
Masaryk University
Faculty of Informatics

Parallel parameter synthesis
from hybrid logic HUCTLP

formulas

Master’s Thesis

Samuel Pastva

Brno, Spring 2017

Masaryk University
Faculty of Informatics

Parallel parameter synthesis
from hybrid logic HUCTLP

formulas

Master’s Thesis

Samuel Pastva

Brno, Spring 2017

Replace this page with a copy of the official signed thesis assignment and the
copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Samuel Pastva

Advisor: prof. RNDr. Luboš Brim, CSc.

i

Acknowledgement

This work was supported by the Masaryk University as part of the
MUNI/C/1017/2015 project: "Automatizovaná syntéza parametrov z
temporálnych špecifikácií".

Personally, I would like to thank all members of the Systems Biol-
ogy Laboratory for their insights, support and work we all invested
in Pithya, HUCTLP and other related tools and algorithms. Namely, I
would like to thank Luboš Brim, David Šafránek, Nikola Beneš, Martin
Demko and Matej Hajnal for their time and dedication.

I also have to thank my family and friends, who supported me
throughout the last five years of my studies and without whom I
would not be the person I am today.

iii

Abstract

In order to study complex phenomena arising in nature, one often uses
various modelling frameworks which employ parameters to describe
the uncertainty of the physical world. Related to these modelling
techniques is the problem of parameter synthesis, that is to compute
for a desired property the parameter valuations under which the
property is satisfied in the model.

In this work, we present a novel parallel algorithm for solving the
parameter synthesis problem for properties defined using the hybrid
computation tree logic with past (HUCTLP). The algorithm is based
on a semi-symbolic approach, where the state space is represented
explicitly while the parameter space is represented symbolically using
formulas of a first order logic. The decisions about the parameter
space are then delegated to an appropriate solver. The algorithm is
implemented as a part of the parameter synthesis tool Pithya.

We show the scalability and applicability of our approach on a set
of biochemical models based on ordinary differential equations.

iv

Keywords

parameter synthesis, model checking, temporal logic, HUCTLP, dy-
namical system, ordinary differential equation, parallel algorithm

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Direction transition system 3
2.2 Time flow and runs in DTS 4
2.3 Direction formulae . 5
2.4 Hybrid computation tree logic with past 5

2.4.1 Syntax . 5
2.4.2 Semantics . 6
2.4.3 Other operators 7
2.4.4 Relationship with computation tree logic (CTL) 9
2.4.5 Weak operators 9
2.4.6 Other observations 11

2.5 Parametrised direction transition system 12
2.5.1 Definition . 12
2.5.2 Parameter representation 13

2.6 Parameter Synthesis . 14
2.7 Partitioning and PDTS fragments 14

2.7.1 Fragments . 14
2.7.2 Partitioning . 15

3 Algorithm 17
3.1 Assumption semantics . 17

3.1.1 Assumption function 17
3.1.2 Semantic function 19
3.1.3 Semantic function fixed point 20
3.1.4 Semantic function validity 20

3.2 Main algorithm . 23
3.2.1 Environment and data structures 23
3.2.2 Algorithm pseudocode 24
3.2.3 Correctness . 26
3.2.4 Notes on the semantic function and complexity 28

4 Implementation 31
4.1 Pithya core overview . 31
4.2 Parameter Synthesis Module 32

vii

4.2.1 States and parameter formulae representation . 32
4.2.2 User-implemented interfaces 32
4.2.3 Module work flow 34

4.3 ODE Model Module . 36
4.4 Command line frontend . 39

5 Evaluation 41
5.1 Models . 41

5.1.1 Bi-stable repressilator 41
5.1.2 Tri-stable toggle switch 42

5.2 Applicability . 42
5.3 Scalability . 45

6 Conclusion 49

Bibliography 51

A List of electronic attachments 55

viii

1 Introduction

Before we dive into the technical details of this work, let us briefly
describe the context and motivation behind it.

Dynamical systems

As countless examples from biology, physics and economy suggest,
naturally occurring phenomena are often extremely hard, even im-
possible, to study computationally. This is often due to a huge amount
of information involved. In order to study such phenomena, science
often resorts to using models, which omit unnecessary details of the
physical reality and focus only on the minimal representation needed
to encode the interesting dynamics.

One of such modelling techniques are dynamical systems [1, 2],
which employ the framework of ordinary differential equations to de-
scribe the dynamics of physical phenomena. In order to study such
models exactly, one usually relies on techniques from the field of math-
ematical analysis. However, these are often intractable due to the sheer
complexity of the differential equations involved. In such cases, one
often needs to resort to simulation or various types of visualisations.

Parameter synthesis

When dealing with models, one often has to consider a significant
amount of uncertainty, usually represented using parameters which
influence the systems dynamics. The uncertainty can arise under dif-
ferent circumstances, due to the nature of the system (e.g. properties
which are hard to measure experimentally) or due to the design of the
system (e.g. initial conditions which are controlled by the scientist).
However, no matter what is the reason for the uncertainty, it always
complicates the study of the model. Even simulation and visualisation
can be intractable when high amount of uncertainty is involved.

In such systems, we talk about a parameter synthesis problem. That
is, given a desired property, determine all parameter valuations under
which the system satisfies the property. For example, given a model of
a cell with an ambient temperature as a parameter, determine under
which circumstances is the cell able to reproduce.

1

1. Introduction

Temporal logic

Before solving the parameter synthesis problem, one needs to first
provide a formal description of the desired property. Creating such
specification can be often an error prone task. To make this process
more intuitive, one usually specifies the properties using some suitable
temporal logic.

Commonly used temporal logics include linear time logic (LTL)
and computation tree logic (CTL), where LTL uses the notion of lin-
ear time, whereas CTL uses branching time. Various extensions and
modifications of these temporal logics exist [3, 4, 5]. In this work, we
introduce and employ a hybrid extension of the UCTL logic [4], the hy-
brid computation tree logic with past (HUCTLP) [6], as our framework
for specifying model properties.

Model checking

To solve the parameter synthesis problem for properties specified
using HUCTLP logic, we introduce an algorithm based on the well
known model checking technique [7]. Model checking is well studied
exhaustive method often used for software and hardware verification,
but which can be also applied to the parameter synthesis problem [8,
9, 10, 11].

To cope with the parameter uncertainty, we use the coloured ap-
proach [12, 13], which enables us to consider multiple parameter valu-
ations with equivalent local behaviour at the same time, thus reducing
the average computation time.

Overview

In the Preliminaries (Chapter 2), we formally define HUCTLP and its
semantics over direction transition systems. In Chapter 3, we describe
the parameter synthesis procedure, which is based on a fixed point
assumption function. Then, in Chapter 4, we discuss the implementa-
tion of the algorithm, provided as part of the Pithya tool. Finally, in
Chapter 5, we present an evaluation of Pithya in terms of performance
and a case study showing the applicability of our method.

2

2 Preliminaries

In this chapter, we introduce the basic notions used throughout the
thesis together with their more intuitive explanations.

2.1 Direction transition system

Definition 1. A direction transition system (DTS) is a tuple (S, Dir, T, AP, L),
where:

∙ S is a non-empty set of states;

∙ Dir is a finite non-empty set of directions;

∙ T ⊆ S×Dir× S is the transition relation satisfying the following
conditions:

– T is total, that is, for each s there is some s′ and d such that
(s, d, s′) ∈ T;

– T is past-total, that is, for each s there is some s′ and d such that
(s′, d, s) ∈ T;

– for each s ̸= s′ there is at most one d such that (s, d, s′) ∈ T;
– for each s there is either no d such that (s, d, s) ∈ T or for all

d ∈ Dir : (s, d, s) ∈ T;

∙ AP is a set of atomic propositions;

∙ L : S → 2AP is a labelling function that associates a subset of AP to
each state.

A DTS is an extension of the standard notion of transition systems
which adds to each transition also a direction label. Furthermore, aside
from the standard requirement of totality, transition relation also has
to be past-total, which allows us to reason about both future and past
runs of such system.

Note that the self-loops in a DTS are not distinguishable from the
direction standpoint, meaning there is no loop direction. Instead, the
self-loop is labelled with all directions, which intuitively means that

3

2. Preliminaries

the system can move in any direction, but the perturbation is not
strong enough to modify the overall state of the system.

We use the notation 𝒟(s, t) to denote the set of all directions be-
tween two states: 𝒟(s, t) = {d ∈ Dir | (s, d, t) ∈ T} (Note that this is
either a singleton set, or the whole Dir). We will also use s d→ s′ to
denote (s, d, s′) ∈ T and s→ s′ if there exists d ∈ Dir such that s d→ s′.

2.2 Time flow and runs in DTS

In this work, we consider two possible semantics of a DTS: past and
future. Collectively, we refer to these as time flow. We use a B prefix
to denote a context where we consider the future semantics and C

to denote a context where the past semantics is considered. We also
assume that the time flow can be negated, meaning ¬B ≡ C and
¬C ≡ B.

Let M = (S, Dir, T, AP, L) be a DTS. In accordance with the above
specified notation, we define the future transition relation as BT = T
and past transition relation as CT = {(s′, d, s) | (s, d, s′) ∈ BT}. Note
that since T is both total and past-total, both BT and CT are total.

Let t be one of B and C. Then:

∙ A run tπ is an infinite sequence s0, d0, s1, d1, s2, . . . such that
(si, di, si+1) ∈ tT for all i. If the time flow of the run is clear
from context, we can omit the t prefix;

∙ tπS(i) denotes the i-th state si and tπDir(i) denotes the i-th di-
rection di of the run tπ;

∙ tΠM denotes the set of all t-runs of the DTS M;

∙ Function trunsM : S→ 𝒫(tΠM) computes all runs originating
in the given state: trunsM(s) = {π ∈ tΠM | πS(0) = s};

∙ Function tsuccM : S → 𝒫(Dir × S) computes the successors
of the given state (with respect to time flow t): tsuccM(s) =
{(d, s′) ∈ Dir× S | (s, d, s′) ∈ tT};

∙ Similarly, function t predM : S→ 𝒫(Dir× S) computes the pre-
decessors of the given state: t predM(s) = ¬tsuccM(s);

4

2. Preliminaries

Whenever the DTS M is clear from context, we can omit the sub-
script M.

Compared to the standard transition systems, we incorporate the
notion of direction into a run by representing it as an alternating
sequence of states and directions. Notice that each run always starts
in a state. Everything is then parametrised by the notion of time flows.

2.3 Direction formulae

To reason about a direction of a specific transition, we define the
language of direction formulae.

