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Abstract

R is a dynamic programming language that, despite being over 20 years old, is
still widely used. RIR is an alternative to its bytecode compiler and interpreter
that aims to facilitate adding static analyses and optimization passes easily.
RIR is under development and does not currently match the performance of
standard R. This thesis attempts to amend the situation. It extends the RIR
internal representation, adds new features to its compiler and refactors its
interpreter. The average slowdown versus standard R is brought down by about
one half in the Shootout benchmarks.

Keywords Rlanguage, RIR, bytecode compiler & interpreter, optimizations






Abstrakt

R je dynamicy programovaci jazyk, navzdory svému stafi dnes stale oblibeny.
RIR je alternativni implementace kompilatoru a interpretu R bajtkédu, ktera
umoziuje snadno provadét statickou analyzu a pridavat optimalizace. RIR
je ve vyvoji a zatim nedosahuje vykonu standardniho R. Tato diplomova
prace se pokousi priblizit vykon RIR k vykonu standardniho R. V jejim
ramci byly pridany nové instrukce do RIR bajtkédu a nova funkcionalita
do jeho kompilatoru a doslo k pfepracovani jeho interpretu. Primérné
zpomaleni na sadé benchmarkd Shootout proti standardnimu R bylo snizeno

o polovinu.

Klicovaslova jazykR,RIR, kompilator & interpret bajtkddu, optimalizace
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Introduction

R is a programming language that, despite being very old, seems to be steadily
gaining popularity in the last years. In 2012, it was estimated [9], that there
were about 2000 package developers maintaining over 4000 packages, and over

2 million end users.

Since then, various programming language popularity rating sites report (even

though they ought to be taken with a grain of salt) that R only rises.

R is a very dynamic language that is easy to pick up quickly. Unfortunately,
it can also be orders of magnitude slower than optimized C code and is

notoriously memory hungry.

RIR is a research project at Northeastern University supervised by prof. Jan
Vitek. Its long term goal is to provide a fast implementation of R through
the means of its own bytecode representation, compiler and interpreter. It
is designed in a way that allows for implementing analysis and optimization
passes over the RIR bytecode easily.

However, at present, it is lacking the performance of the official GNU R
bytecode virtual machine. To make it a viable alternative, improvements in

this direction are needed.

This thesis explores where the speed difference comes from and proposes changes

to be made to lower it. These changes are implemented and evaluated.

The chapter About GNU R gives an introduction to the R language and discusses
its features. It also goes under the hood and describes the inner workings of its
interpreter and bytecode compiler — the GNU R.

See, e.g., https://www.tiobe.com/tiobe-index/ and http://pypl.github.io/PYPL.html
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INTRODUCTION

The chapter About RIR introduces an alternative bytecode compiler for the
R language, talks about the motivation behind it, its architecture and design
choices, the differences to the original and its shortcomings.

The chapter Improvements describes in depth the changes that were made to
RIR.

The chapter Evaluation discusses how the performance of RIR changed after the
improvements were made. It describes how the measurements were done and

how the performance compares to GNU R.

The results are discussed in Conclusion, as well as the direction of future efforts
regarding RIR.



CHAPTER

About GNU R

GNU R [14] is a programming language used mainly for statistical computa-
tions.” It is an open-source dialect of S, an older statistical language created
in 1976 by John Chambers at Bell Laboratories. R has been around from 1993
and was designed by Ross Thaka and Robert Gentleman, both recognized statis-
ticians. It is a part of the GNU software family and is still actively developed
by the R Core Team today. It is a popular alternative to the other major imple-
mentation of the S language, S-PLUS, which is a commercial version shipped
by TIBCO Software Inc.

R comes with a software environment built around it, which allows for easily
manipulating data, carrying out computations and producing quality graphical
outputs such as plots and figures. Although at its heart R is used via a command
line interface, there are also more user-friendly graphical IDEs available. One of
the most widely used is RStudio that provides, for example, syntax highlighting
and quick access to documentation through a web-like browser.* This, together
with R’s readable syntax and a vast collection of extension packages available
through The Comprehensive R Archive Network (CRAN) makes it possible for
new users to step in and start working quickly.

