
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

A REDUCTION OF FINITELY EXPANDABLE DEEP
PUSHDOWN AUTOMATA
REDUKCE KONEČNĚ EXPANDOVATELNÉHO HLUBOKÉHO ZÁSOBNÍKOVÉHO AUTOMATU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. LUCIE CHARVÁT
AUTOR PRÁCE

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
For a positive integer n, n-expandable deep pushdown automata always contain no more
than n occurrences of non-input symbols in their pushdowns during any compilation. As
its main result, the present thesis demonstrates that those automata are as powerful as the
same automata with #, which always appears solely as the pushdown bottom, and a single
pushdown non-input symbol. An infinite hierarchy of language families follows from this
result.

Abstrakt
Pro přirozené číslo n, n-expandovatelné hluboké zasobníkové automaty vždy obsahují max-
imálně n výskytů nevstupních symbolů v jejich zásobníku v průběhu jakékoli kompilace.
Jako hlavní výsledek, tato práce demonstruje, že tyto automaty mají stejnou vyjadřovací
sílu jako automaty s #, nacházející pouze na dně zásobníku, a jediným dalším nevstup-
ním symbolem. Z tohoto závěru vyplývá nekonečná hierarchie jazyků přijímaných těmito
automaty.

Keywords
Deep Pushdown Automata, Finite Expandability, Reduction, Non-Input Pushdown Sym-
bols

Klíčová slova
Hluboké zásobníkové automaty, konečná expanze, redukce, nevstupní zásobíkové symboly

Reference
CHARVÁT, Lucie. A Reduction of Finitely Expandable Deep Pushdown Automata. Brno,
2017. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Meduna Alexander.

A Reduction of Finitely Expandable Deep
Pushdown Automata

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of prof. RNDr. Alexander Meduna, CSc. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Lucie Charvát

September 17, 2017

Contents

1 Introduction 3

2 Preliminaries and Definitions 4

2.1 Language and Regular Set . 4
2.1.1 Formal Language . 4
2.1.2 Regular Set . 5
2.1.3 Regular Expression . 5

2.2 Formal Grammar . 6
2.2.1 Definition . 6
2.2.2 Grammars as Language Generators 6
2.2.3 Chomsky Hierarchy . 7

2.3 Automata . 8
2.3.1 Finite-State Machine . 8
2.3.2 Pushdown Automaton . 9
2.3.3 Turing Machine . 10

2.4 Special Types of Grammars and Automata 11
2.4.1 State Grammar . 11
2.4.2 Matrix Grammars . 12
2.4.3 Deep Pushdown Automaton . 13
2.4.4 Finitely Expandable Deep Pushdown Automaton 14

2.5 Normal and Reduced Forms . 14
2.5.1 Chomsky Normal Form . 14
2.5.2 Greibach Normal Form . 15
2.5.3 Minimal Finite State Machine . 15

3 Result 16

3.1 Hierarchy of Language Families Generated by Matrix Grammars 16
3.2 Reduction of Finitely Expandable Deep Pushdown Automata 20
3.3 Acceptance Power . 24

4 Application 26

4.1 Analysis of Syntax Structures . 26
4.1.1 Pumping Lemma Theorem . 26
4.1.2 Non-Context-Free Languages . 27
4.1.3 Non-Context-Free Code . 28

4.2 Implementation . 30
4.2.1 Deep Stack . 31
4.2.2 Special Structures . 31

1

4.2.3 Deep Pushdown . 32
4.2.4 Deep Pushdown Automaton . 33
4.2.5 Deep Pushdown Automaton Reduction 34

4.3 Testing . 35
4.3.1 Creating Simple Automaton . 35
4.3.2 Variable Declaration Checking . 38
4.3.3 More Examples . 43

5 Conclusion 44

Bibliography 45

2

Chapter 1

Introduction

In essence, deep pushdown automata represent language-accepting models based upon new
stack-like structures, which can be modified deeper than on their top. As a result, these
automata can make expansions deeper in their pushdown lists as opposed to ordinary
pushdown automata, which can expand only the very pushdown top. At present, the study
of deep pushdown automata represent a vivid trend in formal language theory (see [10, 11,
1, 15]). The present theses makes a contribution to this trend.

This thesis narrows its attention to n-expandable deep pushdown automata, where n
is a positive integer. In essence, during any computation, their pushdown lists contain #,
which always appears as the pushdown bottom, and no more than n − 1 occurrences of
other non-input symbols. As its main result, the thesis demonstrates how to reduce the
number of their non-input pushdown symbols different from # to one symbol, denoted by
$, without affecting the power of these automata. Based on this main result, the thesis
establishes an infinite hierarchy of language families resulting from these reduced versions
of n-expandable deep pushdown automata. More precisely, consider n-expandable deep
pushdown automata with pushdown alphabets containing #, $, and input symbols. The
thesis shows that (n + 1)-expandable versions of these automata are stronger than their
n-expandable versions, for every positive integer n. In addition, it points out that these
automata with # as its only non-input symbol characterize the family of regular languages.

After the correctness of the reduction has been proven, the thesis brings its attention
to practical application of the result. The reduced finitely expandable deep pushdown
automaton parses the same language as its non-reduced counterpart. The thesis therefore
focuses on typical languages accepted by this kind of automata, especially the ones that
are context-sensitive. After analysis of the syntax structure of the languages, the thesis
demonstrates practical use of the automata during parsing of structures that are commonly
used in programming languages. We show implementation of a simulator that is capable of
parsing and generating an output to showcase the conversion and the parsing process.

The thesis is organized as follows. Chapter 2 gives definitions needed to follow the
thesis. Chapter 3 establishes the results sketched above. Chapter 4 then shows an example
of how these automata can be applied as language acceptors and detailed explanation of
the implementation. At last, Chapter 5 includes final thoughts on the work done within
this thesis.

3

Chapter 2

Preliminaries and DeĄnitions

This chapter will gradually introduce terms necessary to follow this thesis. In the first
section, we will go over the basic terminology and establish notion of formal languages.
The following sections then provide detailed explanation of a hierarchy of formal grammars
and languages they can generate together with automata that are then able to accept such
languages. The last section covers the special types of grammars and automata that are
not as commonly known but are important to fully understand the concept of this thesis
and unify the definitions that might differ across the publications. If not stated otherwise,
the definitions used in this chapter are based on the ones that are provided in [8, 14, 16].

2.1 Language and Regular Set

In this section we introduce the basic terms that relate to formal language theory and how
to create and manipulate language in general.

2.1.1 Formal Language

The base for introducing a concept of the language are notions an alphabet and a string.
An alphabet is a nonempty set of elements called symbols of the alphabet. In some cases we
can even work with infinite alphabets, but in the following applications we will use finite
alphabets only.

A string (also a word or a sentence) over given alphabet is any finite sequence of symbols
of the alphabet. An empty sequence of symbols, i.e. the sequence with no symbol is called
an empty string. The empty string will be denoted by ε. We can formally define strings
over an alphabet Σ in the following manner:

1. The empty string ε is a string over Σ,

2. if x is a string over Σ and a ∈ Σ, then xa is string over Σ,

3. y is a string over Σ if and only if y can be constructed using rules (1) and (2).

Let x and y be strings over Σ. The concatenation of strings x and y is the string xy
(the string y is attached to the string x). The concatenation is obviously associative, i.e.,
x(yz) = (xy)z, but not commutative, xy ̸= yx.

The length of a string is a nonnegative integer representing number of symbols in the
string. The length of the string x is denoted by |x|. If x = a1a2...an, ai ∈ Σ for i = 1, ...n,
then |x| = n. The length of the empty string equals zero, i.e. |ε| = 0.

4

A power operator, an, where a is a string and n is an integer denotes n concatenations
of string a. an = aan−1 and a0 = ε, so |an| = n|a|.

Let Σ be an alphabet. By the symbol Σ* we denote the set of all strings over alphabet Σ
including the empty string, by the symbol Σ+ we denote the set of all strings over alphabet
excluding the empty sting, i.e. Σ* = Σ+ ∪ {ε}. The set L, such that L ⊆ Σ* (eventually
L ⊆ Σ+, if ε ∈ L), is called a language L over alphabet Σ. Thus it means that a language
is any subset of strings over the given alphabet. A string x, x ∈ L, is called the sentence of
the language L.

A language family is a set of languages that share a defined property. The property
used in this thesis is a model of the language. Language family described by model M is
L(M).

2.1.2 Regular Set

Let Σ be a finite alphabet. The class of regular sets is the smallest class of languages which
contains the sets ∅, {ε}, {a} for all symbols a and which is closed under the following
operations: union, product and iteration. More precisely, one can recursively define regular
sets over the alphabet Σ as follows:

1. ∅ (the empty set) is a regular set over Σ

2. {ε} (the set containing only the empty string) is a regular set over Σ

3. {a} for all a ∈ Σ is regular set over Σ

4. if P and Q are regular sets over Σ, then P ∪Q, P ·Q and P * where P ·Q = {xy | x ∈
P ∧ y ∈ Q}, P * =

⋃
∞

n=0 P
n, P 0 = {ε}, and Pn = P · P · . . . · P

︸ ︷︷ ︸

n-times

are also regular sets

over Σ

5. Regular sets are just the sets which arise by application of the rules 1–4.

2.1.3 Regular Expression

In order to simplify notation, we also introduce notion of regular expression. Regular
expressions over Σ are recursively defined as

1. ∅ is a regular expression denoting the regular set ∅,

2. ε is a regular expression denoting the regular set {ε},

3. a is a regular expression denoting the regular set {a} for all a ∈ Σ,

4. if p, q are regular expressions denoting the regular sets P and Q, then

(a) (p+ q) is regular expression denoting the regular set P ∪Q,

(b) (pq) is regular expression denoting the regular set P ·Q,

(c) (p*) is regular expression denoting the regular set P *.

5. There are no other regular expressions over Σ.

5

2.2 Formal Grammar

Grammar describes a set of rules that applied can generate a language. Base on the struc-
ture of the rules we can determine how powerful the grammar can be and what type of
languages it could potentially generate.

2.2.1 DeĄnition

Grammar is a quadruple

G = (N,T,R, S)

where

• N is a finite alphabet of nonterminals

• T is a finite alphabet of terminals, N ∩ T = ∅

• R ⊂ (N ∪ T)*N(N ∪ T)* × (N ∪ T)* is a finite set of rewriting rules

• S ∈ N is the start symbol of the grammar

Let G = (N,T,R, S) be a grammar and let λ and µ be strings from (N ∪ T)*. The
strings λ and µ are in binary relation ⇒G called the direct derivation if and only if the
strings λ and µ can be written in the form

λ = γαδ

µ = γβδ

where γ and δ are strings from (N ∪ T)* and α → β is a rewriting rule from P . If the
strings λ and µ satisfy the relation of direct derivation, then we will write λ ⇒G µ and we
say that the string µ can be directly derived the string λ in the grammar G. When it is
clear which grammar we are talking about, we shall drop an index under symbol ⇒.

2.2.2 Grammars as Language Generators

Let G = (N,T, P, S) be a grammar and let λ and µ be strings from (N ∪ T)*. The strings
λ and µ are in binary relation ⇒+ called derivation if and only if there is a sequence of
direct derivations vi−1 ⇒ vi i = 1, ..., n, n ≥ 1 such that:

λ = v0 ⇒ v1 ⇒ ... ⇒ vn−1 ⇒ vn = µ

This sequence is called the derivation of length n. If λ ⇒+ µ then we say that string µ is
generated from the string λ in G. The relation ⇒+ is obviously the transitive closure of
the relation direct derivation ⇒. The symbol ⇒n denotes n power of relation ⇒.

If for strings λ and µ hold λ ⇒+ µ or λ = µ in G then we write λ ⇒* µ. The relation
⇒* is the transitive and reflexive closure of the relation of direct derivation ⇒.

Let G = (N,T, P, S) be a grammar. The string α ∈ (N ∪ T)* is called the sentential
form if S ⇒* α, i.e. the string α is generated from the start symbol S. The sentential form
composed from terminal symbols only is called the sentence. Language L(G), generated by
the grammar G is the set of all sentences L(G):

L(G) = {w | S ⇒* w,w ∈ T *}

6

2.2.3 Chomsky Hierarchy

The Chomsky hierarchy uses restrictions on grammar rewrite rules to classify languages
into four types, type 0, type 1, type 2 and type 3.