Definition 2. Let Dir be a set of directions. The language of direction for-
mulae is then defined as follows:

χ ::= true | d | ¬χ | χ ∧ χ

For a direction d̂ is the satisfaction relation |= then defined as
follows:

d̂ |= true

d̂ |= d ⇐⇒ d̂ = d

d̂ |= ¬χ ⇐⇒ d̂ ̸|= χ

d̂ |= χ1 ∧ χ2 ⇐⇒ d̂ |= χ1 and d̂ |= χ2

Intuitively, a direction formula is just a standard Boolean formula
with directions as propositions.

2.4 Hybrid computation tree logic with past

To reason about a DTS, we define the following HUCTLP logic.

2.4.1 Syntax

Definition 3. Let p be an atomic proposition from the AP set, d a direction
formula over Dir, t one of the time flows (B or C), and x a state variable. The
language of HUCTLP formulae is then defined as follows:

5

2. Preliminaries

ϕ ::= true | p | x | ¬ϕ | ↓ x : ϕ | @x : ϕ | ∃x : ϕ | ϕ ∧ ϕ | t E ψ | t A ψ

ψ ::= X χ ϕ | ϕχ U ϕ | ϕχ Uχ ϕ | ϕχ W ϕ | ϕχ Wχ ϕ

We call all ϕ formulae state formulae and all ψ formulae path for-
mulae. We write cl(ϕ) to denote the set of all sub-formulae of ϕ and
sub(ϕ) to denote the set of all direct sub-formulae.

The temporal operators follow the common naming scheme based
on CTL (X - next, U - until, W - weak until), but we also introduce
new operators, namely @x : ϕ, pronounced "at", ↓ x : ϕ, pronounced
"bind" and ∃x : ϕ, pronounced "exists".

Note that in situations where the aspect of time flow is irrelevant
(i.e. when the statement holds for both past and future), we can omit
the time flow prefix.

2.4.2 Semantics

In order to describe semantics of the HUCTLP as a whole, we define
the semantics of the state and path formulae separately. The model of a
state formula over DTS M is a state s while the model of a path formula
is a run π. Furthermore, each model is extended with a partial function
h : Var→ S, which represents the valuation of the state variables.

We write h0 to denote an empty valuation and h[x ↦→ s] to denote
a valuation which maps variable x to a state s but is otherwise defined
as valuation h, formally:

h[x ↦→ s](x′) =

{
s x′ = x
h(x′) otherwise

The satisfaction relation for states of a DTS M with respect to a
HUCTLP state formula is defined in Figure 2.1

Compared to CTL, we can see that the path operators A and E are
extended with the notion of time flow. Also, the semantics of ∃x : φ
follow directly from first-order logic.

The most interesting are the remaining operators: bind and at. Intu-
itively, bind provides a more "specialised" alternative to exists, while at

6

2. Preliminaries

(M, h, s) |= true
(M, h, s) |= p ⇐⇒ p ∈ L(s)
(M, h, s) |= x ⇐⇒ h(x) = s
(M, h, s) |= ¬ϕ ⇐⇒ (M, h, s) ̸|= ϕ

(M, h, s) |= ↓ x : ϕ ⇐⇒ (M, h[x ↦→ s], s) |= ϕ

(M, h, s) |= @x : ϕ ⇐⇒ (M, h, h(x)) |= ϕ

(M, h, s) |= ∃x : ϕ ⇐⇒ ∃s′ ∈ S : (M, h[x ↦→ s′], s) |= ϕ

(M, h, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (M, h, s) |= ϕ1 and (M, h, s) |= ϕ2

(M, h, s) |= t E ψ ⇐⇒ ∃π ∈ truns : (M, h, π) |= ψ

(M, h, s) |= t A ψ ⇐⇒ ∀π ∈ truns : (M, h, π) |= ψ

Figure 2.1: Semantics of HUCTLP state formulae. Let M =
(S, Dir, T, AP, L) be a DTS and h : Var → S a valuation of state vari-
ables.

allows effect similar to memory access, allowing us to check property
in a previously saved state (in some parent formula).

The satisfaction relation for runs of M with respect to a HUCTLP
path formula is defined in Figure 2.2.

As we can see, the semantics of path formulae are very similar
to the standard CTL. However, the operators are extended with the
notion of directions, effectively restricting the set of runs considered
when deciding the satisfaction of the property.

2.4.3 Other operators

Apart from the basic set of operators defined by the HUCTLP syntax,
we will also use the following abbreviations to extend the logic with
other common operators.

First, we define directed extensions of the standard CTL F and G
operators:

7

2. Preliminaries

(M, h, π) |= X χ ϕ ⇐⇒ πDir(0) |= χ and (M, h, πS(1)) |= ϕ

(M, h, π) |= ϕ1χ U ϕ2 ⇐⇒ ∃i : πS(i) |= ϕ2 and
∀j < i : πS(j) |= ϕ1 ∧ πDir(j) |= χ

(M, h, π) |= ϕ1χ Uξ ϕ2 ⇐⇒ ∃i > 0 : πS(i) |= ϕ2 and
πS(i− 1) |= ϕ1 ∧ πDir(i− 1) |= ξ and
∀j < i− 1 : πS(i) |= ϕ1 ∧ πDir(j) |= χ

(M, h, π) |= ϕ1χ W ϕ2 ⇐⇒ (M, h, π) |= ϕ1χ U ϕ2 or
∀i : πS(i) |= ϕ1 ∧ πDir(i) |= χ

(M, h, π) |= ϕ1χ Wξ ϕ2 ⇐⇒ (M, h, π) |= ϕ1χ Uξ ϕ2 or
∀i : πS(i) |= ϕ1 ∧ πDir(i) |= χ

Figure 2.2: Semantics of HUCTLP path formulae. Let M =
(S, Dir, T, AP, L) be a DTS and h : Var → S a valuation of state vari-
ables.

χ F ϕ ≡ trueχ U ϕ

χ G ϕ ≡ ϕχ W f alse

Further discussion of these operators and their relationship with
their CTL counterparts is provided in Subsection 2.4.5.

Second, we define other operators commonly used in the first order
logic:

∀x : ϕ ≡ ¬∃x : ¬ϕ

∃x ∈ ϕ1 : ϕ2 ≡ ∃x : ((@x : ϕ1) ∧ ϕ2)

∀x ∈ ϕ1 : ϕ2 ≡ ∀x : ((@x : ϕ1) =⇒ ϕ2)

The first operator is the standard first-order universal quantifier,
whereas the second and third operator are based on the standard

8

2. Preliminaries

first-order quantifiers, but they are extended with the ability to restrict
the space of the variable x to a validity region of a specific formula.
Such modification can be very useful when optimizing the execution
time of the formula, since validity for a significant amount of states
can be decided without actually considering formula ϕ2.

2.4.4 Relationship with CTL

Since HUCTLP is an extension of CTL, its operators can be used to
define the standard CTL. To do so, we can use the following equiva-
lences:

E X ϕ ≡ B E X true ϕ A X ϕ ≡ B A X true ϕ

E F ϕ ≡ B E true F ϕ A F ϕ ≡ B A true F ϕ

E G ϕ ≡ B E true G ϕ A G ϕ ≡ B A true G ϕ

E[ϕ1 U ϕ2] ≡ B E[ϕ1true U ϕ2] A[ϕ1 U ϕ2] ≡ B A[ϕ1true U ϕ2]

E[ϕ1 W ϕ2] ≡ B E[ϕ1true W ϕ2] A[ϕ1 W ϕ2] ≡ B A[ϕ1true W ϕ2]

As one can easily observe, by using true as a direction formula,
the direction restrictions imposed by HUCTLP can be ignored and
the pure CTL operators are obtained. For a further discussion on the
effects of direction restrictions on the CTL semantics, please see section
2.4.5.

2.4.5 Weak operators

When understanding HUCTLP formulas, one has to keep in mind an
important distinction between classic CTL and HUCTLP. In CTL, the
following equivalences hold universally:

¬A X¬ϕ ≡ E X ϕ ¬A G¬ϕ ≡ E F ϕ

¬ E X¬ϕ ≡ A X ϕ ¬ E G¬ϕ ≡ A F ϕ

9

2. Preliminaries

However, in HUCTLP, these equivalences are only valid when the
direction restriction on the operators are true, which reduces them to
their classic CTL counterparts.

To understand why these equivalences do not hold, let us explore
in detail the case of A X and E X:

(M, h, s) |=¬t A X χ¬ϕ

⇐⇒ ¬[∀π ∈ truns : πDir(0) |= χ ∧ (M, h, πS(1)) |= ¬ϕ]

⇐⇒ ∃π ∈ truns : πDir(0) ̸|= χ ∨ (M, h, πS(1)) ̸|= ¬ϕ

⇐⇒ ∃π ∈ truns : πDir(0) |= χ =⇒ (M, h, πS(1)) |= ϕ

(M, h, s) |=t E X χ ϕ

⇐⇒ ∃π ∈ truns : πDir(0) |= χ ∧ (M, h, πS(1)) |= ϕ

First, let us observe that if χ = true, both definitions are obviously
equivalent. However, as we can see, the original t E X χ operator intu-
itively states, that there exists a t-run where first direction models χ and
the next state models ϕ, hence there really must exists such run. On the
other hand, the expression ¬t A X χ¬ϕ translates to a slightly different
statement. Intuitively, ¬t A X χ¬ϕ states that there exists a t-run where
if the first direction models χ, the next state models ϕ. Therefore this for-
mula is satisfied not only when t E X χ is satisfied, but also when there
is a run which does not start with a direction satisfying χ.

Similarly, in case of ¬t E X χ¬ϕ, we get an intuitive meaning if the
first direction of each t-run models χ, the next state models ϕ. Compare
this to the meaning of t A X χ, which states that the first direction of each
t-run models χ and the next state models ϕ.

As we can see, not only are the semantics of these expressions
different, but both semantics can be potentially useful. To leverage
this fact, we define a new set of operators:

t E χ F̃ ϕ ≡ ¬t A χ G¬ϕ t E X̃ χ ϕ ≡ ¬t A X χ¬ϕ
t A χ F̃ ϕ ≡ ¬t E χ G¬ϕ t A X̃ χ ϕ ≡ ¬t E X χ¬ϕ

10

2. Preliminaries

We call these operators weak, because in the definition of each of
these operators, the original strict direction requirement is replaced
with a less restrictive implication. Indeed, similar to the X χ example,
when understanding strict and weak χ F operator variants, one can
follow these intuitive definitions:

∙ t E χ F ϕ - exists a t-run such that at some point, ϕ is satisfied and
prior to this point χ always holds;

∙ t E χ F̃ ϕ - exists a t-run such that at some point, χ is not satisfied or
ϕ is satisfied (and prior to this point, χ always holds);

∙ t A χ F ϕ - all t-runs contain a point where ϕ is satisfied and prior to
this point, χ always holds;

∙ t A χ F̃ ϕ - all t-runs contain a point where χ is not satisfied or ϕ is
satisfied (and prior to this point, χ always holds);

Finally, when using the weak operators, one has to keep in mind
that even though the transition relation of each DTS is both total
and past-total, it is not necessarily total or past-total with respect
to a specific direction formula χ. Hence not only can one encounter
runs that satisfy a weak formula due to a transition with does not
satisfy χ, one can even encounter complete direction deadlocks — that
is states, which have no transition satisfying given χ. In such states,
all universal weak formulae are automatically satisfied. This fact on
itself is not necessarily a disadvantage, however, one has to consider
it when interpreting weak formulas.

