
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 19, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Extension of a ML experiment management tool

 Student: Bc. Martin Chovanec

 Supervisor: Dipl.-Inf. Klaus Greff

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

Improve Sacred, a tool for machine learning experiment management, to provide the users with API for
collecting monitoring information and to present the information about both running and finished
experiments on a dashboard.

1. Get familiar with the concept of machine learning algorithms.
2. Understand quality metrics of machine learning models and their importance for researchers.
3. Get familiar with Sacred, an open source tool that helps managing configuration and runs of experiments,
and with the TensorFlow library for machine intelligence.
4. Implement a new Sacred API for collecting monitoring information from running experiments that would
simplify using the API with TensorFlow. Demonstrate the API on an experiment that uses TensorFlow.
5. Create a dashboard where both running and finished experiments can be observed.
6. Include filtering and searching over the experiments by various parameters to the dashboard.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Extension of a Machine Learning
Experiment Management Tool

Bc. Martin Chovanec

Supervisor: Dipl.-Inf. Klaus Greff

8th May 2017

Acknowledgements

This project could not have been created without ideas and support from
Klaus Greff from the Swiss AI Lab IDSIA, whose experiment management
tool was being extended in this thesis. I would like to express my thanks to
him for his classes on intelligent systems at the university in Lugano as well
as for his supervision of the thesis. I thank also his colleagues from IDSIA
and other institutes who participated in requirements elicitation and provided
their feedback. In addition, thanks to Vladimı́r Kobetič for his software en-
gineering comments on the text and other persons and institutions that the
project directly or indirectly owes its existence to, but most importantly to
my family for a quarter-century of support and patience.
Access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum provided under
the programme “Projects of Large Research, Development, and Innovations
Infrastructures” (CESNET LM2015042) is greatly appreciated.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that make use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Praha on 8th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Martin Chovanec. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Chovanec, Martin. Extension of a Machine Learning Experiment Management
Tool. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2017.

Abstrakt

Ćılem této diplomové práce a souvisej́ıćıho projektu je rozš́ı̌rit stávaj́ıćı nástroj
Sacred, který pomáhá výzkumńık̊um v oblasti umělé inteligence spravovat
konfigurace a zachovávat výsledky experiment̊u. Část projektu se zabývá
přidáńım nových funkćı do nástroje Sacred, které uživatel̊um umožńı zazna-
menávat metriky experiment̊u a zjednoduš́ı práci Sacred ve spojeńı s výpočetńı
knihovnou TensorFlow. Sebrané informace uchovávané v databázi Sacred
muśı být př́ıstupné uživatel̊um. Práce se proto rovněž zaměřuje na vytvořeńı
webového monitorovaćıho panelu Sacred: Sacredboard.

Pro poznáńı potřeb uživatel̊u proběhly diskuse s hlavńım vývojářem nástroje
Sacred, jehož uživatelé byli následně osloveni formou dotazńıku. Uvedené
zdroje pomohly formalizovat požadavky pro Sacredboard i zamýšlená rozš́ı̌reńı
pro Sacred. Zjǐsťeným požadavk̊um byla přǐrazena priorita, byly rozpracovány
a implementovány. Dı́ky veřejnému umı́stěńı projektu na portálu GitHub
poskytli uživatelé prvńı připomı́nky již krátce po vydáńı prvńı verze. V daľśıch
kapitolách je popsána softwarová architektura, postupy a nástroje použité
v pr̊uběhu vývoje. Na závěr je představen ukázkový projekt využ́ıvaj́ıćı nové
schopnosti programu.

Zat́ımco Sacred byl rozš́ı̌ren o rozhrańı pro záznam měřeńı pr̊uběhu ex-
periment̊u, Sacredboard byl vytvořen pro zjednodušeńı procházeńı záznamů
z databáze Sacred a sledováńı pr̊uběhu experiment̊u. Přestože některé funkce
zat́ım nebyly dokončeny a daľśı by bylo vhodné v budoucnu doplnit, pro-
jekt byl již řadou uživatel̊u přijat. Někteř́ı z nich začali program rozšǐrovat o
vlastńı funkce. Vyjadřuji naději, že pomohou projekt udržet aktivńı i nadále.
Sacred a jeho rozš́ı̌reńı včetně Sacredboard byly přijaty jako př́ıspěvek pod
názvem “Sacred: How I Learned to Stop Worrying and Love the Research“ na
prezentaci v tématickém celku o opakovatelnosti experiment̊u na konferenci o
vědeckém výpočetńım programováńı s jazykem Python, SciPy 2017, která se
uskutečńı v Austin, Texas.

Kĺıčová slova Sacred, Sacredboard, strojové učeńı, experiment, IDSIA

ix

Abstract

The aim of this thesis and the accompanying project is to extend Sacred, an
existing software tool that helps machine learning researchers with managing
configuration and maintaining results of their experiments. A part of the
project deals with adding new functionality to Sacred to provide its users with
a standardized way of tracking experiment metrics and to simplify working
with Sacred and the TensorFlow computational library. Collected information
kept in the Sacred database must become accessible to the users. Thus, the
thesis also focuses on creating a web dashboard for Sacred: the Sacredboard.

To learn about needs of researchers, discussion with the main developer of
Sacred took place and a questionnaire was distributed among users of the exist-
ing tool. These sources of information helped to formalize requirements both
for Sacredboard and the Sacred extension. The elicited requirements were
prioritized, elaborated and the development began. Being publicly available
on GitHub, users provided their first feedback soon after the initial release.
In the next chapters the software architecture, techniques and tools that were
used to support the development process are described. At the end, a sample
project that uses the new features is presented.

To conclude, while Sacred has been extended with an interface to log
measurements taken during experiments, Sacredboard has been created to
simplify browsing the Sacred database and observing running experiments.
Although some features have not been finished yet and others are desirable to
add in the futre, the project has been already adopted by a number of users.
Some of them have started with development of their own features. Hopefully,
they will contribute to keep the project active. An abstract called “Sacred:
How I Learned to Stop Worrying and Love the Research” on Sacred and its
extensions, including Sacredboard, has been accepted for presentation as a
talk in the Reproducibility track of the SciPy 2017 Scientific Computing with
Python conference in Austin, Texas.

Keywords Sacred, Sacredboard, machine learning, experiment, IDSIA

x

Contents

Introduction 1
Goals . 2
Motivation . 3

1 Problem Domain 5
1.1 Artificial Intelligence and Machine Learning 5
1.2 Conducting Experiments . 8

2 Sacred 11
2.1 Supporting the Process . 11
2.2 Sacred Architecture in a Nutshell 16

3 Sacredboard 17
3.1 Requirements Elicitation . 17

4 Requirement Analysis 23
4.1 User Stories . 23
4.2 Scope of the Thesis . 25
4.3 System Requirements . 25
4.4 Use Cases . 31

5 Design 35
5.1 Architecture . 35
5.2 Sacred Extension . 40
5.3 Sacredboard Backend . 47
5.4 Sacredboard Frontend . 49

6 Implementation 57
6.1 Version Control . 57
6.2 Development Environment . 58

xi

6.3 Code and Documentation . 59
6.4 Release Process . 60

7 Testing 63
7.1 Unit, Integration and Other Tests 63
7.2 Continuous Integration . 65
7.3 Acceptance Tests . 66

8 Conclusion 67

Bibliography 69

A Sample Project 73
A.1 Problem Description . 73
A.2 Data Preparation . 74
A.3 Recurrent Neural Network with TensorFlow 74
A.4 Observing with Sacredboard . 75

B Sacredboard HTTP Interface Specification 81

C TensorBoard Interface 83

D Acronyms 85

E Contents of the Enclosed Media 87

xii

List of Figures

1.1 Training Loop . 10

4.1 TensorBoard Cost Function Chart 29

5.1 Architecture: Logical View . 36
5.2 Architecture: Process View . 37
5.3 Architecture: Development View 38
5.4 Architecture: Deployment View . 39
5.5 Extension of the Sacred Mongo Database Schema 41
5.6 Sequence Diagram: LogFileWriter as Decorator 45
5.7 Sacredboard Wireframe . 50
5.8 Sacredboard Error Message . 51
5.9 Model-View-View Model . 54

A.1 German Noun Classification Network (Visualisation in TensorBoard) 76
A.2 Sacredboard: List of Runs . 78
A.3 Sacredboard: Interactive Configuration Browser 78
A.4 Sacredboard: Mean Cross Entropy Metrics Plot (hi-fi prototype) . 79

xiii

List of Tables

4.1 Definition of Experiment Run States 26
4.2 MongoDB mapping for the Run Table 27

B.1 Web API Run Resource . 81

xv

Introduction

Machine learning is a subfield of computer science that deals with the study of
learning algorithms. The main emphasis is put on automatic methods allowing
to complete a task, to make accurate predictions or to behave intelligently
without human intervention or assistance. Instead of explicitly programming
the computer to perform the task, the program has to find a general way
of solving the problem based on its previous observations and examples. [1]
In simple words, it means that the computer is taught what should be done
instead of how it should be done. For instance, when predicting stock market
prices for the next day, the computer basically predicts the result by looking at
the development of current stock prices and compares it with similar situations
from the past. But there is nobody to write specific rules describing the
possible situations. The computer recognises it implicitly.

However, making computers learn and perform non-trivial tasks without
being explicitly programmed is a complex and time-consuming activity with
uncertain results. In general, it involves choosing or creating a model capable
of solving the given task, configuring the model’s learning hyperparameters,
gathering relevant training data and running a training process while evalu-
ating its outcomes on a test set of data.

Conducting machine learning experiments is a dynamic, empirical process
that brings many challenges of engineering and record tracking. In addition
to seeing the actual results of an experiment, the machine learning researchers
are also interested in the impact of the model chosen, its learning hyperpara-
meters and the selection of training data on the performance and outcomes
of the experiment. To compare and outperform its previous results, the ex-
periment may be repeated several times while searching for a better learning
algorithm. As the result of the experiment often depends on random values
generated during the run, the training process is not always deterministic. It
is extremely important to keep track of the many involved factors like random
seeds for pseudorandom generators, hyperparameters, package dependencies,
the evolution of the experiment source code, and the training data. Having

1

Introduction

reproducible experiments, the algorithms can be systematically improved.
To configure, run and keep track of experiments, their configuration, res-

ults and even the random seed used to generate the pseudorandom values, the
researches at the Dalle Molle Institute for Artificial Intelligence (IDSIA) [2]
in Switzerland have started developing an open-source tool that simplifies the
tasks. Since its initial release in 2014, Sacred [3] has spread out and became
used by people outside IDSIA. As of beginning of 2017, it has been starred
more than four hundred times on GitHub.

Sacred makes managing experiments for the user very easy. It is written
in Python and for Python, which is probably the most used programming
language in the machine learning field.1 The tool adds a minimal configuration
overhead and was designed to make researchers using it even under pressure
of a deadline. By starting a Sacred-powered script, basic information about
the host computer, the Python environment, and user-defined configuration is
automatically collected, allowing to reproduce the experiment later. Another
important feature allows storing the collected data to a database backend by
attaching a Sacred “observer”. The user of the library is free to add any
relevant information to the database while the experiment is running.

Sacred, however, solves only a half of the problem and leaves inspecting
the data an open question. The users must query the database directly as
no convenient graphical user interface has been developed yet. The current
situation is neither productive nor user friendly.

This thesis aims to identify the requirements and to implement a graphical
user interface to browse the data collected by Sacred. Understanding what the
researches need to learn from the experiments they run is essential in order to
provide them with a useful view on the results. Sacred itself will have to be
extended to achieve the goal.

Goals

The main objective of this thesis is to help researchers with monitoring and
maintaining their experiments by providing them with a dashboard for Sacred
– Sacredboard. Like Sacred, it will be provided as a standalone open-source
application. Because the software itself should be maintainable and extensible
by other developers after finishing the thesis, its structure should be easy to
understand and well documented. The thesis itself should serve as a reading
for future developers to become familiar with the purpose and architecture of
the project.

1When searching for “machine learning” projects on GitHub, there were 10 679 Python
projects + 4,766 Jupyter projects, compared to second Matlab with “only” 5 887 projects.

2

Motivation

At first, getting at least a basic level of understanding of the concepts that
the researchers are dealing with is advantageous. A number of books has been
written on this topic, for example the classical Pattern Recognition and Ma-
chine Learning by Christopher M. Bishop [4]. Lectures given at universities,
such as the Intelligence systems [5] course taught by Jürgen Schmidhuber [6]
and his colleagues from IDSIA, are an advisable way of learning and practising
the basics or even a little bit advanced topics in a clear and understandable
manner. For those who remain untouched with the problematic, the field is
shortly introduced in Chapter 1.

To become more familiar with the needs that researchers and current users
of Sacred may have, training an own neural network model using the popu-
lar TensorFlow [7] framework and Sacred will be described in Appendix A.
TensorFlow will be used to build the computation graph and execute the ex-
periment, while Sacred will help to parametrize the program and observe its
results.

The main developer of Sacred, Klaus Greff from IDSIA, will assist with
elicitation of requirements for Sacredboard (see Chapter 3). He and some
of his colleagues from and outside IDSIA use Sacred to do their research
on a daily basis. To take advantage of these connections, a survey will be
conducted among the users to learn more about their needs and expectations
of Sacredboard. The results of the discussions and survey will be captured
as user stories in Chapter 4, from which the functional and non-functional
requirements for the application will be derived. The software architecture
and design fulfilling the needs will be presented in Chapter 5.

The project will be hosted on GitHub, which is a popular open-source
software hosting site that has been already used by Sacred. It allows inter-
acting with users through a system of tickets (issues) and contributing to the
source code base. Sacredboard versions will be released continually to the
public as the project will proceed. An essential part of Sacredboard should
be a usable user and developer documentation, because the project is likely
to be extended by other developers after finishing this thesis. Ideally, a wiki
or similar platform would be used to create both the user and development
documentation.

Motivation

My personal motivation to work on this project has emerged from my earlier
semester of study at Università della Svizzera italiana (University of the
Italian Switzerland) [8] in the Swiss canton of Ticino.

One of the courses I took there was called Intelligent Systems [5], taught
by a recognised expert Jürgen Schmidhuber [6] from IDSIA. His lectures were
alternated with Jan Koutńık and complemented by Klaus Greff’s “TA ses-
sions”, where all uncertainties were explained to the students. The topic was

3

Introduction

both interesting and well presented and it is regrettable that no such course
was available at the Faculty of Information Technology at the Czech Technical
University in Prague.

After coming back to Praha in early 2016, I started improving my German,
a language that (like many others) distinguishes three grammatical genders
of nouns. I was wondering whether the written form of German nouns can
be used to determine their gender, and for that, I started conducting my own
experiments using a neural network library developed at IDSIA. Because I
asked for advices, we were in touch with some of the people from time to
time. Later, we agreed on extending Sacred to help the researchers with their
daily routine.

4

Chapter 1
Problem Domain

This chapter aims to briefly describe the terms used throughout this docu-
ment and the typical workflow that researchers follow when conducting their
experiments. The text is structured such that the readers that are already
familiar with the field may skip to the next chapter without missing any im-
portant part. Those who need a gentle introduction to artificial intelligence
and machine learning are advised to read the following sections.

1.1 Artificial Intelligence and Machine Learning

Artificial intelligence (AI) and machine learning (ML) are two terms often
appearing together as if they were synonyms. In fact, most of the recent great
improvements in artificial intelligence was accomplished thanks to machine
learning. It is not only beating the best Poker players in the world, driving
autonomous cars and natural language processing what is considered as a big
success in the area. Machine learning can also help saving human lives, such
as in medical detection of diseases [9].

But it is often argued that machine learning is in truth only one of the
several approaches in achieving artificial intelligence. The following lines with
a few examples should help with understanding the concepts and differences.