*Homepage: https://www.r-project.org/
*Homepage: https://www.rstudio.com/
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1.1 Language features of R

This section was written while consulting [16, 9, 1, 11, 12].

R s, as far as programming languages go, very interesting and has some quite
unusual semantic features. It is an interpreted language, and is dynamically
typed and garbage collected. It supports multiple programming paradigms:
users can use procedural imperative style, but at the same time R provides an
object system for object oriented programming, and is heavily influenced by

functional programming languages, notably Scheme (a dialect of Lisp).*

Functions are, in accordance with functional languages, first-class values, so
they can be passed around as call arguments, returned as results of function
calls and created dynamically at runtime. R uses lexical scoping (which it
adopted from Scheme) and R functions are closures that capture their enclosing
environment at creation time. Arguments are passed by value (although a
variant of reference counting is implemented, so that deep copies are only
created as needed, e.g., when an object is modified).

Functions are by design anonymous, i.e., they are not named when created.
This is unlike many languages (e.g., C or Python) and follows the approach of
lambda calculus. Instead of creating named functions, R programmers create
anonymous ones and, if they choose so, then use regular assignment to bind

them to names. Example can be seen in listing 1.1.

> (function(x) x + 1)(2)
[1] 3
> f <- function(x) x + 1
> f(2)
[1] 3

Listing 1.1: Anonymous function

Interestingly, everything that happens in R is in fact a function call. This

goes as far as all control flow statements and arithmetic operators being just

‘In fact, R has multiple OO systems: 3 builtin and others available as packages,
such as R.oo (https://cran.r-project.org/web/packages/R.00/) or R6 (https://cran.r-
project.org/web/packages/R6/).
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syntactic sugar for function calls, as can be seen in listing 1.2.° In this spirit,
even assigning into a variable, evaluating a block of code inside curly brackets
or grouping expressions with parentheses translate to calling the respective

functions. As such, everything can be redefined, as in listing 1.3.

> is.function( while")
[1] TRUE

> is.function( break’)
[1] TRUE

> is.function( if")
[1] TRUE

> "if  (TRUE, 1, 0)

[1] 1

> “if  (FALSE, 1, 0)
[1] ©

R

function (el, e2) .Primitive("+")
> "+ (1, 2)

[1] 3

Listing 1.2: All that happens in R is function call

> ((0))

[1] ©

> " (° <- function(x) x + 1
> ((0))

[1] 2

Listing 1.3: Redefinition of parentheses grouping

All actual arguments to a function are lazy evaluated by default. When
applying a closure, parameters are wrapped in promises. A promise is an object
that contains the unevaluated expression and an environment in which the
expression should be evaluated. Promises are only evaluated when the value is
actually needed (which is called forcing the promise). Also, once the promise
is forced, it remembers the result, so that subsequent uses of the value do not

evaluate the expression again.

°As a side note, backticks are used in R to denote symbols (i.e. names). Because some
symbols have special syntactic meaning (like the *+° being an infix binary operator), they can
cause a syntax error if they appear unquoted in a place where the parser does not expect them.
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Delayed evaluation is demonstrated in listing 1.4, where the function in
question only evaluates its first argument and does not touch the second. For
the first call, the block of code in the curly brackets is never executed and so
the side-effect of printing a greeting does not happen.® In the second call, the
arguments are swapped, and the side-effect can be observed in the output. It is
possible to pass a block of code as a function argument, since the " {* is bound to
a function that sequentially evaluates all its arguments and returns as its result
the value of the last expression (or NULL if no expressions are passed in).

> f <- function(a, b) a

> f(1, {cat("Hello\n"); 2})
[1] 1

> f({cat("Hello\n"); 2}, 1)
Hello

[1] 2

Listing 1.4: Promise lazy evaluation

R supports assignment which enables programmers to change a function’s
local state by modifying its bindings and thus the imperative programming
style.” Also, the superassignment operator ‘<<-' brings into play non-local
side-effects (as shown in listing 1.5).

