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Abstract

The aim of the thesis was to define a distortion model of the imaging
process of Scanning Electron Microscope, estimate the parameters of
the model given image tiles and knowledge of the overlapping regions,
and apply the model while stitching image tiles into a panorama. In
comparison to standard distortion correction methods, the resultant
panoramas should correspond more accurately to the scanned objects
in terms of their shapes and sizes.
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1 Introduction

A common task in electron microscopy is to acquire a scan of a speci-
men at large magnification and high resolution. However, the speci-
men might be too large to fit in one image at the given magnification,
so it is necessary to obtain several images of different parts of the
specimen (image tiles) and to combine them (stitch them) together to
obtain the final image.

In a perfect world, if the images acquired by microscope were not
affected by any distortions, it would be sufficient to align the tiles next
to one another. Yet in reality, the acquisition device (microscope) is
not perfect. Due to the physical limitations of the device construc-
tion, the electron optics gives rise to a small distortion, which can be
characterized mostly as a combination of rotation, magnification and
non-orthogonality transforms. Moreover, when the specimen stage
shifts between two positions, a small random positioning error is intro-
duced. As a result, if one simply aligns the neighbouring tiles next to
each other, the resulting panorama will contain visible discontinuities
along the edges or repeated patterns close to the borders of the tiles.
Therefore, a global distortion correction transform needs to be applied
prior to the tile alignment. The tile alignment should correspond to
specimen stage positioning errors.

The aim of this thesis is to mathematically describe the problem
of distortion correction and panorama stitching for images acquired
by the Scanning Electron Microscope (SEM), find parameters of the
model and apply it to stitch panoramas without visual defects. During
the search for the unknown parameters of the model, the estimates
of the intervals for each parameter are taken into the account. As
a consequence, the resulting panoramas should be metrologically
precise, which means that all objects in the panorama should have the
correct shape and size.

Until April 2017, the author of this thesis is not aware of any other
work trying to solve the same problem. The closest approach was
described by Kaynig et al. in [1]. However, there are plural differences
between this work and the work of Kaynig et al. First of all, they focus
on images acquired by the Transmission Electron Microscope (TEM),
which has a distortion dominated by different types of transforms.
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1. Introduction

Also, they estimate the general affine transform followed by a non-
linear transform, but in this work the global transform must be strictly
composed of rotation, scaling and non-orthogonality. Secondly, the
authors do not consider the stage shift imprecisions. Lastly, they expect
their algorithm to work on the tiles with at least 50% overlap, but the
approach described here is shown to work with datasets with much
smaller overlaps (down to 5%).

The thesis is structured into eight main chapters. The first chapter
describes the SEM optics to understand where the specific types of
distortions are generated. The second chapter explains the differences
between this work and panorama stitching in digital photography.
The third chapter outlines the method used for the keypoint detection
and matching in order to establish stable and correct correspondences
between the keypoints. The fifth chapter contains the description of
the mathematical model. The sixth chapter suggests optimization
methods suitable to find the parameters of the model for the given
dataset. Finally, the seventh and eight chapter evaluate and discuss
the outcomes.
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2 Scanning electron microscope

Scanning electron microscope (SEM) is a device, which "permits the
observation and characterization of heterogeneous organic and inor-
ganic materials on a nanometre (nm) to micrometre (µm) scale" [2].

As it is hinted by the device name, the image is formed by scanning
(rastering) the surface of a specimen line-by-line using a ray of elec-
trons. The main advantage over Transmission Electron Microscopes
(TEM) is the possibility to observe thick specimens, because the elec-
trons do not need to be transmitted through them. The advantage over
common light microscopes is the possibility to achieve more detail.

The concept of the SEM was first described by Knoll in 1935 [3],
but the device was first constructed by Zyworkin in 1942. The follow-
ing works by Oatley, Smith, and Everhart and Thornley proposed
improvements to Zyworkin’s prototype, which resulted in the first
commercially successful instrument called SEM V, developed by Pease
and Nixon in 1963 [2] [4]. Since then, the main microscope parts remain
similar with minor advancements.

2.1 Layout

The microscope construction can be divided into three main parts:

• the specimen chamber,

• the electron optics system,

• the acquisition system, electronics.

The specimen chamber contains the stage, on top of which the
specimen is placed. The stage is able to move, generally in five direc-
tions: translation in x, y and z axes, pitch, and yaw (so called 5-axis
SEM stage). The optical system is placed above the specimen and the
electron ray is generated and focused there. The acquisition system
consists of a set of detectors which collect a specific type of signal (for
example the back-scattered electrons) and convert the signal to pixel
intensities. All the components operate in high vacuum, because gas
atmosphere would attenuate the electron beam and the scan could
fail.
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2. Scanning electron microscope

Figure 2.1: Layout of the SEM. Adopted from [5].

The electron optics is the most important part for this work. As it is
illustrated in the SEM schema in Figure 2.1, it is composed of electron
gun, condenser lens, deflection system, and objective lens.

The electron gun is a component which generates the electron beam
by accelerating the electrons in a specific range of energy. The amount
of energy given to the electrons affects the brightness of the final image.
The raw beam itself needs to be demagnified and skewed to hit a set of
discrete positions of the specimen to enable the line-by-line pixel-wise
scanning.

Demagnification is an operation which reduces the diameter of
the ray. It is provided by the first electromagnetic lens under the gun,
which is called the condenser lens (also referred to as the electron lens).
If demagnification lens was not included, the acquired image would
be either blurry, or one would have to use a very small resolution.

The deflection (scanning) coils are the second in the stack. Their
purpose is to deflect the beam over a set of discrete positions, so that at
each position, the corresponding pixel intensity can be recorded. The
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2. Scanning electron microscope

operation of the deflection coils affects magnification, as it depends
on the step size at which the specimen is scanned.

The last component in the simple scheme is the final (or objective)
lens, which serves for a similar purpose as the condenser lens: focus
the beam onto the sample. When the beam is generated, it is naturally
diverging to all directions. Despite the condenser lens focuses the
beam, its convergence is inverted before it hits the sample, so there
needs to be another lens to obtain the converging ray at the end of the
optical system.

When the beam hits the specimen, it interacts with it and the elec-
trons are scattered within, either elastically (interaction with atomic
nuclei), or inelastically (interaction with electrons of atoms). The elec-
trons that are ejected from the specimen as a result of inelastic scat-
tering are called secondary electrons and can be recorded to form an
image of the surface of the scanned object (due to the low energy they
carry, they are able to escape only from the top levels of the specimen).
Inelastically scattered electrons carry more energy, have larger interac-
tion volume and form an image which carries the information about
the material composition of the specimen [6].

When acquiring the panoramic image, the above described proce-
dure must be repeated for each tile. In between the scans, the stage
comes into operation, as it must shift from one position to another.

The stage shifting is not formally defined in the literature, so it
depends on the computer software for the microscope control. Both
size of the overlaps, and the scan orders are options, which need to
be defined by the microscope operator. Generally, meander scanning
is a good option, because it requires the least stage shifts, but the
standard forward or backward line scans are possible. The size of
the overlap affects the quality of the stitching. In larger overlaps, the
correlation of pixel intensities is more stable, or the number of keypoint
correspondences in the overlapping image parts is larger. However, it
is also affected by the character of the specimen itself.

Further information on the layout, operation of SEM and advanced
topics can be found in [2].
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2. Scanning electron microscope

2.2 Distortion

Optical system distortion From a technical point of view, the lenses
are composed of one or more coils. At deflection coils, the scanning
is realised by exciting a pair of coils, each with different energy. To
avoid the distortion, the coils excitation would have to be so precise,
that every change of power in both directions would produce the
same step. However, because the mechanical accuracy is limited, as
well as the accuracy of the electronic components, it is hardly feasible
to achieve such behaviour. If the step size is different in the x and y
directions, it can be perceived in form of zoom distortion. At the same
time, non-orthogonality is produced, for example if a ray is deflected
a bit more in one of the x− y directions at each step of the rastering
process. The electromagnetic field at the electron lens pushes the ray
into its centre. Naturally, the ray takes the spiral trajectory down the
coil. Especially at low magnifications, the rotation of the final image
can be seen [7]. Even though it affects both condenser and objective
lenses, when modelling the global distortion, it can be assumed that
the rotation appears after the zoom and non-orthogonality. Distortion
generated by the optical system is identical for each tile captured with
the same settings. It will be further referred as the global distortion.

Distortion by stage shifts The positioning of the specimen stage has
only a limited mechanical precision. The difference between the re-
quested position and the position at which the specimen stage stopped
can be observed in form of a translation distortion, which is different
for each pair of stage shift. Distant positioning might generate bigger
distortion compared to adjacent shifts.
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3 Panorama stitching in digital photography

Probably the first question that one asks themselves is whether it is
necessary to develop a new method and whether it is not sufficient to
use any of the available tools for digital photography. Although some
concepts are the same, generally these are two different problems.

Digital cameras (both point-and-shoot and digital single-lens re-
flex) use light optics. The light is focused by a set of glass lenses to the
image sensor, which converts photons to electric charge (scheme illus-
trated in Figure 3.1). Further details on the image acquisition process
in light cameras are omitted as they are not important for this work; a
curious reader might find more information in [8].

Figure 3.1: Point-and-shoot camera layout. Adopted from [8].

3.1 Lens distortion in digital photography

Glass lenses produce different type of distortion compared to the one
described before. In cameras, it has the form of barrel, pincushion or
moustache distortion; such distortions cause straight lines to appear
as curves (see Figure 3.2). It is connected to spherical aberration, a
phenomena at which the image of the object appears to be out of focus
due to the spherical shape of the lens. To avoid spherical aberration,
an aperture stop is placed next to the lens to block some of the rays

7



3. Panorama stitching in digital photography

Figure 3.2: Illustration of barrel, pincushion and moustache distortion.

and minimize the circle of confusion. However, when the chief ray
(ray passing through the centre of the aperture) refracts, the image
becomes distorted [9].

A non-linear model has to be considered to correct the global
distortion. Camera calibration can be performed in order to find the
correction transform, usually by photographing an image containing
straight lines, for example a chequerboard. The calibration transform
can be applied to captured images later in the post-processing.