• Type 0 also called Unrestricted grammars (U) follow the definition as

α → β, α ∈ (N ∪ Σ)*N(N ∪ Σ)*, β ∈ (N ∪ Σ)*

and generate the family of recursively enumerable languages, RE. Example of such
grammar is

G = ({A,B}, {a, b}, R, S)

R = {A → AbB | a,

AbB → baB | BAbB,

B → b | ε}

• Type 1 also called Context sensitive grammars (CS) have rules in the following form,

αAβ → αγβ,A ∈ N,α, β ∈ (N ∪ Σ)*, γ ∈ (N ∪ Σ)+ or S → ε

The rules of context-sensitive grammar take inconsideration the surrounding sym-
bols (the context) of the expanding non-input symbol. Context sensitive grammars
generate the family of context sensitive languages, CS. Example of such grammar is

G = ({A,S}, {0, 1}, R, S)

R = {S → 0A1 | 01,

0A → 00A1(α = 0, β = ε, γ = 0A1)

A → 01

• Rules of type 2 also called Context-free grammars (CF) are in form of

A → γ,A ∈ N, γ ∈ (N ∪ Σ)*

Compared to context sensitive grammar the non-input symbol A can be expanded
independently on the symbols surrounding it. Context-free grammars generate the
family of context-free languages, CF. Example of grammar is

G = ({S}, {0, 1}, R, S)

S → 0S1 | ε

• Rules of type 3 also called right-linear grammars are of form,

A → xB or A → x;A,B ∈ N, x ∈ Σ*

Right-linear grammar can be transformed to the special right-linear grammar with
rules of the form:

A → aB or A → a;A,B ∈ N, a ∈ Σ or S → ε

7

This type of grammar is called the regular grammar, specifically right-regular gram-
mar. Hence grammars of type 3 are also called regular grammars REG. Example of
type 3 grammar is

G = ({A,B}, {a, b, c}, R,A)

A → aaB | ccB

B → bB | ε

2.3 Automata

Automata are the finite representation of formal language which can be infinite. Automata
are categorized base on languages they can accept and similarly to grammars can be cate-
gorized based on Chomsky hierarchy. Automata are defined by sets of states and rules that
determine the behaviour of the automaton and therefore the languages it can accept.

In this section we will introduce three basic types of automaton. The first is the finite-
state machine that has no extra memory and can only accept regular languages. The
pushdown automaton, part of which is a pushdown (stack) that allows temporal save of
certain symbols and therefore expands the set of languages this automaton can accept to
context-free languages. Lastly the Turing machine that includes rewritable tape giving the
automaton largest acceptance power.

2.3.1 Finite-State Machine

A finite-state machine is an automaton with no extra memory and decision whether it
accepts language or not is solely based on fact if there is a suitable transition to a next
state. Therefore it can only recognise regular languages.

A finite-state machine (FSM) M is a quintuple

M = (Q,Σ, R, s, F)

where

• Q is a set of states;

• Σ is the finite input alphabet;

• R ⊂ Q× Σ×Q is a finite set of transition rules;

• s ∈ Q is a starting state;

• F ⊂ Q is a finite set of accepting states.

A computation step of FSM , ⊢, is an application of a transition rule from R, i.e.,

paw ⊢ qw if (pa → q ∈ R)

where w ∈ Σ*. ⊢+ is a transitive closure, ⊢* is a reflexive transitive closure, and ⊢k, for
k ≥ 0, is the kth power of the binary relation ⊢.

The language accepted by M is

L(M) = {w | w ∈ Σ*, sw ⊢* fε, f ∈ F}

The family FSM of languages accepted by FSM is the same family as the one that is
generated by regular grammars, i.e., FSM = REG.

8

2.3.2 Pushdown Automaton

A pushdown automaton, as the name suggest, contains a pushdown to store certain val-
ues. This possibility increases the acceptance power of an automaton to be able to accept
context-free languages.

A pushdown automaton (PDA) M is a 7-tuple

M = (Q,Σ,Γ, R, s, S, F)

• Q, Σ, s and F are defined like in the finite automaton;

• Γ is a pushdown alphabet, Σ is a subset of Γ, there is a bottom symbol # in Γ ∖ Σ;

• S ∈ Γ is the start pushdown symbol;

• The transition relation R is a finite set that contains elements of

(Q× (Γ ∖ (Σ ∪ {#})))× (Q× (Γ ∖ {#})+)

and of
(Q× {#})× (Q× (Γ ∖ {#})*{#})

A configuration of a pushdown automaton M is a triplet (q, w, α) ∈ Q× Σ* × Γ where

• q is a current state of the control unit.

• w is yet unread part of input string; the first symbol of w is under the reading head.
If w = ε, then all the symbols of input string have been already read.

• α is a content of the stack. Unless otherwise indicated, we represent the stack as
a string, whose left most symbol corresponds to the top of the stack. If α = ε, then
the stack is empty.

A transition of a pushdown automaton M is represented by a binary relation ⊢ which
is defined on a set of configurations of the pushdown automaton M . The relation

(q, aw, Sα) ⊢ (q′, w, γα)

holds, if (q, a, S, q′, γ) ∈ R for some q ∈ Q, a ∈ (Σ ∪ ε), w ∈ Σ*, Z ∈ Γ and αγ ∈ Γ*

We interpret the relation ⊢ this way. If the pushdown automaton M is in a state q and
a symbol S is at the top the stack, then after reading an input symbol a ̸= ε, the automaton
can move to a state q′, whereas the reading head moves to right and the symbol S from the
top of the stack is replaced by a string γ. If a = ε, the reading head does not move, which
means, that the automaton transitions to a new state and a new content of the stack is not
determined by the next input symbol. This type of transition is called ε-transition. Note
that ε-transition can happen also when all the input symbols have been already read.

The relations ⊢i, ⊢+, ⊢* are defined as usual. The relation ⊢+, resp. ⊢* is transitive
resp. transitive and reflexive closure of the relation ⊢, ⊢i is i-th power of the relation ⊢,
i ≥ 0.

An initial configuration of a pushdown automaton is of the form (s, w, S) for w ∈ Σ*,
e.g., the automaton is in the initial state s, the string w is on the input tape and the start
symbol S is on the stack. A final configuration is of form (q, ε, α), where q ∈ F is the final
state and α ∈ Γ*.

9

The language accepted by M is

L(M) = {w | w ∈ Σ*, (s, w, S#) ⊢* (f, ε,#), f ∈ F}

The family PDA of languages accepted by PDA is the same family as the one that is
generated by context-free grammars, i.e., PDA = CF.

2.3.3 Turing Machine

A Turing machine consists of a finite-state control unit, unidirectionally unbounded tape
and reading / writing head. In one computation step, a Turing machine first reads the
symbol under the head. Consequently, depending upon the symbol currently read and the
state of the control unit, it can rewrite the read symbol, change the state and move the
head right or left by one cell.

A Turing machine (TM) is a 7-tuple of the form M = (Q,Σ,Γ, δ, q0, qaccept, qreject),
where:

• Q is a finite set of control states,

• Σ is a finite set of symbols called input alphabet, ∆ ̸∈ Σ,

• Γ is a finite set of symbols, Σ ⊂ Γ, ∆ ∈ Γ,

• δ is a partial function (Q ∖ {qaccept, qreject})× Γ → Q× (Γ∪ {L,R}), where L,R ̸∈ Γ,
called the transition function,

• q0 is the initial state, q0 ∈ Q and

• qaccept is the final accepting state, qaccept ∈ Q

• qreject is the final rejecting state, qreject ∈ Q

The symbol ∆ denotes the so-called blank (empty symbol) which occurs in tape areas,
that haven’t been used yet (but can be also written on tape later).

A configuration of the tape is a pair consisting of an infinite string representing the
tape contents and a head position on this string—more precisely, it is an element of the
set {γ∆ω | γ ∈ Γ*} × N. We write the configuration of the tape as ∆xyzz∆x∆∆... (the
underline marks the head position). A configuration of the machine consists of the control
state and the tape configuration—formally, it is an element of the set Q×{γ∆ω | γ ∈ Γ*}×N.

For an arbitrary string γ ∈ Γω and a number n ∈ N we denote by γn the symbol on the
position n of the string γ and by snb (γ) the string that is formed from γ by substituting γn
for b.

A computation step of a TM M is defined as a binary relation M ⊢ such that ∀q1, q2 ∈ Q
∀γ ∈ Γω ∀n ∈ N ∀b ∈ Γ:

• (q1, γ, n) ⊢ (q2, γ, n + 1) for δ(q1, γn) = (q2, R), i.e., an operation of a move to the
right when γn is under head

• (q1, γ, n) ⊢ (q2, γ, n− 1) for δ(q1, γn) = (q2, L) and n > 0, i.e., an operation of a move
to the left when γn is under head

• (q1, γ, n) ⊢ (q2, s
n
b (γ), n−1) for δ(q1, γn) = (q2, b), i.e., an operation of writing b when

γn is under head

10

The language accepted by M is

L(M) = {w | (q0,∆w∆∆ . . . , 1) ⊢* (qaccept, x, i), x ∈ {γ∆ω | γ ∈ Γ*}, i ∈ N}

The family TM of languages accepted by TM is the same family as the one that is generated
by unrestricted grammars, i.e., TM = RE.

2.4 Special Types of Grammars and Automata

This section cover the grammars and automata that are not as commonly known but as
important to understand the outcome of this thesis. The section wants to make sure reader
understands why these structures and/or modification are necessary and provides context
between them.

2.4.1 State Grammar

A state grammar G is a context-free grammar extended by additional mechanism that
influences the choice of the rule during every derivation step. If application of rule always
takes place within the first n occurrences of nonterminals, G is referred to as n-limited.

A state grammar is quintuple

G = (N,W, T,R, S)

where

• N is a finite alphabet of nonterminals

• W is a finite set of states

• T is a finite alphabet of terminals, N ∩ T = ∅

• R ⊆ (W ×N)× (W × (N ∪ T)+) is finite set of relations

• S ∈ N is the start symbol

Instead of (q, A, p, v) ∈ P , we write (q, A) → (p, v) ∈ R throughout. For every z ∈
(N ∪ T)* , define

statesG(z) = {q ∈ W | (q, A) → (p, v) ∈ R,A is a nonterminal in z}

If (q, A) → (p, v) ∈ R, x, y ∈ V *, statesG(x) = ∅, then G makes a derivation step from
(q, xAy) to (p, xvy), symbolically written as

(q, xAy) ⇒ (p, xvy)

In addition, if n is a positive integer and xA contains n or less nonterminals, we say that
(q, xAy) ⇒ (p, xvy) is n-limited, symbolically written as

(q, xAy)n ⇒ (p, xvy)

In the standard manner we extend ⇒ to ⇒m, m ≥ 0. Based on ⇒m we can define ⇒+ and
⇒*.

11

Let n ∈ N+ and α, β ∈ (W × (N ∪ T)+). To express that every derivation step in
α ⇒m β, α ⇒+ β and α ⇒* β is n-limited, we write αn ⇒m β, αn ⇒+ β and αn ⇒* β
respectively.

The language of G, L(G), is defined as

L(G) = {w ∈ T * | (q, S) ⇒* (p, w), q, p ∈ W}

Moreover, we define for every n ≥ 1

L(G,n) = {w ∈ T * | (q, S)n ⇒* (p, w), q, p ∈ W}

A derivation of the form (q, S)n ⇒* (p, w), where q, p ∈ W and w ∈ T *, represents a suc-
cessful n-limited generation of w in G.

2.4.2 Matrix Grammars

A matrix grammar defines a sequence of rules that must be applied in given order instead
just one as in standard manner. This enables the grammar to expand the set of languages
it can generate.

A matrix grammar is a quintuple G = (N,T,M, S, F), where

• N is a finite alphabet of nonterminals

• T is a finite alphabet of terminals, N ∩ T = ∅

• M = m1,m2, ...,mn is a finite set of finite sequences of context-free rules (i.e., for
1 ≤ i ≤ n, mi = (Ai,1 → wi,1, Ai,2 → wi,2, . . . , Ai,ri → wi,ri) for some ri ≥ 1,
Ai,j ∈ N , wi,j ∈ (N ∪ T)*, 1 ≤ j ≤ ri)

• S ∈ N is the start symbol

• F is a subset of the rules occurring in the matrices mi, 1 ≤ i ≤ n

Now, let m = (A1 → w1, A2 → w2, . . . , Ar → wr) ∈ M . We say that y ∈ (N ∪ T)* is
derived from x ∈ (N ∪ T)+ by m (and write x ⇒ y), if there exist words x1, x2, . . . , xr+1

such that

1. x = x1 and y = xr+1

2. for all 0 ≤ i ≤ r:

(a) either xi = x′iAix
′′

i and xi+1 = x′iwix
′′

i , or

(b) Ai does not occur in xi, xi+1 = xi and Ai → wi ∈ F

In the standard manner we extend ⇒ to ⇒n, n ≥ 0. Based on ⇒n we can define ⇒+ and
⇒*. The language L(G) generated by G is defined in standard way as

L(G) = {w ∈ T * | S ⇒* w}

In this thesis we use an alteration of this grammar matrix grammars of finite index.
A matrix grammar of index k for a positive integer is one whose sentential form must
not contain more than k nonterminals in any derivation step, otherwise the derivation is
stopped and not successful. In the following explanation, we will use MGk in order to
denote a family of languages generated by matrix grammars of index k.

