corr(u, v) =

∑

x,y(f(x, y)− f̄u,v)(t(x− u, y − v)− t̄)
√

∑

x,y(f(x, y)− f̄u,v)2
∑

x,y(t(x− u, y − v)− t̄)2

where f̄u,v is an average intensity value in the region of the image f , which is centered at
the coordinates u, v and has equal dimensions as the template t, and the symbol t̄ denotes
average intensity value of the whole template t. The result is a matrix of correlation
coefficients.

He et al. [20] took this equation and applied it to the case of the amino acid matrices
described before. As it is logical to compare only the same physical and chemical properties,
the calculation of correlation with vertical displacement can be completely neglected [20].
With this in mind, the equation can be adjusted into the following form:

corr(u) =

∑

x,y(f(x, y)− f̄u)(t(x− u, y)− t̄)
√

∑

x,y(f(x, y)− f̄u)2
∑

x,y(t(x− u, y)− t̄)2

Unlike the case of general normalized cross-correlation, the output of the method for amino
acid matrices is only a correlation vector [20].

In my approach, I use the normalized cross-correlation proposed by He et al. [20]
for enzymatic function verification. Following is the description of the main steps of this
method.

Firstly, for each catalytic region on the query enzyme, a substring is extracted using
the fixed window method described in the section 5.3.1. This substring is correlated with
the sequence of the candidate enzyme using the normalized cross-correlation. The maximal
value of correlation vector is used as the individual score of the catalytic region. The same
steps are repeated for every catalytic region on the query enzyme.

After the scoring, all results are summed up and divided by the number of catalytic
regions on the query enzyme. Like in the case of methods based on alignment, the resulting
score is compared with a predefined threshold, and if it is higher, the candidate enzyme is
considered to have the same catalytic function as the query enzyme.

S W T W E N

0.81 0.30 0.26 0.30 −1.45 1.14

−1.08 2.10 −0.70 2.10 0.19 −0.07
0.16 −0.72 1.21 −0.72 −1.61 −0.12
0.42 −1.57 0.63 −1.57 1.17 0.81

−0.21 −1.16 −0.10 −1.16 −1.31 0.18

−0.43 0.57 0.21 0.57 0.40 0.37

−1.89 −0.48 0.24 −0.48 0.04 −0.09
−1.15 −0.40 −1.15 −0.40 0.38 1.23

−0.97 −2.30 −0.56 −2.30 −0.35 1.10

−0.23 −0.60 0.19 −0.60 −0.12 −1.73

Table 5.1: Example of a sequence translated
into a matrix form using the method pro-
posed by Kidera et al. [25]. Each amino acid
is represented by a vector of 10 dimensions.
As a result, the whole sequence is represented
as a matrix where each residue is described
by one column. Figure is a modified version
of one presented in the paper by He et al. [20].

30

Chapter 6

Implementation of the Proposed

System

The system proposed in the preceding chapter was successfully implemented using the
Python 3, C and Bourne Shell programming languages. Its implementation consists of
three main modules that correspond to the three main parts of the system presented in the
specification – pre-processing, homology search and enzymatic function verification. All of
their implementation files are located in the src subdirectory on the attached CD. Further
details about contents of the CD are presented in the appendix A.

The pre-processing module, described in the section 6.1, takes raw metagenomic reads
and outputs them in a searchable format that I refer to as the metagenomic database.
Core of its implementation lies in scripts process.sh and dispatcher.sh located in the
src/metacentrum directory.

The second module, which is the subject of section 6.2, uses metagenomic database to
search for novel enzymes based on a search query. Both, the search module and the pre-
processing module, are written mainly in the Bourne Shell programming language, and are
able to function on a personal computer with Linux system, as well as, on a grid computing
environment with PBS Pro scheduler. Like in the case of pre-processing, search scripts,
searchdb.sh and metasearch.sh, are located in the src/metacentrum directory.

The third module, described in section 6.3, is mostly written in Python 3, and im-
plements all proposed enzymatic verification methods. Together, with other utility and
supporting functions, it is part of the biodb Python 3 library located in the directory
src/biodb.

The following sections provide further technical details about the implementation of the
proposed system. For information about its usage, please refer to the tutorial located in
the appendix E.

6.1 Metagenomic Read Pre-Processing

The pre-processing pipeline is implemented in the script process.sh that is located in the
directory src/metacentrum. When executed, this script expects two fastq files with raw
reads and their qualities as its input – a file with forward reads and a file with reverse
reads. If these are present, the script continues by applying a number of pre-processing
operations. An overview of the whole process is depicted on the figure 6.1.

31

Figure 6.1: The pre-processing pipeline applies series of pre-processing operations to files
with forward and reverse reads. Most important of these is low-quality region cutting and
technical sequence removal provided by the program Trimmomatic [9]. Reads, which lost
their partner from pair, during the read cutting, are merged into a single fasta file. After
pre-processing, all reads are translated into protein sequences by the program transeq from
the European Molecular Biology Open Software Suite [50]. The output of pipeline consists
of processed read files and of a file containing translated versions of all reads.

32

The main part of quality pre-processing is provided by an external program, called
Trimmomatic, that was presented in paper by Bolger, et al. [9]. This program removes
low-quality regions from reads by combining three cutting methods – leading base cutting
method, trailing base cutting method and cutting method based on a sliding window. The
leading and trailing base cutting methods remove bases incrementally from both ends of
reads, until a base with sufficient quality is encountered. The sliding window method is
more complex and instead of processing bases one by one, uses quality value averaging over
a sliding window. Further details about this method are provided in the section 5.1.

In order to determine whether a region has sufficient quality, its quality value must be
compared with some threshold. This threshold can be different for every cutting method,
and is specified as a command line argument of Trimmomatic. In order to give the user
sufficient control over the pre-processing process, these thresholds are also specified in
command line arguments of the script process.sh.

Apart from low-quality region removal, Trimmomatic is also able to remove regions
containing technical sequences. These artificial sequences are added into the sample during
the sequencing process and their presence could lead to errors in analysis. For this purpose,
the program provides two methods – simple method and palindromic method. Both of these
identify technical sequences in reads by comparison with their standard form. Standard
forms of technical sequences are different for every sequencing technology and are provided
by its manufacturer. Since these are not included directly in the Trimmomatic package,
the user is required to supply them in a fasta file1. Both, palindromic method and simple
method, are described further in the section 5.1.

The output of Trimmomatic consists of four fastq files – forward paired reads, reverse
paired reads, forward unpaired reads and reverse unpaired reads. The two unpaired files
contain reads, whose partners had very low quality, and were discarded during the cutting
process completely.

After the pre-processing by Trimmomatic, the reverse unpaired reads are reversed and
complemented using the revseq program from the European Molecular Biology Open Soft-
ware Suite (EMBOSS) [50]. This allows reverse and forward unpaired reads to be merged
into a single fastq file. At this point, the pre-processing with regards to quality is com-
pleted, and in order to save disk space, all fastq files are converted into corresponding fasta
files. The conversion is provided by the program seqret from the EMBOSS suite.

Finally, in the last step, all fasta files are translated using the program transeq, which
is also part of the EMBOSS package. The translation is conducted for each of six possible
reading frames and results in six translated records per every read. Translated versions of
all read files are concatenated and stored in a single fasta file (protein.fasta).

The final output of the processing script consists of four files – forward reads (out_1.fasta),
reverse reads (out_2.fasta), single reads (single.fasta) and translated reads (protein.fasta).

Since, in practice, the size of a metagenomic sample can reach hundreds of gigabytes, a
typical personal computer may have insufficient power for its effective processing, and the
execution can take a long time. In order to address this situation, I have decided to use
MetaCentrum grid computing infrastructure, which can accelerate the task by providing
massive parallelization.

The implementation for MetaCentrum is located in the wrapper script dispatcher.sh

that is built on top of the script process.sh. While the script was tested on MetaCentrum
only, it should work on any grid system with PBS Pro task scheduler installed. Like the

1With the exception of standard Illumina TruSeq3 adapter sequence. Right for its distribution was
granted to authors of Trimmomatic by its owner – company Illumina [9].

33

Figure 6.2: Resulting directory layout af-
ter processing on a grid computing infras-
tructure using the script dispatcher.sh.
Each subdirectory contains a block of data,
which was processed by one node. While,
the data could be merged into a single set
of files, the chunked layout is preserved, so
that the parallelized searching script does
not have to split the files again.

script process.sh, the dispatcher is written in Bash and has the same main inputs – the
forward and reverse read fastq file. Apart from providing these files, the user is also required
to specify parameters of parallelization – the number of processing nodes and the number
of processors to use per node.

When executed, the dispatcher dynamically generates and schedules short scripts to be
executed on processing nodes (one per each node). Each generated script copies chunk of
both input fastq files onto its processing node. Given N nodes numbered 1, . . . , N and a
fastq file with M entries, each node will receive M/N records. Furthermore, input files are
split and copied in an interleaved fashion. This means that the node 1 receives every 1-st
record, node 2 every 2-nd record, and so on up to the M-th node, which receives every M-th
record. Chunking is not implemented directly in the dispatcher script, but an external
program filter_fastq.py written in Python 3 is used.

After the chunking and copying, each generated script runs the process.sh script on
its block of input data. Quality thresholds required for the execution are extracted from a
quality configuration JSON file, which has to be provided by the user. Apart from thresh-
olds, this file has to contain the name of a fasta file with technical sequences for sequencing
technology, which produced input metagenomic reads. Its example with description is pre-
sented in the appendix B.

After the processing, all files with partial results are copied back from processing nodes
into the directory, from which the dispatcher script was executed. It is important to note,
that files from nodes are not merged and are left in a split form. Therefore, the final result
of the dispatcher script consists of M directories named 0, 1, . . . ,M − 1, each containing
forward read file, reverse read file, single read file and a file with translated reads (diagram
of this directory structure is presented on the figure 6.2). In further sections, I will refer to
the output of dispatcher script as a metagenomic database.