3.2 Stitching

The primary goal in digital photography is to acquire a beautiful image
without any visual deformations. In case of panorama stitching, the
primary focus is on registering the tiles and hiding the seam. Little
effort if any is spent on estimating and correcting the exact distortion
generated by the optical system. Instead, image tiles are simply aligned
one to another in order to create the resulting panoramic image. Tile-
by-tile alignment is also a common practice in panorama stitching in
microscopy. There are two general approaches to find the correct tile
alignment: pixel-based methods and keypoint-based methods.

Keypoint based methods first find a set of keypoints in each tile
and match them. After the first (reference) tile is positioned, other tiles
aligned to it by applying homographies. A homography is generally a
projective transform mapping a set of keypoints found in one tile to a
set of corresponding keypoints in the other tile. Each tile can be aligned
to the rest of already stitched panorama by a different transform – the
homography does not have to be shared by all pairs of tiles. In this
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3. Panorama stitching in digital photography

work, keypoints are utilized to determine and correct the distortion
generated by SEM. Further information on keypoint detection and
matching are provided in the next chapter.

Pixel based approaches work directly with pixel intensities. The
aim is to find a translation that for example minimizes the squared
differences between the intensities in the overlapping regions, or max-
imizes their correlation. The main advantage of this approach is its
simplicity, because no prior computation (unlike in case of keypoint
detection methods) is necessary. The main disadvantage is that it is
only possible to find the best translation between two neighbouring
tiles, which might not hide the seam perfectly. While the optical sys-
tem in microscopy is stable and the specimen stage shifts in a plane in
between tile scans, in digital photography the photographer usually
moves the camera while the scene is static. As a consequence, the
coordinates of such panorama are not flat. For example, if a scene was
captured by standing at the same spot and rotating the camera, the
acquired images copy the shape of the inner surface of a cylinder. If the
camera motion is known, it is possible to apply a different coordinate
mapping to each of the image tiles, which enables the tile alignment
by translations.

The best translation between the tiles can be found either hierar-
chically or by using one of the direct methods. Hierarchical methods
try and evaluate different alignments in each iteration in order to find
the best relative positioning of the tiles, but such approach can be
inefficient and tedious. The phase correlation method is a representa-
tive of direct pixel-based methods. It uses the fact that a translation in
the spatial domain corresponds to a shift of phase in the frequency
domain. Moreover, correlation can be efficiently computed in the fre-
quency domain thanks to the convolution theorem: a convolution in
the spatial domain corresponds to pixel-wise multiplication in the
frequency domain; and correlation is nothing else but the convolution
of an image with a reverse kernel. Therefore, after transforming both
images to the frequency domain, the cross-power spectrum is com-
puted by taking point-wise multiplications between the first frequency
image and the complex conjugate of the second frequency image, nor-
malized by the magnitudes. Normalized cross-correlation matrix is
obtained by applying the inverse Fourier transform to the cross-power
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3. Panorama stitching in digital photography

spectrum. The peak in the cross-correlation matrix corresponds to the
shift between the images.

After having the image tiles properly registered, the last step is to
compose the final panoramic image. Another coordinate transform
can be utilized to map the panorama to a desired composition surface,
some pixels might be cropped; however, the most important part of
the composition is blending in the seams to handle moving objects
appearing only in one of the tiles, and to compensate different expo-
sure to hide the seam. Because no attention is paid to blending in this
work, please found more information in Image Alignment and Stitch-
ing: A Tutorial [10]. The paper provides a great overview of available
methods for all steps of panorama stitching in digital photography, as
well as many references to further sources.

In this work, it is desired to the visualise the misalignments in the
overlaps and therefore each pixel in an overlap is set to the maximum
of the intensities of overlapping images.
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4 Keypoint detection and matching

Keypoint-based methods are an alternative to pixel-based methods in
panorama stitching. Pairs of corresponding pixels in the neighbour-
ing images enable the computation of homographies required for tile
alignment. In this work, selection of keypoints and a faultless match-
ing are essential for computation of the global distortion correction
transform and determination the stage positioning errors.

A keypoint can be any important point in the image. It is desired
for a keypoint of an object to be detectable regardless of the zoom, ro-
tation or point of view of the camera (as long as it is visible). Keypoints
are often accompanied by descriptors which usually carry informa-
tion about keypoints’ neighbourhood. Applying an affine transform,
or adding noise to image should not affect the descriptors, so that
keypoint matching between two images was be possible.

There are many keypoint detection methods to choose from. Harris
corner detector and its derivatives are a basic solution; yet they have
a problem of not being invariant to scale changes. A break-through
invention in the field of feature detection was the invention of SIFT
(Scale Invariant Feature Transform) [11]. The method is able to pro-
duce large numbers of stable features, and also provides a way to
compute the feature descriptors, which are important for matching.
The main drawback of the method is its computational complexity.
Many authors tried to accelerate SIFT computation while preserv-
ing or improving its properties. SURF (Speeded-up Robust Features)
[12] managed to achieve better computational performance by us-
ing box filters to approximate LoG (Laplacians of Gaussians), and
by employing Haar wavelets in descriptor computation, but with a
price of loosing the rotational invariance. CenSurE detector (Center
Surround Extrema) [13] retains SURF advantages while approximat-
ing LoG by center-surround bi-level filters. ORB detector (Oriented
FAST and Rotated BRIEF) [14] claims to be an effective replacement of
SIFT, although it rather belongs to Harris family of detectors. Still, in
contrast to SIFT and SURF, it is not patented and can be used also in
commercial projects. The implementation is freely available as a part
of OpenCV project [15].
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4. Keypoint detection and matching

Both SIFT and ORB were tested on the SEM images and are pro-
vided as options in the stitching application. Their comparison is
included in the Results chapter. Even though SIFT generally outper-
formed ORB in quality of found keypoints and their matching, the
speed-up of ORB is so large that it deserves a consideration. Descrip-
tions of both methods follow in the next sections.

4.1 Scale Invariant Feature Transform overview

SIFT is a method that was invented and presented by David Lowe [11]
and it is patented by University of British Columbia. It consists of four
main stages:

1. Scale-space extrema detection,

2. Keypoint localization,

3. Orientation assignment,

4. Keypoint description.

Scale-space extrema detection In the first stage, the input image
I(x, y) is extended to the Gaussian, and the Difference of Gaussians
(DoG) pyramids. In particular, DoG serves as a good approximation
to the scale-normalized Laplacian, whose extrema are proven to be
stable and invariant across scales. Moreover, DoG (D(x, y, σ)) can be
computed from the Gaussian pyramid (L(x, y, σ)) by subtraction of
the nearby scales, separated by the constant factor k:

L(x, y, σ) = G(x, y, kσ) ∗ I(x, y),

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y),

= L(x, y, kσ)− L(x, y, σ),

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

.

The pyramid is composed of octaves and intervals. In computer
vision jargon, an octave refers to a set of images, which have the same
size, and differ by the blur level. The images inside an octave are
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4. Keypoint detection and matching

referred as intervals. Number of intervals per octave is one of the
parameters of SIFT detector. By setting k = 21/numberIntervals, the blur
level of an image doubles after each numberIntervals steps. An image
with double blur level starts a new octave; it can be downsampled to
quarter size while preserving the sampling accuracy to blur level ratio,
which reduces the computation time.

The keypoint candidates are detected as the minima and maxima in
the DoG pyramid by comparing each pixel value with its 26 neighbours
(8-connectivity in the local and adjacent scales).

Keypoint localization The second stage aims to improve the local-
ization of the extrema to achieve the sub-pixel precision, and to filter
them to discard unstable responses. Sub-pixel precision is achieved
by using Taylor expansion of D(x, y, σ) up to quadratic terms. The
extrema are located at the points where the first derivatives of D are
equal to 0. Unstable extrema are considered those having low contrast
and those being localized along edges. The first category instabilities
are removed by thresholding the function values at interpolated lo-
cations (with typical threshold value 0.003). For the second category
instabilities, the ratio of the principal curvatures at the extrema is
considered and only the extrema having the ratio small (typically <
10) are maintained.

Orientation assignment Assigning the orientation to the keypoints
ensures the property of rotational invariance. Gaussian smoothed
image at scale σ is selected, and the gradient magnitudes and orienta-
tions are computed for each pixel within a region around the keypoint.
The orientation histogram is composed of 36 bins, each representing
a different fraction of the full rotational angle (2π). The intensities
weighted by the gradient magnitudes are added to their bins based
on the gradient orientations. The peaks in the histogram are assigned
as the orientations of the keypoints. If there are more peaks within
the 80% of the highest peak, the keypoint is copied and added to the
set of keypoints repeatedly with different orientations.

Keypoint description In the final stage, the SIFT descriptor is com-
puted. Like before, a neighbourhood of a keypoint in the correspond-
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4. Keypoint detection and matching

ing Gaussian blurred image is considered, but with the fixed neigh-
bourhood of 16× 16 pixels. This neighbourhood is further split into
four 4× 4 regions and for each small region, a weighted orientation
histogram is computed similarly as in the previous stage. The four
histograms are concatenated, resulting in 128-bin feature vector. To
achieve position invariance of the features, it is recommended to nor-
malize the feature vector to unit length.

Ordinal descriptor Toews and Wells [16] suggest an alternative to
the standard SIFT descriptor, which according to their results im-
proves the matching precision. Ordinal descriptor can be obtained by
replacing each value in the standard SIFT descriptor by its rank:

ri = |xk : xk ≤ xi|.

No further normalization of the descriptor is performed. Instead,
the authors suggest using Spearman or Kendall correlation coefficients
to evaluate the goodness of match.

4.2 Oriented FAST and Rotated BRIEF

ORB incorporates and slightly improves the ideas from two other
works: FAST detector (Features from accelerated segment test) [17] and
BRIEF descriptor (Binary Robust Independent Elementary Features)
[18]. Like before, this section is not an exhaustive description of the
method, but rather an overview of the main concepts.

Ordinary FAST FAST detector has three main steps. In the first step,
a segment test is performed at a pixel. It considers a Bresenham circle
of 16 pixels to determine corner candidates. If either n contiguous
pixels are brighter than the central pixel’s intensity + t, or all of them
are darker than the central pixel’s intensity - t (t is a predefined inten-
sity threshold), the central pixel is considered a keypoint candidate.
In the next step, each circle pixel of each candidate is assigned into
three sets based on the relative brightness. A machine learning is em-
ployed to decide which candidates are corners (by minimizing the
entropy of the set of selected corners). The third step is non-maximal
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4. Keypoint detection and matching

suppression. From a pair of adjacent candidates, the one with a lower
sum of absolute differences between the center and the circle pixels is
discarded.

