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Neural networks can be trained to work well for particular tasks, but hardly
ever we know why they work so well. Due to the complicated architectures
and an enormous number of parameters we usually have well-working black-
boxes and it is hard if not impossible to make targeted changes in a trained
model. In this thesis, we focus on network optimization, specifically we
make networks small and simple by removing unimportant synapses, while
keeping the classification accuracy of the original fully-connected networks.
Based on our experience, at least 90% of the synapses are usually redundant
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individual parts of the network. To identify which synapses are unimportant
a new measure is introduced. The methods are presented on six examples,
where we show the ability of our pruning algorithm 1) to find a minimal
network structure; 2) to select features; 3) to detect patterns among samples;
4) to partially demystify a complicated network; 5) to rapidly reduce the
learning and prediction time. The network pruning algorithm is general and
applicable for any classification problem.
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Chapter 1

Introduction

The very first model of an artificial neuron dates back to 1943, when two sci-
entists, neurophysiologist Warren S. McCulloch and mathematician Walter
Pitts, tried to imitate key features of biological neurons. The highly simpli-
fied model was further elaborated, which led to the concept of a perceptron,
published by Frank Rosenblatt in 1958, and over the time to teachable sys-
tems nowadays known as artificial neural networks.

Some people hold the view that deep neural networks are close to produce the
highly complex behaviour similar to what humans can do and solemnly call
their conducts "artificial intelligence". In my opinion, today’s AI designates
a bunch of methods that have nothing to do with a general intelligence,
but, yes, it can produce a human-like behaviour when solving one particular
problem. To give one example speaking for all, we can come with Google
translator, which started to use neural networks to increase fluency and
accuracy when translating longer sentences. Similarly, NNs are becoming
the state-of-the-art classification method in many other domains and one
must admit that the results are often fascinating.

Well, we know that NNs can be trained to work very well for several tasks,
however, the problem is that hardly ever we know why they work so well. The
architectures are complicated and the number of parameters is enormous. In
other words, we usually have a well-working black box.

When we deal with a real (not academical) problem, one often comes to a
point when his or her network works well (let’s say with the accuracy of
90%), but a customer asks for an accuracy of 98% for example. Then we
can either keep trying and spend months on tuning the black box mostly in
a random manner, or, if we demystify what is going on inside the network,
we can suggest reasonable and targeted improvements.

In this work, we focus on understanding the behaviour of feedforward neural
networks classifying particular data. We do it by optimizing the structure,
specifically by pruning parts of the network that are unimportant for the
classification. The hypothesis is that networks are often oversized and many
synapses are redundant. We also think that we can find some rules or pat-
terns in the network if it consists of important synapses only.

This effort could possibly lead to a general knowledge of how to design
networks and tailor them for the challenged problem. In effect, the dimen-
sionality of the parameters is significantly reduced, which speeds up both
learning and prediction.



Chapter 1. Introduction 2

1.1 State of the Art

Optimization is a term of a broad meaning. In (Orhan, 2017), they try to
break symmetries in a network in order to improve its performance. They
do it by adding so-called "skip connections", which can also be considered as
a kind of optimization. From another point of view, the problem could rest
in an optimization of the crucial network learning algorithm (GDA).

In this study we rather focus on making networks small and simple. Having
the smallest model that perfectly fits the classified data has two crucial
advantages: 1) good generalization; 2) good chance that we will understand
how the classification works.

There are two ways of how to end up with a small model that fits the data:

1. build a network from scratch by adding single parts (neurons, synapses)
until a required performance is reached;

2. train a network that is larger than necessary and then remove the parts
that are not needed.

The first approach is left out for the future work, and we focus on the second
course of action, which is called network pruning. The general approach of
a pruning procedure consists of these steps:

1. choose an oversized network architecture;

2. train the network until a reasonable solution is obtained;

3. delete a part of network (usually a synapse);

4. if the classification error has not grown, go to step 2), otherwise finish.

The key question is how to identify the parts that can be deleted without
an increase of the error. A good survey of published pruning methods is
provided in (Reed, 1993). The author starts with hypothetical calculations
of what will happen if we use a brute force and remove the elements one by
one. It ends up with a complexity of O(MW 3), where M is the number of
samples and W is the number of network elements - slow for large networks.

The pruning methods described below take a less direct approach and they
basically differ one from each other in how they identify the unimportant
network parts. In (Reed, 1993), the methods are divided into two groups:

• sensitivity calculation methods;

These methods estimate the sensitivity of the error function to removal
of an element; the elements with the least effect can then be removed.

• penalty-term methods.

These methods modify the cost function so that backpropagation based
on the function drives unnecessary parameters zero and, in effect, re-
moves them during training.

Since the cost function could include sensitivity terms, there is some overlap
in these groups and as our method would better fit to the first group, we
focus on three published methods based on sensitivity calculations.
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Skeletonization

In (Mozer and Smolensky, 1989) they introduce a measure called relevance
ρ of a synapse, which is an error when the synapse is removed minus the
error when the synapse is left in place.

The value is approximated using a gating term α for each unit such that

oj = f(
∑

i

wji · αi · oi) (1.1)

where oj is the activity of neuron j, wji is the weight from neuron i to neuron
j and f(·) is the Sigmoid function. If α = 0, the synapse has no influence
on the network; if α = 1, the synapse behaves normally. The relevance
estimation is then given by the derivative from backpropagation

ρ̂i = −
∂El

∂αi

∣

∣

∣

∣

∣

αi=1

(1.2)

Rather than the usual sum of squared errors, the error El (Eq. (1.3)) is used
to measure relevance, because it works better when the error is small.

El =
∑

|tpj − opj | (1.3)

The authors claim the method works well for understanding the behaviour
of a network in terms of "rules", which is shown on the RPE problem and
on Michalski’s trains (both these examples are also presented in this study
for comparison).

Optimal Brain Damage

In (LeCun, Denker, and Solla, 1990) they use this ambitious title for a study
that also tries to identify the unimportant weights and remove them from a
network. Their measure is called "saliency" of a weight and it is estimated
by the second derivative of the error with respect to the weight.

They compute the Hessian matrix H containing elements hij .

hij =
∂2E

∂wi∂wj
(1.4)

Since H is a very large matrix, they make a simplifying assumption that the
off-diagonal terms of H are zero. This leaves

δE ≈
1

2

∑

i

hii · δ · w2
i (1.5)
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It turns out that the second derivatives hkk can be calculated by a modified
back-propagation rule. The "saliency" sk of weight wk is then

sk = hkk ·
w2

k

2
(1.6)

In each pruning step, weights with low saliencies are deleted. The method is
tested on the MNIST dataset (LeCun and Cortes, 2010), which is also used
to show the developed method in this study.

Karnin’s Measure

The measure published in (Karnin, 1990) is the most similar to the one used
by the developed PA. The author also used the change in weight during the
pruning process to compute a measure called "sensitivity" for each synapse.
The sensitivity Sij of weight wij is given as

Sij = −
E(wf ) − E(wi)

wf − wi
· wf (1.7)

where wf is the final value of the weight after training and wi its randomly
chosen initial value. Rather than removing every weight and calculating
the errors directly, the author approximates S by monitoring the sum of
all the changes experienced by the weight during training. The estimated
sensitivity is

Ŝij =
N−1
∑

n=0

[

∆wij(n)
]2 w

f
ij

η · (wf
ij − wi

ij)
(1.8)

The ∆w values are calculated by backpropagation, hence, each weight has
an estimated sensitivity after training. The lowest sensitivity weights are
then deleted.

Contribution of This Work

We introduce own measure for the determination of how important indi-
vidual synapses are. It is believed to work equally well or better than the
others, while the principle is based on a nice and simple idea. It leads to a
better performance in terms of computational demands, which is discussed
and compared to the other listed methods in chapter 4.

Moreover, this study also suggests some ideas of how to take the advantages
of pruned networks. We show on several examples, that the developed PA is
capable of: 1) finding a minimal network structure for a given classification
problem; 2) detection of feature importance; 3) distinguishing important
samples from less important ones; 4) basic feature selection; 5) partial de-
mystification of complicated networks.



Chapter 1. Introduction 5

1.2 Master Thesis Objectives

The objectives of this study are:

1. to design a neural network framework capable of learning a general
classification problem;

2. to develop a pruning proceeder equipped by a tool for dimensionality
reduction after pruning;

3. to demonstrate the developed methods on appropriate examples and
suggest possible applications for pruned networks;

4. to implement state-of-the-art pruning methods and compare them to
the developed method.

1.3 Thesis Outline

The thesis consists of 5 chapters following the standard skeleton of scien-
tific publications. Chapter 2 details the instruments and operations we per-
formed.

At first, in section 2.1 we give a general description of the used classifica-
tion method and highlight some important design choices and conventions
(a detailed description of the established conventions is then given in ap-
pendix A1).

Then the developed network pruning algorithm is introduced in section 2.2,
which also contains the recipe of how to reduce the dimensionality of weight
matrices after pruning. Then we put a section called "Insight of Neural
Network" containing some ideas of how to use a derived minimal structure
to understand the workflow in the network. Section 2.4 is also included
among the methods, because it describes the approach of how the speech
data was collected.

In chapter 3, six examples are presented. Each of the examples shows the
pruning algorithm from a different point of view and each basically finds a
new application for it.

Chapter 4 comes with the discussion about the results. It also contains a
comparison of the developed pruning method to the presented state-of-the-
art methods from section 1.1. Then, ideas for the future work are suggested.
The study is concluded in chapter 5.