6.2 Search for Homologous Sequences

The whole searching process, depicted on the figure 6.3, can be divided into three main
steps: homology search, assembly and enzymatic function verification.

The first step of the searching process, homology search, is implemented in the script
searchdb.sh. When executed, the script uses file with a search query to search through the
metagenomic database for matching enzyme candidates. The search query should either
be a fasta file with a single protein sequence or a multiple sequence alignment. However,
in the latter case, the alignment file must be converted into a profile hidden markov model

34

and stored in a format compatible with software HMMER2 [16]. Apart from the search
query, the script also requires pre-processed metagenomic reads (paired, forward, single and
translated read file).

The homology search implementation supports both methods described in the sec-
tion 4.2 – the BLAST heuristic and homology search based on a Profile Hidden Markov
Model. User can select the desired method through command line arguments of the script
searchdb.sh. Even though these methods lie at the core of the search, they are not part
of the script itself and are provided by external programs. For the BLAST heuristic, I have
decided to use implementation from the National Center for Biotechnology Information
(NCBI) [36]. For the option of Profile Hidden Markov Model, I have chosen the software
HMMER [16]. While HMMER is able to use as its search query both, a single sequence
and a profile HMM, BLAST is not capable to use HMM. Therefore, if an HMM is provided,
HMMER is used regardless of the method selected by the user.

The search script uses one of these programs to search through the file with translated
reads. The result is a set of translated reads, which have a significant similarity with the
search query. In order to maximize the chance of finding a whole enzyme, these have
to be assembled into longer sequences. Since, most modern assemblers require nucleotide
sequences, corresponding untranslated reads have to be extracted from the forward, reverse
and single read file using the utility filter_fastq.py. In case of paired reads, if translated
sequence of one read from pair has a significant match, the other read is automatically
extracted, regardless of whether its translated sequence is similar to the input query or not.
Obtained reads are stored in fasta files that correspond to the input read files – matching
forward reads, matching reverse reads and matching single reads file.

These files can be assembled into longer sequences (contigs) by assembly method based
on a De Bruijn graph described in 4.1.1. I have chosen its implementation, called Velvet,
proposed by D. R. Zerbino and E. Birney [58]. After a number of experiments, I came
to conclusion, that I was able to achieve best assembly only by individual fine-tuning of
assembly parameters for each set of homology search results. Therefore, I have not included
the assembly step in the script searchdb.sh and the user is required to assemble reads
manually.

After the assembly, the user can use the script verify.sh to apply one of the enzymatic
function verification methods onto the set of assembled contigs. Since the verification is
based on a comparison with some known enzyme, the user has to provide a JSON file
containing its sequence and annotation of its catalytic regions (format of this file is described
further in the appendix C). Apart from that, the script also requires the search query file
used in homology search.

In the first step of its execution, the verification script uses program transeq to translate
assembled contigs into protein sequences under all six reading frames. This step is crucial,
because proposed enzymatic function verification methods can be only applied to protein
sequences. However, not all sequences produced by translation can be valid enzyme candi-
dates. For every gene, only translation using one of the six reading frames leads to a valid
protein sequence. Furthermore, some of the sequences may have been wrongly assembled
and all of their translations are inevitably invalid. In order to remove these erroneous se-
quences, the script repeats the search over translated contigs using BLAST or HMMER
with the same search query sequence as the one used in the script searchdb.sh. Only
sequences, which are results of the second search, are kept in the contig file. Afterwards,

2HMMER suite directly provides utility hmmbuild that is able to convert a multiple sequence alignment
into an hmm file.

35

Annotation of catalytic

regions

Figure 6.3: Diagram of the search system implementation. The input of the system consists
of a file with translated reads, processed read files, file containing an input search query and
a file with an enzyme sequence and annotation of its catalytic regions. First, the translated
file is searched by either BLAST or HMMER. Next, untranslated reads corresponding to
found sequences are extracted. Afterwards, the resulting set of reads must be manually
assembled by the user. Finally, after the assembly, contigs are translated and filtered based
on their sequence similarity using BLAST or HMMER and than using verify.py, in order
to filter out enzymes, which lack the desired catalytic function.

36

an enzyme verification method is applied to assembled sequences, in order to discard those,
which do not posses the desired catalytic function. The user can select any of proposed veri-
fication methods through the command line arguments of the verification script. Internally,
the script propagates method setting and input files to the python program verify.py.
The result of its execution is a file with identifiers of sequences, which posses the the de-
sired catalytic function, along with their verification scores. Details of implementation of
enzyme verification methods are subject of the next section.

As in the case of sample pre-processing, the speed of the search can be improved by
parallelization using the MetaCentrum grid computing environment. For this purpose, I
have implemented a wrapper script metasearch.sh. As its input, the script excepts a valid
metagenomic database and a file with search query. When executed, it spawns a number
of jobs that is equal to the number of chunks (subdirectories) of the metagenomic databse.
Each of these jobs firstly copies one chunk from the database onto its processing node.
Then, it executes homology search using the script searchdb and copies the search results
back to the directory, from which the metasearch.sh script was executed. Finally, after all
jobs have finished their execution, a collector job merges search results from all processing
nodes. Results of the parallelized script are equal to results of the homology search script
searchdb.sh. The subsequent assembly and enzymatic verification steps are not subject of
parallelization. In all of my experiments, the results of homology search were small enough
to be comfortably processed on a personal computer, and therefore, I have concluded, that
the overhead of parallel processing would be greater than its benefit.

6.3 Enzymatic Function VeriĄcation

The main purpose of enzymatic function verification methods is to decide, whether two
arbitrary enzymes have the same catalytic function. While one of them should be already
known, the other is expected to be a novel enzyme candidate. The decision is based on
their sequences and on the list of catalytic regions of the known enzyme. In essence, this
problem can be viewed as a classification task, in which the enzyme candidate is to be
classified into the class of enzymes with the same catalytic function as the known enzyme,
or into the class of enzymes which do not posses this function.

The central part of the enzyme verification implementation is a hierarchy of classi-
fier classes located in the source file src/biodb/biodb/enzyme.pyx (corresponding class
diagram is depicted on the figure 6.4). The root of the hierarchy is an abstract class
Classifier and all of the verification methods are implemented in its inherited classes.
Namely, these classes are: gAlignmentClassifier (methods based on global alignment),
lAligmentClassifier (methods based on local alignment) and correlateClassifier

(method based on correlation). Each of these provides a method call, which given a
known enzyme and an enzyme candidate with annotated catalytic regions, returns a classi-
fication score. Expected format of enzyme data structures is presented in the appendix C.
Since each class implements different verification approach, their call methods differ as
well. Descriptions of these variants are presented in following sections.

Apart from classifier hierarchy, file enzyme.pyx also contains class classifierProvider,
whose purpose is to provide means to instantiate and configure classifier classes from a string
descriptor. This descriptor should contain an identification of a particular classifier and pa-
rameters of its classification method and should be provided as a command line argument to
the verification script verify.sh. Details about its syntax are provided in the appendix D.

37

Figure 6.4: Figure illustrates the hierarchy of classifier classes. Its root is the class
Classifier, which implements general serialization and deserialization operations. Its
inherited classes provide implementations of enzyme verification methods. All of them
must contain a method call, which returns a classification score for two provided enzymes.
The class classifierProvider serves as a dispatcher responsible for instantiation of classifiers
based on a descriptor string. Syntax of this string is the subject of appendix D.

6.3.1 Methods Based on Alignment

The implementation of methods based on global alignment follows the proposal presented in
the section 5.3.1 and is located in the call method of the class gAlignmentClassifier. Its
first step is an alignment of two input enzyme sequences. For this purpose, I have decided
to use functions align.globalxs and align.globald from the pairwise2 module of the
Biopython Python 3 library [12]. While the function align.globalxs uses a simple scoring
model with score 1 for match and 0 for mismatch, the function align.globald uses a scoring
matrix. The choice of a scoring model, scoring matrix, as well as choice of other classification
parameters is provided through the method setup of gAlignmentClassifier. However,
the range of available scoring matrices is limited to those provided by the MatrixInfo

module of the Biopython library.
After the alignment, a classification score of two aligned sequences is calculated us-

ing the function score_global defined in the file scoring.pyx, which is located in di-
rectory src/biodb/biodb/util/. Internally, score_global creates an offset array using
the function mkOffsetArr and calls the function score_simple for each catalytic region.
The function score_simple uses the offset array to adjust the beginning and ending po-
sition of each region, applies windowing and scoring and returns a classification score.
While scoring is mainly implemented in this function, soft and fixed windowing strategies
are implemented in functions n_compare_direction and compare_fixed. Like the func-
tion score_global, functions mkOffsetArr, score_simple, n_compare_direction and
compare_fixed are also defined in the file scoring.pyx. The final classification score

38

returned by score_global is the average score across all catalytic regions of the known
enzyme.

Apart from its use in alignment, a scoring matrix can be also used to calculate the
enzymatic verification score. In such case, it must be provided as an argument to the call
of the function score_global. If no explicit matrix is given, the function uses special
matrix idMatrix defined in the file enzyme.pyx, which is equivalent to the simple scoring
model (1 for match, 0 for mismatch).

Furthermore, the alignment can result in insertions of a special gap character. This
character is not included in standard scoring matrices and its scoring is addressed by the
function score_simple explicitly. The comparison of a gap character with a non-gap
character has a value of 0 and the comparison of two gap characters has a value 1 regardless
of the used matrix.