FAST improvements In ORB, a Harris corner measure is employed
to filter the corners to avoid edge responses. Also, FAST is separately
applied to each level of a scale space pyramid to obtain multi-scale
keypoints. The orientation is assigned by using the intensity centroid
method:

θ = arctan(∑
x,y

yI(x, y), ∑
x,y

xI(x, y)).

BRIEF with location Standard BRIEF descriptor is defined as a
binary string of length n, built by comparing the intensities in a
smoothed image patch p at n (x, y) location pairs:

fn(p) = ∑
1≤i≤n

2i−1τ(p, xi, yi),

τ(p, xi, yi) =





1 if p(xi) < p(yi),

0 otherwise.

Steered BRIEF can be obtained by using the same definition, but the
location pairs are rotated according to the patch rotation, which was
computed in the FAST improvement step. The authors of ORB suggest
discretizing the patch rotation angle to 30 values (step 2π

30 ) and to
create a lookup table of precomputed BRIEF patterns. The original
BRIEF has a property of large variance and mean ≈ 0.5. However, the
property is lost after applying rotation. To recover it, a greedy search
is performed to find the tests (coordinate pairs) satisfying the original
properties. The output of ORB are keypoint positions accompanied
with their binary descriptors.

4.3 Keypoint matching

Keypoint matching is no less important than the keypoint detector,
because false matches might spoil the estimate of the transform sig-
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4. Keypoint detection and matching

nificantly. Keypoint matching techniques are generally of two types:
they are either brute-force, testing all options to match a keypoint,
or they partition the search space and solve the matching as a com-
binatorial problem. Avoiding brute-force matching can reduce the
computation time, especially when matching larger sets. In this work,
the image overlaps are of rather small sizes and produce quite small
sets of features (at most∼ 1000 elements), so the brute-force matching
is sufficient. Moreover, the overhead building the search data struc-
tures has much larger impact on the computation time when matching
small sets.

A suitable metric must be selected to evaluate the goodness of
match between two features. A Hamming distance (count of different
bits) is used in case of ORB method. SIFT descriptors are evaluated
using the sum of square differences, both in case of standard and
ordinal descriptors. In case of ordinal descriptor, Spearman coefficient
evaluation of matches was also tested, but it resulted in higher number
of false matches than while using the sum of square distances.

Because naïve brute-force matching results in large amount of false
matches (see Figure 4.1a), Lowe [11] suggested considering two best
matches for each feature and keep the best match only if the second-
best is worse by at least 25% of the best match. The effect of Lowe’s
filtering is illustrated in Figure 4.1b.

To improve over Lowe’s approach, the fact that the distortion pro-
duces nearly uniform displacements is used. After applying the Lowe’s
filtering, the remaining correspondences are sorted into four sets based
on the slope of the line segment connecting the positions of the key-
points in the overlaps. Let K1 = (x1, y1) and K2 = (x2, y2) be the
positions of two keypoints and let ∆ = (dx, dy) = K1 − K2. Then the
four sets contain correspondences which:

1. have positive dx and positive dy,

2. have positive dx and negative dy,

3. have negative dx and positive dy,

4. have negative dx and negative dy.

Under the assumption that most of the correspondences are cor-
rect, the set that has the highest cardinality is preserved and the rest
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4. Keypoint detection and matching

correspondences are discarded. In different applications, or if a weaker
feature detector and descriptor were used, such assumption could
be incorrect, although for the purpose of this work it showed good
results. The effect is illustrated in Figure 4.1c.

The final step to remove the false matches is based on RANSAC
algorithm (Random Sample Consensus) [19]. In each iteration, the
algorithm randomly selects three pairs of matched keypoints and
computes a homography transforming the three keypoints from the
first to the second overlap. After applying the homography to the first
overlap, the keypoints that are transformed close to their pairs are
considered inliers. The set of inliers is recorded in each iteration. After
the last iteration, the set containing the most elements is returned as
the final set of correspondences. In this work, the number of iterations
for RANSAC filtering was set to 10000 and the distance threshold for
inliers was set to 10 pixels. The result is illustrated in Figure 4.1d.

Note that RANSAC should be able to cope with the result given
by the brute-force directly without the need of performing additional
filtering steps. However, the filtering steps enable to use less RANSAC
iterations while producing equally stable results.
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4. Keypoint detection and matching

(a) Naïve brute-force matching. (b) Lowe’s filtering.

(c) Highest cardinality set. (d) Filtering by RANSAC.

Figure 4.1: Different stages of keypoint matching performed in one of
the overlaps.
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5 Mathematical description

5.1 Coordinate systems and stitching

Recalling the aim of this work, the distortion correction transform and
a set of stage shift errors need to be estimated such that the panoramic
image, stitched together from the scanned tiles, does not contain any
visual defects.

The panorama stitching works with three different coordinate
systems:

1. tile local coordinate system,

2. global coordinate system,

3. coordinates of tiles.

The local coordinate system has its origin in the top-left corner of
the tile, with horizontal axis denoted x and the vertical axis denoted
y. The global distortion correction transform is applied to each tile
separately in its local coordinates.

The global coordinate system can be defined such that its origin
is located in the upper-left corner of the upper-left tile. Panorama
stitching is basically a transform converting the local tile coordinates
to the global coordinates.

Tile coordinates in the panorama are also important for stitching,
because they determine the shift size between the local and the global
coordinates of a tile. Each tile in assigned coordinates (r, c), where
r stands for the tile row and c for tile column. Tile coordinates are
illustrated in image 5.3.

5.2 The global distortion correction transform

The global distortion correction transform serves for correcting the
distortion generated by the optical system of SEM. It is designed such
that it respects the construction of the electron column of SEM and
the distortion types that emerge there. Recall that the main distortion
types are zoom error, non-orthogonality, and rotation error. The first
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5. Mathematical description

two are generated first and together, while the rotation error arises
later.

Denote N the operator causing the non-orthogonality, S the zoom-
ing error and R the rotation error. The order of non-orthogonality
and zoom error cannot be determined, but the order of the operations
mathematically matters because matrix multiplication is not commu-
tative. As a result, two models for the distortion transform have to be
considered:

T1 = R · (S ◦ N),

T2 = R · (N ◦ S).

The aim is to find the inverse transform:

T−1
1 = (N−1 ◦ S−1) · R−1,

T−1
2 = (S−1 ◦ N−1) · R−1.

S−1 and R−1 are simple scaling and rotation matrices of the forms:

S−1 =




sx 0 0

0 sy 0

0 0 1


 ,

R−1 =




cos(ϕ) −sin(ϕ) −cx · cos(ϕ) + cy · sin(ϕ) + cx

sin(ϕ) cos(ϕ) −cx · sin(ϕ)− cy · cos(ϕ) + cy

0 0 1


 .

Non-orthogonality has the form of rhomboidal skewness. The
situation is illustrated in the Figure 5.1. Suppose each point has non-
orthogonal coordinates (X′, Y′). To compute its coordinates (X, Y) in
the orthogonal coordinate space, the transform of the form

N−1 =




cos(ψ1) sin(ψ2) 0

sin(ψ1) cos(ψ2) 0

0 0 1




can be used.
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5. Mathematical description

X′

Y′

X′

X

Y

P

ψ3

ψ2

ψ1

ψ2

ψ3

ψ1

ψ2

ψ1

Figure 5.1: Non-orthogonality: The point P has non-orthogonal coor-
dinates (X′, Y′) and orthogonal coordinates (X, Y).

All the parameters can only take values from the limited intervals.
The angles for both rotation and non-orthogonality are expected to be
close to zero. As a result, sine and cosine functions can be substituted
for their approximations for small angles:

sin(ϕ) = ϕ,

cos(ϕ) = 1− 0.5ϕ2.
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5. Mathematical description

This yields:

N−1 =




1− 0.5ψ2
1 ψ2 0

ψ1 1− 0.5ψ2
2 0

0 0 1


 ,

R−1 =




1− 0.5ϕ2 −ϕ 0.5ϕ2cx + cy · ϕ

ϕ 1− 0.5ϕ2 0.5ϕ2cy − cx · ϕ

0 0 1


 .

The final global correction matrix has the form:

T−1
1 = (N−1 ◦ S−1) · R−1 =




A1 B1 C1

D1 E1 F1

0 0 1


 ,

A1 = sx(1− 0.5ϕ2 − 0.5ψ2
1 + 0.25ϕ2ψ2

1) + sy ϕψ2,

B1 = −sx(ϕ− 0.5ϕψ2
1) + sy(ψ2 − 0.5ψ2ϕ2),

C1 = 0.25sx ϕ(2cx ϕ + 4cy − cx ϕψ2
1 − 2cyψ2

1) + sy ϕψ2(0.5cy ϕ− cx),

D1 = sx(ψ1 − 0.5ϕ2ψ1) + sy(ϕ− 0.5ϕψ2
2),

E1 = −sx ϕψ1 + sy(1− 0.5ϕ2 − 0.5ψ2
2 + 0.25ϕ2ψ2

2),

F1 = sx ϕψ1(0.5cx ϕ + cy) + 0.25sy ϕ(2cy ϕ− 4cx − cyψ2
2 ϕ + 2cxψ2

2).

Or alternatively:

T−1
2 = (S−1 · N−1) ◦ R−1 =




A2 B2 C2

D2 E2 F2

0 0 1


 ,
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5. Mathematical description

A2 = sx(1− 0.5ϕ2 − 0.5ψ2
1 + 0.25ϕ2ψ2

1 + ϕψ2),

B2 = sx(−ϕ + 0.5ψ2
1 ϕ + ψ2 − 0.5ϕ2ψ2),

C2 = 0.25sx ϕ(2cx ϕ + 4cy − cx ϕψ2
1 − 2cyψ2

1 + 2cy ϕψ2 − 4cxψ2),

D2 = sy(ψ1 − 0.5ϕ2ψ1 + ϕ− 0.5ϕψ2
2),

E2 = sy(−ϕψ1 + 1− 0.5ϕ2 − 0.5ψ2
2 + 0.25ϕ2ψ2

2),

F2 = 0.25sy ϕ(2cx ϕψ1 + 4cyψ1 + 2cy ϕ− 4cx − cyψ2
2 ϕ + 2cxψ2

2).