Artificial Intelligence

Artificial intelligence (AI), as a field in science and engineering, represents a
wide variety of subareas that are connected with performing intellectual tasks.
The Turing Test, proposed by Alan Turing in 1950, considered a machine to
posses intelligence if a human interrogator was, in written communication,
unable to determine whether his counterpart was a machine or a human.
This kind of definition measures the success of achieving intelligent behaviour
in terms of fidelity to human performance and closely couples intelligence

5

1. Problem Domain

with the human mind, its way of thinking, problem-solving, learning2 and
acting.3 Nevertheless, the human performance may not always be the ideal.
Therefore, another, rational, approach defines AI as the study of computations
that make it possible to perceive, reason and act4 or as the study of the design
of intelligent agents.5 [10] On a more specific level, AI consists of reasoning
and problem solving, knowledge representation, planing, learning, motion and
manipulation (robotics), and others. [11] A program that can play chess or
plan the (almost) optimal route for a travelling salesman can be considered to
be intelligent, even though it may use a known algorithm and was explicitly
programmed to perform such task.

Machine Learning

Machine learning (ML) is regarded as one of the subfields and enablers of
artificial intelligence that allows computers to perform tasks that they are not
explicitly programmed to. To draw a better distinction line between AI and
ML, consider the problem of recognizing hand-written digits, represented as
2D images. This is an example of a classification task.

Classification Expect to have a large dataset of images, each containing one
hand-written digit in the range of 0 to 9. None of the images looks exactly
the same as any other. Even two images of the same digit written by a single
individual would not look the same. Furthermore, the dataset contains images
from different authors, making the variability of possible input representations
even higher. Assigning the images the number they represent is a non-trivial
intellectual task that could be solved by specifying hand-crafted rules and
involving heuristics to scan the strokes of the written digits. This manual
approach would, however, lead to a tremendous amount of rules, exceptions
from the rules, exceptions from the exceptions, and would in general give poor
results. [4]

Adaptive model Better results can be achieved by utilizing the machine
learning techniques, such as by engaging an underlying adaptive model. This
can be for instance a neural network or a model based on Bayesian statistics.
Before the model is able to recognize the digits, its parameters must be adap-
ted – trained – for the task. The principle behind the scenes is called pattern
recognition. By discovering and exploiting regularities forming patterns in the
training data, the essential information (in terms of the information theory)
gets imprinted on the model. Thanks to the imprint, the model can recog-
nise similar patterns in new data that it has possibly never seen before. In

2Bellman, 1978
3Kurzweil, 1990
4Winston, 1992
5Pool et al., 1998

6

1.1. Artificial Intelligence and Machine Learning

practical applications, training data set is chosen such that its variability is
large enough to embrace all the necessary patterns while keeping it as small
as possible.

On a high level, adaptive models can be thought of as black-boxes that take
inputs and produce outputs with a certain level of accuracy. Unlike conven-
tional programs, they have a training mode in which their internal parameters
get modified in order to increase the accuracy by minimizing the error on its
outputs, or to improve various alternative criteria. These metrics have several
names in the literature, but they are often interchangeable: the loss func-
tion, error function, cost function or the objective function (as something that
should be minimized or maximized).

Supervised and Unsupervised Learning Learning can be either super-
vised or unsupervised.6 In supervised learning, the model learns on data that
has been already classified by someone else and it tries to discover common
patterns that map the input data to the desired output. On the other hand,
when not mainly interested in the actual value of the digits (for instance,
given a large set of a relatively smaller number of different characters written
by an unknown ancient civilisation thousands of years ago), at least trying to
group them automatically based on their shape could help with archaeological
research. Such task is an example of unsupervised learning because it is not
explicitly declared how many different categories there are and the category
for each of the characters is not known even by the researchers.

Regression Machine learning is not only about classification. Think about
a system that predicts temperature for the next day based on weather changes
during last 24 hours. This type of task is called regression [4] as the output is
a continuous variable rather than a discrete category. The algorithms used for
both types of the tasks are similar, yet the outputs must be treated differently.

Imagine having two models that take photographs as inputs. The first
model is used to guess the temperature on the place where the photograph
was taken. The second model can distinguish a cow from an aeroplane. We
may decide to encode “a cow” as an 8 and “an aeroplane” as a 9 and we show
a photograph of a cow gazing on a green meadow to the two models. Let
us assume that the real air temperature on the meadow was 8,0 ◦C and the
first model guesses 9,0 ◦C. It makes no big difference, the guess was close.
But what if the classification model outputted 9 instead of 8? Either there
is a cow or there is a non-cow; the difference between a plane and a cow is
relatively bigger than between 8,0 ◦C and 9,0 ◦C. Obviously, when evaluating
the accuracy of the two models, different methods must be used, such as the
mean square error of the temperature differences for the first model and the
percentage of correctly classified images for the second one.

6In fact, there are more types, e.g. reinforcement learning.

7

1. Problem Domain

Deep Learning in Neural Networks

One of the currently most popular adaptive models is the neural network. It
is an interconnected structure of simple individual processors, called neurons.
In principle, a neuron takes an input vector of real values, multiplies it with
a vector of internal weights and passes the computed value to an activation
function, whose outcome is the output of the neuron. Such simple “network”
is called perceptron and can be used for linear classification (e.g. to separate
points in a space by a line or plane). The problematic part is to specify the
plane, as no exact formula is given to the neuron. Instead, the points in the
training set are shown to the network together with their correct classification
(e.g. −1 and 1). Based on the difference between the actual and desired output
values, the neuron weights are modified using the backpropagation algorithm
until the network yields correct results. To make sure the model learned to
generalize, another set of data, called the test set, is used to evaluate the
performance.

Deep Neural Networks More difficult tasks, such as speech recognition
or driving a car, cannot be solved by a single perceptron. Instead, a higher
number of neurons is stacked across multiple layers. Input neurons get ac-
tivated through sensors perceiving the environment, other neurons get activ-
ated through weighted connections from previously active neurons. When
the network has more than just a few layers, we speak of a deep neural net-
work (DNN). The deepest networks are, in a sense, recurrent neural networks
(RNN) that connect the neurons not only in the forward direction from the
input towards the output layer, but also recurrently to the same or a pre-
vious layer. This concept has been winning many international competitions
since around 2000 in performing tasks like handwriting recognition and around
2010, deep networks even achieved superhuman performance. Deep learning
is about accurately assigning the weights of such networks to make it exhibit
the desired behaviour. [12]

Future of AI

So far, models need a large number of training data to make decisions, much
more than a human. Neural networks may tell whether a patient has a certain
disease or not, but they can rarely reason the decision, which might be as
important as the decision itself. AI research in this area has the potential to
be the most impactful technology that humankind has ever developed. [13]

1.2 Conducting Experiments

In the previous lines, the basic ideas that make computers behave smart have
been covered. Nevertheless, the key to success in creating an intelligent system

8

1.2. Conducting Experiments

consists in research across many dimensions, including collecting and prepro-
cessing data, choosing or creating an architecture of the underlying model,
implementing it and evaluating it.

1.2.1 Data Preparation

Datasets A lot of data is necessary to teach computers non-trivial tasks.
Fortunately, there is already a large number of standard datasets available,
ranging from visual data, speech and music samples to medical and biological
data. [14] Using standard datasets contributes to doing high-quality research,
since the computer scientists can exchange their experience more easily and
compare their performance relatively to the same data base. Of course, not
every problem has a standard dataset and in order for the program to perform
its task, the data must be collected as a part of the study.

Having gathered and labelled the data, a subset is selected to perform the
training on. As mentioned earlier, the training set should be relatively small
while covering the most general cases. After finishing the training phase, the
test set is used to evaluate the model’s generalisation capability.

Feature Extraction Processing data in arbitrary form is still a computa-
tionally expensive task. For most practical applications, the original inputs are
typically preprocessed into another format that makes the pattern recognition
problem easier to solve. This pre-processing stage may involve resampling im-
ages or audio to a unified resolution, deskewing hand-written text, denoising,
Fourier transform and so on. As far as we know, some models require a higher
level of preprocessing than others. Remember that all the data, not only the
training set, must be transformed using the same steps for the learning to
work. [4]

1.2.2 Training a Model

Choosing and modifying the most suitable machine learning model can be
a project on its own. There are several software libraries for different pro-
gramming languages, most noticeably for Python and MATLAB, providing
configurable implementations of well-known models. It might suffice to pick
one of them, select a model, such as decision tree, support vector machine
or one of the neural networks, and call a train method on the training set,
followed by calling a run method on the test set for evaluation of its general-
isation capability. This approach would only result in a decent performance
in case of being lucky enough to just a relatively simple task being solved.

Normally, once the type of the adaptive model has been chosen, it must
be adjusted to fit the problem needs. This involves configuring learning hy-
perparameters that decide the algorithms and their settings to be used for the
training. Namely neural networks require more than that. As they are made

9

1. Problem Domain

Figure 1.1: Training Loop

of individual neurons, the units must be organised to a network in a structured
and scalable way based on the type of data they should process. There is a
research just in exploring the network architectures and their benefits for par-
ticular research areas. Even after opting for a network architecture, specifying
the training algorithms and their settings, the network structure must be ad-
apted, for instance the numbers of neurons in each layer, the number of the
layers, number of inputs, number of outputs, etc. To make the circumstances
even more complicated, the selected model can be comprised of several other
models.

Unfortunately, hyperparameters and configuration possibilities may be
many and finding a valuation that yields superior results, ideally in a reas-
onable time, is difficult. Although there are several rules of thumb helping
with the decision, the search space remains large. Thus, training (and, con-
sequently, model construction) is an iterative process of patient hyperpara-
meters modification, training, testing, evaluation, and repeating the whole
process as long as improvements are foreseeable. It is sometimes referred to
as the Training Loop, as depicted in Figure 1.1.

Sacred has been designed to keep track of iterations, or, more precisely,
of the individual training “rounds”, referred to as runs. For each experiment,
researchers may compare the runs and their performance in terms of model
precision, accuracy, loss, or speed. As with any other optimization task, the
possibly high amount of computing resources is one of the reasons why we do
not want to lose the results. In fact, large neural networks are nowadays being
trained on GPU clusters and both training and using the network to generate
some results can take significant time, from minutes to weeks or even more.

10

Chapter 2
Sacred

Sacred has been created at IDSIA to configure, organise, log and reproduce
experiments written in Python. As mentioned in the Introduction, Python is
among the most used languages for machine learning. It can be attributed to
the relatively high number of libraries available for computations and to the
syntax of Python is much more data-oriented than the syntax of C and co.,
which makes prototyping much easier. (In fact, most of the computational
libraries do internally use effective C code, but the developers are abstracted
from that.) Sacred adds another piece to the puzzle of machine learning
ecosystem.

This section describes the “as-is” functionality of Sacred to support train-
ing process and the Sacred API and the information being collected. For con-
sistency, the term experiment configuration (or simply configuration) refers to
every configurable parameter of the training process, including hyperparamet-
ers, learning algorithm settings and similar. [3]

2.1 Supporting the Process

The key features provided by the tool are:

• keeping track of all the parameters of experiments
• running experiments with different settings
• saving configurations for individual runs in a database
• reproducing experiments

Sacred achieves this through the following main mechanisms:

• Config Scopes: A convenient way to define experiment configuration.
When multiple scopes are defined, users may choose the one (or a com-
bination of those) they want to use.

• Config Injection: Parameters defined in ConfigScopes are implicitly
available in every function of the experiment.

11

2. Sacred

• Command-line interface: Sacred extends possibilities of running ex-
periments by enriching them with a command-line interface that makes
the choice of setting individual parameters easier.

• Observers: Observers periodically check the experiment status and
may log all kinds of information, including experiment dependencies,
configuration used and results to a database. The most important is the
Mongo Observer, as it provides a flexible way of storing almost arbitrary
structured data, it is the most widely used, and new features use to be
available for it earlier than for the others.[15].

• Automatic seeding: Helps controlling the randomness in experiments,
making the results reproducible

2.1.1 Running Experiments

Sacred experiments are programs written in the Python programming lan-
guage. It does not imply other technologies cannot be used with Sacred at all,
but we assume that a Python main file in which all the necessary configuration
can be performed is available.

In the following part, Sacred’s ability to manage experiments on a simple
classification task is presented using the famous Iris flower dataset [16], which
often appears in educational examples. It concerns three species of Iris (Iris
setosa, Iris virginica and Iris versicolor) and the means of distinguishing among
them. The classification is based on four features: the height and width both
of the sepal petal leafs7.

The code snippet in Listing 2.1 uses Support Vector Machine (SVM) as
a model to determine the Iris specie. The first 90 records of the 150-row
dataset serve to train the model and the remaining 60 to evaluate the mean
accuracy of the predictions. The resulting score is written to the standard
output, where it has to be collected by another program or a human to keep
the records.

When running the experiment multiple times, it can be seen that the
results of individual runs vary. This occurs due to the permutation being
performed before training the model. It is, however, quite necessary: the first
90 records being used for the training are not guaranteed to equally represent
all the three species. By randomly selecting individual measurements, we hope
the training set will consist of representative samples.

We might want to find out whether a better accuracy can be achieved and
start experimenting with different hyperparameter values while keeping the
selection of the training data the same. Sacred can be incorporated by a none
too complicated change of the code as in Listing 2.2. Such script is run in the
same way as the original one: using python file_name.py.

7sepal and petal leafs = modified leafs forming the blossom part of flowers

12

2.1. Supporting the Process

Listing 2.1: Experiment without Sacred
Set hyperparameters
C = 1.0
gamma = 0.7
Load the dataset and permutate it
iris = permutate_randomly(datasets.load_iris())
Set up SVM
clf = svm.SVC(C, ’rbf’, gamma=gamma)
Train on the first 90 records
clf.fit(iris.data[:90], iris.target[:90])
Evaluate accuracy on the rest of the dataset
print(clf.score(iris.data[90:], iris.target[90:]))

Output: 0.95
Based on an example on the Sacred project page [3].

Code Explanation The Sacred-enabled example in Listing 2.2 introduces
a new variable ex representing the experiment and two methods decorated by
Sacred annotations. The ex.automain annotation denotes the entry point for
the experiment. Its parameters C and gamma are automatically set according
to the cfg method decorated by the ex.config annotation. The main method
returns a value that should be understood as the main result of the experi-
ment. The advantages brought by this separation, and storing more detailed
information, are described later in the text.

2.1.2 Observers

One of the key goals of Sacred is keeping track of and monitoring the experi-
ments being run. For that reason, the observer monitoring interface has been
provided.

Information accessible to observers include experiment metadata (start
time, operating system, package dependencies), the source code of the ex-
periment file(s), the actual configuration parameters, the standard and error
outputs, and the experiment status, among others. Users have also a diction-
ary at their disposal, called info, which can be used for storing any serializable
data of their choice.

There are already several implementations of observers: most noticeably
the Mongo observer, periodically storing the progress to a MongoDB database.
As MongoDB belongs to NoSQL databases, the database schema is not as
strict as in the case of relational databases. In fact, collections in MongoDB
can store almost any serializable data objects consisting of key-value pairs
and arrays. Thus, records in one collection may have completely different

13

2. Sacred

Listing 2.2: Experiment with Sacred
from sacred import Experiment
Define the experiment name
ex = Experiment(’iris_rbf_svm’)

@ex.config
def cfg():

C = 1.0
gamma = 0.7

@ex.automain
def run(C, gamma):

Load the dataset and permutate it
iris = permutate_randomly(datasets.load_iris())
Set up SVM
clf = svm.SVC(C, ’rbf’, gamma=gamma)
Train on the first 90 records
clf.fit(iris.data[:90], iris.target[:90])
Evaluate accuracy on the rest of the dataset
return clf.score(iris.data[90:], iris.target[90:])

Output:

WARNING - iris_rbf_svm - No observers have been added to this run
INFO - iris_rbf_svm - Running command ’run’
INFO - iris_rbf_svm - Started
INFO - iris_rbf_svm - Result: 0.9833333333333333
INFO - iris_rbf_svm - Completed after 0:00:00

structure, which almost perfectly fits the needs of storing various information
for different experiments.