As mentioned above, appendix A1 gives a detailed view on the mathematical
notation used in section 2.1. Appendix A2 contains figures and tables that
did not fit to the main text, but still can be interesting for some readers.
Then, the structure of the workspace is provided in appendix A3 and the
attached code is documented in appendix A4.
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Chapter 2

Methods

This chapter opens a collection of recipes of how the work in this study is
done. Section 2.1 describes the classification, learning and evaluation proce-
dures. In section 2.2 the developed network pruning algorithm is introduced
and also the dimensionality reduction in pruned networks is shown. Section
2.3 comes with the feature selection method using a procedure called pathing
and, additionally, some ideas of how to use remaining weights in minimal
structures are suggested. Finally, section 2.4 is devoted to the process of
how the speech data was gathered.

Section 2.1 moreless specifies a generally known approach. Sections 2.2 - 2.3
are partially based on (Bulín, 2016), but the methods are further elaborated.

2.1 Classification Method

The classification in this study is performed by dense feedforward neural
networks. An illustration of a general feedforward network structure is in
Fig. 2.1. Note that the structure is fully connected, meaning that each
neuron is connected to all neurons in the next layer.

Figure 2.1: A general dense feedforward neural network.

The number of input units n is determined by the problem dimension. The
number of classes m gives the number of output units (see the established
conventions in appendix A1). In this study, we mostly use a simple hidden
structure, usually with one hidden layer (q = 1).
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Neuron Principle

The behaviour of artificial neurons follows our understanding of how bio-
logical neurons work. One unit has multiple inputs and a single output
(Rosenblatt, 1958). A model of neuron is shown in Fig. 2.2. The diagram
complies with the following notation:

neuron
(i)
k : kth neuron in ith layer

a
(i)
k : activity of kth neuron in ith layer

w
(i)
k,l : weight of synapse connecting lth neuron in (i − 1)th layer with kth

neuron in ith layer

b
(i)
k : bias connected to kth neuron in ith layer

z
(i)
k : activation of kth neuron in ith layer

f(·) : transfer function (Eq. (2.3); Fig. 2.3)

Figure 2.2: A model neuron

Assuming j being the number of neurons in (i− 1)th layer, the activation of

neuron
(i)
k is computed as in Eq. (2.1)

z
(i)
k =

j
∑

l=1

[a
(i−1)
l · w

(i)
k,l] + b

(i)
k (2.1)

Then we get the neuron activity by mapping its activation into a finite
interval using a transfer function f(·) - see Eq. (2.2).

a
(i)
k = f(z

(i)
k ) (2.2)

The Sigmoid function (Eq. (2.3)) keeps neuron activities in the 〈0, 1〉 inter-
val and is used by default in this work. Alternatively, one could use the
hyperbolic tangent (tanh(·)) function which maps the input into the 〈−1, 1〉
interval.
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f(z) =
1

1 + e−z
(2.3)

Two basic transfer functions are shown in Fig. 2.3.

−15 −10 −5 0 5 10 15
neuron activation z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
ne

ur
on

 a
ct

iv
ity

 a

f(z): sigmoid
tanh(z)

Figure 2.3: Transfer functions: Sigmoid and Tanh

Notation

The work of a neural network is all done by matrix calculations. Therefore
we need to introduce a notation used in this study. Detailed examples of the
itemized matrices can be found in appendix A1.

n : number of input neurons (problem dimension; size of one sample);

m : number of output neurons (classes);

p : number of samples;

q : number of hidden layers;

X : network input: n-by-p matrix;

W (i) : r-by-s matrix of weights for synapses connecting s neurons in (i−1)th

layer to r neurons in ith layer;

B(i) : vector of r biases for r neurons in ith layer;

Z(i) : r-by-p matrix of activations for r neurons in ith layer for all samples;

A(i) : r-by-p matrix of activities of r neurons in ith layer for all samples;

∆(i) : r-by-p matrix of errors on r neurons in ith layer for all samples;

Y : predicted network output for all samples: m-by-p matrix (Y = A(q))

U : desired network output (targets) for all samples: m-by-p matrix
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Learning Algorithm

Feedforward networks are trained by the common Backpropagation method
illustrated by the flowchart in Fig. 2.4.

Figure 2.4: Training process flowchart. T1: Threshold
for a terminating condition based on the prediction error
(Eq. (2.19)). If the error is reduced to be lower than T1,
the learning process is stopped and the model is considered
trained. T2: Threshold for a terminating condition based on
the number of epochs. The learning process is stopped after
T2 epochs, no matter how successful the training has been.

In case of feedforward neural networks, the goal is to find optimal values for
two groups of parameters - weights (W ) and biases (B). The key idea lies
in the optimization method called Gradient Descent Algorithm (GDA).

At first, a batch of samples X is (forward) propagated through a network to
get the network’s prediction Y .

Z(1) = W (1) ·X +B(1) (2.4)

A(1) = f(Z(1)) (2.5)

A(i) = f(W (i) ·A(i−1) +B(i)) (2.6)

Y = A(q) = f(W (q) ·A(q−1) +B(q)) (2.7)

Then, having the known targets (supervised learning), we compute a predic-
tion error on every output neuron for every sample and store those errors in
the m-by-p matrix E.

E =
(U − Y ) × (U − Y )

2
(2.8)
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Now it is time to use GDA to find such W and B that make E minimal.
The details of the Backpropagation procedure are well described in (Nielsen,
2017). The envelope of the algorithm includes these steps:

1. find the derivative of the transfer function (assuming Sigmoid);

f ′(z) = f(z) · (1 − f(z)) (2.9)

2. backpropagate the prediction error through the network;

∆(q+1) = (U − Y ) × f ′[Z(q+1)] (2.10)

∆(i) =

[

[

W (i+1)
]T

· ∆(i+1)
]

× f ′[Z(i)] (2.11)

3. find the optimal parameter changes;

Every sample ξ has a vote dW (i)
(ξ) (resp. dB(i)

(ξ)) on how the parameters

W (i) (resp. B(i)) should change to get the minimal error and the result
is then obtained as a compromise of those votes.

Index (i) indicates the layer. Consider ∆
(i)
(ξ) be the ξth column of the

∆(i) matrix, which corresponds to the ξth sample (see appendix A1).

Analogically, A(i−1)
(ξ) is the ξth column of the activation matrix A(i−1)

in the (i− 1)th layer. Then we get the votes as:

dW
(i)
(ξ) = A

(i−1)
(ξ) ·

[

∆
(i)
(ξ)

]T

(2.12)

dB
(i)
(ξ) = ∆

(i)
(ξ) (2.13)

4. update the parameters.

At this point we introduce the first parameter of the learning process
called batch_size. It states how many votes are processed together
to make one update of the parameters. If batch_size = 1, we
are talking about sequential learning. In this case, each vote is ap-
plied to update the parameters before any other votes are computed
(Eq. (2.14)).

dW (i) = dW
(i)
(ξ) (2.14)

In this work, we usually use batch learning ( batch_size > 1).

dW (i) =
batch_size

∑

ξ

dW
(i)
(ξ) (2.15)

Equations 2.14 and 2.15 work analogically for the biases.
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The second parameter of the learning procedure is called learning_rate
(µ) and is usually set 0 < µ << 1 in order to deal with GDA problems
(see (Nielsen, 2017)). The update of the parameters is then done as
follows (t refers to a moment in time):

W (i)(t+ 1) = W (i)(t) + µ · dW (i)(t) (2.16)

B(i)(t+ 1) = B(i)(t) + µ · dB(i)(t) (2.17)

When the votes of all samples are applied, the learning epoch ends. The
maximal number of epochs and the maximal required error (see Fig. 2.4) are
also parameters of the learning procedure. To list them all:

• batch_size

• learning_rate (µ)

• n_epoch

• max_error (MSE′; Eq. (2.19))

Network Evaluation

We use two measures to evaluate the network training: error and accuracy.
The error measure is based on the standard Mean Squared Error (MSE)
given by Eq. (2.18).

MSE =
1

2p

p
∑

ξ=1

||yξ − uξ||2, (2.18)

where yξ is the prediction for sample ξ and uξ its corresponding (known)
target. Both are vectors of length m (number of classes).

In this study we rather use the measure given by Eq. (2.19), because it makes
a fair comparison of problems with a different number of classes.

MSE′ =
1

2pm

p
∑

ξ=1

m
∑

θ=1

(yξ,θ − uξ,θ)2 (2.19)

The classification accuracy is computed with Eq. (2.20).

acc =
1

p

p
∑

ξ=1

ψ, ψ =







1, argmax(yξ) = argmax(uξ)

0, otherwise
(2.20)

The classification result is often shown by a confusion matrix (well explained
in (Buitinck et al., 2013). The testing is usually done on different data
samples than used for training - see Fig. 2.14.
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2.2 Network Pruning

The rule of thumb in classification with feedforward neural networks is using
a fully connected structure - every unit is connected to all units in the next
layer.

Pruning methods work with the hypothesis that some of the synapses in
fully connected networks do not contribute to the classification and so their
removal would not cause a significant accuracy drop. The problem (graphi-
cally illustrated in Fig. 2.5) is to distinguish those redundant synapses from
the important ones.

Figure 2.5: Pruning Algorithm: problem formulation.

There are several ways of how to estimate the importance of synapses (see
section 1.1). In this study we introduce a measure called weight significance
factor (WSF) given by Eq. (2.21).

WSF (w
(i)
k,l) = |w

(i)
k,l(tf ) − w

(i)
k,l(0)|, (2.21)

where w(i)
k,l(tf ) is the weight of the synapse coming to kth neuron in the ith

layer from lth neuron in (i − 1)th layer after training (tf : time final). Ana-

logically, w(i)
k,l(0) is the initial weight of the same synapse before training.

We compare these two values and get the change in weight over the train-
ing process. The key idea is that the redundant synapses do not change
their weights over the training. Therefore, those synapses with low WSF are
considered less important than those with high WSF.

Realization of the Pruning Proceeder

The general recipe of how to prune a synapse is illustrated in Fig. 2.6.

Figure 2.6: The flowchart of pruning one synapse, demon-
stration of parameter retrain.