X <- 1

f <- function() {
X <- 2 # local
X <<- 3 # lookup in the enclosing environment
X # local

—V—=V—V+ + + + V V

Listing 1.5: Superassignment

‘cat is short for concatenate and print.
’An interesting quirk is R’s left to right assignment: the code 1 -> x assigns to x and is
equivalent to x <- 1.
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The basic data type in R is an atomic vector. Vectors are collections of
homogeneous values (a given vector can only hold objects of one particular
type), that preserve the order of their elements. R also provides a list type
which is heterogeneous. Higher-dimensional types such as matrices and data
frames, as well as objects, are internally built on vectors and lists. Vectors can
be created in R by calling the function c.?

Atomic vectors can have one of these six types: logical, integer, double, char-
acter, complex and raw. Since R targets data analysis, a special “not available”
value NA is provided for these. Because all values in a vector must be of the
same type, R performs coercion when an attempt is made to combine vectors
of different types. In listing 1.6, combining a numeric vector with a character
vector results in a character vector, and summing a logical vector coerces to
integers (TRUE becoming 1 and FALSE becoming 0).

In R there are no scalar types, as scalar values, such as individual numbers
and strings, are considered to be vectors of length one. This holds for character
vectors, too, which can cause confusion if one expects C-like behavior of strings
and tries subscripting, because in R the subscript belongs to the vector that
holds the string and not the string itself.

> x <- ¢c(1, 2, 3)

>y <- c("a", "b", "c")

> typeof (x)

[1] "double"

> typeof(y)

[1] "character"

> c(x, vy)

[ "1 "2" "3" "a" "b" "c"
> typeof(c(x, y))

[1] "character"

>

> sum(c(TRUE, TRUE, FALSE, TRUE))
[1] 3

Listing 1.6: Coercion to the most flexible type

Despite its inspiration in functional world, R does not optimize tail recursion,

which is the standard approach in functional languages since they typically

#The name stands for combine.
°In such a case, one needs to use the substr function.
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use recursion in the place of iterative loops. Instead, R encourages vectorized
operations. Hence, most of R builtin functionality works element-wise with
vectors, while recycling the elements as needed (e.g., when adding vectors of
different lengths). This is demonstrated in listing 1.7, where R even issues a

warning about recycling.

> numeric(10)
[1]1 00 O0OOOOOOOO
> 1:3
[1] 1 2 3
> numeric(10) + 1:3
[1] 1231231231
Warning message:
In numeric(10) + 1:3 :
longer object length is not a multiple of shorter object length

Listing 1.7: Recycling shorter vector

In R, every object can have arbitrary attributes associated with its data.
Attributes are basically a hidden map that assigns names to values. Some of the
most important attributes are names (a character vector that assigns names to
elements), dimensions (a vector specifying the dimensions and thus effectively
distinguishing vectors from matrices and arrays) and class (for implementing
one of R’s object systems). Attributes are used a lot in R for many purposes and
extensions as they provide a way of encoding arbitrary additional metadata for
objects. As an example, in listing 1.8 a vector of 4 elements is created, then
changed into a two by two matrix and finally changed back to vector (that also

has its elements named).*

True to its dynamic nature, R is very liberal in handling arguments in
function calls. The language supports both positional and named matching of
arguments, as well as default argument values. R even understands when the
argument names are abbreviated, as long as the arguments can still be uniquely

matched.

Moreover, R lets users call functions and not provide the specified arguments.
It is only while executing the function body that the missing arguments may

(or may not) cause an error. Variable number of arguments is supported as

“Here it can be seen here that R uses column-major order for storing the elements.
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> X <- 1:4

> X
[1] 12 3 4
> attr(x, "dim") <- c(2, 2)
> X
[,1] [,2]
[1,] 1 3
[2,] 2 4
> attr(x, "dim") <- c(4)
> attr(x, "names") <- c("a", "b", "c", "d")
> X
abcd
1234

Listing 1.8: Object attributes

well by using the ellipsis " ... . The ellipsis in an argument list matches any
number of arguments, and later in the function body refers to the list of matched
arguments. Special symbols can be used to access the ellipsis arguments, such

as ..17, " ..2", etc. Argument handling is demonstrated in listing 1.9.