2.4.6 Other observations

In this final subsection, we define a list of other useful equivalences
that allow us to reduce the minimal set of operators needed to describe
any HUCTLP formula:

11

2. Preliminaries

t E[ϕ1χ Uξ ϕ2] ≡ t E[ϕ1χ U(ϕ1 ∧ t E X ξ ϕ2)]
t A[ϕ1χ Uξ ϕ2] ≡ t A[ϕ1χ U(ϕ1 ∧ t A X ξ ϕ2)]
t E[ϕ1χ Wξ ϕ2] ≡ t E[ϕ1χ W(ϕ1 ∧ t E X ξ ϕ2)]
t A[ϕ1χ Wξ ϕ2] ≡ t A[ϕ1χ W(ϕ1 ∧ t A X ξ ϕ2)]

t A[ϕ1χ W ϕ2] ≡ ¬t E[¬ϕ2 U(¬ϕ2 ∧ (¬ϕ1 ∨ t E X ¬χtrue))]
t E[ϕ1χ W ϕ2] ≡ t E[ϕ1χ U ϕ2] ∨ ¬t A χ F̃¬ϕ1

Based on these and previous observations in this section, we can see
that one of the minimal operator sets needed to describe all HUCTLP
formulae is:

t E X χ ϕ, t E χ F̃ ϕ, t E χ U ϕ,
t A X χ ϕ, t A χ F̃ ϕ, t A χ U ϕ,

@x : ϕ, ↓ x : ϕ, ∃x : ϕ

Naturally, this is not the only minimal operator set, however, it is
the one we will consider from now on in this work.

2.5 Parametrised direction transition system

In order to reason about systems with parameters, we extend the
definition of DTS with the notion of parameters. A PDTS is essentially
a family of DTSs that share the same state space, but differ in terms
of transition relations. Alternatively, one can view PDTS as a DTS
where each transition is labelled not only with direction, but also with
a parameter set.

2.5.1 Definition

Parametrised direction transition system is represented by a tuple𝒦 =
(𝒫 , S, Dir, T̂, AP, L), where𝒫 is a finite set of parameter valuations and
T̂ is a parametrised transition relation T̂ ⊆ S×Dir×𝒫 ×S. We use the

12

2. Preliminaries

notation T̂p to denote the parametrised transition relation restricted
to a specific parameter valuation p, i.e. T̂p = {(s, d, s′) ∈ S×Dir× S |
(s, d, p, s′) ∈ T̂}. We then write𝒦p to denote a specific parametrisation
of the original 𝒦—a DTS such that 𝒦p = (S, Dir, Tp, AP, L).

We write 𝒫(s, t) to denote the set of all parameter valuations for
which the transition from s to t is allowed: 𝒫(s, t) = {p ∈ 𝒫 | ∃d ∈
Dir : (s, d, p, t) ∈ T̂}. The notion of time flows also naturally extends
to PDTSs with BT̂ = T̂ and CT̂ = {(s, d, p, s′) | (s′, d, p, s) ∈ T̂}.

2.5.2 Parameter representation

In this work, we assume that the parameters of the PDTS 𝒦 are repre-
sented symbolically. We thus assume that we are given a (first-order)
theory that is interpreted over the parameter valuations. Every 𝒫(s, t)
is then represented using a formula Φ such that p |= Φ ⇐⇒ p ∈
𝒫(s, t). We call such formula a parameter constrain. We use the no-
tation ff and tt to denote the contradiction and tautology in terms
of parameter formulae and the standard logical operators ¬,∨,∧ to
combine the parameter formulae. In general, we use upper-case Greek
letters Φ, Ψ, ... to denote the parameter formulae and lower-case Greek
letters ϕ, ψ, ... to denote the HUCTLP properties.

We assume the following expressions can be used to reason about
the parameter formulae describing a specific PDTS:

∙ ttrans(s, t) = Φ such that p |= Φ ⇐⇒ ∃d ∈ Dir : (s, d, p, t) ∈
tT̂; that is a set of all parameters for which the transition is
available regardless of the direction (preserving given time flow).

∙ tdir(s, χ, t) = Φ such that p |= Φ ⇐⇒ ∃d ∈ Dir : (s, d, p, t) ∈
tT̂ ∧ d |= χ; which represents all parameters for which the tran-
sition is enabled and the given direction constraint is satisfied.

When reasoning about the parameter formulae, we usually use
semantic equality (i.e. Φ1 ≡ Φ2 ⇐⇒ ∀p ∈ 𝒫 : p |= Φ1 ⇐⇒
p |= Φ2). In cases where syntactic equality is used instead of semantic
equality, this fact should be explicitly stated. Notice that this allows
us to reason about parameter formulae similarly to standard sets,
however this needs to be taken into account when reasoning about
complexity of various operations.

13

2. Preliminaries

2.6 Parameter Synthesis

The parameter synthesis problem for a PDTS 𝒦, an initial parameter
constraint ΦI and a HUCTLP formula ϕ is to compute a function
ℱ such that ℱ (s) = {p ∈ 𝒫 | (𝒦p, h0, s) |= ϕ ∧ p |= ΦI}. Naive,
enumerative solution would be to run standard global model checking
procedure for each state. In Chapter 3, we introduce an algorithm
which uses symbolic representation introduced in 2.5.2 to provide a
faster method for deciding parameter synthesis.

2.7 Partitioning and PDTS fragments

2.7.1 Fragments

In order to distribute the PDTS to several independent workers, we
define the notion of fragments. Any PDTS can be divided into N frag-
ments using an injective partition function f : S→ {1, . . . , N}. Intu-
itively, the partition function divides the state space of a PDTS into N
disjoint groups (some of which may be empty) which we then call frag-
ments. Such partitions can be then distributed to several independent
agents to reduce the amount of resources required by a singular agent
during algorithm execution. However, this also usually introduces a
communication overhead.

We say that an agent i owns a state s when the state is part of the
agents fragment, that is f (s) = i. We also call these states local and
denote the set of all local states of the fragment i as S∙i . Note that the
sets of the local states of each fragment are pairwise disjoint and their
union constitutes the full state space S.

All states that are not local, but can directly reach or be reached
from a local state are called border states of fragment i and are denoted
S○i . Formally, state s ∈ S ∖ S∙i is a border state if and only if there exists
t ∈ S∙i such that s → t or t → s. Please observe that the border state
sets for different fragments can intersect and if s is a border state in
fragment i, then t is a border state in fragment f (s).

We write S ∙○i = S∙i ∪ S○i to denote the set of the relevant states. That
is, the states which directly influence the value of local states.

14

2. Preliminaries

Finally, all states which are not local nor border states are called
remote. The set of all remote states is denoted S×i . Furthermore, for
each fragment i holds that S = S∙i ∪ S○i ∪ S×i and ∅ = S∙i ∩ S○i ∩ S×i .

2.7.2 Partitioning

In this section, we also define two key properties of a partition function
that influence the overall effectiveness of resource distribution and
the expected communication overhead:

∙ The uniformity of the partitioning. That is, to ensure that the sizes
of S∙i are always almost equal. Naturally, exact equality can’t
always be achieved, however, a good uniform partition function
should ensure that the maximum size difference between frag-
ments does not grow with the size of the system, but rather with
the number of partitions.

∙ Number of cross transitions. A cross transition is a transition that
leads between two states in different fragments of the system.
Such transition is usually a source of communication overhead,
since any related operation usually involves both fragments and
therefore requires some communication. Hence the amount of
cross transitions directly influences the overall communication
overhead. Also observe that this number is very closely related
to the size of the S○i sets, since the states at each end of the
cross transitions will be considered as border states in one of the
fragments.

As we can see, in order to achieve good performance, the partition
function needs to satisfy both of these properties. However, this can’t
be easily achieved for all systems. Without any prior knowledge of the
system, one could design a partition function that would be close to
uniformity, but that might also introduce a significant amount of cross
transitions. Similarly, if one were to focus on optimizing the amount
of cross transitions, the resulting partitioning might not be uniform
enough to be able to distribute to agents with limited resources.

15

3 Algorithm

In this chapter, we describe the distributed algorithm used for the
parameter synthesis computation on PDTS and HUCTLP properties.

3.1 Assumption semantics

In order to represent the intermediate results during the computation
and accommodate for the distributed nature of the PDTS fragments,
we introduce the notion of assumptions and related assumption se-
mantic function for the HUCTLP formulae.

3.1.1 Assumption function

We define an assumption function for a PDTS fragment i as𝒜i(ψ, h, s) =
(Φ⊤, Φ⊥), meaning that the HUCTLP property ψ is assumed to hold
in state s ∈ S and valuation h : Var → S under parameter valuation
p ∈ 𝒫 such that p |= Φ⊤ and symmetrically, ψ is assumed not to
hold for parameter valuations p |= Φ⊥. Collectively, assumption func-
tions of all fragments represent the total knowledge about the system
accumulated so far.

We will write𝒜⊤i (ψ, h, s) and𝒜⊥i (ψ, h, s) to denote an assumption
function which returns just the first parameter constrain Φ⊤ or sec-
ond parameter constrain Φ⊥ respectively. Finally, when the fragment
identifier is clear from context, we can omit the subscript i.

We say that an assumption 𝒜(ϕ, s, h) = (Φ⊤, Φ⊥) about the PDTS
𝒦 is valid when for all p holds that:

(p |= Φ⊤ ⇒ (𝒦p, s, h) |= ϕ) ∧ (p |= Φ⊥ ⇒ (𝒦p, s, h) ̸|= ϕ)

From now on, we will only consider valid assumption functions
unless stated otherwise. Furthermore, from this definition, we can
conclude several important properties of valid assumption functions:

∙ Assumption implies satisfaction, but satisfaction does not neces-
sarily imply assumption.

17

3. Algorithm

∙ Parameter constrain 𝒜⊤(ψ, s, h) ∧𝒜⊥(ψ, s, h) can never be satis-
fiable - i.e. ψ cannot be assumed to be valid and invalid at the
same time.

