
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
Analysis of Vertica Database

Designer

MASTER'S THESIS

Bc. Martin Zbořil

Brno, spring 2017

Declaration

Hereby I declare that this thesis is my original authorial work, which I have
worked out by my own. All sources, references and literature used or ex-
cerpted during elaboration of this work are properly cited and listed in com-
plete reference to the due source.

Bc. Martin Zbořil

Advisor: doc. RNDr. Vlastislav Dohnal, Ph.D.

ii

Acknowledgement

I would like to thank my advisor doc. RNDr. Vlastislav Dohnal, Ph.D. for
many useful comments, valuable insights, recommendations, and his pa-
tience. I would also like to thank my family and Adéla Šrámková for sup-
porting me throughout writing this thesis.

I would like to express my gratitude to GoodData s.r.o. that enabled
me to be a part of the team and work on the thesis during my internship.
I would like to thank namely to Jan Soubusta, Mgr. Josef Pojsl and Ing.
Vladimír Vacula.

iii

Abstract

The major goal of this thesis is to analyze the Database Designer tool that op-
timizes physical schema in the Vertica database system. Database Designer
might be beneficial for Vertica users, but optimality of the tool must be un-
covered before its usage in any critical database environment, like pro-
duction servers of companies. In the theoretical part, the aim of the thesis
is to describe fundamentals of column-oriented database systems and Ver-
tica specifics. Furthermore, principles of relational database tuning with
the focus on Vertica is included in the thesis. The Database Designer analy-
sis was done in two ways. The first one included finding whether the tool
influences database availability. The second one included designing and im-
plementing a tool that targets suboptimal designs generated by Database
Designer. Based on the data measured by the implemented tool, bottlenecks
of Database Designer were found. This thesis is done in cooperation with
GoodData, s.r.o.

iv

Keywords

Column-oriented database system, Vertica, projection, Database Designer,
database availability, database tuning, testing tool

v

Contents

1 Introduction . 3
2 Column-oriented database system 5
3 Vertica . 10

3.1 Glossary . 10
3.2 Characteristics . 12

3.2.1 Projections . 13
3.2.2 Encoding . 16
3.2.3 Segmentation . 16
3.2.4 Partitioning . 17
3.2.5 High Availability . 17

3.3 Locks . 19
3.4 System tables . 19

4 Database tuning . 21
4.1 General database tuning . 21
4.2 Database tuning in Vertica . 23

4.2.1 Query monitoring . 25
4.3 Database Designer . 28

4.3.1 Functions of tool . 28
4.3.2 Designing step . 30

5 DBPerfComp tool . 32
5.1 Test goal . 32
5.2 Tool design . 33
5.3 Output . 41
5.4 Documentation . 42
5.5 Directory layout . 48

6 Analysis . 49
6.1 TPC-H model . 49
6.2 Hardware and software . 50
6.3 Database Designer's influence on database objects 51

6.3.1 Tables location . 52
6.3.2 TPC-H queries, Database Designer and different cat-

alog size . 54
6.3.3 Steps of designing process 54
6.3.4 Different catalog size 57

7 Data evaluation . 63
7.1 Test setting . 63
7.2 Results . 65

1

CONTENTS

7.2.1 Cluster 1 . 65
7.2.2 Cluster 2 . 73

7.3 Query 5 . 74
7.4 Projection definition . 76
7.5 Query plan . 78
7.6 Database operations . 80
7.7 Manual optimization . 83
7.8 Results summary . 84

8 Conclusion . 86
A Lock modes . 91
B Parameters of main function of Database Designer 92
C Output tables of DBPerfComp . 93

C.1 Table – monitoring of query runs 93
C.2 Main table – processed and measured data 94
C.3 Table – queries order in query workloads 95
C.4 Logs . 96

D Query for investigation of Database Designer influence on database

objects . 97
E Locks – CRUD operations . 98
F TPC-H queries created for the experiments 99

F.1 Query 23 . 99
F.2 Query 24 . 100

G List of query workloads with timeout 101
H Query workloads – ordered by ratio 102
I Cluster2 – results . 104
J Query for investigation of a query plan 108
K Simplified Query 5 . 110
L Query for investigation of query operations 111
M Bug report . 112

2

1 Introduction

Processing of large volumes of data plays an important role in data ware-
houses and other systems for data analytics. Due to fast-growing volumes
of data, column-oriented database systems have been gaining more impor-
tance in data analytics then before. S. G. Yaman wrote about fundamentals
of column-oriented database systems in his paper Introduction to Column-

Oriented Database Systems[1] as follows:

"In a column-store database, each column is stored contigu-

ously on a separate location on a disk. The values stored

in the columns are densely packed and compressed to im-

prove read efficiency. Column-store databases perform faster

than traditional database systems, since they are more I/O ef-

ficient for read-only queries. In that manner, column-scanners

are different from row-scanners, since column-scanners trans-

late value position information into disk locations and they

combine and reconstruct the tuples from different columns.

Column-store systems include column-oriented physical

design, and it is observed that due to superior CPU and cache

performance (in addition to reduced I/O), they can perform

better compared to commercial and open source row-store

databases on benchmarks. Additionally, they include opti-

mizations for direct operation on compressed data."

The roots of these column-oriented database systems reach the 1970s,
but its expansion is dated to the 2000s when MonetDB and C-Store
database systems were introduced to the public.[1] According to the DB-

Engines portal[2], only one column-oriented database system was po-
sitioned in the top 10 most popular database engines in April 2017,
and it was MonetDB. Next examples of column-oriented database systems
are Vertica, Sybase IQ, Greenplum and InfiniDB as commercial column-
oriented database systems; C-Store and LucidDB as open-source column-
oriented database systems.[3]

The first goal of this thesis is to study column-oriented database system
with the special focus on Vertica. The second goal is to analyze performance
and behavior of Vertica’s Database Designer.

3

1. INTRODUCTION

The thesis is organized as follows. Chapter 2 is dedicated to principles
of column-oriented database systems and Chapter 3 to specifics of Vertica
database system. The tuning principles of relational databases and Vertica
are described in Chapter 4, but only as a background, not being the fo-
cus of this thesis. Chapter 5 introduces the implemented DBPerfComp tool
as the main contribution of this thesis; the goal, design, and documentation
of that tool are included in this chapter. Chapter 6 presents measurements
performed in order to analyze the influence of Database Designer on other
objects in a database, i.e. whether Database Designer affects database avail-
ability. Data measured by the implemented tool is evaluated in Chapter 7;
this evaluation involves detection of Database Designer bottlenecks.

4

2 Column-oriented database system

This chapter introduces a database concept that differs from the traditional
one that stores data by rows. The concept, which is described in subsequent
pages, is called column-oriented database system.

This thesis focuses on the relational database system. The rela-
tional model tranforms a business into a set of tables, their attributes,
types of attributes and constraints. An example of the relational model
is shown in Figure 2.1. In principle, there are two approaches of stor-
ing relational data in tables – row-oriented and column-oriented storage.
Each of them has its advantages and disadvantages, which is the subject
of the following sections.

Figure 2.1: An example of relational model.

STORING TABLES OF A RELATIONAL MODEL

The difference between storing tables by columns and by rows is shown
in Figure 2.2 where the tickstore table includes a sample of attributes and en-
tities. As it is shown in the upper part of the figure, column-oriented
database systems store tables by columns where one column represents
one table attribute. This approach is illustrated with vertical bars. The bot-
tom part of the figure shows row-oriented database systems. This tradi-
tional approach stores tables by rows where one row represents all informa-
tion stored about one entity. In general, records are stored one-by-one con-
secutively in one file, which is exemplified by horizontal bars.

To present merits of individual organizations, query evaluation ef-
ficiency must be tackled. Figure 2.2 includes SELECT query that takes
average price for the specific symbol and date. Column-oriented database
system works only with attributes that are specified the query, i.e. SYM-

BOL, DATE and PRICE attributes that have the bars with green lines in the
figure. The bars with red lines are skipped since the attributes are not used
in the query. This approach is possible because each attribute is stored
in a separate file. At the row-oriented database system, the query must

5

2. COLUMN-ORIENTED DATABASE SYSTEM

Figure 2.2: Comparison of column-oriented and row-oriented database
systems.[4]

go through all attributes, since all attributes of each record are stored
in one file. This situation is pictured with the green lines of the horizontal
bars. The majority of attributes may not be interesting for the query;
nevertheless, the query must go through them as well.[5]

ADVANTAGES AND DISADVANTAGES

Column-oriented database systems are very efficient in read-only
queries (preferably selecting few attributes), aggregation operations
and updating a particular column of entities. The reason was already
described; queries use only columns that are needed, so no redundant
data is processed. Moreover, aggregation functions (e.g. AVG, SUM,
COUNT, MAX) need incomparably fewer resources, since they operate
only on particular columns. For that reason, column-oriented database
systems are used for analytic purposes and are frequent in data ware-
houses and Online Analytical Processing (OLAP). A column-oriented ap-
proach is efficient mainly when a vast number of rows and a small number
of columns are processed. Examples of queries efficient in column-oriented
database systems are:

6

2. COLUMN-ORIENTED DATABASE SYSTEM

• SELECT name FROM customer WHERE country = 'France'

• SELECT test_number, COUNT(response_time), AVG(response_time),

SUM(response_time), MIN(response_time), MAX(response_time) FROM

measurements WHERE date = '04-05-2017' GROUP BY test_number

• SELECT order_status, COUNT(*), SUM(totalprice) FROM orders WHE-

RE order_priority = 1 GROUP BY order_status

Row-oriented database systems are efficient in a case of retrieving
data from more than a few columns, because they read complete rows.
They are also more efficient in inserting, updating of many columns
and deleting entities, since they work only with particular rows. For ex-
ample, inserting of one entity generally requires only one disk access,
since the entity is stored only in one file. In contrast, insertion of one en-
tity into column-oriented database systems requires the same amount
of disk access as the number of columns in the used table. In general,
row-oriented database systems are more efficient when a small number
of rows and a vast number of columns are processed. Row-oriented
database systems are frequently used in Online Transaction Processing
(OLTP) systems and are not optimal for analytical (OLAP) systems.[6]
Examples of queries efficient in row-oriented database systems are:

• INSERT INTO region (regionkey, name, comment) VALUES ('1', 'EU-

ROPE', 'many countries')

• UPDATE course SET name = 'Column-oriented database systems', credits

= 3, completion = 'exam' WHERE id = 21

• DELETE FROM student WHERE uco = '13579'

PERFORMANCE OPTIMIZATION

Late materialization and compression are the most important ap-
proaches for performance optimization in column-oriented database
systems. In contrast to row-oriented database systems where all at-
tributes of one row are stored together, column-oriented database sys-
tems store particular attributes of entities in many different places.
Thus, many files with columns are opened during execution of any query
in column-oriented database systems. For that reason, a vast number
of data in the form of retrieved tuples may be stored in memory,
and database operations are performed on this data then; this is a case

7

2. COLUMN-ORIENTED DATABASE SYSTEM

of naive column-oriented database systems. Late materialization is used
in recent column-oriented database systems to improve a performance
of data retrieving. A principle of late materialization is that data is kept
in columns as long as possible, and queries operate directly on the columns
then. For this purpose, position lists are often used for particular opera-
tions of given query. Position lists may have many forms; in the next ex-
ample, a position list has a form of a sequence of bits (1/0). A query
that may be used for showing exemplary usage of these lists looks like:

SELECT name, phone_number

FROM customer

WHERE year_birthday = 1992 AND city = ’Brno’ AND sex = ’Male’

For each predicate, one position list is created on an appropriate column.
If the n-th record of the used column passes the predicate, the n-th item
of the position list is set to 1; otherwise, the value of the n-th item in the po-
sition list is set to 0. Then, all position lists are intersected, and one fi-
nal position list is created. In the end, this final position list is applied
on the columns used for selection, and appropriate data is retrieved. The ex-
ample of position lists for mentioned query is in Figure 2.3.

Figure 2.3: An example of position lists.

Compression of data in particular columns is one of the greatest
advantages of column-oriented database systems, since compression
has a significant impact on performance. Often, all records of one particu-
lar attribute have a similar form (e.g. Male/Female) or other relationship
(e.g. a sequence). In that case, this attribute is a perfect candidate
for compression in column-oriented database systems. Each column

8

2. COLUMN-ORIENTED DATABASE SYSTEM

may also be compressed with a different method; the most significant
compression for performance optimization is on attributes that are used
in table ordering, i.e. in ORDER BY clause. Performance improvement
mainly involves reduction of spent time in Input/Output operations.
For columns of two possible values only, Run-length encoding is an appro-
priate method, since it stores only a number of occurrences of each value.[7]

SUMMARY

Benefits of column-oriented database systems are fulfilled mainly
for read-only queries, since they directly reach columns that partic-
ipate in the query and do not operate on redundant data. Espe-
cially, column-oriented database systems are useful when a vast num-
ber of rows and a small number of columns are processed. Row-oriented
database systems are efficient mainly for inserting, updating and deleting
operations, since they work with one entity as with one file. Row-oriented
database systems are useful mainly when a small number of rows and a vast
number of columns are processed.

9

3 Vertica

This chapter introduces the Vertica database system in detail. It starts with
definitions of basic terminology and continues with the description of Ver-
tica is Sections 3.2 – 3.4.

3.1 Glossary

This section provides an overview of basic definitions of terms used
in this thesis where are further explained in appropriate context. Besides,
it is assumed that the reader is familiar with SQL language and principles
of relational database systems.

CARDINALITY

Number of unique values in an attribute. Vertica defines three different
types of cardinality[8]1:

• high cardinality – high number of unique values, close to the number
of records/rows, e.g. identifiers,

• normal cardinality – fewer unique values, e.g. first names,

• low cardinality – low number of unique values, e.g. sex.

CLUSTER TOPOLOGY

An object that maintains information about cluster topology – topology
of particular nodes in Vertica database management system (DBMS).2

CATALOG RESPONSE TIME

Time of catalog response during checking query syntax. The check occurs
after submitting of any query.

DATABASE CATALOG

Database catalog[8] is considered as a set of particular files in a database
that hold metadata about database objects; for example tables, entities, pro-
jections, users and constraints.3

1. In Vertica documentation, chapter Cardinality
2. Taken from an email conversation with Vertica support (Savyuk, Pavel).
3. In Vertica documentation, chapter Catalog and Data Files

10

3. VERTICA

DESIGN

Set of projections definition for given tables.

DESIGNING PROCESS

The process of Database Designer tool that includes especially (1) adding
query workload and tables, (2) setting goals and objectives, and (3) cre-
ating new projections. The process starts with the initial design proposal
and ends with a design dropping.

DESIGNING STEP

Execution of Database Designer function DESIGNER_RUN_POPULA-

TE_DESIGN_AND_DEPLOY that directly creates new projections.

GLOBAL CATALOG

An object that maintains meta-data across all nodes in Vertica DBMS.[9]

LOCAL CATALOG

An object that maintains meta-data that refers to a local node in Vertica
DBMS.[9]

LOGICAL AND PHYSICAL SCHEMA

Logical schema[8] of a database is defined as a set of tables, whereas
physical schema of a database is defined as a set of projections.4

RESPONSE TIME

Duration of query execution that begins with query call and ends with re-
turning query result.

SCHEMA

The term schema refers to a namespace in database where tables and pro-
jections are situated. Vertica enables users to create own schemata too.

4. In Vertica documentation, chapter Schema

11

3. VERTICA

3.2 Characteristics

Vertica is the only one database system that is both fully column-oriented
and massive parallel processing (MPP). "Fully column-oriented" means
that Vertica does not use features of row-oriented database system like
indexes and use only features typical for column-oriented database sys-
tems.5 MPP signifies that Vertica operates across multiple nodes simulta-
neously. Furthermore, it means that Vertica provides no single point of fail-
ure6, and that resource scaling is rather horizontal in the form of adding
new nodes.[10]

Vertica was built on the open-source project named C-Store in 2005
by Michael Stonebraker who was also one of the founders of the C-Store
project. The C-Store project is described in detail in [11]. In 2011, Vertica
was bought by Hewlett-Packard.[12] To April 2017, the current version
of Vertica is 8.0.1 and was released in December 2016.[13]

This chapter provides an introduction to Vertica database system
and its significant features. Precise descriptions of particular features
are defined in [12], [14] and [15], and in the official documentation of Vertica
[8].