The effect of application of the global correction transform to a
rectangular tile is illustrated in Figure 5.2. Scaling was omitted in the
illustration for the sake of simplicity.

Figure 5.2: The effect of global distortion on tile shape and size. The
original tile is in green colour, orange is after applying rotation and
blue after applying non-orthogonality.

Note the new size of a tile is defined as a distance between the
left-most and the right-most pixel, or the top-most and the bottom-
most pixel respectively. In Figure 5.2, it is denoted byCorTilewidth and
CorTileheight.
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5. Mathematical description

5.3 Stage shifts and stitching

Everytime a scan of a tile is complete, the specimen stage is given an
instruction to move to a new position. If no error (shifting nor global)
was introduced, the stage shift would be of size~σ. The size of shift is
equal to:

• (Tilewidth −Overlapwidth, 0) in case of a shift in a row,

• (0, Tileheight −Overlapheight) in case of a shift in a column.

Both values, the dimensions of a tile and the size of overlap, are
given in pixels in the metadata, which makes them sensitive to zoom
error. Recall that zoom error is introduced due to unequal step size
in both principal directions when rastering the tile with an electron
beam. The global distortion correction imposes scaling to cope with
the zoom error; however, scaling effectively adds or removes pixels of
a tile and so it alters the expected stage shift.

Moreover, the stage positioning is not precise. The variables denot-
ing shift errors between neighbouring positions in a row are denoted
~δ and are indexed the same way as the tile on the left,~ε denote shift
errors between neighbouring positions in a column and are indexed
like the tile on the top. For clarification, see Figure 5.3.

The definition of shifts allows establishing the transform from the
tiles’ local coordinate systems to the global coordinate system. For the
sake of simplicity, suppose that tiles in each dataset have uniform sizes
and that the size of stage shift between two neighbouring positions is
also uniform. Indeed, this assumption holds in all tested datasets and
it is presumed to be true in the vast majority of practical cases.

One of the ways to write the change of the local coordinate system
to the global coordinate system is

pglobalx
= T−1plocalx

+ (i− 1) · sxσrowx +
j

∑
l=0

δ0,lx
+

i

∑
l=0

ε l,jx
,

pglobaly = T−1plocaly + (j− 1) · syσcoly
+

j

∑
l=0

δ0,ly
+

i

∑
l=0

ε l,jy
; (5.1)

where pglobal_ and plocal_ are the global, respectively local coordinates
of a point in Tilei,j. The equations above imply considering Tile1,1 as
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5. Mathematical description

Figure 5.3: Panorama coordinate system.

the reference and aligning the rest of panorama towards it. Also, the
transform is not unique. Any sequence of shifts starting in the upper
left corner and ending at position of Tilei,j can be used.

5.4 The optimization cost function

The definition of the optimization cost function is straightforward
with respect to the desired result. In the correctly stitched panorama,
for each corresponding points P1, P2 it must hold that:
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5. Mathematical description

• ∀(P1, P2), P1 ∈ Tilei,j ∧ P2 ∈ Tilei,j+1 :

T−1P1 = T−1P2 + S−1~σrow +~δi,j,

• ∀(P1, P2), P1 ∈ Tilei,j ∧ P2 ∈ Tilei+1,j :

T−1P1 = T−1P2 + S−1~σcol +~εi,j.

Like before, T−1 stands for the global distortion correction trans-
form, S−1 denotes scaling part of T−1, ~σ is the expected table shift

between two neighbouring tiles and ~δi,j, ~εi,j are the stage shift errors.
For the optimization, consider the sum of squared distances be-

tween all corresponding points in the panorama (L2 norm). The aim
is to minimize the cost function C:

C =
rows

∑
i=1

cols−1

∑
j=1

∑
(P1,P2)∈RowCorri,j

∥∥∥T−1P1 − T−1P2 − S−1
~σrow −~δi,j

∥∥∥
2

2

+
rows−1

∑
i=1

cols

∑
j=1

∑
(P1,P2)∈ColCorri,j

∥∥∥T−1P1 − T−1P2 − S−1
~σcol −~εi,j

∥∥∥
2

2
.

In the equation above, RowCorri,j denotes the set of corresponding
points in row i between columns j and j + 1 (tiles Tilei,j and Tilei,j+1),
and ColCorri,j denotes the set of corresponding points in column j
between rows i and i + 1 (tiles Tilei,j and Tilei+1,j).

The inner formulas can be simplified. Let ∆ = P1 − P2. Then:

∥∥∥T−1P1 − T−1P2 − S−1
~σ− ~δi,j

∥∥∥
2

2
=
∥∥∥T−1∆− S−1

~σ− ~δi,j

∥∥∥
2

2

=

∥∥∥∥∥∥∥∥

A∆x + B∆y − sxσx − δijx

D∆x + E∆y − syσy − δijy

0

∥∥∥∥∥∥∥∥

2

2

=
(

A∆x + B∆y − sxσx − δijx

)2
+
(

D∆x + E∆y − syσy − δijy

)2
.
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The expanded form of the cost function is:

C =
rows

∑
i=1

cols−1

∑
j=1

∑
∆=P1−P2

(P1,P2)∈RowCorri,j

((A∆x − B∆y − sxσrowx − δijx
)2

+(D∆x + E∆y − syσrowy − δijy
)2)

+
rows−1

∑
i=1

cols

∑
j=1

∑
∆=P1−P2

(P1,P2)∈ColCorri,j

((A∆x − B∆y − sxσcolx
− εijx

)2

+(D∆x + E∆y − syσcoly − εijy
)2).

The column shift is expected to be zero (σrowy = 0) for each pair of
neigbhouring tiles in a column, respectively the row shift should be 0
(σcolx

= 0) for a pair of keypoints in the neighbouring tiles in a row.
By substitution it yields:

C =
rows

∑
i=1

cols−1

∑
j=1

∑
∆=P1−P2

(P1,P2)∈RowCorri,j

((A∆x − B∆y − sxσrowx − δijx
)2

+(D∆x + E∆y − δijy
)2)

+
rows−1

∑
i=1

cols

∑
j=1

∑
∆=P1−P2

(P1,P2)∈ColCorri,j

((A∆x − B∆y − εijx
)2

+(D∆x + E∆y − syσcoly − εijy
)2)

(5.2)

The above formula can be further expanded to a form suitable for
implementation:
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C =
rows

∑
i=1

cols−1

∑
j=1


 ∑

∆=P1−P2
(P1,P2)∈RowCorri,j

∆2
x



(

A2 + D2
)
− 2


 ∑

∆=P1−P2
(P1,P2)∈RowCorri,j

∆x




·
(

Asxσrowx + Aδi,jx
+ Dδi,jy

)
+ 2


 ∑

∆=P1−P2
(P1,P2)∈RowCorri,j

∆x∆y


 (AB + DE)

− 2


 ∑

∆=P1−P2
(P1,P2)∈RowCorri,j

∆y



(

Bsxσrowx + Bδi,jx
+ Eδi,jy

)
+


 ∑

∆=P1−P2
(P1,P2)∈RowCorri,j

∆2
y




·
(

B2 + E2
)
+ |RowCorri,j|

(
s2

xσ2
rowx

+ 2sxσrowx δi,jx
+ δ2

i,jx
+ δ2

i,jy

)

+
rows−1

∑
i=1

cols

∑
j=1


 ∑

∆=P1−P2
(P1,P2)∈ColCorri,j

∆2
x



(

A2 + D2
)
− 2


 ∑

∆=P1−P2
(P1,P2)∈ColCorri,j

∆x




·
(

Aεi,jx
+ Dsyσcoly + Dεi,jy

)
+ 2


 ∑

∆=P1−P2
(P1,P2)∈ColCorri,j

∆x∆y


 (AB + DE)

− 2


 ∑

∆=P1−P2
(P1,P2)∈ColCorri,j

∆y



(

Bεi,jx
+ Esyσcoly + Eεi,jy

)
+


 ∑

∆=P1−P2
(P1,P2)∈ColCorri,j

∆2
y




·
(

B2 + E2
)
+ |ColCorri,j|

(
s2

yσ2
coly

+ 2syσcoly εi,jy
+ ε2

i,jx
+ ε2

i,jy

)
.

The main advantage of this form is the possibility to store just
six numbers for each overlap: the sums of ∆x2, ∆x, ∆xy, ∆y, ∆y2 and
number of correspondences, compute them in advance and not iterate
through all the correspondences in each iteration of the optimization
method.
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5.5 The optimization constraints

The minimization of the cost function must be performed with respect
to a set of constraints, which should reflecting the physical limits of
the microscope. Expected intervals for the distortion parameters were
given by an expert, yet they need to be confirmed or corrected by the
outcomes of the optimization.

Let Errop denote the size of error of operation op. Let Ẽrrop be the
expert’s estimate of the size of the error. The optimization has to be
performed subject to the following constraints:

1. zoom error should be up to 1%:

• sx ∈ [1.0− Errzoom, 1.0 + Errzoom],

• sy ∈ [1.0− Errzoom, 1.0 + Errzoom], Ẽrrzoom ≈ 0.01,

2. rotation error should be up to 1◦:

• ϕ ∈ [−Errrotation, Errrotation], Ẽrrrotation ≈ 1◦,

3. non-orthogonality error should be up to 1◦:

• ψ1 ∈ [−Errnonortho, Errnonortho],

• ψ2 ∈ [−Errnonortho, Errnonortho],

• ψ1 + ψ2 ∈ [−Errnonortho, Errnonortho], Ẽrrnonortho ≈ 1◦,

4. stage positioning error should be random and more precise
when performing close shifts:

• ∀ δijx : δijx ∈ [−Errshi f t, Errshi f t],

• ∀ δijy : δijy ∈ [−Errshi f t, Errshi f t],
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• ∀ εijx : εijx ∈ [−Errshi f t, Errshi f t],

• ∀ εijy : εijy ∈ [−Errshi f t, Errshi f t], Ẽrrshi f t−near ≈ 1µm,

Ẽrrshi f t− f ar ≈ 5µm,

5. Panorama size should not deviate from the expected size more
than given by Errshi f t− f ar.

The constraints on the panorama size require more explanation. The
expected panorama size is effectively a size, which a panorama would
have if no correction was applied and tiles were aligned at overlaps:

ExpPanoramawidth = Tilewidth + (cols− 1)σrowx ,

ExpPanoramaheight = Tileheight + (rows− 1)σcoly .