∙ Parameter constrain ¬𝒜⊤(ψ, s, h) ∧ ¬𝒜⊥(ψ, s, h) can be satisfi-
able. This situation signifies that for some parameter valuations
the result is yet unknown. We will denote this parameter con-
strain as 𝒜?(ψ, s, h).

∙ These intuitive equalities hold only when the set of unknown
parameter valuations is empty:

𝒜⊤(ψ, s, h) ̸≡ ¬𝒜⊥(ψ, s, h)

𝒜⊤(ψ, s, h) ̸≡ ¬𝒜⊤(¬ψ, s, h)

The expression ¬𝒜⊥(ψ, s, h) represents not only parameters for
which ψ is satisfied, but also parameters for which the result is
unknown. Similarly, in the second case, ¬𝒜⊤(¬ψ, s, h) denotes
not only parameters for which the ¬ψ is not satisfied (hence ψ is
satisfied) but also unknown parameter valuations.

We use 𝒜0 to denote an assumption function which has all results
initialised to (ff, ff), hence the set of the valid and invalid parameter
valuations is empty and the set of the unknown parameter valuations
is the whole parameter universe.

Finally, we assume a partial ordering on the set of all possible
assumption functions over PDTS fragment 𝒦i based on the standard
set inclusion relation. Formally:

𝒜1 ≤ 𝒜2 ⇐⇒ ∀ψ, s, h : 𝒜?
2(ψ, s, h) ⊆ 𝒜?

1(ψ, s, h)

Under such ordering, the set of all assumption functions forms a
complete lattice. This ordering captures the intuitive understanding of
computation progress, because an assumption function 𝒜2 is bigger
than 𝒜1 only if the complete knowledge about the system is higher

18

3. Algorithm

in 𝒜2. Also observe that the highest element of every chain is an
assumption function with no unknown parameters while the lowest
element is the 𝒜0.

3.1.2 Semantic function

In order to compute the maximal valid assumption function for a PDTS
fragment 𝒦i = (𝒫 , S, Dir, T̂, AP, L), we define a semantic function
𝒞𝒦(𝒜in) = 𝒜out which (if possible) increases the given assumption
(with respect to the ordering) while preserving assumption validity.

In this definition, we do not use the full operator set of HUCTLP,
but rather the simplified set of operators defined in section 2.4.6. The
definition uses a special assignment operator 𝒜(ψ, s, h)⇐ Φ which
means that the parameter constrain Φ is added to the current set of
assumptions, formally:

𝒜(ψ, s, h)⇐ Φ ≡ 𝒜(ψ, s, h)← 𝒜(ψ, s, h) ∨Φ

Also observe that this operation is monotonic with respect to the
assumption function ordering, that is, the set of unknown parameter
valuations can only decrease by applying⇐.

The definition of the semantic function itself is divided into sev-
eral parts, based on the HUCTLP operators it deals with. Each part
declaratively defines the new assumption function 𝒜out based on the
given 𝒜in.

First part, presented in Figure 3.1, describes the initial assumptions
of the system. Please observe that in all cases, no unknown parameters
are present. This naturally follows from the fact that the validity of the
atomic formulae depends solely on the properties of the system and
the variable valuation, and hence can be resolved unambiguously.

In the second part, shown in Figure 3.2, we provide the semantics
for the temporal operators. As we can see, the differences between
operators and their positive and negative semantics are often very
subtle, but crucial.

First of all, let us observe that due to the negation inequality, we
can’t simply handle the negative assumptions as negations of the
positive ones. Second, we see that the observations about the nature
of weak operators made in the section 2.4.5 are still valid—that is, one

19

3. Algorithm

𝒜out(true, s, h)⇐ (tt, ff)

𝒜out(p, s, h)⇐
{
(tt, ff) p ∈ L(s)
(ff, tt) otherwise

𝒜out(x, s, h[x ↦→ s′])⇐
{
(tt, ff) s = s′

(ff, tt) otherwise

Figure 3.1: Definition of semantic function 𝒞 for atomic propositions,
p ∈ AP is an atomic proposition and x ∈ Var is a state variable.

can clearly observe the strict (∧) and weak(⇒) direction requirement
in all definitions.

Finally, the semantics of the remaining boolean and hybrid opera-
tors are described in Figure 3.3.

Notice that except for the at operator, the semantic function uses
only the relevant states of the PDTS fragment. Indeed, the at operator
is fundamentally designed to be able to access any state in the system
and hence can’t be subject to such requirement.

3.1.3 Semantic function fixed point

As we can see, the semantic function computed according to the rules
presented in this section is clearly monotonic (thanks to the⇐ oper-
ator) with respect to the complete lattice formed by the assumption
functions of 𝒦. Therefore according to the Knaster-Tarski theorem
[14], 𝒞 has a least fixed point which can be computed by repeated
application of 𝒞.

3.1.4 Semantic function validity

Even though the monotonicity of the semantic function is rather obvi-
ous, the validity of the resulting assumption function does not have to
be entirely clear. Especially for the temporal operators, which are now

20

3. Algorithm

𝒜⊤out(
t E X χ ϕ, s, h)⇐

∨
s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′) ∧𝒜⊤in(ϕ, s′, h)]

𝒜⊥out(
t E X χ ϕ, s, h)⇐

∧
s′∈S ∙○

¬ttrans(s, s′) ∨ [tdir(s, χ, s′)⇒ 𝒜⊥in(ϕ, s′, h)]

𝒜⊤out(
t A X χ ϕ, s, h)⇐

∧
s′∈S ∙○

¬ttrans(s, s′) ∨ [tdir(s, χ, s′) ∧𝒜⊤in(ϕ, s′, h)]

𝒜⊥out(
t A X χ ϕ, s, h)⇐

∨
s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′)⇒ 𝒜⊥in(ϕ, s′, h)]

𝒜⊤out(
t E χ F̃ ϕ, s, h)⇐𝒜⊤in(ϕ, s, h)∨∨

s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′)⇒ 𝒜⊤in(t E χ F̃ ϕ, s′, h)]

𝒜⊥out(
t E χ F̃ ϕ, s, h)⇐𝒜⊥in(ϕ, s, h)∧∧

s′∈S ∙○
¬ttrans(s, s′) ∨ [tdir(s, χ, s′) ∧𝒜⊥in(t E χ F̃ ϕ, s′, h)]

𝒜⊤out(
t A χ F̃ ϕ, s, h)⇐𝒜⊤in(ϕ, s, h)∨∧

s′∈S ∙○
¬ttrans(s, s′) ∨ [tdir(s, χ, s′)⇒ 𝒜⊤in(t A χ F̃ ϕ, s′, h)]

𝒜⊥out(
t A χ F̃ ϕ, s, h)⇐𝒜⊥in(ϕ, s, h)∧∨

s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′) ∧𝒜⊥in(t A χ F̃ ϕ, s′, h)]

𝒜⊤out(
t E[ϕ1χ U ϕ2], s, h)⇐𝒜⊤in(ϕ2, s, h) ∨

[
𝒜⊤in(ϕ1, s, h)∧∨

s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′) ∧𝒜⊤in(t E[ϕ1χ U ϕ2], s′, h)]
]

𝒜⊥out(
t E[ϕ1χ U ϕ2], s, h)⇐𝒜⊥in(ϕ2, s, h) ∧

[
𝒜⊥in(ϕ1, s, h)∨∧

s′∈S ∙○
¬ttrans(s, s′) ∨ [tdir(s, χ, s′)⇒ 𝒜⊥in(t E[ϕ1χ U ϕ2], s′, h)]

]
𝒜⊤out(

t A[ϕ1χ U ϕ2], s, h)⇐𝒜⊤in(ϕ2, s, h) ∨
[
𝒜⊤in(ϕ1, s, h)∧∧

s′∈S ∙○
¬ttrans(s, s′) ∨ [tdir(s, χ, s′) ∧𝒜⊤in(t A[ϕ1χ U ϕ2], s′, h)]

]
𝒜⊥out(

t A[ϕ1χ U ϕ2], s, h)⇐𝒜⊥in(ϕ2, s, h) ∧
[
𝒜⊥in(ϕ1, s, h)∨∨

s′∈S ∙○

ttrans(s, s′) ∧ [tdir(s, χ, s′)⇒ 𝒜⊥in(t A[ϕ1χ U ϕ2], s′, h)]
]

Figure 3.2: Definition of semantic function 𝒞 for temporal operators.

21

3. Algorithm

𝒜⊤out(ϕ1 ∧ ϕ2, s, h)⇐𝒜⊤in(ϕ1, s, h) ∧𝒜⊤in(ϕ2, s, h)

𝒜⊥out(ϕ1 ∧ ϕ2, s, h)⇐𝒜⊥in(ϕ1, s, h) ∨𝒜⊥in(ϕ2, s, h)

𝒜⊤out(∃x : ϕ, s, h)⇐
∨

s′∈S

𝒜⊤in(ϕ, s, h[x ↦→ s′])

𝒜⊥out(∃x : ϕ, s, h)⇐
∧

s′∈S

𝒜⊥in(ϕ, s, h[x ↦→ s′])

𝒜out(¬ϕ, s, h)⇐ (𝒜⊥in(ϕ, s, h),𝒜⊤in(ϕ, s, h))
𝒜out(↓ x : ϕ, s, h)⇐𝒜in(ϕ, s, h[x ↦→ s])

𝒜out(@x : ϕ, s, h[x ↦→ s′])⇐𝒜in(ϕ, s′, h[x ↦→ s′])

Figure 3.3: Definition of semantic function 𝒞 for hybrid and boolean
operators.

defined recursively based on the PDTS transitions rather than using
the infinite runs.

Lemma 1. Given a valid assignment 𝒜in, the semantic function 𝒞(𝒜in)
produces a valid assignment.

Proof First, we consider the validity of the atomic proposition
assumptions and the hybrid operator assumptions as obvious, since
they can be almost effortlessly translated to their direct definitions.

Next, we show a full validity proof for the positive assumption
of the t A χ U operator—one of the most complex temporal operators.
Proofs for other operators (and their negative counterparts) are very
similar and therefore we won’t list them in detail.

∙ Assume all current 𝒜⊤in and 𝒜⊥out are valid and we are consider-
ing ψ = t A[ϕ1χ U ϕ2].

∙ For a contradiction, let us assume that after application of 𝒞,
there exists a parameter valuation p ∈ 𝒫 such that p |= 𝒜⊤out(ψ, s, h)
and (𝒦p, s, h) ̸|= ψ for some s and h.

∙ According to the definition of 𝒞, this can happen in two cases:

22

3. Algorithm

– p |= 𝒜⊤in(ϕ2, s, h) - this is in direct contradiction with the
operator definition, since for all runs π there exists i = 0
such that (𝒦p, πS(i), h) |= ϕ2 because πS(0) = s. There-
fore (𝒦p, s, h) |= ψ (the direction requirement is trivially
satisfied since there is no j smaller than 0).