Apart from proposed verification methods, which use global alignment, I have decided
to implement a set of simple methods based on local alignment. Their implementation is
located in the class lAlignmentClassifier. Its call method uses function score_local

defined in the file scoring.pyx in order to perform scoring. This function extracts each
catalytic region and a fixed number of residues on both sides of it. Extracted fragments
are aligned to the sequence of the enzyme candidate using the Smith-Waterman algorithm
(function align.localds from the pairwise2 module of the Biopython library). In con-
trast to global methods, no special scoring operation is applied and the resulting score for
each region is the raw alignment score returned by the function align.localds. The final
score is an average of scores across all catalytic regions.

During the evaluation phase of my research, in which a great number of enzyme se-
quences have been used, it became quickly apparent, that in order to achieve a reasonable
execution speed, the critical operations of alignment and scoring must be as fast as pos-
sible. In order to achieve this goal, source files scoring.pyx and enzyme.pyx have been
compiled using the compiler for Cython programming language. Instead of using the stan-
dard Python interpreter, Cython files are translated into the C programming language,
compiled and than linked as dynamic libraries. In this way, module compiled by Cython
can achieve a big performance improvements over a plain Python implementation [7].

6.3.2 Method Based on Normalized Cross-Correlation

The verification method based on the normalized cross-correlation is implemented in the
call method of the classifier correlateClassifier. When executed, this method trans-
lates both enzyme sequences into a matrix form using the function aaToMatrix3 located in
the file enzyme.pyx. Afterwards, it iterates over catalytic regions of the known enzyme and
extracts a submatrix containing the catalytic region and a fixed number of residues on both
sides of it. Each submatrix is correlated with the whole matrix of the enzyme candidate
using the function norm_correlate from the file sequence_correlate.pyx (located in the
directory src/biodb/biodb/util). Output of this method is not a whole correlation ma-
trix, but only its maximal value. Finally, the average of maximal correlation values across
all catalytic regions is returned as the final classification score.

The function norm_correlate calculates correlation using the normalized cross-correlation
method presented in the section 5.3.2. In order to achieve optimal performance, I have de-
cided to implement it in the C programming language. In effect, the Python function

3The principle of this translation is described in the section 5.3.2.

39

norm_correlate serves only as an interface to this external implementation. The C code
is located in files ncorrelate.c and ncorrelate.h.

40

Chapter 7

Evaluation of the Proposed System

After the system has been successfully implemented, it was neccessary to evaluate its per-
formance and analyze its abilities. In order to do this effectively, I have decided to evaluate
enzymatic verification module and homology search module separately. In both cases,
datasets required for testing were obtained from public databases or generated in silico.
The pre-processing part of the system was not subject of the evaluation, because all pre-
processing strategies used are well-known, their use is widespread and have been previously
tested [9].

7.1 Homology Search in Metagenomic Data

A suitable set of metagenomic samples is crucial for proper evaluation of the search mod-
ule. These can be found in a number of online databases, such as the Sequence Read
Archive (SRA) provided by the International Nucleotide Sequence Database Collaboration
(INSDC) [29], which I have chosen as the primary source for my research. Since metage-
nomic samples often require a big amount of storage space, it is not possible to process
them massively and it is neccessary to pick few suitable candidates.

After some consideration, I have decided to use two real samples from the SRA and one
artificial, generated on a computer (for their summary, see table 7.1). The first real sample
(NCBI accession SAMN00737776) was collected from prairie in Kansas, USA as a part of
the Great Prairie Soil Metagenome Grand Challenge1. It contains a big amount of data
(456 GB) with a sufficient quality2; therefore it could be a suitable candidate for discovery
of novel haloalkane dehalogenases.

However, since there is no prior knowledge about its contents, it would not be possible
to use it to fully determine performance of the search system. To give an example, if a
search would return zero results, it is not sure, whether this is caused by some error in the
system or by real absence of the enzyme in the sample. In order to address this problem, I
have decided to create artificial genome from sequences of seven known dehalogenases. In
between these sequences, I have included a large amount of random nucleotides, so that
its configuration will resemble the diverse character of a common metagenomic sample.
Afterwards, I have sequenced the created file in silico using the sequencing simulation
program Grinder implemented by Florent E. Angly et al. [6].

1http://genome.jgi.doe.gov/GrePraGChallenge_2/GrePraGChallenge_2.info.html
2Quality was assesed by FastQC [5] quality checking program.

41

Sample Accession Size Description

Prarie metagenome SAMN00737776 456 GB Study assesing impact of land
management on soil.

Lung metagenome SAMN01923112 1.1 GB Study to find the cause of
death.

Generated sample N/A 5.2 MB Testing dataset consisting of
dehalogenases with PDB ac-
cessions 3WI7, 4H7F, 4H77,
4MJ3, 5ESR, 5LKA and ran-
dom nucleotides.

Table 7.1: Table summarizes information about all three testing samples. While the sample
from Kansas has the biggest potential to contain novel dehalogenases, it is unsuitable for
testing due to the absence of prior information about its contents. The second sample,
metagenome from lungs of Terézia Hausmann, has bigger chance of containing a dehalo-
genase, because of the abudance of mycobacterium tuberculosis. The third sample was
artificially constructed from sequences of known dehalogenases and random nucleotides
and its sequencing was simulated in silico by sequencing simulator Grinder.

While the use of an artificial sample enables comparison of obtained results with a
“ground truth”, its character may still be different from samples found in nature. For this
reason, I have decided to use a second real sample (NCBI accession SAMN01923112) that
was extracted from mummified remains of 18th-century Hungarian woman Terézia Hausman
and analyzed in study by Jacqueline Z.-M. et al. [10]. The reason, that makes it suitable
for testing, is an unusually high concentration (8%) of genes belonging to mycobacterium
tuberculosis. This bacteria is known to posses genes for dehalogenases; therefore this sample
is very likely to contain a dehalogenase as well [24].

7.1.1 Results

Before the experimentation, samples were pre-processed on MetaCentrum grid using the
pre-processing script dispatcher.sh. Quality thresholds needed for low-quality region
removal were determined based on quality analysis conducted using the software FastQC [5].
The technical sequence removal was performed using Illumina TruSeq3 standard adapter
sequences, which are shipped as part of the Trimmomatic software package.

Following the pre-processing, the soil sample from Kansas was searched using a multiple
sequence alignment of 1,973 dehalogease sequences, which was created and kindly provided
by experts from Loschmidt Laboratories [35]. The search resulted in one suitable candidate.
In order to determine whether the found protein is a novel enzyme or an existing one, a
search for similar sequences using the BLAST algorithm was conducted over the NCBI
protein sequence database [40]. The closest match (70% identity) was a dehalogenase
produced by bacteria sphingobium japonicum (PDB accession 1G42).

Next, the found sequence and the sequence from NCBI were aligned using the Needleman-
Wunch global alignment algorithm, so that it would be possible to compare their catalytic
sites. This revealed, that the found enzyme is missing important catalytic residues and
probably would not perform its catalytic function. Details about missing residues are pre-
sented on the figure 7.1.

42

Nucleophile D108, after-nucleophile halide W109, before-cap acid E132, no base 272 and halide 38.

LinB 42 SYLWRNIMPHCAGLGRLIACDLIGMGDSDKLDPSGPERYAYAEHRDYLDALWEALDLGDR

SYLWRNI+PH AGLGR +A DL+GMG+S + P+G Y +A+H YLDA ++AL L +

Kansas 1 SYLWRNIIPHVAGLGRCLAPDLVGMGESGR-SPTG--SYRFADHSRYLDAWFDALGLTNN

LinB 102 VVLVVHDWGSALGFDWARRHRERVQGIAYMEAIAMPIEWADFPEQDRDLFQAFRSQAGEE

VVLV+HDWGSALGF WA RH ERVQ IAYMEAI P W DFP +F++ RS GE

Kansas 58 VVLVLHDWGSALGFHWAYRHPERVQAIAYMEAIVQPRRWEDFPAGRDAMFRSLRSAQGER

LinB 162 LVLQDNVFVEQVLPGLILRPLSEAEMAAYREPFLAAGEARRPTLSWPRQIPIAGTPADVV

LVL DN F+E VLP I+R L++ EM AYR PF + EAR PTL WPR++PI G PADVV

Kansas 118 LVLDDNFFIETVLPKSIIRTLTDDEMNAYRAPF-TSREARLPTLVWPRELPIDGEPADVV

LinB 222 AIARDYAGWLSESPIPKLFINAEPGALTTGRMRDFCRTWPNQTEI 266

++ Y W+S++ IPKLFI AEPGA+ GR R+FCRTWPNQ E+

Kansas 177 SVVDAYGAWMSQTAIPKLFIAAEPGAILVGRAREFCRTWPNQREV 221

Figure 7.1: Alignment of the found sequence with a linB dehalogenase from bacteria sphin-
gobium japonicum (PDB accession 1G42). The found sequence lacks two important residues
that constitute catalytic pentad of dehalogenases – a halide near position 38 and a base
near position 272. Because of this, the found enzyme would probably not have the desired
catalytic function [46]. Present catalytic residues are typesetted in bold.

The same searching process was performed with the lung sample from mummified
remains of Terézia Hausmann. The search resulted in one full enzymatic sequence of
haloalkane dehalogenase. Further investigation using the NCBI BLAST has shown 100%
similarity with HDL from mycobacterium tuberculosis (product of gene Rv2579, figure 7.2).
Given the abudance of tuberculosis genome in the sample, this is an expected result. How-
ever, the fact that the gene from 200 year old remains has the same sequence as the one in
contemporary m. tuberculosis bacteria may be interesting for further research.

>M. tuberculosis H37Rv|Rv2579|dhaA

MTAFGVEPYGQPKYLEIAGKRMAYIDEGKGDAIVFQHGNPTSSYLWRNIMPHLEGLGRLV

ACDLIGMGASDKLSPSGPDRYSYGEQRDFLFALWDALDLGDHVVLVLHDWGSALGFDWAN

QHRDRVQGIAFMEAIVTPMTWADWPPAVRGVFQGFRSPQGEPMALEHNIFVERVLPGAIL

RQLSDEEMNHYRRPFVNGGEDRRPTLSWPRNLPIDGEPAEVVALVNEYRSWLEETDMPKL

FINAEPGAIITGRIRDYVRSWPNQTEITVPGVHFVQEDSPEEIGAAIAQFVRRLRSAAGV

Figure 7.2: Sequence of dehalogenase, which is the product of gene Rv2579 from mycobac-
terium tuberculosis reference genome H37Rv. Search using the lung sample resulted in one
match identical to this sequence. No novel variants were found.