Vertica is designed, as well as all column-oriented database systems,
for analytic purposes. It means that transactional workloads, like data in-
sertion and modification, are not efficient in column-oriented database sys-
tems in comparison to row-oriented database systems.[12] Vertica develop-
ment is described in [12] as follows:

"Vertica was written entirely from scratch with the following

exceptions, which are based on the PostgreSQL (...) implemen-

tation:

1. The SQL parser, semantic analyzer, and standard SQL

rewrites.

2. Early versions of the standard client libraries, such

as JDBC and ODBC and the command line interface.

All other components were custom written from the ground

up. While this choice required significant engineering effort

and delayed the initial introduction of Vertica to the market,

it means Vertica is positioned to take full advantage of its ar-

chitecture."

5. Taken from an email conversation with Vertica support (Savyuk, Pavel).
6. Shared-nothing architecture

12

3. VERTICA

3.2.1 Projections

In Vertica, projections represent physical schema of database
and are one of its most characteristic features. In the same way, as in row-
oriented database systems, a logical schema is represented by tables.
Nevertheless, tables in Vertica do not include data; it is stored actually
in projections. Each projection consists of a subset of table columns;
it means that projections do not have to contain all columns of given tables.
Tables may include an unlimited number of projections; however, each
table needs to include at least one so-called superprojection that is described
further on page 15. Benefits of multiple projections include higher query
evaluation performance, since particular projections may be optimized
for a specific query workload. For that purpose, particular projections
of one table may be ordered and segmented by different columns.
Moreover, columns of any table may have different encoding across all pro-
jections. On the other hand, multiple projections may also negatively affect
database performance, since each additional projection means new duplic-
ity in database. These duplicities cause that more storage is used and more
resources are required for operations that change the content of tables,
since all projections must be consistent.[12]

The example of the table with three projections is shown in Fig-
ure 3.1. The table defines the logical schema, and the projections store
data. Each projection is ordered in a different way; moreover, the cus-

tomer_projection3 projection contains only two columns. The particular pro-
jections might be optimized for these queries:

• customer_projection1:

SELECT c1, c2, c3 FROM customer_table WHERE c1 = 721

• customer_projection2:

SELECT c2, c1, c3 FROM customer_table WHERE c2 = True

AND c1 > 50 ORDER BY c2

• customer_projection3:

SELECT c3, SUM(c1) FROM customer_table GROUP BY c3

13

3. VERTICA

Figure 3.1: Principle of projections in Vertica.[16]

The command to create a projection with relevance to the table in Figure
3.1 is shown below:

CREATE PROJECTION customer_projection1

(C1 ENCODING AUTO,

C2 ENCODING DELTAVAL,

C3 ENCODING RLE)

AS

SELECT C1, C2, C3

FROM customer_table

ORDER BY C1

Vertica supports several different types of projections that are listed
below[8, 16]7:

• Superprojection – Projection that contains all columns from logi-
cal schema of a given table. Every table must include at least
one superprojection to ensure availability of all data. Superprojec-
tion is automatically created with the initial data insertion to a ta-

7. In Vertica documentation, chapter Types of Projections

14

3. VERTICA

ble. When a new column is added to a table, the column is cre-
ated only in superprojections. The other projections remain un-
touched. Furthermore, superprojection is also used for copying data
into a new projection. No superprojection is specified in Figure 3.1,
but the projections customer_projection1 and customer_projection2 con-
tain all columns of tables customer_table, so they are actually super-
projections.

• Query-specific projection – Projection that is optimized for a specific
query workload and contains only needed columns.

• Buddy projection – Copy of an existing projection situated in a differ-
ent node to assure data availability. Buddy projections must be iden-
tical to the projection it originates.

• Live aggregate projection – Projection that includes data aggregated
from a source table8. It reduces aggregation operations on the source
table.

• Pre-join projection – Projection that is a result of the inner join

operation between two tables that are related with primary-
key and foreign-key constraints.

• Top-K projection – Projection that contains only top-k rows from re-
sults of given query.

• Projection with expressions – Values of any columns are calculated
from an anchor projection.

Vertica includes a built-in tool that designs new projections according
to an input query workload. This tool, which optimizes physical schema
of a database, is named Database Designer and is described in Section 4.3.

8. A source table for Live aggregate projection, Pre-join projection, Top-K projection and Projec-
tion with expressions is called Anchor table in Vertica.[8] – In Vertica documentation, chapter
Anchor Table

15

3. VERTICA

3.2.2 Encoding

Vertica uses many types of column encodings; examples of them are listed
below[8, 12]9:

• Auto – Default encoding that is automatically chosen by Vertica
in a case of an insufficient amount of representative data and in a case
of table creation if not specified otherwise.

• RLE (Run Lenght Encoding) – Sequences of identical values are en-
coded as pairs of values and a number of occurrences. RLE is ideal
for low cardinality and sorted columns.

• Delta Value – Values are stored as differences from the smallest
value in a data block. It is intended for many-valued and unsorted
columns.

• Compressed Delta Range – Values are stored as differences from a pre-
vious value. It is ideal for many-valued, numerical and sorted
columns.

• Block Dictionary – Values are stored in a dictionary and columns con-
tain only references to this dictionary. It is intended for few-valued
and unsorted columns.

3.2.3 Segmentation

Vertica provides two types of data distribution across the whole cluster,
data replication and segmentation. The first one, replication, keeps a copy
of given projection in each node of a cluster. The second one, segmenta-
tion, distributes data of given projection among particular nodes. It means
that cluster does not contain any copy of the data in different nodes
and so the data is available only on one node. Segmentation is deter-
mined with ... SEGMENTED BY expression ... clause in CREATE PROJEC-

TION definition. The expression statement is replaced with a segmentation
function and columns. Furthermore, columns used in that function should
have high cardinality and even value distribution to split data equally over
all nodes. The most common column used for segmentation is the pri-
mary key.[12] The example of segmentation is shown in Figure 3.2 where
the column with identification numbers is segmented between three nodes
equally with the usage of the function "(id - 1 mod 3) + 1".

9. In Vertica documentation, chapter Encoding-Type

16

3. VERTICA

Figure 3.2: Principle of data segmentation in Vertica.

3.2.4 Partitioning

Segmentation defines data distribution among all nodes in a cluster. More-
over, Vertica enables also data distribution within a single node. This ap-
proach is called partitioning[12] and separates disk structures into particular
logical regions. Partitioning is determined with ... PARTITION BY expres-

sion ... clause in CREATE PROJECTION definition. The first benefit of parti-
tioning is that query may be performed on different logical regions in par-
allel. The second benefit is that data may be partitioned by a specific pat-
tern. For example, data may be partitioned by month extracted from a date
column. Then each partition (logical part) contains data for one month
as it is shown in an example in Figure 3.3.

3.2.5 High Availability

In Vertica, high availability of data is ensured in a cluster with K-Safety
setup that indicates a number of replications of projections; these replica-
tions are called buddies. In a case of node failure, K-Safety ensures that data
is still available on another node. K-value determines a number of nodes
that may fail; possible values in Vertica are only 0, 1 and 2. Independently,
if a half or more nodes fail, database is stated as unsafe and is shut down.
The exemplary situation in a cluster with K-Safety 2 is shown in Figure
3.4. There, in spite of failures of Nodes 2 and 3, database is still running,
and all data is available. If Node 5 fails, despite the fact that all data is still
available, the database would be shut down, because a number of failed
nodes is higher than the half of all nodes. [8]10

10. In Vertica documentation, chapter K-Safety

17

3. VERTICA

Figure 3.3: Principle of data partitioning in Vertica. The data is partitioned
according to the column with months.

Figure 3.4: Exemplary usage of K-Safety with value 2.[8]

18

3. VERTICA

3.3 Locks

Vertica ensures concurrency and consistency of data with locks. This ap-
proach is essential since multiple users may access database simultane-
ously. Moreover, multiple transactions of one user may require the same
data. For that reason, Vertica must ensure that these transactions manipu-
late with consistent data.

Vertica includes two types of locks. Local catalog locks and global catalog

locks are examples of system locks. Locks on particular objects in database
(e.g. projections, tables) are parts of object locks. Besides, locks in Vertica are
defined with several modes that are described in Appendix A.[8, 12]11

3.4 System tables

Vertica provides system tables that gather information about system's re-
sources, background processes, workload, and performance. Furthermore,
system tables allow a user to perform more detail query profiling, data di-
agnosing and viewing historical data. Selected system tables used further
in this thesis are listed in Table 3.1. System tables are separated into three
schemata:

• v_catalog – Contains tables with information about objects resid-
ing in database; for example tables, projections, resource pools,
and users.

• v_monitor – Contains tables with information about the current sit-
uation in database; for example configuration parameters, locks
and memory usage.[17]

• v_internal – Contains tables with information about current events
in database; for example important system and user activities.
These system tables are called Data collectors and have prefix dc_.[8]12

Gathering information into system tables is automatically turned on.
The database administrator may change many setting of this gathering;
for example, they may change retention time of data in system tables
and maximum size of particular system tables.[17]

11. In Vertica documentation, chapter Locks
12. In Vertica documentation, chapter Data Collector

19

3. VERTICA

System tables Description

execution_engine_profiles
Provides profiling information about query
execution runs.

query_requests
Returns information about user-issued query
requests.

dc_requests_issued History of all SQL requests issued.
dc_requests_completed History of all SQL requests completed.
dc_resource_acquisitions History of all resource acquisitions.
dc_resource_releases History of all resource acquisition releases.
dc_lock_attempts History of lock attempts (resolved requests).
dc_lock_releases History of lock releases.
dc_explain_plans Explain plans.

Table 3.1: Selected system tables that are used in this thesis. Descriptions
of execution_engine_profiles and query_requests are taken from the official
documentation [8]. Descriptions of data collectors are taken from the sys-
tem table v_monitor.data_collector.

20

4 Database tuning

Here, we provide database tuning principles used in relational databases
that are also applicable in Vertica. Database tuning should not be skipped
since it may save a huge number of resources, and database may run much
faster.

4.1 General database tuning

This section provides an overview of general tuning principles in rela-
tional databases. Usage of indexes and its tuning have a great influence
on database performance. Nevertheless, column-oriented database systems
typically do not use indexes, and for that reason, tuning principles of in-
dexes are not described.

General principles of tuning in relational databases are described below
in the alphabetical order:

AGGREGATE MAINTENANCE

In a case of frequent execution of aggregation operations, creating auxiliary
tables with aggregated data helps increase database performance. Then, ag-
gregation functions are not performed repeatably, but the result is directly
read from the aggregated auxiliary table. This approach requires updates
of auxiliary tables with every update of primary tables. Thus, benefits
of tables with aggregated data must exceed additional costs of updating
data in that tables.[18]

DENORMALIZATION

Normalization of database is used in a designing process of a logical
schema, since it assures that data is stored into a correct table. If database
schema is normalized, redundancy of data is minimized, and many possi-
ble inconsistencies that may occur within a work with data are eliminated
as well. Moreover, tables should be controlled that they contain a minimum
of functional dependencies among their columns.[18, 19]

Normalization typically requires a database schema to fulfil the 3rd nor-
mal form. The normal forms are[19]:

• First Normal Form – Attributes contain only atomic values and no du-
plicated records (rows).

21

4. DATABASE TUNING

• Second Normal Form – All non-primary-key attributes depend
on the whole primary key. This normal form allows a transitive
dependency on the key.

• Third Normal Form – All non-primary-key attributes depend directly
on the primary key, i.e. attributes do not involve any transitive de-
pendency.

Denormalization is a reverse process of normalization; it violates con-
straints that assure normalization of tables. Denormalization may increase
performance only in specific situations when a table is rarely updated.
In that case, non-update queries are faster on denormalized tables, because
data is situated in fewer tables and the queries do not need to perform join
operations. For example, denormalization may be used for archiving data
since no update is expected on that data. [18]

ELIMINATION OF FOREIGN KEY CONSTRAINTS

Foreign key constraints negatively affect database performance, since
they must be controlled whenever data is modified or inserted. For the pur-
pose of better performance, the control of foreign keys constraints
may be moved to an application layer if that application allows it.[20]

EXPLAIN COMMAND

EXPLAIN command serves for monitoring of query execution. In this the-
sis, the monitoring with EXPLAIN command is described in Sec-
tion 4.2.1.[20]

HINTS

Hints in database queries may enforce specific operations during their
executions. They may positively affect query performance and provide
required behavior of database.[20]

MATERIALIZED VIEW

Materialized View, as well as the Aggregate Maintenance, servers for elim-
inating costs in a case of frequent queries. In general, materialized views
contain results of a specific query and also requires additional costs for up-
dating data.[18]

22

4. DATABASE TUNING

STATISTICS

Updated statistics of each column increase performance, since a database
has an overview of data distribution and may modify the strategy of eval-
uating a query from index scan to sequential when many rows match
the query predicate, for example.[20]

4.2 Database tuning in Vertica

Projections may be tuned in two different ways. In the first case, Vertica
enables using built-in tool that automatically designs projections on the ba-
sis of a query workload. This tool is described in Section 4.3. In the second
case, projections may be designed manually on the basis of optimization
rules and best practices that are described in the official documentation [8];
for example in chapters Optimizing Query Performance and Choosing Sort Or-

der: Best Practices. Principal optimizations are summarized in paragraphs
below.[8]1

CARDINALITY

The best practices recommend to include columns with low cardinality
early in the projection sort order, especially if the low-cardinality columns
are combined with RLE. In that case, a projection size is minimized,
and performance is optimized.

ENCODING

Examples of encoding were already presented in Section 3.2.2. Precise
usage for each encoding type is described in chapter Encoding-Type

in the official documentation [8].

EQUAL CARDINALITY

If two columns have the same cardinality, it is recommended to include
the column with a higher number of records earlier in the projection
sort order than the column with a lower amount of records.

1. In Vertica documentation, chapters Choosing Sort Order: Best Practices; and Optimizing
Query Performance

23

4. DATABASE TUNING

GROUP BY

Two types of GROUP BY operations are involved in Vertica:

• GROUP BY PIPELINED – Grouped columns are pre-sorted. No pre-
processing of data is performed. This type is more efficient
than Group by hash since it uses less memory and time.

• GROUP BY HASH – Grouped columns are not pre-sorted. For that
reason, pre-processing of data is required.

The performance of both types is similar when tables are small. Chapter
Optimizing Query Performance in the official documentations [8] involves
three additional conditions when Group by pipelined operation is per-
formed. One example of this condition is that Group by pipelined is used
when all columns from GROUP BY clause are present in the projection's
sort order.

IMPORTANT QUERIES

If any query is performed more frequently than the others, it is efficient
to optimize projections for this query (e.g. predicates, GROUP BY columns).

JOIN

Two types of joins are involved in Vertica:

• Merge join – Join columns are pre-sorted. No pre-processing of data
is performed. This type is more efficient than Hash join since it uses
less memory and time.

• Hash join – At least one column is not pre-sorted. An in-memory
hash table is created from the table with fewer records (inner ta-
ble). Then, records from hash table are matched with records from
a larger table. This type is not as efficient as Merge join since it needs
additional memory for creating that hash table.

The best practices recommend to include join columns into the first po-
sitions of sort orders of both tables. This may be done in the form of creating
new additional projections to the existing projections. Merge join is espe-
cially important when tables are so large that they cannot fit into memory.
In comparison, if both tables fit into memory, a time difference between
both joins is small.

24

4. DATABASE TUNING

PREDICATES

The best practices recommend to include columns that participate
in predicates early in the projection sort order, especially if the columns
are combined with low-cardinality. In that case, evaluation of predicate
is more efficient, since the column is sorted and the query operates only
on the defined part of that column.

SEGMENTATION

Resegmentation2 of data occurs when a query contains GROUP BY clause
and projections are not sorted according to the columns of this clause.
To avoid data pre-processing (resegmentation), Vertica recommends tod-
ninclude columns from segmentation in GROUP BY clause.

4.2.1 Query monitoring

Query monitoring is a necessary step for increasing query performance.
Vertica provides several possibilities of monitoring:

1. Query plan
2. Query profiling
3. System tables

QUERY PLAN

The term query plan is connected to the EXPLAIN command and its defini-
tion in the official documentation [8] in chapter Query Plans, is:

"A query plan is a sequence of step-like paths that the Ver-

tica cost-based query optimizer uses to execute queries.