– p |=
[
𝒜⊤in(ϕ1, s, h) ∧ ∧s′∈S ¬ttrans(s, s′) ∨ [tdir(s, χ, s′) ∧

𝒜⊤in(t A[ϕ1χ U ϕ2], s′, h)]
]
. Hence not only (𝒦p, s, h) |= ϕ1,

but also for all s′ either the transition from s is not present,
or if it is present, it satisfies the direction requirement, and
p |= 𝒜⊤in(t A[ϕ1χ U ϕ2], s′, h). Thanks to this fact, we see
that every infinite run starting in s has to use one of these
transitions. Therefore the only case when (𝒦p, s, h) ̸|= ψ

is when either the assumption 𝒜⊤in(ϕ1, s, h) or some of the
assumptions 𝒜⊤in(t A[ϕ1χ U ϕ2], s′, h) are not valid, which
is a contradiction with our original assumption.

3.2 Main algorithm

In this section, we present the main algorithm which relies on the
previously defined assumption function and the assumption fixed
point.

3.2.1 Environment and data structures

Before we describe the main algorithm, we have to introduce our
assumptions about the environment the algorithm will be executed
in.

The algorithm presented in this work assumes a distributed envi-
ronment of N independent, reliable agents connected using reliable
communication channels. In practice, such model is suitable to model
multi core machines and small to medium computational clusters
where fault tolerance is not strictly necessary.

We assume that each agent has local access to the following data
structures:

∙ Total number of communicating agents N;

23

3. Algorithm

∙ A unique agent identifier id ∈ {1, . . . , N};

∙ A partition function f : S→ {1, . . . , N};

∙ A PDTS fragment 𝒦i;

∙ A HUCTLP formula ϕ;

Note that not all of these structures have to be represented explicitly.
For example, the PDTS fragment and the partition function is usually
computed on-the-fly.

3.2.2 Algorithm pseudocode

The Algorithm 1 starts with a fully unknown assignment and itera-
tively computes new fixed point assumptions. As soon as the fixed
point is reached, a round of communication is performed to ensure all
remaining fragments are notified about the updated assumptions. At
this point, information from other fragments is also received. As soon
as no new information can be gained using this procedure, the algo-
rithm proceeds to mark unknown parameter valuations as unsatisfied,
assuming all sub-formulae have been successfully computed.

Here, the TerminationDetection procedure will return true only
if the assumptions have not changed since last termination attempt
and no communication is taking place. We don’t discuss a specific
implementation for this procedure, since termination detection in
distributed systems is a well studied problem [15] and an optimal
implementation usually depends on the available communication
primitives in our environment.

To simplify the description of the Communication procedure, we
assume that each agent can directly update assumptions of other
agents. This is of course an unrealistic expectation in a distributed
system. In reality, this form of communication assumes a proper mes-
sage is sent, received and handled by the receiving agent. However,
we do not provide an explicit pseudocode for this, since it is, similar
to the TerminationDetection, a problem which largely depends on
the available environment (in a multi-core machine simulating the
distributed environment, even a direct update can be possible) and
has been efficiently solved before [16].

24

3. Algorithm

Algorithm 1 Main fixed point algorithm.
1: function ParameterSynthesis(fragment 𝒦id, property ϕ)
2: 𝒜id ← 𝒜0
3: repeat
4: repeat
5: repeat
6: 𝒯 ← 𝒜id
7: 𝒜id ← 𝒞(𝒯)
8: until 𝒯 = 𝒜id
9: Communicate(𝒜id)

10: until TerminationDetection
11: IncreaseCycles(𝒜id, ϕ)
12: until TerminationDetection
13: ℱi(s)← 𝒜⊤id(ϕ, s, h0)

14: function IncreaseCycles(assumption function 𝒜, property ϕ)
15: for s ∈ S∙ : Done(h, s)← tt
16: for all ψ ∈ sub(ϕ) do
17: Done(h, s) = Done(h, s) ∧ ¬IncreaseCycles(𝒜, ψ)(h, s)
18: for s ∈ S∙ : 𝒜⊥(ϕ, h, s)⇐ 𝒜?(ϕ, h, s) ∧ Done(h, s)
19: return 𝒜?(ϕ)

20: function Communicate(assumption function 𝒜)
21: for all s ∈ S∙id do
22: for all i < N such that s ∈ S○i do
23: for all ψ, h : 𝒜i(ψ, h, s)⇐ 𝒜id(ψ, h, s)
24: for all i < N and ψ : (@x : ψ) ∈ cl(ϕ) do
25: for all h, s : 𝒜i(ψ, h, s)⇐ 𝒜id(ψ, h, s)

25

3. Algorithm

Note that, as we also discussed in the previous section, the at
operator requires special treatment, due to its ability to access arbitrary
states.

Finally, let us observe that the complete solution to the parame-
ter synthesis problem can be constructed from the partial solutions
computed by each fragment as follows:

ℱ (s) =
∨

i∈{1,...,N}
ℱi(s)

3.2.3 Correctness

Termination

Theorem 1. Given a PDTS fragment 𝒦id and a HUCTLP property ϕ,
the Algorithm 1 eventually terminates.

Proof First, let us observe that since the least fixed point of 𝒞(𝒜)
always exists, the condition at line 8 will also always terminate as soon
as this fixed point is reached. Furthermore, since the communication
function is also monotonic with respect to the assumption ordering,
the condition at line 10 will also eventually reach a fixed point as
soon as no new assumptions can be computed either by applying the
semantic function, or communicating with other processes.

Finally, the function IncreaseCycles is also monotonic, and there-
fore the same argument holds for the condition on line 12. Eventually,
all agents will reach a global fixed point and at that point, the system
will terminate.

Partial Correctness

Before we get to the main theorem, let us prove several additional
lemmas about the whole algorithm that will greatly simplify the cor-
rectness proof:

Lemma 2. Procedure Communicate preserves validity of the assumption
function.

26

3. Algorithm

Proof This is almost obvious, since the Communicate procedure
will only increase assumptions in border states of fragment i if cur-
rent fragment id successfully computed said assumption. Therefore,
assuming the information for the local states in this fragment is valid
(given that the semantic funciton 𝒞 preserves assumption validity),
the newly assigned information for the border states is also valid.

The exception being the at operator, which is always delivered to
all fragments, regardless of border states. However, this also adheres
to the global at semantics.

Lemma 3. Assuming no value of 𝒜i(ψ, h, s) (globally for all i) can be in-
creased either by applying 𝒞 or by performing Communicate, the procedure
IncreaseCycles preserves validity of the assumption function.

Proof It should be noted that the assumption of the lemma corre-
sponds to the conditions under which is the IncreaseCycles called in
the algorithm (the conditions are ensured by the repeat-until loop on
lines 4-10).

Second, the procedure can increase only negative assumptions
about the system. Therefore, for a contradiction, let us assume that
after application of IncreaseCycles there is a fragment𝒦i, a parameter
valuation p, a property ψ, a variable assignment h and a state s, such
that p |= 𝒜⊥i (ψ, h, s) but (𝒦p, h, s) |= ψ.

This can only happen when the assumptions about p are known
for all sub-formulae of ψ, since the only time when the unknown
assumption can increase is when the parameter valuation is marked
as Done, which means it is not unknown in any of the sub-formulae.

Because assumptions for all sub-formulae are known, the only op-
erators for which this error can occur are the temporal operators. That
is because all other operators depend directly on their sub-formulae,
and therefore when the assumptions for the sub-formulae are known,
the assumption for the formula should also be known when the fixed
point is computed. This would imply that the fixed point was not com-
puted properly, contradicting the original assumption of the lemma.

However, the assumption of the computation and communication
fixed point also implies that the only possible case when assumption
for such operator can be unknown is in case of a circular dependency
between assumptions. Any other case would imply that either the
communication has not been handled properly (and therefore we

27

3. Algorithm

have unknown parameter valuations that should have been resolved
using communication) or the fixed point has not been reached yet
(and therefore some parameter valuations can still increase due to the
assumptions about their successors).

Finally, if a parametrisation is unknown due to a circular depen-
dency between assumptions, it can be safely assumed to be negative.
That is because such assumption cannot ever increase to a positive
value, therefore also the property cannot hold in such state.

Lemma 4. When the algorithm exits the main cycle and enters line 13, all
unknown assumptions for the local states 𝒜?(ψ, h, s) are empty.

Proof This is easy to show, because in each iteration, the procedure
IncreaseCycles increases at least one unknown parameter valuation
to the negative value for some state (assuming unknown parameter
valuations exist).

Therefore, assuming there are some unknown assumptions, there
must exists the smallest formula ψ such that some of its assumptions
are unknown and yet all sub-formulae are already known. These
unknown assumptions are then promoted to negative ones by the
IncreaseCycles procedure. Hence after a finite number of repetitions,
IncreaseCycles increases all unknown parameter valuations to nega-
tive ones.

Theorem 2. Algorithm 1 computes the parameter synthesis problem for a
given PDTS 𝒦 and a given HUCTLP property ϕ.

Proof By Lemma 4, there are no unknown parameter valuations
for the local states of each fragment. Therefore an union across all
fragments ensures that there are no unknown parameter valuations
across the whole state space. Furthermore, since the assumption func-
tions of each fragment are valid (by Lemma 1, 2 and 3), the resulting
assumption function is also valid.

3.2.4 Notes on the semantic function and complexity

One notable part of the algorithm that has been intentionally left out
of the main pseudocode is how to compute the semantic function
(and its fixed point). Similar to the TerminationDetection and the
Communication procedures, there are several possible approaches

28

3. Algorithm

which depend on the nature of the model, the execution environment
and other desired properties of the algorithm. Instead of providing the
full pseudocode for this operation, we provide a discussion of several
observations and approaches that can be taken when implementing
the semantic function fixed point and we refer the reader to the actual
implementation of the algorithm for one specific example.

∙ In the definition of the semantic function, assumptions about
the temporal operators usually depend on all local and border
states. This requirement can be easily reduced to just the actual
successors (for some parameter valuation). In transition systems
where a state has only a small number of potential successors,
this means that the number of assumption dependencies is often
not linear in the size of state space, but rather constant or at least
logarithmic.

∙ Complexity can be further reduced by memorizing intermediate
results of operations. When assumption in state s depends on
its k successors, one can build a tree-like structure that can be
then updated in logarithmic time when one of the dependencies
changes.