Finally, the artificial sample was used to determine the accuracy of the search system.
Because the sample was generated, its contents are known and if the system works cor-
rectly, the set of resulting candidate sequences must contain only those, which were used to
generate the sample. However, results have shown, that this is not the case. Depending on
settings of assembly parameters, approximately 30–50% of sequences were chimeric. This
suggest, that the found dehalogenase from the Kansas sample may also by chimeric and not

43

an enzyme commonly found in nature. Interestingly, this problem does not apply to the
result from lung metagenome, because it was identical to an existing enzyme. The possible
explanation to why the assembly have not failed in this case could be, that there were no
other variants of dehalogenase in the sample, and so it was not possible to assemble parts
from different genes into a chimeric sequence. Overall, the problem of chimeric sequences
may be caused by inability of assembly program Velvet to work with metagenomic data, as
it was developed to function with genomes.

For this reason, I have decided to experiment with an alternative algorithm for gene ex-
traction from metagenomic samples, called Gretel, published by Nicholls, et al. in 2016 [42].
In contrast to assembly, which uses found reads directly, Gretel requires them to be firstly
aligned to the input search query sequence. If the user conducted the search using a multiple
sequence alignment, it is possible to proceed by choosing one sequence from the alignment,
or its consensus. Next, sequences of aligned reads are compared with corresponding parts
of the input query. Output of this comparison is a set of bases from reads, which differ
from corresponding bases on the query sequence. These differences are commonly called
Single-Nucleotide Polymorphisms, or SNPs. The Gretel algorithm uses reads together with
their SNPs to create a graph data structure. In turn, this structure is traversed, and the
information stored in it is used to assemble reads into longer sequences. Assembly is per-
formed in a way, which maximizes likelihood of resulting contigs being genuine non-chimeric
sequences.

While experimenting with Gretel on the Kansas prairie sample provided no search re-
sults, experimentation on the lung sample resulted in two candidates identical to Rv2579
tuberculosis gene. After a closer inspection, it became apparent, that in the case of the
Kansas sample, the used alignment program Bowtie 2 [28] was not able to align any reads.
Like in the case of Velvet, the reason for this may lie in fact, that it was implemented for
standard genomic data. In essence, its alignment strategies may be too conservative to
align diverse variants of genes that could be found in a metagenomic sample.

Interestingly, the use of the algorithm on the generated dataset have led to no results
despite successful alignment. In order to find a possible reason, I have compared the
alignment of reads in the case of lung and generated sample. While the generated sample
contained minimal number of SNPs, the lung metagenome contained uniform distribution
of SNPs across reads. These were mostly positioned on the third nucleotide in codon.
Since, codons encoding the same amino acid usually differ only in the third nucleotide,
most of these mutations were probably neutral (i.e. not causing change of amino acid) [3].
Even though they were neutral, their presence may have helped Gretel to build the graph
structure. In case of the generated sample, the small number of SNPs may have rendered
the construction impossible.

7.2 Catalytic Function VeriĄcation

Proper assesment of verification methods requires a suitable dataset of enzyme sequences,
which would provide catalytic region annotations and would guarantee sufficient quality of
data. Based on these requirements, I have decided to use the data from Swiss-Prot protein
sequence database, which has its entries manually reviewed by human experts [44]. Enzymes
in Swiss-Prot are divided into groups based on chemical reactions they catalyse. Each group
is identified by a sequence of four numbers called the Enzyme Commision (EC) number [54].
In the written form, these numbers are separated by the dot character and preceded by
the string “EC”. For example, the identifier corresponding to Haloalkane Dehalogenases is

44

“EC 3.8.1.5”. This method of classification was developed by the International Union of
Biochemistry in 1965 and its use is widespread [43].

For the purpose of evaluation, all enzymes with their annotations were downloaded from
the Swiss-Prot database and grouped by their EC number. The resulting set contained 5038
groups and 216 208 records3. In order to reduce the size of the dataset and increase the
variability of sequences within groups, each group was clustered using the protein clustering
program CD-HIT [32]. Clustering was performed based on 90% sequence similarity. This
means, that sequences which had 90% or more identical (or closely-related) residues, were
assigned to the same cluster. After clustering, all, but representative sequences of clusters,
were removed from the dataset. This resulted in approximately half of sequences being
discarded.

Furthermore, I have decided to limit the dataset to enzymes, which have only one
catalytic region. Not only this significantly reduces its size, but also helps to hihlight
differences in performance among classifiers by providing the biggest classification challenge.
This is because all of the implemented verification methods take into account all catalytic
regions of the input enzyme, and therefore, the greater the number of catalytic regions there
is, the more accurate the classification will be. For instance, if there are three catalytic
regions on an enzyme and one is misclassified, the correct classification of remaining ones
can still prevent the incorrect classification of the whole enzyme. In this way, if a number of
regions is sufficient, even poorly-performing classifier can seem to have similar performance
as the one, which is very accurate. The final dataset was stored in a special JSON format,
and is avaliable in the file data/active_clustered.json.

After the final dataset was prepared, it was used in a number of classification experi-
ments. Each experiment followed the same evaluation protocol depicted on the figure 7.3.
In its first step, a random subset of the dataset was extracted for evaluation. This is necces-
sary, because even though the amount of data have decreased during the preparation, it was
still too large to be evaluated in reasonable time. In all cases, the resulting subset consisted
of 10 randomly selected EC groups, with each containing 30 randomly selected enzymes.
Next, the obtained subset was split into two subsubsets. While, each of these contained the
same EC groups, enzymes within groups were split in the ratio 1:2 (10 enzymes in the first,
20 in the second). I will refer to the first, smaller, subsubset as the set of candidate enzymes
and to the second as the set of known enzymes. In the following step, catalytic function of
each enzyme from the set of candidate enzymes was verified by selected verification method
using all of the enzymes from the set of known enzymes. Verification using an enzyme
from the same EC group was expected to have positive class label, while verification with
enzymes from outside of candidate’s group the negative one. In order to counter possible
sampling bias, the process of random subset extraction, splitting and evaluation was re-
peated 10 times in each experiment. Finally, the obtained experimental results were used
to calculate the Reciever operating characteristic (ROC) and Area under the curve (AUC)
performance metrics. These were averaged across repetitions of each experiment.

3Records were downloaded in December 2016.

45

Figure 7.3: Diagram of the evaluation protocol. In the first step, a random subset is
selected from the testing dataset. Then, it is split into the set of candidate and known
enzymes. Next, in the evaluation step, all enzymes from the set of candidate enzymes are
classified using the set of known enzymes. In order to avoid possible sampling bias, in each
experiment, the whole process is repeated for a number of times. In the final step, obtained
data is used to calculate performance metrics of classifiers.

7.2.1 Methods Based on Global Alignment

The first experiment was conducted using the verification method based on the global
alignment and its main goal was to determine the effect of different scoring matrices on
the performance of the classifier. Used matrices belonged to two of the most common
scoring matrix families – Point Accepted Mutation (PAM) and Blocks Substitution Matrix
(BLOSUM). While PAM matrices were created with regards to evolutionary distance, the
BLOSUM family was built solely based on alignment of conserved protein sequences [21].
In both cases, individual matrices are further identified by a number. While, in the case
of PAM, this number denotes the evolutionary distance, in case of BLOSUM, the num-
ber expresses the minimal similarity of sequences, which were used to build the matrix.
For my experiment, I have chosen three matrices from the PAM family – matrix for short
evolutionary distance (PAM 30), medium evolutionary distance (PAM 120) and long evolu-
tionary distance (PAM 250) – and analogically, three from the BLOSUM family – a matrix
for closely releated proteins (BLOSUM 100), related (BLOSUM 62) and distantly related
proteins (BLOSUM 30).

First, the performance of variants using all of these matrices, together with the variant
using the simple scoring model, was evaluated for different lengths of the classification win-
dow. In all cases, the fixed windowing strategy was used. Evaluation results are presented
on the graph 7.4, which shows their performance expressed by the metric AUC. For all
window sizes, the matrix BLOSUM 62 has achieved the best classification results. This
is probably because the matrix BLOSUM 62 provides the most accurate alignment, which

46

0.85

0.90

0.95

0 25 50 75 100
Window size

A
U

C

Method

Blosum 100

Blosum 30

Blosum 62

No matrix

Pam 120

Pam 250

Pam 60

Figure 7.4: The graph shows the average performance of unweighted global alignment
methods for different scoring matrices, expressed as the AUC metric averaged across 10
runs of the experiment. Results are presented with respect to the length of the classification
window. The best performance was achieved with the matrix BLOSUM 62, regardless of
the window size.

is cruicial for scoring, as catalytic residues can be correctly compared only when they are
correctly aligned. This claim is further supported by the study presented by S. Henikoff
and J. G. Henikoff [22], in which they compared the performance of PAM and BLOSUM
matrices and came to conclusion that BLOSUM 62 is the best performing matrix for both
homology search and alignment. The maximal AUC achieved was 0.94 with window size 11.

Next, the same experiment was repeated using the soft windowing strategy. In this
case, the best achieved AUC among all matrix variants was 0.6, which is only slightly
better than an AUC of a classifier based on random guessing (AUC 0.5). The reason for
this poor performance probably lies in the fact, that soft window methods take into account
only positions, where sequences of both, the known enzyme and the enzyme candidate, have
no gaps. In effect, the information about insertions and deletions is discarded, even though
it might be important for the classification.