Nevertheless, some users prefer using SQL databases, and for them, the
SQL observer has been created, but it can currently store only general in-
formation about the experiment in a structured way. The experiment-specific
logging data is stored as serialized objects. The list of observers contains ad-
ditional modules for other databases, a module for File Storage (which does
not require any database backend) and observers notifying about the progress
via instant messaging services. This might be useful to inform users when a
long-running task has finished.

Using a particular observer can be enabled either programmatically or by a
command-line option. A deeper explanation and the list of available observers
can found on the documentation page [15].

14

2.1. Supporting the Process

2.1.3 Configuration

Sacred offers several means of managing the experiment configuration, includ-
ing in-code statements, command line options and configuration files. Config-
uration parameters behave like user-definable variables – choosing the number
of parameters, their names and structure is left up to the user. The most
powerful mean of setting their values is using Config Scopes, which are regular
Python functions decorated with @ex.config. All the variables declared in
its scope and their values are collected and passed to the main function. In
the example Listing 2.2, we have only seen simple key-value pairs, but any
serializable data type, such as arrays and dictionaries, may be used. Being a
regular function, standard Python statements can be used.

Thanks to the extraction of the configuration parameters, it is now much
easier to run the script with different parameters. Starting the experiment
with a different gamma hyperparameter is now as simple as running the fol-
lowing command: python file_name.py with gamma=0.9. In this case, the
the default value of C will be used together with the updated value for gamma.
Other possibilities of working with the parameters are described in the Sacred
documentation [15].

2.1.4 Controlling Randomness

When conducting experiments, researchers often rely on pseudorandom num-
ber generators to yield sequences of numbers that need to come from a certain
random distribution, but the individual values do not matter. It is useful for
random draws from data sets, initialization of random vectors, such as neural
network weights, or for making random decisions during training to escape
non-prospective states of the search space. Hence, randomness is a desired
feature of experiments.

In certain cases, generating a completely unknown random sequence is
undesired and should be prevented. For instance, to analyse the influence of
modifying different hyperparameters on the model’s ability to learn, we want
to make the initial pseudorandom shuffle of the dataset in Listing 2.2 always
yield the same order of records. The sequence produced by a pseudorandom
generator normally depends on the initial value, called seed, which can be the
current time or another physical variable. As most generators allow setting a
custom seed, it is possible to repeat the sequences by resetting the seed to a
known value.

Sacred regards seed as a special configuration hyperparameter that can be
passed to the experiment either directly in the Config Scope or using the com-
mand line: python file_name.py with seed=123 gamma=0.001 This ap-
proach should work automatically for code that uses only Python’s built-in
random or numpy.random modules. Seeds of other libraries might have to be
initialised programmatically first.

15

2. Sacred

2.2 Sacred Architecture in a Nutshell

Sacred is a Python library that takes control over experiment execution. Once
started, the program uses two parallel threads: the first thread is used to run
the actual code, the second thread is used by observers. Before the experi-
ment starts, the attached observers are notified. Database observers (e.g. the
Mongo observer) create a new entry in the database for the current run, in-
cluding its configuration, status and start time. Every 10 seconds or any other
specified period of time, the attached experiment is checked by the observers,
its standard output, current time (referred to as the heartbeat time) and the
run’s info dictionary is updated in the database. The info dictionary is also
exposed to the experiment code, enabling it to add various additional informa-
tion to the database. Experiment can be either in one of the following states:
RUNNING, COMPLETED, INTERRUPTED, FAILED, QUEUED, TIMED_OUT. A de-
tailed explanation of the data model, information collected and experiment
states can be found in the project documentation [15].

16

Chapter 3
Sacredboard

Doing a research requires not only to perform experiments and store their
results, but also to be able to make use of the data for deciding the future
course of actions. So far, the Sacred users had to rely on standard database
tools and custom queries and scripts when accessing the records. One of
the important goals of this project is to eliminate such rather uncomfortable
way of retrieving data, and to improve the user experience by developing a
graphical interface to the tool: the Sacredboard.

Before starting with the development of Sacredboard, the answers to the
following questions had to be found:

1. Who are the users of Sacredboard (and Sacred)?
2. What features do they need?
3. How should Sacredboard integrate with Sacred?
4. How should Sacredboard be deployed and accessed by its users?

3.1 Requirements Elicitation

Answering the first question seems to be simple. Sacredboard will share most
of its user base with Sacred. The desired functionality, originally based on dis-
cussions with the main developer of Sacred, was supported by a questionnaire
distributed among its current users, coming mainly from the IDSIA laborat-
ory, other research groups, and users who visited the Sacred project page on
GitHub. These are mostly highly educated people that know a lot both about
their needs for their research and about the software environment they use.
Therefore, they should be able to help not only with identifying the functional
requirements, but also with deciding the architecture and other non-functional
requirements. Another mean of requirement elicitation was a self-exploration
based on conducting an own experiment using Sacred and the TensorFlow [7]
framework from Google (Appendix A).

17

3. Sacredboard

3.1.1 Discussion

In discussions with the main developer of Sacred was concluded that it would
be beneficial for Sacredboard to be built on the same technology as Sacred,
which was written in Python, as it would require a little to no extra effort for
the users to install the new tool in their existing environment. Sacredboard
was, threrefore, proposed as a standalone Python application that would run
on a host computer and would be accessed via a web browser. This approach,
which is familiar to Python programmers from other applications,8 has been
found valuable because it enables multiple modes of deployment: the users
may choose to run the application locally and access it directly from an auto-
matically opened web-browser window, or to run its integrated HTTP server
on a remote machine and connect to it from their workstation.

The integration between Sacred and Sacredboard, that is, the way of ac-
cessing the Sacred data from Sacredboard, must deal with the simplicity of
the current framework, which is devoid of any application server that could
act as an integration point. Instead, scripts that utilize Sacred interact dir-
ectly with a database backend of the user’s choice. The variety of backends
that is Sacred compatible with, ranging from document-oriented to relational
databases, demands consideration of their support in Sacredboard. Despite
inconveniences that may arise when realizing the integration on a database
level, it is, in this case, considered the most reasonable option. After all, Sac-
redboard should display data in the first place, and not directly interact with
running experiments.

Sacredboard should provide its users with an overview of experiments and
their runs. Next to a list of running and finished experiments identified by
their names, the users should be able to follow the standard output of experi-
ments, their hyperparameters and current results. Furthermore, the interface
should simplify launching external monitoring tools, such as TensorBoard for
TensorFlow [7], which may give even more detailed information about the pro-
gress of training and the model used, as well as charts to compare the results
with previous runs of the experiment. Another necessary feature is to allow
filtering of the list by different configuration (hyper)parameters in order for
relevant records to become quickly accessible.

3.1.2 Questionnaire

The requirements premised on the discussion had to be confirmed with Sac-
redboard’s potential users. A few researchers from the IDSIA and other labor-
atories were asked to complete a questionnaire whose aim was to learn about
their habits with respect to using Sacred.

The most important goals were to determine which database backend
should be supported by the new tool in the first place, whether the proposed

8Jupyter Notebook, TensorBoard

18

3.1. Requirements Elicitation

deployment solution would be suitable for the users, and, of course, to collect
ideas for Sacredboard’s features.

The questionnaire was created in Google Forms, sent by email to research-
ers that were in touch with the IDSIA, and it was also published on the Sacred
project page. After a month being open, in total 16 people responded, of which
4 have declared they were not using Sacred at all.

Respondents were asked the following questions. The numbers in paren-
theses represent the number of votes for the particular answer:

1. How often do you use Sacred? (single-choice question)
• not at all (4)
• for some of my experiments (2)
• for most of my experiments (6)
• for all of my experiments (4)

All of the 6 respondents who used Sacred only rarely or not at all have
further expressed their willingness to become a regular user if there was a
graphical dashboard available. Those who did not work with Sacred were
allowed to speculate how they would use it.

2. What kind of setup do you use? (not at all / sometimes / often)
• I run Sacred locally (5 / 5 / 6)
• I run Sacred on a remote machine (2 / 1 / 13)

This question was important because of the requested integration between
Sacred and the TensorFlow framework. TensorFlow is capable of producing
its own monitoring logs that are stored on the file system. Their visualisa-
tion is realized by the TensorBoard monitoring tool, which is requested to be
launched directly from Sacredboard. For that, Sacredboard has to provide
TensorBoard with the path where the logs are stored. If we had found that
Sacred was run mostly on a local machine, we could have expected the logs
to be stored mostly on the same computer. In contrast, if the files are stored
on a machine other than Sacredboard is running on, thy are not guaranteed
to be directly accessible from the new monitoring tool.

3. What do you use Sacred for? (multiple-choice question combined with
the possibility of a custom answer)

• Training neural networks (14); (predefined option)
• Optimization tasks (1); (custom answer)
• Downloading datasets (1); (custom answer)
• Others (1); (predefined option)

The usage of Sacred was asked to ascertain that the questionnaire targeted ap-
propriate users. Using it for downloading datasets was a surprising discovery,
nevertheless, rather irrelevant.

19

3. Sacredboard

4. Do you use Sacred observers (Mongo, SQL, . . .)? (single-choice ques-
tion)

• Yes (12)
• No (4)

Observers are an essential feature of Sacred, because they are responsible
for storing experiment results. Two of the four respondents who did not
automatically observe their experiments were those who did not use Sacred at
all. These and the two others, who probably only configured their experiments
with Sacred, were therefore not very valuable for the investigation.

5. What Sacred observers do you use and how often? (not at all / some-
times / often)

• Mongo (2 / 3 / 7)
• File Storage (6 / 5 / 1)
• SQL Observer (10 / 2 / 0)
• TinyDB (11 / 0 / 1)
• Slack (9 / 2 / 1)
• Other (11 / 0 / 1)

MongoDB is the recommended way of storing experiment results and the
questionnaire has proved it to be clearly the most employed Sacred observer
among the respondents. It is a logical consequence of the necessity of stor-
ing arbitrary structured data, which makes a document-oriented database a
preferred choice. This result confirms that the support of backends in Sac-
redboard should prioritize MongoDB. However, the tool should be open for
future extensions.

6. If using a database backend, do you typically use a shared database?
• Yes (6)
• No (6)

Users that connect to a shared database are more likely to request a certain
level of isolation of their experiments from the others. This was a concern for
one of the feature proposals in question 8.

20

3.1. Requirements Elicitation

7. Is the database accessible from your local machine?

• Yes (10)
• No (2)

Sacredboard needs a connection to a database backend for its operation. If
the database machine was not directly accessible, working with the dashboard
would require additional steps to overcome the limitation, such as running it
on another machine. Sacredboard should support deployment on a server in
the future, however, making it work locally seems to satisfy most of the users
for now.

8. How important are / would be these factors for you when using the
dashboard? (multiple-choice question; scale 0 – 4, each point counted as
a vote. 0 = I do not need it at all, 4 = It is a must have)

• Getting an overview of finished experiments (50)
• Getting an overview of running experiments (48)
• Accessing the details of the experiments (configuration, standard

output, the “info” section) (44)
• Displaying plots of error functions, accuracy, etc. (39)
• Easy installation / setup on a local machine (33)
• Adding notes or comments to experiments (28)
• Deployment on a server where it could be accessed by multiple users

(22)
• TensorFlow: Starting Tensorboard for a single experiment run (21)
• Starting experiments from the dashboard (18)
• TensorFlow: Starting Tensorboard for a set of selected experiment

runs (18)
• Displaying the source code of the experiment (17)
• Browsing experiments from different databases at once (15)
• When using a shared database, protect “my experiments” from my

colleagues (12)
• A mobile user interface (assumed that sacredboard runs on a com-

puter accessible from the phone) (10)

The above mentioned results confirm that users mostly expect the dash-
board to allow them browsing their past experiments, their configuration and
results, as well as monitoring experiments that are currently running. This
proves that many of the experiments are long-running. The respondents have
also supported with a high number of votes the proposal of displaying charts
showing the progress of training. For that, it is necessary to propose a stand-
ardized model for capturing and storing sequential data in Sacred.

Among other features proposed by the respondents have also appeared a
few interesting ideas:

21

3. Sacredboard

• Comparison of configuration and results of multiple experiment runs to
support hyperparameter optimisation

• Deriving new experiments from existing ones

The results were transformed into user stories and further elaborated.

22

Chapter 4
Requirement Analysis

This chapter deals with analysis of the information collected during require-
ments elicitation phase (in Section 3.1). The first part summarizes the gathered
users’ needs in the form of user stories, each addressing one of the needs and
briefly describing the benefits for the user. Based on that, the scope of the
thesis is defined and more detailed functional and non-functional requirements
are elaborated. Each of the functional requirements can be traced back to its
user stories. The end of the chapter is dedicated to analysis a few non-trivial
scenarios in the form of use cases to specify the desired behaviour in a sequence
of interactions between the user and the system.

4.1 User Stories

The following users stories reflect the needs discovered in the previous chapter.
Although the actors of Sacred and Sacredboard could be theoretically divided
into those who prepare the experiments, those who run the experiments, and
those who evaluate the results, all the three roles are represented by a single
actor, the researcher, in the document. This decision reflects the fact that it
is always the person doing the research who benefits from the system.

US 1 Overview of Experiment Runs (Running)
A researcher wants to list experiment runs that are currently running

so that he knows whether the result of the run is ready to be evaluated.
Priority: High

US 2 Overview of Experiment Runs (Finished)
A researcher wants to list experiment runs that have finished so that

he knows what has been experimented on so far.
Priority: High

US 3 Sorting Experiment Runs
A researcher wants to sort the list of experiment runs by its attributes

23

4. Requirement Analysis

so that he can find the results more easily.
Priority: High

US 4 Filtering Experiment Runs (Numerical Values)
A researcher wants to limit the list of experiment runs to runs that have
a certain property equal, less (or equal) etc. than a given value so that
he gets only results that are better (or worse) than the reference value.
Priority: High

US 5 Filtering Experiment Runs (String Values)
A researcher wants to limit the list of experiment runs to runs that have
a certain property equal, not equal or containing another string so that
he can filter the results e.g. by the experiment name.
Priority: High

US 6 Filtering Experiment Runs (Date Values)
A researcher wants to limit the list of experiment runs to runs that have
a certain property on, before, after or on another date than the given
date so that he can filter the results e.g. by the experiment start time.
Priority: Medium

US 7 Filtering Experiment Runs (Experiment State)
A researcher wants to limit the list of experiment runs to those that

are in a particular state (see table 4.1 without the need of manually
entering the query so that he can easily view e.g. only currently running
experiments or those that have failed.
Priority: Medium

US 8 Displaying Experiment Run Configuration
A researcher wants to see the configuration of an experiment run so

that he can relate the run results to the values that have been used to
accomplish it.
Priority: High

US 9 Displaying Experiment Run Extended Information
A researcher wants to see the extended information stored in the “info”

section of an experiment run so that he can access and learn the auxiliary
user-defined information that has been measured or stored when the
experiment was running.
Priority: High

US 10 Displaying Experiment Run Output
A researcher wants to see the standard output of the experiment run as

it is running so that he has a better insight into the experiment progress.
Priority: High

US 11 Launching TensorBoard for an Experiment Run
A researcher wants to launch TensorBoard for a particular experiment

run that was using the TensorFlow framework so that he can view the
computation graph or advanced charts related to the run.
Priority: High

US 12 Launching TensorBoard for Multiple Experiment Runs

24

4.2. Scope of the Thesis

A researcher wants to launch TensorBoard for multiple experiment runs
that were using the TensorFlow framework so that he can view the
computation graphs and advanced charts of all the runs of his choice at
once.
Priority: Medium

US 13 Displaying Metrics Charts
A researcher wants to monitor various metrics of experiment runs (such

as accuracy over several iterations of a run) even without the need rely on
TensorFlow or TensorBoard so that he can visually inspect the progress
of learning.
Priority: Medium

US 14 Commenting Experiment Runs
A researcher wants to add notes to experiment runs (and read them)

so that he can later recall what and why he has done in the run more
easily.
Priority: Medium

US 15 Displaying Source Code
A researcher wants to see the source code in the state it was when the

experiment run started so that he can use the code again or compare it
with another version.
Priority: Medium

US 16 Deleting Experiment Run
A researcher wants to delete experiment runs that he does not need any
more so that he does maintain only information relevant to him.
Priority: Medium

4.2 Scope of the Thesis

The user stories described in Section 4.1 represent the most valuable features
that users need from Sacredboard. The scope of the thesis is to analyse all of
them and implement all the high-priority ones together with a few medium-
priority ones.