Chapter 2. Methods 13

Fig. 2.6 introduced the first parameter of the pruning process called retrain.
We make it True if we want to retrain the pruned network (without the cut
synapse) before checking the accuracy drop. In practice, we are able to set
the exact number of epochs we want the net to retrain.

The required accuracy (req_acc) is the second parameter. In some cases
we want to give up some of the accuracy in exchange for a well pruned
network in order to see some patterns in it. This parameter sets the minimal
accuracy the network must have so that we can treat the lastly cut synapses
as unimportant. The accuracy is checked on the development data, while
the training is performed on the training data (see Fig. 2.14).

So far we gave a recipe of how to prune one synapse. Of course, we cannot
check all the synapses one by one using the approach in Fig. 2.6. Instead,
we cut out multiple synapses at once before checking the accuracy drop. In
fact, network pruning is an iterative procedure with some guessing. The first
guess is the order in which we prune the synapses and the second guess is
how many of them we should prune at once.

The order of the synapses is determined by the WSF (Eq. (2.21)) - the key
idea of our pruning algorithm. Each time before pruning, all the synapses
are sorted by their WSF values.

To estimate the number of synapses to cut at once we use percentiles - see
Fig. 2.7.

Figure 2.7: Network pruning proceeder.

The percentile level is set to P = 75 at the beginning. Hence the algorithm
tries to prune 75% of the synapses (those with low WSF) in the first pruning
step. Then the accuracy drop is checked (with or without retraining). If the
accuracy dropped, we decrease the percentile level P and try to delete less
synapses in the next step.

At this point we introduce another parameter of the pruning procedure called
percentile_levels, which is an array specifying the levels we try (e.g.
percentile_levels = (75, 50, 30, 20, 0)). The last level in this array is always
zero. When P = 0 we delete only the one synapse; the one with the lowest
WSF. In this manner, at some point of the pruning process, the algorithm
will come to removing only one synapse at once and if only a single synapse
has been removed during the last pruning step and the accuracy has been
broken, it means that even this single synapse with the least change in
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weight is important for classification. Therefore, the pruning is stopped
and the current net structure (including this last synapse) is saved as the
minimal structure. Therefore, the algorithm is finite and it also guarantees
that the classification accuracy does not drop. To sum up the parameters of
the pruning procedure:

• retrain

• req_acc

• percentile_levels

Dimensionality Reduction

In practice, neural networks are usually represented by matrices (W and B)
and the learning and prediction are performed by matrix calculations. The
pruning algorithm cuts out some synapses which leads to the reduction of
matrix dimensions if we restructure the matrices after pruning.

If a synapse is pruned, the corresponding weight in the W matrix takes
zero value. Consider the following weight matrix W (i), where the ith layer
consists of 3 neurons and the (i− 1)th layer has 4 neurons.

W
(i)
full =









w
(i)
11 w

(i)
12 w

(i)
13 w

(i)
14

w
(i)
21 w

(i)
22 w

(i)
23 w

(i)
24

w
(i)
31 w

(i)
32 w

(i)
33 w

(i)
34









=







−0.02 0.32 −0.28 −0.91
−0.72 0.9 0.81 0.54
0.13 −0.45 0.62 0.24







Now, let’s assume that synapses corresponding to weights w(i)
13 , w(i)

14 , w(i)
21 ,

w
(i)
22 , w(i)

23 , w(i)
24 , w(i)

31 , w(i)
33 were pruned. The weight matrix W (i) changes to:

W
(i)
pruned =







−0.02 0.32 0 0
0 0 0 0
0 −0.45 0 0.24







We know that each row of the matrix corresponds to inputs of one neuron
in the ith layer and each column maps the outputs of one neuron in the
(i− 1)th layer. Therefore, if we find a row of zeros, we can safely remove the
corresponding (2nd) neuron from the network, as it has no inputs. Moreover,
we can (better said we must) also remove the 2nd column in the weight matrix
W (i+1) responsible for the outputs of the removed neuron.

Analogically, if the 3rd neuron in the (i − 1)th layer has no outputs (3rd

column of zeros in W (i)), it is useless for classification. Hence we can also
delete this column in W (i) and must remove corresponding inputs of the
removed neuron, which is the 3rd row of the weight matrix W (i−1). We call
the process network shrinking.

W
(i)
shrinked =

[

−0.02 0.32 0
0 −0.45 0.24

]

After the removal of a specified neuron, a corresponding bias is also removed.
When we shrink the first hidden layer, we must also adjust the feature vectors
accordingly.
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2.3 Insight of Neural Network

We know that state-of-the-art fully-connected networks can be trained to
work very well for several tasks, however, hardly ever we know why they work
so well. Pruned networks come with some advantages that help demystify
these black-box models.

Pathing in Networks

Based on the PA (section 2.2) we assume that every single synapse left in the
pruned network is somehow important for classification. Therefore it makes
sense to track these connections from the input to the output of a network
to find out some patterns among features and classes. We define path(c)

f as
a sorted list of synapses that connects feature f with class c (Fig. 2.8).

Figure 2.8: Explanation of a path.

If there is a path from feature f1 to class c1, we assume that f1 is interesting
for the class. Otherwise, if there is no path, the feature is probably not
needed for class c1 at all. This leads to a promising idea of how to do a
feature selection.

Feature Energy

Moreover, we also know the weights of the remaining synapses. Hence,
besides the information if or if not a feature influences a class, we can also
state how big the influence is. We introduce a measure called feature energy
(E).

E(f, c) =
P

∑

p=1

Sp
∏

s=1

w
(p)
s

|b
(p)
s |

(2.22)

where E(f, c) is the energy of feature f for class c, P is the number of paths

from feature f to class c, Sp is the number of synapses in the pth path, w(p)
s

is the weight of the sth synapse in the pth path and b
(p)
s is the bias of the

neuron this synapse is connected to.

A total energy E(f) of feature f for a classification problem is given as:

E(f) =
m

∑

k=1

|E(f, ck)| (2.23)
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2.4 Gathering of Speech Data

The presented methods are tested on several examples (chapter 3) and one
of them rests in a classification of phonemes. By definition a phoneme is one
of the units of sound that distinguish one word from another in a particular
language (Wikipedia, 2004). We focus on Czech language and consider 40
phonemes listed in Table 2.1. This section describes the way of gathering
such phonemes and building a dataset for the classification.

sound phoneme example sound phoneme example sound phoneme example

a a máma ch x chyba ř R moře
á A táta i i pivo ř Q tři
au Y auto í I víno s s osel
b b bod j j voják š S pošta
c c ocel k k oko t t otec
č C oči l l loď ť T kutil
d d dům m m mír u u rum
ď D děti n n nos ú (ů) U růže
e e pes n N banka v v vlak
é E lépe ň J laň z z koza
eu F eunuch o o bok ž Z žena
f f facka ou y pouto _sil_ (silence)
g g guma p p prak
h h had r r rak

Table 2.1: Czech phonetic alphabet.

The generation of a speech dataset consists of the following steps:

1. acquisition of real voice recordings;

2. feature extraction from the sound signals (parameterization);

3. labeling the data;

4. definition of one sample;

5. splitting samples into training/development/testing sets.

Acquisition of Voice Recordings

The phoneme dataset is made of real speech recordings from a car interior
environment, provided by (Škoda auto 2017). We are talking about simple
voice instructions for a mobile phone or a navigation system, many of them
are names of people, streets or towns only. In total 14523 recordings (.wav
files) of various length (and so number of phonemes) were obtained.

Parameterization

The goal of parameterization is to represent each recording by a vector of
features. A commonly known procedure based on MFCCs is used. A nice
detailed explanation of this method can be found e.g. in (Lyons, 2009).

The idea behind MFCCs originates in the fact that a shape of human vo-
cal tract (including tongue, teeth etc.) determines what sound comes out.
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The shape of the vocal tract manifests itself in the envelope of the short
time power spectrum, and the job of MFCCs is to accurately represent this
envelope.

The parameterization workflow is summarized by these steps:

1. splitting the signal into short frames;

Fig. 2.9 illustrates how a sound signal is divided into short frames. The
parameters are

frame_size = 0.032 s = 32ms

frame_shift = 0.01 s = 10ms

Using the sampling frequency fs = 8kHz, we get frames of length 256.

Figure 2.9: Framing a sound signal.

We assume each frame captures one possible shape of the human vocal
tract and therefore it is capable of carrying one phoneme only. The
next steps are applied for every single frame.

2. calculation of the periodogram estimate of the power spectrum;

The aim is to identify which frequencies are present. In order to do
so, we apply the Hamming window and perform the discrete Fourier
Transform (DFT; Eq. (2.24)).

S(k) =
N−1
∑

n=0

sn · e−2πi kn
N , k = 0, ..., N − 1, (2.24)

where N (in this case N = 256) is the signal length. Then we take the
absolute value |S(k)|.

3. application of the mel filterbank to the power spectra, summation of the
energy in each filter, taking a logarithm of the result;

Next, we use a filterbank of triangle filters (illustrated in Fig. 2.10)
predefined on the transmitted band (bw = fs

2 = 4kHz) to get a single
value per filter. We use 40 filters, therefore, each frame is now described
by a vector of 40 numbers.
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Figure 2.10: Mel Filterbank of 40 filters in Hertz-axis.

Finally, a logarithm of the result is taken and considered as a descrip-
tion of the frame (phoneme). Usually, a discrete Cosine Transform
(DCT) is applied at the end, however, it is not done in this work. The
result of a signal parameterization is a matrix shown in Eq. (2.25).

recording_params =















f11 f12 f13 . . . f1F

f21 f22 f23 . . . f2F

...
...

...
. . .

...
fW 1 fW 2 fW 3 . . . fW F















, (2.25)

where F = 40 is the number of filters and W is the number of frames
(windows) depending on the duration of a recording. Value f12 then
belongs to the feature computed with the second filter in the first
frame.