12

2.4.3 Deep Pushdown Automaton

A deep pushdown automaton works very similarly to the regular pushdown automaton main
difference being the ability to access values deeper on the stack. This option can significantly
enlarge the acceptance power of such automaton since now it can accept certain subsets
of context-sensitive languages. More precisely, they give rise to an infinite hierarchy of
language families coinciding with the hierarchy resulting from n-limited state grammar.

A deep pushdown automaton (deep PDA) is a 7-tuple

M = (Q,Σ,Γ, R, s, S, F)

where

• Q,Σ,Γ, s, S and F are defined like in the pushdown automaton

• In what follows, N = Γ ∖ (Σ ∪ {#}). The transition relation R is a finite set that
contains elements of

(N×Q×N ×Q× (Γ ∖ {#})+)

and of
(N×Q× {#} ×Q× (Γ ∖ {#})*{#})

where I = {i : 1 ≤ i ≤ n} for some n. We will write mqA → pv ∈ R instead of
(m, q,A, p, v) ∈ R.

A configuration of M is any member of Q×Σ* × (Γ ∖ {#})*{#}. Let Ξ denote the set
of all configurations of M . Next, we define three binary relations over Ξ — p⊢, e⊢, and ⊢.
Let q, p ∈ Q, x ∈ Σ*, z ∈ (Γ ∖ {#})*{#}).

1. Let a ∈ Σ; then, (q, ax, az) p⊢ (q, x, z).

2. Let mqA → pv ∈ R, z = uAw, u ∈ (Γ ∖ {#})*, u contains m − 1 occurrences of
symbols from N , either A ∈ N , v ∈ (Γ ∖ {#})+ and w ∈ (Γ ∖ {#})*{#} or A = #,
v ∈ (Γ ∖ {#})*{#}, and w = ε; then, (q, x, uAw) e⊢ (p, x, uvw).

3. Let α, β ∈ Ξ; α ⊢ β if and only if α p⊢ β or α e⊢ β.

Intuitively, in p ⊢ and e ⊢, p and e stand for pop and expansion, respectively. Consider
2 above; to express that (q, x, uAw) e⊢ (q, x, uvw) is made according to mqA → pv, write
(q, x, uAw) e ⊢ (p, x, uvw) [mqA → pv]. If α, β ∈ Ξ, α ⊢ β in M , we say that M makes
a move from α to β. In the standard manner, extend e ⊢, p ⊢, and ⊢ to e ⊢

i, p ⊢
i, and ⊢i,

respectively, for i ≥ 0; then, based on e⊢
i, p⊢

i, and ⊢i, define e⊢
+, e⊢

*, p⊢
+, p⊢

*, ⊢+, and
⊢*. The language of M , L(M), is defined as

L(M) = {w | (s, w,#) ⊢* (f, ε,#), w ∈ Σ*, f ∈ F}

The acceptance power of the deep pushdown automata that make expansion of depth
m or less, where m ≥ 1, are equivalent to m-limited state grammars so these automata
accept a proper subfamily of the language family accepted by deep pushdown automata that
make expansions of depth m+1 or less, thus creating infinite hierarchy of language families
occurring between the families of context-free and context-sensitive languages. However,
there always exists some context-sensitive languages that cannot be accepted by any deep
pushdown automata that make expansions of depth n or less, for every positive integer n.
Rigorous proof of these statements can be found in section 18.2 Accepting Power of [16].

13

2.4.4 Finitely Expandable Deep Pushdown Automaton

An n-expandable deep pushdown automaton is an 8-tuple

M = (Q,Σ,Γ, R, s, S, F, n)

where all components are as for the original deep PDA, and n is a positive integer. Ex-
panding transition can only be applied in a step xe ⊢ y if y will not contain more than n
non-input symbols. Otherwise either some other transition must be applied or the com-
putation stops without accepting. A deep PDA that is n-expandable for some n is called
finitely expandable.

This modification is very important since it ensures the number of non-input symbol
on stack is never infinite, witch would be possible given a regular deep PDA. It would not
be possible to create automaton with the reduction introduced in this thesis without this
condition.

Let n, r ∈ N, nDPDA denotes the language family accepted by n-expandable deep
pushdown automata. nDPDAr denotes the language family accepted by n-expandable
deep pushdown automata with # and no more than (r − 1) non-input pushdown symbols.

In Section 3.1 of the thesis, we provide a proof that finitely expandable deep pushdown
automata has the same acceptance power as matrix grammars of finite index.

2.5 Normal and Reduced Forms

Normal and reduced forms of grammars and automata typically refers to their simpler and
more restricted subset. Having a grammar or automaton in such a well-specified form can
significantly ease construction of proofs and reasoning about these entities [17]. Since the
main result of the thesis contributes to this effort in the terms of finitely expandable deep
pushdown automata, this section defines and describes applicability of the most commonly
used normal and reduced forms of context-free grammars (Chomsky and Greibach) and
regular automata (minimal FSM).

2.5.1 Chomsky Normal Form

A context-free grammar G = (N,T, P, S) is in Chomsky normal form when every rule from
P is of the form A → BC or A → a, where a is a terminal, and A, B, and C are non-
terminals. Further B and C are not the starting non-terminals. Additionally, a special
rule S → ε is permitted where S is the start non-terminal so a language generated by the
grammar can contain an empty string. In [3], it is shown that every context-free grammar
can be transformed into such form. The main idea of the algorithm that converts a grammar
to this form involves:

1. Determining all nullable variables and getting rid of all ε-productions

2. Getting rid of all non-terminal unit productions

3. Breaking up long productions

4. Moving terminals to unit productions

The key advantage is that in Chomsky normal form, every derivation of a string of n
letters has exactly 2 ·n− 1 steps. Therefore one can determine if a string is in the language

14

generated by the grammar by exhaustive search of all its derivations. This form of grammar
is practically applied in Cocke-Younger-Kasami algorithm [4, 18, 12] for recognition and
parsing of context-free languages (including non-deterministic ones). Another application
of the form can be seen in proof of the so-called Pumping Lemma [2] that is practically
used to show that a given language is not context-free.

2.5.2 Greibach Normal Form

A context-free grammar G = (N,T, P, S) is said to be in Greibach normal form if every
production rule is of the form A → ax, where a is a terminal, A in non-terminal, and x is
a string of over non-terminals (including empty string). The proof that every context-free
grammar can be transformed into this form is shown in [7]. The main idea of the algorithm
that converts a grammar to this form involves:

1. Removal of a left-recursion and getting rid of all ε-productions

2. Finding a linear order on a set of non-terminals

3. Substitution of productions with respect to the order from the previous step so all
rules are in form A → ay where a is a terminal, A in non-terminal, and y is a string
over terminals and non-terminals.

4. Transformation of the productions A → ay, A ∈ N , a ∈ T , y ∈ (N ∪ T)* to A → ax,
x ∈ N*.

The key advantage of Greibach Normal Form is that a grammar in such a form produces
precisely one symbol of a generated string in each of its derivation steps. This fact was
used in order to prove that every context-free grammar can be recognized by a pushdown
automaton that works in real time (i.e., without ε-transitions) and thus efficiently parsed [7].

2.5.3 Minimal Finite State Machine

For each regular language that can be accepted by a finite state machine, there exists
a minimal finite state machine with a minimum number of states which is unique (except
that states can be given different names) [9]. Given a deterministic finite state machine
there are three classes of states that can be removed from the original machine without
affecting the language it accepts in order to minimize it:

• Non-terminating states – States for which there does not exist a string that takes the
machine to its final state.

• Unreachable states – States that are not reachable from the initial state of the ma-
chine, for any input string.

• Non-distinguishable states – States are those that cannot be distinguished from one
another for any input string.

Finite state minimization is usually done in three steps, corresponding to the removal /
merger of the relevant states in the order presented above. The minimal DFA ensures min-
imal computational cost for tasks such as pattern matching. Moreover, since the minimal
finite state machine is unique, the minimization can be used, e.g., to show that two regular
expressions match the same strings.

15

Chapter 3

Result

This chapter focuses on the main result of the thesis. Its first part establishes the infinite
hierarchy of language families that coincides with the hierarchy resulting from the matrix
grammars of finite index. This proof is based on paper by Meduna [13]. Next section
then contains an original proof that reduced version of the n-expandable deep pushdown
automata have the exact same accepting power as their non-reduced counterparts. This
proof is also being published as a paper in Schedae Informaticae [6].

3.1 Hierarchy of Language Families Generated by Matrix

Grammars

At start, we establish a lemma that helps simplify the upcoming proof. Its rigorous proof
can be found in [13].

Lemma 3.1.1 Any n-expandable deep PDA M can accept every w ∈ L(M) so all expan-
sions precede all pops during the accepting process without any loss of generality.

Next, we present a theorem and a simplified version of its proof that was introduced
in [13] as it contains details that are necessary for understanding of following explanation.

Theorem 3.1.1 For all integers n > 0, matrix grammars of index n generate the same
class of languages that is accepted by n-expandable deep push down automata, i.e., MGn =

nDPDA.

Proof 3.1.1 In the following text, we assume that all the transitions we define below will
be defined for all possible depths, i.e. for all positions from one to n. Let G = (N,T,M, S)
be a matrix grammar of index n. Our deep PDA is M = ({s} ∪ (M × {1, 2, . . . , `}), T ,
{S} ∪N ∪ T,R, s, S, {s}, n), where ` is the maximal number of rules in a matrix of G. The
only component left to define is the transition function R. For every matrix m : A1 →
v1, A2 → v2, . . . , Ak → vk from M it contains the following transitions where mi denotes
the element (m, i) from the set of states:

sA1 → m1v1,m1A2 → m2v2,m2A3 → m3v3, . . .

. . . ,mk−2Ak−2 → mk−1vk−2,mk−1Ak → svk

The states mi are used only in these transitions simulating m, thus there is only one
possible transition for each of these states. This means that the automaton either executes

16

the entire sequence of transitions corresponding to the matrix m, or it will stop without
accepting the word.

To see that G and M are equivalent, let us look at the sentential forms of a derivation
and the corresponding stack contents. Both start with S. As stated above, rules of the
grammar and expanding transitions of the deep PDA enact exactly the same changes. Thus
as long as we do not use any pops, the sentential forms and the corresponding stack contents
are identical, and it is obvious that every terminal word that can be derived by the grammar
can also be generated on the stack. Lemma 3.1.1 shows that all computations of M can be
normalized in this manner. Finally, after finishing the simulation of a matrix, M is always
in its final state s and can thus accept the word on the stack if it consists only of terminals
and matches the input word. Therefore the deep PDA accepts the same language that the
grammar generates.

For showing the inverse inclusion, we need a more sophisticated argumentation. We
will construct a matrix grammar for a given deep PDA, and again the sentential forms and
the stack contents will be in close correspondence. However, since the grammar does not
distinguish between different positions of non-terminals while the automaton does, we need
to store information about their position in the non-terminals themselves. Whenever new
ones are introduced or when one is rewritten to a string of only terminals, the following
ones need to be updated, because their positions change. This will be ensured by putting all
the rules involved in one matrix.

We now proceed to define a matrix grammar simulating an n-expandable deep PDA
(Q,Σ,Γ, R, s, S, F, n). The set of non-terminals will be N × {2, . . . , n} ∪ N × Q ∪ {ε} ×
{2, . . . , n} ∪ {S}, where the second component will contain the position of a given stack
symbol, if it is not the first one, or it will contain the state, if the symbol is the first
one. The start symbol will be S, and the matrix (S → (S, s)(ε, 2)(ε, 3) · · · (ε, n)) is the
only one containing a rule rewriting S. The symbols with ε are placeholders for further
non-terminals.

For the matrices simulating the automaton’s transitions, the simplest case is when ex-
actly one non-terminal is on the right-hand side of the rule. Then the positions of non-
terminals in the other parts of the sentential form are not affected. So for every transition
kpA → quBv with uv ∈ T * and we add the matrices ((X, p) → (X, q), (A, k) → u(B, k)v)
for all non-terminals X and all k between two and n. The first rule changes the state that
is stored in the sentential form’s first non-terminal, the second rule does the expansion at
position k. If k = 1, then the matrix is singleton and contains the rule (A, p) → u(B, q)v,
which rewrites the non-terminal and changes the state in a single step.

If a rule of the grammar produces more than one non-terminal, then the depth in the
simulated stack of all the non-terminals to the right of that application side is changed.
Therefore these positions need to be updated accordingly. The problem here is that we do
not know, how many non-terminals there are. This is where the function of the symbols
containing ε becomes clear. With their presence, we always have exactly n non-terminals
during the simulation of the deep PDA, and thus the matrices can be designed with this
condition.