4.3 System Requirements

The aim of requirements analysis is to discover the bounds of the software and
to detect any overlaps or conflicts. They are divided into functional require-
ments addressing the user needs directly and non-functional requirements that
support them.

25

4. Requirement Analysis

4.3.1 Functional Requirements

The requirements listed below are made of “shall” statements that describe
the requested functionality and assumptions known or elicited during the re-
quirement analysis phase.

Requirements for Sacredboard

F 1 List of Experiment Runs
Realizes: User Stories US 1, US 2
Sacredboard shall display a table of experiment runs in the database.
The “run table” shall include columns for the experiment name, the
state of the experiment run, the start time of the run, the last activity
time (heartbeat), the machine name on which the experiment is or was
running (hostname), and the run result. States shall be represented as
coloured icons according to the specification in table 4.1.
It is necessary to distinguish between logical states, which shall be
presented to users, and states in the sense of values of the status field
stored in the database. The status field of running experiments is peri-
odically updated by Sacred’s observers.
In case of an outage or another unexpected event having occurred, the
status in the database remains unchanged, for instance in the RUNNING
state. Logically separating “dead” experiments from the rest will help
in detecting these situations.
For the MongoDB database backend, the fields are mapped from data-
base to the table as described in table 4.2. The field names are relative
to the run document.
The result field has usually a numerical value, but Sacredboard shall
raise no error nor crash in case of a different data type in the field.

Logical State Colour status in DB Additional Condition
Completed n green COMPLETED
Interrupted n orange INTERRUPTED
Running n blue RUNNING heartbeat time less than

120 seconds ago
Failed n red FAILED
Queued n grey QUEUED
Dead n black RUNNING heartbeat time more than

120 seconds ago
Timed Out TBD TIMED OUT

Table 4.1: Definition of Experiment Run States

26

4.3. System Requirements

Table Column Database Field
Experiment Name experiment.name
Run State see table 4.1
Start Time start time
Last Activity heartbeat
Hostname host.hostname
Result result

Table 4.2: MongoDB mapping for the Run Table

F 2 Sorting Run Table
Realizes: User Story US 3

By default, the table shall be sorted by the last activity time starting
from most recent to the oldest. The user shall have an additional pos-
sibility to opt to sort by all the displayed properties in ascending or
descending order. The result field should be usually a numerical value,
but in case of the MongoDB, the data type solely depends on the ex-
periment source code. Sacredboard shall raise no system error nor crash
when sorting different value types.

F 3 Filtering Runs
Realizes: User Stories US 4, US 5, US 6
To support browsing the experiment runs, Sacredboard shall allow users
to limit the list of displayed experiments to those matching specific cri-
teria. Filtering based on the logical states (see table 4.1) shall be visible
and quickly accessible without the need to specify the query manually.
Filtering based on other attributes of the experiment run must respect
the lack of a fixed database schema – it can only rely on the usual prop-
erties that every experiment run has, as documented in section ??.
The default scope for searching in experiment run is the config of the
run. However, the user shall not be restricted to that; the filtering mech-
anism shall enable extending the search area to the whole experiment
run.
Logically inappropriate combinations of operators and value types shall
be prevented.

F 4 Viewing Run Configuration
Realizes: User Story US 8
Sacredboard shall provide a view that displays the run configuration
to the user. Run configuration is a dictionary (key-value pairs), where
value can be either a primitive object, such as a string or number, an
array, or another dictionary. A way of displaying the above mentioned
objects must be provided.
For MongoDB, the configuration can be retrieved from the run’s config
property.

27

4. Requirement Analysis

F 5 Viewing Run Extended Information
Realizes: User Story US 9
Sacredboard shall provide a view that displays the info configuration to
the user. The requirement is in many aspects similar to F 4. Addition-
ally, the information may get updated while the experiment is running.
For MongoDB, the extended information can be retrieved from the run’s
info property.

F 6 Viewing Run’s Standard Output
Realizes: User Story US 10

Sacredboard shall provide a self-updating view that displays the stand-
ard output of the experiment run as captured by Sacred.
For MongoDB, the output can be retrieved from the run’s captured out
field.

F 7 Launching TensorBoard
Realizes: User Stories US 11, US 12

Applies to experiments that are using the TensorFlow framework.
Sacredboard shall provide the user with an option to launch TensorBoard
for experiment runs that have an associated TensorFlow log directory
specified. As there is currently no standardised run property holding
the path, it must be defined, and a way of setting it must be proposed.
This imposes a new requirement on Sacred (see F 100).
An experiment run can have zero to multiple (probably a few) associated
TensorFlow directories. A problem may arise if the log directory is loc-
ated on a path that is inaccessible from the location where Sacredboard
is running on (e.g. it is on another machine). TensorBoard can handle
the problem by simply pretending the directory is empty, but the user
may not be aware of the issue and can misinterpret the situation.
The interface to TensorBoard is described in section C.

F 8 Displaying Metrics (Measured Values)
Realizes: User Story US 13
Sacredboard shall display a chart for each associated metric that gets
measured during the execution of the experiment run. Metrics are
mostly qualitative variables of the adaptive model, such as the value
of the loss function, accuracy of correctly classified items, etcetera. (See
section 1.1). Instead of running the training process for a fixed number
of iterations, researchers may opt to engage techniques that measure
the metrics after each (or e.g. after each 20th) training iteration to
decide whether the training process should continue or if it should be
terminated because of a low expectation of future progress.
A visual chart of a metric shall be a 2D graph with the training step
or elapsed time on the x-axis and the measured scalar value on the y-
axis, similarly to the chart in TensorBoard in Figure 4.1. However, as
Sacredboard shall only display one chart per metric per run, there shall
be only one curve in the graph. A run can have one to a few metrics.

28

4.3. System Requirements

There is currently no standardised way of maintaining the metrics in
Sacred. Therefore, a new requirement (F 101) addresses the need.

Figure 4.1: TensorBoard chart displaying the classification error evolving over
training iterations, measured on training and validation set

F 9 Deleting Runs
Realizes: User Story US 16
From time to time, an experiment run may become useless to be main-
tained in the database, for instance when it fails and provides no in-
teresting information to the researcher. Sacredboard shall provide an
option to delete the run.

F 10 Commenting Experiments
Realizes: User Story US 16
Sacredboard shall allow adding and viewing additional notes to the ex-
periments so that they can better recall information about the experi-
ment later. As of now, there is no standardised field for comments. For
simplicity, a one-to-one relationship (one editable note per run) should
satisfy the need for now.

F 11 Browsing Experiment Source Code
Realizes: User Story US 15
Sacredboard shall display the experiment source files to the user (read-
only).

29

4. Requirement Analysis

As the experiment evolves, researchers modify not only hyperparameters
of the adaptive model, but also the source files. They should therefore
know what version of program actually belongs to which experiment
run.
In MongoDB, the files are stored using using the GridFS API (a part
of MongoDB) and the corresponding record IDs can be found under the
run’s experiment.sources array as a pair of (file name, id).

Additional Requirements for Sacred

F 100 Setting TensorFlow Log Directory in Sacred
System: Sacred
Parent requirement: F 7
Sacred shall define a structure to record directories used to store logs
created by TensorFlow during the experiment and shall also provide API
to store the information in a convenient way. As of autumn 2016, the
new way to create these logs in the TensorFlow API for Python is:
tf.summary.FileWriter("path/to/logs")
Although it is a rather unusual use case, a single experiment can produce
more than one TensorFlow log per run.

F 101 Storing Metrics in Sacred
System: Sacred
Parent requirement: F 8
Sacred shall define a structure to track measurements for different met-
rics during the experiment run. The values can be recorded either each
iteration step or every n-th step, depending on the user’s choice. For
now, the recorded value is expected to be either decimal or integer num-
ber.
It is requested to track each measured value together with the iteration
step and the time, because some steps may take longer than others,
and when evaluating the model performance, the time needed to train
it matters.

4.3.2 Non-functional Requirements

NF 1 Running on a Local Machine Sacredboard shall be runnable with a
single click or from the command line on the computer that the user is
working on, with a database server of the user’s choice.

NF 2 Running on a Server Sacredboard shall be deployable on a server for
an easier access to a shared database by multiple users. This setup is
suitable for research groups running their own database server.

NF 3 MongoDB Backend Support Sacredboard shall support the Sacred-
board MongoDB backend.

30

4.4. Use Cases

NF 4 Other Backends Support Sacredboard shall be open to further ex-
tensions to support other Sacred backends.

NF 5 Process Management Parent requirement: F 7
Sacredboard must take care of all processes that it executes (e.g., Tensor-
Board). Running endless number of TensorBoard instances that nobody
uses shall be refrained from.

4.4 Use Cases

This section tries to elaborate the user stories that have a non-trivial scenario
and to specify the course of action that the user will take to accommodate his
needs.

UC 1 Filtering Experiment Runs Realizes: User stories US 4, US 5, US
6 / Requirement F 3

Users Researcher
Description Filtering Experiment Runs
Preconditions Sacredboard is running and the user sees the experi-

ment run list
Base Course of
Events 1 The user indicates that the software is to perform

filtering of the run list.
2 The software responds by requesting the name of the

experiment config property to be filtered on, the
comparison operator and the searched value.

3 The user inputs the configuration property name and
the comparison operator and indicates the type of the
searched value (number/string/date).

4 The software applies the selected filter additionally
to other filters that have been possibly applied before
and indicates that a new filter condition has been ad-
ded.

31

4. Requirement Analysis

Alternative Paths 1 In Step 3, the user indicates he does not wish to per-
form the search based on an experiment run configur-
ation property but based on another property of the
experiment (not necessarily in the run config sec-
tion). The software will allow that.

2 In Step 1, the user indicates that he wants to in-
stantly filter out experiments that have a certain state
(e.g. FINISHED and INTERRUPTED). The soft-
ware must support it without requesting any details
about property names.

3 In Step 3, the user indicates he wants to filter based
on an invalid combination of operator and value (e.g.
number and “contains”). In this case, the software
indicates that the choice is invalid and prevents the
user from continuing to the next step.

4 In Step 1, the user indicates he wants to remove one of
the existing filters instead. The software removes the
filter of user’s choice. All the postconditions apply.

Postconditions 1 The run list displays only results matching criteria of
all the filters applied so far.

2 The software indicates all the filters applied.

UC 2 Starting TensorBoard
Realizes: User stories US 11, US 12 / Requirement F 7.

Users Researcher
Description Starting TensorBoard dashboard to see advanced in-

formation about the run
Preconditions Sacredboard is running and the user sees the experi-

ment run list
Base Course of
Events 1 The user indicates that he wants to launch Tensor-

Board for some of the experiment runs.
2 The software responds by requesting the user to

choose the runs that should be inspected in Tensor-
Board.

3 The user inputs his choice and confirms it.
4 The software navigates the user to TensorBoard with

the desired experiment runs loaded.

32

4.4. Use Cases

Alternative Paths 1 At any time, the user may decide to cancel the action.
If so, TensorBoard will not be launched and the user
does not get navigated anywhere. (The postcondition
does not apply.)

2 If TensorBoard cannot be launched in the last step
(for instance, the executable is missing on system
PATH), a corresponding error message is displayed and
the postcondition does not apply.

Postconditions TensorBoard has started and the user has been navig-
ated to it.

33

Chapter 5
Design

Having analysed the requirements, they need to be transformed to a func-
tional system. In this chapter, the software architecture of Sacredboard is
described accompanied with a short explanation of their relation to the sys-
tem requirements. The next sections provide basic information about the
individual modules and explain the internals of some of them in detail. The
rest of the chapter is dedicated to solving design problems that arose dur-
ing the implementation and that were not considered in earlier stage of the
development.

5.1 Architecture

Software architecture deals with the design and implementation of the high-
level structure of the software, with abstraction, decomposition and compos-
ition, and style and aesthetics. It is the result of assembling architectural
elements in some well-chosen forms to satisfy the major functionality and per-
formance requirements of the system, as well as some other, non-functional
requirements such as reliability, scalability, portability, and availability. [17]

Defining the software architecture for a particular project is a critical
phase, because once stabilized, it cannot be easily changed and most of the
future decisions will depend on it. Determining all the necessary processes,
components, and interfaces between them only from the information collec-
ted during the analysis phase usually results in constructing a basic picture
of the desired architecture, but it may take a few individual scenarios to be
implemented before the architecture stabilizes. This project was not an excep-
tion. The design proposed later in this chapter was originally meant slightly
differently than described.

35

5. Design

Figure 5.1: Architecture: Logical View

5.1.1 4+1 Architectural View Model

The various aspects of software architecture are difficult to capture in a single
diagram, and therefore, Phillippe B. Kruchten, a Canadian software engineer
working for Rational Software, developed the 4+1 Architectural View Model
in 1995 [17]. To address all the important stakeholder groups of the project,
he has proposed decomposing the architecture into four different, yet related
views: the logical view, process view, development view, and physical view.
There is also the “+1” view, which represents the scenarios: the actual “raison
d’être”9 of the whole project. Different projects may not need to use all of
these models, others may need a few more, depending on the concerns of its
stakeholders.

Logical View The logical view depicts the key abstractions of the prob-
lem domain. It servers the users to show that their needs are addressed in
the architecture. Figure 5.1 represents the logical relationships between the
functionalities that Sacredboard shall provide to its users. The TensorBoard
Process is actually not a part of the system, but there is an important rela-
tionship that is worth depicting.

9the reason for the existence

36

5.1. Architecture

Figure 5.2: Architecture: Process View

Process View The process view, depicted in Figure 5.2, takes into account
some non-functional requirements related to system concurrency, distribution,
and how they relate to the abstractions from the logical view. The process
view can be composed of multiple diagrams, each addressing different concerns
on different abstraction levels, such as processes, threads, and scheduled tasks.

The Sacredboard’s process view indicates an important architectural concept:
the independence of Sacredboard on Sacred’s processes. The communication
between the two applications will be unidirectional, mediated by the Sacred
database backend, which must be running for Sacredboard to work, but no
direct communication from Sacred to Sacredboard will ever occur. Sacred
processes are independent instances, each running its own experiment. Once
an experiment has finished, its process terminates. While running, the in-
formation about experiment runs get periodically pushed into the database.
Sacredboard must therefore regularly refresh the displayed results too. Sim-
ilarly, if the experiment uses TensorFlow and produces TensorFlow logs, the
TensorBoard process can read them later even if the experiment run has fin-
ished. If not, TensorBoard periodically checks the log file for updates.

In contrast, the communication between Sacredboard and TensorBoard
will be direct, as Sacredboard will have to start a new process for each user’s
request to launch TensorBoard, react to the output produced by the external
program and detect when the process is unnecessary and terminate it.

37

5. Design

Figure 5.3: Architecture: Development View

Development View The development view focuses on the software module
organization in terms of packages or subsystems that can be developed by one
or a small number of developers. The subsystems should by organized in a
hierarchy of layers, each providing a narrow and well-defined interface to the
layer(s) above it. [17]

Figure 5.3 shows the development architecture of Sacredboard, with em-
phasis on the backend (server) part. The picture defines the modules that
need to be developed to meet the functional and non-functional requirements
and also already specifies the technology that the software will be built on.

There are two high-level components: the user interface, which will be cre-
ated as an interactive web frontend, and the backend, which will be respons-
ible for accessing the database and for managing TensorBoard processes. The
backend and frontend are described in a more detail in Section 5.3 and 5.4,
respectively.