Define (Panoramawidth, Panoramaheight) as the size of a stitched
panorama after applying corrections. Panoramawidth corresponds to
the distance between the left-most and the right-most pixel of the
resulting image, Panoramaheight is the distance between the top-most
and bottom-most pixel. Panorama size constraints are then:

ExpPanoramawidth − Errshi f t− f ar ≤ Panoramawidth

≤ ExpPanoramawidth + Errshi f t− f ar,

ExpPanoramaheight − Errshi f t− f ar ≤ Panoramaheight

≤ ExpPanoramaheight + Errshi f t− f ar.

ExpPanoramawidth and ExpPanoramaheight are computed from the
dataset and do not consider the scaling error. It might seem problem-
atic, however, if Errshi f t− f ar is large enough, it can be neglected from
the formula.

Because the expected bounds on the distortion parameters are
rough, some of the actual distortion parameters can be larger than the
expert’s estimates. Therefore, the optimization method should have

all Errop set to Errop = Ẽrrop + dop, for some dop large enough.
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5.6 Properties and considerations regarding the

optimization cost function

The optimization cost function has the following properties:

• it is a polynomial of highest total degree 10,

• it is nonnegative,

• it is a sum of squares,

• it is a function of 5 + 2 · (rows − 1)(cols) + 2(rows)(cols − 1)
variables.

Most of the optimization constraints are linear in the parameters
of the distortion model. The only exception are the constraints on
panorama size. Their analytic expression is not provided, but the
size of panorama depends on the size of each tile, which depends on
the global distortion correction transform, which is polynomial in its
parameters.

Also, note that the global distortion correction transform is usually
not sufficient to perfectly align both coordinates of corresponding
keypoints. Moreover, if allowed stage shift error is large, there is an
ambiguity concerning what part of misalignment should be corrected
by the shift and what part should be corrected by the global distortion
correction transform. The situation is illustrated in Figure 5.4.

Figure 5.4b shows the maximal alignment, that can be achieved by
global distortion correction. Any portion of distortion not corrected by
the global distortion correction must be corrected by one of the stage
shift correction parameters. In the global distortion correction matrix,
the keypoint alignment is achieved mostly thanks to the rotation and
non-orthogonality. Scaling mostly controls the size of the resulting

panorama, but in the model T−1
1 it also weights the effects of rotation

and non-orthogonality.
The optimization cost function does not distinguish between the

global distortion correction and the stage shifts. From the mathemati-
cal point of view, it is valid to assign values to all stage shift parameters
and set the global distortion correction transform to identity, if it does
not break the optimization constraints. To avoid such results and in
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(a) Misaligned tiles. (b) Global distortion correction.

(c) Stage shift correction applied
after global correction.

(d) Correction by shift directly.

Figure 5.4: Illustration of different outcomes when preferring different
types of distortion correction. Red line segments connect matched
keypoints.

order to maximize the effect of global distortion correction, a two-step
optimization can be considered. In the first step, the optimization
method can consider only the global distortion correction parameters
and all δi,jy and εi,jx . The optimal solution for such setup corresponds
to the situation, where all stage shifts were performed in a row or
in a column and did not generate errors in the other coordinate (for
example, if stage moved in a row, no distortion was generated in a
column). In the second step, the parameters found by the first step
are fixed and the optimal assignment for parameters δi,jy and εi,jx is
searched.

The optimization cost function sums corresponding points’ dis-
tances for all overlaps in the panorama. The correctness of the keypoint
matching should be ensured by RANSAC, but if there are little corre-
spondences at the input of RANSAC filtering step, it can still output
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a wrong matching. As a result, the optimization method might esti-
mate the distortion parameters incorrectly. To avoid this behaviour,
only the overlaps with more matches shall be considered. A threshold
should depend also on the nature of the image data and quality of
the keypoint detection, but generally a threshold value of at least 6
– 10 correspondences per overlap seems reasonable. Note that vari-
ables cx and cy denoting the centre of the rotation, which act in both
global distortion models, got cancelled in the optimization cost func-
tion. However, it can be presumed that the centre of rotation is always
placed in the centre of the tile. There is no physical interpretation for
its displacement.

5.7 Considerations regarding stitching

If some of the overlaps are not considered in the optimization, the
associated shift parameters cannot be determined and the stitching
algorithm must be able to adapt to such situations. Moreover, even if
all shift errors were estimated but some of them were not exact, the
stitching based on the equation 5.1 would not be the best option. Each
inexact parameter creates a visible misalignment in the panorama and
the errors can accumulate by additions. Hence, it is desired to use as
few stage shift error variables as possible. This can be achieved by
the algorithm described in Algorithm 1, based on breadth-first-search
strategy.

In Algorithm 1, shi f tCor is a pair of values in which each tile stores
its stage shift correction, so that it can be properly aligned to the rest
of the panorama. Tile B is reachable from tile A if the shift between
the tiles A and B was determined (the correspondences in the overlap
between tiles A and B were considered in the optimization). The last
if statement serves for cases where no overlaps of a tile were used in
the optimization and therefore the tile is unreachable.
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Algorithm 1 Stitching based on BFS

1: function Stitching

2: Q← emptyQueue
3: (Tilerows/2,cols/2).shi f tCor← (0, 0)
4: enqueue(Q, Tilerows/2,cols/2)
5: while Q not empty do
6: Tile← dequeue(Q)
7: Insert every pixel:
8: for each pixel with coordinates Plocal do
9: Compute the global coordinates: Pglobal = T−1Plocal +(

Tile.coords−

(
1

1

))
· S

(
σrowx

σcoly

)
+ Tile.shi f tCor

10:

11: Set the intensity at Pglobal

12: end
13: if there is a noninserted reachable tile above then
14: (Tileabove).shi f tCor← Tile.shi f tCor− εTileabove.coods

15: enqueue(Q, Tileabove)

16: if there is a noninserted reachable tile below then
17: (Tilebelow).shi f tCor← Tile.shi f tCor + εTile.coods

18: enqueue(Q, Tilebelow)

19: if there is a noninserted reachable tile on the left then
20: (Tilele f t).shi f tCor← Tile.shi f tCor− δTilele f t.coods

21: enqueue(Q, Tilele f t)

22: if there is a noninserted reachable tile on the right then
23: (Tileright).shi f tCor← Tile.shi f tCor− δTile.coods

24: enqueue(Q, Tileright)

25: end
26: if not all tiles were inserted then
27: Find a non-inserted tile neighbouring with an inserted tile
28: Insert the tile, its shi f tCor = neighbour’s shi f tCor + shift

estimated using phase correlation
29: Add the tile’s neighbours to Q like in the while loop
30: Repeat the While loop
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6 Optimization

Now that the model is defined and the stitching algorithm was pre-
sented, the only missing step is the minimization of the cost function.
The aim is to find its global minimum. The choice of the optimization
method depends on the properties of the problem. Generally, the prob-
lem is considered to be non-convex. To show whether the objective
function is convex or not, two theorems could be used:

1. Sum of convex functions over a convex domain is again convex,

2. A function is convex if and only if its Hessian matrix (square
matrix of its partial derivatives) is positive semidefinite.

Each of the terms inside the sums could be processed individually,
producing a Hessian matrices of dimensions m×m, which is too diffi-
cult to handle even for a small panoramas (for example, a panorama
of 5× 5 tiles has m = 85 variables).

Non-convex functions might have several local minima and local
optimization methods a could converge to a non-optimal solution.
The following two sections describe the methods suited to this kind
of problem: the first one is a deterministic method based on convex
relaxations, using semi-definite programming. However, the size of
the problem was found to be too large to be handled by a common
computer. The second method described here is simulated annealing,
a probabilistic method. Yet, the probabilistic methods are not guaran-
teed to find the exact solution to the problem. The local optimization
methods are therefore employed after simulated annealing to improve
the probabilistic guess.

6.1 Optimization via semi-definite programming

relaxations

Polynomial optimization is a field that currently receives much of
attention from the researchers [20]. When optimizing a polynomial
using any of the common methods, the objective function’s property
of being polynomial is overlooked. In many cases, standard methods
either fail to reach the global optimum, or are not deterministic. It
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is desired to use the specific properties of the polynomial to design
better optimization methods to achieve reliable convergence.

One of the most promising ideas in the polynomial optimization
is the relaxation to a hierarchy of semi-definite programs. If given a
polynomial defined over a compact semi-algebraic set and the polyno-
mial is positive, the minimum of the polynomial is the largest positive
number that can be subtracted from the polynomial such that the poly-
nomial stays non-negative. One of the certificates of positivity of the
polynomial is for example being a sum of squares (SOS) polynomial.
If the polynomial problem is defined up to a set of polynomial con-
straints, it can be expressed for example by using Putinar’s Positivstel-
lensatz. Then, checking whether a polynomial is SOS is equivalent to
solving a semi-definite program.

Because the field of polynomial optimization is very large and
much depends complex, further information is omitted in this these.
More details can be found in the literature, the most relevant are those
by Parrilo [21] and Lasserre [22]. However, available software tools
enable users to use the method without further understanding of the
principle.

The optimization of the cost function (Equation 5.2) was tried by
using C++ version of ncpol2sdpa package [23]. It enables the user to
specify the polynomial optimization problem using symbolic vari-
ables and generates an input for semi-definite programming solver,
sdpa [24]. However, the relaxation to a semi-definite program failed
to compute, most likely because of the size of the problem. Size of the

matrix for semi-definite programming is (n+d
d )× (n+d

d ) [25]. A small
panorama of 5× 5 tiles requires finding 85 parameters (or 45 if en-
forcing zeros for each δy and εx), which means the matrix would have

dimensions (90
5 ) ≈ 44 · 106 × 44 · 106 (or (50

5 ) ≈ 2 · 106 × 2 · 106).

6.2 Simulated annealing

Simulated annealing is one of the standard probabilistic optimiza-
tion methods well-suited for constrained global optimization. It was
presented by Kirkpatrick et al. in 1983 [26]. The method is inspired
by annealing in metallurgy, where materials are heated so that their
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atoms can overcome energetic barriers and get to more stable states
after cooling. The algorithm is given in pseudo-code in Algorithm 2.