So for a transition kpA → qu0B1u1B2. . .ul−1B`u`, first note that it can only be executed,
if there are at most n − ` + 1 nonterminals on the stack; otherwise the condition of being
finitely expandable is violated. This, on the other hand, means that the current sentential
form must contain at least l − 1 placeholders containing ε. We test for this by starting
the matrices with sequences (X, i) → (X, i), (ε, i + 1) → (ε, i + 1), which do not change
anything but establish that the first placeholder is at position i+1. As a second step, all the

17

nonterminals from positions k + 1 to i are moved l − 1 positions to the right and replaced
by the nonterminal put there by the deep PDA’s expansion. This is done by sequences
(Y, k + j) → (Bj+1, k + j)uj+1, (Z, k + j + ` − 1) → (Y, k + j + ` − 1) for the first ` − 1
nonterminals, which are replaced by the new ones from the expanding transition. The
following ones are copied by sequences (Y,m) → (Y,m),(Z,m + ` − 1) → (Y,m + ` − 1);
here the first rule checks, which nonterminal is at the original position, the second rule
copies it l − 1 positions to the right. This process must start from the right side in order
not to delete any nonterminal before it has been copied. Finally in position k we must apply
(A, k) → u0(B1, k)u1 and in position one (X, p) → (X, q) to update the state.

Summarizing, the matrices for simulating kpA → qu0B1u1B2. . .ul−1B`u` are the fol-
lowing:

((X, i) → (X, i),

(ε, i+ 1) → (ε, i+ 1),

(Ym,m) → (Ym,m),

(Zm,m+ `− 1) → (Ym,m+ `− 1),

}

for m ∈ i, . . . , k + `,

(Ym,m) → (Bm−k+1,m)um−k+1,

(Zm,m+ `− 1) → (Ym,m+ `− 1),

}

for m ∈ k + `− 1, . . . , k + 1,

(A, k) → u0(B1, k)u1, (X
′, p) → (X ′, q))

One matrix is defined for each possible combination of X,X ′, Ym ∈ N , i such that n ≥ i > k,
Z ∈ N ∪ {ε}. If k = 1, then the last line is condensed into one single rule (A, p) →
u0(B1, q)u1. Notice that the number of nonterminals in the sentential form remains con-
stant during application of these matrices and thus the condition of being of finite index is
complied with.

Finally, there remains the case where a non-terminal is expanded to a string of ter-
minals only. In this case one new placeholder must be introduced, and the position of the
nonterminals right of the rule application must be decreased by one. Let the transition be
kpA → qu with u → T *. Again, we start by testing for the border between nonterminals
and placeholders by (X, i) → (X, i), (ε, i + 1) → (ε, i + 1). Then we can go from left to
right, first update the state, then simulate the rule application, and finally move the other
nonterminals to the left and insert a new ε. The matrices are:

((X, i) → (X, i),

(ε, i+ 1) → (ε, i+ 1),

(X ′, p) → (X ′, q), (A, k)εu,

(Ym,m) → (Ym,m− 1), for m ∈ k + 1, . . . , i,

(X, i) → (X, i− 1)(ε, i))

In this case, there is also the possibility that we have n nonterminals present and no ε. In
that case the first line simply contains (Xn) → (Xn), which establishes that the last position
is occupied by a nonterminal. For k = 1 there is a little modification necessary, because
deleting the first nonterminal would also delete the state of the deep PDA. Therefore the
second line is (A, p) → u, (Y2, 2) → (Y2, q), and the third line is only for m from 3 to i.
Notice that the rule (X, i) → (X, i−1)(ε, i), which increases the number of nonterminals, is

18

applied only after the nonterminal at position k has been deleted. In this way the condition
of being of finite index is complied with also here.

When removing the left-most non-terminal, however, there is also the possibility that
it is the only one. In this case, this would be the last expansion of a non-terminal, and
the simulation should stop. The only matter left to resolve, when the last non-terminal is
deleted, is the fact that in the end of the simulation, in addition to the word of terminals,
we have the remaining placeholders. They should be removed after the last expansion of
a non-terminal in an accepting computation. Such an expansion can only take place in the
first position, otherwise there are other non-terminals left that would be expanded further.
Therefore we add for all transitions removing the first non-terminal matrices that do this
expansion and in addition remove placeholders from positions 2 to n; this way these matrices
are only applicable if the non-terminal that is expanded is really the last one. Formally,
for every transition 1pA → qu with u ∈ T * we add the matrix ((A, p) → u, (ε, 2) →
λ, . . . , (ε, n) → λ), if q is a final state. This way, also the state of the deep PDA disappears,
if it was final, and the grammar’s derivation terminates with the same string of terminals
that are on the stack of the simulated deep PDA in a computation according to the pattern
of Lemma 3.1.1. Here it must be recalled that context-free matrix grammars of finite index
have the same generative power whether there are deleting rules or not, see Lemma 3.1.2
in [5].

Here the derivation graphs do not correspond to each other as directly as above. However,
the correspondence is still rather evident. Let us define the following mapping that projects
the compound nonterminals to their first component and deletes the placeholders:

%(x) =







X x = (X, i), X ∈ N, i ∈ {1, 2, . . . , n} ∪Q

λ x = (ε, i), i ∈ {1, 2, . . . , n}

x x ∈ T

Obviously, the deep PDA’s stack contents at the start of a computation are the same as the
image under % of the sentential form obtained after applying the only matrix applicable in the
beginning, namely (S → (S, s)(ε, 2)(ε, 3) · · · (ε, n)). Also the state stored in the sentential
form is equal to the one of the deep PDA. As the explanations throughout the definition
of our matrix grammar illustrate, these two features equality of stack contents and the
sentential form’s image under % plus the equality of states are preserved by simultaneous
application of an expanding transition in the deep PDA and the corresponding matrix on
the sentential form. Due to the one-to-one correspondence between expanding transitions
and matrices (that always have to apply all of their rules) it is clear that any computation
according to Lemma 3.1.1, before popping is started, leads to a terminal string on the stack
that can also be generated by the grammar, if the current state is final. The inverse is
equally obvious and thus the two devices are equivalent. �

For matrix grammars of finite index it is known that they give rise to an in finite hier-
archy of classes of languages. For every positive integer n, the class of languages generated
by matrix grammars of index n is properly contained in the class of languages generated by
matrix grammars of index n+ 1, see Theorem 3.1.7 in [5]. Since these classes are equal to
the ones accepted by finitely expandable deep PDAs, also these devices induce an in finite
hierarchy.

Corollary 3.1.1 For all integers n > 0, the class of languages accepted by n-expandable
deep PDAs is properly contained in the class of languages accepted by n+1-expandable deep
PDAs.

19

3.2 Reduction of Finitely Expandable Deep Pushdown Au-

tomata

In this section, we establish Lemma 3.2.1, which captures the main result of this thesis.

Lemma 3.2.1 Let n ∈ N. For every n-expandable deep PDA M , there exists an n-
expendable deep PDA MR such that L(M) = L(MR) and MR contains only two non-input
pushdown symbols—$ and #.

Proof 3.2.1 Construction. Let n ∈ N. Let

M = (Q,Σ,Γ, R, s, S, F)

be an n-expandable deep PDA. Recall that rules in R are of the form mqA → pv, where
m ∈ N, q, p ∈ Q, either A ∈ N and v ∈ (Γ ∖ {#})+ or A = # and v ∈ (Γ ∖ {#})*{#},
where # denotes the pushdown bottom.

Let $ be a new symbol, $ /∈ Q ∪ Γ, and let homomorphisms f and g over Γ* be defined
as f(A) = A and g(A) = $, for every A ∈ N , and f(a) = ε and g(a) = a, for every
a ∈ (Σ ∪ {#}). Next, we construct an n-expandable deep PDA

MR = (QR,Σ,Σ ∪ {$,#}, RR, sR, $, FR)

by performing 1 through 4, given next:

1. Add m⟨q;uAz⟩$ → ⟨p;uf(v)z⟩g(v) to RR and add ⟨q;uAz⟩, ⟨p;uf(v)z⟩ to QR if
mqA → pv ∈ R, u, z ∈ N*, |u| = m − 1, |z| ≤ n −m − 1, m ∈ N, q, p ∈ Q, A ∈ N ,
and v ∈ (Γ ∖ {#})+;

2. Add m⟨q;u⟩# → ⟨p;uf(v)⟩g(v)# to RR and add ⟨q;u⟩, ⟨p;uf(v)⟩ to QR if mq# →
pv# ∈ R, u ∈ N*, |u| = m− 1, m ∈ N, q, p ∈ Q, and v ∈ (Γ ∖ {#})*;

3. Set sR = ⟨s;S⟩;

4. Add all ⟨p;u⟩ to FR, where p ∈ F , u ∈ N*.

Later in this proof, we demonstrate that L(M) = L(MR).

Basic Idea. States in QR include not only the states corresponding to the states in Q
but also strings of non-input symbols. Whenever M pushes a non-input symbol onto the
pushdown, MR records this information within its current state and pushes $ onto the
pushdown instead.

As previously mentioned in Lemma 3.1.1, any n-expandable deep PDA M can accept
every w ∈ L(M) so all expansions precede all pops during the accepting process. Without
any loss of generality, we assume that M and MR work in this way in what follows, too.

To establish L(M) = L(MR), we prove the following four claims.

Claim 3.2.1 Let (s, w, S#) ⊢j (q, v, x#) in M , where s, q ∈ Q, w, v ∈ Σ*, and x ∈ (Γ ∖
{#})*. Then, (⟨s;S⟩, w, $#) ⊢* (⟨q; f(x)⟩, v, g(x)#) in MR, where ⟨s;S⟩, ⟨q; f(x)⟩ ∈ QR,
and g(x) ∈ (Σ ∪ {$})*.

Proof 3.2.2 This claim is proved by induction on j ≥ 0.

20

Basis. Let j = 0, so (s, w, S#) ⊢0 (s, w, S#) in M, where s ∈ Q and S ∈ N . Then, from
3 in the construction, we obtain

(⟨s;S⟩, w, $#) ⊢0 (⟨s;S⟩, w, $#)

in MR, so the basis holds.

Induction Hypothesis. Assume there is i ≥ 0 such that Claim 3.2.1 holds true for all
0 ≤ j ≤ i.

Induction Step. Let (s, w, S#) ⊢i+1 (q, w, x#) in M, where x ∈ (Γ ∖ {#})*, s, q ∈ Q,
w ∈ Σ*. Since i+ 1 ≥ 1, we can express (s, w, S#) ⊢i+1 (q, w, x#) as

(s, w, S#) ⊢i (p, w, x0A1x1...Am...Akxk#)

⊢ (q, w, x0A1x1...Am−1xm−1y0B1y1...B`y`xmAm+1...xk−1Akxk#)

[mpAm → qy0B1y1...B`y`]

where A1, ..., Ak, B1, ..., B` ∈ N and x0x1...xk, y0y1...y` ∈ Σ*. By the induction hypothesis,
we have

(⟨s;S⟩, w, $#) ⊢* (⟨p;A1...Am...Ak⟩, w, x0$x1$...$xk#)

Since mpAm → qy0B1y1...B`y` ∈ R, we also have

m⟨p;A1...Am...Ak⟩$ → ⟨q;A1...Am−1B1...B`Am+1...Ak⟩y0$y1$...$y` ∈ RR

(see 1 in the construction). Thus,

(⟨p;A1...Am...Ak⟩, w, x0$x1$...$xk#) ⊢

(⟨q;A1...Am−1B1...B`Am+1...Ak⟩, w, x0$x1$...$xm−1y0$y1$...$y`xm$...$xk#)

[m⟨p;A1...Am...Ak⟩$ → ⟨q;A1...Am−1B1...B`Am+1...Ak⟩y0$y1$...$y`]

Analogically, we can prove the induction step for the case when # is rewritten. Let (s, w,
S#) ⊢i+1 (q, w, Sx#) in M, where x ∈ (Γ ∖ {#})*, s, q ∈ Q, w ∈ Σ*. Since i+ 1 ≥ 1, we
can express (s, w, S#) ⊢i+1 (q, w, Sx#) as

(s, w, S#) ⊢i (p, w, Sx0A1x1...Akxk#)

⊢ (q, w, Sx0A1x1...Akxky0B1y1...B`y`#)

[mp# → qy0B1y1...B`y`#]

where A1, ..., Ak, B1, ..., B` ∈ N and x0x1...xk, y0y1...y` ∈ Σ*. By the induction hypothesis,
we have

(⟨s;S⟩, w, $#) ⊢* (⟨p;SA1...Ak⟩, w, $x0$x1$...$xk#)

Since mp# → qy0B1y1...B`y`# ∈ R, we also have

m⟨p;SA1...Ak⟩# → ⟨q;A1...AkB1...B`⟩$y0$y1$...$y` ∈ RR

(see 2 in the construction). Thus,

(⟨p;SA1...Ak⟩, w, $x0$x1$...$xk#) ⊢

(⟨q;SA1...AkB1...B`⟩, w, $x0$x1$...$xky0$y1$...$y`#)

[m⟨p;SA1...Ak⟩# → ⟨q;SA1...AkB1...B`⟩$y0$y1$...$y`#]

Therefore, Claim 3.2.1 holds true. �

21

Claim 3.2.2 L(M) ⊆ L(MR).