Data Labeling

We perform a supervised learning method, hence the data must be labeled.
To do so a speech recognition method based on Hidden Markov Models
(HMMs) is used. It labels the frames of each recording as shown on an
example in Table 2.2.

recording_name
frame_in frame_out phoneme

0 16 _sil_
16 25 a
25 32 n
32 44 o
44 65 _sil_

Table 2.2: Example of a labeled recording.

It says that features extracted from this recording consist of 16 fourty-
dimensional vectors representing a silence, then 9 fourty-dimensional vectors
representing phoneme "a", 7 vectors of phoneme "n", etc.
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Forming a Sample

The 40 phonemes listed in Table 2.1 are naturally labels of classes, so we have
a fourty-class classification problem. Having the information from previous
section, one can match the extracted features with corresponding phonemes
(classes). Now the task is to define the form of one sample.

Fig. 2.11 goes with the example in Table 2.2. The numbers in the first line
are frame indices. The second line contains the known frame labels, where
each frame is described by a vector of 40 features.

There is a possibility to take all frames labeled as "a" and consider the
corresponding vectors directly as samples. However, as the labeling was
not done manually and therefore cannot be considered as 100% correct, we
introduce a parameter called border_size. Fig. 2.11 shows that we omit
the frames on borders with another phoneme label and take only those in
the middle.

Figure 2.11: Forming a sample, illustration of parameter
border_size (bs).

Moreover, in Fig. 2.12 parameter context_size is introduced. The idea
is to consider not only the information of one frame, but also of its context,
into one sample.

Figure 2.12: Forming a sample, illustration of parameter
context_size (cs).
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Based on the chosen context size cs the previous and subsequent vectors are
added one by one and form one feature vector of length 40 · (2cs + 1). An
example for cs = 2 is illustrated in Fig. 2.13.

Figure 2.13: Example of building a feature vector with
context_size cs = 2.

Talking about Fig. 2.13, features g1, g2, ..., g200 give the final feature vector
of one sample, which takes the label of the base frame.

The last parameter of the speech dataset generation is the number of samples
per class (n_samples). The rule of thumb is the more samples the better
training results, however, getting best possible training results is not the
objective of this work. Therefore we often use less samples to speed up the
training process.

To summarize this section, we end up with three parameters of the speech
dataset generation process:

• border_size (bs), see Fig. 2.11

• context_size (cs), see Fig. 2.12

• n_samples per class (ns)

Splitting data into three disjunctive sets

Fig. 2.14 shows a general approach of data splitting in machine learning.
It is used for all classification problems in this work. The training data
is used to set up model parameters. The development data is then used
for testing during the training process, in order to adjust some learning
parameters based on the test results. Finally, a trained model is tested on
never-seen testing data. By default, we use splitting: 80% training set; 10%
development set; 10% testing set.

Figure 2.14: Using three disjunctive sets of data for a gen-
eral machine learning process.
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Chapter 3

Examples

The pruning algorithm is presented on several examples, where each of them
has its purpose of being shown. The XOR problem (section 3.1) should
verify the ability of finding an optimal network structure. Section 3.2 comes
with another 2D problem, where one feature carries more information than
the other one. The Rule-plus-Exception problem in section 3.3 deals with
a minority of samples that has to be treated by a different net part than
rule-based samples. The train problem (section 3.4) is a working example of
the feature selection procedure. The MNIST database (section 3.5) is widely
used in machine learning and can be regarded as commonly known, hence it
is an ideal example to present new methods on. Finally, in section 3.6 the
pruning algorithm is analysed on a large dataset of phonemes.

3.1 XOR Function

The standard Exclusive OR (XOR) function is defined by truth Table 3.1.
Based on this function one can build a classification problem of two features
and two classes.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.1: XOR function.

This problem serves perfectly for a demonstration of network optimization
methods, as two optimal architectural solutions producing the XOR function
are already known (Fig. 3.1) 1.

1The known (e.g. from (Bradley, 2006)) minimal network architectures producing the
XOR function [2, 2, 1] and [2, 3, 1] are adjusted to [2, 2, 2] and [2, 3, 2] in Fig. 3.1 in order to
comply with the conventions introduced in appendix A1. The number of output neurons
always equals the number of classes. The number of hidden-output synapses might not be
optimized in this study.
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(a) Solution A. (b) Solution B.

Figure 3.1: Optimal network architectures producing the
XOR function.

With this knowledge we can prove that the pruning algorithm is (or is not)
able to find the optimal solution. If the method is correct, it should end up
with one of the shown architectures (Fig. 3.1a or Fig. 3.1b).

The truth Table 3.1 ruled the generation of a 2D dataset illustrated in
Fig. 3.2. The two classes can be linearly separated by two lines (correspond-
ing to two neurons, see Fig. 3.1a) and each class consists of 1000 samples.
Each sample was randomly assigned to one of the two possible points be-
longing to its class (e.g. (0,0) or (1,1) for class 0) and then randomly placed

in the surrounding area within a specified range (r =
√

2
4 ).

The samples of each class were then splitted into three sets in the following
manner: 80% to a training set, 10% to a validation set and 10% to a testing
set.
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Figure 3.2: The XOR dataset.

The goal of this example is to show that the pruning algorithm finds one
of the known minimal network structures (Fig. 3.1). An oversized network
[2, 50, 2] is used as the starting point. The following Table 3.2 shows all the
experiment settings.
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initial network learning parameters pruning parameters
structure [2, 50, 2] learning rate 0.3 required accuracy 1.0
n synapses 200 number of epochs 50 retrain True
transfer fcn sigmoid minibatch size 1 retraining epochs 50

Table 3.2: Experiment settings for the XOR example.

Results: XOR Function

Fig. 3.3 describes the pruning process. We can see the number of synapses,
the network structure and the classification accuracy for single pruning steps.
When the required accuracy (1.0) was not reached, the corresponding steps
are transparent in the figure, indicating they were forgotten.
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Figure 3.3: Illustration of the pruning procedure applied
on XOR dataset (selected observation).

In Fig. 3.4 the hypothesis of this experiment is confirmed. We ran 100
observations of the experiment. In Fig. 3.4a we can see that in 47 out of
100 cases the pruning algorithm changed the network to [2, 2, 2] architecture
(Fig. 3.1a), in 45% of the cases it resulted with [2, 3, 2] (Fig. 3.1b) and only
in 8% it failed to find the optimal architecture. Fig. 3.4b gives statistics for
the final number of synapses in these three cases.
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Figure 3.4: Pruning results for XOR dataset.
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3.2 Unbalanced Feature Information

This example is adopted from (Karnin, 1990). The problem is again two-
dimensional having two non-overlapping classes as depicted in Fig. 3.5. The
samples are uniformly distributed in [−1, 1] x [−1, 1] and the classes are
equally probable, separated by two lines in 2D space (x1 = a and x2 = b,
where a = 0.1 and b = 2

a+1 − 1 ≈ 0.82). Clearly, the problem can be solved
by two neurons, similarly as the previous one.

What is interesting about this two-classes layout is that feature x1 is much
more important for the global classification accuracy than feature x2. Having
x1 information, based on Fig. 3.5 one could potentially classify more than
90% of the samples. Opposite of that, we cannot say much with information
from feature x2 only. And this is something that also the pruning algorithm
should find out.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

a

b

class 0

class 1

training data

validation data

testing data

Figure 3.5: The UFI dataset.

Hence, we focus on synapses connecting the input and the hidden layer
(shortly input-hidden synapses). We know the required network structure is
[2, 2, 2], as two lines are needed to separate the data in 2D space. Actually,
we even know the lines must be parallel to coordinate axes, which means
that each of the hidden units needs one of the features only. Therefore, the
first hypothesis here is that pruning of input-hidden synapses should result
in one of the cases in Fig. 3.6.

(a) Pruning result 1. (b) Pruning result 2.

Figure 3.6: Expected pruning of input-hidden synapses
(UFI problem).
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To prove this behaviour, we ran an experiment with settings in Table 3.3.

initial network learning parameters pruning parameters
structure [2, 2, 2] learning rate 0.7 required accuracy 0.98
n synapses 8 number of epochs 50 retrain True
transfer fcn sigmoid minibatch size 1 retraining epochs 50

Table 3.3: Experiment settings for the UFI example.

The second hypothesis is that the synapse connected to the first feature (x1)
is more important and therefore, the other synapse (the one connected to
feature x2) should always be removed first.

Results: Unbalanced Feature Information

In Fig. 3.7 the first hypothesis is confirmed. We ran the experiment 100
times. In 48 cases, the pruning of input-hidden synapses finished with the
result shown in Fig. 3.6a and it finished with the result shown in Fig. 3.6b
in 44% of the cases.

48%

44%

8%

pruning result 1

pruning result 2

other

Figure 3.7: Results of pruning (see Fig. 3.6) input-hidden
synapses (100 observations, UFI example).

In other words, with a probability of 92% the algorithm is able to find the
axis-parallel lines and reveals that each of the lines needs the information
from corresponding feature only. In the remaining 8% of the cases the prun-
ing resulted with more than two input-hidden synapses.

The second hypothesis is confirmed in Fig. 3.8. The WSF was always (100
observations) greater for the synapse coming from feature x1 than for the
synapse connected to x2. By definition (see section 2.2), the pruning method
eliminates the synapses with low significance factors first, therefore the in-
formation coming from feature x1 would live longer in the network than the
x2 information.

Let’s try to explain this result. Consider wr1 to be the weight of the synapse
connecting the x1 feature and rth hidden neuron (with bias br) and ws2 to
be the weight of the synapse coming from feature x2 to sth hidden neuron
(with bias bs), then by neuron definition (Rosenblatt, 1958) we created two
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lines, perpendicular one to each other, as follows.

wr1 · x1 + 0 · x2 + br = 0 (3.1)

x1 = −
br

wr1
(3.2)

0 · x1 + ws2 · x2 + bs = 0 (3.3)

x2 = −
bs

ws2
(3.4)

In Fig. 3.5 we see that a < b. To generalize the problem (assuming nor-
malised feature vectors) we state |a| < |b|, meaning we want:

| −
br

wr1
| < | −

bs

ws2
| (3.5)

Hence we expect:

|wr1| > |ws2| (3.6)

Out of this we expect a weight magnitude to be greater for more important
synapses.
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Figure 3.8: Weight change in training for the remaining
input-hidden synapses (100 observations).