∙ Since determining whether a value of an assumption changed
or not requires a semantic equality check, which is often a very
expensive operation, it can be beneficial to delay such check as
long as possible (without introducing additional checks later).
An example of such delaying would be to ensure that the check is
performed only when no dependencies of the assumption under
question are still being updated (or waiting to be updated). In
other words, one can process the dependencies in a "distance-to-
proposition" order, ensuring the values are updated only when
necessary.

∙ It is crucial for the effectiveness of the algorithm to maintain a
compact representations of the parameter formulae produced
during computation. To this end, instead of using a simple for-
mula solver, one should look for solvers that can also simplify
the investigated formulae. However, such operations are usually
even harder than standard formula solving. It might be therefore

29

3. Algorithm

beneficial to employ heuristics that can delay formula simplifica-
tion when not needed or that can separate parts of the formula
that cannot be further simplified.

30

4 Implementation

The algorithm presented in this work is available as an open source
implementation. This implementation forms a key part in the Pithya
[17] parameter synthesis tool for ODE based biochemical models. The
source code and manual are also provided as digital appendices.

In this chapter, we discuss the architecture and characteristics of
this implementation.

4.1 Pithya core overview

The Pithya tool has two main components: graphical user interface and
the core engine. Here, we are concerned only about the core engine.

The core engine is implemented in an object-oriented manner using
the Kotlin programming language (compiles to standard JVM byte-
code). Furthermore, the engine can use the Microsoft Z3 SMT solver
[18] for decisions about the parameter formulae.

The core engine itself is also divided into several modules:

∙ Temporal Logic Module This module is responsible for parsing
the HUCTLP formulae and performing necessary transforma-
tions to ensure the formulae use only the supported set of oper-
ators. The input format of the HUCTLP formulae is specified as
an ATLR4 [19] grammar.

∙ Parameter Synthesis Module The main module containing the
algorithm itself with abstract definitions of the necessary data
structures such as solver, state map or model.

∙ ODE Model Module Defines a parser for the .bio ODE model
files and a set of solvers, successor generators and state maps
that work with ODE models.

∙ CLI Front-end Provides a command line interface, combining
the functionality of all modules into one executable.

In the following sections we will discuss these modules in detail.

31

4. Implementation

4.2 Parameter Synthesis Module

4.2.1 States and parameter formulae representation

Before describing the components of the parameter synthesis module,
we have to define the basic requirements it poses on anyone willing to
use it:

∙ States of the PDTS all have unique (even across fragments) in-
teger identifiers from a continuous range. This allows easier
partitioning and provides room for interesting optimisations.

∙ On the other hand, the parameter formula representation is fully
generic, allowing the user to choose whatever domain specific
representation suits their needs. The only requirement is that the
user provides a solver capable of performing basic operations
required by the algorithm (discussed later in this section).

4.2.2 User-implemented interfaces

Now that we have described how the parameter synthesis module
approaches states and parameters, we can describe basic interfaces that
need to be implemented by potential users. Here, we provide the list
of all of these interfaces with short descriptions of their functionality.
However, the implementations have to adhere to a set of required
invariants and synchronization rules in order for the algorithm to be
valid, therefore we refer the reader to the source code documentation
for more detailed information about each interface.

∙ StateMap State map is a simple map interface which provides a
way to represent the state—parameter mapping used when com-
puting the assumption function. However, as opposed to the as-
sumption function, StateMap is a general purpose interface used
throughout the code whenever a state—parameter collection is
needed (successor/predecessor representation, communication,
etc.). It is immutable by default, however there is a mutable vari-
ant which is used to represent incomplete results. For the list of
available implementations, see code documentation.

32

4. Implementation

∙ Solver The solver should be capable of providing basic con-
stants (tt, ff) and performing standard operations such as: Con-
junction, disjunction, complement (negation), test for emptiness
(satisfiability) and formula simplification. These operations are
then used to implement more complex, algorithm specific opera-
tions. User is also free to override these default implementations
assuming a more efficient alternative is available. Finally, each
solver should be able to serialize a parameter constraint into a
byte buffer so that it can be safely transferred between fragments.
Additionally, the module provides sample explicit solvers based
on standard collections. These usually don’t scale very well with
increasing number of parameter valuations, but provide a good
starting point for implementing and debugging more complex
solvers (for full list, see code documentation).

∙ Partition Combining the PDTS fragment with its partition func-
tion, the Partition interface provides the total amount of frag-
ments, current fragment identifier, methods for obtaining pre-
decessors and successors of a specific state plus the ability to
evaluate atomic propositions.
Assuming the user does not want to provide his own partition
function, they can implement a Model interface, which is a sim-
plified version of the Partition which provides only the suc-
cessor/predecessor generator and proposition evaluation. The
Model can then be wrapped into one of the predefined partition
functions:

– SingletonPartition Partition function maps all states to a
single fragment. Useful for debugging or working in single
threaded environment.

– HashPartition Partition which assigns states to a prede-
fined number of fragments using an integer modulus as a
hash function. It provides good levels of uniformity and
concurrency, however, usually also requires a lot of com-
munication.

– UniformPartition A uniform partition divides the states
into equally sized intervals and assigns each fragment one

33

4. Implementation

interval. It provides good uniformity and assuming the
identifiers of state neighbours are also numerically close
to the identifier of the original state, it should provide
low communication overhead. However, in cases when the
communication cost is low, the better concurrency of the
HashPartition can result in faster computation.

– BlockPartition A block partition is a hybrid between the
UniformPartition and the HashPartition. The partition
function will divide the state space into equally sized inter-
vals, while each fragment is assigned a predefined number
of intervals.

Apart from the predefined partitions, the parameter synthesis
module also provides a very basic explicit model implementa-
tion, which can be useful for debugging, testing and creating toy
examples (it is used as a model implementation for the validity
testing).

∙ Channel Responsible for communication between fragments,
functionality of Channel maps almost directly to the Communi-
cate procedure in the algorithm pseudocode. The communica-
tion relies on serialization into byte buffers.
The module provides two basic implementations:

– SingletonChannel Channel used for single threaded work-
loads with no ability to communicate.

– SharedMemChannel Channel which directly passes the byte
buffers between fragments managed by the same virtual
machine.

As you can see, no truly distributed channel is provided directly
by the module. Users should provide their own channel based
on the distributed environment where the algorithm is running.

4.2.3 Module work flow

With all necessary data structures in place, the parameter synthesis
engine accepts a set of investigated HUCTLP properties and is ready

34

4. Implementation

Partition

Model

Solver

Channel

HUCTLp Properties

Operator Dependency Graph

F
or

m
ul

a
A

na
ly

si
s

F
ix

ed
 P

oi
nt

 C
om

pu
ta

tio
n

Property
State Maps

P
ar

al
le

l f
or

 N
 a

ge
nt

s

Figure 4.1: Work flow of the main parameter synthesis module. Circles
represent HUCTLP operator objects, diamonds StateMaps.

to perform the main procedure. The work flow is depicted in figure
4.1.

The implementation starts by constructing a dependency graph
based on the provided HUCTLP properties. Each node in the graph is
represented by a special operator object which implements the logic
of the semantic function 𝒞 for one specific HUCTLP operator.

This construction ensures that whenever two properties share a
common sub-formula, it is only computed once. Furthermore, this con-
struction also unrolls the state variable valuation, so that for example
a property @x : ϕ is represented as |S| distinct operators, depending
on the value of x.

This allows us to ensure that unused valuations don’t create un-
necessary operators. A good example of such case is a formula ↓ x :
A F(¬x ∧ E F p) where p is some atomic proposition. In this case, E F
is independent on the valuation of x, and therefore can be represented
by a single operator node in the dependency graph, while the A F is
unrolled into multiple operators depending on the value of x.

Another important optimisation this construction allows is canon-
isation of the state variable names. This means that if you consider
a formula such as [↓ x : A F x] ∨ [∃y : (A F y ∧ ¬y)], both A F x and
A F y are resolved as the same operator object and are computed only
once.

After the operator dependency graph is constructed, the fixed point
algorithm iteratively processes operators in the graph, starting from

35

4. Implementation

.bio ODE model General Model
Piecewise linear
Approximation

Rectangular FragmentZ3 Fragment

Abstract FragmentAbstract Fragment

Rectangular SolverZ3 Solver

Microsoft
Z3 Solver
Process

Figure 4.2: Work flow of the ode module module. The usage of a
specific fragment implementation depends on the properties of the
model.

the smallest (propositions). Multiple operators can be even processed
concurrently, assuming their dependencies are already computed.

As a result of this operation, user obtains a set of StateMaps which
represent the parameter synthesis result for the local states of the
fragment for each requested property, as depicted in the third part of
the work flow figure.

4.3 ODE Model Module

The ODE model module provides implementations for working with
various types of models based on ordinary differential equations. It
relies on the abstraction procedure described in [20, 21] when trans-
forming the continuous equations into a discrete state space. The mod-
els are originally represented using a .bio model format (grammar
provided in ANTLR4 syntax in the digital appendix) and this module
is responsible for parsing the model file, computing the piecewise lin-
ear approximation and transforming the model into PDTS fragments
that can be then used by the main parameter synthesis module. The
module also provides appropriate solvers for the supported model
types.

36

4. Implementation

The work flow of this process, with all of it’s main components is
depicted in figure 4.2. After the piecewise linear approximation is con-
structed, the model is analysed for relationships between parameters
and an appropriate parameter representation is chosen.

Rectangular Model and the corresponding Rectangular Solver
are chosen when the parameters are fully independent (at most one
parameter per equation). This type of parameter representation uses a
set of hyper-rectangles to encode the parameter constrain and is fairly
straightforward and efficient.

Z3 Model and Z3 Solver are then used for more complex mod-
els. In this case, the parameter constrains are represented directly as
Microsoft Z3 compatible formulae and the SMT solver is directly re-
sponsible for deciding satisfiability and formula simplification. This
is facilitated by directly interfacing with a Z3 process running in inter-
active mode. Z3 also provides a direct API for common programming
languages. However, we choose not to use this, because it causes prob-
lems with parallelism on multi-core machines.

At the time of writing, Z3 was designed in a way that even for for-
mulae which belong to completely separate contexts, some non-trivial
synchronisation is performed. This synchronisation then significantly
cripples the parallel execution to a point where adding more concur-
rent workers actually slows down the execution significantly. Having
a set of independent (at the system level) solver processes then en-
ables us to scale the execution on multi-core machines, even though it
introduces more overhead and complexity to the whole program.

Finally, this module also provides an Abstract Model class which
implements general logic for generating transitions in ODE based
models. One can use this class to quickly implement new model vari-
ants. All that needs to be provided is a method producing a parameter
constrain under which is a given equation at a given vertex positive or
negative (corresponding to a positive or negative derivation). Other
logic and optimisations (caching, etc.) is then handled solely by the
abstract implementation. Naturally, an appropriate solver also has to
be provided.