Proof 3.2.3 Consider Claim 3.2.1 for v = ε, q ∈ F , and x = ε. Under this consideration
Claim 3.2.1 implies Claim 3.2.2. �

Claim 3.2.3 Let (⟨s;S⟩, w, $#) ⊢j (⟨q;A1...Ak⟩, v, x#) in MR, where sR = ⟨s;S⟩, ⟨q;
A1...Ak⟩ ∈ QR, w, v ∈ Σ*, A1, ..., Ak ∈ N , x = x0$x1$...$xk, and x0...xk ∈ Σ*. Then,
(s, w, S#) ⊢* (q, v, x0A1x1...Akxk#) in M , where s, q ∈ Q.

Proof 3.2.4 This claim is proved by induction on j ≥ 0.

Basis. Let j = 0, so (⟨s;S⟩, w, $#) ⊢0 (⟨s;S⟩, w, $#) in MR, where sR = ⟨s;S⟩. From 3
in the construction, we have

(s, w, S#) ⊢0 (s, w, S#)

in M , so the basis holds.

Induction Hypothesis. Assume there is i ≥ 0 such that Claim 3.2.3 holds true for
0 ≤ j ≤ i.

Induction Step. Let (⟨s;S⟩, w, $#) ⊢i+1 (⟨q;A1...Ak⟩, w, x0$x1$...$xk#) in MR, where
⟨q;A1...Ak⟩ ∈ QR, A1, ..., Ak ∈ N , w ∈ Σ*, and x0...xk ∈ Σ*. Since i + 1 ≥ 1, we can
express

(⟨s;S⟩, w, $#) ⊢i+1 (⟨q;A1...Ak⟩, w, x0$x1$...$xk#)

as
(⟨s;S⟩, w, $#) ⊢i (⟨p;A1...Am...Ak⟩, w, x0$x1$...$xk#)

⊢ (⟨q;A1...Am−1B1...B`Am+1...Ak⟩, w, x0$x1$...$xm−1y0$y1$...$y`xm$...$xk#)

[m⟨p;A1...Am...Ak⟩$ → ⟨q;A1...Am−1B1...B`Am+1...Ak⟩y0$y1$...$y`]

By the induction hypothesis, we obtain

(s, w, S#) ⊢i (p, w, x0A1x1...Am...Akxk#)

Since m⟨p;A1...Am...Ak⟩$ → ⟨q;A1...Am−1B1...B`Am+1...Ak⟩y0$y1$...$y` ∈ RR, we also
have mpAm → qy0B1y1...B`y` ∈ R as follows from 1 in the construction. We obtain

(p, w, x0A1x1...Am...Akxk#)

⊢ (q, w, x0A1x1...Am−1xm−1y0B1y1...B`y`xmAm+1...xk−1Akxk#)

[mpAm → qy0B1y1...B`y`]

Analogically, we can prove the case when # is expanded. Let (⟨s;S⟩, w, $#) ⊢i+1

(⟨q;SA1...Ak⟩, w, $x0$x1$...$xk#) in MR, where ⟨q;SA1...Ak⟩ ∈ QR, A1, ..., Ak ∈ N , w ∈
Σ*, and x0...xk ∈ Σ*. Since i+ 1 ≥ 1, we can express

(⟨s;S⟩, w, $#) ⊢i+1 (⟨q;SA1...Ak⟩, w, $x0$x1$...$xk#)

as
(⟨s;S⟩, w, $#) ⊢i (⟨p;A1...Ak⟩, w, $x0$x1$...$xk#)

22

⊢ (⟨q;SA1...AkB1...B`⟩, w, $x0$x1$...$xky0$y1$...$y`#)

[m⟨p;SA1...Ak⟩# → ⟨q;A1...AkB1...B`⟩y0$y1$...$y`#]

By the induction hypothesis, we obtain

(s, w, S#) ⊢i (p, w, Sx0A1x1...Am...Akxk#)

Since m⟨p;A1...Am...Ak⟩$ → ⟨q;A1...Am−1B1...B`Am+1...Ak⟩y0$y1$...$y` ∈ RR, we also
have mpAm → qy0B1y1...B`y` ∈ R as follows from 2 in the construction. We obtain

(p, w, Sx0A1x1...Akxk#)

⊢ (q, w, Sx0A1x1...xk−1Akxky0B1y1...B`y`#)

[mp# → qy0B1y1...B`y`#]

Therefore, Claim 3.2.3 holds true. �

Claim 3.2.4 L(MR) ⊆ L(M).

Proof 3.2.5 Consider Claim 3.2.3 with v = ε, ⟨q;A1...Ak⟩ ∈ FR, and x = ε. Under this
consideration, Claim 3.2.3 implies Claim 3.2.4. �

As L(M) ⊆ L(MR) (see Claim 3.2.2) and L(MR) ⊆ L(M) (see Claim 3.2.4), L(MR) =
L(M). Thus, Lemma 3.2.1 holds. �

The next example illustrates the construction described in the previous proof.

Example 3.2.1 Take this two-expandable deep PDA M = ({s, q, p},{a, b, c},{a, b, c, A, S,#},
R,s,S,{f})

R = {1sS → qAA,

1qA → fab,

1fA → fc,

1qA → paAb,

2pA → qAc}

By the construction given in the proof of Lemma 3.2.1, we construct MR = (QR, {a, b, c},
{a, b, c, $,#}, RR, ⟨s;S⟩, $, {⟨f ;A⟩, ⟨f ; ε⟩}), where QR = {⟨s;S⟩, ⟨q;AA⟩, ⟨f ;A⟩, ⟨f ; ε⟩, ⟨p;AA⟩}
Figure 3.1.

RR = {1⟨s;S⟩$ → ⟨q;AA⟩$$,

1⟨q;AA⟩$ → ⟨f ;A⟩ab,

1⟨f ;A⟩$ → ⟨f ; ε⟩c,

1⟨q;AA⟩$ → ⟨p;AA⟩a$b,

2⟨p;AA⟩$ → ⟨q;AA⟩$c}

23

<p;AA>

<q;AA><s;S> <f;ε><f;A>1 $/$$ 1 $/ab 1 $/c

1 $/a$b 2 $/$c

Figure 3.1: 2-expandable deep pushdown automaton accepting language anbncn.

For instance, MR makes

(⟨s;S⟩, aabbcc, $#) e⊢ (⟨q;AA⟩, aabbcc, $$#) [1⟨s;S⟩$ → ⟨q;AA⟩$$]

e⊢ (⟨p;AA⟩, aabbcc, ab#) [1⟨q;AA⟩$ → ⟨p;AA⟩a$b]

p⊢ (⟨p;AA⟩, abbcc, b#)

e⊢ (⟨q;AA⟩, abbcc, bc#) [2⟨p;AA⟩$ → ⟨q;AA⟩$c]

e⊢ (⟨f ;A⟩, abbcc, abb$c#) [1⟨q;AA⟩$ → ⟨f ;A⟩ab]

p⊢ (⟨f ;A⟩, cc, $c#)

e⊢ (⟨f ; ε⟩, cc, cc#) [1⟨f ;A⟩$ → ⟨f ; ε⟩c]

p⊢ (⟨f ; ε⟩, ε,#)

3.3 Acceptance Power

In this section, we will evaluate acceptance power of the reduced finitely expandable deep
pushdown automata.

Theorem 3.3.1 For all n ≥ 1, nDPDA = nDPDA2.

Proof 3.3.1 This theorem follows from Lemma 3.2.1. �

Corollary 3.3.1 For all n ≥ 1, nDPDA2 ⊂ n+1DPDA2.

Proof 3.3.2 This corollary follows from Theorem 3.3.1 in this thesis and Corollary 3.1.1.
�

Can we reformulate Theorem 3.3.1 and Corollary 3.3.1 in terms of nDPDA1? The answer
is no as we show next.

Lemma 3.3.1 Let M = (Q,Σ,Γ, R, s, S, F) be a deep PDA with Γ∖Σ = {#}. Then, there
is a right-linear grammar G such that L(G) = L(M).

24

Proof 3.3.3 Let M = (Q,Σ,Γ, R, s, S, F) with Γ ∖ Σ = {#}. Thus, every rule in R is of
the form 1q# → px#, where q, p ∈ Q, x ∈ Σ*. Next, we construct a right-linear grammar
G = (Q,Σ, P, s) so L(M) = L(G). We construct P as follows:

1. For every 1q# → px# ∈ R, where p, q ∈ Q, x ∈ Σ*, add q → xp to P ;

2. For every f ∈ F , add f → ε to P .

A rigorous proof that L(M) = L(G) is left to the reader. �

Theorem 3.3.2 REG = 1DPDA1 = nDPDA1, for any n ≥ 1.

Proof 3.3.4 Let n ≥ 1. REG ⊆ 1DPDA1 = nDPDA1 is clear. Recall that right-linear
grammars characterize REG, so nDPDA1 ⊆ REG follows from Lemma 3.3.1. Thus,
REG = nDPDA1. �

Corollary 3.3.2 REG = 1DPDA1 = nDPDA1 ⊂ nDPDA2, for all n ≥ 2.

Proof 3.3.5 Let n ≥ 1. As obvious, 1DPDA1 = nDPDA1 ⊆ nDPDA2. Observe that

{anbn | n ≥ 1} ∈ nDPDA2 ∖ nDPDA1

Therefore, Corollary 3.3.2 holds. �

25

Chapter 4

Application

Since we have proven that the reduction of the pushdown alphabet of n-expandable deep
pushdown automaton is possible, we can follow up with exemplary application. First of all
we will analyze the syntax structures that are accepted by the automaton with the main
focus on structures that are not context-free and create automata with a set of rules capable
to accept such structures.

Afterwords, we will move to the implementation part of the thesis which provides pos-
sibility to create a finitely expandable deep pushdown automata. Moreover, the implemen-
tation allows analysis of the individual rule application and the transfer of the symbols in
the pushdown.

4.1 Analysis of Syntax Structures

Deep pushdown automaton is able to parse any context-free language or any language that
is subset of the context-free languages, but so does regular pushdown automaton, so this
will not be the main interest of this analysis.

An example of a family of languages that are not context-free is the family of context-
sensitive languages. This family is a super set of the family of context-free languages.
There is infinite amount language families between the families of context-free and context-
sensitive languages. There always exists some context-sensitive language that cannot be
accepted by any deep pushdown automata that make expansion of depth n or less, for every
positive integer n. Naturally larger the value n is, the larger the set of languages accepted
by the automaton becomes.

Based on this information, the main restrictive factor of the n-expandable deep push-
down automata is the n which then also becomes the main restriction in finitely expandable
deep pushdown automata with reduced pushdown alphabet. We will have to determine the
value of n that is necessary to parse chosen languages.

4.1.1 Pumping Lemma Theorem

To prove that examples we are using in this section of this thesis are not context-free, we
will use Pumping Lemma Theorem [2]. The introduced form of Pumping Lemma Theorem
states conditions that are necessary for language to be context-free or sub set of a context-
free language. If language does not fulfill these conditions, the language is considered to be
at least context-sensitive.

26

Lemma 4.1.1 Let L be a context-free language. Then there is a constant k such that if
z ∈ L and |z| ≥ k, then z can be written in the form:

z = uvwxy, vx ̸= ε, |vwx| ≤ k

and for all i ≥ 0 is uviwxiy ∈ L.

Proof 4.1.1 Let L = L(G) and G = (N,T,R, S) be a grammar in CNF.

1. First we will prove this implication :

If A ⇒+ α then |α| ≤ 2m−1, where m is the number of vertexes of the longest path in
the corresponding derivation tree.

For the proof we use the induction

(a) m = 2

(b) Consider that the statement holds for some m and the longest path contains
m + 1 vertices. Then the rule of form A → BC was applied in the first step of
a derivation and we can apply the induction hypothesis on the sub-trees with the
roots B and C. We obtain:

|α| ≤ 2m−1 + 2m−1 = 2(m−1)+1 = 2(m+1)−1

2. Let |N | = n and k = 2n+1. Consider an arbitrary sentence z such that |z| ≥ k. Then
the longest path in the corresponding derivation tree contains at least n + 1 vertices
and necessarily at least 2 from them are marked by the same nonterminal. Denote
this nonterminal by symbol A.

The strings v, x can not be empty because the applied rule is of form A → BC. Now
consider the derivation of the string z of form: S ⇒* uAy ⇒+ uvAxy ⇒+ uvwxy = z
This means that in the grammar G there is also the derivation: S ⇒* uAy ⇒+ uvAxy ⇒+

uvvAxxy ⇒+ uv2wx2y, because A ⇒+ w, and thus the derivation S ⇒* uviwxiy for
arbitrary i > 0, which is to be proved. �

4.1.2 Non-Context-Free Languages

Example of non-context-free language is

L = {anbncn | n ≤ 0}

Language L cannot be generated by any context-free grammar or parsed by regular
pushdown automaton. However, as we have seen in the example, it can be parsed using
deep pushdown automaton and there for using the deep pushdown automaton’s reduced
form. Now we will show that the given example contradicts the Pumping Lemma Theorem.