The weight magnitude seems to be a perfect measure to find feature signif-
icance factor. However, as we do not use a weight decay (see the learning
approach in section 2.1), in general the more epochs we learn the greater
weight magnitudes we get. Therefore small initial weight values do not af-
fect the result significantly and so we can state:

|wji(t)| ≈ |wji(t) − wji(0)| (3.7)

where wji(0) ∈ N(0, 1) is the initial value of weight wji and t is time. Sum-
ming it up we can say that the WSF measure based on weight change is equally
good as the magnitude measure for feature selection, assuming enough train-
ing epochs (e.g. 50).
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3.3 Rule-plus-Exception

This four-dimensional problem is originally adopted from (Mozer and Smolen-
sky, 1989) and is also used in (Karnin, 1990). The task is to learn another
Boolean function: AB + ABC D. A single function output should be on
(i.e. equals 1) when both A and B are on, which is the rule, and it should
also be on when the exception ABC D occurs.

Clearly, the rule occurs more often than the exception, therefore the samples
corresponding with the rule should be more important for the global classifi-
cation accuracy. The hypothesis is that the pruning method should suggest
the part of network, which deals with the exception, to be eliminated first -
before network elements dealing with the rule.

To test this hypothesis, a dataset of 10000 samples was generated. Each
sample consists of four features: [a, b, c, d]. Each of these features (for every
sample) was randomly set to be on (1) or off (0). Then, whenever the
rule occurred (a = 1 ∧ b = 1), the sample was assigned to class 1 (as a rule
sample). If the exception occurred (a = 0∧b = 0∧c = 0∧d = 0), the sample
was also labeled as 1 (as an exception sample). Otherwise, the sample was
assigned to class 0. Thereby the generated dataset consisted of:

• 2511 rule samples (class 1);

• 649 exception samples (class 1);

• 6840 samples in class 0.

The function is expected to be learned by two hidden neurons, one dealing
with the rule and the other one with the exception. We focus on input-
hidden synapses again. Two possible expected pruning results are shown in
Fig. 3.9.

(a) Pruning result 1. (b) Pruning result 2.

Figure 3.9: Expected pruning of input-hidden synapses
(RPE problem).

We ran the learning-pruning procedure with the settings listed in Table 3.4.

initial network learning parameters pruning parameters
structure [2, 2, 2] learning rate 1.0 required accuracy 1.0
n synapses 8 number of epochs 50 retrain True
transfer fcn sigmoid minibatch size 1 retraining epochs 50

Table 3.4: Experiment settings for the RPE example.
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Results: Rule-plus-Exception

Fig. 3.10 supports the hypothesis that one hidden neuron forms the rule and
the other one the exception. With a probability of 97% the pruning finished
with one of the structures in Fig. 3.9.

47%

50%
3%

pruning result 1

pruning result 2

other

Figure 3.10: Results of pruning (see Fig. 3.9) input-hidden
synapses (100 observations, RPE example).

The same thing is confirmed by Fig. 3.11. It shows weight change in training
(WSF) for all 8 input-hidden synapses. We can see that synapses connecting
the rule neuron with feature c (src) and feature d (srd) were suggested as
least important (resulted in structures in Fig. 3.9).
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Figure 3.11: Weight change in training for input-hidden
synapses (100 observations, RPE example).

Additionally, synapses responsible for rule (sra and srb) have a greater mean
significance than the synapses connected with the exception neuron (se∗).
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3.4 Michalski’s Trains

The train problem was originally introduced in (Larson and Michalski, 1977).
The task was to determine concise decision rules distinguishing between two
sets of trains (Eastbound and Westbound). In (Mozer and Smolensky, 1989),
they presented a simplified version illustrated in Fig. 3.12.

Figure 3.12: Michalski’s train problem.

Each train is described by 7 binary features listed in Table 3.5.

feature encoded as 0 encoded as 1

0 car length long short
1 car type open closed
2 cabin pattern vertical lines horizontal lines
3 load shape triangle circle
4 color of trailer wheels white black
5 color of first car wheel white black
6 color of second car wheel white black

Table 3.5: Features describing a train.

Having Table 3.5 we can encode the trains shown in Fig. 3.12 into feature
vectors as follows in Table 3.6.

class EAST class WEST
east 1 [0, 1, 1, 0, 0, 0, 1]T west 1 [0, 1, 1, 1, 1, 0, 0]T

east 2 [0, 0, 1, 0, 1, 0, 0]T west 2 [1, 1, 1, 0, 1, 0, 0]T

east 3 [0, 0, 1, 0, 0, 1, 1]T west 3 [1, 1, 0, 1, 1, 1, 1]T

Table 3.6: Feature vectors for different train types.

The task is to determine the minimal number of input features capable of
the east-west classification based on the six possible types in Table 3.6 (or
in Fig. 3.12).
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The hypothesis is that the pruning algorithm should select the needed fea-
tures by eliminating unimportant input-hidden synapses. Looking at Fig. 3.12
one of the solutions could be keeping features (0, 3), because the shape of
the load together with the length of the car is enough to distinguish west
trains from east trains. Another solution, for example, is keeping the car
length, car type and color of the second car wheel - features (0, 1, 6).

To test our pruning algorithm on this feature selection task, a dataset of
6000 samples (3000 west and 3000 east trains) was generated. The three
possible train types for each class (Fig. 3.12) are equally distributed among
the samples, meaning we have 1000 samples of each train type.

As shown in (Mozer and Smolensky, 1989), one hidden neuron is enough
to learn this problem, hence we started with the network structure [7, 1, 2].
The experiment parameters are listed in Table 3.7.

initial network learning parameters pruning parameters
structure [7, 1, 2] learning rate 0.3 required accuracy 1.0
n synapses 9 number of epochs 100 retrain True
transfer fcn sigmoid minibatch size 1 retraining epochs 10

Table 3.7: Experiment settings for the train example.

We ran 100 observations of the experiment and considered the features that
were not cut out, as a result of a single experiment.

(0, 3, 4, 6)

2%
(0, 1, 3)

6%

(0, 3, 6) 6%

(0, 1, 2, 3)

8%

(1, 3, 6)

14%

(0, 1, 6)

18%

(0, 3)

46%

Figure 3.13: Results of feature selection by the pruning
algorithm (train example). The labels corresponds with fea-

ture indices in Table 3.5.

The result pie in Fig. 3.13 shows that the pruning algorithm found the best
possible solution ((0, 3) - the car length and the load shape) in 46% of the
cases. We can regard the (0, 1, 6) and (1, 3, 6) as another (not best but also
good) solutions. The rest we consider as fail cases, as all of them include
features (0, 3) and the other features are redundant. To sum it up, we got a
perfect solution: 46%; a good solution: 32%; a bad solution: 22%.



Chapter 3. Examples 31

3.5 Handwritten Digits (MNIST)

The MNIST (Modified National Institute of Standards and Technology)
database (Wikipedia, 2004) is a large database of handwritten digits that is
widely used for training and testing methods in the field of machine learning.

The dataset was downloaded from (LeCun and Cortes, 2010). Some of the
digits were written by employees of American Census Bureau (United States
Census Bureau 2017) and some by students of an American high school. In
total 70000 samples were collected. Examples are shown in Fig. 3.14.

Figure 3.14: Examples of MNIST dataset.

Each sample is a grayscale image (normalised to [0, 1]) of size 28x28 pixels.
This gives row-by-row a vector of 784 features. The data was splitted into a
training set of 50000 samples, a validation set of 10000 samples and a testing
set of 10000 samples.

From (LeCun and Cortes, 2010) we know the problem can be learned by a
feedforward network with one hidden layer up to high accuracy (98 − 99%).
The first task is to achieve similar results with the implemented neural net
framework. We tested the following learning settings (Table 3.8).

network parameters learning parameters
structure [784, 20, 10] learning rate 0.3
n synapses 15880 number of epochs 100
transfer function sigmoid batch size 10

Table 3.8: Settings for training a dense feedforward net on
the MNIST dataset.

The training results are summarized in Table 3.9. A confusion matrix for
the testing data is given in Fig. 3.15.

accuracy MSE
training data 97.2% 0.526
testing data 94.3% 1.025

Table 3.9: Training results on MNIST dataset.
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Figure 3.15: Confusion matrix (MNIST, testing data).

In the following, the pruning method is analysed on networks trained on the
MNIST database. Parameters of the learning-pruning procedure are listed
in Table 3.10.

initial network learning parameters pruning parameters
structure [784, 20, 10] learning rate 0.3 required accuracy 0.97
n synapses 15800 number of epochs 30 retrain True
transfer fcn sigmoid minibatch size 10 retraining epochs 10

Table 3.10: Experiment settings for the MNIST example.

The hypothesis is that the initial number of synapses in the network (15800)
is redundant, as well as the number of features (784). In Fig. 3.16 we can
see a selected observation of the pruning process. The number of synapses
was reduced to 1259 and the number of used features to 465, while the
classification accuracy was kept on 97%. The pruning procedure finished in
424 pruning steps (explained in section 2.2).
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Figure 3.16: Illustration of the pruning procedure applied
on MNIST dataset (selected observation). Required accu-

racy: 97%.
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In Fig. 3.17, we can see a comparison of the evaluation time. We compare
a fully-connected (initial) network to the pruned one. The bars are given
for three data groups (training: 50000 samples, validation: 10000 samples,
testing: 10000 samples). The pruning reduced the dimensions of weight
matrices, which led to the reduction of processing time by nearly a half.

train val test train val test
data group

0

1

2

3

4

5

6
e
v
a
lu

a
ti

o
n
 t

im
e
 [

s]
full net

pruned net

Figure 3.17: Evaluation (accuracy and error computation)
time for all data groups (pruned vs. full net).