38

5.1. Architecture

Figure 5.4: Architecture: Deployment View

Physical View The physical view captures the non-functional requirements
of the system, such as availability, fault-tolerance, performance and scalabil-
ity. The nodes on which the software executes are depicted and the various
elements identified in the other three views must be mapped onto the nodes.
As the software may use different physical configuration for various environ-
ments (development, testing, deployment), the source code must not rely on
a certain physical layout. [17]

Rather than depicting a concrete instance level physical deployment, there
is a specification level deployment diagram provided, as seen in Figure 5.4.
The depicted nodes represent logical servers, not physical hardware; the de-
ployment is up to the user provided that certain conditions are met:

39

5. Design

• The MongoDB database that is used by Sacred-powered experiments
must be reachable from Sacredboard (default port TCP 27017).

• The computer that the user is working with must be able to connect to
the Sacredboard server via HTTP (default port TCP 5000). In many
cases, users will run the Sacredboard server on their own computers and
connect to it from their web browsers locally.

• When using the TensorFlow integration, both the experiment script and
Sacredboard must be able to access the produced log files using the
same path. It may therefore make sense to think about setting up a
file server accessible both from the computational nodes and the Sac-
redboard server.

5.2 Sacred Extension

Fulfilling requirements F 7 (Launching TensorBoard) and F 8 (Displaying
Metrics) requires new features to be developed for Sacred. They are roughly
described in requirements F 100 and F 101.

5.2.1 F 100: Setting TensorFlow Log Directory in Sacred

To implement the requirement, two design aspects had to be decided: the
data structure that will hold the information and the way how its values will
be set by Sacred – the definition of the API to be used by researchers.

Data Structure

Regarding the data structure, Sacred defines a property for storing user-
defined information related to the run, called info, which is represented as a
dictionary and whose content gets periodically serialized and updated in the
database when the experiment is running. In case of MongoDB, the mapping
from the memory object to the database is one-to-one for primitive types,
dictionaries and arrays. This property will be used as the extension point for
storing the locations of the TensorFlow log files. The actual names of the files
generated by TensorFlow are not important to fulfil the requirement. Because
a log can consist of multiple files, all the files must be present in a single
directory. The path to that directory is what matters.

The schema will be extended as depicted in Figure 5.5. The info dic-
tionary (document in MongoDB) has a key named tensorflow whose value
embeds another dictionary. The embedded dictionary contains an array of
all the paths to the TensorFlow log directories associated with the run. The
array is accessible via the logdirs key.

40

5.2. Sacred Extension

Figure 5.5: Extension of the Sacred Mongo Database Schema

The composition (filled black diamond) arrows represent relations that are es-
sential to the child object; without the connection to the parent object, the child
has no meaning. Furthermore, the child object is embedded in the parent as a
nested document. The standard association arrow points to a separately stored
object, referenced by a key. The aggregation (filled light diamond) arrows point
to collections containing the records.

Sacred API

When designing the Sacred API extension that would allow researchers to
easily set the log directory path, it was first considered adding a convenience
method to the run object that would have to be called each time TensorFlow
creates a new log. But in some cases, the logs can be created even without
knowledge of the researcher. Other libraries may use TensorFlow as a com-
putational backend in such a way that the researcher-programmer does not
interact with TensorFlow directly and it may be the library itself that decides
the log directory location. Therefore, instead of explicitly calling a method
to append the directory to the Sacred structures, a more flexible solution has
been designed to automatically detect the log creation in researcher-definable
sections of code.

The researcher may choose to select a portion of his code to be monitored

41

5. Design

Listing 5.1: Capturing the Log Directory on a More Granular Level
ex = Experiment("my experiment")
def run_experiment(_run):

with tf.Session() as s:
with LogFileWriter(ex):

swr = tf.summary.FileWriter("/tmp/1", s.graph)
_run.info["tensorflow"]["logdirs"] == ["/tmp/1"]
swr3 = tf.summary.FileWriter("./test", s.graph)
_run.info["tensorflow"]["logdirs"] == ["/tmp/1",

"./test"]
This is called outside the scope and won’t be captured
swr3 = tf.summary.FileWriter("./nothing", s.graph)
Nothing has changed:
_run.info["tensorflow"]["logdirs"] == ["/tmp/1", "./test"]

for log creation using the context manager mechanism as seen in Listing 5.1,
or to apply the monitoring on a method level with a decorator as in Listing
5.2. The code snippet in the first example tells the program to catch all
the calls of the tf.summary.FileWriter(...) method within the scope of
with LogFileWriter(ex):. Any time a new log is created, the path to it
gets inserted to the schema as described in Figure 5.5 earlier in this chapter.
Similarly, the researcher can indicate his intention to monitor calls from within
the scope of a method (or function), including calls from these methods. This
is achieved using LogFileWriter(ex) as a decorator of the function. It is
equivalent to wrapping the whole body of the function to the with clause.

Both the decorator and context manager approach works by dynamically
applying the decorator design pattern to the FileWriter method, which gets
replaced by a wrapper function that calls the original method and captures
the directory parameter that gets inserted into the Sacred structure. After
exiting the annotated region or the with section, the original method is put
back in its place instead of the wrapper.

Making the decorator work is a difficult task due to the necessity of sup-
porting both legacy yet widely used Python 2.7 and the current Python 3.4
and newer. Whilst Python 3 provides API functions to define objects to be-
have both as context managers and decorators at the same time, this feature
is missing in Python 2.7. A workaround had to be found to achieve the same
behaviour.

LogFileWriter as Context Manager

Each class implementing the __enter__ and __exit__ methods can be used
as a decorator. Using the with clause can be translated as in Listing 5.3.

42

5.2. Sacred Extension

Listing 5.2: Capturing the Log Directory on the Method Level
from sacred.stflow import LogFileWriter
from sacred import Experiment
import tensorflow as tf

ex = Experiment("my experiment")
@ex.automain
@LogFileWriter(ex)
def run_experiment(_run):

with tf.Session() as s:
swr = tf.summary.FileWriter("/tmp/1", s.graph)
_run.info["tensorflow"]["logdirs"] == ["/tmp/1"]
swr2 = tf.summary.FileWriter("./test", s.graph)
#_run.info["tensorflow"]["logdirs"] == ["/tmp/1", "./test"]

Replacement of the FileWriter implementation with a custom wrapper and

Listing 5.3: Python Context Manager
with LogFileWriter(ex):

do_something()
is the same as:
manager = LogFileWriter(ex) # constructor
manager.__enter__()
try:

do_something()
finally:

manager.__exit__()

back happens in the enter and exit methods, respectively.

LogFileWriter as Decorator

The concept of decorators is a slightly difficult to explain. Essentially, decor-
ator is a callable object (e.g. function) that is put before declaration of another
callable object. The decorated object gets replaced by the value returned by
the decorator as shown in Listing 5.4.

The example shown is very simple, but instead of returning a primitive
value, the decorator can return another function (a wrapper) that replaces
the decorated function. The decorator receives the decorated function as a
parameter that can be passed to the wrapper, which can invoke the original
function and perform additional actions to extend its behaviour. In addi-

43

5. Design

Listing 5.4: Decorator
def decorator(decorated_f):

return 42

LEFT: with decorator # RIGHT: The same without @decorator
@decorator
def decorated(): def decorated():

print("Hi") print("Hi")
return 100 return 100

decorated = decorator(decorated)
print(decorated)

Left: Decorator, Right: The same without @decorator
Outputs: 42; Notice that decorated is no more a function

tion, any Python object is callable provided that it implements the __call__
method. After many error and trial attempts to make the solution work in all
the required Python versions, these properties of Python have been combined
in the following manner. Figure 5.6 shows a “simplified” view on the result
from the point where the LogFileWriter(ex) decorator is used, showing the
point where the decorated method is executed and first TensorFlow log is cre-
ated, to the point where the program exits the monitored region. The new
functionality can be found in the stflow module of Sacred.

5.2.2 F 101: Storing Metrics in Sacred

Analogously to requirement F 100, both the data structures for Sacred and
the API functions had to be proposed. The idea behind maintaining series
of measurements is similar to functionality that already available in Tensor-
Flow, but since not every experiment uses the framework, the feature is worth
adding.

Data Structure

Each run has zero to several metrics that are distinguished by their name.
The choice of the name is fully in competence of the researcher, but for the
sake of features that might be added to Sacred(board) in the future, the
naming convention should remain consistent. It is advised to name the metrics
according to the dataset role and the calculated function, e.g. training.loss
or validation.accuracy.

Figure 5.5 shows the data model of metrics. Each metric consists of a series
of trinities (value, step, timestamp) organised in three arrays: values,
steps and timestamps. As the number of iterations in the run may be large,

44

5.2. Sacred Extension

Figure 5.6: Sequence Diagram: LogFileWriter as Decorator

it is often unnecessary to measure the value in every step to get extrapolated
results. The step is there for the purpose of displaying the measurements on
a chart in the correct perspective. The timestamp, stored in the UTC zone,
serves the same purpose to reflect the time perspective.

In MongoDB, each metric is stored in a separate document in the metrics
collection and the name and id of the record is referenced to from the run’s
info. The references are organised in an array accessible via the metrics key,
each item being a dictionary with id and name properties. The separation
prevents the run documents from growing with the increasing number of data
points being collected, as MongoDB defines a 16 MB per document limit
that could be otherwise potentially breached if there was a higher number

45

5. Design

of different metrics with lots of data points. Additionally, Sacred rewrites
the content of the database run entry each time a heartbeat event occurs,
which is normally every 10 seconds, to keep the values in Sacred’s runtime
memory consistent with the content of the database. Maintaining the metrics
in the structure would cause the amount of data being moved to the database
increasingly rise after each iteration.

Sacred API

The API extension was proposed to support experiments that use TensorFlow
in a seamless way similar to the extension in F 100. A convenient way for
experiments not based on TensorFlow should have been provided as well. The
integration with TensorFlow had to be postponed due to the high risk of
further changes in the TensorFlow API since the framework was still in beta
until mid-February 2017. This has been justified as the existing integration
for F 100 had to be adjusted after a series of changes accordingly.

The new Metrics API is accessible to the running experiments both via
the Experiment and Run objects. The measurements can be added simply
by calling the log scalar method that accepts the name of the metric, the
measured value and optionally, the step number. Details of usage shown in
Listing 5.5.

The recorded data does not get stored to the database immediately. In-
stead, each call of the log scalar method results in a created message that is
pushed to a thread-safe queue (SacredMQ). It is retrieved by the _emit_heartbeat
method of the Run class, all the metrics logged since the last heartbeat event
are grouped by their name and forwarded to all the Sacred observers used for
that run. At the time of writing, only the MongoDB observer is able to process
the data. It does so in the log_metrics(metrics_by_name, info) method
that pushes the newly measured values to MongoDB using its $push operator
and adds a references them in the info dictionary in section “metrics”.

SacredMQ

As a part of the implementation, a new mechanism of inter-module commu-
nication has been introduced to Sacred. The Sacred Message Queue has been
developed to ensure that each Sacred observer receives a copy of the logged
values.

In general, when a new message queue is created, a consumer can subscribe
to receive messages of that particular queue by calling the add_consumer()
method. The returned object has a method to check whether there are any
unread messages (has_message()) and another method to retrieve all the
unread messages (read_all()). When a new message is published to the
queue (publish(message)), it gets distributed to all the currently subscribed

46

5.3. Sacredboard Backend

Listing 5.5: Sacred Metrics API
@ex.automain
def example_metrics(_run):

counter = 0
while counter < 20:

counter+=1
value = counter
ms_to_wait = random.randint(5, 5000)
time.sleep(ms_to_wait/1000)
This will add an entry for training.loss metric in every
second iteration.
The resulting sequence of steps for training.loss
will be 0, 2, 4, ...
if counter % 2 == 0:

_run.log_scalar("training.loss", value * 1.5, counter)
Implicit step counter (0, 1, 2, 3, ...)
incremented with each call for training.accuracy:
_run.log_scalar("training.accuracy", value * 2)
Another option is to use the Experiment object
The training.diff has its own step counter (0, 1, ...) too
ex.log_scalar("training.diff", value * 2)

listeners. The type of the message does not matter to the queue. Removing a
listener has not been implemented yet as it was not needed.

Note: In the end, it was decided that SacredMQ is currently an unne-
cessary complicated construct for Sacred and will be replaced by a simpler
solution.

5.3 Sacredboard Backend

Sacredboard is a client-server application. While the client part is realised as
a web-browser frontend, the backend (“server”) of Sacredboard is built on Py-
thon 3.5 and Flask, a lightweight web framework for Python that comes both
with an integrated web server and the capability of deployment on other web
servers, such as Apache, using the WSGI10 interface. The selected solution
should help with fulfilling requirements NF 1 and NF 2.

Flask provides Python decorators to design the application URL endpoints
in a lucid way and comes with the Jinja2 template system that simplifies
rendering of the web pages and resources that the client application is served

10Web Server Gateway Interface

47

5. Design

with. For accessing the Mongo database, the official PyMongo library has
been selected to comply with requirement NF 3.

5.3.1 Backend Modules

The backend is divided into modules as described earlier in Section 5.1.1. The
modules are mostly organized in Python packages. As Python prefers “duck
typing”, the depicted interfaces define rather contracts between the modules
in terms of method signature and behaviour than formal interface definitions
or abstract classes.

WebAPI

The Web API module uses Flask to expose URL endpoints of the application
Web API and serves as an intermediate between the application logic and the
frontend client. The Web API uses the concept of resources as in the REST
architecture, but perhaps another way of accessing the data in the future could
be considered, such as the Graph Query Language (GraphQL) from Facebook.
The currently defined endpoints are described in Appendix B.

Data Access Layer

The MongoDB Access Layer is located in the data package. The Data Access
Layer defines two methods:

• get runs(sort by, sort direction, start, limit, query)
Parameters: All optional

– sort by The run property to sort by (based on the MongoDB
schema), such as “host.hostname”.

– sort direction Either “asc” or “desc”. sort by must be specified
too.

– start, limit Limit the number of results returned, starting at
start, ending at start + limit.

– query A query to filter the results. The format of the query is
described in Appendix B.

Returns: [a list of runs]
• get run(run id)

Return a single run or None.

Boostrap

Bootstrap is the entry point for Sacredboard. It takes care of parsing command
line parameters, establishes the database connection, starts the integrated web
server and opens a new web browser window that navigates the user to the
application.

48

5.4. Sacredboard Frontend

TensorBoard Launcher, External Process Manager

The two modules provide ways of managing external processes, which is cur-
rently only TensorBoard, and take care of their correct start and termination.
Unfortunately, different operating systems have their means of executing pro-
cesses and redirecting their standard output to the application. Therefore, the
code had to be split for the Windows and Linux operating system to better
react for unexpected behaviour of the external program being launched. For
instance, Linux supports the select mechanism to periodically check whether
something has been printed to the standard output by the program. In con-
trast, Sacredboard has to hope that the program being launched prints some-
thing when run under Windows. Otherwise, Sacredboard might wait for the
program output forever.

Façade

Façade serves as an intermediate service between the Web API and other mod-
ules to separate non-trivial scenarios. The aim is to keep the WebAPI module
clean from any logic not related to the exposed web interface so that the func-
tionality of Sacredboard remains reusable even when a different frontend is
developed.

5.4 Sacredboard Frontend

The Sacredboard frontend provides the users with an interface to perform all
the required tasks. It is built as an HTML and JavaScript application hosted
on the Sacredboard backend. The frontend connects to the server part using
HTTP to retrieve data and perform operations.

5.4.1 User Interface Design

The user interface of Sacredboard consists of several views. The main screen
shows the list of running and finished experiment runs (F 1) in a sortable table
(F 2), built using the DataTables [18] extension. In addition to the low fidelity
prototype pictured in Figure 5.7, the table also displays the experiment state in
a form of a small coloured rectangle. There is a line of textual representations
of the experiment states above the table that servers as a legend explaining the
state colours. Thanks to checkboxes attached to each of the state descriptions,
it is additionally usable for easy filtering on experiment runs based on their
state, as requested in F 3 and UC 1, alternative path 2.