37

4. Implementation

.bio ODE
model file

.ctl HUCTLp
property file

Piecewise linear
Approximation Partition 1

...

S
ha

re
d

M
em

or
y

C
ha

nn
el

HUCTLp Properties

ModelSolver

Partition N

ModelSolver

Parameter
Synthesis

Partial Result 1

...

Partial Result N

Merged Results .json/.txt
output file

Logs and
Statistics

Figure 4.3: Work flow of the command line front-end.

38

4. Implementation

4.4 Command line frontend

The command line front-end connects all these modules into one
package with a well defined input and output. Schematic description
of this module is given in Figure 4.3.

The process starts by parsing given input files and creating N inde-
pendent partitions connected using a shared memory communication
channel. These data structures are then passed into the parameter
synthesis engine.

As soon as the parameter synthesis is finished, the front-end mod-
ule obtains N partial results from the synthesis engine. These partial
results are then merged into one general result set. Finally, the result
set can be exported using two supported output formats. First format
provides export into a machine readable .json file, suitable for further
post-processing or visualisations. Second format provides a more hu-
man readable text format, which can be useful when debugging or
working with simple models.

The actual content of both formats depends on the type of param-
eter representation used by the model. When working with hyper-
rectangular parameter representation, a parameter constrain is repre-
sented using a suitable multi dimensional array interpreted directly
as a set of hyper-rectangles. On the other hand, when working with
the pure SMT approach, a parameter constrain is represented as a
SMT-LIB 2 formula [22].

Finally, a set of diagnostic and benchmarking data is collected
during the computation. These include the amount and frequency of
data transfers between partitions (to monitor possible communication
bottlenecks) and the average solver throughput (corresponds to the
complexity of parameter constrains which were encountered during
the computation). These data are generally printed directly to the
standard output or can be easily redirected into a separate file.

For a detailed description of the command line arguments accepted
by the front-end module, see the tool manual provided as a digital
appendix.

39

5 Evaluation

In this chapter, we provide evidence to support the claim that our algo-
rithm scales well with increasing amount of computational resources,
and that the algorithm is useful, meaning it can provide interesting,
non trivial information about the studied model.

5.1 Models

In order to evaluate the algorithm, we first need to define some non-
trivial models which we will use to do so. These models, coming from
the field of systems biology, are described in this section.

All of the models can be scaled in terms of state and parameter
space cardinality by increasing the precision of the piecewise linear
approximation.

5.1.1 Bi-stable repressilator

The first model to be considered is the smallest repressilator motif,
studied in [23, 24]. It includes two nodes which inhibit each other (see
Figure 5.1 (left)). In biology, this motif is very often present in gene
regulatory networks, where X represents product of geneX which
inhibits production of geneY and vice versa.

There are several ways to parametrise this model. In this work, we
choose φX and φY as our parameters, each in the (0, 1) interval (unless
explicitly stated otherwise).

d[X]
dt = k1

K
n1
1

K
n1
1 +[Y]n1

− φX[X]

d[Y]
dt = k2

Kn2
2

Kn2
2 +[X]n2

− φY[Y]

k1 = k2 = 1, K1 = K2 = 5,
n1 = n2 = 5

Figure 5.1: Bi-stable repressilator regulatory network (left) and its ODE
model taken from [23] (right).

41

5. Evaluation

d[X]
dt = k1

K
n1
y1

K
n1
y1 +[Y]n1

· Kn2
z1

Kn2
z1 +[Z]n2

− φX[X]

d[Y]
dt = k2

Kn3
x2

Kn3
x2+[X]n3

· K
n4
z2

K
n4
z2 +[Z]n4

− φY[Y]

d[Z]
dt = k3

Kn5
x3

Kn5
x3+[X]n5

· Kn6
y3

Kn6
y3 +[Y]n6

− φZ[Z]

∀i, j; ki = 1,
Kxi = Kyi = Kzi = 5, nj = 5

Figure 5.2: Tri-stable toggle switch regulatory network and its ODE
model.

5.1.2 Tri-stable toggle switch

Tri-stable toggle switch is a model of 3-variable repressilator in which
each node inhibits not only one but both of its neighbours (see Figure
5.2 (left)). Just one of the two ingoing inhibition is enough to repress
any entity. Therefore the ODE model possesses multiplication of neg-
ative hill function in entity regulation (Fig. 5.2 (right)).

Similarly to the bi-stable repressilator, we choose φX, φY and φZ as
our parameters, each in the (0.1, 0.2) interval (unless stated otherwise).

5.2 Applicability

To demonstrate the applicability of our approach, we provide an anal-
ysis of the stable states of our models, as discovered by the algorithm.

Properties

We study two types of stability motifs. First is a terminal strongly
connected component, which can be represented using the HUCTLP
formula tSCC = ↓ x : B A G B E F x. Intuitively, a terminal strongly
connected component is a maximal set of states that are pairwise reach-
able (meaning that from any state, I can reach the whole component,
but nothing else).

42

5. Evaluation

Second motif is a single terminal cycle, represented using the for-
mula tCycle = ↓ x : B A X B A F. Intuitively, a terminal cycle is a
stronger requirement than a terminal component, since the compo-
nent can contain multiple interleaving cycles, while the terminal cycle
property explicitly specifies that there is exactly one cycle (otherwise
the A requirement would be broken).

Notice that we would expect each model to have at least one ter-
minal strongly connected component, however, no such requirement
can be imposed to terminal cycles.

In order to show that there are at least two distinct instances of the
studied patterns (either tSCC or tCycle) in the model, we use the fol-
lowing property: biPattern = ∃a ∈ pattern : pattern ∧ ¬B E F a. The
property holds in states where the pattern is satisfied and there exists
other state (also satisfying pattern) not reachable from this state. This
is implies presence of two pattern instances, since both our patterns
are terminal. Also notice the use of the exists − in operator, which
guarantees only appropriate z are considered, thus simplifying the
property description and computation performance.

Such formula can be further generalised to imply presence of
three distinct instances: triPattern = ∃a ∈ pattern : ∃b ∈ pattern :
pattern ∧ ¬B E F a ∧ B E F b ∧ (@a : B E F b).

Finally, we can be interested in presence of exactly one instance (or
exactly two) of the studied pattern. To this end, we can simply use the
property single = pattern ∧ ¬biPattern ∧ ¬triPattern.

Bi-stable repressilator

The results of our analysis of the bi-stable repressilator are presented
in Figures 5.3 and 5.4. Each figure contains a state space plot and a
parameter space plot, where green colour signifies the presence of
exactly one pattern instance and the yellow colour signifies presence
of exactly two pattern instances. Furthermore, in the state space plot,
the mixture of green and yellow represents that either one or two in-
stances of the studied pattern are present, depending on the parameter
valuation.

The results of our terminal component analysis are presented in
Figure 5.3. As expected, the model contains either one or two terminal
components, depending on the parameter valuation. Furthermore,

43

5. Evaluation

Figure 5.3: Presence of two terminal strongly connected components
in the bi-stable repressilator model. The parameter space (right) has
been zoomed to cover only the interesting area.

the location of these components is clearly visible in the state space
plot (right).

The analysis of the terminal cycles is presented in Figure 5.4. As
we can see, the model contains parameter valuations for which no
terminal cycle is present. For these valuations a manual inspection
revealed that multiple non-terminal cycles are present in the model.

Tri-stable toggle switch

The results of our analysis of the tri-stable toggle switch are presented
in Figures 5.5 and 5.6. The presentation of these results is affected by
the dimensionality of the model in question. Mainly, we present the
dependence of just two variables (parameters) and project the remain-
ing values into such plane. This makes the colour-mixing approach
taken in the previous case infeasible, since there is no way to distin-
guish truly intersecting properties from the projected ones. Therefore
we assume the reader is more interested in higher counts of pattern
instances and prioritise those. All visualisations are produced directly
using Pithya and the full results are available as a digital attachment

44

5. Evaluation

Figure 5.4: Presence of two terminal cycles in the bi-stable repressilator
model.

to this work. The reader is therefore encouraged to inspect the data
directly in case of any further questions.

As we can see in Figure 5.5, the model can contain either one,
two, or three terminal strongly connected components, depending on
the parameter valuations. The state space covered by the components
appears to be continuous due to the dimensional projection. In fact, the
three components are located in the corners of the projected triangle,
while the triangle itself spans all three dimensions. Depending on the
parameter valuation, the triangle can contract to produce two, or just
one component.

Figure 5.6 then presents similar results, but as we can see, the
stronger requirement of terminal cycles produces smaller result set.
Interesting observation is that for the selected parametrisations, at
least one terminal cycle is always present (This is not directly implied
by the plots, since they are projections. It has been verified separately).

5.3 Scalability

We evaluate the scalability of the algorithm using two CTL and two
HUCTLP properties:

45

5. Evaluation

Figure 5.5: Presence of one (green), two (yellow) and three (blue)
terminal strongly connected components in the tri-stable toggle switch
model. Remaining dimensions have been projected into the plots.

Figure 5.6: Presence of one (green), two (yellow) and three (blue) termi-
nal cycles in the tri-stable toggle switch model. Remaining dimensions
have been projected into the plots.

46

5. Evaluation

Table 5.1: Scalability results
Bi-stable repressilator Tri-stable toggle switch

State count ∼ 2.25e4 ∼1000 ∼ 3.4e5 ∼ 3000

Property ϕ1 ϕ2 ϕ3 ϕ4 ϕ1 ϕ2 ϕ3 ϕ4

1cpu/4gb 112s 35s 259s 89s 63s 62s 125s 30s

2cpu/8gb 76s 31s 168s 71s 45s 42s 86s 20s

4cpu/16gb 65s 26s 110s 44s 35s 36s 57s 17s

8cpu/32gb 38s 26s 65s 40s 30s 28s 39s 14s

ϕ1 = B E F center
ϕ2 = B A F center

ϕ3 = ↓ x : B E X B E F x
ϕ4 = ↓ x : B A X B A F x

Here, center specifies a proposition which is satisfied only in the
very middle state of the model.

Each property has been tested on a model with an appropriate
state space size (since HUCTLP properties are usually much harder
to verify). The results of this analysis are presented in Table 5.1. As
we can see, the algorithm scales with increasing amount of compu-
tational resources, the only problem being the A F query on the two
dimensional model. Further inspection revealed that the algorithm
is not able to parallelise this query very well, because the valid state
space does not provide much opportunities to branch the exploration
into multiple parallel directions.

The evaluation has been performed on a 64-core server and is taken
as an overage over five runs. However, the access to this server was
not exclusive. The computation was restricted to the specified amount
of processors and RAM during each experiment.