Vertica can produce different query plans for a given

query. For each query plan, the query optimizer evaluates

the data to be queried: number of rows, column statistics

such as number of distinct values (cardinality), distribution

of data across nodes. It also evaluates available resources

such as CPUs and network topology, and other environment

factors. The query optimizer uses this information to develop

several potential plans. It then compares plans and chooses

one, generally the plan with the lowest cost."

2. "A process that Vertica performs automatically during query execution that distributes
the rows of an existing projection or intermediate relation evenly to each node in the cluster.
At the end of resegmentation, every row from the input relation is on exactly one node.." [8]
– In Vertica documentation, chapter Resegmentation

25

4. DATABASE TUNING

Query plan compares potential query paths according to costs
that are defined in the official documentation [8], chapter Query Plan Cost

Estimation as:

"The query optimizer chooses a query plan based on cost es-

timates. The query optimizer uses information from a number

of sources to develop potential plans and determine their rel-

ative costs. These include:

• Number of table rows;

• Column statistics, including: number of distinct values

(cardinality), minimum/maximum values, distribution

of values, and disk space usage;

• Access path that is likely to require fewest I/O opera-

tions, and lowest CPU, memory, and network usage;

• Available eligible projections;

• Join options: join types (merge versus hash joins), join or-

der;

• Query predicates;

• Data segmentation across cluster nodes."

The output of EXPLAIN command contains the most efficient query
plan for given query with estimated costs for each operation. The EXPLAIN
command is very useful for finding non-optimal steps of queries; for exam-
ple, it shows a precise order of operations, and tables that participate in par-
ticular joins. Costs in query plans are only estimated, so system tables must
be queried for precise values of used resources. An example of the query
plan is shown in Figure 4.1.

The verbose clause of EXPLAIN causes more detailed information about
resources to be output. Exemplary operator from EXPLAIN verbose com-
mand with used resources and their costs is shown below[22]:

GROUPBY HASH (SORT OUTPUT) (GLOBAL RESEGMENT GROUPS) (LO-
CAL RESEGMENT GROUPS) [Cost: 2662115.000000, Rows: 15000000.000000
Disk(B): 2400000000.000000 CPU(B): 2280000000.000000 Memory(B): Network(B):
4440000000.000000 Parallelism: 3.000000] [OutRowSz (B): 144] (PATH ID: 2)

Both EXPLAIN command and EXPLAIN verbose command also con-
tains output for a graphical demonstration of a query plan. This output
is in the form of source for visualization tool Graphviz. Exemplary graph
created from an output of EXPLAIN command is shown in Figure 4.2.

26

4. DATABASE TUNING

Figure 4.1: An example of Vertica query plan.[21]

Figure 4.2: An example of a graph that was created from an output of EX-
PLAIN command. The figure contains only a part of the whole graph.[22]

27

4. DATABASE TUNING

QUERY PROFILING

System tables in Vertica include the table QUERY_PLAN_PROFILES that
contains real-time information about a run of given query. For each query
operation, this information involves execution time, spent memory,
a size of data that went through the network and whether the operation
was completed.[8]3

SYSTEM TABLES

Vertica maintains many useful system tables that provide a huge amount
of information; selection of specific system tables depends only on user's
monitoring requirements.

4.3 Database Designer

Vertica includes a built-in tool that optimizes physical schema of database,
and that is named Database Designer. The tool should save costs needed
for manual optimization. The physical schema is optimized according
to a query workload. The tool is managed with separate functions that de-
termine particular steps of the designing process and that are described
in Section 4.3.1.

The output of Database Designer includes two scripts. The first script
contains definitions of newly designed projections. Besides these defini-
tions, the second script contains also queries for dropping old projections
and refreshing tables. For that reason, the second script is used for deploy-
ment of a new design.[15]

4.3.1 Functions of tool

This section includes basic functions that are used within Database
Designer. All functions are described in the official documentation [8]4.
The basic functions are:

DESIGNER_CREATE_DESIGN

The step that initializes a designing process. An object with a de-
sign is created in system tables. Besides, Database Designer creates three
schemata that contain auxiliary tables for a designing step.

3. In Vertica documentation, chapter Query Plan Profiles
4. In Vertica documentation, chapter Database Designer Functions

28

4. DATABASE TUNING

DESIGNER_ADD_DESIGN_TABLES

Tables referenced in a query workload are added to a design.

DESIGNER_ADD_DESIGN_QUERY

Queries are added to a design. Particular queries may have different
weight in a design (the highest weight is 1, the lowest weight is 0); a default
weight is set to 1.

DESIGNER_SET_DESIGN_TYPE

Database Designer enables choosing one of two design types that spec-
ify a form of designed projections. These types are:

• Comprehensive – This type redesigns projections for all added tables.
New design contains new projection definitions for all tables. During
a deployment of new projections, old projections are dropped. This
type is more suitable for newly created or fulfilled tables, and for the
first run of Database Designer.

• Incremental – This type creates new additional projections while
the old projections are retained. The type is more suitable for a situ-
ation when new queries are added to an existing query workload.

DESIGNER_SET_OPTIMIZATION_OBJECTIVE

Database Designer enables setting an optimization objective that spec-
ifies whether the creation of projection should focus on a small footprint
or high performance. Possible objectives are:

• Query – This objective is focused on high performance of query work-
load. For that reason, more projections are typically created.

• Load – This objective is focused on footprint to ensure small the size
of data. With this objective, queries may be slower than with Query

objective.

• Balanced – Balance between objectives Query and Load.

DESIGNER_SET_DESIGN_KSAFETY

This function sets a K-Safety of designed projections.

29

4. DATABASE TUNING

DESIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY

This function directly creates new projections that are optimized
for the added query workload. The function is described in Section 4.3.2.

DESIGNER_DROP_DESIGN

This function drops a design from database (system tables) together
with three schemata that contain auxiliary tables.

4.3.2 Designing step

The main function of Database Designer that directly runs the design execu-
tion is DESIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY. The whole
process of designing new projections is shown in Figure 4.3. In a nut shell,
individual steps implementing the function can be divided into two phases:
Query Optimization Phase and Storage Optimization Phase. The precise algo-
rithm of design creation is described in detail in [15]. Parameters of this
function are described in Appendix B.

Query Optimization Phase affects query performance much more
than Storage Optimization Phase. The steps of Query Optimization Phase are:

1. Parsing queries and their association with input tables.

2. Enumeration of projection's orderings and their comparison.
The comparison of projection candidates is performed with a usage
of costs that are computed from input/output costs, network costs,
memory costs, CPU costs and parallelism costs.

3. Enumeration of projection's segmentations and their comparison. Be-
sides, Database Designer considers whether to use replication of data
on all nodes instead.

4. Generation of candidates for projection.

5. After the phase of cost optimizer, the most optimal projection candi-
date is advanced to the next phase.

Storage Optimization Phase affects load performance and storage.
The main part of this phase involves choosing encodings for each column.
This process is very intensive for resources and time but still very effective,
since the encoding directly affects load performance and size of the foot-
print. For each column, encoding candidates are generated. These candi-
dates include all encoding types except those that have been excluded

30

4. DATABASE TUNING

Figure 4.3: Process of designing new projections with Database
Designer.[15]

by Database Designer. The excluding process is performed with a usage
of data type, cardinality, and sortedness of given column; this information
helps define encoding types that are surely non-optimal for that column.
Then, Database Designer extracts a sample of column data and compares
all candidates by compressing this sample. So, the candidates with mini-
mal footprint are identified. The second step of Storage Optimization Phase

is selecting appropriate column set.[15]

31

5 DBPerfComp tool

The DBPerfComp tool was written in Python and enables several modes
of its usage. The main mode named Test Design provides an automatic
test that analyzes designs created by Database Designer. The Use case dia-
gram of the DBPerfComp tool is presented in Figure 5.1. Descriptions of in-
dividual modes are below:

• Run queries – Running input queries on input schemata and storing
measured data to a database.

• Copy schema – Creating a new schema (without data) and copying
tables from an old schema to the new schema.

• Create schema – Creating a schema with an input schema definition,
data path, and path to the copy statements.

• Deployment – Deploying new projections with an input definition
script.

• Design – Designing new projections with the Database Designer.

• Test Design – Complex testing mode that searches for the worst cases
among the designs of Database Designer.

5.1 Test goal

The tool targets weaknesses of the Database Designer in the form of non-
optimally designed projections. The optimality of projections is determined
with a comparison of projections designed by Database Designer and pro-
jection not designed by that tool (called base schema). The comparison
is done with the usage of an average response time of query workload.
If the response time is higher with projections designed by Database De-
signer, the query workload is further investigated by adding a new query.
Furthermore, the test investigates an influence of the different amount of in-
formation (referential integrity, segmentation) in table definition (CREATE

TABLE statement) on the optimality of projections. The deep manual anal-
ysis is subsequently performed on the measured data and also on the data
from the system tables (see Chapter 7).

Within the analysis, similarities among the worst designs
of the Database Designer are searched, and the features (e.g. specific
joins, group by, ordering) that cause non-optimal designs are specified.

32

5. DBPERFCOMP TOOL

Figure 5.1: Use case diagram of the DBPerfComp tool

Since the tool is automatic, it may be used with every new release
of the Vertica database system to test new features and to find new pos-
sible issues. Besides, the companies that deploy Vertica database
may use this tool to confirm whether the Database Designer is eligible
to be used by their customers or it negatively affects the performance
of their production systems.

5.2 Tool design

The DBPerfComp is implemented as the utility to test the performance
of que-ries, so a user of it must specify several input parameters, mainly
queries to analyze, a list of tables and their schemata. All configuration
parameters are explained in Section 5.4.

QUERY BUCKET

Based on input queries, the tool creates query workloads1 as their com-
binations, i.e. the power set of the set of queries. Furthermore, the tool
works with the structure query bucket that stores pairs of the query

1. In the implementation, the term query set is used instead of the query workload.

33

5. DBPERFCOMP TOOL

workload and a list of schemata to test. The query bucket has actu-
ally a key-value structure (map) where the key is the query workload,
and the value is the list of schemata. In the initial phase of the query
bucket, each query from the configuration file is a separate query work-
load, and all schemata from the configuration file are bound to each query
workload. For each query workload and tested schema, the tool creates
a new copy of tested schema and uses Database Designer to design
and deploy new projections. Figure 5.2 contains the query bucket with
exemplary values. In Figures 5.2 – 5.6, query workloads are in the green,
and they are formed as a set of query IDs; tested schemata are in the red.

Figure 5.2: Query bucket after DBPerfComp tool initialization – each work-
load contains one query.

ALGORITHMS

Pseudocode implementing the Test design mode is shown in Al-
gorithm 1. From the code, two specific functions to run queries
and to add new workloads to the query buckets are called. They are speci-
fied in Algorithms 2 and 3.

The algorithm starts with parsing the configuration file and initializing
the query bucket with all queries as individual workloads. Next, the algo-
rithms inspects each pair of workload and schema in the bucket as follows:

1. If the tested schema is not the base schema, the schema is created
in the database as a copy of the input schema.

2. If the tested schema is not the base schema, Database Designer cre-
ates and deploys new projections.

3. Segmentations of projections are parsed.

4. Queries from the query workload are run on the tested schema
and monitored.

34

5. DBPERFCOMP TOOL

5. If the tested schema is not the base schema, the query workload's
ratio is computed as a ratio between the sum of response times
of all queries that run on the tested schema and the sum of response
times of all queries that run on the base schema.

6. If the ratio is higher than the threshold predefined in the config-
uration file, pairs of new query workloads and the tested schema
are added to the query bucket. The new query workloads are created
as combinations of tested query workload and every particular input
query from the configuration file. In this step, the tool also checks
for possible duplicities in the query bucket.

7. Data is stored in a database, i.e. measured data, system information,
and query workload ratio.

8. The tested schema is dropped.

As a result, the tool stores measured data into three separate database
tables and creates snapshots of required system tables. The whole output
is described in Section 5.3. The configuration file is described in Section 5.4.

ADDING QUERY WORKLOADS

The function of adding new query workloads to the query bucket,
shown in Algorithm 3, may change a content of the query bucket in several
possible ways. The assumption for the figures on the following pages is that
the configuration file contains queries 1, 2, 3 ... 24 and schemata dbd_basic,
dbd_fk, dbd_customized. Further in the figures, the items with a gray back-
ground signify query workloads and schemata added in the given step.
The green keys in the figures are query workloads, and the red values
are tested schemata.

The first option of changing the query bucket's content
is that it does not include the tested query workload. For that rea-
son, the combination of query workload and tested schema is added
into the query bucket. This situation is shown in Figure 5.3.

35

5. DBPERFCOMP TOOL

Algorithm 1 Test design
1: Base schema, Schemata, Queries, Tables← Configuration file
2: Create Query bucket (dictionary)
3: for each Query in Queries do
4: Query workload← tuple(Query)
5: Query bucket← key: Query workload
6: for each Schema in Schemata do
7: Query bucket← value: Schema set
8: end for
9: end for

10: Create Query workload queue← sorted keys of Query bucket ⊲ Query

workload queue is described on Page 40

11: for each Query workload in Query workload queue do

12: Create List schemata← Base schema

13: List schemata← values in Query bucket [key: Query workload]
14: for each Schema in List schemata do

15: if not Base schema then
16: CREATE SCHEMA ⊲ With schema definition from the configuration file OR

Copy tables from existing schema in database (see Documentation on Page 43)
17: CREATE DESIGN WITH DATABASE DESIGNER ⊲ Running

the Database Designer tool on the created schema with queries from the Query workload.
18: end if
19: PARSING SEGMENTATION ⊲ From all projections of tables from

the configuration file.
20: RUN_QUERY ⊲ Algorithm 2. Queries from the Query workload.
21: MONITORING QUERIES ⊲ Storing data from each iteration of each query into

the database.
22: if not Base schema then
23: Ratio ← (Sum of response times of all queries on Schema) /

(Sum of response times of all queries on Base schema)
24: if Ratio > Threshold then ⊲ Threshold from the configuration file.
25: ADD_QUERY_WORKLOAD(Query workload, Schema) ⊲

Algorithm 3.
26: end if
27: end if
28: STORING MEASURED DATA INTO THE DATABASE
29: if not Base schema and All queries run successfully then
30: DROPPING SCHEMA
31: end if
32: end for
33: end for

36

5. DBPERFCOMP TOOL

Algorithm 2 Running queries
1: function RUN_QUERY

2: for each Query in Query workload do

3: for iteration← 1, 3 do

4: RUN QUERY(query, schema)
5: end for

6: end for

7: Insert data into snapshot tables
8: for each Query in Query workload do

9: MONITOR QUERY(query label) ⊲ From snapshot tables.

10: end for

11: end function

Algorithm 3 Adding new query workloads to query bucket
1: function ADD_QUERY_WORKLOAD(Query workload, Schema)
2: for each Query in Input Queries do ⊲ Queries from the configuration file that are

tested in the tool.

3: if Query not in Query workload then

4: New query workload← Query workload + Query

5: if Length(New query workload) ≤ Max set depth then ⊲ Max

set death from the configuration file.

6: if Duplicate query workload in Query bucket then

7: Duplicity ← True

8: end if

9: if Duplicity = True and Schema not in

Duplicity′s schemata then

10: Duplicity′s schemata ← Schema

11: end if

12: if Duplicity = False then

13: Add New query workload

14: end if

15: end if

16: end if

17: end for

18: end function

37

5. DBPERFCOMP TOOL

Figure 5.3: Adding a new query workload (with tested schema) to the query
bucket. The actually added items are in the gray background.

DUPLICITIES

The second option of changing the query bucket's content is that it al-
ready contains this query workload, but the tested schema is not included
in its value. For that reason, the tested schema is appended to the list
in the corresponding value. This situation is shown in Figure 5.4.

Figure 5.4: Adding a schema (in gray background) to the existing query
workload in the query bucket.