Finally, in the last experiment, the best global alignment method with matrix BLO-
SUM 62 was evaluated for window size values in range 0 to 30 using different scoring weights
of the catalytic region. The experiment was also repeated for the weighted variant with
multiplication by the partial score of the catalytic region. Maximal AUC obtained by each
configuration is presented in the table 7.2. The best results were achieved with no multi-
plication and the weight 2. The graph 7.5 compares the performance of this variant with
its unweighted counterpart. For all sizes of the classification window, the weighted variant
shows better performance. Its maximal AUC of 0.95 was achieved with the window size 11,
and constitutes an incerease of 0.01 compared with the maximal value of the unweighted
variant.

While the use of weight 2 led to best classification results, weights 4 and 5 manifested
worse performance than unweighted scoring. Furhermore, in all cases, the variant with

47

1 2 3 4 5

With multiplication 0.930 0.926 0.921 0.917 0.914
Without multiplication 0.949 0.950 0.950 0.949 0.948

Table 7.2: The table summarizes results of the experiment with weighted global method
(matrix BLOSUM 62) for weights in the range 1–5 and for both, the variant with multiplica-
tion by the partial score of the catalytic region and the variant without it. Experiment was
repeated 10 times for each weight setting using all window sizes in the range 0–30. Values
in the table represent the maximal average AUC that was encountered for the given weight
setting. The best result was achieved with weight 2 and no multiplication (AUC 0.9499).
However, the variant with the weight 3 reached nearly the same score (AUC 0.9498).

multiplication, which strongly emphasizes the score of the catalytic region, have achieved
worse AUC then the variant without it. Both of these facts suggest, that while higher
weight of the catalytic region can improve classification results, exaggerated emphasis on
it may lead to the opposite.

7.2.2 Method Based on Local Alignment

The evaluation of methods based on the local alignment was conducted using the same
matrices as the evaluation of global methods. While, in the case of global methods, the
presence of scoring matrix helped to achieve better results, in this case it proved to act
in the opposite manner. This effect is illustrated on the graph 7.6. As it shows, the local
method with no matrix performed significnatly better than any of the variants with matrix.
Its maximum average AUC value was 0.93 (window size 9), while the best matrix-based
variant (BLOSUM 62) have reached only value 0.77 (window size 7).

The possible explanation of this result lies in the fact, that catalytic regions tend to
be very conserved. This means, that two enzymes with the same catalytic function will
probably have a number of identical residues around the position of their catalytic regions.
Therefore, when trying to align the catalytic region of one enzyme with the whole sequence
of the other, it might be most effective to do it strictly based on symbol comparison and
not to take into account other properties of residues. While the simple scoring model works
exactly in this manner, the scoring matrices use different scoring values for matches and
mismatches based on residues involved. For instance, the matrix BLOSUM 62 assigns score
value 11 for a match between two tryptophan residues, but only 4 for two alanine residues.
Likewise, mismatch between lysine and arginine has a positive score of 2, while mismatch
between serine and tryptophan has negative penalty of -3. In this way, scoring matrices
allow to align proteins which are homologous, but do not have identical sequences. However,
the ability to match sequences which do not share high identity on the level of symbols may,
in the case of short conserved catalytic regions, lead to false alignments.

48

0.87

0.90

0.93

0 25 50 75 100
Window size

A
U

C

Method

Blosum 62, w=2

Blosum 62

Figure 7.5: The graph compares performance of the best unweighted global method (matrix
BLOSUM 62) with performance of its best weighted variant (matrix BLOSUM 62; weight
2; no multiplication) for different lengths of the classification window. The metric used
is AUC averaged across 10 runs of the experiment. The weighted method achieves higher
scores for all sizes of the classification window. Its maximal score is 0.95, which represents
an increase of 0.01 compared with the unweighted variant.

0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Window size

A
U

C

Matrix

Blosum 100

Blosum 30

Blosum 62

No matrix

Pam 120

Pam 30

Pam 60

Figure 7.6: The graph shows the average performance of local alignment methods for
different scoring matrices, expressed as the AUC metric averaged across 10 runs of the
experiment. Results are presented with respect to the length of the classification window.
For all window lengths, the best performance was achieved without matrix. Maximal AUC
value of this variant was 0.93.

49

7.2.3 Method Based on Normalized Cross-Correlation

The first step of the correlation method, described in the section 5.3.2, is translation of
sequences into a matrix form, in which, each residue is represented as one column vector.
Values of this vector correspond to some measured physical or chemical properties of the
given residue. This form of representation, as well as, the first set of vectors was introduced
in the paper by Kidera et al. [25]. In my experiment, I have used their original values, as
well as a newer set, which is part of the PredictSNP disease-releated mutation classifier
implemented by Bendl et al. [8].

Graph 7.7 compares the performance of these two variants with respect to the size of the
classification window. For all window sizes, the original set of vectors showed significantly
better performance. Its maximal average AUC value was 0.94 (window size 9), while for the
set from PredictSNP it was only 0.81 (window size 65). Deeper analysis of reasons why the
original set of vectors greatly outpreformed the set from PredictSNP would require expert
knowledge from biology and chemistry, and is beyond the scope of this thesis.

0.6

0.7

0.8

0.9

0 25 50 75 100
Window size

A
U

C

Method

Kidera

PredictSNP

Figure 7.7: The graph compares the average performance of the correlation method with
residue vectors introduced by Kidera et al. [25], and its variant with vectors from the
PredictSNP [8] disease-releated mutation classifier. The metric used is AUC averaged
across 10 runs of the experiment. Performance is presented as a function of the classification
window length. The set of vectors presented by Kidera et al. had better performance for
all lengths of the classification window. Its best achieved AUC was 0.94 for window length
9. The best AUC of the second method was 0.81.

7.2.4 Comparison of VeriĄcation Methods

The goal of the final analysis was to take a closer look at the best performing variants from
each of the classification methods, in order to compare their properties and create a set
of recommendations for their use. The analyzed variants were: global verification method
using the BLOSUM 62 matrix with catalytic region weight 2 and no multiplication, local
verification method with no matrix and correlation method with the original set of vectors

50

Method Matrix Window AUC

Global Blosum 62 11 0.950
Correlation N/A 9 0.943
Local No matrix 9 0.928

Table 7.3: The table presents maximal encountered average AUC values of the three best
verification methods – the global method with matrix BLOSUM 62, weight 2 and no mul-
tiplication; the correlation method with vectors introduced by Kidera et al. [25] and the
local method with no scoring matrix. The column “Window” specifies the classification
window length, for which the result was achieved. Rows are sorted in descending order by
their AUC value.

proposed by Kidera et al. For the sake of clarity, in the rest of this section, I will refer to
them only as the global, local and the correlation method, without repeating their detailed
specifications.

Firstly, the performance of these methods was compared using the AUC metric, in
order to find out which one of them is the most accurate. While, for each method, the
AUC metric varies depending on the size of the classification window, only its maximal
value is relevant for this comparison. Based on the maximal average AUC, the best result
was achieved by the global method, second best by the correlation method and the worst
by the local method. Maximal AUC values, together with corresponding window lengths
are presented in the table 7.3. Overall characterization of methods with regard to the
classification window length is presented in the graph 7.11.

Closer analysis of these results have shown, that the difference between maximal AUC of
the global method and correlation (0.007) is more than two times smaller than the difference
between correlation and the local method (0.02). The significance of these differences is
more apparent from the trade off between false and true positive rates for each of these
methods. To give a concrete example, if the classification threshold would be set to a value
that would guarantee false positive rate of no more than 5%, the global method would
be expected to classify 89% of enzymes with the same function correctly, the correlation
method 88% and the local method 80%. While the difference of 1% between the global and
correlation method might be, from the practical standpoint, insignificant, the same cannot
be easily said about the difference of 8% between the global and correlation method. ROC
curves expressing general trade off between false positives and true positives for all methods
are depicted on the graph 7.8.

Since all of these variants achieve AUC higher than 0.94, it is possible to use them in
a real-world application. However, in order for any program to be truly usable, it must
provide a reasonable speed of execution. As further analysis have shown, this property varies
greatly among evaluated methods. For instance, the most accurate classification results of
the global method come with the cost of the lowest throughput of 9.95 verifications per
second on the average. In contrast, the correlation method, which proved to be the fastest,
is able to perform 1,203.05 verifications, which is approximately 120 times more. The local
scoring method has an average throughput of 121.37 which is approximately 10 times less
then the correlation method and 12 times more than the global method. More details about

4An ideal classifier would have AUC value of 1.

51

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Method

Global

Correlate

Local

Figure 7.8: The graph of ROC curves for the three best verification methods – the global
method with matrix BLOSUM 62, weight 2, window 11 and no multiplication; the corre-
lation method with vectors introduced by Kidera et al. and window 9 [25] and the local
method with no scoring matrix and window 9. While the difference between the global
and correlation method is small and might be insignificant for many practical purposes, the
difference between the local method and other methods can not be easily overseen.

the throughput of methods are presented on the graph 7.9. The analysis was conducted
using a regular personal computer (Intel Core I5, 8 GB RAM, 64-bit Linux).

Furthermore, I have decided to analyze the effect of window length on the execution
time of each method5. While both, the local and the correlation method, show linear
growth of required execution time as a function of the window size, the execution time of
the global method appears to be constant (graph 7.10). The reason for this effect is the fact,
that the global scoring method uses the Needleman-Wunch alignment algorithm to align
enzyme sequences over their whole length regardless of the classification window size. The
subsequent windowing and scoring operations use only comparison and basic arithmetic
operations, which are, compared to the global alignment algorithm, very fast, and so their
contribution to the overall complexity is insignificant. In contrast, the local scoring method
aligns only the window area of the known enzyme to the whole sequence of the enzyme
candidate, and therefore the size of the window directly affects the execution time of the
complex alignment operation. The situation of the correlation method is analogical, because
it is built on the same basic principle, but uses correlation instead of alignment.