As was already mentioned, R has multiple object systems. The simplest is
called S3 and it uses a class attribute to implement ad hoc polymorphism (also
known as function or operator overloading). It does not have formal classes,
but instead uses a special function called a generic function that decides what
to call based on the value of the class attribute. A typical example is printing,
where the print function is generic and its body consists of a call to a dispatcher
UseMethod("print"). Specialized versions for different types can be defined,
such as print.data. frame for data frames, or, given an object with class set to
"foo", print.foo (as is shown in listing 1.10).

S4 is a more formal system than S3, and it allows for true class definitions,
describing class representation and inheritance. It has multiple dispatch, which
means that dispatchers can pick which method to call based on multiple
arguments. R also has reference classes that implement message passing style.
Their objects are modified in place (as opposed to the standard pass by value

semantics).
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> f <- function(a, b, a.very.long.argument.name)

+ a.very.long.argument.name
> f(1, 2, 3)

[1] 3

> f(a = 3)

Error in f(a = 3)
argument "a.very.long.argument.name" is missing, with no default
> f(a. = 3)
[1] 3
>
> f <- function(a, b) a
> # b is not required
> (1)
[1] 1
> # a 1is required
> f()
Error in f() : argument "a" is missing, with no default
> f(b = 2)
Error in f(b = 2) : argument "a" is missing, with no default
>
> f <- function(...) ..2

> ()

Error in f() : the ... list does not contain 2 elements
> f(ll 2’ 3’ 4’ 5)

[1] 2

Listing 1.9: Argument handling

> x <- list()

> class(x) <- "foo"

> print(x)

list()

attr(,"class")

[1] "foo"

> print.foo <- function(...) cat("Printing foo!\n")
> print(x)

Printing foo!

Listing 1.10: S3 object system

10



1.1. Language features of R

An important and powerful feature of R is its subsetting and subset assignment
mechanics. Parts of objects can be retrieved and even changed by the operators
“[Y,[[ and " $°. These behave differently for different types of objects.

The first version is a general subset function that supports all kinds of
indexing.'’ For example, integer vector specifies which elements to get and
in what order, even allowing duplication. If negative indices are used, these
elements are omitted from the result. Logical vectors can be used to select
only elements at positions where TRUE occurs. If the object is named, character
vectors can be used to select by name. In combination with assignment
(and superassignment), objects can be modified. Subsetting works also for
higher-dimensional structures by simply providing indices for each dimension,

separated by commas. Some examples are in listing 1.11.

> X <- 101:110
> X

[1] 101 162 103 104 105 106 107 108 109 110
> x[c(3, 5, 1, 1)]

[1] 163 165 101 101
> x[-c(2, 3, 8)]

[1] 101 104 105 106 107 109 110
> x > 105

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x > 105]

[1] 106 107 108 109 110
> X[x %% 2 == 0] <- NA
> X

[1] 101 NA 103 NA 105 NA 107 NA 109 NA
>m <- matrix(1:9, ncol = 3)
>m

[,11 [,2]1 [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> m[-2, 2:3] # omit row 2 and get columns 2 to 3

[,11 [,2]

[1,] 4 7
[2,1 6 9

Listing 1.11: Basic subsetting / subassignment

"As opposed to many languages (e.g., C or Python), R starts indexing elements from 1
instead of 0.

11
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The second version, " [ [, returns only a single element of an object, and is used
to get elements out of a list. The "$" is then just a shorthand for " [[* when
used with character subsetting (that is, the dollar version expects a name, and it
need not be quoted). Also, the dollar operator does partial matching, similar to
how function argument names are handled. These operators are demonstrated
in listing 1.12.

> 1 <- list(sq = 1:3, str = "a", bool = FALSE, na = NA)
> 1

$sq

[1] 1 2 3

$str
[1] "a"

$bool
[1] FALSE

$na
[1] NA

> 1[1]

$sq
[11 123

> typeof(1[1])
[1] "list"

> 1[[1]]

[1] 1 2 3

> typeof(1[[1]])
[1] "integer"

> 1[["bool"]]
[1] FALSE

> 1$bool

[1] FALSE

Listing 1.12: Other subsetting operators

1.2 AST interpreter

In its core R uses a classic architecture for an interpreted language. After
initialization, the user enters R’s read-eval-print loop (REPL), that lets them
type in expressions and have R evaluate them. First, a reader, or parser, waits
for the user input and reads it line by line. If, at the end of line, it has read

12



1.2. AST interpreter

a syntactically complete expression, it passes it to an evaluator (otherwise it
waits for more input). After the evaluator returns the evaluated expression, a
printer is invoked that displays the result.”” Then the reader is invoked again

and the process repeats.