If we assume L is context-free language and choose a string z = akbkck from L. The
string holds true to condition that string should be longer than a value k since |z| = 3k.
According to Pumping Lemma Theorem string z includes substring vwx so that |vwx| ≤ k
and vx ̸= ε. If we fulfil both these conditions there are just 5 different possibilities what
substring vwx can consist of. (1) Only of symbols a, (2) only of symbols b, (3) only of
symbols c, (4) symbol(s) a followed by symbol(s) b, or (5) symbol(s) b followed by symbol(s)
c.

27

The substring can not consist of all 3 symbols since the length has to be less or equal to
k. We can see that if we choose i other than one, the number of some symbols will increase
while the number of others won’t. This contradicts the language where the number of the
symbols is equal. Therefore, the language L is not context-free language.

Another typical example of context-sensitive language is

Ldup = {ss | s ∈ {a, b}*}

If we assume language Ldup is a context-free language and choose a string z = akbkakbk

from Ldup, the condition that |z| ≥ k hold true since |z| = 4k. Since the substring of z
vwx ≤ k, there is 7 different of possibilities of symbols that substring vwx may contain. It
can contain only one type of symbol, either a or b from the first half of the string or a or b
from the second half of the string. If that was the case and i was anything else than 1, one
s would become longer than the other and therefore could not be same.

Another possibility would be the substring vwx would consist of a and b from the first
half or a and b from the second half. Similarly as in the first case the by increasing the value
of i the length of s would no longer be same and therefore would contradict the structure
of the language.

The last possibility would be if the substring vwx was located in the middle of the string
z. If we would have change the value of the i we would get a string akbjambk, which clearly
showcase that the number of a in first half of string is not the same as number of a in
the second half, which contradicts with the language structure once again. Thus, language
Ldup is not context-free language.

4.1.3 Non-Context-Free Code

In practical application, we can find the language Ldup in many forms in many programing
languages. For example, in most programming languages, declaration of a variable can be
done in separate part of code than its assignment by a particular value. Typically, the value
cannot be assigned unless the variable was previously declared. Context-free grammar has
no way of knowing whether the variable was in fact declared and therefore extra look-up
tables have to be created to ensure the proper syntax of the code.

The above described problem is demonstrated in the following pseudo code:

variable dog;

variable cat;

variable cow;

func {

dog = value;

cat = value;

cow = value;

}

This structure could be generic for any code that has declaration separated from as-
signing of the value. More specifically, this structure is typical, e.g., for constructor of an
object in object-oriented languages.

The automaton parsing this code must ensure that every value assigned to an variable
was previously declared. We have created a finitely expandable deep pushdown automaton
that is able to parse such structure:

28

M = (Q, Σ, Γ, R, s, S, {f})
Q = {s, p, f, g, ⟨r; a⟩, ..., ⟨r; z⟩, ⟨t; a⟩, ..., ⟨t; z⟩, ⟨u; a⟩, ..., ⟨u; z⟩}
Σ = {func, {, }, ; , var, val,=, a, ..., z}
Γ = {func, {, }, ; , var, val,=, a, ..., z,#, P, I,N, V, I ′, S}

R = {1sS → pV P,

2pP → pfunc{P},

2pP → pI = N ;P,

2pN → pval,

2pI → ⟨r; a⟩aI ′,

1⟨r; a⟩V → pvaraV,

2pI ′ → ⟨t; a⟩aI ′,

1⟨t; a⟩V → paV,

2pI ′ → ⟨u; a⟩a,

1⟨u; a⟩V → pa;V,

...

2pI → ⟨r; z⟩zI ′,

1⟨r; z⟩V → pvarzV,

2pI ′ → ⟨t; z⟩zI ′,

1⟨t; z⟩V → pzV,

2pI ′ → ⟨u; z⟩z,

1⟨u; z⟩V → pz;V,

2pP → gε,

1gV → fε}

F = {⟨f ; ε}

Basic Idea. The restriction of the automaton is that the order of declaration matches
the order of assigned values in order to mimic the structure of Ldup language. Additionally,
no more then one assignment of the value to certain variable is possible. First four rules of
the automaton 1sS → pV P , 2pP → pfunc{P}, 2pP → pI = N ;P and 2pN → pval create
the outlining structure of the code. Based on the expansion of P the assigning of the value
can be put anywhere in the code.

The automaton individually checks each letter of a name of the assigned variable,
whether it can mach any name created out of lower-case letters within declaration sec-
tion. There is a visible pattern to the following rules, one rule adds a letter to the assigned
variable and leads the automaton to unique state. The second rule then adds the same
letter to the declaration variable and leads the automaton back to state where other letter
can be added. The first two rule for every letter 2pI → ⟨r; a⟩aI ′ and 1⟨r; a⟩V → pvaraV
create non-input symbol I ′ that is than used to expand the entire name of the variable.
The second two rules 2pI ′ → ⟨t; a⟩aI ′ and ⟨t; a⟩V → paV then continue expansion of indi-
vidual letters of the name. When the name ends using last two rules 2pI ′ → ⟨u; a⟩a and
1⟨u; a⟩V → pa;V which get rid of the non-input symbol I ′ and so it is possible to start
generating another variable again

29

The last two rules 2pP → gε and 1gV → fε are to eliminate the last non-input symbol
P and bring the automaton to final states.

Similarly, with a simple extension of the set of rules, the automaton could check if the
type of the variable matches the type of the assigned value, or be able to accept value
assigning in mixed matched order.

Now, one can convert the created automaton into the following reduced form:

MR = (QR,Σ,ΓR, RR, s, S, {f})

Q = {s, p, f, g, ⟨r; a⟩, ..., ⟨r; z⟩, ⟨t; a⟩, ..., ⟨t; z⟩, ⟨u; a⟩, ..., ⟨u; z⟩}

Σ = {func, {, }, ; , var, val,=, a, ..., z}

Θ = {func, {, }, ; , var, val,=, a, ..., z,#, $}

R = {1⟨s;S⟩$ → ⟨⟨p;V P ⟩$$,

2⟨p;V P ⟩$ → ⟨p;V P ⟩func{$},

2⟨p;V P ⟩$ → ⟨p;V INP ⟩$ = $; $,

2⟨p;V INP ⟩$ → ⟨p;V P ⟩val,

2⟨p;V INP ⟩$ → ⟨⟨r; a⟩;V I ′NP ⟩a$,

1⟨⟨r; a⟩;V I ′NP ⟩$ → ⟨p;V I ′NP ⟩vara$,

2⟨p;V I ′NP ⟩$ → ⟨⟨t; a⟩;V I ′NP ⟩a$,

1⟨⟨t; a⟩;V I ′NP ⟩$ → ⟨p;V I ′NP ⟩a$,

2⟨p;V I ′NP ⟩$ → ⟨⟨u; a⟩;V NP ⟩a,

1⟨⟨r; a⟩;V NP ⟩$ → ⟨p;V NP ⟩a; $,

...

2⟨p;V INP ⟩$ → ⟨⟨r; z⟩;V I ′NP ⟩z$,

1⟨⟨r; z⟩;V I ′NP ⟩$ → ⟨p;V I ′NP ⟩varz$,

2⟨p;V I ′NP ⟩$ → ⟨⟨t; z⟩;V I ′NP ⟩z$,

1⟨⟨t; z⟩;V I ′NP ⟩$ → ⟨p;V I ′NP ⟩z$,

2⟨p;V I ′NP ⟩$ → ⟨⟨u; z⟩;V NP ⟩z,

1⟨⟨r; z⟩;V NP ⟩$ → ⟨p;V NP ⟩z; $,

2⟨p;V P ⟩$ → ⟨g;V ⟩ε,

1⟨g;V ⟩$ → ⟨f ; ε⟩ε}

F = {⟨f ; ε⟩}

The reduced form can be also seen in Figure 4.1.

4.2 Implementation

The implementation of simulator and reduction of n-expandable deep pushdown automata
is done in Java and takes in consideration the time and space complexity of the structure
and the methods needed to simulate the parsing of input string. The basic structure of the
program is shown in UML diagram that is depicted in Figure 4.2.

Since the aim of this thesis is to show both non-reduced and reduced version of the
automaton has the same acceptance power, the parsing is not automatic and has to receive
the order of rules that will be applied. However, this is enough to showcase both automaton
are capable of accepting the non context-free language and generate output to illustrate it.

30

<p;VP><s;S> <p;VINP>
1 $/$$

2 $/val

2 $/func{$}

2 $/$=$;$

<<r;a>;
VI’NP>

2 $/a$

<p;VI’NP>

1 $/var a$

<<t;a>;
VI’NP>

2 $/a$

1 $/a$

<<u;a>;
VI’NP>

2 $/a

1 $/a;$

<<r;z>;
VI’NP>

<p;VI’NP>

1 $/var z$

<<t;z>;
VI’NP>

2 $/z$

1 $/z$
<<u;z>;
VI’NP>

2 $/z

1 $/z;$

2 $/z$

<g;V>

2 $/ε

<f;ε>

1 $/ε

Figure 4.1: Automaton accepting the pseudo code.

4.2.1 Deep Stack

In order to be able to properly simulate the parsing of an input, one has to have a customized
stack that allows accessing elements located deeper on the stack. The structure DeepStack

includes the functionality of a regular stack but also methods enabling access to deeper
elements:

• push(element, depth) pushes element to certain depth and returns the reference to
the object where the element is saved. This feature will come in handy when creating
the deep pushdown.

• pop(depth) returns an element from certain depth and removes it from the stack.

• push(element, previous element) pushes element under the element that was
specified by the reference to it. It then returns reference to the new added element.
Again this feature will come in handy when creating the deep pushdown.

• pop(previous element) returns an element based on his reference and removes it
from the stack.

4.2.2 Special Structures

A special structure PDSymbol was created to define each symbol of the pushdown alphabet.
Each symbol is defined by its name and the fact if its non-input, input or special bottom

31

NDPDA

NDPDAr

DeepStack DeepPD

2 1 1 1

PDSymbol

1

1..*

+ DeepPD()
+ expand()
+ pop()
+ isPDEmpty()
+ numOfNonInput()
+ toString()
- push()

Rule

1 0..*
- n: int
- states: HashSet
- inputAlph: HashSet
- nonInputAlph: HashSet
- expansionRules: ArrayList
- startState: String
- startPDSym: PDSymbol
- endStates: HashSet

+ NDPDA()
+ addRule()
+ automatSettingDone()
+ simulate()

+ NDPDAr()
+ NDPDAr(NDPDA)
- convertRule()

+ depth: int
+ startState: String
+ endState: String
+ fromSymbol: PDSymbol
+ toSymbol: LinkedList
+ numOfNonInputSym: int

+ Rule()
+ toString()

- type: Type
- name: String

+ PDSymbol()
+ equals()
+ toString()

- top: Node
- size: int

+ push()
+ pop()
+ peek()
+ isEmpty()
+ toString()

Figure 4.2: UML diagram of the implementation of the deep PDA.

symbol #. The toString() method than provides convenient way to label each element
on the pushdown by their type:

{a :TERMINAL}

4.2.3 Deep Pushdown

Deep pushdown is then created using two deep stacks. The main stack stores both the
input and non-input symbols and the reference stack stores only references to the non-
input symbols located on the main stack. This structure makes it simple to find non-input
symbol in certain depth and then using the reference to find the location of the non-input
symbol among the larger stack. Since the number of input symbols can be far larger
then the number of the non-input symbols this structure creates and effective way to find
the searched symbols. The structure deepPD includes two main methods and couple of
supporting methods.

One of the main methods is expand() that manages both of the stacks when expanding
when adding both non-input and input symbols. Example of expansion is in the Figure 4.3.

Since throughout the entire thesis we used the assumption that the operation of the
pop can be used after all the expansion have been made, the method pop just pops the top
symbol of the main stack. If the expansions have been done correctly there should be just
the special bottom symbol located on both on the main and the reference stack.

32

#

a

B

A A

B

Main stack Reference stack

#

a

A

A

A

A

Main stack Reference stack

a

Depth = 2

Depth = 1

Figure 4.3: Expansion using the rule 2pB → qAa.

The supportive methods includes function such as isPDEmpty() that checks if just
the main stack contains only special symbol #, function numOfNonInput() that returns
number of non-input symbols on the stack, which can be used to check if a rule can be
applied without breaking the rule of maximum of n non-input symbols on the pushdown
and function isExpansionDone() that checks if there is only the special symbol # on the
reference stack, therefore the pops can follow.