In conclusion, my experiments have shown that the weighted global scoring method
with matrix BLOSUM 62 achieved the best classification performance. However, the novel
correlation approach had only slightly lower accuracy and provided approximately 120 times
faster execution speed. Based on these properties, I conclude, that the correlation method
might be the most suitable approach for catalytic function verification in most practical
applications and the global method should be reserved for uses, where execution time is

5The execution time of a verification method is the multiplicative inverse of its throughput.

52

10

100

1000

Correlation, window 9 Local, window 9 Global, window 11
Method

T
h
ro

u
g
h
p
u
t

[
s

−
1
]

Figure 7.9: Boxplot depicts the throughput (number of classifications per second) of each of
the three best verification methods – the global method with matrix BLOSUM 62, weight 2
and no multiplication; the correlation method with vectors introduced by Kidera et al. [25]
and the local method with no scoring matrix. As it illustrates, the highest value was
achieved by the correlation method (µ = 1, 203.05, σ = 463.34), the second highest by the
local method (µ = 121.37, σ = 60.39) and the lowest by the global method (µ = 9.95,
σ = 7.29). Throughput of each method was measured on 1,000 classifications. Enzymes for
the experiment were randomly chosen from the SwissProt database [44]. The analysis was
conducted using a regular personal computer (Intel Core I5, 8 GB RAM, 64-bit Linux).
Please note that the graph uses logarithmic scale with base 10.

not critical, and even small increase of accuracy is appreciated. The local method proved
to have the lowest performance, and therefore the other two should be given priority.

53

10
−3

10
−1

0 25 50 75 100
Window size

T
im

e
 [

s
]

Method

Correlation

Global

Local

Figure 7.10: The graph presents mean execution time of a single verification as the function
of the classification window length for all three best classification methods – the global
method with matrix BLOSUM 62, weight 2 and no multiplication; the correlation method
with vectors introduced by Kidera et al. [25] and the local method with no scoring matrix.
For all lengths, the correlation method has the fastest execution. While the execution time
of both, the correlation method and the local method, linearly increases with increasing size
of the classification window, the execution of the global method seems to have a constant
character. The analysis was conducted using a regular personal computer (Intel Core I5,
8 GB RAM, 64-bit Linux). Please note that the graph uses logarithmic scale with base 10.

54

0.90

0.92

0.94

0.96

0 25 50 75 100
Window size

A
U

C Global

Correlation

Local

Figure 7.11: The graph shows the average performance of the best methods – the global
method with matrix BLOSUM 62, weight 2 and no multiplication; the correlation method
with vectors introduced by Kidera et al. [25] and the local method with no scoring matrix.
The metric used was AUC averaged across 10 runs of the experiment. Results are presented
with regards to the length of the classification window. Overall, the best performance was
achieved by the global method, the second best by the correlation and worst by the local
method. While the difference of the maximal AUC between correlation and global method
was only 0.007, in case of the correlation method and local method it was 0.02.

55

Chapter 8

Conclusion

The main goal of this thesis was to design and implement a set of tools for enzyme detection
in metagenomic data. In order to do so, it was first neccessary to gather extensive knowledge
from fields of molecular biology and bioinformatics. Results of this effort are presented in
chapters 2, 3 and 4. The gathered information was than utilized to create a specification
of the system, which is presented in chapter 5. The specification have identified three
key elements that need to be implemented – read pre-processing, homology search and
enzymatic function verification.

The task of the pre-processing module (section 5.1), is to take raw reads from metage-
nomic sample, pre-processes them with regards to their sequencing quality and output
them in a searchable format. Pre-processing is cruicial, because presence of low-quality
reads could undermine reliability of homology search results [38].

The goal of the homology search module is to use the pre-processed sample to find novel
enzymes based on a sequence of some known enzyme provided by the user. Instead of a
single sequence, the specified system also allows to use a multiple sequence alignment. The
result of its search consists of candidate enzyme sequences, which are similar to the input
sequence, or would fit into the input multiple sequence alignment.

However, sequential similarity to the input enzyme does not guarantee that found candi-
dates also perform the same catalytic function. This problem is addressed by the enzymatic
function verification module. Based on their catalytic residues, the verification module de-
termines which of found enzyme candidates truly perform the desired catalytic function.
For this purpose, I have proposed two classes of catalytic function verification methods –
verification based on alignment and verification based on the normalized cross-correlation.
Their specification, implementation and evalution is one of the main contributions of my
master’s thesis.

All three proposed modules were successfully implemented in the Python 3 programming
language with some parts in BASH and C. The basic functionality of the implementation
was tested on a personal computer, as well as, on the MetaCentrum grid computing infras-
tructure. Afterwards, a more in-depth evaluation of the homology search and enzymatic
function verification module was conducted in order to analyze their limits and abilities.
The evaluation of pre-processing module was omitted, because methods used in it are stan-
dard, their use is widespread and they have been already evaluated [9].

The first experiment was conducted using the homology search module and led to dis-
covery of a novel haloalkane dehalogenase enzyme in metagenomic soil sample from prairie
in Kansas. Further investigation revealed that the found sequence is similar to an enzyme
expressed by sphingobium japonicum bacteria. However, it soon became apparent, that the

56

found sequence is incomplete and is missing some of important catalytic residues. Because
of this, it would probably not be able to perform its catalytic function. Moreover, further
evaluation of the module using other samples have shown that it is prone to outputting
chimeric sequences. These limitations are probably caused by used methods, which origi-
nally come from genomics and might not be suitable for use in metagenomics. Even though
found sequences might be in many cases chimeric, they, and especially their catalytic site
variants, can still serve as valuable information for protein engineering.

The second set of experiments was aimed at enzymatic function verification methods
and have proven, that most of them achieve very good accuracy and are usable in real-
world applications. While the best of these methods was based on alignment, the novel
correlation approach had only slightly lesser accuracy and provided approximately 120 times
faster speed of execution. Moreover, its function is not limited to complete sequences, and
therefore, it is able to identify catalytic sites even in protein fragments. For these reasons,
the correlation method is very suitable for practical catalytic function verification, especially
in settings with big amounts of data.

In the future extensions of the system, it would be most beneficial to address limitations
of the homology search module. One of the possible ways of achieving this, could be
modification of the pre-processing module to include full de novo metagenomic assembly.
While this would probably increase the time required for pre-processing, the resulting set of
contigs may have higher chance to be non-chimeric. This is because metagenomic assembly
programs were specifically developed to work with metagenomic data and might be better
suited to handle its specifics. However, further study and experimentation is required in
order to determine to which extent this would be true.

For the enzymatic function verification, the future goal could be creation of a classifier,
that would be able to directly determine catalytic function of a given sequence, without
the need for user to provide annotated sequence of some known enzyme. For instance,
this could be achieved by manually selecting fixed number of enzymes from each currently
known enzyme group, and using them to create k-nearest neighbors classifier with score
of catalytic function verification as the distance metric. Such classifier, together with the
ability of the correlation method to work with protein fragments, could be used to classify
all reads of metagenomic sample. The result of this would be a description of enzymatic
composition of the sample, which might be a useful descriptor in areas such as medical
diagnostics or agricultural soil analysis.

57

Bibliography

[1] A One-Letter Notation for Amino Acid Sequences. European Journal of
Biochemistry. vol. 5, no. 2. 1968: pp. 151–153. ISSN 1432-1033.
doi:10.1111/j.1432-1033.1968.tb00350.x.

[2] Alberts, B.; Bray, D.; Hopkin, K.; et al.: Essential Cell Biology. Garland Science.
2009. ISBN 0815341296.

[3] Alberts, B.; Johnson, A.; Lewis, J.; et al.: Molecular Biology of the Cell. Garland
Science. 2014. ISBN 0815344325.

[4] Altschul, S. F.; Gish, W.; Miller, W.; et al.: Basic local alignment search tool.
Journal of molecular biology. vol. 215, no. 3. 1990: pp. 403–410.

[5] Andrews, S.; et al.: FastQC: a quality control tool for high throughput sequence data
[software]. Version 0.11.5.
Retrieved from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[6] Angly, F. E.; Willner, D.; Rohwer, F.; et al.: Grinder: a versatile amplicon and
shotgun sequence simulator. Nucleic Acids Research. vol. 40, no. 12. 2012: page e94.
doi:10.1093/nar/gks251.

[7] Behnel, S.; Bradshaw, R.; Citro, C.; et al.: Cython: The Best of Both Worlds.
Computing in Science Engineering. vol. 13, no. 2. March 2011: pp. 31–39. ISSN
1521-9615. doi:10.1109/MCSE.2010.118.

[8] Bendl, J.; Stourac, J.; Salanda, O.; et al.: PredictSNP: robust and accurate
consensus classifier for prediction of disease-related mutations. PLoS computational
biology. vol. 10, no. 1. 2014.

[9] Bolger, A. M.; Lohse, M.; Usadel, B.: Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014. doi:10.1093/bioinformatics/btu170.

[10] Chan, J. Z.-M.; Sergeant, M. J.; Lee, O. Y.-C.; et al.: Metagenomic Analysis of
Tuberculosis in a Mummy. New England Journal of Medicine. vol. 369, no. 3. jul
2013: pp. 289–290. doi:10.1056/nejmc1302295.

[11] Chenna, R.; Sugawara, H.; Koike, T.; et al.: Multiple sequence alignment with the
Clustal series of programs. Nucleic acids research. vol. 31, no. 13. 2003: pp.
3497–3500.

[12] Cock, P. J.; Antao, T.; Chang, J. T.; et al.: Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics. vol. 25,
no. 11. 2009: pp. 1422–1423.

58

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

[13] Cock, P. J.; Fields, C. J.; Goto, N.; et al.: The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic
acids research. vol. 38, no. 6. 2010: pp. 1767–1771.