Every object in R is internally represented by a C structure called SEXPREC
(actually, R passes the objects around as pointers to this structure, which are
called SEXP)."* This structure contains a header with metadata about the object,
such as its type, reference counter or information for garbage collector, and then
a union of other structures that represent different types of R internal objects.
Some of these types are listed it table 1.1.

Table 1.1: Some common types of internal R objects

Type Usage

NILSXP the singleton NULL object

SYMSXP symbols (or names)

LISTSXP lists of dotted pairs

CLOSXP closures

ENVSXP environments

PROMSXP promises

LANGSXP language constructs (typically closure application)

SPECIALSXP special forms (typically control flow)
BUILTINSXP builtin non-special forms (e.g., arithmetic operators)

INTSXP integer vectors
REALSXP real vectors
STRSXP string vectors

BCODESXP object compiled to bytecode

The parser, when it scans the stream of input characters, checks that it is
syntactically correct and at the same time builds a tree structure that represents

?However, results can also be hidden, e.g., by the invisible function.

*The name refers to S-expressions, or symbolic expressions, as known from Lisp, although
the classical linked lists built from dotted pairs are mostly used internally, and vectors are
implemented as C arrays for efficiency reasons.

13
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the parsed expression. This tree is called the abstract syntax tree (AST) and its
nodes are all SEXPs. An example AST is shown in listing 1.13.** In the listing,
parentheses denote function calls (i.e. LANGSXP node), the first child being the
callee (typically a SYMSXP, i.e., a name that is bound to a function) and the rest
its arguments.

> pryr::ast(x <- (y + 3) * f(z))
\- O

<-

Listing 1.13: AST of a simple expression

The evaluator is a recursive function that gets as its input two SEXP objects, one
representing the AST of the expression that is to be evaluated, and the other
the environment in which to evaluate the expression. The evaluator walks the
given AST and based on the type of nodes it encounters, performs some action.

The result is then returned to be processed by the caller of eval.

Some nodes are self-evaluating, meaning that no action needs to be performed
and the node itself is the result. These are for example the NULL object, atomic

vectors or environments.

If the eval function sees a symbol node, a lookup for its binding is performed
in the provided environment. If it is not found there, because of lexical scoping,
the parent environment is searched, and so on, until either the binding is
found or an empty environment is reached (the empty environment serves
as a sentinel parent of all environment chains and does not have a parent

itself).

“pryr (homepage: https://github.com/hadley/pryr) is a package created by Hadley
Wickham that allows to “pry back the surface of R and dig into the details.”
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1.3. BC compiler and interpreter

One other prominent type of nodes is LANGSXP. R has internally three types of
functions, called special, builtin and closures (or user-defined functions). These
have different behavior when they are applied, and the eval function handles
that.

Special functions are the core language constructs, such as control flow
(conditionals and loops). They take their arguments as ASTs in a list and
evaluate them as needed while running. This is necessary for example for
the if statement, because, since R has side-effects, only one of the conditional

branches must be evaluated to preserve the correct semantics.

Builtins, on the other hand, are known to evaluate all their arguments, so it
is not necessary to create promises from their arguments. Instead, a list of
evaluated arguments is created and passed to the builtin function. Examples of
builtin functions are arithmetic operators or the colon operator for generating

sequences.

The last group are closures. Closures are user-defined functions written in R,
and they adhere to the lazy evaluation semantics. All arguments to a closure
are therefore allocated as promises: the expressions are bundled together with
the enclosing environment.

As opposed to specials and builtins, which, being C routines, are called directly
after preparing their arguments, closures need the interpreter to do some
additional work. First, the actual unevaluated arguments have to be matched
to the formal arguments of the closure. Then, a new environment has to be
created and filled with the matched pairs of arguments. Only after this can the
body of the closure be evaluated in the new environment. Also, a long jump

target is set here to catch any explicit return calls from within the body.