The query workload is stored as a tuple of queries. Therefore, the DB-
PerfComp tool controls possible duplicities in the query bucket, because
the query workload (a, b, c) is the same as (b, c, a) for Database Designer,
as well as for DBPerfComp tool. The data structure of the query bucket
is a forest2, where separate rooted trees3 contains (key-value) combina-
tions of query workloads and list of schemata. The root of each tree in-
cludes query workload with one query from the configuration file and a list
of all schemata from the configuration file. Each tree expands with devel-
opment of new query workloads (from the query workload of its root)

2. Forest is: "Graphs containing no simple circuits that are not necessarily connected". Each
connected component in a forest is a tree.[23]
3. "A tree is a connected undirected graph with no simple circuits. (...) A rooted tree is a tree
in which one vertex has been designated as the root and every edge is directed away from
the root." [23]

38

5. DBPERFCOMP TOOL

and bounding tested schemata to them. Since DBPerfTool creates duplic-
ities of query workloads, branches are progressively restricted to eliminate
them. The forest structure and the elimination of duplicities are presented
in Figure 5.5.

Figure 5.5: Query bucket has a forest structure where single rooted trees in-
clude (key-value) combinations of query workloads and lists of schemata.
The root of each tree includes the only query as a key and schemata
as a value from the configuration file. This figure shows only the struc-
ture of keys in order to greater comprehension of the query bucket data
structure. Query workloads in the red present workloads that are detected
as duplicities and are eliminated for that reason.

39

5. DBPERFCOMP TOOL

The third option of changing the query bucket’s content is that it in-
cludes duplicity of the query workload, but the duplicity does not con-
tain the tested schema. This situation is shown in Figure 5.6. Because
the query workloads with one query are tested first4, the new schema can-
not be added to the query workload that was already tested.

Figure 5.6: Adding dbd_fk schema to the existing query workload (1, 2, 4)
that was detected as a duplicity to tested workload (1, 4, 2). In con-
trast to Figure 5.5, this figure also shows the list of schemata bounded
to the workload.

QUERY WORKLOAD QUEUE

Since Python does not support a sorted map (key-value structure),
an auxiliary queue of query workloads (FIFO – First In First Out)
must be maintained to define the order of query workloads to test.
At the initial phase of the tool run, the query workload queue is created
as a sorted list of the query bucket's keys; this situation is shown in Fig-
ure 5.7. As the new query workloads are added to the query bucket,
they are added into the query workload queue as well. To illustrate, this sit-
uation is shown in Figure 5.8.

Figure 5.7: Initial phase of the query workload queue at the beginning
of the query run.

4. Then the query workloads with two queries and likewise the others.

40

5. DBPERFCOMP TOOL

Figure 5.8: Adding items to the query workload queue.

5.3 Output

The DBPerfComp tool creates a new schema named monitoring_output

in a database along with three special tables that are located in it.
The first table is named monitoring_results and contains data about

a run of each query iteration. With a specific query label, the data is re-
trieved from the system tables dc_requests_issued, dc_requests_completed,
dc_resource_acquisitions, dc_resource_releases and execution_engine_profiles.
System tables descriptions are in Section 3.4. Actually, the tool retrieves
the data from the snapshots of these system tables. The snapshots
are used because of the Vertica retention policy which may cause disappear-
ing of the required data from the system tables in a time of their retrieving.
The query that retrieves the data is named monitoring_snap.sql. The content
of the monitoring_results table is listed in Appendix C.1.

The second table is named according to the output_table_name attribute
in the configuration file. This table is not the same for all tests, because
each test may need a different table; the number of table columns depends
on the number of tables specified in the configuration file. In this thesis, the
output table is called test_design. Above all outputs, this table is the main
output of the DBPerfComp tool because it contains previously retrieved
data from the monitoring_results table per query workload and per schema,
and much more data. The content of this table is listed in Appendix C.2.

Similarly to the previous table, the name of the third table also depends
on the output_table_name attribute in the configuration file. In this case,
the name has prefix bucket_, so the table used in this thesis is named
bucket_test_design. This table contains queries order for each query work-
load in the test and boolean attribute that indicates whether the query
workload has been already processed. The content of this table is listed
in Appendix C.3.

During the run of the DBPerfComp tool, the Database Designer creates
two files (projections script, deployment script) for each design. These files
are stored in a directory that is set in the configuration file.

41

5. DBPERFCOMP TOOL

The tool is logging all its activity during the process of testing.
The logs are not only sent to the standard output but also stored into a file
that is created in the Logs directory. A name of the log file has pattern
dbperfcomp_year-month-day_hour-minute-second.log, and each log has a pat-
tern [Mode – Part of the mode] Comment. An example of logs is shown in Ap-
pendix C.4.

5.4 Documentation

The DBPerfComp tool has three requirements that must be fulfilled
to work properly. First, the tool needs Python's version 2.7 or higher.
Second, the tool uses the pyodbc module for connecting to the database
and for that reason the module must be installed. The third require-
ment is to provide sufficient permissions to storage directories and objects
in a database.

The tool may be run with two arguments. First, the configuration file
is specified with the argument -cf or --conf_file. This file must be stored
in the directory ConfigFiles, and the default file is set to dbd.yaml. In that case,
the argument may be skipped. The configuration file must be in the YAML

format, and its structure is shown in Figure 5.9. Second, the mode is spec-
ified with the argument -m and --mode, and the default value is TestDesign.
All possible values of the mode are Compare, CopySchema, CreateSchema, De-

ployment, Design, and TestDesign.
The first part of the YAML file sets attributes that specify a database.

• is_cluster – 1 = Database situated on a cluster, 0 = NOT situated
on a cluster (possible values: 1,0). Sets different safety in a process
of creating tables.

• is_8_or_higher_version – 1 = Vertica is in the 8.0 or higher version,
0 = is NOT (possible values: 1,0). Different usage in the Test design

mode.

• pyodbc_db_connection_string – Connection string to a database
(needed for the pyodbc module).

• timeout – Maximum time in seconds that the queries
in the Run Queries and runs of Test design modes. The queries
are killed after this timeout.

42

5. DBPERFCOMP TOOL

The Run Queries mode serves for running input queries on input
schemata with input iteration of the queries. The monitoring_results table
is the output of this mode and is described in Section 5.3. In brief, main
monitored attributes are response_ms, memory_allocated_kb, memory_used_kb

and cpu_time. As a result, the output contains information about queries
performance on input schemata. Before running this mode, all tested
schemata must be deployed in a database. All attributes from the config-
uration file that are related to this mode are as follow:

• testName – Name of the test.

• runName – Name of the specific run – must be unique for each
run of the tool.

• queries – Queries to be tested (separated with SPACES). The queries
must have label "_LABEL_".

• schemas – Schemata to be tested (separated with SPACES).

• iteration – Number of iterations of each query on each schema.

The Create Schema mode serves for creating a new schema in a database
with an input script for the schema definition. Furthermore, the tool needs
a path to the data files and a path to scripts with statements for copying data
from the files to tables. All attributes from the configuration file that are re-
lated to this mode are listed below:

• name – Name of the schema to be created.

• data_path – Path to the directory where the data files are stored.

• schema_path – Path to the schema definition.

• copy_query_path – Path to the script with COPY statements.

The Copy Schema mode serves for creating a copy of any already created
schema. This feature is available only in a Vertica's version 8.0 and higher.
Since it uses a function COPY_TABLE, the tool needs a list of used ta-
bles. All attributes from the configuration file that are related to this mode
are listed below:

• tables – Tables to be copied from the input schema.

• schema_input – Schema that the data is copied from.

43

5. DBPERFCOMP TOOL

• schema_output – Schema that the data is copied to.

• schema_path – Path to the schema definition.

The Deployment mode serves for deploying a script that contains
DDL statements with new projections definitions. In addition, it enables re-
placing the schema that is stated in the definition with the new one (e.g. re-
place ... FROM schema1.LINEITEM... with ... FROM schema2.LINEITEM...).
The output deployment script of the Database Designer is an example
of a required script. All attributes from the configuration file that are re-
lated to this mode are listed as follow:

• query_deployment_path – Path to the deployment script.

• previous_schema_occurs – 1 = Previous schema occurs in the script –
... FROM old_schema.LINEITEM... , 0 = Does not occur – ... FROM

actual_schema.LINEITEM... or ... FROM LINEITEM...; Possible values:
1,0.

• actual_schema_name – Name of the schema that the script is to be de-
ployed to.

• previous_schema_name – Name of the previous schema (if occurs) –
this name will be replaced with actual_schema_name.

The Design mode serves for running a design process of the Database
Designer that is described in Section 4.3. Attributes in the configuration
file correspond to arguments of the Database Designer's functions (see Ver-
tica documentation – https://my.vertica.com/docs/8.0.x/HTML/ – chap-
ter Database Designer Functions) are listed below:

• design_name – Name of the design.

• design_schema – Name of the schema that the tables are deployed to.

• tables – Tables that the Database Designer works on.

• query_path – Path to the queries.

• queries – Queries that the projections are optimized for.

• type – COMPREHENSIVE (projections redesign) or INCREMENTAL
(additional projections).

44

https://my.vertica.com/docs/8.0.x/HTML/

5. DBPERFCOMP TOOL

• objective – Focused on QUERY (high performance), LOAD (small
footprint) or BALANCED.

• deploy_path – Path to the deployment script.

• deployment – 1 = design is deployed, 0 = design is only created
and not deployed (possible values: 1,0).

• ksafe – K-safety of the deployment (insert number). If a database
is not situated in a cluster, the value must be 0.

The Test Design mode is described in Section 5.2 and uses two attributes
from the previous Design mode – query_path and deploy_path. All other at-
tributes from the configuration file that are related to this mode are listed
below:

• testName – Name of the test.

• max_set_depth – Maximal number of queries in query workloads.

• base_schema – Base schema that is to be compared to.

• base_schema_path – Path to the base schema definition.

• schemas – Schemata that are compared with base_schema (separated
with SPACES).

• schemas_path – Path to the schemata definitions (separated with SPA-
CES).

• queries – Queries to be tested (separated with SPACES). The queries
must have label "_LABEL_".

• tables – Tables to work with.

• threshold – Threshold of a ratio for adding new query workloads.

• iteration – Number of queries iterations in each test.

• output_table_name – Name of an output table in the monitor-
ing_output schema that monitored data is stored to.

• size_of_data_in_gb – Size of schemata in GB.

45

5. DBPERFCOMP TOOL

The testname and runname attributes, that occur in many modes, are im-
portant for results identification in the output database tables. For this rea-
son, the runname must be unique for each run of the tool. The queries at-
tributes may start with or without '/'. In the case of '/', the tool works
with a direct path to the queries. In a case of no '/' at the beginning,
the tool works with queries located in the directory Queries, not in the cur-
rent directory of the tool. The directory layout is described in Section 5.5.

The DBPerfComp tool requires a configured connection to a Ver-
tica database. Except for a connection string in the configuration file
of the DBPerfComp tool, two files need to be specified. These files are de-
scribed in the Vertica documentation[8] in chapter Installing ODBC Drivers

on Linux, Solaris, AIX, and HP-UX:

"You must configure the ODBC driver before you can use it.

There are two required configuration files:

• The odbc.ini configuration file defines the Data Source

Names (DSNs) that tell the ODBC how to access your

Vertica databases. See Creating an ODBC Data Source

Name for instructions to create this file.

• The vertica.ini configuration file defines some Vertica-

specific settings required by the drivers. See Required

ODBC Driver Configuration Settings for Linux and UNIX

for instructions to create this file."

The user, who is specified in the connection, must have sufficient
permissions for objects in a database that the DBPerfComp tool works
with and for triggering the Database Designer. Moreover, they must
have sufficient permissions for directories and files in the file system
that the DBPerfComp tool works with. Examples of required permissions
are read permission for queries to test, read permission to data files, write
permission for a directory where deployment scripts of the Database De-
signer are stored.

The exemplary configuration file is shown in Figure 5.9.

46

5. DBPERFCOMP TOOL

Figure 5.9: Structure of YAML file with exemplary values.

47

5. DBPERFCOMP TOOL

5.5 Directory layout

The directory layout of the tool is shown in Figure 5.10. The directories
ConfigFiles and Queries need to be created and fulfilled with appropriate
files before a tool run. Directories ExplainFiles and Logs are dynamically
created during a tool run. Directory Requirement contains pyodbc python
module that must be installed before a tool run and two exemplary con-
figuration files that set database connection parameters. Next, the tool lay-
out consists of python files that were implemented as a part of this the-
sis. The main file is named db_comp_perf.py, and the additional files are de-

signer.py and parser_config.py.

Figure 5.10: Structure of the DBPerfComp tool.

48

6 Analysis

6.1 TPC-H model

This section introduces TPC-H model that is used in Chapter 6 in analy-
ses of Database Designer influence on database objects and in Chapter 7
as an input for the DBPerfComp tool. The model is described in the offi-
cial TPC-H specification created by the TPC (Transaction Processing Per-
formance Council) organization as:

"The TPC Benchmark™H (TPC-H) is a decision support

benchmark. It consists of a suite of business oriented ad-

hoc queries and concurrent data modifications. The queries

and the data populating the database have been chosen

to have broad industry-wide relevance while maintaining

a sufficient degree of ease of implementation. This benchmark

illustrates decision support systems that:

• Examine large volumes of data;

• Execute queries with a high degree of complexity;

• Give answers to critical business questions.

(...)

TPC Benchmark™ H is comprised of a set of business queries

designed to exercise system functionalities in a manner rep-

resentative of complex business analysis applications. These

queries have been given a realistic context, portraying the ac-

tivity of a wholesale supplier to help the reader relate intu-

itively to the components of the benchmark." [24]

TPC-H schema contains eight tables that are shown in Figure 6.1.
All columns of each table have the same prefix that is written in paren-
theses after table names, e.g. PART (P_). Furthermore, the schema in Figure
6.1 contains information about the number of table rows in numbers be-
low tables names. Six tables have a variable number of rows that depends
on a scale factor (SF) that determines the size of the schema in gigabytes.

TPC-H model includes 22 queries that are described in the official TPC-
H specification [24]. For each query, the specification contains its definition,
description, business question, substitution parameters, query validation
and sample output.

49

6. ANALYSIS

Figure 6.1: TPC-H schema.[24]

6.2 Hardware and software

All measurements in Chapter 6 were performed with the same software
and hardware. Database was run on Vertica 8.0.1 using Red Hat Enterprise
Linux 7.3 operating system. The database was situated on a four-nodes
cluster where the nodes were virtualized machines with following param-
eters:

• CPU: 2 cores, 2 threads (HyperThreading off)

• RAM: 10 GB

• HDD: 200 GB, LVM

• Virtualization solution: OpenStack

50

6. ANALYSIS

The physical machine where the nodes were situated had following pa-
rameters:

• Dell R720xd

• CPU: 2x E5-2697v2@2.7GHz, 24 cores, 48 threads (HyperThreading)

• RAM: 384 GB DDR3@1333MHz

• HDD: 24x 600 GB 10k 2.5" 6 Gbitps

• RAID Controller: PERC H710p

• NetCard: 2x Intel X520 DA 10 GbE Dual Port

• Disk layout: 64k strip size, RAID6 23x 600 GB + 1x 600 GB HotSpare,
No read ahead, Write Back cache, Full Initialization

• HW encryption off

6.3 Database Designer's influence on database objects

Database Designer uses different database objects during designing pro-
cess. For that reason, the tool may influence their availability, since
it may lock them for an undefined time. This implies that Database
Designer may influence the performance of any database. The moti-
vation for analysis of this influence is to investigate whether compa-
nies that use Vertica may run Database Designer during business hours,
since database performance and availability may be affected. There
are also companies on the market that provide Vertica to their customers
and may set whether the customers are allowed running Database Designer
or not.

Each analysis used all tables and queries from TPC-H model. Tables
were 10 GB large; therefore, the scale factor of TPC-H model was 10.
In a case of each Database Designer usage, the designing process did not in-
clude deployment of the design. For a time of every designing process,
queries from TPC-H model were simultaneously running in a background
on the tables that participated in the design. These running queries simu-
lated stress on database. Three scenarios in database were used in the anal-
yses:

51

6. ANALYSIS

A. OutTPCH – TPC-H tables were situated in a different schema

than the majority of objects in database catalog (small tables con-
taining one row). + TPC-H queries were running in the background
on TPC-H tables.

B. InTPCH – TPC-H tables were situated in the same schema as the ma-
jority of objects in database catalog. + TPC-H queries were running
in the background on TPC-H tables.

C. Insert – TPC-H tables were situated in a different schema

than the majority of objects in database catalog. + The small tables
were in the process of creation; in other words, there were running
CREATE TABLE and INSERT statements in the background.