4.2.4 Deep Pushdown Automaton

The n-expandable deep pushdown automaton structure NDPDA is created after specifying
the n, a starting state, an initial pushdown symbol, a set of final states and a set of rules.

Expansion rules are added using method addRule(depth, from state, non-input

symbol, to state, list of strings of input, non-input symbols). The function
not only creates object of a rule Rule but also parses it to deduce the non-input symbols
and states to create the complete definition of the created automaton.

While the rules are being added there is no way of telling which elements are the input
symbols until we are sure we have the complete set of the non-input symbols so we created
the method automatonSettingDone(). The method differentiates the non-input symbol
based on the fact they have never been used on the left side of the expansion rule. The
method also converts the string of non-input and input symbols of the right side of the rule
into an set of PDSymbols. The method gets called automatically when the parsing begins or

33

can be call explicitly if we want to have the complete definition of the automaton without
the actual parsing.

The method simulation() is a very simple parsing method where the user has to specify
the order in which the rules have to be applied. It is however enough to proof the that the
automaton indeed does accept the input string. The functionality of the simulation is as
follows:

1. Gradually select the rules from the input and check:

(a) if the rule actually exist in automaton,
(b) if the beginning state matches the current state of the automaton,
(c) if the rule doesn’t brake the n-extensibility rule.

2. Call the expansion of the deep pushdown using the given rule and checks if the
expansion was successful.

3. If all the expansions have been applied, simulation attempts to pop all of the input
symbols left on the pushdown.

4. If the pushdown now contains only the bottom symbol # the parsing was successful.

4.2.5 Deep Pushdown Automaton Reduction

A subclass NDPDAr of class NDPDA was created to be able to restrict the number of non-input
symbols in the pushdown alphabet to only one special symbol $ and the bottom symbol #.
This automaton can be created the same way at the NDPDA automaton by specifying the n,
start state, initial pushdown symbol, set of final states and set of rules or it can be created
by converting the NDPDA into the NDPDAr. The conversion between the two automata is
based on the construction defined earlier in the theses.

For every rule mqA → pv ∈ R convertRule() is applied, and rule m⟨q;uAz⟩$ →
⟨p;uf(v)z⟩g(v) is created for every possible u and z where u, z ∈ N*, |u| = m − 1, |z| ≤
n −m − 1, m ∈ N, q, p ∈ Q, A ∈ N , and v ∈ (Γ ∖ {#})+. This is achieved by creating all
the permutation of all the non-input symbols (except the special symbol #) of maximum
length of n− 2 and minimum length of m− 1. The left side of the rule is than created with
the original depth m, a new state that is combination of the original state q and the new
created sequence where the non-input symbol A is placed in the mth position and instead
of the non-input symbol, special symbol $. The right side of the rule is again created by
new state that consist of combination of the original state p and the new sequence gained
by permutation, with all the non-input symbols from v added to the mth place. The state
is followed by v where the non-input symbols have been replaced by special symbol $.

Throughout this conversion all the new created states are added to new set of states,
starting state is sR = ⟨s;S⟩ and if p state is in the set of the original final states the new
state ⟨p;u⟩ is added to the new set of final states.

For example the rule 1qA → fab of 2-expandable deep PDA with only two non-input
symbols A and S will be converted to rules:

1. 1⟨q;A⟩$ → ⟨f ; ε⟩

2. 1⟨q;AA⟩$ → ⟨f ;A⟩ab

3. 1⟨q;AS⟩$ → ⟨f ;S⟩ab

Except for this new constructor NDPDAr public method are identical to the ones in NDPDA.

34

4.3 Testing

In the testing part of application we will create previously mentioned automaton accepting
the language L = {anbncn | n ≤ 0} and automaton that is able to detect if the variable was
defined before we try assigning a value. We will then use them to parse example languages
and show what exactly happens on the pushdown during the parsing.

4.3.1 Creating Simple Automaton

First, we create a new 3-expandable NDPDA that is able to parse language

L = {anbncn | n ≤ 0}

with a starting state s, starting pushdown symbol S and set of end states {f}

NDPDA automaton = new NDPDA(3 , " s " , "S " , [" f "]) ;

then add the individual rules

automaton . addRule (" s " , "S " , " q " , ["A" , "A "]) ;
automaton . addRule (" q " , "A" , " f " , [" a " , "b "]) ;
automaton . addRule (" f " , "A" , " f " , [" c "]) ;
automaton . addRule (" q " , "A" , "p " , [" a " , "A" , "b "]) ;
automaton . addRule (2 , "p " , "A" , " q " , ["A" , " c "]) ;

If depth is not specified it’s automatically set as 1. This is the output structure of
automaton after adding all the rules:

M = (Q, Σ , Γ , R, s , S , F)
Q = {p , q , s , f }
Σ = {b , a , c}
Γ = {b , a , c , #, A, S}
R = {

1 : 1sS−>qAA
2 : 1qA−>fab
3 : 1fA−>f c
4 : 1qA−>paAb
5 : 2pA−>qAc

}
F = { f }

Now we can run the simulation using

automaton . s imulate (" aabbcc " , rulesNum) ;

where
”
aabbcc“ is the input string and rulesNum is list of numbers indicating which

rules have to be used in our case [1, 4, 5, 2, 3]. The output then prints the applied rules and
the state of the main push down after every applied rule:

Input string: aabbcc

{S:NONTERMINAL}
{#:BOTTOM}

Successfully applied: 1sS->qAA
{A:NONTERMINAL}
{A:NONTERMINAL}

35

{#:BOTTOM}

Successfully applied: 1qA->paAb
{a:TERMINAL}
{A:NONTERMINAL}
{b:TERMINAL}
{A:NONTERMINAL}
{#:BOTTOM}

Successfully applied: 2pA->qAc
{a:TERMINAL}
{A:NONTERMINAL}
{b:TERMINAL}
{A:NONTERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Successfully applied: 1qA->fab
{a:TERMINAL}

{a:TERMINAL}
{b:TERMINAL}
{b:TERMINAL}
{A:NONTERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Successfully applied: 1fA->fc
{a:TERMINAL}
{a:TERMINAL}
{b:TERMINAL}
{b:TERMINAL}
{c:TERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Expansion phase done!
Poping phase done!

=> Automaton M does accept given input.
Printing of the automaton using the method toString() can be called anytime but the

method automaton.automatSettingDone() should be called beforehand to make sure all
the input symbols are identified.

As previously mentioned the NDPDAr automaton can be created by conversion of the
previous NDPDA automaton. More precisely using constructor

NDPDAr reducedAutomaton = new NDPDAr(automaton) ;

This specific conversion outputs all of the rules created based on the originals:

Converting r u l e : 1sS−>qAA
1<s ; S>$ −> <q ;AA>$$
1<s ;SA>$ −> <q ;AAA>$$
1<s ; SS>$ −> <q ;AAS>$$

Converting r u l e : 1qA−>fab
1<q ;A>$ −> <f ;>ab
1<q ;AA>$ −> <f ;A>ab
1<q ;AS>$ −> <f ; S>ab

Converting r u l e : 1fA−>f c
1<f ;A>$ −> <f ;>c
1<f ;AA>$ −> <f ;A>c
1<f ;AS>$ −> <f ; S>c

Converting r u l e : 1qA−>paAb
1<q ;A>$ −> <p ;A>a$b
1<q ;AA>$ −> <p ;AA>a$b
1<q ;AS>$ −> <p ;AS>a$b

Converting r u l e : 2pA−>qAc
2<p ;AA>$ −> <q ;AA>$c
2<p ;SA>$ −> <q ;SA>$c

36

Giving us a new automaton specified as

M = (Q, Σ , Γ , R, sS , $, F)
Q = {sS , sSA , qAS , pAS , qAAA, f , fAA , fS , qAA, qA, pA, pAA,

sSS , qAAS, fAS , fA , qSA , pSA}
Σ = {b , a , c}
Γ = {b , a , c , #, $}
R = {

1 : 1 sS$−>qAA$$
2 : 1sSA$−>qAAA$$
3 : 1sSS$−>qAAS$$
4 : 1qA$−>fab
5 : 1qAA$−>fAab
6 : 1qAS$−>fSab
7 : 1fA$−>f c
8 : 1fAA$−>fAc
9 : 1fAS$−>fSc
10 : 1qA$−>pAa$b
11 : 1qAA$−>pAAa$b
12 : 1qAS$−>pASa$b
13 : 2pAA$−>qAA$c
14 : 2pSA$−>qSA$c

}
F = { f , fA , fS }

Now we want to run the same simulation using the input string
”
aabbcc“ we have to

adjust the set of rules that will be used to (1, 11, 13, 5, 7) since the entire set of rules has
changed during the conversion. We can now see and compare the parsing of the identical
string using the reduced automaton.

Input string: aabbcc

{$:NONTERMINAL}
{#:BOTTOM}

Successfully applied: 1sS$->qAA$$
{$:NONTERMINAL}
{$:NONTERMINAL}
{#:BOTTOM}

Successfully applied: 1qAA$->pAAa$b
{a:TERMINAL}
{$:NONTERMINAL}
{b:TERMINAL}
{$:NONTERMINAL}
{#:BOTTOM}

Successfully applied: 2pAA$->qAA$c
{a:TERMINAL}
{$:NONTERMINAL}

{b:TERMINAL}
{$:NONTERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Successfully applied: 1qAA$->fAab
{a:TERMINAL}
{a:TERMINAL}
{b:TERMINAL}
{b:TERMINAL}
{$:NONTERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Successfully applied: 1fA$->fc
{a:TERMINAL}
{a:TERMINAL}
{b:TERMINAL}

37

{b:TERMINAL}
{c:TERMINAL}
{c:TERMINAL}
{#:BOTTOM}

Expansion phase done!
Poping phase done!

=> Automaton M does accept given input.
We can see the expansions are very similar, which only confirms the fact that they both

have the same accepting power.

4.3.2 Variable Declaration Checking

Using the previous approach we will create a 5-expandable deep PDA with reduced push-
down alphabet that will be able to accept pseudo code that declares variable and then
assigns it a value. For example:

v a r i a b l e dog ;
v a r i a b l e cat ;
v a r i a b l e cow ;
func {

dog = value ;
cat = value ;
cow = value ;

}

We will start by creating a regular 5-expandable deep PDA and adding individual rules
same way as we did in the creation of the previous automaton. That will create the following
structure:

M = (Q, Σ , Γ , R, s , S , F)
Q = {<r ; a>, <u ; y>, <u ; u>, <t ; x>, <r ; z>, <u ; q>, <t ; t >, <r ; v>,

<u ;m>, <t ; p>, <r ; r >, <u ; i >, <t ; l >, <r ; n>, <u ; e >, <t ; h>,
<r ; j >, <u ; a>, <t ; d>, <r ; f >, <r ; b>, <u ; z >, <u ; v>, <t ; y>,
<u ; r >, <r ;w>, <t ; u>, <u ; n>, <r ; s >, <t ; q>, <u ; j >, <r ; o>,
<t ;m>, <u ; f >, <r ; k>, <t ; i >, <u ; b>, <r ; g>, <t ; e >, <r ; c >,
<t ; a>, <t ; z >, <t ; v>, <r ; x>, <u ;w>, <t ; r >, <r ; t >, <u ; s >,
<t ; n>, <r ; p>, <u ; o>, <t ; j >, <r ; l >, <u ; k>, <t ; f >,<r ; h>,
<u ; g>, <t ; b>, <r ; d>, <u ; c>, f , g , <r ; y>, <t ;w>, <u ; x>,
<r ; u>, <t ; s >, <u ; t >, p , <r ; q>, <t ; o>, s , <u ; p>, <r ;m>,
<t ; k>,<u ; l >, <r ; i >,<t ; g>, <u ; h>, <r ; e >, <t ; c >, <u ; d>}

Σ = {m, z , g , t , func , a , n , { , ; , h , u , b , o , var , i ,
val , v , c , p , } , =, j , w, d , q , k , x , e , r , l , y , f , s }

Γ = {m, z , g , t , func , a , n , { , ; , h , u , b , o , var , i ,
val , v , c , p , } , =, j , w, d , q , k , x , e , r , l , y , f , s ,
#, P, I , N, V, I ’ , S}

R = {
1 : 1sS−>p V P
2 : 2pP−>p func { P }
3 : 2pP−>p I = N ; P
4 : 2pN−>p val

38

5 : 2pI−><r ; a> a I ’
6 : 1<r ; a>V−>p var a V
7 : 2pI ’−><t ; a> a I ’
8 : 1<t ; a>V−>p a V
9 : 2pI ’−><u ; a> a
10 : 1<u ; a>V−>p a ; V
11 : 2pI−><r ; b> b I ’
12 : 1<r ; b>V−>p var b V
13 : 2pI ’−><t ; b> b I ’
14 : 1<t ; b>V−>p b V
15 : 2pI ’−><u ; b> b
16 : 1<u ; b>V−>p b ; V
.
.
.
149 : 2pI−><r ; y> y I ’
150 : 1<r ; y>V−>p var y V
151 : 2pI ’−><t ; y> y I ’
152 : 1<t ; y>V−>p y V
153 : 2pI ’−><u ; y> y
154 : 1<u ; y>V−>p y ; V
155 : 2pI−><r ; z> z I ’
156 : 1<r ; z>V−>p var z V
157 : 2pI ’−><t ; z> z I ’
158 : 1<t ; z>V−>p z V
159 : 2pI ’−><u ; z> z
160 : 1<u ; z>V−>p z ; V
161 : 2pP−>g
162 : 1gV−>f

}
F = { f }

Now that automaton is created we can reduce it, keep in mind that the reduction is
done exactly as it is specified in the construction, so wast majority of rules will be never
used. The reduction of unused rules of the automaton is not part of this thesis.