Finally, the dispatch to the bytecode interpreter for objects compiled to

bytecode is also found in the eval function.

1.3 BC compiler and interpreter

In an attempt to make R faster, a special internal representation for R code
was developed, and a compiler from R to this bytecode was added in a package

called compiler [15]. This also required some minor changes to the original
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AST interpreter, namely adding a new SEXP type for the compiled objects, called
BCODESXP, and handling of bytecode objects in the evaluator. A new evaluator
was also added for interpreting the bytecode which is invoked by the AST

version when it needs to evaluate a compiled object.

The compiler was written by Luke Tierney, and added as a standard package
toRin 2011 in version 2.13.0. However, it was not used by default until version
3.4.0, released in late April 2017 ([2] and [3]).”

The BC compiler itself is implemented in R, and walks the abstract syntax tree
of an expression being compiled in a similar manner that the AST interpreter
does (but, of course, it does so at the R level by using introspection). However,
instead of evaluating the code as it traverses the tree, it produces a code object.
The code is then later executed by the BC interpreter, a separate virtual machine
runtime system from the AST version. The compiler uses just a single pass,
meaning that it only looks at the compiled expression once, and while doing
so, produces a stream of instructions. A multi-pass version that would add
optimization passes for the internal representation is planned to be explored in
the future.

The bytecode objects produced by the compiler consist of two components. The
first is an integer vector that encodes the code itself in the form of instruction
opcodes interleaved with the instruction operands. The second is a general list
that represents a constant pool. In the constant pool, important objects are
stored, such as the source for the compiled expression, small constant objects,
or promises. The compiler is designed such that each bytecode object has its

own constant pool.

The compiler can be used explicitly to compile an expression or a closure.
However, a more convenient way is to enable just-in-time compilation (JIT).
Doing so causes the AST interpreter to invoke the compiler automatically when

calling a closure that is not yet compiled.

The compiler comes with a disassembler that makes it possible to inspect the

bytecode of an object, as is shown in listing 1.14.* The object is printed as a

“The default packages were compiled, but for additional packages and user code JIT was
disabled and had to be explicitly enabled.
**The output was reformatted for the sake of readability.
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list that starts with the .Code symbol, then follows the code vector (with the
opcodes decoded), and last comes the constant pool.

The integers in the code that are not instructions represent immediate argu-
ments to the instructions (the first element being an exception, as it encodes
the version of the BC stored in the given object). In this particular instance, all

immediates represent constant pool indices.

> f <- compiler::cmpfun(function(n) n + 1)
> f
function(n) n + 1
<bytecode: 0x367ee40>
> compiler::disassemble(f)
list(.Code,
list (8L,
GETVAR.OP, 1L,
LDCONST.OP, 2L,

ADD.OP, OL,

RETURN.OP),
list(n + 1,

n,

1)

Listing 1.14: Disassembling a BC object

The virtual machine that executes R bytecode uses a stack oriented architecture.
This means that a stack is used by the instructions at runtime to get their
arguments and store their results. For example, the instruction that performs
addition expects its two operands at the top of the stack. When it is executed
it removes these two objects from the stack, adds them together and puts the
resulting object back on the top of the stack.

The VM is implemented as a C routine that gets a bytecode object and an
environment as arguments (similar to the AST interpreter). It verifies the BC
version and then enters a loop that looks at the instruction stream in the BC
object and dispatches to code that implements the given instruction. The loop
is very carefully optimized by various techniques, such as using C preprocessor

macros and threaded code. This will be discussed later in chapter 3.
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The instruction set of the internal representation is designed to allow big

parts of the AST interpreter internals to be reused. There are currently 123

instructions, some of which are described in table 1.2.