[14] Del Fabbro, C.; Scalabrin, S.; Morgante, M.; et al.: An extensive evaluation of read
trimming effects on Illumina NGS data analysis. PLoS One. vol. 8, no. 12. 2013: page
e85024.

[15] DeLano, W. L.: The PyMOL molecular graphics system [software]. Version 1.8.6.
Retrieved from: https://pymolwiki.org/index.php/

[16] Eddy, S. R.: HMMER: Profile hidden Markov models for biological sequence analysis
[software]. Version 3.1b2.
Retrieved from: https://www.ebi.ac.uk/Tools/hmmer/

[17] Frazzetto, G.: White biotechnology. EMBO reports. vol. 4, no. 9. 2003: pp. 835–837.

[18] Gao, J.; Li, Z.: Uncover the conserved property underlying sequence-distant and
structure-similar proteins. Biopolymers. vol. 93, no. 4. 2010: pp. 340–347.

[19] Handelsman, J.; Rondon, M. R.; Brady, S. F.; et al.: Molecular biological access to
the chemistry of unknown soil microbes: a new frontier for natural products.
Chemistry & biology. vol. 5, no. 10. 1998: pp. R245–R249.

[20] He, Y.; Rackovsky, S.; Yin, Y.; et al.: Alternative approach to protein structure
prediction based on sequential similarity of physical properties. Proceedings of the
National Academy of Sciences. vol. 112, no. 16. 2015: pp. 5029–5032.

[21] Henikoff, S.; Henikoff, J. G.: Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences. vol. 89, no. 22. 1992: pp.
10915–10919.

[22] Henikoff, S.; Henikoff, J. G.: Performance evaluation of amino acid substitution
matrices. Proteins: Structure, Function, and Bioinformatics. vol. 17, no. 1. 1993: pp.
49–61.

[23] Hernandez, D.; François, P.; Farinelli, L.; et al.: De novo bacterial genome
sequencing: millions of very short reads assembled on a desktop computer. Genome
research. vol. 18, no. 5. 2008: pp. 802–809.

[24] Jesenska, A.; Sedlacek, I.; Damborsky, J.: Dehalogenation of Haloalkanes by
Mycobacterium tuberculosis H37Rv and Other Mycobacteria. Applied and
environmental microbiology. vol. 66, no. 1. 2000: pp. 219–222.

[25] Kidera, A.; Konishi, Y.; Oka, M.; et al.: Statistical analysis of the physical properties
of the 20 naturally occurring amino acids. Journal of Protein Chemistry. vol. 4, no. 1.
1985: pp. 23–55.

[26] Krane, D. E.; Raymer, M. L.: Fundamental Concepts of Bioinformatics. Pearson.
2002. ISBN 0805346333.

[27] Krogh, A.: An introduction to hidden Markov models for biological sequences. New
Comprehensive Biochemistry. vol. 32. 1998: pp. 45–63.

59

https://pymolwiki.org/index.php/
https://www.ebi.ac.uk/Tools/hmmer/

[28] Langmead, B.; Salzberg, S. L.: Fast gapped-read alignment with Bowtie 2. Nature
methods. vol. 9, no. 4. 2012: pp. 357–359.

[29] Leinonen, R.; Sugawara, H.; Shumway, M.: The Sequence Read Archive. Nucleic
Acids Research. vol. 39, no. suppl_1. 2011: page D19. doi:10.1093/nar/gkq1019.

[30] Lewis, J.: Fast normalized cross-correlation. In Vision interface, vol. 10. 1995. pp.
120–123.

[31] Li, H.; Homer, N.: A survey of sequence alignment algorithms for next-generation
sequencing. Briefings in bioinformatics. vol. 11, no. 5. 2010: pp. 473–483.

[32] Li, W.; Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics. vol. 22, no. 13. 2006: pp. 1658–1659.

[33] Li, Z.; Chen, Y.; Mu, D.; et al.: Comparison of the two major classes of assembly
algorithms: overlap–layout–consensus and de-bruijn-graph. Briefings in functional
genomics. vol. 11, no. 1. 2012: pp. 25–37.

[34] Lorenz, P.; Eck, J.: Metagenomics and industrial applications. Nature Reviews
Microbiology. vol. 3, no. 6. 2005: pp. 510–516.

[35] Loschmidt Laboratories: Protein Engineering Group [online]. Acessed on 2017-05-19.
Retrieved from: https://loschmidt.chemi.muni.cz/peg/

[36] Madden, T.: The BLAST sequence analysis tool [software]. Version 2.2.31+.
Retrieved from: https://blast.ncbi.nlm.nih.gov/

[37] McCarthy, B.; Holland, J.: Denatured DNA as a direct template for in vitro protein
synthesis. Proceedings of the National Academy of Sciences. vol. 54, no. 3. 1965: pp.
880–886.

[38] Metzker, M. L.: Sequencing technologies—the next generation. Nature reviews
genetics. vol. 11, no. 1. 2010: pp. 31–46.

[39] Nagarajan, N.; Pop, M.: Sequence assembly demystified. Nature Reviews Genetics.
vol. 14, no. 3. 2013: pp. 157–167.

[40] National Center for Biotechnology Information: Protein database [online database].
Acessed on 2017-04-12.
Retrieved from: https://www.ncbi.nlm.nih.gov/protein/

[41] Needleman, S. B.; Wunsch, C. D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology.
vol. 48, no. 3. 1970: pp. 443–453.

[42] Nicholls, S. M.; Aubrey, W.; de Grave, K.; et al.: Advances in the recovery of
haplotypes from the metagenome. bioRxiv. 2016. doi:10.1101/067215.

[43] Nomenclature Committee of the International Union of Biochemistry and Molecular
Biology: Enzyme Nomenclature 1992: Recommendations. Academic Press. 1992.
ISBN 0122271645.

60

https://loschmidt.chemi.muni.cz/peg/
https://blast.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/protein/

[44] O’Donovan, C.; Martin, M. J.; Gattiker, A.; et al.: High-quality protein knowledge
resource: SWISS-PROT and TrEMBL. Briefings in bioinformatics. vol. 3, no. 3.
2002: pp. 275–284.

[45] Orengo, C. A.; Todd, A. E.; Thornton, J. M.: From protein structure to function.
Current opinion in structural biology. vol. 9, no. 3. 1999: pp. 374–382.

[46] Pavlová, M.: Screening and in vitro construction of environmental biocatalysts
[online]. Disertační práce. Masarykova univerzita, Přírodovědecká fakulta, Brno. 2009
[cit. 2017-05-10].
Retrieved from: http://is.muni.cz/th/12799/prif_d/

[47] Pevzner, P. A.; Tang, H.; Waterman, M. S.: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences. vol. 98, no. 17.
2001: pp. 9748–9753.

[48] Rabiner, L.; Juang, B.: An introduction to hidden Markov models. ieee assp
magazine. vol. 3, no. 1. 1986: pp. 4–16.

[49] Rabiner, L. R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE. vol. 77, no. 2. 1989: pp. 257–286.

[50] Rice, P.; Longden, I.; Bleasby, A.: EMBOSS: the European molecular biology open
software suite [software]. Version 6.6.0.0.
Retrieved from: https://www.ebi.ac.uk/Tools/emboss/

[51] Rosypal, S.: Úvod do molekulární biologie. Brno: Prof. RNDr. Stanislav Rosypal,
DrSc., Brno. Čtvrté inovované vydání edition. 2006. ISBN 80-902562-5-2.

[52] Schleif, D. R. F.: Genetics and Molecular Biology. The Johns Hopkins University
Press. 1993. ISBN 0801846749.

[53] Smith, T. F.; Waterman, M. S.: Identification of common molecular subsequences.
Journal of molecular biology. vol. 147, no. 1. 1981: pp. 195–197.

[54] Tipton, K.; Boyce, S.: History of the enzyme nomenclature system. Bioinformatics.
vol. 16, no. 1. 2000: page 34. doi:10.1093/bioinformatics/16.1.34.

[55] Van Pee, K.-H.; Unversucht, S.: Biological dehalogenation and halogenation
reactions. Chemosphere. vol. 52, no. 2. 2003: pp. 299–312.

[56] Xiong, J.: Essential Bioinformatics. Cambridge University Press. 2006. ISBN
978-0-521-84098-9.

[57] Zerbino, D.: Velvet Manual [online]. Version 1.1. Acessed on 2017-05-19.
Retrieved from: https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf

[58] Zerbino, D. R.; Birney, E.: Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research. vol. 18, no. 5. feb 2008: pp. 821–829.
doi:10.1101/gr.074492.107.

61

http://is.muni.cz/th/12799/prif_d/
https://www.ebi.ac.uk/Tools/emboss/
https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf

Appendix A

Contents of the CD

• data/ – data from experiments, example metagenomic data and enzyme datased used
in experimental evaluation of verification methods

• doc/ – LaTeX source files of this text

• src/ – source files of all parts of the implemented system

• src/biodb/ – source files of the Biodb Python 3 library, which contains implementa-
tions of enzymatic function verification methods with other supporting modules

• src/metacentrum/ – wrapper scripts, which enable use of the system on a grid com-
puting infrastructure with PBS Pro scheduler

• lib/ – third party software required for execution of the system

• install.sh – installation script

• INSTALLATION.txt – installation instructions and a list of dependencies

• projekt.pdf – electronic version of this thesis

62

Appendix B

The Format of Quality

Pre-Processing ConĄguration File

The pre-processing script for Metacentrum, dispatcher.sh, expects configuration file in
JSON format with information about quality pre-processing as one of its inputs. This file
should contain a single JSON object with following attributes:

Attribute Type Meaning

Q_leading Integer Threshold for leading base cutting.
Q_trailing Integer Threshold for trailing base cutting.
Q_sliding Integer Threshold for sliding window cutting.
minlen Integer Reads shorter than minlen will be auto-

matically discarded.
adapter String Absolute path of a fasta file with technical

sequences.