The analyses also explore the influence of different numbers of ob-
jects in database catalog. For increasing the number of objects, small tables
with one row were created. The analyses work with four different number
of objects:

1. approximately 250,000 objects in database catalog,

2. approximately 500,000 objects in database catalog,

3. approximately 750,000 objects in database catalog,

4. approximately 1,000,000 objects in database catalog.

This chapter analyzes the influence of different scenarios in database
in Section 6.3.1 and influence of Database Designer in several
ways that are separated into Sections 6.3.2 – 6.3.4. Results are gath-
ered into the Excel file that is attached to the thesis.

6.3.1 Tables location

The first analysis explores the influence of tables location on database
performance and compares durations of queries runs in the three pre-
viously described scenarios in database (OutTPCH, InTPCH, and Insert).
Measurements were performed once with 250,000 objects in database
and once with 1,000,000 objects.

Results of measurements are shown in Figures 6.2 and 6.3. Appar-
ently, the different scenarios only slightly influence performed queries.

52

6. ANALYSIS

With 250,000 objects, the smallest times of average query durations and av-
erage catalog responses are in the OutTPCH scenario, then in the Insert

and the highest times are in the InTPCH. With 1,000,000 objects, values in-
creased, but the ordering stayed the same.

Figure 6.2: Comparison of queries durations within different scenarios.

According to Figure 6.3, catalog response time depends on the num-
ber of objects in the catalog; the catalog response time is four times higher
at 1,000,000 objects than at 250,000 objects. For that reason, it is assumed
that the catalog is gone through sequentially.

Figure 6.3: Comparison of catalog responses within different scenarios.

53

6. ANALYSIS

6.3.2 TPC-H queries, Database Designer and different catalog size

This analysis explores the difference between running queries on tables
that simultaneously participate in designing process of Database Designer
and on tables that do not participate in designing process. Besides, the anal-
ysis explores how numbers of objects in database catalog influence running
queries. Measurements are performed in the OutTPCH scenario.

At each level of amounts of objects, measurements with design-
ing process were performed first. Then, the number of successfully
run queries was retrieved from system tables. Subsequently, the same num-
ber of queries was performed without a simultaneous run of the designing
process. An output of monitoring includes average duration, average cata-
log response, and total time of each measurement.

Results of measurements are shown in Figures 6.4 and 6.5 where
amounts of performed queries are written in parentheses on a horizon-
tal axis. Average durations of queries are shown in Figure 6.4. Clearly,
increasing numbers of objects relate to the duration of queries. Equally,
an occurrence of simultaneous designing process increase duration of
performed queries. Catalog response times are shown in Figure 6.5.
Comparing to the previous figure, the difference in catalog response times
between performing queries with a simultaneous designing process and
without the process is smaller than the difference in duration of queries.
But similarly, catalog response times grow with increasing numbers of
objects. Table with measured data is stored in the attached Excel file.

6.3.3 Steps of designing process

Locks that occur during designing process, which is described in Sec-
tion 4.3, are analysed here. Locks created during separate steps were
monitored after each call of Database Designer functions (see Section
4.3.1). The monitoring was performed with usage of monitoring query in-
cluded in Appendix D and system tables dc_lock_attempts, dc_lock_releases

and query_requests described in Section 3.4. To identify all locks that are cre-
ated during the designing process, the query uses as identifiers a specific
user who calls the functions and a specific design name that is defined
in the first step of designing process.

54

6. ANALYSIS

Figure 6.4: Comparison of queries average durations with the simultaneous
running of designing process (Database Designer) and without designing
process.

Figure 6.5: Comparison of queries catalog response times with simultane-
ously run of designing process (Database Designer) and without designing
process.

55

6. ANALYSIS

An output of the query is listed as follows:

• object name,
• mode,
• total lock time in ms,
• total count of locks,
• start time of the first lock,
• end time of the last lock.

In this analysis, a number of objects in database catalog was 1,000,000,
and the OutTPCH scenario was used. In general, a number of objects
and used scenario were not significant, since database objects with locks
were only found and particular steps of the designing process were com-
pared.

Results of this analysis are situated in the attached Excel file.
For each function of designing process, all influenced objects are listed
in the sheet together with measured values of the monitoring query.
Three influenced objects occurred in all steps of the designing process: Clus-

ter Topology, Global Catalog, and Local Catalog1. Besides, many locks occurred
on tables that were created during designing process of Database Designer;
because these tables were dropped along with dropping the design, they
were not significant for database availability. The three objects, which oc-
curred in all steps, are shown together with their lock modes (see Appendix
A) and locks in milliseconds in Figure 6.6.

Figure 6.6: Objects with locks that occur in each step of designing process.

The highest number of locks had Global Catalog. In this measurement,
the delay due to locks was not significant, since the total delay was ap-
proximately 9 seconds at Global Catalog, but the total run of Database
Designer functions lasted 326 seconds. It means that the locks lasted
only 2.7% of the run time. Moreover, total number of locks was 1,172,
and in that case, the average delay of one locks was 8 milliseconds. This im-
plies that the database user does not even notice any lock during their work.

1. Locks on Cluster Topology, Global Catalog, and Local Catalog also occurred during basic
CRUD operations. Detail results are in Appendix E.

56

6. ANALYSIS

Distribution of locks between particular steps is shown in Figure
6.7. The majority of locks belong to the designing step (function DE-

SIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY). Design dropping
is the second step with the highest number of locks, since it must drop data
that were created during designing process. Design creation is the third step
with the highest number of locks, because it creates many initial records
in database. In these measurements, eight tables and twenty-two queries
were added into the design. The locks that were created during the addi-
tion of tables and queries were not significant, since they were incompara-
bly smaller than the locks in the previously mentioned steps. In comparison
with the designing step, 494 tables or 1,469 queries need to be added to have
the same amount of locks on the object Local Catalog2.

6.3.4 Different catalog size

The last analysis explores the influence of different numbers of objects
and different scenarios in database (OutTPCH, InTPCH, and Insert) on num-
ber of locks created on database objects during designing process. This anal-
ysis uses findings from the previous analysis; therefore, it compares only
Cluster Topology, Global Catalog, and Local Catalog objects.

The analysis includes 12 individual measurements. Each measurement
has its own sheet in the attached Excel file, and each sheet contains the anal-
ysis of particular steps during designing process. The sheets are defined
with catalog size identifiers (250, 500, 750, 1000) and with OutTPCH, InT-

PCH, and Insert for a different scenario in database. The overview of all re-
sults is shown in Figure 6.12. Results are separated into four graphs in Fig-
ures 6.8 – 6.11.

Figure 6.8 shows all 12 measurements and their locks in milliseconds
on the object Cluster Topology. In measurements OutTPCH, numbers of locks
were approximately constant for all numbers of objects. In measurements
InTPCH, numbers of locks increased a little but also stayed approximately
constant for different numbers of objects. These results show that database
availability is slightly influenced by the size of schema where the tables
are located; the smaller size of schema with queried tables is, the higher
database availability is provided. Unlike the previous scenarios, a growth
of locks occurred in measurements Insert with an increasing number of ob-
ject. For 250,000 and 500,000 objects, numbers of locks were approxi-
mately the same. For 750,000 objects, a number of locks increased a little.

2. The object with the smallest number of locks during the designing step.

57

6. ANALYSIS

Figure 6.7: Distribution of locks between particular steps of designing pro-
cess.

58

6. ANALYSIS

Figure 6.8: Locks on the Cluster topology object during the designing process.

Then for 1,000,000 objects, a boom in a number of locks occurred as there
were almost twice more locks. The boom indicates that the number of ob-
jects in database influences database availability during the Database De-
signer run. Furthermore, it shows that CREATE TABLE and INSERT state-
ments influence the availability much more than only running SELECT

statements; the reason is that the data must be distributed across all node
of the cluster. For that reason, the results might be different if database
is run situated on single machine, not cluster. Overall, different scenarios
are significant for numbers of locks on the Cluster Topology object.

Relations between measurements on the Global Catalog were the same
as on the Cluster Topology; the only difference was that values of all locks
were approximately three times higher, as it is seen in Figure 6.9. Since the
results are similar, their interpretation is skipped here.

Results of measurements on the object Local Catalog are shown in Figure
6.10. Apparently, the results are approximately the same for all measure-
ments. So that locks on the object Local Catalog are not influenced by num-
bers of the objects and with OutTPCH, InTPCH and Insert scenarios.

All measurements for the Insert scenario are shown in Figure 6.11.
This scenario was chosen for the comparison of the three objects, since
it has the highest number of locks. Overall, an influence of the cluster is rec-
ognizable in the figure, because both the Global Catalog and the Cluster Topol-

ogy had an increasing trend in numbers of locks. The Local Catalog holds
meta-data of only one node, so the cluster has minimal influence there.

59

6. ANALYSIS

Figure 6.9: Locks on the Global catalog object during the designing process.

Figure 6.10: Locks on the Local catalog object during the designing process.

Overview of all results in Figure 6.12 provides information about
the comparison between locks duration (in milliseconds in the overview)
and total designing process duration (in seconds). The locks from the mea-
surement with 1,000,000 objects, in the Insert scenario and on the ob-
ject Global Catalog are used for the comparison, because it has the high-
est amount of locks. In this case, the designing process lasted 445 sec-
onds, but the locks existed only for 19.4 seconds, i.e. 4.3% of the design-
ing process. In this measurement, average lock lasted 16.2 milliseconds,
and in all measurements, the highest average lock lasted 20 milliseconds.

60

6. ANALYSIS

Figure 6.11: Measurement for the Insert scenario.

From the previous findings, it may be concluded that users of Vertica
database are not influenced by the designing process, because the locks
are not continual and duration of particular locks are too small to affect
database availability negatively. Particular locks would have to last seconds
to affect the availability.

61

6. ANALYSIS

Figure 6.12: Overview of results from particular measurements where num-
ber of objects in database catalog differs, as well as a scenario in a database.

62

7 Data evaluation

The test presented in Chapter 5 targets weaknesses of Database Designer
in the form of designed projections that are less optimal for running given
queries than projections that were not designed by Database Designer.

The experiment was performed twice to compare the behavior of Vertica
on two clusters that differ in performance. Results from the both clusters
are described in Sections 7.2.1 and 7.2.2. The first cluster's (identifier: clus-

ter1) parameters were described in Section 6.2. The second cluster (identi-
fier: cluster2) is of parameters:

• CPU: 10 cores, 10 threads (HyperThreading off)

• RAM: 88.5 GB

• HDD: 2800GB, LVM

• Virtualization solution: OpenStack (the physical machine was the sa-
me as at cluster1)

On the cluster2, the database resource pool where the experiment
run was limited to 10 GB in order to simulate the cluster1's RAM. Equally
as in Chapter 6, measurements in this chapter use 8.0.1 version of Vertica
and Red Hat Enterprise Linux 7.3 version of the operating system.

The whole evaluation is divided into several parts. Measured data from
output tables of DBPerfTool are evaluated in Section 7.2. Based on this data,
one query is identified as a bottleneck for Database Designer and is de-
scribed in Section 7.3. Next, Section 7.4 includes the analysis of projections
optimized by Database Designer for this query. Investigation of a query
plan of the bottleneck query is performed in Section 7.5, and investigation
of operations executed within a run of this query is performed in Section
7.6. Manual optimizations of designed projections for the bottleneck query
are proposed and compared in Section 7.7.

7.1 Test setting

TPC-H model (tables, queries) described in Section 6.1 was used for the test.
The total size of queried tables in each schema was 10 GB1. Queries

1. The standard size in production servers in GoodData s.r.o.

63

7. DATA EVALUATION

9 and 15 of TPC-H model were not used because a problem2 occurred
in retrieving data of these two queries from system tables. Instead, Queries
23 and 24 that use TPC-H tables were created for this experiment and
are shown in Appendix F. The principle of both queries is to create com-
plex queries that contain many join operations (including two largest ta-
bles Lineitem and Orders), many predicates and many columns in GROUP

BY clauses.
The timeout was set to 30 seconds3. The configuration file with at-

tributes that were used in this test is given in Figure 7.1. Selected attributes
used in the configuration file are:

• Threshold = 1.1 – Query workloads whose response time is worse
by 10 percent on a given schema than on the base schema.

• Max depth set = 3 – The maximum query workload depth
was set to 3, i.e. there might be three-tuples of queries at maximum.

• Iteration = 3 – Each query was run three times.

Figure 7.1: Test setting.

Schemata that were used in the test:

• Design_customized

– Base schema

– Information in this schema: Primary keys, Foreign keys, Seg-
mentation.

2. Since the problem with Queries 9 and 15 was not caused by Database Designer, but oc-
curred during retrieving data from system tables, the problem was not further investigated.
3. This specific time was set based on previous findings that were retrieved during manual
runs of tested queries.

64

7. DATA EVALUATION

– This schema is NOT used for designing process of Database De-
signer.

– Superprojections are created automatically with a creation of ta-
bles.

• DBD_customized

– Information in this schema: Primary keys, Foreign keys, Seg-
mentation.

– This schema is used for designing process of Database Designer.

– Test is run on designed projections, not on the template schema.

• DBD_fk

– Information in this schema: Primary keys, Foreign keys.

– This schema is used for designing process of Database Designer.

– Test is run on designed projections, not on the template schema.

• DBD_basic

– Information in this schema: None.

– This schema is used for designing process of Database Designer.

– Test is run on designed projections, not on the template schema.

7.2 Results

7.2.1 Cluster 1

The first test was performed on cluster1, and its results are shown
in Table 7.1. Rows represent different combinations of query workloads
and tested schemata (hereinafter referred to as the "query-schema set").
The first row contains all tested query-schema sets. The second row in-
volves combinations of all query workloads and Design_customized schema,
i.e. a number of particular query workloads that were created during
the tool run. The remaining rows contain query workloads for tested
schemata DBD_basic, DBD_fk, and DBD_customized. The first column
presents the total number of query-schema sets, and the second col-
umn presents the number of query-schema sets whose schemata designed
by Database Designer were less optimal than Design_customized schema
(hereinafter referred to as the "non-optimal query-schema sets"); i.e. response

65

7. DATA EVALUATION

time of a tested query workload was higher on a tested schema designed
by Database Designer than on Design_customized. Moreover, it means,
that the ratios of a tested query-schema sets were higher than the threshold.
Complete results are in the Excel file that is attached to the thesis. The find-
ings retrieved from Table 7.1 are:

• For each query workload, Design_customized schema was cre-
ated and tested. For that reason, only 1,118 query-schema sets be-
longed to tested schemata designed by Database Designer (1,861
query-schema sets minus 743 query workloads at Design_customized

schema);

• 393 query-schema sets out of 1,118 (schemata designed by Database
Designer) were non-optimal. It means, Database Designer created
non-optimal designs (projections) in 33% cases.

• 1,118 query-schema sets consist of: 58.3% records (652) that be-
longed to DBD_basic schema, 28.2% (315) to DBD_fk and 13.5% (151)
to DBD_customized;

• 393 non-optimal query-schema sets consist of: 71.8% records (282)
that belonged to DBD_basic, 19% (75) to DBD_fk and 9.2% (36)
to DBD_customized.

Total
Ratio >

Threshold

Combinations: Query workload × Schema (with
Design_customized)

1,861 393 (21.1%)

Particular query workloads (i.e. Query workloads
× Design_customized)

743 293 (39.4%)

Query workloads × DBD_basic 652 282 (43.3%)
Query workloads × DBD_fk 315 75 (23.8%)
Query workloads × DBD_customized 151 36 (23.8%)

Table 7.1: Overall results on cluster1. The percentages are in the relation
to the Total column.

At the beginning of the tool run, the query bucket consisted of 66
query-schema sets4. This number is the combination of 22 query workloads
(queries from the configuration file) and three tested schemata (DBD_basic,

4. Query-schema sets with Desing_customized schema are not counted since Database De-
signer does not work with this schema.

66

7. DATA EVALUATION

DBD_fk and DBD_customized). Only nine query-schema sets out of these 66
were non-optimal and were further investigated for that reason. Actually,
these query-schema sets included only five unique query workloads – 4, 5, 18,
21, 23. These query workloads that involved only one query from the con-
figuration file are hereinafter referred to as the "base query workloads". Table
7.2 contains information about a distribution of non-optimal query-schema

sets into particular base query workloads together with their tested schemata
(DBD_basic, DBD_fk, and DBD_customized) and size of query workloads
(1-tuple, 2-tuple and 3-tuple). The results show that mainly Queries 5

and 21 were challenging for Database Designer since both queries as base

query workloads were non-optimal on all three tested schemata.