Fig. 3.18 gives the statistics by running 10 observations of the pruning proce-
dure for several values of a required classification accuracy. We observed the
number of synapses (red axis) and used features after pruning (blue axis).
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Figure 3.18: Minimal number of features and synapses to
get required classification accuracy (MNIST data).

The results show that less than a tenth of the synapses and about a half of
the features are needed to keep the maximal classification accuracy (97%).
It is also worth saying that the MNIST dataset can be learned to 50% using
only 20 features and a network with 38 synapses. In the following, these two
results are further analysed.
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Minimal MNIST network

At first, we focus on a pruned network capable of MNIST classification with
accuracy of 50% (Fig. 3.19). This example is simple enough to show the
feature selection method described in section 2.3.
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Figure 3.19: Result of network pruning and path tracking,
MNIST data, accuracy: 50%.

Each class (digit in this case) has its color. If a hidden unit has one output
connection only, it inherits the color of the class it is connected to. The
features (pixels of the 28x28 image) are then colored in the same way. If
a hidden unit influences more than one class, it is blacked. All features
connected to a black hidden unit are then blacked as well, as they also affect
more than one class.
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Figure 3.20: Result of network pruning and path tracking
(shown 17th hidden neuron only), MNIST data, accuracy:

97%.
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A pruned network capable of 97% accurate classification is visualized in
Fig. 3.20. To make the figure clearer, only the synapses coming to the 17th

hidden unit are drawn between the input and the hidden layer.

We can see that each of the features affects more than one class in this case.
Therefore we better use the visualization in Fig. 3.21.
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9 at least once
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not used

Figure 3.21: Used features for individual classes, MNIST
data, accuracy: 97%.

Knowing all the remaining synapses are important for classification, we can
track the paths from individual classes to features. This way we distinguish
features connected to a selected class from those that do not affect that
class. Fig. 3.21 shows important features for each class (digit) separately.
Note that the at-least-once subplot corresponds to the features shown in
Fig. 3.20. It shows all features used by at least one class.
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3.6 Phonemes (Speech Data)

The process of speech data gathering is described in section 2.4. The dataset
generation process has three parameters: border_size (bs), context_size
(cs) and n_samples (ns).

In this example, we first try to find optimal parameter settings, which would
lead to a maximal trainability. The general rule is the more samples the
better trainability, therefore we fix ns = 1000 and determine the other pa-
rameters at first. See Table A2.1 for details of all generated datasets differing
in bs and cs. It reveals that phoneme "F" does not have enough occurrences
(less than ns = 1000) in the data, and of course the number of occurrences
decreases with growing bs. For bs >= 6 even more phonemes ("D", "F","N",
"Q", "R", "T") have less than 1000 occurrences.

Table 3.11 shows the experiment settings.

experiment settings learning parameters
n observations 5 learning rate 0.1
observed value MSE’ (Eq. (2.19)) n epochs 50
network structure [40 · (2cs+ 1), 50, 40] batch size 10

Table 3.11: Speech dataset: experiment settings for deter-
mination of optimal bs and cs.

We ran 5 observations of a simple network training for every combination
of bs ∈ [0, 5] and cs ∈ [0, 9]. Fig. 3.22 shows average MSE’ (see Eq. (2.19))
values.
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Figure 3.22: Test MSE’ (Eq. (2.19)) for various parameters
bs and cs (ns = 1000, 5 observations, see Table A2.1).

The experiment result says that a bigger context_size (cs > 2) does not
go well together with a low border_size (bs ≤ 2). We can state that the
border_size should better be greater than two. Then the context_size
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does not influence the trainability much. We must keep in mind that the
experiment is too simple to give a reliable estimation (simple network struc-
ture, few training epochs), however, it gives an initial idea of a general trend,
which is enough for the purposes of this work. For the experiments below
we consider these settings:

• border_size: bs = 3

• context_size: cs = 3

• n_samples: ns = 10000

Analysis of the Generated Speech Dataset

The goal of this section is to show what kind of data we actually work with.
In Fig. 3.23 we can see one randomly selected sample for each phoneme. For
a more illustrative view the context is cut out (cs = 0), hence we see 40
features corresponding to 40 frequency filters (see Fig. 2.10).
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Figure 3.23: Randomly selected sample for each phoneme,
cs = 0.

Fig. 3.24 shows an average feature vector out of 10000 samples for each
phoneme. Here we can find some patterns.

ACDE F I J NQR S T U Y Z_sil_a b c d e f g h i j k l mn o p r s t u v x y z
phonemes

1

10

20

30

40

m
e
a
n
 f
e
a
tu
re
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.24: Average sample for each phoneme, cs = 0.
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For example, the pause ("_sil_") is very similar to phoneme "p" having
low values for all frequencies. Phonemes "A" and "a" also take a similar
course, as well as high-frequency groups ("Q", "R", "S") or ("c", "s",
"z").

Using the derived parameter settings (cs = 3) we end up with a feature vector
of length 280. An example for each class is shown in Fig. 3.25. Average values
can be found in appendix A2, Fig. A2.1.

A CDE F I J NQR S T U Y Z_sil_a b c d e f g h i j k l mn o p r s t u v x y z
phonemes

0

40

80

120

160

200

240

280

fe
a
tu

re
s

cs
−3

cs
−2

cs
−1

cs
0

cs
+
1

cs
+
2

cs
+
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.25: Randomly selected sample for each phoneme,
cs = 3.

Classification Results: Speech Dataset

At first we must keep in mind that getting the best possible classification
accuracy is not the goal of this work. Rather than spending months of
computation time for training huge networks, we choose a smaller network
structure and try to get the best out of it. Two different network structures
were trained:

1. Network [280, 50, 2, 50, 40] (bottleneck2 network);

2. Network [280, 100, 50, 40].

The learning parameters for both networks are listed in Table 3.12.

dataset learning parameters
n samples / class 5000 learning rate 0.07
border size 3 n epochs 100
context size 3 batch size 10

Table 3.12: Phonemes: dataset and learning parameters.

2A bottleneck network contains a layer that consists of few nodes compared to the
previous layers. It can be used to get a representation of the network input with reduced
dimensionality.
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1. Network (bottleneck)

The network with the bottleneck layer was trained to test accuracy 30%
(MSE′ = 0.0105). A complete confusion matrix can be found in appendix A2,
Fig. A2.2. The confusion matrix helped us find phonemes that had been
trained better compared to the others. We focused on phonemes with re-
call3 greater than 0.5.

The purpose of training a bottleneck network is the reduction of input’s
dimensionality. Using a layer with just two neurons usually does not lead
to a high classification accuracy (also confirmed here), but the advantage is
that it can be illustrated in 2D space.

For the selected phonemes, Fig. 3.26 shows the representation of testing
samples in the bottleneck layer. We used the Sigmoid transfer function, so
all samples lie in 〈0, 1〉 × 〈0, 1〉.
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Figure 3.26: Representation of individual phonemes in the
2D bottleneck layer (selected phonemes).

The figure confirms some intuitive expectations. For example, samples of
phoneme "I" are close to representations of phoneme "i" and also not far
away from "A" and "E" samples. Another area contains samples of "S"
together with "s" and "c" samples.

The bottleneck network with two neurons is a simple example of how the
work in networks can be illustrated.

3Recall score is the ability of a classifier to find all the positive samples. It is defined
as tp

tp+fn
, where tp is the number of true positives and fn the number of false negatives.
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2. Network

The second network with structure [280, 100, 50, 40] was trained
with the same settings (Table 3.12). The learning ended with accuracy
63.8% and MSE′ = 0.0063. Fig. 3.27 shows the complete confusion matrix.
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Figure 3.27: Confusion matrix of the classification results
on the speech dataset.

Pruning Results: Speech Dataset

The second network ([280, 100, 50, 40]) was pruned. In this case we
sacrificed a few percent of classification accuracy and required req_acc =
50% only. The pruning process is tracked in Fig. 3.28.
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Figure 3.28: Illustration of the pruning procedure applied
on SPEECH dataset (selected observation). Required accu-

racy: 50%.
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The initial number of synapses 35000 was reduced to 1344. Eight hidden
neurons (four in each hidden layer) were cut out. Regarding the input layer
26 neurons were cut out, which reveals that only 254 out of 280 features are
necessary to obtain the classification accuracy of 50% on validation data.

The dimensionality reduction is not that significant for this example com-
pared to the others (e.g. MNIST). Also we require a low classification accu-
racy. However, one must remember that we work with a 40-class problem,
which is far from trivial. In the following section we try to find some patterns
in the results, which could demystify what is going on in the network.

Pathing and Feature Energy: Speech Dataset

Section 2.3 presents a method called pathing. It finds paths from features to
classes in pruned networks. We applied this method on the pruned network
from the previous paragraph and got the following results. The input layer
of the network consists of 280 neurons. The context of size 3 was used (see
forming of a feature vector in Fig. 2.12). Therefore we can split the input
into 7 moments in time and at each of these moments we have 40 features
representing frequency filters (described by Fig. 2.10).

Fig. 3.29 shows the number of phonemes (classes) influenced by individual
features, where the features are illustrated in the time-frequency space. For
example, if there is no path from a feature to any of the classes, it got zero
score (dark blue). In contrary, if it is connected to all possible phonemes
(40), it is dark red in the figure.
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Figure 3.29: Number of phonemes affected by individual
features. Features are displayed in a time-frequency space.

One can note that low frequencies are used more in general. Interestingly,
there also might be a hint that the context features cs(−3) and cs(+3) uses
also some higher frequencies compared to the "middle" of the feature vector.