For example, a valid configuration file might have the following form:

{

"Q_leading" : 20,

"Q_trailing" : 20,

"Q_sliding" : 20,

"minlen" : 50,

"adapter" : "/home/user/TruSeq3-PE.fa"

}

In this case, the quality pre-processing will use threshold 20 for all types of low-quality
region cutting, discard reads shorter than 50 nucleotides and use technical sequences from
the file /home/user/TruSeq3-PE.fa as patterns for technical sequence removal.

63

Appendix C

The Format of Annotated Enzyme

File

In order to perform enzymatic function verification, scripts verify.sh and verify.py

require a sequence of some known enzyme with an annotation of its catalytic regions. File
containing this data must be in JSON format and must contain a single JSON object with
following attributes:

Attribute Type Meaning

sequence String Valid amino acid sequence over the IU-
PAC alphabet.

features Array Array of catalytic region annotations.
features[*].pos Array Array of two integers; beginning and end-

ing position of a catalytic region.

Each catalytic region annotation is represented by a JSON object with attribute “pos”,
which is an array of two integers. First integer denotes the position of the first residue in
the catalytic region and the second the position of the last residue in the catalytic region.
Following figure shows an example of a valid enzyme file:

{

"sequence": "MEFAAFADRAEAIE...",

"features": [

{

"pos": [

255,

255

]

}

]

}

64

Appendix D

Syntax of the ClassiĄcation

Method String Descriptor

The verification script verify.sh expects user to provide an exact specification of the
verification method. This specification has form of a classifier descriptor string, which is
passed to the script through its command line parameters. Its basic syntax is

NAME[:key1=value1,key2=value2,. . . ,keyN=valueN]

where the string NAME identifies the classification method and the sequence of key-value
pairs corresponds to classification parameters. The global alignment scoring method is
denoted by the name “global”, local by the name “local” and correlation method by the
name “correlate”. The classification parameters are different for every method and are
described in following sections. In the case of correlation method, there are no classification
parameters. The classification window size is not specified as part of the descriptor string. If
any of classification parameters is omitted, all methods will use its default value. Following
is the example of classifier specification:

global:matrix=blosum62,featurew=2,fixed=True

Global Alignment

Key Value type Meaning Default Value

matrix String Name of the scoring matrix to use. If
set to “None”, simple scoring model will
be used. List of available matrices via
verify.sh -l.

blosum62

opengap Numeric Penalty for gap opening in alignment. −0.5
extendgap Numeric Penalty for gap extension in alignment. −0.1
fixed Boolean If True, fixed window method will be used.

If False, soft window method will be used.
True

featurew Integer Scoring weight of the catalytic region. 2
multf Boolean If True, the score of a window will be mul-

tiplied by the score of a catalytic region.
False

65

Local Alignment

Key Value type Meaning Default Value

matrix String Name of the scoring matrix to use. If
set to “None”, simple scoring model will
be used. List of available matrices via
verify.sh -l.

None

opengap Numeric Penalty for gap opening in alignment. −0.5
extendgap Numeric Penalty for gap extension in alignment. −0.1

66

Appendix E

Example Working Session

The main goal of this appendix is to provide a practical example of working session with
the implemented system. The tutorial will show usage of all parts of the system, beginning
with the read pre-processing and finishing with enzymatic function verification. All files
used in this example are available on the attached CD in the directory data/.

After the user has obtained raw metagenomic reads, the first important task is their
pre-processing. The pre-pocessing script expects paired-read data stored in two separate
files – one for forward and one for reverse reads. Both files have to be in fastq format, their
names must share a common prefix and end with suffix “_1.fastq” in the case of forward
reads, and “_2.fastq” in the case of reverse reads. For example, reads used in this session
are stored in files example_1.fastq and example_2.fastq.

The pre-processing can be run either on a standard computer, using the script process.sh,
or on a grid computing infrastructure, using the script dispatcher.sh. Apart from reads,
the user has to specify quality thresholds for low-quality region removal and a fasta file
with standard technical sequences, which were used during the sequencing process.

In the case of the script process.sh, thresholds are specified as its commandline ar-
guments, and must be provided in the phred quality format. For illustration, consider the
following example:

process.sh -f example -c 1 -l 30 -t 30 -s 30 -m 50 -a TruSeq3-PE.fa

Output:

out_1.fasta - processed forward reads

out_2.fasta - processed reverse reads

single.fasta - processed single reads

protein.fasta - translated forms of all sequences

The first argument of process.sh is the prefix of raw read files (-f), following is the number
of processes to use (-c), then the leading (-l), trailing (-t) and sliding window (-s) quality
threshold and the final argument is the file with technical sequences (-a). In this case, the
pre-processing will be done using the quality threshold 30 (99.9% base correctness proba-
bility) and technical sequence patterns will be loaded from the file TrueSeq3-PE.fa. This
file with technical sequences is available on the attached CD as part of the Trimmomatic [9]
software package located in the lib/ directory.

The same pre-processing result can be achieved using the script dispatcher.sh on a
grid computing infrastructure. This is illustrated in the following example:

67

dispatcher.sh example 1 2 qual.json

Output:

Directories named 0 and 1, containing the same files as in the case

of the script process.sh.

In contrast to the script process.sh, quality thresholds and the file with technical sequences
are not specified as commandline parameters, but through a special quality configuration
file in JSON format. Details about its syntax are discussed in the appendix B.

Regarding other commandline arguments, the first represents the number of processors
to use per node and the second is the number of processing nodes. The resulting directory
structure will contain as many subdirecotries as there were processing nodes specified. Each
subdirectory will contain the same files like in the case of the script process.sh.

After the pre-processing, the sample is ready for searching. The search can be conducted
either on a personal computer (script searchdb.sh) or on a grid (script metasearch.sh).
First, let us consider example with the personal computer:

searchdb.sh -p protein.fasta -n out_1.fasta -n out_2.fasta \

-n single.fasta dha_tuberculosis_aa.fa

Output:

out_1_filtered.fasta - matching forward reads

out_2_filtered.fasta - matching reverse reads

single_filtered.fasta - matching single reads

In this example, the search was conducted using the search query sequence from the file
dha_tuberculosis_aa.fa over the protein file protein.fasta. Files out_1.fasta and
out_2.fasta, specified through the parameter -n, must contain untranslated reads corre-
sponding to protein sequences stored in the file dha_tuberculosis_aa.fa. If a multiple
sequence alignment is used instead of a single sequence, it must be provided as a profile
HMM in a format compatible with HMMER. Furthermore, its use must be indicated by
parameter -v.

The same can be achieved on a grid using the script metasearch.sh:

metasearch.sh -d . -c 1 dha_tuberculosis_aa.fa

Output:

out_1_filtered.fasta - matching forward reads

out_2_filtered.fasta - matching reverse reads

single_filtered.fasta - matching single reads

In this case, the same search will be conducted using metagenomic database stored in the
current directory (parameter -d) with one cpu (parameter -c). The number of workers is
equal to the number of subdirectories (chunks) of the metagenomic database.

After the search is finished, found reads have to be assembled into longer sequences.
This can be done using the assembly program Velvet. Following figure illustrates its use
with the example data:

68

velveth assem 20 -shortPaired -fasta -separate out_1_filtered.fasta \

out_2_filtered.fasta -short single_filtered.fasta

velvetg assem/ -exp_cov 10 -cov_cutoff 2 -scaffolding no

Output:

assem/contigs.fa -- resulting assembled sequences

For further details about Velvet and its use, I refer reader to its manual [57]. Please note
that scaffolding must be disabled, otherwise Velvet might add special nucleotides “N” into
the file with resulting contigs. These represent placeholders for any nucleotide and are not
part of common scoring matrices. Their presence will result in an error.

Finally, enzymatic function verification can be performed:

verify.sh -s dha_tuberculosis_aa.fa -c assem/contigs.fa \

-j tuberculosis.json

Output:

results.fa - File containing resulting found enzymes.

scores.csv - File containing verification scores of matches.

In the example, the verification has used annotated known enzyme located in the file
tuberculosis.json to verify assembled sequences stored in the file assem/contigs.fa.
The parameter -s refers to the input query sequence, which was used in the search. If the
search was conducted using a multiple sequence alignment, one of the aligned sequences
or consensual sequence of the alignment must be provided. Classification method can be
chosen by providing classifier descriptor string through the parameter -m. If no method
was chosen, cross-correlation will be used. Syntax of this string is further discussed in the
appendix D. The syntax of the annotated known enzyme file is presented in the appendix C.

The resulting file results.fa contains only found enzymes, which have the same cat-
alytic function as the input query. Threshold for verification can be either set by the
user, via the parameter -t, or, like in this case, automatically, by the script verify.sh.
Please note that the automatic setting works only for classifiers with default classification
parameters and otherwise defaults threshold to 0.

69

	Introduction
	Genetic Information and Its Role in Living Cells
	Structure and Content of Deoxyribonucleic Acid
	Protein Biosynthesis

	Proteins and Their Biological Significance
	Structure of Proteins
	Enzymes and Metabolic Pathways

	Methods of Genetic Information Processing and Analysis
	Assembly of Genomes
	Sequence Alignment and Homology Search

	Design of the System for Detection of Enzymes in Metagenomic Data
	Metagenomic Read Pre-Processing
	Search for Homologous Sequences
	Enzymatic Function Verification

	Implementation of the Proposed System
	Metagenomic Read Pre-Processing
	Search for Homologous Sequences
	Enzymatic Function Verification

	Evaluation of the Proposed System
	Homology Search in Metagenomic Data
	Catalytic Function Verification

	Conclusion
	Bibliography
	Contents of the CD
	The Format of Quality Pre-Processing Configuration File
	The Format of Annotated Enzyme File
	Syntax of the Classification Method String Descriptor
	Example Working Session