TIMEOUTS

During the test, timeouts of queries arose in 69 cases. All timeouts
occurred during the runs of Query 5 on DBD_basic schema, except one case
related to run of Query 21 on DBD_fk schema. Query-schema sets affected
by timeouts are listed in Appendix G on Page 101. To verify that the queries
cannot complete their runs on given query-schema sets, the queries were
also run manually on selected query-schema sets. Query 5 was successfully
verified, since the runs of the query were not completed even after several
hours. The manual run of Query 21 showed that this query was successfully
completed. With data from snapshots of system tables, it was observed
that the query was waiting 14 seconds for resources and the remaining
time was not sufficient for its completion.

QUERY-SCHEMA SETS – ORDERED BY RATIO AND QUERY-RATIO

Measured data, which is contained in the attached Excel file, may be or-
dered by ratio and query-ratio5 to show the worst cases for Database
Designer. Query-schema sets whose ratio was higher than the threshold
are listed in Appendix H on Page 102. The findings that are retrieved
from query-schema sets ordered by ratio are:

• The worst 71 query-schema sets included only schema DBD_basic.
Hereafter, also schemata DBD_fk and DBD_customized occurred.

• 60 query-schema sets with the highest response time had Query 5

as base query workload.

5. The ratio of one particular query from any query workload.

67

7. DATA EVALUATION

Table 7.2: Distribution of non-optimal query-schema sets among particular
base query workloads – cluster1.

• The most non-optimal query-schema set consisted of the query work-
load with one Query 5. The response time of the query was 13.05

times higher on DBD_basic than on Design_customized.

• The subsequent group of the most non-optimal query-schema sets had
ratios from 5 to 7.3 and contained 12 query workloads composed
of two queries, i.e. the tuples of queries had size 2.

• Group of query-schema sets that had ratios from 4 to 5 contained
47 query workloads composed of three queries, i.e. the tuples
of queries had size 3.

68

7. DATA EVALUATION

• Clearly, from the previous three items, ratios decreased with in-
creasing number of queries in query workloads. As can be expected,
it was caused by a higher number of queries with optimal query-ratio
that participated in the computation of total ratios of query-schema

sets.

• The rest of query-schema sets had ratio lower than 4.

Particular queries ordered by query-ratio are listed in the attached Excel
file. The total number of run queries was 5,164; out of them, 1,155 queries
(22.4%) were non-optimal. The most non-optimal query was Query 5 from
query workload (5, 10) that run on DBD_basic schema.

INFLUENCE OF INFORMATION ON DATABASE DESIGNER OUTPUT

Based on Table 7.2, on query-schema sets order by ratio and on particular
queries ordered by query-ratio, it is clear that Database Designer mostly
creates optimal designs when referential integrity is included. The reason
is that referential integrity helps the database engine understand rela-
tions among particular tables. If a segmentation clause is also included
in the table definition, the optimality of proposals by Database Designer
is generally even higher.

RESPONSE TIME, CPU TIME, USED MEMORY

DBPerfComp tool monitors the execution of every query of all query
workloads. The monitoring includes retrieving response time, CPU time6

and used memory7 from system tables. This data is used for comparison
of different schemata. Only base query workloads were selected for the com-
parison, since query workloads of two or three queries would improperly
affect the relations among particular base query workloads. Figure 7.2 on Page
70 consists of three graphs, where each graph corresponds to one measured
characteristics (response time, CPU time and used memory) and contains
four bars, one for each schema. The findings retrieved from these graphs
are:

6. A sum of CPU times spent in all threads. The CPU time is greatly influenced by disk
access. The relation between CPU time and Response time mostly depends on the nature
of given query and on current database/hardware load.
7. Memory that was used during a query execution.

69

7. DATA EVALUATION

Figure 7.2: Graphs of used memory, response time and CPU time where
query workloads composed of one query from the configuration file
are counted in – cluster1.

70

7. DATA EVALUATION

• The highest amount of used memory occurs at schema DBD_basic.
In contrast, the smallest amount occurs at schema Design_customized.
These results show that more memory is required with higher com-
plexity of projections (e.g. ordering, encoding).

• The graph with response time confirms that when referential in-
tegrity is added to the table definitions, the level of optimality
of projections designed by Database Designer is markedly increased.
Clearly, queries executed on schemata DBD_fk and DBD_customized

needed twice less response time than on schema DBD_basic. The fact
that Database Designer does not create optimal projections without
stating referential integrity is supported with another fact that exe-
cuted queries needed less response time even on Design_customized

than on DBD_basic.

• The graph with CPU time has similar relations among particular
schemata. For that reason, it confirms the higher level of optimality
in the cases when referential integrity is included in table definitions.

• Database Designer significantly improved response time and CPU
time at schemata DBD_fk and DBD_customized. On the other hand,
schema DBD_basic was not successfully optimized.

Characteristics response time and CPU time are further examined
in the graphs in Figures 7.3 and 7.4. In both the graphs, values are seg-
mented by tested schemata (particular lines), and the horizontal axis rep-
resents particular base query workloads. The findings retrieved from these
graphs are:

• At most query workloads, schema Design_customized is less optimal
than all schemata designed by Database Designer.

• Except the workload with Query 21, both graphs of response time
and CPU time are similar.

• Schema Design_customized is significantly more optimal only at sin-
gleton 21. But, this fact could have been caused only by un un-
expected load in database. As snapshots of system tables showed,
the reason for this possible explanation is that executed Query
21 was waiting on resources for a long time in the case
of run on schemata DBD_basic, DBD_fk and DBD_customized. Exact
database load in time of the query run is not possible to get since only
snapshots of data related to DBPerfComp tool were maintained.

71

7. DATA EVALUATION

Figure 7.3: Response time for particular base query workloads and tested
schemata – cluster1.

Figure 7.4: CPU time for particular base query workloads and tested schemata
– cluster1.

72

7. DATA EVALUATION

TIME OF DESIGNING PROCESS

Times of designing processes are compared in the graph in Figure 7.5.
Apparently, Database Designer requires more time in the case of no referen-
tial integrity at tables that participate in the design. The appearance of seg-
mentation did not have any influence, since times of designing processes
at schemata DBD_fk and DBD_customized were equally changing.

Figure 7.5: Design time for particular query workloads composed of one
query from the configuration file and tested schemata – cluster1.

7.2.2 Cluster 2

This section contains data from measurements on cluster2. Since many
timeouted queries occurred at cluster1, the timeout was set to 600 sec-
onds to get more precise information about running these time-consuming
queries. An overview of results on cluster2 is shown in Table 7.3 that
has the same structure as Table 7.1.

With comparison of the measurements on cluster1 (Table 7.1) and clus-

ter2 (Table 7.3), it is clear that the results were similar on both clusters. Clus-

ter1 results contained 1,861 query-schema sets where 393 of them had ra-
tio higher than threshold (21,1%). To compare, cluster2 results contained
1,981 query-schema sets where 336 of them had ratio higher than thresh-
old (17%). With further investigation, all values and relations between re-

73

7. DATA EVALUATION

Total
Ratio >

Threshold

Combinations: Query workload × Schema (with
Design_customized)

1,981 336 (17.0%)

Particular query workloads (i.e. Query workloads
× Design_customized)

640 241 (37.6%)

Query workloads × DBD_basic 600 196 (32.7%)
Query workloads × DBD_fk 395 75 (19.0%)
Query workloads × DBD_customized 346 65 (18.8%)

Table 7.3: Overall results on cluster2. The percentages are in the relation with
the Total column.

lated parts are similar in both measurements with one exception at schema
DBD_customized. There, measurement on cluster2 includes approximately
twice more query-schema sets.

Measurements on cluster2 included ten non-optimal combinations
of base query workloads and tested schemata DBD_basic, DBD_fk,
and DBD_customized. The unique non-optimal base query workloads were
composed of Queries 4, 5, 11 and 18. Common non-optimal base query work-

loads for both clusters were with Queries 4, 5 and 18. The complete distri-
bution of query-schema sets among particular base query workloads is shown
in Appendix I in Table I.1 on Page 104.

In the measurement on cluster2, a timeout occurred at 42 queries that in-
volved Query 5 and schema DBD_basic in all cases.

Query-schema sets order by ratio and particular queries ordered
by ratio-query are listed in the attached Excel file.

Particular graphs from cluster2 contain similar trends as results from
cluster1. The graphs are shown in Appendix I on Pages 105, 106 and 107.

Because of the similarity with cluster1, next sections in this chapter in-
volve only measurements from that cluster.

7.3 Query 5

This section provides the description of Query 5, since the results in Sec-
tion 7.2 show that it the most challenging query for Database Designer. The
definition of Query 5 is as follows:

74

7. DATA EVALUATION

SELECT
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue

FROM
customer,
orders,
lineitem,
supplier,
nation,
region

WHERE
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’MIDDLE EAST’
and o_orderdate >= date ’1997-01-01’
and o_orderdate < date ’1997-01-01’ + interval ’1’ year

GROUP BY
n_name

ORDER BY
revenue desc

LIMIT 1;

The description of Query 5 from the official TPC-H specification[24] is:

"This query lists the revenue volume done through lo-

cal suppliers. (...) The Local Supplier Volume Query lists

for each nation in a region the revenue volume that resulted

from lineitem transactions in which the customer ordering

parts and the supplier filling them were both within that na-

tion. The query is run in order to determine whether to in-

stitute local distribution centers in a given region. The query

considers only parts ordered in a given year. The query dis-

plays the nations and revenue volume in descending or-

der by revenue. Revenue volume for all qualifying lineitems

in a particular nation is defined as sum(l_extendedprice * (1 -

l_discount))."

In comparison to other TPC-H queries, this query is specific in the co-
hesion of joins that is shown in Figure 7.6. There, tables Supplier, Lineitem,
Orders, and Customers are joined mutually as it is shown with the blue, red,
green and yellow lines.

Query 5 works with two largest tables – Lineitem and Orders. As it is clear
from Figure 7.6, each table participate in two join operations. At both tables,
one of the operations joins these two largest tables together.

75

7. DATA EVALUATION

Figure 7.6: Illustrated joins of Query 5 in TPC-H schema.

Based on the two previous paragraphs, it is apparent that join opera-
tions are the challenging part of Query 5. The query is further investigated
in Sections 7.4, 7.5 a 7.6.

7.4 Projection definition

This section explores definitions of projections that were designed
by Database Designer with optimization for Query 5 on schema DBD_basic.
More precisely, the projections were optimized for query workload (5, 10)
since it involved the highest query-ratio; i.e. the least optimal single query
(Query 5) run on tables that included no referential integrity and no seg-
mentation definitions, and the tables were optimized for Queries 5 and 10.
For this query-schema set, the output of Database Designer contains ten fol-
lowing projections and their segmentation:

76

7. DATA EVALUATION

• Region – unsegmented (replicated),

• Nation – unsegmented (replicated),

• Supplier – unsegmented (replicated),

• Part – segmented by NAME,

• Partsupp – segmented by COMMENT,

• Customer – – segmented by CUSTKEY,

• Orders 1 – segmented by CUSTKEY (used for Query 5),

• Orders 2 – segmented by ORDERKEY (used for Query 10),

• Lineitem 1 – segmented by SUPPKEY (used for Query 5),

• Lineitem 2 – segmented by ORDERKEY (used for Query 10).

From the findings that were retrieved during all measurements8, it is ap-
parent that Database Designer uses join statements to create a segmen-
tation clauses of particular projections. Besides, Database Designer repli-
cates small tables over all nodes; here, it is the case of Region, Nation
and Supplier tables. Both of the largest tables – Lineitem and Orders –
involve two projection where each projection is optimized for a different
query. Furthermore, based on designed projections (attached in the Excel
file), it is apparent that Database Designer optimizes columns ordering
for WHERE clauses. Then, no general pattern was found for the columns
that follow the ones that are optimized for WHERE clause – they were op-
timized for one of the cardinality, join columns and GROUP BY clauses.

Each query-schema set that involved Query 5 with timeout included
the l_suppkey column at the first position of segmentation clause in Lineitem
table. On the other hand, only two query-schema sets that involved Query 5,
and l_suppkey column at the first position of segmentation clause finished
without a timeout. In the query, the l_suppkey column is joined with the pri-
mary key of Supplier table.

8. The attached Excel file contains examples of designed projections for different query-
schema sets (including designed projections for query workload (5, 10) and schema
DBD_basic).

77

7. DATA EVALUATION

7.5 Query plan

Query plan helps understand precise steps performed during the query ex-
ecution; in this case, the execution of Query 5. The selected query-schema

set for exploration is the same as in the previous section – query work-
load 5, 10 and schema DBD_basic. The investigation query, shown in Ap-
pendix J on Page 108, enables retrieving data of many characteristics
for each step of the query plan; for example database time, CPU time, net-

work wait time, allocated memory and number of produced rows. This investi-
gation of the query plan was performed after the whole DBPerfComp tool
run because of the possibility to observe changes of values in particular
steps of the query plan. As the query was stuck and was not able to finish,
it was manually stopped after some time.

Retrieved query plan with measured characteristics for each step is pre-
sented in Figure 7.7 in shortened version. The full version is present
in the attached Excel file, sheet Query plan. Red values in particular steps
in Figure 7.7 signify values that were being increased with time of running
query. The findings are:

• First, storage accesses are performed for tables Nation, Supplier, Cus-
tomer, and Orders.

• Then, joins Customer × Orders (path id = 8) and Nation × Supplier
(path id =11) are executed.

• The following join (path id = 7) makes join of these two joins (path id =

8, 11). The query is stuck on this join (path id = 7), since DB time, CPU

time, Rows produced and Network wait time are being continually in-
creased. The possible explanation for this behavior is that the joined
tables are not optimally prepared (segmentation, ordering) for this
join (path id = 7); for that reason, the join (segmentation, ordering)
is running for undefined time.

• Simultaneously, join (path id = 7) sends data to the next operator that
is join with path id 5. Because the previous join (path id = 7) runs
for undefined time, also the join with path id 5 cannot be finished,
since it receives data all that time.

• Operators at path id 4 or smaller are not to be performed, because
they only wait for previous operators.

78

7. DATA EVALUATION

Figure 7.7: Part of the query plan for Query 5 in query workload 05_10 and
in schema DBD_basic.

79

7. DATA EVALUATION

This investigation confirmed that the issue of unfinished queries
is caused by join operations. Join with path id 7 has to reorder large table
where all records from Orders table occur. Furthermore, join with path id 5
needs to execute resegmentation on data that is joined in this step. Thus,
this new large table of four tables (Orders, Customer, Supplier, Nation)
is created, which is then joined (path id = 5) with the largest table Lineitem.
This join (path id = 5) is specific since the join condition includes two parts:

(lineitem.L_SUPPKEY = supplier.S_SUPPKEY) AND

(lineitem.L_ORDERKEY = orders.O_ORDERKEY)

The most possible explanation of this Query 5 issue corresponds to the
following structure of joins:

t1.a = t2.a AND t2.b = t3.b AND t3.c = t4.c AND t1.d = t4.d

This explanation was further investigated with the simplified version
of Query 5 that is shown in Appendix K on Page 110. In contrast to tra-
ditional Query 5, this simplified query does not contain tables Nation
and Region that are not involved in the critical structure of joins. Moreover,
GROUP BY clause is also skipped. This query was run on the projections
optimized for query workload (5, 10) and schema DBD_basic. According
to the result, a timeout also occurred at the run of the simplified version
of Query 5. This measurement confirmed the previous possible explana-
tion.

Vertica does not enable finding more precise information about these
joins and the exact location of the issue. The possible explanation is that
Vertica performs cross join, but this operation is beyond Vertica’s resources.

7.6 Database operations

This section investigates operations that are performed within a run
of Query 5. The operations (operators and their counters) are stored in ex-

ecution_engine_profiles table and are mostly described in [22] and in the
Vertica official documentation[8], chapter Execution Engine Profiles. The ta-
ble execution_engine_profiles holds information about the precise execution
of queries – particular operators and their counters with values. System ta-
ble dc_requests_issued was also used to identify the executed query.

The investigated data was retrieved with monitoring query that
is shown in Appendix L on Page 111. The retrieved data contains op-

erator name, counter name, duration (µs), number of threads and duration

(µs) per thread.