For advanced queries, three fields at the top of the page (shown as a single
field in the wireframe) are provided for specification of the field name, operator
to be used and the filter value. The users immediately sees the scope he is
searching in: by default, config.. By writing a leading dot (.), the user

49

5. Design

Figure 5.7: Sacredboard Wireframe

indicates the search should be based on any property instead of the default
one (alternative path 1 of UC 1). The indicator of searching in config.
disappears to give the user a feedback to his action. After adding the filter,
it appears in a list below from where it can be removed by clicking on its [X]
control. In case of invalid format or combination of operator and value, the
application displays a warning message (figure 5.8).

Clicking on any row in the table opens a collapsible detail view that shows
the configuration, extended information, the standard output and buttons
for launching TensorBoard for the selected run. This option for launching
TensorBoard is, however, not in compliance with UC 2, as it does not sup-
port running TensorBoard for multiple runs because of delays in analysis of
managing TensorBoard startup for arbitrary combination of runs.

5.4.2 Frontend Architecture Decisions

As the complexity of the frontend grows, managing states of individual com-
ponents on the page becomes a challenging activity. Developers can easily

50

5.4. Sacredboard Frontend

Figure 5.8: Sacredboard Error Message

get lost in the forest of dependencies made of events being triggered on the
components and the corresponding actions that shall take place. Addition-
ally, referencing the components directly from the code unnecessarily tightly
couples the presentation layer to the model, which significantly reduces re-
usability and testability.

Frontend developers started realising the problem and since then, a number
of libraries addressing the issue has been developed. They solve the decoupling
of the model from its view by introducing design patterns already known from
the world of desktop applications, such as Model-View-Controller (MVC) or
Model-View-View Model (MVVM).

While some of the libraries are rather frameworks enforcing a certain ar-
chitecture of the whole application frontend to be followed, others can be
employed into existing parts of code regardless how the application is built.
When deciding the most appropriate solution for Sacredboard, it was neces-
sary to consider the expected frontend complexity: Using no decoupling would
work as long as JavaScript is incorporated only for supporting the application
interactivity without performing more sophisticated logic.

On the other hand, building the whole frontend on an application frame-
work seems to lead to unnecessary complexity of the release process. Most
of the frameworks included in consideration did not work directly with de-
ployable code, but rather relied on their own tools to manage the project and
cover various tasks ranging from creating models and components to prepar-
ing files that should be finally deployed. Although this approach seems to be
a reasonable choice to go for, these tools need to be present on developers’
computers, and the developers need to learn how to work with them.

But Sacredboard is expected to be further developed by volunteers re-
cruited from the researchers, and for them, setting up the development en-
vironment should be kept preferably simple, especially for those only want to
contribute with a small improvement and the intricacy could dishearten them.
This has proved to be an adequate requirement, since during writing of the

51

5. Design

thesis, the project has been forked by several users who started adding their
own features. Therefore, while choosing a suitable library or framework, main-
taining a good balance between complexity, features and possible drawbacks
of the selected solution must be considered.

5.4.3 Frameworks and Libraries

Before starting development of the Sacred frontend, a number of existing
JavaScript frameworks had been studied and judged by the aspects mentioned
in Section 5.4.2. It has transpired that most of the considered frameworks were
based on a variation of the Model-View-View Model or Model-View-Controller
pattern to solve the decoupling problem.

5.4.3.1 Frameworks Studied

The following paragraphs describe a few of the frameworks that were taken
into consideration. Some others have not been studied in such detail or have
been found at a later stage of the project. All the below mentioned frameworks
use the concept of components to represent the view. A component is a web
page, a widget, or a single button that can communicate with the controller
or model. Components are reusable, they can be instantiated several times
on the same page, can be nested, and form a component tree of the view.

AngularJS AngularJS is a predecessor of a more advanced Angular frame-
work. It is built around the data-binding concept, which establishes a con-
nection between the application UI and business logic and further described
in Section 5.4.4. Unlike its successor, it does not enforce a particular project
structure. The library is simply loaded as any other JavaScript library. An-
gularJS is currently not under active development, as its developer Google
with the community around it now focuses on the new Angular. Therefore,
AngularJS has been disqualified for use in Sacredboard.

Angular Framework Even though the Angular framework is a successor to
the earlier mentioned AngularJS, it is not backward compatible and except of
the name, they do not have much in common. The Angular framework uses the
Node.js JavaScript environment for the development process, which provides
command line tools for managing the project. Contrary to AngularJS, which
was rather a library than a framework, Angular requests the project to main-
tain a certain structure and takes care of the whole view runtime lifecycle. The
initial configuration for the project seemed to be unnecessary complex for a
rather smaller project and after discovering the time needed to get familiar
with the framework, for the sake of other developers getting involved in the
development of Sacredboard in the future, the framework has been rejected
too.

52

5.4. Sacredboard Frontend

Ember.js Similarly to Angular and many other frameworks, Ember.js uses
a toolset based on Node.js for managing the development. The view logic is
roughly organised in a variation of the Model-View-Controller pattern. Des-
pite the inconvenience of installing Node.js for development, it has been put
on a shortlist of frameworks to be further examined, as the configuration over-
head was significantly lower than with Angular. Nevertheless, the template
engine that renders components in Ember.js used its own syntax rather than
enriching HTML with custom notation, which could decrease code readabil-
ity both for developers and code editors, leading to syntax highlighting and
auto-completion not to work properly. It was the main reason to reject the
framework.

Aurelia Aurelia is one of the frameworks that has not been come across
during the initial phase. Views are built using the Model-View-View Model
pattern, components are written in HTML using custom properties. It prefers
convention-over-configuration, which reduces the project overhead. The struc-
ture and code seems to be minimalistic for simple applications, but the frame-
work guidelines should keep it well-organised even in more complex solutions.
It is unfortunate that Aurelia was missed in the beginning, as it would have
been examined closer.

5.4.3.2 Selected Solution

Knockout.js Knockout.js belongs rather to the group of libraries than frame-
works, as it can be engaged to existing projects without affecting their struc-
ture. It decouples the view from model using the Model-View-View model
pattern, which is described in Section 5.4.4. Even though it is not the most
widely used solution among developers, the following advantages decided the
choice: First, Knockout.js itself as well the developed frontend are written in
pure JavaScript (and HTML) while keeping coding overhead minimal.

Unlike other solutions, which often utilize syntactic sugar extensions to
JavaScript like JSX used in React or TypeScript, Knockout.js requires no
translation from such JavaScript superset to the language that browsers un-
derstand. In addition, it is left up to the project convention whether new
features must use the library or if they rely on a traditional approach of ma-
nipulating the HTML document model directly. For Sacredboard, the use of
Knockout.js is desirable for components that rely on the view representation –
for instance, the developers are encourage to maintain a list of selected items
in an array that the view binds to rather than having a method that counts
selected elements from the DOM directly.

53

5. Design

5.4.4 Model-View-View Model (MVVM)

Model-View-View Model is one of the patterns that separate the responsibility
for appearance from the presentation logic. [19] Since it used in Sacredboard,
the developers should know about it in order to be able to extend the software
further. MVVM is based on three parts: the model, which encapsulates the
application logic, the view, which encapsulates the appearance, and the view
model, which is responsible for presentation logic and state, as depicted in
Figure 5.9.

Figure 5.9: Model-View-View Model

View The view is responsible for defining the structure and look of the
application. The page or screen that users see is a view per se. It is made
of reusable components such as navigation elements, input fields, or canvases
for drawing graphics, or a group of other components. In the context of
web applications, components are mostly represented by a group of HTML
elements. Knockout.js also allows to define own “components” – or rather
custom HTML elements – that define both the representation (view), and
the backing view-model, as in the case of the <query-filter> “component”
created in Sacredboard’s filters.js for realisation of requirement F 3. Each
view has to know the view model that it represents. That can be either the
view model of the parent , or a component-specific view model. The link is
realized through data binding, which is described below.

54

5.4. Sacredboard Frontend

Views should not contain any logic code that needs to be unit tested.
Performing tests of the view is typically done via a UI automation testing
tool. [20]

Model The objects of the model are responsible for managing the applic-
ation’s data and for ensuring its consistency and validity. [20] It is made of
traditional plain old objects that have no relation to the framework standing
above them in the presentation layer. They should only expose an interface
telling their surroundings about state changes. In terms of client-server archi-
tecture, models are responsible for encapsulation of the data that should be
moved between the client and the server.

Some sources [21] propose that the model should actually only encapsulate
data without any business logic, which should be separated to other classes
that act on the model. On the contrary, Martin Fowler, an often-cited software
engineer and popularizer of enterprise architecture patterns, has warned about
the emergence of so called anemic domain models [22] that lack any logic and
serve only as a shell containing data values and relationships. He believes that
by extracting logic to separate services, developers are forfeiting the benefits
brought by the domain model. But it is necessary to mention he means mainly
the models on the application server side, not on the client side. To conclude
for the purpose of Sacredboard, logic whose presence in the model can be
justified, will be included there.

View Model The view model acts as an intermediary between the view and
the model, and is responsible for handling the view logic. Like the controller
in Model View Controller, the model view implements commands that are
triggered by the users in the view, such as clicking a button or submitting a
form, and transforms them into calls to the underlying model.

Additionally, it implements properties which the view can bind to and
uses the data from the model to transform them to a format that the view
can easily handle. The view model can define computed properties that would
not normally be a part of the model, but make the presentation simpler. This
can be, for example, joining the given and family name together, converting
miles to kilometres, and so on. The view model can also define states of the
view that are not directly related to the state of the model: for instance, when
an operation is in progress and the view should reflect that by displaying a
progress bar, the state of the operation would be also maintained by the view
model. [19], [20]

Data Binding

Data binding is the process that establishes a connection between the applica-
tion UI and business logic. [23] It is a unidirectional coupling of a component
to a model, such that the component has a direct reference to a property of

55

5. Design

the model but not vice versa. The connection keeps the two parts of the ap-
plication in sync: Changing the component state updates the bound property
and contrariwise, when a change to the model occurs, all the bound views get
notified about the modification and automatically update accordingly.

Benefits of MVVM

Individual components that have their own view model can be designed and
coded more or less independently. The developers prepare a set of unit tests
for the model and another set for the view model. And finally, changing the
view does not directly affect the other parts. [19]

5.4.5 Modularity

At the beginning, virtually all the frontend code was put to the main runs.html
file or was directly being included from there using the <script> tag. Not
getting lost was becoming more difficult as the development proceeded. Fur-
thermore, to write proper unit tests for the JavaScript frontend, the individual
parts of the code should be cohesive, decoupled and independent of the doc-
ument object model.

There is a commonly used way of managing JavaScript modules: the AMD
– Asynchronous Module Definition (AMD) API for JavaScript modules. The
AMD only specifies the standards for exposing module interfaces and requiring
other modules, but it is not an implementation on its own. Sacredboard comes
with the Require.js library to take advantage of the AMD. The following mod-
ules have been developed: runs/runTable, runs/viewModel, runs/filters
and runs/detailView to take care of the UI logic.

56

Chapter 6
Implementation

The term Implementation in the chapter title refers to the process of construc-
tion of Sacredboard and the corresponding Sacred extensions. The topic is
closely linked to the previous and following chapters about design and testing,
as the three “phases” were virtually performed together: although the Sac-
redboard’s software architecture seems to be derived from the requirements,
it has emerged not only from them. It had to reflect needs discovered during
implementation and testing, as mentioned in the previous section about mod-
ularity of the JavaScript frontend. After a preliminary design was created,
the implementation of the first prototype could begin.

As the most awaited feature was viewing basic information about experi-
ment runs, a simple HTML table was created to list them. After this stage, the
prototype was presented to the main developer of Sacred and his colleagues
at IDSIA. The collected feedback was directly incorporated into the code in
case of trivial adjustments and new enhancement requests or functional re-
quirements issues were created on Sacredboard’s GitHub project page. In the
next iteration, the process of choosing the frontend architecture began, which
was discussed in Section 5.4.2. Later, Sacredboard was published as a Python
package on PyPI (Python Package Index), allowing users to download and
install it easily with a single command. New users started adding GitHub
issues with their ideas or bugs of their own accord and some have even forked
the project to contribute to it.

6.1 Version Control

Sacredboard is an open source project that uses the distributed Git version
control system for managing its configuration items. Being hosted [24] on the
popular GitHub site, participation of other developers on the project is easy, as
any of them is free to contribute to the project by creating their own copy of the
official or someone else’s repository. The changes made can be either pushed
back to the Sacredboard official repository using GitHub’s pull requests or

57

6. Implementation

can remain out of the official project. The MIT licensing model11 allows using
Sacredboard and deriving a work from it even for commercial purposes without
restrictions or limitations to motivate the developers to continue extending it
in the future as they like it.

6.1.1 GitFlow

The Sacredboard repository uses the GitFlow [25] branching model to sup-
port code base management. GitFlow is oriented to manage Git branches for
development of new features, preparing releases and maintenance. Instead of
having the master branch to contain the latest features, the GitFlow workflow
uses two branches to record the project history: master always points to the
last release, whereas new features are integrated into the develop branch.

Feature branches are based on develop and their names follow the
feature/feature-name convention. Once the development of the feature is
finished, it is merged back. When a new version of the software is to be re-
leased, a new release branch is created from develop, for instance release/1.1.
This “freezes” the set of features for the upcoming release while enabling the
development to continue in its branch. During this period, the release branch
gets polished and after that, it gets merged both to master and develop.
A new tag is created to mark the release. For fixes, GitFlow defines hotfix
branches (e.g. hotfix/1.1.1) that are based on master and get merged back
in the same way as release branches. There is an exception when there is
already a release branch created. In this case, the hotfix should be merged
to that release too. When no longer necessary, the extra branches are deleted
after a successful merge.

There are command line and GUI tools that support GitFlow and auto-
mate the process, even though following the workflow is absolutely possible us-
ing the standard git branch and git merge commands as well. Developer’s
hands are not tied in any way.

6.2 Development Environment

The entire development of Sacredboard and the Sacred extensions was coded
in PyCharm [26] Professional Edition provided under a student license free
of charge for educational purposes. Unlike the free Community Edition, the
Professional Edition offers support both for Python and Web development,
which significantly simplified the development. However, the project itself not
tied to any particular IDE.

Sacredboard and the Sacred extension was being developed on Windows
using the Anaconda distribution of Python, but later moved first to Linux

11The MIT licensed may be later changed to another type of open source license.

58

6.3. Code and Documentation

and later to the Windows Subsystem for Linux (WSL)12 for practical reasons
– mainly because there was no Windows build for TensorFlow/TensorBoard
in the beginning and because of testing of Linux-specific features had to be
performed.

6.3 Code and Documentation

The project documentation consists of a Readme file on the Sacredboard’s
home page, source code comments, this thesis and generated project docu-
mentation for users and developers (work-in-progress). The Readme file in-
troduces the project, its features, installation and running instructions, a link
to screenshots and basic information about contributing to the project.

The Python source code documentation must follow the PEP 257 Doc-
string Conventions and the code itself the PEP 8 Style Guide for Python
Code. [27] JavaScript code has to comply with the JavaScript strict mode and
usual conventions, and for each module, at least the exposed interface must
be commented using JSDoc comments.

Creation of the developer documentation that will contain instructions on
contributing, the Sacredboard architecture, description of modules and code
documentation is at the beginning at the time of writing. There is still an
open question regarding generating the JavaScript code documentation and
integrating it into the documentation for Python code. While many Python
projects use the Sphinx Python package to generate an HTML site with doc-
umentation, the JavaScript world has its own tools that are mostly based on
Node.js, adding another non-python dependency to the project (although only
for developers).

Contributions to Sacred have been documented in its user guide, whose
sources are a part of the Sacred’s GitHub repository.