Algorithm 2 Simulated annealing general scheme.

1: function Simulated annealing(temp, coolRate, init)
2: current← init
3: currentEnergy← evaluate(current)
4: best← current
5: bestEnergy← currentEnergy
6: while temp > 1 do
7: new← generate new state(current)
8: energy← evaluate(new)
9: if energy < bestEnergy then

10: best← new
11: bestEnergy← energy

12: if Probability(current→ new) > Random(0,1) then
13: current← new
14: currentEnergy← energy

15: temp← temp · (1.0− coolRate))

16: return best

Algorithm 3 Metropolis acceptance probability.

1: function Probability(current→ new)
2: if energy < currentEnergy then
3: return 1.0
4: else
5: return exp

(
currentEnergy−energy

temp

)

Algorithm 2 has three inputs: the initial temperature of the system,
denoted by temp, the cooling rate (coolRate) and the initial solution, de-
noted init. In each iteration, a new solution is generated and evaluated.
The acceptance of the new solution is determined by the Metropolis
criterion which is given in Algorithm 3.

In Algorithm 2, evaluate function evaluates the cost of the solution
(equation 5.2) and Random function generates a random real number
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from the given interval. Function generate new state alters given
state, trying to improve the cost of the solution, while respecting the
constraints defined for the optimization.

The algorithm setup for minimization of the cost function was the
following:

• init was always set to no transform (sx = sy = 1, other variables
were set to 0),

• temp was set 500000,

• coolRate was set to 0.003.

Generation of new solution (function generate new state) in each
iteration altered one of the following:

• rotation angle ϕ,

• non-orthogonality parameters ψ1 and ψ2,

• horizontal magnification sx; if changing sx violated any of the
constraints on the panorama width, corresponding δi,jx

were
regenerated,

• vertical magnification sy; if changing sy violated any of the con-
straints on the panorama height, corresponding εi,jy

were regen-

erated,

• a vector of δi,jx
; if all εi,jx

were enforced to zeros, it meant setting
δi,jx

in all rows at once, otherwise the generation was performed
in a certain row i, modifying also corresponding εi,jx

to preserve
the correctness,

• a vector of εi,jy
; if all δi,jy

were enforced to zeros, it meant setting

εi,jy
in all columns at once, otherwise the generation was per-

formed in a certain column j, modifying also corresponding δi,jy

to preserve the correctness.

The choice from above-defined options was random, as well as the
values assigned to all the variables. Nonetheless, it was ensured that
the assignment conforms all the constraints.
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6.3 Local methods

Local methods were employed to improve the potentially imprecise so-
lution given by the simulated annealing. There are many local methods
available for the given type of problem; together they can be referred
as the non-linear programming methods. The two main categories of
algorithms are penalty methods and interior-point methods.

NLopt optimization library [27] was selected for the local optimiza-
tion. A committee of 4 methods was employed:

• Constrained Optimization by Linear Approximations [28],

• Sequential Quadratic Programming [29],

• Method of Moving Asymptotes [30],

• Augmented Lagrangian algorithm [31].

General ideas of the methods are described in referenced articles;
however, according to the author of NLopt, the implementation is not
exact and was often modified or improved. Because of that, details on
the local methods are omitted in this text.

The above methods shared the same setup: the optimization was
set to stop when the relative change in all optimization parameters
was smaller than 1 · 10−15, or if the local optimization took longer than
120 seconds. The constraint on execution time was imposed to speed-
up the optimization process. The local optimization performed with
some the datasets took several hours, while it is disputable whether
new solutions were noticeably improving.

The result of simulated annealing was used as a starting point for
all of the methods, giving four candidates for the best solution. Out
of these, the one with the best quality (the lowest value of the cost
function) was selected as the final result.

In case of two-step optimization, the search of parameters was
restricted in the first step to consider all variables except all δi,jy

and

εi,jx
. In the second step, all four methods were re-run starting with

the previously found best solution, restricting the search only to all
δi,jy

and εi,jx
variables. Similarly as before, the one with the best cost

was selected as a result.
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7 Experiments and results

There were six datasets available for testing the previously defined
method. They differed in many properties, such as number of tiles,
sizes of tiles, magnification level, overlap size and the acquisition de-
vice they were captured by. The dataset characteristics are summarized
in Table 7.1.

Dataset number 1 2 3 4 5 6

Content Mexican pesos Chip Metalurgy I Metalurgy II Scobs I Scobs II

Rows 8 4 18 11 6 5
Dataset size

Columns 8 5 19 7 6 5

Width 768 768 1024 768 768 768
Tile size [px]

Height 768 768 1024 576 768 768

Overlap size In row 115 (15 %) 115 (15 %) 256 (25 %) 76 (10 %) 38 (5 %) 38 (5 %)

[px] (%) In col. 115 (15 %) 115 (15 %) 256 (25 %) 57 (10 %) 38 (5 %) 38 (5 %)

Pixel size [µm] 3.397363 0.368164 0.78125 6.1074 2.6042 3.8728

Magnification 86.694 800 346.00 46.197 108.34 72.852

SEM device name VEGA TS 5136LM LYRA3 GMU VEGA3 LMU MIRA3 XMU

Table 7.1: Properties of datasets.

Several experiments were conducted on top of the datasets. First,
the suitability of ORB and SIFT keypoints was compared in order
to decide for the right keypoint detection method for the following
experiments.

Then, image panoramas were stitched together without applying
any correction and with respect to shifts between tiles found by the
phase correlation method. The quality measures of these results were
computed and serve as a reference for comparison of the results ob-
tained by the proposed method.

In the third step, the optimization was performed in the datasets
several times. In the first trial, the expert-given bounds on the pa-
rameters were enforced and the results were recorded. In the next
optimization runs, the bounds were loosened in order to find real
size of error of each distortion parameter and in order to compose
panoramas that were as seamless as possible (recall that no blending

is performed at the seams). The quality of models T−1
1 and T−1

2 is com-
pared, as well as the outcomes of one-step and two-step optimization
processes. Further experiments involved normality and randomness
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testing of the best solutions, checking stability of the solution by split-
ting datasets into subsets and comparing the partial outcomes, and
trying to determine minimal subset of tiles for which the partial out-
come outputs the same optical distortion correction matrix as for the
whole panorama.

The quality of the solutions were evaluated by using Structural
Symmetry Index (SSIM) [32]. The similarity between two signals x
and y is defined as

SSIM(x, y) =
(2µxµy + C1)(2σx,y + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

where µ denotes the mean value, σ denotes standard deviation and
C1, C2 are small constants to avoid computational instabilities. Wang et
al. suggest computing SSIM values locally for each pixel, by consider-
ing a window of 11× 11 pixels. Moreover, the intensities in the window
should be weighted by Gaussian with σ = 1.5 and normalized to unit
sum. The per-pixel SSIMs are then averaged to give the final result,
which is denoted as MSSIM (mean SSIM). Both SSIM and MSSIM were
computed in the overlapping regions of the panorama (by comparing
each overlapping part of a panorama with corresponding overlap in
a tile). Per overlap SSIM and MSSIM values were averaged for each
overlap to give the final SSIM and MSSIM values for the resulting
panoramas. Besides similarity, other qualities used for comparison of
the results were the cost function normalized by the number of used
correspondences and distances between the keypoints in the stitched
panorama. While SSIM and MSSIM evaluate the visual quality of
the result, solution cost per correspondence and distances between
keypoints tell more about suitability of the model and quality of the
optimization with respect to (possibly imprecise) positions of matched
keypoints.

Normality of stage shift errors was tested using Shapiro-Wilk nor-
mality test [33] and visually by comparing the empirical distribution
of stage shifts to the normal distribution by using Q-Q plots (Quantile-
Quantile plots). Randomness of stage shift errors was tested using
Kolmogorov-Smirnov test [34], by comparing the empirical distri-
bution function to distribution function of normal distribution with
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µ = 0. The significance level for both Shapiro-Wilk and Komogorov-
Smirnov tests was set to 5%.

The source codes for loading the data, optimization of the parame-
ters and stitching the panoramas were implemented in C++ program-
ming language and are provided in the electronic attachment of the
thesis. The most of image processing tasks were implemented by us-
ing standard OpenCV library [15], including ORB keypoint detection.
The implementation of SIFT was based on the code by Robb Hess
[35], which was rewritten to feature modern OpenCV function calls
instead of old C language interface, and to avoid memory reallocation
of internal structures in consecutive calls on images of the same size.
NLopt [27] library was used for the local optimization.

Randomness and normality tests were done in post-processing by
using statistical software R. Stitched panoramas in full resolution are
also a part of the electronic attachment.

7.1 Suitability of SIFT and ORB keypoints

SIFT and ORB were selected as potentially appropriate methods for
keypoint detection. Table 7.2 lists average numbers of matched key-
points per overlap as results of the proposed keypoint matching
pipeline. The computation time was measured in milliseconds on
a computer with Intel i3 2.53GHz CPU and 3 GB RAM.

SIFT SIFT-rank ORB

Avg. matches Avg. comp. Avg. matches Avg. comp. Avg. matches Avg. comp.Dataset

per overlap time per overlap time per overlap time

1 13.79 343.81 13.35 381.95 3 10.83

2 43.23 458.26 38.45 514.516 29.87 10.48

3 395.97 1542.46 397.219 1763.38 133.71 36.06

4 38.19 222.61 36.21 249.71 4.99 3.72

5 13.38 103.8 12.45 115.05 0 1.9

6 11.05 87.85 10.05 96.15 0 1.4

Table 7.2: Comparison of keypoint detection methods.

The computation of ORB took only a small fraction of SIFT compu-
tation time. However, ORB failed to compute any keypoints in datasets
with small overlaps (dataset 5, 6), and only a small number of corre-
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spondences were obtained in datasets 1 and 4. Generally, matching of
ORB features provided sufficient number of matches in datasets fea-
turing larger overlaps and featuring higher contrast objects (datasets 2,
3). On the other hand, results show the robustness of SIFT keypoints –
the counts of matches were high enough in all the datasets, regard-
less the nature of image data or overlap size. Surprisingly, results
of Toews and Wells [16] were not confirmed in the given datasets.
Ranked SIFT descriptor resulted in better matching only in dataset 3.
As a consequence, the next experiments was performed by using SIFT
keypoint detection with standard descriptor, except for the dataset
3, where ORB was used. In practice, it is recommended to use ORB
where possible because of the computation time.