Table 1.2: Description of some GNU R bytecodes

Instruction Description

RETURN.OP Take the top of stack and return it as a result
GOTO0.0P Unconditionally jump to a label

BRIFNOT.OP Conditionally jump to a label

POP.OP Remove the top of stack value

LDCONST. 0P Push a constant from the constant pool
GETVAR.OP Look up the symbol binding and push it
SETVAR.OP Update the symbol binding

MAKEPROM . OP Create promise from a call argument
CALL.OP Do function call

CALLBUILTIN.OP
CALLSPECIAL.OP
MAKECLOSURE. OP
ADD.OP

LT.OP
STARTASSIGN.OP
ENDASSIGN.OP
ISNULL.OP
COLON.OP

Call builtin function

Call special function

Create closure (with environment)
Arithmetic binary plus

Relational less than

Prepare for subassignment

Clean up after subassignment
Test if top of stack is NULL

Create integer sequence

The compiler itself has in its heart the recursive function cmp that visits the

AST of a given expression. It passes along a code buffer object (that contains

the instruction stream and the constant pool) and a context object. When

generating code, it writes into the code buffer, and uses the context to guide

the compilation (it carries along information such as whether the expression

should be followed by a return, if the result is ignored or not or if the expression

is in a loop).
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The expressions that are not self-evaluating are function calls, variable refer-
ences, bytecode objects and promises. The rest is treated as being a constant.
Bytecode objects and promises should not appear as literals in code, so they

cause a compilation error if encountered.

Constant expressions are compiled by inserting the object into constant pool
and generating a load instruction such as LDCONST.OP (that takes as an

argument the index into the constant pool of the object).

For variable references, the symbol is inserted into the constant pool and then
a GETVAR.OP instruction is emitted (although there is a special instruction for

the “dot-dot-names” such as . .1).

Everything else is a function call. When compiling a function call, multiple
steps are required. First, the function to call has to be compiled. Usually this
involves emitting an instruction that looks up the function by its name, but
sometimes also compiling an expression that evaluates to a function. Then the
arguments are compiled and code that prepares them on the stack is emitted.

Finally, the call instruction is generated.

Since the compiler uses only a single pass, it has limited options of optimizing
the generated code. The only optimization it performs, apart from those
described in the next section, is constant folding. This is a very useful
transformation that attempts to replace subtrees of an expression’s AST that
are constant (not only self-evaluating, but rather always evaluating to the same
result) with the constant result.

Currently, constant folding is performed (depending on compiler options)
on “small” expressions that consist of self-evaluating expressions, select base
variables (like pi) and calls to some select base math functions (like sqrt or

sin). In the current version, no deoptimization is possible.

1.3.1 BC compiler assumptions

When dealing with a language as dynamic as R, one needs to be very careful to
distinguish compile time from execution time, and in particular to realize that
between the two there is a window during which the state of the program can
change.
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It was explained earlier (see listing 1.2) that everything that happens in R is
a function call, even constructs that have a special syntactic meaning, like if,
while, break etc.

Furthermore, R uses lexical scoping. When a user starts an interactive session,
they work in the global environment, which is the first environment in the
hierarchy of environments known as the search path. The base environment
(where all the default R bindings are defined) as well as any loaded packages are
its ancestors in the search path. It is therefore possible to shadow the default

bindings by creating new bindings in the global environment."’

Taking all this into consideration, to be conservative the compiler would have to
compile everything as a function call, and then, at runtime, look up the current
value of the callee binding and perform the call. Unfortunately, this almost
completely negates the benefits of having a compiler at all, because the call is

exactly what the AST interpreter does.

For this reason, the compiler assumes about certain functions that their
meaning does not change in the meantime between compilation and execution.
This is quite a reasonable assumption, since bindings for these special and
builtin functions are rarely redefined, and it allows them to be properly
compiled.

As a downside, the compiler produces code that is incorrect if the assumptions
do not hold. Moreover, the bytecode interpreter has no way of telling that the
code became incorrect, so it just executes it without any warning or error. To
demonstrate, consider the code in listing 1.15.%®

The reason for this behavior can be seen in listing 1.16 which shows the relevant
part of the disassembled fc function. The "+ was inlined at compile time
(because at the time, it really was an addition). When executing the function
for the second time, however, the meaning of "+ was actually subtraction, and
this was not reflected in the bytecode.

"The base is in fact the last environment in the search path. Its parent environment is a
special empty environment.
¥]IT needs to be turned off for this.
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> f <- function(n) n + 1
> fc <- compiler::cmpfun(f)
> c(f(1), fc(1))

[1] 2 2
RSN
> c(f(1l), fc(1))
[1] 0 2
Listing 1.15: Breaking the compiler
list (8L,

GETVAR.OP, 1L,
LDCONST.OP, 2L,
ADD.OP, OL,
RETURN.OP)

Listing 1.16: Reason for the erroneous result

To reduce the chance of such errors, the compiler keeps track of local and global
bindings visible at compile time. If a shadowing is detected the function in

question is not inlined.