6.3.1 Project Structure

Developers should know where the individual parts of Sacredboard code reside
and the meaning of the configuration files.

• setup.py is the central file of the Sacredboard’s Python package. It
contains information about the package name, version, dependencies
and is used to build the package.

• requirements.txt lists the runtime Python dependency of Sacredboard.
When a new package is necessary to be additionally installed with Sac-
redboard, its name must be added to the last line of this file.

• dev-requirements.txt lists the Python packages necessary for develop-
ment, documentation generation etc. These must be manually installed

12WSL allows running native Linux applications in Windows 10.

59

6. Implementation

by invoking:
pip install -r dev-requirements.txt.

• MANIFEST.in specifies the list of additional files to be included in the
Python package – for instance the HTML and JavaScript files.

• README.md contains basic information about the project written in the
Markdown syntax.

• package.json defines dependencies of Node.js for running automated
JavaScript code tests.

• .eslintrc defines JavaScript code and documentation style checker.
• tox.ini configures tox to run all the necessary automated tests.
• .travis.yml tells Travis CI to run tests (using tox and other tools)

when commits are pushed to the GitHub repository.
• docs contains source files for documentation (work-in-progress)
• sacredboard/bootstrap.py is the entry point file of the application

that parses command line arguments and initiates other components
• sacredboard/app/ is the directory where the backend code is stored.
• sacredboard/tests/ is reserved for the backend test files.
• sacredboard/templates/ contains files that need to be processed by

the Flask’s Jinja2 template engine before serving them to the frontend.
• sacredboard/static/ is used for various files served to the frontend

without being pre-processed by the backend.
• sacredboard/static/scripts/ contains application-specific JavaScript

code for the frontend.
• sacredboard/static/scripts/tests/ contains the corresponding Java-

Script test code.
• sacredboard/static/vendors/ is used for any third-party frontend de-

pendencies.

6.4 Release Process

Releasing a new version of Sacredboard to the public begins with creating a
new release branch from the develop branch, e.g. release/0.2. All version
numbers must be updated to the new version, most importantly the version
number in setup.py. The Readme file must be updated to contain up-to-date
information. After the branch is pushed to the repository, integration tests (of
the Python code) are automatically run, including test coverage, code style
and code documentation checks. If the build passes all the tests13, the branch
may be merged to both master and develop.

An additional important step is to publish the version on the Python
Package Index (PyPI) site. First of all, the distributable package file must be
created:
python setup.py sdist

13The solution for automatic JavaScript tests is still in search.

60

6.4. Release Process

This creates a new file in the dist directory that is going to be uploaded to
PyPI using twine.

twine register dist/sacredboard-0.1.2.tar.gz
twine upload dist/sacredboard-0.1.2.tar.gz

Sacredboard is published in the PyPI using credentials belonging to its
project administrator (Martin Chovanec), who currently remains responsible
for changes and new releases, even though the development itself may be done
by the community.

6.4.1 Installation

Sacredboard can be installed on the host computer in several ways. End users
will install it using the pip package manager:

pip install sacredboard

The latest development version from the develop branch is easy to install too:

pip install
https://github.com/chovanecm/sacredboard/archive/develop.zip

Developers may wish to install the package in the development mode that
immediately reflects the changes they make. Before doing so, the repository
must be cloned from GitHub:

git clone https://github.com/chovanecm/sacredboard.git
cd sacredboard
python setup.py develop

Instructions how to run the program can be found on the project homepage
[24].

61

Chapter 7
Testing

The Software Engineering Book of Knowledge (SWEBOK [28]) defines testing
as a dynamic verification that a program provides expected behaviours on a
finite set of test cases. The term dynamic means that testing always implies
executing the program on selected inputs. Software quality management tech-
niques and proofs of correctness are considered to be different from testing.
In spite of the definition, the text of this chapter describes both dynamic and
static testing of Sacredboard.

7.1 Unit, Integration and Other Tests

Unit testing verifies the functioning in isolation of software elements that
are separately testable, whereas integration testing deals with verifying the
interactions among software components. [28] Unit tests play a constructive
role in test-driven-development when implemented prior to the actual unit
code. This practice helps with elaborating requirements of the unit in terms
of partitioning the input domain into a collection of equivalent classes and
deciding how the unit should react for each of them, including edge cases. Both
the Sacred extensions and Sacredboard have been described in this thesis have
been mostly developed by writing test cases first. Nevertheless, it is important
to mention that passing even well defined test cases does not imply meeting
user expectations.

Sacredboard combines Python code with a similar amount of code written
in JavaScript. While the first runs on the backend, the latter is executed in
the user’s web browser. Executing tests of both components requires having
either a polyglot test framework or two separate harnesses testing each its
part of code. While finding an implementation of the first choice is rather
difficult, the second option is feasible when properly configured.

63

7. Testing

7.1.1 Python Tests

For Python, Sacredboard tests are written on top of the pytest [29] framework.
To perform regression testing during the development, the fastest way is to
do so by executing:

python setup.py test

Test files are located in the sacredboard/tests directory. Some of the “unit”
tests written could be rather called “quasi-integration” tests, as they rely on
mocking of other components that are not a part of the system.

Quasi-integration tests are used for testing the MongoDB Access Layer
and the TensorBoard launcher. Instead of connecting to a real database, its
behaviour is imitated by replacing the pymongo adapter with the mongomock
package. This strategy will work as long as behaviour of both the real and
mocked components is consistent. The authors of mongomock warn of possible
differences in unusual use cases.

Similarly, to ensure that the TensorBoard Launcher component correctly
handles both expected and unexpected behaviour of TensorBoard, another
script was created to imitate the TensorBoard outputs during its start up.
The aim was to handle cases when TensorBoard does not start because it is
not found, the output does not contain the port that TensorBoard is listening
on or if the application simply hangs14 Unfortunately, and maybe because
TensorFlow/TensorBoard is still a new project, the real counterpart sometimes
cannot detect when the port it is going to listen on is already in use, which
causes problems to Sacredboard.

7.1.2 JavaScript Tests

Writing JavaScript unit tests for Sacredboard was not possible until the code
was refactored into testable modules and a suitable test framework was found.
As stated in section 5.4.2, it was intended to refrain from using Node.js or any
other non-Python system dependency to keep the build process straightfor-
ward. Fortunately, there are still pure JavaScript solutions meeting the cri-
teria, but on the other hand, testing the code in the web browser is impractical
for automated test execution (see Continuous Integration below).

A compromise solution has been found in the QUnit framework [30] that
can run both in the web browser and Node.js. Developers that do not want
/ cannot install Node.js may run the tests in their web browser by navigating
to http://localhost:5000/_tests when Sacredboard is running. The other
and preferred option is to download Sacredboard’s JavaScript dependencies
using the Node.js package manager (npm) and run the tests:

npm install
Run JavaScript tests

14Hang detection works does not work under Windows.

64

7.2. Continuous Integration

npm test
Run code style check
npm run lint

JavaScript tests are located in the sacredboard/static/scripts/tests
dictionary as modules. To let both the npm and web browser know which tests
to run, the corresponding modules must be loaded both in the tests/index.html
and tests/node_tests.js files. Next steps in the testing process for Sacred-
board is to select a tool for automated frontend testing that will simulate user
interaction with the web page.

7.2 Continuous Integration

To ensure that changes made to Sacredboard do not break the unit tests in
the develop branch, a task for an continuous integration (CI) server is created
every time an update is pushed to the GitHub repository. The build passes
only if the following conditions are met:

• Python unit tests pass both Python version 3.4 and 3.5
• JavaScript unit tests pass
• Python code style meets the PEP 8 convention
• Python code documentation is present and meets the PEP 257 conven-

tion
• Python code cyclomatic complexity [31] of functions does not exceed 10
• JavaScript code follows defined set of rules
• JavaScript JSDoc code documentation follows defined set of rules

The Travis CI cloud service being used is provided free of charge to open
source projects. But developers working on Sacredboard can run the tests
even on their local machine. The following additional dependencies must be
manually installed to do so:
Python:
tox
Other software:
nodejs >= 4.6
npm

Running tox (without parameters) in the project directory launches all
the above mentioned tests and informs the user about failures. There are
command line options provided to to run only a particular subset of the tests:

• tox -e py35 – Runs python setup.py test with Python 3.5 inter-
preter. Replacing with py34 does the same for an older version.

• tox -e flake8 – Checks the Python code and documentation style,
including the cyclomatic complexity of the code.

65

7. Testing

• tox -e qunit – Runs npm install && npm test to run JavaScript
tests (Node.js necessary).

• tox -e eslint – Runs npm install && npm run lint to check Java-
Script code and documentation style.

7.3 Acceptance Tests

For each of the software requirements it should be possible to validate that
the product satisfies it. [28] The plan is to address the users that participated
in the questionnaire and let them evaluate the system against the user stories
and requirements. Requirements with use case scenarios elaborated should
be validated by following all the scenario paths. The tests have not been
scheduled yet.

66

Chapter 8
Conclusion

The aim of the thesis was to support researchers that manage their scientific
computing experiments with the Sacred library for Python. Sacred was miss-
ing a proper user interface and its users had to rely on their own database
queries to access records of the experiments. To solve the issue, the Sacred-
board web dashboard has been created as a part of the thesis and Sacred itself
has been extended to track new types of information.

Baseline requirements for the user interface and extensions were elicited
from the main developer of Sacred and complemented with a survey conduc-
ted among users of the current tool. Most of the functional requirements
have been implemented while respecting the non-functional requirements that
have impacted the software architecture, although some of them should be
still considered as experimental. Additional requirements and suggestions for
refinements have been received from users after releasing the first version.

The development was accompanied with a series of difficulties that caused
delays in the progress. Components depending on third-party libraries did
sometimes not behave as they were supposed to, and finding and resolving
the root cause of problems required a lot of time or changes to the software
architecture. Furthermore, the MVVC framework seemed not to be as flex-
ible as expected and its usage was reconsidered, but in the end, a solution
was always found. Another inconvenience were caused by maintaining Sacred
compatibility with an old yet widely used Python version 2.7.

Decoupling the Sacredboard frontend code into several modules and using
the MVVC pattern contributed to the code readability and comprehensibility.
Most of the code is documented (and documenting the rest is to be done)
with standardized JSDoc and Python docstrings that will be used to generate
a reference guide for future extensions.

The backend code and part of the frontend code is also covered by unit
tests that automatically run on the Travis CI continuous integration service.
Currently, only the backend and the frontend’s model is automatically tested.
In spite of its logical decoupling, the web page can break by changing the

67

8. Conclusion

HTML (view), improper module loader configuration, a bug in one of the
third-party libraries or in integration of the frontend components. Setting up
a test suite that checks not only the individual parts but also the web page
and its behaviour as a whole is recommended.

Sacredboard version 0.2 is ready to be released. Features for version 0.3 are
in development and should be ready before the SciPy 2017 Scientific Comput-
ing with Python conference that will take place on July 10–16, 2017 in Austin,
Texas. Sacred and its extensions including Sacredboard has been accepted for
a presentation as a talk in the Reproducibility track. The underlying paper
“Sacred: How I Learned to Stop Worrying and Love the Research” by Klaus
Greff (IDSIA / USI / SUPSI), Aaron Klein (University of Freiburg), Martin
Chovanec (Czech Technical University) and Jürgen Schmidhuber (IDSIA /
SUPSI) is yet to be written.

User Stories – Review

The following user stories have been implemented in version 0.2:
US 1, US 2, US 3, US 4, US 5, US 7, US 8, US 9, US 9, US 10, US 11.
The following user stories are currently in development:
US 13, US 16.
Waiting list:
US 6, US 12, US 14, US 15

68

Bibliography

[1] Schapire, R. Theoretical Machine Learning (course notes). [online], [cit.
2017-02-27]. Available from: http://www.cs.princeton.edu/courses/
archive/spr08/cos511/scribe_notes/0204.pdf

[2] IDSIA. Dalle Molle Institute for Artificial Intelligence. [online], [cit. 2016-
09-20]. Available from: www.idsia.ch

[3] Greff, K. Sacred. [online], [cit. 2016-09-20]. Available from:
www.github.com/IDSIA/sacred

[4] Bishop, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006, ISBN 0387310738.

[5] USI. Intellignt System (course). [online], [cit. 2017-02-17]. Available from:
search.usi.ch/en/courses/35255538/intelligent-systems

[6] Schmidhuber, J. Jürgen Schmidhuber’s Home Page. [online], [cit. 2017-
04-15]. Available from: http://people.idsia.ch/˜juergen/

[7] Google Inc. TensorFlow. [online], [cit. 2016-10-01]. Available from:
www.tensorflow.org

[8] USI. Università della Svizzera italiana. [online], [cit. 2016-09-20]. Avail-
able from: http://www.usi.ch/en/

[9] Schmidhuber, J. Deep Learning Wins MICCAI 2013 Grand Challenge.
[online], [cit. 2017-03-14]. Available from: http://people.idsia.ch/
˜juergen/deeplearningwinsMICCAIgrandchallenge.html

[10] Russell, S. J.; Norvig, P. Artificial Intelligence: A Modern Approach.
Pearson Education, second edition, 2003, ISBN 0137903952.

69

http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf
www.idsia.ch
www.github.com/IDSIA/sacred
search.usi.ch/en/courses/35255538/intelligent-systems
http://people.idsia.ch/~juergen/
www.tensorflow.org
http://www.usi.ch/en/
http://people.idsia.ch/~juergen/deeplearningwinsMICCAIgrandchallenge.html
http://people.idsia.ch/~juergen/deeplearningwinsMICCAIgrandchallenge.html

Bibliography

[11] Wikipedia. Artificial Intelligence — Wikipedia, The Free Encyclopedia.
[online], [cit. 2017-03-11]. Available from: https://en.wikipedia.org/
w/index.php?title=Artificial_intelligence&oldid=769620718

[12] Schmidhuber, J. Deep Learning in Neural Networks: An Over-
view. Neural Networks, volume 61, 2015: pp. 85–117, doi:
10.1016/j.neunet.2014.09.003, published online 2014; based on TR
arXiv:1404.7828 [cs.NE].

[13] DARPA. A DARPA Perspective on Artificial Intelligence. [video, online],
[cit. 2017-03-21]. Available from: https://www.youtube.com/watch?v=
-O01G3tSYpU

[14] Wikipedia. List of datasets for machine learning research — Wiki-
pedia, The Free Encyclopedia. [online], 2017, [cit. 2017-03-14]. Avail-
able from: https://en.wikipedia.org/w/index.php?title=List_of_
datasets_for_machine_learning_research&oldid=768184217

[15] Greff, K. Sacred – Documentation. [online], [cit. 2017-03-11]. Available
from: http://sacred.readthedocs.io

[16] Wikipedia. Iris flower data set — Wikipedia, The Free Encyclopedia.
[online], [cit. 2017-03-11]. Available from: https://en.wikipedia.org/
w/index.php?title=Iris_flower_data_set&oldid=769153397

[17] Kruchten, P. B. The 4+1 view model of architecture. IEEE SOFTWARE,
volume 12, 1995: pp. 42–50.