7.2 Stitching by simple tile alignment

Each panorama was stitched together without applying any correction
to the tiles (further referred as no-correction panoramas) , and with ap-
plication of shifts between the overlapping regions found by the phase
correlation method (further referred as shifts-only panoramas). Both
are intended to serve for the comparison of the panoramas obtained
by applying the proposed method. No-correction panoramas display
the initial state and its qualities that are aimed to be improved. The
panoramas obtained by correcting the misalignments only by using
the shifts have very high visual quality, due to the fact that the tiles
were captured on a flat surface, and that the shift vectors between
the matched keypoints are uniform (similar if not equal distance and
direction). The panoramas obtained by the proposed distortion cor-
rection method aim to reach at least similar visual qualities as the
panoramas obtained only by considering shifts.

Tables 7.3 and 7.4 provides the quality measures of no-correction
panoramas and shifts-only panoramas for each of the datasets.
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Cost per Median keypoint
Dataset SSIM MSSIM

correspondence distance [µm]

1 0.6061 0.9803 1755.67 142.39

2 0.6596 0.9289 156.37 4.63

3 0.9254 0.9881 84.038 6.18

4 0.7504 0.9461 148.81 64.59

5 0.8140 0.9780 18.48 8.58

6 0.7844 0.9783 20.64 14.37

Table 7.3: Quality of no-correction panoramas.

Cost per Median keypoint
Dataset SSIM MSSIM

correspondence distance [µm]

1 0.8386 0.9945 190.06 12.20

2 0.9291 0.9852 10.22 0.41

3 0.9741 0.9965 3.07 0.96

4 0.8626 0.9720 43.85 6.20

5 0.9003 0.9873 7.51 2.14

6 0.8612 0.9871 5.77 3.93

Table 7.4: Quality of shifts-only panoramas.

7.3 The optimization results

7.3.1 Results obtained by enforcing the expected bounds

The purpose of this experiment was to check whether the expected
intervals for each of the distortion parameters were sufficient to find a
visually satisfying result. The opposite was found true, as can be seen
in Table 7.5.

Table 7.5 shows that the visual quality of all panoramas is worse
compared to shifts-only panoramas. It can be most notably seen in
dataset 1, where the SSIM value is close to SSIM in case of its no-
correction panorama. The main reason of this result is the fact that
dataset 1 was captured at small magnification, therefore having large
pixel size. 5µm stage shift bound corresponds to 1.47 pixels, which is
not enough to correctly align the tiles. On the other hand, datasets
2 and dataset 3 can be considered of relatively good quality, even
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Cost per Median keypoint
Dataset Model SSIM MSSIM

correspondence distance [µm]

1 T−1
2 0.6583 0.9828 1605.02 136.94

2 T−1
1 0.9248 0.9839 9.64 0.44

3 T−1
1 0.9624 0.9942 13.53 1.53

4 T−1
1 0.8378 0.9599 74.59 17.03

5 T−1
2 0.8779 0.9707 9.42 3.06

6 T−1
2 0.8190 0.9811 7.47 6.16

Table 7.5: Quality of solutions obtained by enforcing the expected
bounds.

though in case of dataset 3, large uniform areas compensate for small
misaligned blobs, so there is still room for improvement. Regarding
distances between keypoints, they can be improved as well if larger
bounds for the parameters are allowed.

7.3.2 Best results by using alternative bounds

The results presented in Table 7.6 were obtained by setting the bounds
so that: Errscale = 5%, Errrotation = 1.2◦, Errnonortho = 1.2◦. The shift
errors Errshi f t were set individually for each dataset with respect the
initial distances of matched keypoints.Table 7.7 presents the parame-
ters of the best solutions.

Cost per Median keypoint
Dataset Model SSIM MSSIM

correspondence distance [µm]

1 T−1
1 0.8235 0.9888 20.25 10.82

2 T−1
1 0.9218 0.9833 9.32 0.44

3 T−1
1 0.9640 0.9944 10.24 2.16

4 T−1
1 0.8584 0.9614 37.07 8.87

5 T−1
2 0.8779 0.9707 9.42 3.06

6 T−1
2 0.8366 0.9825 6.50 4.52

Table 7.6: Quality of solutions obtained by alternative bounds.
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Global transform parameters Medians of stage shift errors [µm]
Dataset Model

sx sy ϕ ψ1 ψ2 δi,jx
δi,jy

εi,jx
εi,jx

1 T−1
1 0.950 0.952 −0.282◦ 0.761◦ −0.618◦ 144.37 0.587 -1.46 124.58

2 T−1
1 0.994 0.993 0.891◦ 0.240◦ 0.373◦ -1.23 -0.01 0 -2.23

3 T−1
1 0.992 0.990 0.839◦ −1.145◦ 0.704◦ 6.02 0 0 5.62

4 T−1
1 1.003 1.003 0.694◦ 0.015◦ −0.181◦ -25.09 0.21 1.95 -16.12

5 T−1
2 0.998 0.997 −0.068◦ −0.162◦ 0.054◦ 3.72 0 0 5

6 T−1
2 0.996 0.997 −0.345◦ 0.059◦ −0.207◦ 6.39 3.96 0.60 5.17

Table 7.7: Parameters of the best solutions.

According to the results, the expected intervals for the errors were
sufficient in case of rotation for all datasets and in scaling and non-
orthogonality for the majority of datasets. The scaling error in dataset
1 was up to 5%. Even though sx value lies at the border of allowed
interval, no better solution in terms of SSIM and MSSIM was found
by allowing larger scale error. Non-orthogonality expectations were
broken in case of dataset 3.

It is interesting to see that the best solution for dataset 5 is the
intermediate solution in two-step optimization, enforcing all δi,jy

and

εi,jx
to 0. However, because of the small size of the overlaps, keypoint

detection and matching did not perform very well and it affect the
stability of the solutions.

7.3.3 Comparison of model T−1
1 vs. T−1

2

Two models were defined due to the issue of ordering non-orthogonality
and scaling transform in the global distortion. The optimization re-
sults showed both models performed very well, with only marginal
differences in terms of resulting SSIM and MSSIM. However, the pa-
rameters of the distortions are different. Two examples are provided

for demonstration: Table 7.8 compares the best T−1
1 and T−1

2 solutions
found for dataset 1, Table 7.9 compares the two best solutions found
for dataset 2.
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Global transform parameters Medians of stage shift errors [µm]
Dataset

sx sy ϕ ψ1 ψ2 δi,jx
δi,jy

εi,jx
εi,jx

T−1
1 0.950 0.952 −0.282◦ 0.760◦ −0.618◦ 144.37 0.587 −1.46 124.58

T−1
2 0.950 0.958 0.15◦ 0.327◦ −0.187◦ 144.42 0.413 −1.46 126.78

Table 7.8: Dataset 1: Parameters of best solutions.

Derived global transform matrices:

T−1
1 =




0.950 −0.006 −1.811

0.008 0.952 1.781

0 0 1


 ,

T−1
2 =




0.950 −0.006 0.960

0.008 0.958 −0.957

0 0 1


 .

Global distortion parameters Shift errors [µm]
Solution

sx sy ϕ ψ1 ψ2 minimum median mean maximum

T−1
1 0.994 0.993 0.891◦ 0.240◦ 0.373◦ -1.23 -0.01 0 -2.23

T−1
2 0.999 0.998 0.216◦ 0.914◦ −0.293◦ −1.26 −0.02 0.01 −2.22

Table 7.9: Parameters of best solutions.

Derived global transform matrices:

T−1
1 =




0.994 −0.009 5.944

0.020 0.993 −5.860

0 0 1


 ,

T−1
2 =




0.998 −0.009 1.457

0.020 0.998 −1.421

0 0 1


 .

In both presented cases, the global distortion matrices are the same
except for the translation terms. This result was quite expected – there
is only one reality and both models try to adapt to it. Still, the majority
of the best solutions (in terms of SSIM and MSSIM) per dataset were

found by optimizing model T−1
1 .
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7.3.4 One-step vs. two-step optimization

Two-step optimization was suggested in order to increase the impact of
the global distortion correction transform and to reduce the influence
of shifts. It was found that the results given by the two-step optimiza-
tion process exhibited better visual qualities according to SSIM and
MSSIM in general.

The difference between one-step and two-step solutions for dataset
2 is demonstrated in Table 7.10. Direct optimization solution has
SSIM= 0.9017 and MSSIM= 0.97918, whereas two-step optimization
solution has SSIM= 0.9218 and MSSIM= 0.9834.

Global distortion parameters Shift errors [µm]
Solution

sx sy ϕ ψ1 ψ2 minimum median mean maximum

One-step 0.973 1.01 1.200◦ −0.123◦ −1.200◦ −1.11 −0.22 −7.84 −2.23

Two-step 0.994 0.993 0.891◦ 0.240◦ 0.373◦ -1.23 -0.01 0 -2.23

Table 7.10: Comparison of T−1
1 solutions obtained by one-step and

two-step optimization.

Derived global transform matrices:

T−1
1one−step

=




0.973 −0.04 8.078

0.019 1.010 −8.057

0 0 1


 ,

T−1
1two−step

=




0.994 −0.009 5.944

0.020 0.993 −5.860

0 0 1


 .

It can be seen that the parameters and bounds are different and so
are the global distortion correction matrices. One-step optimization
result almost seems like if the global distortion parameters were chosen
arbitrarily and stage shift errors were assigned to do the alignments.
Note the median value for εi,jx

. Not only it is out of the expected error
interval, but also it is much larger than the corresponding median
value in two-step solution. Out of the best solutions presented in
previous sections, only the solution for dataset 6 was found by using
one-step optimization strategy. As a consequence, it is recommended
to always use two-step strategy.
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7.3.5 Normality of stage shift errors

The stage shift errors were expected to be random and small. The
results were separately evaluated for each type of stage shifts (δi,jx

, δi,jy
,

εi,jx
, εi,jy

). According to the Shapiro-Wilk normality test, the normality

was rejected in most of the cases on the significance level 5%. Such
results are marked by ✗ in Table 7.11. The shifts there whose normality
was not rejected are marked by X. Visual comparison of the empirical
and normal distribution is provided in Q-Q plots, which are available
in the appendix.