In the following, we consider no context size (cs = 0) and analyse just the
40 features corresponding to the frequency filters. Fig. 3.30 shows energies
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of these features based on Eq. (2.22). It tells us how much (and in which
way) a feature (frequency) influences the class.
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Figure 3.30: Feature energies for selected phonemes,
phoneme set 1.

For example, phonemes "z" and "Z" have a similar pattern and differ just
in the amount of the energy (see colorbars). The same figures for the other
phonemes are in appendix A2.

Fig. 3.31 comes with the total energy of individual features (frequencies in
this case) based on Eq. (2.23). Additionally, Fig. A2.5 shows number of
active features using each frequency filter for cs = 0.
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Figure 3.31: Total feature energy, speech dataset, cs = 0.
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Chapter 4

Discussion

The overall objective of the thesis consisted of four subtasks:

1. to design a neural network framework capable of learning a general
classification problem;

2. to develop a pruning proceeder equipped by a tool for a dimensionality
reduction after pruning;

3. to demonstrate the developed methods on appropriate examples and
suggest possible applications for pruned networks;

4. to implement state-of-the-art pruning methods and compare them to
the developed method.

4.1 Recapitulation of Methods

At first, we presented the design choices of our classification framework based
on feedforward neural networks. We detailed how the learning algorithm was
implemented and listed the used evaluation measures.

The developed pruning algorithm was described in section 2.2. The key
measure for the identification of redundant synapses called weight signifi-
cance factor (WSF) was introduced in Eq. (2.21). Then we described how
exactly we proceed when pruning a network and, finally, the dimensionality
reduction of weight matrices, titled as network shrinking, after pruning was
shown.

A new method for working with pruned networks was proposed in section 2.3.
The key idea was to track remaining synapses of a minimal network structure
and to find some patterns between the network’s input and output (features
and classes).

Finally, we described the acquisition of the speech dataset. The source
recordings were voice commands to control a mobile phone or a navigation
in a car. We ended up with three parameters (bs, cs and ns) to be tuned.

4.2 Summary of Results

The methods were tested on six classification problems. Here we sum up the
results and observations.
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XOR Function

This example from section 3.1 is interesting because of the known minimal
network structures (Fig. 3.1) capable of learning the XOR function.

The pruning algorithm was applied on a highly oversized network with a goal
to end up with one of the known minimal structures. The desired network
architectures were produced in 92% of 100 cases (Fig. 3.4).

The 2D Problem with Unbalanced Feature Information

The example adopted from (Karnin, 1990) comes with two features, where
one of them is obviously more important for the classification accuracy than
the other one (see Fig. 3.5). Moreover, the separating lines between two
classes are parallel to the coordinate axes.

Two hypotheses have been put forward and then confirmed.

1. Two synapses can be deleted from the input-hidden layer, because, due
to the axes parallelism to the discriminatory lines, each hidden neuron
needs the information from one feature only.

Result: this behaviour was observed in 92% of 100 cases (Fig. 3.7).

2. The synapses coming from the feature with less information would
be the next candidate for deletion, before the synapse carrying more
information.

Result: confirmed in 100% of 100 cases (Fig. 3.8).

The Rule-plus-Exception Problem

This four-dimensional problem adopted from (Mozer and Smolensky, 1989)
has been included because it contains samples of two kinds ("rule" and "ex-
ception"). The "rule" samples occur more often in the training set compared
to "exception" samples. Therefore fitting the "rule" pattern to the model is
more important for the classification accuracy than learning the "exception"
samples.

Again, two hypotheses have been put and subsequently confirmed.

1. Having two neurons in the hidden layer, one deals with the "rule"
samples and the other one with the "exception" samples (Fig. 3.9).

Result: confirmed in 97% of 100 cases (Fig. 3.10).

2. The synapses connected to the "exception" neuron would be suggested
for deletion before the synapses connected to the "rule" neuron.

Result: generally confirmed by a mean value out of 100 cases (Fig. 3.11).
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The Michalski’s Trains

Section 3.4 presents a simplification of the well known problem of a feature
selection from (Larson and Michalski, 1977). There are two classes and six-
dimensional samples, where some of the features are obviously redundant for
the classification.

The pruning algorithm does the feature selection by pruning synapses coming
from features. Fig. 3.13 shows that out of 100 observations we got:

• a perfect solution (2 features left) in 46% of cases;

• a good but not optimal solution (3 features left) in 32% of cases;

• an unsatisfactory solution (more than 3 or "wrong" features left) in
22% of cases.

Handwritten Digits

The MNIST dataset from (LeCun and Cortes, 2010) was included in order to
present the pruning process on a network with many synapses (see Fig. 3.16).
The results are summarized in Table 4.1.

fully-connected pruned
structure [784, 20, 10] [465, 20, 10]
n features 784 465
n synapses 15880 1259
accuracy 97% 97%
evaluation time [s] 5.64 2.85

Table 4.1: Summarized pruning results on MNIST dataset.

We also performed an alalysis of how many synapses we need to produce
a particular classification accuracy - see Fig. 3.18. For example, a network
with 38 synapses is able to reach a test classification accuracy of 50% using
only 20 features (see Fig. 3.19). The feature selection procedure was then
also done for every digit (class) separately (Fig. 3.21).

Classification of Phonemes

Regarding the speech data, the first task was to determine optimal parame-
ters, which led to the maximal trainability of the dataset. Then we showed
how the classified samples look like (Fig. 3.23).

Next, we trained a network with a 2D-bottleneck layer and plotted this
layer’s activity for several phonemes (see Fig. 3.26). Interestingly, phonet-
ically similar phonemes (e.g. "a" and "A" or "s" and "c") took places
close together.

Then, we trained a "classical" ([280, 100, 50, 40]) network and per-
formed the pruning process (Fig. 3.28). Finally, we computed feature ener-
gies (see Eq. (2.22)) based on pathing in the pruned network. Results for all
phonemes are given in Figures 3.30, A2.3 and A2.4.
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4.3 Comparison to Other Pruning Methods

The key part of the network pruning rests in identification of unimportant
synapses. In section 1.1, we summarized three studies using similar measures
to ours. In the following, we compare them in terms of left synapses and
active features after pruning. Additionally, we add two more measures to
the comparison:

• random : the synapses to prune are chosen randomly

• magnitude : weights close to zero are considered less important than
those with greater magnitude

All known pruning measures are listed in Table 4.2.

source measure name measure

this study random N(0, 1)

this study magnitude |wk|

this study WSF |wk(tf ) − wk(0)|

(Mozer and Smolensky, 1989) relevance − ∂El

∂αk

∣

∣

∣

αk=1

(LeCun, Denker, and Solla, 1990) saliency ∂2E
∂w2

k

·
w2

k

2

(Karnin, 1990) sensitivity
N−1
∑

n=0

[

∆wk(n)
]2 wk(tf )

η · (wk(tf ) − wk(0))

Table 4.2: Known measures of how important synapse cor-
responding to wk is.

The experiment was performed on the MNIST dataset. The initial network’s
structure was [784, 20, 10] and the required classification accuracy was
95%. After each pruning step we performed 5 retraining epochs. We ran 10
observations (results in Fig. 4.1)
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Figure 4.1: Comparison of different pruning methods,
req_acc = 0.95, retraining: 5 epochs

We can see that using our measure (WSF) led to deletion of even more
synapses than using sensitivity or saliency, even though the formula is less
demanding in terms of computation time.
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Chapter 5

Conclusion

This thesis is about pruning synapses in fully-connected feedforward neural
networks. The purpose is to understand individual network parts in order
to increase capabilities of using NNs for classification.

We introduced a new measure called WSF (weight significance factor) to
identify unimportant synapses in a fully-connected network. We found out
that generally over 90% of the synapses are redundant for classification.

Next, we implemented a network pruning proceeder and tested it on six
examples. The experiments confirmed its ability to drive a network to a
structure that is minimal for the given data. The minimal structures then
lead to partial demystification of even complicated networks. As a side effect
of network pruning we got a rapid (over a half) reduction of computation
time, which could possibly be useful for low-cost embedded systems.

To sum up the thesis, it is a good start and some of the results are promising,
however, I think we have opened some new questions and so there is still a
lot of space to work on in this field.

5.1 Future Work

Some of the ideas for the future work are listed here.

• Shrinking layers. In this study, we usually work with one hidden layer
only. We have not tried to reduce a network in terms of layers yet.

• Building a network. As mentioned in the introduction, there are two
ways of getting the optimal network structure. In this study, we trained
oversized networks and then reduced them. The other way around
would be to start from zero and build a network step by step.

• Tailoring a network. This could be the way how to take advantages of
pruned networks. The idea is to develop a method that would connect
individual network parts (possibly differently trained) into one network
in order to perfectly fit the given data. The goal would be to get
(almost) 100% accuracy for any classification problem.

• Finding applications. All the methods are general. It is up to our
fantasy to find a good application.
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Appendix A1

Conventions

Here we introduce some notation conventions used in this study. It is an
extension of the notation presented in section 2.1.

First of all, we define a dataset consisting of samples X and labels Y ′.

X
n×p

=
[

X1 X2 · · · Xp

]

=















x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp















Y ′

1×p
=

[

Y ′
1 Y ′

2 · · · Y ′
p

]

where X1 is the first sample, p is the number of samples and n is the problem
dimension. Y ′ is the vector of labels. A label can be represented as a number
or a string. For example, we can set Y ′

1 = ”a” be a label of sample X1,
which is a sample of phoneme "a". To make it work together with our
neural network implementation, each label has a transcript, which is unique
for every class. The transcript is so called one-hot vector, a zero vector of
length m (number of classes), which has the only one "1" at the position
corresponding to its class. For example, if we classify 5 phonemes and the
class "a" was assigned to position 2, its transcript Y1 would be:

Y1
5×1

=

















y11

y21

y31

y41

y51

















=

















0
1
0
0
0

















A general matrix of these transcripts Y is then:

Y
m×p

=
[

Y1 Y2 · · · Yp

]

=















y11 y12 · · · y1p

y21 y22 · · · y2p

...
...