M = (Q, Σ , Γ , R, sS , $, F)
Q = {gNIS , <t ; k>NI ’ SI ’ , gNIV , <t ; p>SI ’PN, <t ; p>SI ’ PI , gNII ,

<r ;m>VSS , <r ;m>VSV, gNIN , gNIP , <u ; k>I ’ SI ’ , <t ; z>VVNI’ ,
pVPI ’ I I ’ , pINI ’ I ’ , <t ; p>SI ’PV, p I I I I ’ , <t ; p>SI ’ PS , gNI ’ ,
<t ; p>SI ’PP, <t ;m>SI ’ , <t ; o>VPNI’ , <t ; e>VI ’NS, <r ;m>VVN,
<t ; f>II ’ VI ’ , <r ;m>VVP, <t ; e>VI ’NN, <r ;m>VVS, <r ; a>II ’ I ’ ,
<t ; e>VI ’NP, <t ; p>SI ’ PI ’ , <r ;m>VVI , <t ; p>SI ’ NI , <t ; e>VI ’ NI ,
<t ; l>VPSI ’ , . . . }

Σ = {m, z , g , t , func , a , n , { , ; , h , u , b , o , var , i , val ,
v , c , p , } , =, j , w, d , q , k , x , e , r , l , y , f , s }

Γ = {m, z , g , t , func , a , n , { , ; , h , u , b , o , var , i , val ,
v , c , p , } , =, j , w, d , q , k , x , e , r , l , y , f , s , #, $}

R = {

39

1 : 1 sS$−>pVP $ $
2 : 1sSP$−>pVPP $ $
3 : 1sSS$−>pVPS $ $
4 : 1sSV$−>pVPV $ $
5 : 1 sSI$−>pVPI $ $
6 : 1sSN$−>pVPN $ $
7 : 1 sSI ’ $−>pVPI ’ $ $
8 : 1sSPP$−>pVPPP $ $
9 : 1sSPS$−>pVPPS $ $
10 : 1sSPV$−>pVPPV $ $
11 : 1 sSPI$−>pVPPI $ $
.
.
.
41868 : 1gVI ’ NI$−>fI ’ NI
41869 : 1gVI ’NN$−>fI ’NN
41870: 1gVI ’ NI ’ $−>fI ’ NI ’
41871 : 1gVI ’ I ’P$−>fI ’ I ’P
41872 : 1gVI ’ I ’ S$−>fI ’ I ’ S
41873 : 1gVI ’ I ’V$−>fI ’ I ’V
41874 : 1gVI ’ I ’ I$−>fI ’ I ’ I
41875 : 1gVI ’ I ’N$−>fI ’ I ’N
41876 : 1gVI ’ I ’ I ’ $−>fI ’ I ’ I ’

}
F = {fPPS , fSVV , fPPP , fSVS , f I I , fPPN , fSVP , f I ’ SI ’ , fIN ,

fSVN , fIP , fPPI , fSVI , f IS , fISN , fIV , f I S I . . . }

We can now show the behaviour of the pushdown while parsing the example pseudo
code.

Input s t r i n g :
var dog ;
func {

dog = val ;
}

{$:NONTERMINAL}
{#:BOTTOM}

Successfully applied:
1sS$->pVP $ $
{$:NONTERMINAL}
{$:NONTERMINAL}
{#:BOTTOM}

Successfully applied:
2pVP$->pVP func { $ }
{$:NONTERMINAL}
{func:TERMINAL}

{{:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVP$->pVINP $ = $; $
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{$:NONTERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}

40

{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVINP$-><r;d>VI’NP d $
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{$:NONTERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
1<r;d>VI’NP$->pVI’NP var d $
{var:TERMINAL}
{d:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{$:NONTERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVI’NP$-><t;o>VI’NP o $
{var:TERMINAL}
{d:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{$:NONTERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}

{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
1<t;o>VI’NP$->pVI’NP o $
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{$:NONTERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVI’NP$-><u;g>VNP g
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
1<u;g>VNP$->pVNP g ; $
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}

41

{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}
{$:NONTERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVNP$->pVP val
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}
{val:TERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVNP$->pVP val
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}

{val:TERMINAL}
{$:NONTERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
2pVP$->gV
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{;:TERMINAL}
{$:NONTERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}
{val:TERMINAL}
{;:TERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Successfully applied:
1gV$->f
{var:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{;:TERMINAL}
{func:TERMINAL}
{{:TERMINAL}
{d:TERMINAL}
{o:TERMINAL}
{g:TERMINAL}
{=:TERMINAL}
{val:TERMINAL}
{;:TERMINAL}
{}:TERMINAL}
{#:BOTTOM}

Expansion phase done!
Poping phase done!

=> Success: Automaton M does accept given input.

42

4.3.3 More Examples

Examples mentioned previously and more can be found and ran from file NDPDA/RunExample.java

using methods

• runExample1() which creates an automaton NDPDA to parse language anbncn, then
converts it to NDPDAr and runs exemplary parsing of a string aabbcc.

• runExample2() which creates an automaton NDPDA that parses the code for checking
if variable was declared before assigning value. Than running exemplary parsing of
pseudo code.

• runExample3() creates a simplified version of previous automaton, specifying that
the name of the variable can be only created by multiple symbols a. Than runs
conversion to NDPDAr and parses an exemplary pseudo code.

43

Chapter 5

Conclusion

In the present thesis, we showed a way of reduction of finitely expandable deep PDAs with
respect to the number of non-input pushdown symbols. This has been done by saving the
information of the non-input symbols in the states of the automaton and substituting them
on a pushdown using special symbol $. We have proven the newly acquired automaton
has the same acceptance power as its non-reduced version and therefore they can be inter-
changed. This new finding was accepted by the international journal dedicated to computer
science and its mathematical foundations Schedae Informaticae and will be published.

As part of the analysis of the non context-free languages, an automaton that can parse
such structure was created. This automaton enables the possibly of parsing a context
sensitive pseudo code resembling common structure in modern programming languages. It
has also been use to showcase the functionality of the implementation part of this thesis.
Implemented part includes a robust structure to test and demonstrate the construction
process of the reduction and parsing of the input string. It provides a simple interface to
define, reduce and run an automaton.

Before closing this thesis, we suggest some open problem areas related to this subject
for the future investigation.

1. Can we reduce these automata with respect to the number of states?

2. Can we simultaneously reduce them with respect to the number of both states and
non-input pushdown symbols?

3. Can we achieve the reductions described above in terms of general deep PDAs, which
are not finitely expandable? As a matter of fact, Lemma 2 holds for these automata,
so it can be considered as a preliminary result related to this investigation area.

4. Can we formally define the relation between state grammar and matrix grammars
of finite index and corollary the relation between deep pushdown automaton and
n-expandable pushdown automaton?

44

Bibliography

[1] Arratia, A.; Stewart, I. A.: Program Schemes with Deep Pushdown Storage. In Proc.
of Logic and Theory of Algorithms, CiE 2008, Lecture Notes in Computer Science,
vol. 5028. Springer. 2008. ISBN 978-3-540-69405-2. pp. 11–21.
doi:10.1007/978-3-540-69407-6_2.

[2] Bar-Hillel, Y.; Perles, M. A.; Shamir, E.: On Formal Properties of Simple Phrase
Structure Grammars. Zeitschrift fur Phonetik, Sprachwissenschaft und
Kommunikationsforschung. vol. 14. 1961: pp. 143–172.

[3] Chomsky, N.: On certain formal properties of grammars. Information and Control.
vol. 2, no. 2. 1959: pp. 137 – 167. ISSN 0019-9958.
doi:http://dx.doi.org/10.1016/S0019-9958(59)90362-6.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0019995859903626

[4] Cocke, J.: Programming Languages and their Compilers: Preliminary Notes. Courant
Institute of Mathematical Sciences, New York University. 1969. ISBN B0007F4UOA.

[5] Dassow, J.; Paun, G.: Regulated Rewriting in Formal Language Theory.
Springer-Verlag Berlin Heidelberg. 1989. ISBN 9783642749346.

[6] Dvorakova, L.; Meduna, A.: A Reduction of Finitely Expandable Deep Pushdown
Automata. Schedae Informaticae. In press.

[7] Greibach, S. A.: A New Normal-Form Theorem for Context-Free Phrase Structure
Grammars. J. ACM. vol. 12, no. 1. January 1965: pp. 42–52. ISSN 0004-5411.
doi:10.1145/321250.321254.
Retrieved from: http://doi.acm.org/10.1145/321250.321254

[8] Harrison, M. A.: Introduction to Formal Language Theory. Addison-Wesley. 1978.
ISBN 9780201029550.

[9] Hopcroft, J. E.; Motwani, R.; Ullman, J. D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.. 2006. ISBN 0321462254.

[10] Kalra, N.; Kumar, A.: Fuzzy state grammar and fuzzy deep pushdown automaton.
Journal of Intelligent and Fuzzy Systems. vol. 31, no. 1. 2016: pp. 249–258.
doi:10.3233/IFS-162138.

[11] Kalra, N.; Kumar, A.: State Grammar and Deep Pushdown Automata for Biological
Sequences of Nucleic Acids. Current Bioinformatics. vol. 11, no. 4. 2016: pp.
470–479. doi:10.2174/1574893611666151231185112.

45

http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://doi.acm.org/10.1145/321250.321254

[12] Kasami, T.: An Efficient Recognition and Syntax-Analysis Algorithm for
Context-Free Languages. Technical report. 1966.
Retrieved from: http://hdl.handle.net/2142/74304

[13] Leupold, P.; Meduna, A.: Finately Expandable Deep PDAs. In Proc. of Automata,
Formal Languages and Algebraic Systems 2008. World Scientific. 2010. ISBN
9789814317603. pp. 113–123.

[14] Meduna, A.: Automata and Languages: Theory and Applications. Springer. 2000.

[15] Meduna, A.: Deep Pushdown Automata. Acta Inf.. vol. 42, no. 8-9. 2006: pp.
541–552. doi:10.1007/s00236-006-0005-0.

[16] Meduna, A.; Zemek, P.: Regulated Grammars and Automata. Springer. 2014.

[17] Rozenberg, G.: Handbook of Formal Languages, Volume 1 Word, Language,
Grammar. Springer Berlin Heidelberg. 1997. ISBN 978-3-642-63863-3.
doi:10.1007/978-3-642-59136-5.
Retrieved from: https://dx.doi.org/10.1007/978-3-642-59136-5

[18] Younger, D. H.: Recognition and Parsing of Context-Free Languages in Time n3.
Information and Control. vol. 10, no. 2. 1967: pp. 189 – 208. ISSN 0019-9958.
doi:http://dx.doi.org/10.1016/S0019-9958(67)80007-X.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S001999586780007X

46

http://hdl.handle.net/2142/74304
https://dx.doi.org/10.1007/978-3-642-59136-5
http://www.sciencedirect.com/science/article/pii/S001999586780007X

	Introduction
	Preliminaries and Definitions
	Language and Regular Set
	Formal Language
	Regular Set
	Regular Expression

	Formal Grammar
	Definition
	Grammars as Language Generators
	Chomsky Hierarchy

	Automata
	Finite-State Machine
	Pushdown Automaton
	Turing Machine

	Special Types of Grammars and Automata
	State Grammar
	Matrix Grammars
	Deep Pushdown Automaton
	Finitely Expandable Deep Pushdown Automaton

	Normal and Reduced Forms
	Chomsky Normal Form
	Greibach Normal Form
	Minimal Finite State Machine

	Result
	Hierarchy of Language Families Generated by Matrix Grammars
	Reduction of Finitely Expandable Deep Pushdown Automata
	Acceptance Power

	Application
	Analysis of Syntax Structures
	Pumping Lemma Theorem
	Non-Context-Free Languages
	Non-Context-Free Code

	Implementation
	Deep Stack
	Special Structures
	Deep Pushdown
	Deep Pushdown Automaton
	Deep Pushdown Automaton Reduction

	Testing
	Creating Simple Automaton
	Variable Declaration Checking
	More Examples

	Conclusion
	Bibliography