80

7. DATA EVALUATION

This monitoring was performed on ten queries (query-schema sets) with
the highest query-ratio; these all queries were Queries 5. All results of this
monitoring are stored in the attached Excel file. All ten measurements re-
trieved the same operators and their counters. Table 7.4 presents averages
of measured values. The table is divided into four parts:

1. Results on tested schema from query-schema set.

2. Results on Design_customized schema (base schema).

3. The difference between results from these two schemata (Tested
schema – Design_customized). The higher positive difference,
the worse design of tested schema.

4. Ratio between results from these two schemata. (Design_customized /
Tested schema). The lower ratio, the worse design of tested schema.

The findings retrieved from Table 7.4 are:

• NetworkSend and NetworkRecv were operators with the highest dura-
tions. The first operator represents data to be sent to another node
in cluster and the second operator represents data to be received
from another node.

• Operator Join is impossible to assign to one particular join
when the query contains more joins than one. The reason is that du-
rations of all joins are summed to one value. In this investigation,
it is obvious that the joins are significant for query execution.

• AVG ratio part and its Duration (µs) column show that schema De-

sign_customized is much more optimal for Query 5 than schema
DBD_basic. In most of the measured operators and counters, val-
ues for Design_customized are at least 60% better than values
for DBD_basic.

The attached Excel file also contains data from other investigations
of performed operations with Queries 10, 12, 13, 14, 18, 21, 22 and 24. These
queries participate in query-schema sets with high query-ratio. The results
of these queries are not further described, but the general usage of par-
ticular operators is concluded from these measurements. In general, re-
sults from all investigations show that operators and their counters with
the highest durations are9:

9. Descriptions of particular counters are in Vertica documentation[8], chapter Execution
Engine Profiles

81

7. DATA EVALUATION

Table 7.4: The investigation of operations that are performed within a run
of Query 5. The values are averages of ten runs of Query 5 on schemata
from query-schema sets with the highest query-ratio.

82

7. DATA EVALUATION

• NetworkSend – counters producer wait and consumer stall

• NetworkRecv – counter network wait,

• Join – counters join inner clock time and join outer clock time,

• ParralelUnion10 – counter response wait,

• StorageUnion11 – counter response wait.

This type of investigation provided an overview of particular opera-
tions that are performed within the execution of Query 5. The most time-
consuming actions were connected to the network and join operations.
These results correspond to the investigation of query plan in the previ-
ous section, where it was observed that join operations are very challeng-
ing at Query 5 and that large volume of data had to be sent over a network
due to segmentation. If the measurements were not performed on a cluster,
but on a single machine, the results would be different.

7.7 Manual optimization

All query-schema sets that involved a timeout contained l_suppkey column
at the first position of the segmentation clause in Lineitem table, as it was al-
ready described in Section 7.4; this section also listed columns from seg-
mentation clauses of the other tested tables. Section 7.7 explores possible
manual optimizations of the Lineitem projection that was originally opti-
mized12 for Query 5. The two proposed optimizations are:

1. Change segmentation of Lineitem projection from l_suppkey to l_or-

derkey – according to the join "l_orderkey = o_orderkey".

2. Change segmentation of Lineitem projection from l_suppkey to l_ex-

tendedprice – according to the "l_orderkey = o_orderkey".

10. "Combines not sorted data stream.[22]
11. "Combines data storage without maintaining the sort order." [22]
12. More precisely, the projections were optimized for query workload (5, 10) and schema
DBD_basic; but Section 7.7 explores only projections that are actually used by Query 5. Pro-
jections used by Query 10 are not covered in the section.

83

7. DATA EVALUATION

Both optimizations led to successful completion of Query 5. More effec-
tive optimization was the first one (l_orderkey) since smaller response time
(3,021 milliseconds × 19,461 milliseconds) and CPU time (4,033 millisec-
onds × 7,565 milliseconds) was measured with that optimization. Com-
plete results of these two measurements are situated in the attached Excel
file. This measurement showed that l_suppkey column at the first position
of the segmentation clause in Lineitem table affects the timeouts of Query 5.

7.8 Results summary

Measurements on both clusters showed how Database Designer optimizes
projections for various query workloads. According to the results, different
amount of information (segmentation, referential integrity) in tables defini-
tions greatly affects the level of optimization. Based on the results, it was ob-
served that referential integrity in tables definition helps the database en-
gine understand data model relations and therefore optimize join opera-
tions. In performed measurements, the inclusion of the referential integrity
to table definition highly increased the level of optimization. Including
additional segmentation clauses in table definitions influenced the results
only to a small degree.

Tests on both clusters measured 111 timeouted queries. Except
for one case, all timeouts occurred at Query 5 and schema DBD_basic.
The total number of tested query-schema sets (without Design_customized

schemata) is 2,459 where 729 out of them (29.6%) were non-optimized – 478
at DBD_basic, 150 at DBD_fk, and 101 DBD_customized. These numbers con-
firm that Database Designer creates more optimal projections when tables
definitions contain referential integrity and segmentation clause.

The worst cases for Database Designer were query workloads that in-
cluded Query 5 and schema DBD_basic. Based on all measurements, Query
5 is the outlier for Database Designer. Despite the fact that Vertica provides
detail query profiling, it enables localizing only the root cause of an issue
in query plan, and in some cases, localizing a certain database operator.
At the combination of Query 5 and schema DBD_basic, it is clear that join
operations of the query cause the non-ability to finish its run. As the only
query of TPC-H model, Query 5 involves four tables Supplier, Lineitem, Or-

ders, and Customers that are mutually joined as it is shown in Figure 7.6.
The structure of these joins is shown below:

t1.a = t2.a AND t2.b = t3.b AND t3.c = t4.c AND t1.d = t4.d

84

7. DATA EVALUATION

The most possible explanation is that this join distribution causes the is-
sues. Moreover, every time a timeout occurred, the segmentation of ta-
ble Lineitem included column l_suppkey at the first position. It was ex-
plored that Query 5 successfully completes its run when l_suppkey column
in the segmentation clause is replaced with l_orderkey or l_extendedprice

columns.
Due to the investigation of database operators, it was observed

that the most resource-consuming operators are NetworkSend, NetworkRecv,
Join, ParralelUnion, and StorageUnion.

Results of this chapter prove that Database Designer does not always
work optimally, because many designed schemata had worse results than
schema that served as the input for the designing process. If designs
of Database Designer were always optimal, all measured ratios would
be smaller than 1.

85

8 Conclusion

Column-oriented database systems offer many benefits in the case
of analytics workloads, since queries work only with required columns
and the others are skipped. The major improvements are gained for read-
only queries, especially if an aggregation function is included. With fast-
growing volumes of data, data analytics are of higher importance. In con-
trast, row-oriented systems hold their benefits in the case of transactional
workloads where column-oriented systems are highly inefficient.

Vertica is relational column-oriented database system that provides
many specific features. The most characteristic one is projections that rep-
resents a physical schema of data. The main benefit of projections is that
they may be optimized for given query workloads. Vertica includes built-in
Database Designer tool that performs this optimization with usage of or-
dering, segmentation, selection and compression method for particular
columns.

All measurements in this thesis used TPC-H model. The analysis
of locking subsystem (delays due to locks) proved that Database Designer
does not influence database availability. The measured data showed that
Database Designer creates a vast number of locks, but their average of be-
ing acquired is only a few milliseconds. Moreover, the total sum of the de-
lays represents a small fraction of the total time of the designing process
of Database Designer. The results indicate that Database Designer might
be used in a critical database environment.

The main contribution of this thesis is the implemented DBPerfComp
tool that targets suboptimal designs generated by Database Designer.
The measured data shows that Database Designer generates many non-
optimal designs. The results prove that an amount of information in the def-
initions of tables whose projections are optimized influences the result-
ing optimality of designed projections. Within the test, one combination
of the query and the schema was detected as critical for Database Designer.
This combination includes Query 5 from TPC-H model and the schema
that involves no segmentation definition and no referential integrity
in the definitions of its tables. Unfortunately, Vertica does not provide suf-
ficient information to find the exact cause of this issue. The possible ex-
planation is that Vertica performs cross join that is not able to complete
due to the huge tables. To verify these results, the tool was also executed
on the different cluster. The results obtained are very similar to the previ-
ous ones.

86

8. CONCLUSION

DBPerfComp tool has already been used in the GoodData s.r.o. com-
pany. Based on the uncovered issue that was described in the previous para-
graph, the official bug report was created by GoodData s.r.o. and on April
28, 2017, sent to Vertica. This bug was accepted with notification that devel-
opers in Vertica would further examine such Database Designer behavior.
The official bug report created by GoodData s.r.o. is included in Appendix
M on Page 112. DBPerfComp may be further used with new releases of Ver-
tica to test whether current issues are repaired and to find new possible
issues.

This thesis offers three possibilities of future work. The first option
is to investigate all doubles and triples without restriction on those com-
binations of query workloads and schemata that are not designed opti-
mally. The second option is to include machine learning that would take
measured data from different machines and different volumes of data.
Then, needed information (specification, dependencies) would be added,
and the machine learning would enable prediction of Database Designer
behavior for given hardware configuration. The third option is to extend
the implemented tool in the way that for the non-optimized design, the tool
would create a new optimized design with a usage of data statistics.

87

Bibliography

[1] Sezin G. Yaman. Introduction to column-oriented database systems.
In Seminar: Columnar Databases. University of Helsinky, November
2012.

[2] Db-engines ranking, 2017. https://db-engines.com/en/ranking. Da-
tum: 13. 4. 2017.

[3] TimeStored. The top column-oriented databases compared,
2017. http://www.timestored.com/time-series-data/

column-oriented-databases. Datum: 18. 4. 2017.

[4] HPE Vertica. Architecture overview, 2017. https://my.vertica.com/
get-started-vertica/architecture/. Datum: 13. 4. 2017.

[5] Gheorghe Matei. Column-Oriented Databases, an Alternative for An-
alytical Environment. Database Systems Journal, 1(2):3–16, December
2010.

[6] Vandana Bhagat and Arpita Gopal. Comparative study of row and
column oriented database. In 2012 Fifth International Conference on

Emerging Trends in Engineering and Technology, pages 196–201, Nov
2012.

[7] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-
stores vs. row-stores: How different are they really? In Proceedings

of the 2008 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’08, pages 967–980, New York, NY, USA, 2008. ACM.

[8] HPE Vertica. Vertica documentation – software version: 8.0.x,
2017. https://my.vertica.com/docs/8.0.x/PDF/Vertica_8.0.x_

Complete_Documentation.pdf. Datum: 3. 4. 2017.

[9] Jim Knicely. Global catalog and local catalog, 2017. http://

vertica-forums.com/viewtopic.php?t=2331. Datum: 21. 4. 2017.

[10] David Portnoy. Comparison of mpp data warehouse plat-
forms, 2017. https://www.slideshare.net/DavidPortnoy/

comparison-of-mpp-data-warehouse-platforms. Datum: 18. 4.
2017.

88

https://db-engines.com/en/ranking
http://www.timestored.com/time-series-data/column-oriented-databases
http://www.timestored.com/time-series-data/column-oriented-databases
https://my.vertica.com/get-started-vertica/architecture/
https://my.vertica.com/get-started-vertica/architecture/
https://my.vertica.com/docs/8.0.x/PDF/Vertica_8.0.x_Complete_Documentation.pdf
https://my.vertica.com/docs/8.0.x/PDF/Vertica_8.0.x_Complete_Documentation.pdf
http://vertica-forums.com/viewtopic.php?t=2331
http://vertica-forums.com/viewtopic.php?t=2331
https://www.slideshare.net/DavidPortnoy/comparison-of-mpp-data-warehouse-platforms
https://www.slideshare.net/DavidPortnoy/comparison-of-mpp-data-warehouse-platforms

BIBLIOGRAPHY

[11] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan
Zdonik. C-store: A column-oriented dbms. In Proceedings of the 31st

International Conference on Very Large Data Bases, VLDB ’05, pages
553–564. VLDB Endowment, 2005.

[12] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandier, Lyric Doshi, and Chuck Bear. The vertica analytic database:
C-store 7 years later. CoRR, abs/1208.4173, 2012.

[13] Vertica Tips. Release history, 2017. http://vertica.tips/

release-history/. Datum: 18. 4. 2017.

[14] Nga Tran, Andrew Lamb, Lakshmikant Shrinivas, Sreenath Bodagala,
and Jaimin Dave. The vertica query optimizer: The case for specialized
query optimizers. In 2014 IEEE 30th International Conference on Data

Engineering, pages 1108–1119, March 2014.

[15] Ramakrishna Varadarajan, Vivek Bharathan, Ariel Cary, Jaimin Dave,
and Sreenath Bodagala. Dbdesigner: A customizable physical design
tool for vertica analytic database. In 2014 IEEE 30th International Con-

ference on Data Engineering, pages 1084–1095, March 2014.

[16] HPE Vertica. Creating tables and projections,
2017. https://my.vertica.com/get-started-vertica/

creating-tables-projections/. Datum: 15. 4. 2017.

[17] HPE Vertica. Useful system tables, 2017. https://my.vertica.com/

get-started-vertica/useful-system-tables/. Datum: 18. 4. 2017.

[18] Dennis Shasha and Philippe Bonnet. Database Tuning: Principles, Ex-

periments, and Troubleshooting Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003. pp. 123-143. ISBN 978-1-
55860-753-8.

[19] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating

System Concepts. John Wiley & Sons, Inc., New York, NY, 6th edition,
2001. ISBN 0471417432.

[20] Synametrics Technologies. Top 10 performance tuning tips
for relational databases, 2017. https://synametrics.com/

SynametricsWebApp/WPTop10Tips.jsp. Datum: 22. 4. 2017.

89

http://vertica.tips/release-history/
http://vertica.tips/release-history/
https://my.vertica.com/get-started-vertica/creating-tables-projections/
https://my.vertica.com/get-started-vertica/creating-tables-projections/
https://my.vertica.com/get-started-vertica/useful-system-tables/
https://my.vertica.com/get-started-vertica/useful-system-tables/
https://synametrics.com/SynametricsWebApp/WPTop10Tips.jsp
https://synametrics.com/SynametricsWebApp/WPTop10Tips.jsp

BIBLIOGRAPHY

[21] HPE Vertica. Understanding query plans, 2017. https://my.vertica.
com/get-started-vertica/understanding-query-plans/. Datum:
23. 4. 2017.

[22] HPE Vertica. Reading query plans, 2017. https://my.

vertica.com/kb/Reading-Query-Plans/Content/BestPractices/

Reading-Query-Plans.htm. Datum: 12. 4. 2017.

[23] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill Higher Education, 7th edition, 2012. ISBN 978-0-07-
338309-5.

[24] Transaction Processing Performance Council (TPC). TPC
BenchmarkTM H – Standard Specification, 2017. http://www.tpc.

org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf.
Datum: 4. 4. 2017.

90

https://my.vertica.com/get-started-vertica/understanding-query-plans/
https://my.vertica.com/get-started-vertica/understanding-query-plans/
https://my.vertica.com/kb/Reading-Query-Plans/Content/BestPractices/Reading-Query-Plans.htm
https://my.vertica.com/kb/Reading-Query-Plans/Content/BestPractices/Reading-Query-Plans.htm
https://my.vertica.com/kb/Reading-Query-Plans/Content/BestPractices/Reading-Query-Plans.htm
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

A Lock modes

Mode Description

S – Shared

Use a Shared lock for SELECT queries that run at the serialized
transaction isolation level. This allows queries to run
concurrently, but the S lock creates the effect that transactions
are running in serial order. The S lock ensures that one
transaction does not affect another transaction until one
transaction completes and its S lock is released.

I – Insert

Vertica requires an Insert lock to insert data into a table.
Multiple transactions can lock an object in Insert mode
simultaneously, enabling multiple inserts and bulk loads to
occur at the same time. This behavior is critical for parallel loads
and high ingestion rates.

SI – Shared
Insert

Vertica requires a Shared Insert lock when both a read and an
insert occur in a transaction. Shared Insert mode prohibits
delete/update operations. An SI lock also results from lock
promotion.

X – Exclusive
Vertica uses Exclusive locks when performing deletes and
updates. Only mergeout and moveout operations (U locks) can
run concurrently on objects with X locks.