. . .
...

ym1 ym2 · · · ymp















As described in section 2.1 we consider Y to be a predicted output of our
neural network. Analogically, we get a general matrix of a desired output of
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a network and those two can be item-wise compared.

U
m×p

=
[

U1 U2 · · · Up

]

=















u11 u12 · · · u1p

u21 u22 · · · u2p

...
...

. . .
...

um1 um2 · · · ump















Moreover, we decipher the matrices of weights and biases. We have a vector
W of weight matrices W (i), which is always of length (q+ 1), where q is the
number of hidden layers.

W
1×(q+1)

=
[

W (1) W (2) · · · W (q+1)
]

Shapes of matrices W (i) then reveals the network structure. For example
we itemize W (1), which carries the information about problem dimension n.
Let’s assume we have j neurons in the first hidden layer.

W (1)

j×n
=

















w
(1)
11 w

(1)
12 · · · w

(1)
1n

w
(1)
21 w

(1)
22 · · · w

(1)
2n

...
...

. . .
...

w
(1)
j1 w

(1)
j2 · · · w

(1)
jn

















Clearly, the first (row) index indicates the neuron we are going to and the
second (column) index indicates the neuron we are coming from. A corre-
sponding bias vector would look as follows.

B(1)

j×1
=

















b
(1)
1

b
(1)
2
...

b
(1)
j

















Finally, to help understand Eq. (2.12), we itemize the error matrix in the
output layer of m neurons for p samples.

∆(q+1)

m×p
=

















δ
(q+1)
11 δ

(q+1)
12 · · · δ

(q+1)
1p

δ
(q+1)
21 δ

(q+1)
22 · · · δ

(q+1)
2p

...
...

. . .
...

δ
(q+1)
m1 δ

(q+1)
m2 · · · δ

(q+1)
mp

















Then for ξ = 1, the errors corresponding to the first sample X1 are:

∆
(q+1)
(1) =

















δ
(q+1)
11

δ
(q+1)
21

...

δ
(q+1)
m1
















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Appendix A2

Supplementary Data

This section contains some additional tables and figures that did not fit to
the main text.

Generated Speech Datasets

The Phonemes classification problem from section 3.6 works with data that
are acquired based on three parameters (bs: border size, cs: context size and
ns: number of samples per class). Table A2.1 lists all generated datasets
differing in those parameters. For big ns and/or bs, it might happen that
some phonemes are not present in sufficient quantity in the source recordings,
therefore those classes are incomplete (e.g. class "F").

id bs cs ns incomplete classes total train devel test

ds_00 0 0 1K F (683) 39683 31747 3968 3968

ds_01 0 1 1K F (683) 39683 31747 3968 3968

ds_02 0 2 1K F (683) 39683 31747 3968 3968

ds_03 0 3 1K F (683) 39683 31747 3968 3968

ds_04 0 4 1K F (683) 39683 31747 3968 3968

ds_05 0 5 1K F (683) 39683 31747 3968 3968

ds_06 0 6 1K F (683) 39683 31747 3968 3968

ds_07 0 7 1K F (683) 39683 31747 3968 3968

ds_08 0 8 1K F (683) 39683 31747 3968 3968

ds_09 0 9 1K F (683) 39683 31747 3968 3968

ds_10 1 0 1K F (589) 39589 31672 3959 3958

ds_11 1 1 1K F (589) 39589 31672 3959 3958

ds_12 1 2 1K F (589) 39589 31672 3959 3958

ds_13 1 3 1K F (589) 39589 31672 3959 3958

ds_14 1 4 1K F (589) 39589 31672 3959 3958

ds_15 1 5 1K F (589) 39589 31672 3959 3958

ds_16 1 6 1K F (589) 39589 31672 3959 3958

ds_17 1 7 1K F (589) 39589 31672 3959 3958

ds_18 1 8 1K F (589) 39589 31672 3959 3958

ds_19 1 9 1K F (589) 39589 31672 3959 3958

ds_20 2 0 1K F (498) 39498 31599 3950 3949

ds_21 2 1 1K F (498) 39498 31599 3950 3949

ds_22 2 2 1K F (498) 39498 31599 3950 3949

ds_23 2 3 1K F (498) 39498 31599 3950 3949

ds_24 2 4 1K F (498) 39498 31599 3950 3949

ds_25 2 5 1K F (498) 39498 31599 3950 3949

ds_26 2 6 1K F (498) 39498 31599 3950 3949

ds_27 2 7 1K F (498) 39498 31599 3950 3949

ds_28 2 8 1K F (498) 39498 31599 3950 3949

ds_29 2 9 1K F (498) 39498 31599 3950 3949
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id bs cs ns incomplete classes total train devel test

ds_30 3 0 1K F (410) 39410 31528 3941 3941

ds_31 3 1 1K F (410) 39410 31528 3941 3941

ds_32 3 2 1K F (410) 39410 31528 3941 3941

ds_33 3 3 1K F (410) 39410 31528 3941 3941

ds_34 3 4 1K F (410) 39410 31528 3941 3941

ds_35 3 5 1K F (410) 39410 31528 3941 3941

ds_36 3 6 1K F (410) 39410 31528 3941 3941

ds_37 3 7 1K F (410) 39410 31528 3941 3941

ds_38 3 8 1K F (410) 39410 31528 3941 3941

ds_39 3 9 1K F (410) 39410 31528 3941 3941

ds_40 4 0 1K F (327) 39327 31462 3933 3932

ds_41 4 1 1K F (327) 39327 31462 3933 3932

ds_42 4 2 1K F (327) 39327 31462 3933 3932

ds_43 4 3 1K F (327) 39327 31462 3933 3932

ds_44 4 4 1K F (327) 39327 31462 3933 3932

ds_45 4 5 1K F (327) 39327 31462 3933 3932

ds_46 4 6 1K F (327) 39327 31462 3933 3932

ds_47 4 7 1K F (327) 39327 31462 3933 3932

ds_48 4 8 1K F (327) 39327 31462 3933 3932

ds_49 4 9 1K F (327) 39327 31462 3933 3932

ds_50 5 0 1K F (253) 39253 31403 3925 3925

ds_60 6 0 1K
D, F, N,
Q, R, T

38049 30441 3805 3803

ds_70 7 0 1K
D, F, N,

Q, R, T, Z
36140 28914 3614 3612

ds_80 8 0 1K
D, F, N,

Q, R, T, Z
34869 27899 3487 3483

ds_90 9 0 1K
D, F, N, Q,
R, T, Z, b

33680 26947 3368 3365

ds_5K 3 3 5K
D, F, N, Q, R,

T, Y, Z, g
184750 147803 18475 18472

ds_10K 3 3 10K
D, F, N, Q, R,
T, U, Y, Z, g, x

335812 268654 33581 33577

Table A2.1: Generated datasets: Phonemes problem.

Additional Results: Speech Problem

Fig. A2.1 shows an average sample for every single phoneme computed from
training samples of dataset ds_10K (see Table A2.1).
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Figure A2.1: Average sample for each phoneme, cs = 3.
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The bottleneck network from section 3.6 was not expected to perform the
classification very well. The confusion matrix in Fig. A2.2 confirms this
hypothesis. However the goal was to show the representation of selected
phonemes in 2D space of the bottleneck layer and we can see that those
selected phonemes (e. g. "A", "E", "S", "_sil_", "z" or "i") turned
out quite well compared to the others.
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Figure A2.2: Trained bottleneck network (speech dataset):
confusion matrix.

Fig. A2.3 shows a set of another 12 phonemes as a supplement to Fig. 3.30.
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Figure A2.3: Feature energies for selected phonemes,
phoneme set 2.
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And the rest of the phonemes is illustrated in Fig. A2.4.
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Figure A2.4: Feature energies for selected phonemes,
phoneme set 3.

One might note the similarity of "o" and "s" patterns, but remember to
check the colorbars. Then we can see that the two phonemes are activated
by similar frequencies, but with a different power range. We can also see
that "S" and "T" uses a similar power (energy) as well as phonemes "p"
and "_sil_".
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Figure A2.5: Number of used phonemes for each frequency
filter, cs = 0, bs = 3.
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Appendix A3

Structure of the Workspace
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Appendix A4

Code Documentation (API)

The implementation follows the presented methods. The documentation of
the main class FeedForwardNet() in the developed kitt_lib library is
given here.

class kitt_lib.kitt_net.FeedForwardNet()

The main class representing a feedforward neural network.

@ hidden (array-like) : hidden network structure (e.g. [10, 5]);

@ tf_name (str) : transfer function name (e.g. ’sigmoid’);

def fit : Fits the network to given data and trains the model.

@ X : array-like, shape (n_features, n_samples)

@ y : array-like, shape (n_classes, 1)

@ val_x : array-like, shape (n_features, n_samples)

@ val_y : array-like, shape (n_classes, 1)

@ learning_rate : learning rate for backpropagation

@ batch_size : mini-batch size for backpropagation

@ n_epoch : number of epochs for backpropagation

def predict : Predicts the probability for each class.

@ x : array-like, shape (n_features, n_samples)

returns y_pred_list : list, sorted tuples (class, prob) by probability

def evaluate : Returns accuracy and error for given data.

@ x : array-like, shape (n_features, n_samples)

@ y : array-like, shape (n_classes, 1)

returns (err, acc) : MSE’ error and accuracy

def prune : Prunes the network.

@ req_acc : float, required accuracy to be kept

@ n_epoch : int, number of retraining epochs

@ levels : array-like, pruning levels

def copy : Creates a copy of self.

returns net_copy : kitt_net.FeedForwardNet

def dump : Saves the network.

@ net_filename : str, the path to save network as

def load : Loads a network.

@ net_filename : str, the path to network to be loaded
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