[18] DataTables. [online], [cit. 2017-04-25]. Available from: https://
datatables.net/manual/server-side

[19] Microsoft. The MVVM Pattern. [online], [cit. 2017-04-08]. Available from:
https://msdn.microsoft.com/en-us/library/hh848246.aspx

[20] Microsoft. Implementing the MVVM Pattern Using the Prism Lib-
rary 5.0 for WPF. [online], [cit. 2017-04-08]. Available from: https:
//msdn.microsoft.com/en-us/library/gg405484

[21] Likness, J. Model-View-ViewModel (MVVM) Explained. [online], [cit.
2017-04-09]. Available from: https://www.codeproject.com/Articles/
100175/Model-View-ViewModel-MVVM-Explained

[22] Fowler, M. Anemic Domain Model. [online], 2003, [cit. 2017-
04-09]. Available from: http://www.martinfowler.com/bliki/
AnemicDomainModel.html

[23] Microsoft. Data Binding Overview. [online], [cit. 2017-04-08]. Available
from: https://msdn.microsoft.com/en-us/library/ms752347

70

https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=769620718
https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=769620718
https://www.youtube.com/watch?v=-O01G3tSYpU
https://www.youtube.com/watch?v=-O01G3tSYpU
https://en.wikipedia.org/w/index.php?title=List_of_datasets_for_machine_learning_research&oldid=768184217
https://en.wikipedia.org/w/index.php?title=List_of_datasets_for_machine_learning_research&oldid=768184217
http://sacred.readthedocs.io
https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=769153397
https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=769153397
https://datatables.net/manual/server-side
https://datatables.net/manual/server-side
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/gg405484
https://msdn.microsoft.com/en-us/library/gg405484
https://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
https://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html
https://msdn.microsoft.com/en-us/library/ms752347

Bibliography

[24] Chovanec, M. Sacredboard. [online], [cit. 2017-04-29]. Available from:
http://github.com/chovanecm/sacredboard

[25] Driessen, V. A successful Git branching model. [online], [cit. 2017-
04-29]. Available from: http://nvie.com/posts/a-successful-git-
branching-model/

[26] JetBrains. PyCharm. [online], [cit. 2017-04-29]. Available from: https:
//www.jetbrains.com/pycharm/

[27] Goodge, D.; Warsaw, B. Index of Python Enhancement Propos-
als (PEPs). [online], [cit. 2017-04-29]. Available from: https://
www.python.org/dev/peps/

[28] Bourque, P.; Fairley, R. E. (editors). SWEBOK: Guide to the Software
Engineering Body of Knowledge. Los Alamitos, CA: IEEE Computer So-
ciety, version 3.0 edition, 2014, ISBN 978-0-7695-5166-1, [cit. 2017-03-23].
Available from: http://www.swebok.org/

[29] Krekel, H. pytest. [online], [cit. 2017-04-29]. Available from: https://
docs.pytest.org/en/latest/

[30] The jQuery Foundation. QUnit. [online], [cit. 2017-05-01]. Available from:
https://qunitjs.com/

[31] McCabe, T. J. A Complexity Measure. IEEE Transactions on Software
Engineering, volume 2, 1976: pp. 308–320, [cit. 2017-04-29]. Available
from: http://www.literateprogramming.com/mccabe.pdf

[32] Greff, K.; Srivastava, R. K.; et al. Brainstorm: Fast, Flexible and
Fun Neural Networks, Version 0.5. 2015. Available from: https://
github.com/IDSIA/brainstorm

71

http://github.com/chovanecm/sacredboard
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
http://www.swebok.org/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://qunitjs.com/
http://www.literateprogramming.com/mccabe.pdf
https://github.com/IDSIA/brainstorm
https://github.com/IDSIA/brainstorm

Appendix A
Sample Project

This chapter shortly presents a simple project that uses the new Sacred fea-
tures and presents the results in Sacredboard. The mini-project deals with
recognizing grammatical gender of German nouns by looking at their textual
representation. Before diving into the details, it is worth mentioning that the
project was originally using the Brainstorm library [32] from IDSIA for neural
network computing. Using the library, relatively good results were observed.
For the purpose of this thesis, the project was partially rewritten to Tensor-
Flow. However, due to the lack of experience with building a custom neural
network from individual neurons, the results were poor. On the other hand,
they are still usable for illustration purposes.

A.1 Problem Description

The vast majority of German nouns belongs to one of three grammatical
genders: masculine, feminine, neuter. When a noun appears in a sentence
in its singular form, it influences the form of the grammatical article and
adjectives standing before it. Therefore, knowing the gender of each noun
that the speaker is about to use is necessary in order for the sentence to
be built correctly. Unlike some other languages like Italian or Spanish, the
noun gender is not always easy to determine by its spoken or written form.
Furthermore, the meaning of some words changes according to the gender
article used. This is comparable to pronunciation changes in English (I will
read it. vs. I have read it., a use case vs. Use it!). For instance, the name
Fulda refers to a city in the German state of Hessen when used as neuter, but
to a river of the same name when used as feminine.

The aim of the mini-research was to find out whether a certain number
of nouns learned with their correct gender helps with guessing the gender
of other nouns. The test assumes that non-native speakers have a relatively
large German vocabulary, but remember only a smaller subset of nouns with
their correct gender. Real learners may already known some rules that help

73

A. Sample Project

with deciding gender of the other nouns, for example that joining two or more
words together causes the resulting word to adopt the gender of the last word
in the row (die Bahn (the railway) + der Hof (the court) = der Bahnhof =
the railway station). But these rules are not explained to the algorithm.

A.2 Data Preparation

The word data set consisted of 2080 German nouns and their article determ-
ining the gender. Most of the words were gathered from different web pages
and merged together. For the use in the experiment, the words were stored
as a 2D matrix of numbers: one dimension indexed the word and the other
character codes of the individual letters.

A.3 Recurrent Neural Network with TensorFlow

The experiment was using a recurrent neural network (Figure A.1). Input
vectors of words (x) were fed to the network in small batches, each character
encoded as a hot-one vector15 that activates one of the neurons in the input
layer. The number of neurons in the recurrent network is controlled by Sac-
red in its configuration parameter hidden size. After the recurrent network
receives the whole word, some of the outputs of the neurons are randomly
deactivated (their value is set to zero) to prevent overfitting – a situation that
leads to a model that is “overtrained” and instead of remembering patterns, it
learns the training words “by heart” and fails for other inputs. The probability
of a neuron not being dropped is defined as the dropout_keep_probability
Sacred configuration parameter.

The output of the dropout layer are 500 values that “vote” for the clas-
sification result. There is a softmax ‘committee” layer that uses weighted
sums to compute the probability of the word belonging to each of the three
classes. After the result is compared with the target (correct gender) for all
the words, the overall accuracy of the model is computed, accompanied with
the mean cross entropy that servers as the error function that the training
process should minimize.

A method of stochastic gradient descent (Adam, Adaptive Moment Es-
timation) is used to compute gradients of network’s internal weights based
on the error function. The Adam optimizer follows the computed gradients
to minimize the cross entropy and make the network present desired results.
Unfortunately, for a reason that has not been discovered until the deadline of
the thesis, the network seems to be unable to generalize on words in the test
set.

15vector of many 0 and a single 1

74

A.4. Observing with Sacredboard

The code that defines the network and runs the training process is available
on the media attached to this thesis in file train_model.py. A snippet of this
file is also presented in Listing A.1.

A.4 Observing with Sacredboard

The experiment progress was observed using Sacredboard. Figure A.2 shows
experiment runs containing “German” in their name that were training a
neural network of at least 250 neurons in the recurrent layer. Figure A.3
displays the configuration parameters of one of the runs and in Figure A.4,
there is a plot of the cross entropy error function for one of the runs. The
metrics plot uses the Plot.ly library and is in the stage of prototyping at the
time of writing.

As declared in the beginning of this chapter, the mini-project with Tensor-
Flow was not successful. Furthermore, tutorials found on the Internet were
sometimes not updated to reflect changes in beta versions of TensorFlow,
which slowed down the development. Now, when the API has stabilized, the
results could be improved if more time is invested into the problem.

Nevertheless, for those who are curious about the results: using the above
mentioned Brainstorm library and a LSTM (Long short-term memory) net-
work with 1000 units, it was possible to correctly classify 63,2 % of unknown
nouns after 5 000 of training iterations on 347 words. When using a technique
different from neural networks, the decision tree, and limiting the training
data to last three letters of each word, the model could guess 67 % nouns cor-
rectly. As mentioned, there are certain rules that German learners explicitly
learn. Therefore, it is likely that it is possible to create a “sense” for guessing
the correct article to use, provided that the user of the language has already
a certain level of knowledge.

75

A. Sample Project

Figure A.1: German Noun Classification Network (Visualisation in Tensor-
Board)

76

A.4. Observing with Sacredboard

Listing A.1: Tranining Neural Network – train model.py

@ex.automain
@LogFileWriter(ex) # Save pat to TensorFlow log to

Sacred DB
def runExperiment(...):
classifier = construct_model()
(...)
Create TensorFlow log file
writer = tf.summary.FileWriter(log_dir, sess.graph)
(...)
while i < total_training_steps:
calculate accuracy and cost function for training data
tr_summary, tr_accuracy, tr_cost =
sess.run((train_sum_op, classifier.accuracy,

classifier.cost),
feed_dict={classifier.inputs: inputs,

classifier.targets: targets})
save it to TensorFlow log
writer.add_summary(tr_summary, i)
the same for validation data
va_summary, va_accuracy, va_cost =
sess.run((validation_sum_op, classifier.accuracy,

classifier.cost),
feed_dict={classifier.inputs: va_inputs,

classifier.targets: va_targets})
writer.add_summary(va_summary, i)
Use the new Sacred Metrics API to store the data to

the Database
_run.log_scalar("training.accuracy",

float(tr_accuracy), i)
_run.log_scalar("training.cost", float(tr_cost), i)
_run.log_scalar("validation.accuracy",

float(va_accuracy), i)
_run.log_scalar("validation.cost", float(va_cost), i)
(...)
classifier.train(sess, inputs_batch, targets_batch)
i+=1

77

A. Sample Project

Figure A.2: Sacredboard: List of Runs

Figure A.3: Sacredboard: Interactive Configuration Browser

78

A.4. Observing with Sacredboard

Figure A.4: Sacredboard: Mean Cross Entropy Metrics Plot (hi-fi prototype)

79

Appendix B
Sacredboard HTTP Interface

Specification

• /, /runs (GET) – Frontend Page
Return Type: HTML
Serves the front HTML page that displays the main view and requests data
from other endpoints. Additionally, the implicit /static endpoint points
to a directory of the same name to provide JavaScript, CSS and other
resources.

• / tests (GET) - Frontend Unit Test Page
Return Type: HTML
Points to the test page that runs unit tests of the frontend.

• /api/run (GET) - List of Runs
Return Type: JSON
Realizes: F 1, F 2, F 3
Returns a list of experiment runs in a format required by DataTables [18].
The structure of the data elements is as in Table B.1

Field Definition format
id experiment run id (from the DB) string or number
status status (see F 1) string
is alive updated in last 120 sec boolean
start time run start date and time string, based on locales
heartbeat run last activity date and time string, based on locales
heartbeat diff seconds since last update double
hostname the node the experiment runs on string
result Result of the experiment number or string

Table B.1: Web API Run Resource

81

B. Sacredboard HTTP Interface Specification

The returned results can be filtered using a JSON object passed as a string
via the queryFilter URL parameter:
{"type":"and","filters":[

{"type":"or","filters":[
{"field":"status","operator":"==","value":"FAILED"},
{"field":"status","operator":"==","value":"DEAD"}]},

{"field":"host.hostname","operator":"==","value":"NTBACER"}]}

The parameter is built from clauses. Each clause is either conjunctive
("and"), disjunctive ("or"), or a “terminal clause”. Each of the the earlier
two types must specify the filters array of other clauses to be joined
together by that logical connective. A terminal clause does not specifies
its type, instead, it has a different set of fields: the field to be queried
on (based on the MongoDB schema, using dot notation to access nested
documents), the operator (one of "==", "!=", "<", "<=", ">", ">=", and
"regex" for regular expressions. The value field contains the value to be
compared with (either a string or a number). Notice that for the "status"
field, the RUNNING and DEAD runs are distinguished by the backend, even
though the corresponding database field does not distinguish these two
states.

• /api/run/<run id> (GET) – Get Run
Return Type: JSON
Realizes: F 4, F 5, F 6
Returns a single run based on the ID. The recorded structure is the same
as for /api/run with a few exceptions: Either exactly one item is returned
or the HTTP 404 error occurs if the run was not found. Additionally, the
returned object embeds the full MongoDB document transformed to the
JSON format. It is accessible via the object field.

• /tensorboard/start/<run id> (GET) - Start TensorBoard Realizes:
F 7
Starts TensorBoard for the given run ID and TensorFlow log index. The log
index is the index to the info.tensorflow.logdirs array, which contains
paths to the log directories associated with that run. Returns: HTTP
redirect to TensorBoard or an error code and message
Known issues: TensorBoard seems failing to detect when the port is in use
on some system configurations. It pretends to be listening while it is not.
As a result, the user may be redirected to another TensorBoard instance.
A workaround has to be found, such as letting the user pick the port.

• /tensorboard/stop (GET, POST) - Stop TensorBoard
Realizes: NF 5
Stops all TensorBoard processes started by Sacredboard.

82

Appendix C
TensorBoard Interface

TensorBoard can be launched by executing the tensorboard script tensorboard
--logdir LOGDIR. It comes with an integrated webserver listening by default
on port 6006. The port number that the server is listening on is printed to the
standard output during startup. Another port can be specified by the --port
PORT option.

The LOGDIR option is mandatory and refers to one or more TensorFlow
log directories. The directories are searched recursively for log files, which are
then displayed in layers on rendered charts. The same behaviour, even if the
directories are in different directory trees, can be achieved by joining them
by a comma (,), e.g. tensorboard --logdir=alias1:path1,alias2:path2.
Aliases help the user to distinguish between the directories when using Tensor-
Board.

The tensorboard script is known to print one of the following messages
to the standard output after being run with the logdir option:

• Starting TensorBoard b’41’ on port 6006 (Linux)
Starting TensorBoard b’39’ on port 6006 (Windows)

– Meaning under Linux: TensorBoard has successfully started.
– Meaning under Windows: TensorBoard has either started or the

port was in use. In the latter case, there is probably no reasonable
way of detecting the issue. . . .

• Tried to connect to port 6006, but address is in use. (Linux
only)

Note: The port numbers in the ouput may vary.

83

Appendix D
Acronyms

AI Artificial Intelligence
AMD Asynchronous Module Definition
API Application Programming Interface
DNN Deep Neural Network
DOM Document Object Model
F Feature / Functional Requirement
GPU Graphics Processing Unit
GUI Graphical User Interface
hi-fi High-Fidelity
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
ML Machine Learning
MVC Model-View-Controller
MVVM Model-View-View Model
NF Non-functional Requirement
PEP Python Enhancement Proposals
PyPI Python Package Index
RNN Recurrent Neural Network
SQL Structured Query Language
SUPSI Scuola universitaria professionale della Svizzera italiana
SVM Support Vector Machine
SWEBOK Software Engineering Book of Knowledge
TBD To Be Determined
UC Use Case
UI User Interface
URL Uniform Resource Locator
US User Story
USI Università della Svizzera italiana

85

D. Acronyms

UTC Coordinated Universal Time
WSGI Web Server Gateway Interface

86

Appendix E
Contents of the Enclosed Media

readme.txt..Content description
src.......................................the directory of source codes

sacredboard.zip..........Sacredboard source files (develop branch)
sacred.zip..........Sacred source files (feature/data-logger branch)
example.zip...................an example experiment using Sacred
thesis..............the directory of LATEX source codes of the thesis
EAP Enterprise Architect Project Directory

text..the thesis text directory
DP Chovanec Martin 2017.pdf the thesis text in PDF format

87

	Introduction
	Goals
	Motivation

	Problem Domain
	Artificial Intelligence and Machine Learning
	Conducting Experiments

	Sacred
	Supporting the Process
	Sacred Architecture in a Nutshell

	Sacredboard
	Requirements Elicitation

	Requirement Analysis
	User Stories
	Scope of the Thesis
	System Requirements
	Use Cases

	Design
	Architecture
	Sacred Extension
	Sacredboard Backend
	Sacredboard Frontend

	Implementation
	Version Control
	Development Environment
	Code and Documentation
	Release Process

	Testing
	Unit, Integration and Other Tests
	Continuous Integration
	Acceptance Tests

	Conclusion
	Bibliography
	Sample Project
	Problem Description
	Data Preparation
	Recurrent Neural Network with TensorFlow
	Observing with Sacredboard

	Sacredboard HTTP Interface Specification
	TensorBoard Interface
	Acronyms
	Contents of the Enclosed Media