T – Tuple
Mover

The Tuple Mover uses T locks for operations on delete vectors.
Tuple Mover operations upgrade the table lock mode from U to
T when work on delete vectors starts so that no other updates or
deletes can happen concurrently. T locks are also used for COPY
into pre-join projections.

U – Usage

Vertica uses Usage locks for moveout and mergeout Tuple
Mover operations. These Tuple Mover operations run
automatically in the background, therefore, most other
operations (except those requiring an O lock) can run when
the object is locked in U mode.

O – Owner

An object acquires an Owner lock when it undergoes changes in
both data and structure. Such changes can occur in some DDL
operations, such as DROP_PARTITION, TRUNCATE TABLE,
and ADD COLUMN.

IV –
Insert-Validate

An Insert Validate lock is needed for insert operations where
the system performs constraint validation for enabled
PRIMARY or UNIQUE key constraints.

Table A.1: Lock modes that are available in Vertica. Descriptions are taken
from the official documentation [8]. Terms Tuple mover, mergeout operation

and moveout operation are defined in the documentation in chapter Tuple

Mover Operations.

91

B Parameters of main function of Database Designer

Parementer Description

design_name
Name of the design that you want to populate and
deploy, type VARCHAR.

output_design_file
Absolute path for saving the file that contains the DDL
statements that create the design projections, type
VARCHAR.

output_deployment_file
Absolute path for saving the file that contains
the deployment script, type VARCHAR.

a analyze_statistics

(Optional) BOOLEAN that specifies whether or not to
collect or refresh statistics for the tables before
populating the design. Default is 'false'. Accurate
statistics help Database Designer optimize compression
and query performance. Updating statistics takes time
and resources. If 'true', executes ANALYZE_STATISTICS.
If ANALYZE_STATISTICS has run recently, set this
parameter to 'false'.

deploy

(Optional) BOOLEAN that specifies whether or not to
deploy the Database Designer design using
the deployment script created by this function. Default:
'true'.

drop_design_workspace
(Optional) BOOLEAN that specifies whether or not to
drop the design workspace after the design has been
deployed. Default: 'true'.

continue_after_error

(Optional) BOOLEAN that specifies whether DE-
SIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY
should continue running if an error occurs. Default:
'false'.

Table B.1: Parameters of function DESIGNER_RUN_POPULATE_DE-

SIGN_AND_DEPLOY. Descriptions are taken from the official documen-
tation [8].

92

C Output tables of DBPerfComp

C.1 Table – monitoring of query runs

CREATE TABLE monitoring_table (

schema_name VARCHAR(30),

start_timestamp TIMESTAMP,

end_timestamp TIMESTAMP,

transaction_id BIGINT,

statement_id BIGINT,

response_ms NUMERIC(20,5),

memory_allocated_kb NUMERIC(20,5),

memory_used_kb NUMERIC(20,5),

cpu_time_ms BIGINT,

label VARCHAR(100),

query_name VARCHAR(100),

runname VARCHAR(100),

testname VARCHAR(100),

user_name VARCHAR(30),

resource_pool VARCHAR(30),

request_id BIGINT)

93

C. OUTPUT TABLES OF DBPERFCOMP

C.2 Main table – processed and measured data

CREATE TABLE measurements (

test_name VARCHAR(100),

base_schema VARCHAR(100),

compare_schema VARCHAR(100),

max_set_depth Integer,

query_set VARCHAR(100),

query VARCHAR(100),

design_time_ms FLOAT,

ratio NUMERIC(20,5),

ratio_query NUMERIC(20,5),

sum_response_ms NUMERIC(20,5),

avg_response_ms NUMERIC(20,5),

max_response_ms NUMERIC(20,5),

median_response_ms NUMERIC(20,5),

sum_memory_allocated_kb NUMERIC(20,5),

avg_memory_allocated_kb NUMERIC(20,5),

max_memory_allocated_kb NUMERIC(20,5),

median_memory_allocated_kb NUMERIC(20,5),

sum_memory_used_kb NUMERIC(20,5),

avg_memory_used_kb NUMERIC(20,5),

max_memory_used_kb NUMERIC(20,5),

median_memory_used_kb NUMERIC(20,5),

sum_cpu_time_ms NUMERIC(20,5),

avg_cpu_time_ms NUMERIC(20,5),

max_cpu_time_ms NUMERIC(20,5),

median_cpu_time_ms NUMERIC(20,5),

row_count Integer,

query_set_order1 VARCHAR(100),

query_set_order2 VARCHAR(100),

query_set_order3 VARCHAR(100),

query_set_order4 VARCHAR(100),

query_set_order5 VARCHAR(100),

vertica_version varchar(50),

node_count Integer,

cpu_node_count Integer,

ram_size_gb Decimal(15, 2),

data_size_gb Decimal(15, 2),

monitor_time TIMESTAMP)

94

C. OUTPUT TABLES OF DBPERFCOMP

C.3 Table – queries order in query workloads

CREATE TABLE queries_order_table (

testname VARCHAR(100),

query1 VARCHAR(100),

query2 VARCHAR(100),

query3 VARCHAR(100),

query4 VARCHAR(100),

query5 VARCHAR(100),

query_set VARCHAR(100),

processed BOOLEAN)

95

C. OUTPUT TABLES OF DBPERFCOMP

C.4 Logs

[TESTDESIGN - ADDING QUERY SET] Length of query bucket after adding: 680

[TESTDESIGN - ADDING QUERY SET] For query set 14,19 and for schema dbd_fk check

query 8 from the config file

[TESTDESIGN - ADDING QUERY SET] Query 8 from the config file is not in the query set

[TESTDESIGN - ADDING QUERY SET] In the query bucket there IS a duplicity for query

set 14,19,8

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET updated

[TESTDESIGN - ADDING QUERY SET] In the query bucket, the schema dbd_fk is missing

at the query set 14,19,8. »> Schema dbd_fk is addded. All schemas at this query set are:

dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 1. Schemas:

dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 10. Schemas:

dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 11. Schemas:

dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] For query set 14,19 and for

schema dbd_fk check query 8 from the config file

[TESTDESIGN - ADDING QUERY SET] Query 8 from the config file is not in the query set

[TESTDESIGN - ADDING QUERY SET] In the query bucket there IS a duplicity for query

set 14,19,8

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET updated

[TESTDESIGN - ADDING QUERY SET] In the query bucket, the schema

dbd_fk is missing at the query set 14,19,8. »> Schema dbd_fk is addded. All schemas at this

query set are: dbd_customized, dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 1.

Schemas: dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 10.

Schemas: dbd_customized,dbd_basic,dbd_fk

[TESTDESIGN - ADDING QUERY SET] QUERY BUCKET - Query set: 11.

Schemas: dbd_customized,dbd_basic,dbd_fk

96

D Query for investigation of Database Designer influ-

ence on database objects

SELECT DISTINCT
la.object_name la_object,
la.mode,
sum(timestampdiff(’ms’, la.time, lr.time)) total_lock_time_MS_sum,
count(timestampdiff(’ms’, la.time, lr.time)) total_lock_time_MS_count,
min(start_time),
max(start_time)

FROM dc_lock_attempts la
INNER JOIN dc_lock_releases lr ON la.transaction_id = lr.transaction_id

AND la.session_id = lr.session_id AND la.node_name = lr.node_name
AND la.object = lr.object AND la.object_name = lr.object_name

INNER JOIN query_requests qr ON qr.transaction_id = la.transaction_id
WHERE

request <> ’select 1’
AND (qr.user_name = ’design_user’ OR qr.request = ’%testing_design%’)
AND start_time > ’2017-01-01 00:00:00’

GROUP BY la.object_name, la.mode
ORDER BY la.object_name, la.mode
LIMIT 1000

97

E Locks – CRUD operations

This appendix shows locks that were created during CRUD operations that
worked with Region table. During SELECT, no lock was measured. Tables
situated below present created locks during INSERT, UPDATE and DELETE.
Clearly, except Cluster Topology, Global Catalog, and Local Catalog, only one
object was influenced with a lock during any table modification.

INSERT

UPDATE

DELETE

98

F TPC-H queries created for the experiments

F.1 Query 23

SELECT /*+ label(_LABEL_) */

c_name,

n_name,

o_orderpriority,

o_orderstatus,

count(o_orderkey) as count_orders,

cast(sum(o_totalprice) as DECIMAL(8,0)) as total_price,

min(o_orderdate) as min_date,

max(o_orderdate) as max_date,

cast(sum(l_quantity) as DECIMAL(4,0)) as quantity

FROM

customer,

orders,

lineitem,

nation

WHERE

o_custkey = c_custkey and

l_orderkey = o_orderkey and

o_orderpriority in (’1-URGENT’, ’2-HIGH’) and

n_regionkey = 3 and

n_nationkey = c_nationkey

GROUP BY

c_name,

o_orderpriority,

o_orderstatus,

n_name

ORDER BY

count_orders DESC, total_price DESC

LIMIT 100

99

F. TPC-H QUERIES CREATED FOR THE EXPERIMENTS

F.2 Query 24

SELECT /*+ label(_LABEL_) */

n_name,

l_shipmode,

c_mktsegment

FROM

customer,

orders,

lineitem,

nation,

supplier

WHERE

c_custkey = o_custkey

and l_orderkey = o_orderkey

and n_nationkey = c_nationkey

and s_suppkey = l_suppkey

and o_orderdate >= date ’1994-11-01’

and c_acctbal > 9000

and l_quantity > 2

and n_name LIKE ’A%’

and s_acctbal > 7000

and l_shipmode in (’MAIL’, ’REG AIR’, ’AIR’)

GROUP BY

n_name,

l_shipmode,

c_mktsegment,

o_orderpriority

100

G List of query workloads with timeout

101

H Query workloads – ordered by ratio

102

H. QUERY WORKLOADS – ORDERED BY RATIO

103

I Cluster2 – results

Table I.1: Distribution of non-optimal query-schema sets among particular
base query workloads – cluster2.

104

I. CLUSTER2 – RESULTS

Figure I.1: Graphs of allocated memory, used memory, CPU time and re-
sponse time where only singletons are selected – cluster2.

105

I. CLUSTER2 – RESULTS

Figure I.2: Response time for particular singletons and schemata – cluster2.

Figure I.3: CPU time for particular singletons and schemata – cluster2.

106

I. CLUSTER2 – RESULTS

Figure I.4: Design time for particular singletons and schemata – cluster2.

107

J Query for investigation of a query plan

SELECT

x.path_id,

epp.path_line_index,

to_char(x.db_time, :fmt12) as db_time, to_char(x.cpu_time, :fmt12) as cpu_time,

to_char(x.read_bytes_cache, :fmt12) as read_bytes_cache, to_char(x.read_bytes_disk,

:fmt12) as read_bytes_disk,

to_char(x.memory_allocated, :fmt12) as memory_allocated, to_char(rows_produced,

:fmt12) as rows_produced,

to_char(x.wos_bytes, :fmt12) as wos_bytes, to_char(ros_bytes, :fmt12) as ros_bytes,

to_char(x.temp_bytes_raw, :fmt12) as temp_bytes_raw, to_char(x.temp_bytes, :fmt12)

as temp_bytes,

to_char(x.queue_wait_time, :fmt12) as queue_wait_time, to_char(x.network_wait_time,

:fmt12) as network_wait_time,

to_char(x.merge_phases, :fmt12) as merge_phases,

x.statement_id,

epp.path_line

FROM (

SELECT

ep.node_name, ep.transaction_id, ep.statement_id,

ep.path_id,

ep.path_line,

round(sum(decode(zz.counter_name, ’clock time (us)’, zz.counter_value, 0))/1000)

as db_time,

round(sum(decode(zz.counter_name, ’execution time (us)’, zz.counter_value, 0))/1000)

as cpu_time,

round(sum(decode(zz.counter_name, ’input queue wait (us)’, zz.counter_value, 0))/1000)

as queue_wait_time,

round(sum(decode(zz.counter_name, ’network wait (us)’, zz.counter_value, 0))/1000)

as network_wait_time,

sum(decode(zz.counter_name, ’bytes read from cache’, zz.counter_value, 0))

as read_bytes_cache,

sum(decode(zz.counter_name, ’bytes read from disk’, zz.counter_value, 0))

as read_bytes_disk,

sum(decode(zz.counter_name, ’cumulative size of raw temp data (bytes)’,

zz.counter_value, 0)) as temp_bytes_raw,

sum(decode(zz.counter_name, ’cumulative size of temp files (bytes)’, zz.counter_value,

0)) as temp_bytes,

sum(decode(zz.counter_name, ’WOS bytes written’, zz.counter_value, 0)) as wos_bytes,

sum(decode(zz.counter_name, ’ROS bytes written’, zz.counter_value, 0)) as ros_bytes,

sum(decode(zz.counter_name, ’completed merge phases’, zz.counter_value, 0))

as merge_phases,

sum(decode(zz.counter_name, ’memory allocated (bytes)’, zz.counter_value, 0))

as memory_allocated,

sum(decode(zz.counter_name, ’rows produced’, zz.counter_value, 0)) as rows_produced

FROM dc_explain_plans ep

JOIN dc_requests_issued ri

USING (transaction_id, statement_id)

LEFT OUTER JOIN execution_engine_profiles zz

USING (transaction_id, statement_id, path_id)

WHERE

ri.label = ’_LABEL_’

AND ep.path_line_index = 1

108

J. QUERY FOR INVESTIGATION OF A QUERY PLAN

GROUP BY

ep.node_name, ep.transaction_id, ep.statement_id,

ep.path_id,

ep.path_line

) x

JOIN dc_explain_plans epp

USING (transaction_id, statement_id, path_id)

ORDER BY

epp.time

109

K Simplified Query 5

SELECT

s_name,

o_orderkey,

l_linestatus

FROM

customer,

orders,

lineitem,

supplier

WHERE

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and o_orderdate >= date ’1997-01-01’

and o_orderdate < date ’1997-01-01’ + interval ’1’ year

ORDER BY

l_extendedprice * (1 - l_discount) desc

LIMIT 1

110

L Query for investigation of query operations

SELECT

ri.label,

operator_name, counter_name,

(sum(counter_value)/1000)::integer as duration_ms,

count(*) as threads,

(sum(counter_value)/1000/count(*))::integer as duration_ms_per_thread

FROM

execution_engine_profiles_snap ee

JOIN (

SELECT distinct transaction_id, statement_id, label

FROM dc_requests_issued_snap_hist

WHERE regexp_like(label, ’^_LABEL_$’)

) ri

USING (transaction_id, statement_id)

WHERE

counter_name like ’\%(us)’

GROUP BY

ri.label, operator_name, counter_name

HAVING

(sum(counter_value)/1000/count(*))::integer > 5

ORDER BY

duration_ms desc

LIMIT 30

111

M Bug report

This appendix includes official bug report created by GoodData s.r.o. and sent
to Vertica. Selected emails from the conversation between Vertica and database
administrator of GoodData s.r.o. are included.

112

M. BUG REPORT

113

M. BUG REPORT

114

M. BUG REPORT

115

	Introduction
	Column-oriented database system
	Vertica
	 Glossary
	 Characteristics
	 Projections
	 Encoding
	 Segmentation
	 Partitioning
	 High Availability

	 Locks
	 System tables

	Database tuning
	 General database tuning
	 Database tuning in Vertica
	 Query monitoring

	 Database Designer
	 Functions of tool
	 Designing step

	DBPerfComp tool
	 Test goal
	 Tool design
	 Output
	 Documentation
	 Directory layout

	Analysis
	 TPC-H model
	 Hardware and software
	 Database Designers influence on database objects
	 Tables location
	 TPC-H queries, Database Designer and different catalog size
	 Steps of designing process
	 Different catalog size

	Data evaluation
	 Test setting
	 Results
	 Cluster 1
	 Cluster 2

	 Query 5
	 Projection definition
	 Query plan
	 Database operations
	 Manual optimization
	 Results summary

	Conclusion
	Lock modes
	Parameters of main function of Database Designer
	Output tables of DBPerfComp
	 Table – monitoring of query runs
	 Main table – processed and measured data
	 Table – queries order in query workloads
	 Logs

	Query for investigation of Database Designer influence on database objects
	Locks – CRUD operations
	TPC-H queries created for the experiments
	 Query 23
	 Query 24

	List of query workloads with timeout
	Query workloads – ordered by ratio
	Cluster2 – results
	Query for investigation of a query plan
	Simplified Query 5
	Query for investigation of query operations
	Bug report