47

6 Conclusion

In this work, we presented an efficient distributed fixed point algo-
rithm for solving the parameter synthesis problem for parametrised
direction transition system (PDTS) with properties specified using
the hybrid computation tree logic with past (HUCTLP). The algo-
rithm works in a semi-symbolic manner, with explicit state space and
symbolic parameter space representations, relying on an appropriate
solver for deciding and simplifying the parameter sets.

HUCTLP is a more expressive extension of CTL, which allows spec-
ification of various interesting properties, such as strongly connected
components, cycles or directed runs. We provide a detailed discussion
of its semantics and its relationship with CTL.

We also provide an implementation of the above mentioned algo-
rithm, which is optimised for multi-core usage. The implementation
is freely available as part of the Pithya parameter synthesis tool. As
a modelling framework, the implementation provides a module for
working with ordinary differential equation based models. However,
the core algorithm is completely model agnostic. We also provide a
bridge to the Microsoft Z3 solver and various domain-specific opti-
mised solvers.

For this implementation, we provide a case study which explores
the terminal components and terminal cycles of two well know models
from systems biology. We also provide a scalability analysis which
shows that the algorithm is able to utilise provided computational
resources.

As future work, we would like to extend the implementation with
distributed computation capabilities, since the main framework is al-
ready prepared for this, only an appropriate Communicator is needed.
Other possible research direction would be to design a more general,
fixed point computation framework, which can then be used to im-
plement other common algorithms, such as more efficient component
detection. One can also consider a cloud oriented approach to the
current fixed point algorithm, relying on stream processing. Finally,
the implementation would greatly benefit from more domain specific
solvers and on-the-fly compilation of models, which would speed up
the parameter set related operations and state space generation.

49

Bibliography

1. SMALE, Steve. Differentiable Dynamical Systems. In: The Mathematics
of Time: Essays on Dynamical Systems, Economic Processes, and Related
Topics. New York, NY: Springer New York, 1980, pp. 1–82. ISBN 978-
1-4613-8101-3. Available from DOI: 10.1007/978-1-4613-8101-
3_1.

2. ABRAHAM, R.; MARSDEN, J.E. Foundations of Mechanics. AMS Chelsea
Pub./American Mathematical Society, 1978. AMS Chelsea publish-
ing. ISBN 9780821844380. Available also from: https : / / books .
google.cz/books?id=4Y-ownk6ilsC.

3. ARECES, Carlos; CATE, Balder ten. 14 Hybrid logics. Studies in Logic
and Practical Reasoning. 2007, vol. 3, pp. 821–868. ISSN 1570-2464.
Available from DOI: http : / / dx . doi . org / 10 . 1016 / S1570 -
2464(07)80017-6.

4. BEEK, Maurice H. ter; FANTECHI, Alessandro; GNESI, Stefania; MAZ-
ZANTI, Franco. A state/event-based model-checking approach for
the analysis of abstract system properties. Science of Computer Pro-
gramming. 2011, vol. 76, no. 2, pp. 119–135. ISSN 0167-6423. Available
from DOI: http://dx.doi.org/10.1016/j.scico.2010.07.002.

5. THIAGARAJAN, PS. A trace based extension of linear time tempo-
ral logic. In: Logic in Computer Science, 1994. LICS’94. Proceedings.,
Symposium on. 1994, pp. 438–447.

6. BENEŠ, Nikola; BRIM, Luboš; DEMKO, Martin; PASTVA, Samuel;
ŠAFRÁNEK, David. A Model Checking Approach to Discrete Bifur-
cation Analysis. In: FITZGERALD, John; HEITMEYER, Constance;
GNESI, Stefania; PHILIPPOU, Anna (eds.). FM 2016. Springer, 2016,
vol. 9995, pp. 85–101. LNCS. ISBN 978-3-319-48988-9. Available from
DOI: 10.1007/978-3-319-48989-6.

7. CLARKE Jr., Edmund M.; GRUMBERG, Orna; PELED, Doron A. Model
Checking. Cambridge, MA, USA: MIT Press, 1999. ISBN 0-262-03270-
8.

51

http://dx.doi.org/10.1007/978-1-4613-8101-3_1
http://dx.doi.org/10.1007/978-1-4613-8101-3_1
https://books.google.cz/books?id=4Y-ownk6ilsC
https://books.google.cz/books?id=4Y-ownk6ilsC
http://dx.doi.org/http://dx.doi.org/10.1016/S1570-2464(07)80017-6
http://dx.doi.org/http://dx.doi.org/10.1016/S1570-2464(07)80017-6
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2010.07.002
http://dx.doi.org/10.1007/978-3-319-48989-6

BIBLIOGRAPHY

8. BATT, G.; PAGE, M.; CANTONE, I.; GÖSSLER, G.; MONTEIRO, P.T.;
JONG, H. de. Efficient parameter search for qualitative models of
regulatory networks using symbolic model checking. Bioinformatics.
2010, vol. 26, no. 18, pp. 603–610.

9. DONALDSON, Robin; GILBERT, David. A Model Checking Approach
to the Parameter Estimation of Biochemical Pathways. In: CMSB.
Springer, 2008, vol. 5307, pp. 269–287. LNCS.

10. DONZÉ, Alexandre; CLERMONT, Gilles; LANGMEAD, Christopher
J. Parameter synthesis in nonlinear dynamical systems: Application
to systems biology. Journal of Computational Biology. 2010, vol. 17, no.
3, pp. 325–336.

11. JHA, Sumit Kumar; LANGMEAD, Christopher James. Synthesis and
infeasibility analysis for stochastic models of biochemical systems
using statistical model checking and abstraction refinement. Theo-
retical Computer Science. 2011, vol. 412, no. 21, pp. 2162–2187.

12. BARNAT, Jiri; BRIM, Lubos; KREJCI, Adam; STRECK, Adam; SAFRANEK,
David; VEJNAR, Martin; VEJPUSTEK, Tomas. On Parameter Syn-
thesis by Parallel Model Checking. IEEE/ACM Trans. Comput. Biol.
Bioinformatics. 2012, vol. 9, no. 3, pp. 693–705. ISSN 1545-5963. Avail-
able from DOI: 10.1109/TCBB.2011.110.

13. BENEŠ, Nikola; BRIM, Luboš; DEMKO, Martin; PASTVA, Samuel;
ŠAFRÁNEK. Parallel SMT-Based Parameter Synthesis with Appli-
cation to Piecewise Multi-Affine Systems. In: ATVA’16. Springer,
2016. LNCS. To appear.

14. TARSKI, Alfred. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific J. Math. 1955, vol. 5, no. 2, pp. 285–309. Available also
from: http://projecteuclid.org/euclid.pjm/1103044538.

15. MATTERN, Friedemann. Algorithms for distributed termination de-
tection. Distributed Computing. 1987, vol. 2, no. 3, pp. 161–175. ISSN
1432-0452. Available from DOI: 10.1007/BF01782776.

16. TANENBAUM, Andrew S; VAN STEEN, Maarten. Distributed systems:
principles and paradigms. Prentice-Hall, 2007.

17. SYBILA, Laboratory. Pithya [online]. 2017 [visited on 2017-05-17]. Avail-
able from: http://biodivine.fi.muni.cz/pithya.

52

http://dx.doi.org/10.1109/TCBB.2011.110
http://projecteuclid.org/euclid.pjm/1103044538
http://dx.doi.org/10.1007/BF01782776
http://biodivine.fi.muni.cz/pithya

BIBLIOGRAPHY

18. MOURA, Leonardo de; BJØRNER, Nikolaj. Z3: An Efficient SMT
Solver. In: Tools and Algorithms for the Construction and Analysis of
Systems: 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by
RAMAKRISHNAN, C. R.; REHOF, Jakob. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 337–340. ISBN 978-3-540-78800-3. Avail-
able from DOI: 10.1007/978-3-540-78800-3_24.

19. PARR, Terence. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Book-
shelf, 2013. ISBN 1934356999, 9781934356999.

20. RIZK, Aurélien; BATT, Gregory; FAGES, François; SOLIMAN, Sylvain.
A general computational method for robustness analysis with appli-
cations to synthetic gene networks. Bioinformatics. 2009, vol. 25, no.
12, pp. i169. Available from DOI: 10.1093/bioinformatics/btp200.

21. COLLINS, Pieter J.; HABETS, Luc; SCHUPPEN, Jan H. van; ČERNÁ,
Ivana; FABRIKOVÁ, Jana; ŠAFRÁNEK, David. Abstraction of Bio-
chemical Reaction Systems on Polytopes. IFAC Proceedings Volumes.
2011, vol. 44, no. 1, pp. 14869–14875. ISSN 1474-6670. Available from
DOI: http://dx.doi.org/10.3182/20110828-6-IT-1002.03317.

22. BARRETT, Clark; FONTAINE, Pascal; TINELLI, Cesare. The Satisfia-
bility Modulo Theories Library (SMT-LIB) [www.SMT-LIB.org]. 2016.

23. BRIM, Luboš; DEMKO, Martin; PASTVA, Samuel; ŠAFRÁNEK, David.
High-Performance Discrete Bifurcation Analysis for Piecewise-Affine
Dynamical Systems. In: Hybrid Systems Biology. Springer, 2015, pp. 58–
74.

24. DILÃO, Rui. The regulation of gene expression in eukaryotes: bista-
bility and oscillations in repressilator models. Journal of theoretical
biology. 2014, vol. 340, pp. 199–208.

53

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1093/bioinformatics/btp200
http://dx.doi.org/http://dx.doi.org/10.3182/20110828-6-IT-1002.03317

A List of electronic attachments

∙ Current source code of the Pithya tool implementing the algo-
rithm.

∙ Pithya manual with description of the input/output formats.

∙ Raw case study results.

55

	Introduction
	Preliminaries
	 DTS
	 Time flow and runs in DTS
	 Direction formulae
	 HUCTLP
	 Syntax
	 Semantics
	 Other operators
	 Relationship with CTL
	 Weak operators
	 Other observations

	 PDTS
	 Definition
	 Parameter representation

	 Parameter Synthesis
	 Partitioning and PDTS fragments
	 Fragments
	 Partitioning

	Algorithm
	 Assumption semantics
	 Assumption function
	 Semantic function
	 Semantic function fixed point
	 Semantic function validity

	 Main algorithm
	 Environment and data structures
	 Algorithm pseudocode
	 Correctness
	 Notes on the semantic function and complexity

	Implementation
	 Pithya core overview
	 Parameter Synthesis Module
	 States and parameter formulae representation
	 User-implemented interfaces
	 Module work flow

	 ODE Model Module
	 Command line frontend

	Evaluation
	 Models
	 Bi-stable repressilator
	 Tri-stable toggle switch

	 Applicability
	 Scalability

	Conclusion
	Bibliography
	List of electronic attachments