δi,jx
δi,jy

εi,jx
εi,jy

All together

1 ✗ X X ✗ ✗

2 ✗ X ✗ ✗ ✗

3 ✗ X ✗ ✗ ✗

4 ✗ X ✗ ✗ ✗

5 X – – ✗ ✗

6 ✗ X X ✗ ✗

Table 7.11: Normality of stage shift errors.

Randomness was performed by using Kolmogorov-Smirnov test and
it was rejected for all the test-cases. It can be concluded that the stage
shift errors are not random, nor normal.

7.4 Stability of solutions

The aim of this test was to verify whether the global distortion correc-
tion matrix estimated for data captured at the same device with the
same settings are equal. The test was conducted on 2 largest datasets
(datasets 3 and dataset 4). The datasets were divided into four quar-
ters and the distortion correction method was run for each quarter
separately. The result are illustrated in Table 7.12 for dataset 3 and in
Table 7.13 for dataset 4.

The resulting parameters for the subsets of datasets are not equal.
Nonetheless, the result is pretty interesting as in both cases there are
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sx sy ϕ ψ1 ψ2

1 0.987 0.998 −0.365◦ −0.247◦ −0.180◦

2 0.989 0.989 0.520◦ −0.796◦ 0.361◦

3 0.987 0.987 0.543◦ −0.811◦ 0.396◦

4 0.990 0.988 0.644◦ −0.899◦ 0.489◦

Table 7.12: Global distortion estimated for 4 distinct non-overlapping
subsets of the dataset 3.

sx sy ϕ ψ1 ψ2

1 0.998 0.998 1.1◦ −0.377◦ 0.233◦

2 0.998 1.005 1.1◦ −0.404◦ 0.219◦

3 0.995 0.995 −0.15◦ 0.852◦ −1.1◦

4 0.999 0.995 −0.14◦ 0.853◦ −1.1◦

Table 7.13: Global distortion estimated for 4 distinct non-overlapping
subsets of the dataset 4.

presented two similar results. In case of dataset 3, the first quarter
converged to a different minima than the other three quarters and
similarly, in case of dataset 4 there were 2 distinct solutions for two
pairs of dataset quarters. The results show that there are more local
minima and given the initial estimate of the minima obtained by the
simulated annealing method, the local methods can succeed or fail to
find the best solution. By comparing the quality of the partial solutions,
for example in case of dataset 3, the solution cost per correspondence
is 3.19 for the first solution and 3.04 for the fourth solution, so there
is only a small difference between the two minima. Also, SSIMs and
MSSIMs are close for both cases (0.977, resp. 0.996 in case of the first
and 0.978, resp. 0.996 in case of the fourth solution for dataset 3).

7.5 Optical distortion estimation from a subset of tiles

It is interesting to see whether the global distortion correction trans-
form can be correctly estimated only by using a small subset of tiles.
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7. Experiments and results

The experiment was performed over dataset 2. Even though already
the first run for 2× 2 subset of tiles delivered almost exactly the same
global distortion parameters as in the previously demonstrated solu-
tion in Table 7.9, the consequent runs for subsets of tiles up to 3× 3
tiles delivered different solutions. Rather than concluding the origi-
nal question it can be claimed that the optimization cost function is
probably very flat and has many minima of the same cost. The best
solution does not have to be always returned from the method, thanks
to the probabilistic global optimization algorithm. Further research
can focus on trying different cost functions, that would for example
penalize the distortion correction by shift parameters in favour of in-
creasing the effect of the optical system distortion correction. Ideally,
the resulting cost functions would not require two-step optimization
and would be more steep.
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8 Discussion

8.1 Distortion parameters

The results confirm the expert’s constraints on global distortion pa-
rameters. The rotation was always found within the expected interval,
non-orthogonality and scaling errors were larger only in one case each.
The estimate on the distortion generated by specimen stage shifts was
found to be wrong. Even though some dataset could be seamlessly
assembled by using small-enough shift correction parameters, the
datasets captured in smaller magnification could not. The reason is
that there is always found some misalignment in pixels, but the size
of the pixel in micrometres is larger in case of small magnification. It
seems more reasonable to express the shift error bounds in the percent-
age of the real stage shift of the specimen stage. Moreover, the stage
shifts were shown to be systematic, the test for randomness rejected
the assumption and furthermore, the normality of shifts were also
rejected in the majority of cases. Further research concerning the stage
shifts is left to experts.

8.2 Precision of stitched panoramas

It was claimed that panoramas stitched by using the proposed method
should have higher metrological precision; however, the experimental
confirmation is missing in the Results section. Proper evaluation can
only be done by experimenting with datasets of image tiles containing
objects of known shape and size. Because no such datasets were avail-
able, metrological precision remains an open question to be answered
in the following work.

The only thing that can be commented regarding the metrological
precision is that the keypoint distances in all solutions were about 1
– 3 pixels. These are most probably the results of imprecise keypoint
localisations, but if these were correctly localised and matched, they
would generate metrological imprecisions. In terms of the absolute
error in micrometres, the measurements in highly magnified datasets
would be more precise compared to measurements in panoramas
captured at low magnification.
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8. Discussion

8.3 Note on quality evaluation

Quality of stitched panoramas was evaluated by SSIM and MSSIM.
SSIM is designed so that it evaluates luminance, contrast and structure
of the overlaps together. Because no attention was paid for example to
brightness compensation in the overlaps, a better evaluation technique
would be based on considering only the details in the images, such as
edges. A work presented by Qureshi et al. [36] distinguishes between
the geometric and photometric qualities of stitched panoramas. For
geometric quality evaluation, the authors propose computing SSIM
between the high-frequency components of a panorama and a tile in
32× 32 non-overlapping windows. The evaluation of the proposed
method by using Qureshi’s approach can be done in the consecutive
research.
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9 Conclusion

The thesis focused on the problem of estimating imaging distortion
generated in the optical system of Scanning Electron Microscopes,
and by imprecise specimen stage positioning. The global distortion
correction is dominated by rotation, scaling, and non-orthogonality.
The ambiguity concerning the order of scaling and non-orthogonality
led to definition of two global distortion models. The global distortion
parameters together with specimen stage positioning errors were esti-
mated by solving a constrained optimization problem. The optimiza-
tion cost function was defined as a sum of squared distances between
the pairs of corresponding keypoints, which were detected by using
SIFT or ORB feature detection methods in the overlapping regions of
the image tiles. Keypoint matching was performed by a brute-force
algorithm, with several filtering steps to avoid false matches.

The optimization was performed by Simulated Annealing, fol-
lowed by a committee of local non-linear programming methods to
ensure convergence to minima. Because the optimization of all vari-
ables together reduces the impact of the global correction, a two-step
optimization was proposed to maximize the effect of the global trans-
form on the alignment.

The optimization constraints were preliminarily given by an expert
so that they reflected the physical limits of the acquisition device. How-
ever, the assumptions regarding maximal size of the errors needed to
be checked.

The experiments were performed on six datasets with different
properties. The quality of the solution was evaluated by using struc-
tural similarity index. It was found that the distortion model consider-
ing non-orthogonality prior to scaling (and rotation) performs better
on the given datasets, even though the difference is minor. The error
bounds on rotation error (max 1◦), non-orthogonality (max 1◦) and
scaling error (max 1%) were confirmed in majority of the datasets,
although both non-orthogonality and scaling constraints were broken
in one case. It was found that the stage shift errors are much larger
than expected in datasets captured in low magnification. Moreover,
the normality and randomness assumptions were statistically rejected.
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9. Conclusion

There are plenty of open questions for further research. Firstly,
stage shift errors need to be investigated to explain why they are
not normal and random. Also, they need a better quantification, for
example respecting the zoom level at which the datasets were captured.
Secondly, the optimization cost function is not ideal, as it contains
possibly many local minima of similar cost. Other optimization cost
functions, and other optimization algorithms can be used in order to
improve the stability of the results. Finally, the metrological precision
should be tested and evaluated on appropriate datasets.
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A Stitched panoramas

Figure A.1: Dataset 1
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A. Stitched panoramas

Figure A.2: Dataset 2
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A. Stitched panoramas

Figure A.3: Dataset 3
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A. Stitched panoramas

Figure A.4: Dataset 4
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A. Stitched panoramas

Figure A.5: Dataset 5
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A. Stitched panoramas

Figure A.6: Dataset 6
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B Q-Q plots for stage shift errors

Figure B.1 presents the Q-Q plots for comparison between the stage
shift errors estimation in the best solution for each overlap and theo-
retical normal distribution. The closer the dots follow the diagonal of
each graph, the higher chance they have the are normal. A separate
Q-Q plot is available for each of δi,jx

, δi,jy
, εi,jx

and εi,jx
.

(a) Q-Q plot for the best solution for dataset 1.

(b) Q-Q plot for the best solution for dataset 2.

(c) Q-Q plot for the best solution for dataset 3.
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B. Q-Q plots for stage shift errors

(d) Q-Q plot for the best solution for dataset 4.

(e) Q-Q plot for the best solution for dataset 5.

(f) Q-Q plot for the best solution for dataset 6.

Figure B.1: Comparison of empirical distribution of stage shift posi-
tioning errors and normal distribution in Q-Q plots.
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C Brief description of the application frame-

work

The implementation is decomposed into several classes:

• DataSet: the main class for manipulation with datasets,

• FileNameFormat: the class for parsing and composition of tiles’
filenames,

• Keypoint: a structure encapsulating the position of a keypoint
in a tile and in an overlap,

• Matcher: static class providing the methods for keypoint match-
ing,

• NLoptOptimization: the class encapsulating NLopt library
calls, suited for optimization of StitchingOptimalityProblem,

• OptimizationProblem: an interface for optimization problems
solvable for example by SimulatedAnnealing class,

• Solution: a solution to the stitching problem,

• Stitcher: a static class proving the methods for panorama stitch-
ing and drawing of the correspondences on top of panoramas,

• StitchingOptimalityProblem: implements the optimization
problem, including evaluation of the cost function and genera-
tion of new solutions,

• TileData: image data and metadata of tiles.

Separate applications can be build on top of this framework. Please
find more information in the electronic attachment.
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