1.4 Why is R hard to optimize

This section is based on [9, 16].

Firstly, R is hard to optimize and that makes it slow. Of course, being an
intepreted language, one cannot expect the performance of lagnuages like C
that are compiled to native machine code. This is because during runtime, there
is the inherent overhead of managing the virtual machine that executes a given
program. For the AST interpreter, it entails walking the tree again with every
evaluation of an expression. For the BC compiler and interpreter, there is first
the compilation itself (which only happens once), but then dispatching of the
instructions needs to be done in the interpreter loop.

Another matter is that R is inherently single threaded, it is very memory hungry
(as it needs a lot of metadata about its internal structures) and all memory
is allocated on the heap and managed and garbage collected by the runtime
system of R.
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Just to give an example, incrementing a variable in C is done in one machine
instruction (and possibly one memory store if the variable is not allocated in a
register). An AST interpreter has to navigate a tree data structure in memory
which, for this example, would probably consist of at least one assign node, two
variable lookup nodes, one constant node and one arithmetic operation node.
For the bytecode interpreter, the amount of work is considerably reduced, but
still there is the large gap between machine instructions and the same bytecode
instructions executed by a virtual machine (that must, for example, perform all
type checking and possibly type promotions dynamically at runtime).

Furthermore, all values are boxed in R (often more than once), so the interpreter
has to work its way through multiple levels of indirection. For instance, a value
can be boxed in a promise SEXP, which when forced produces a vector SEXP,

which in turn contains the actual data.

That said, what makes R hard to optimize is that it is a very dynamic language
that gives a very high degree of freedom to a programmer. At runtime, users
have full access to all of the program data and representation. This means, for
example, that not only the values of a function’s arguments can be accessed,

but also the code that is used to compute them.

Even though R did not go as far as Lisp which makes no distinctions between
programs and data, it provides ways to transform code into text and the other

way round (namely, the functions parse and deparse).

Non-standard evaluation and metaprogramming are possible by leveraging
delayed evaluation and using funcions like substitute (that returns the parse
tree for an unevaluated expression and at the same time possibly modifies it),
quote (that simply returns its argument unevaluated) and eval (that evaluates
an expression in a specified environment). R also provides means for creating
embedded domain specific languages (e.g., the formula specification or the
“grammar of graphics” of ggplot2).*

To conlude, R being the mixture of different paradigms that it is makes it quite
difficult to reason about the code and optimize it. Adding together functional
style, object systems, laziness, introspection, dynamic evaluation, computation

ggplot2 (homepage: http://ggplot2.org/) is another package by Hadley Wickham. It
is widely used for data visualization.
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1.4. Why is R hard to optimize

on the language itself, explicit environment manipulation and more creates a

very complex result.

Additionally, R has its semantics defined by its one major implementation
(although attempts have been made to formalize the language, e.g., [9]).
This further complicates things as there is no formal description of the

language.
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CHAPTER

About RIR

RIR is an alternative compiler for the R language.?* It comes with its
own internal representation, an interpreter for its bytecode and an abstract
interpretation framework which provides a way to easily implement static
analyses on top of the RIR bytecode.

RIR acts as a drop-in replacement for the GNU R bytecode compiler. It requires
a patched version of GNU R that makes some slight adjustments that allow
the standard GNU R expression evaluator function to interface with the RIR
bytecode compiler and interpreter. RIR is written in C and C++ and is compiled

as a shared library that can be dynamically loaded by R.**

Listing 2.1 shows how to manually load RIR (although a script tools/R is
provided that does this automatically and turns on JIT, too).

The architecture is very similar to GNU R. The compiler generates bytecode
for a stack oriented virtual machine, which is later executed by a bytecode
interpreter. However, RIR is designed to be multi pass, and provides a

framework for adding new analyses, transformations and optimizations.

The RIR bytecode was designed with analyses in mind. This lead to some design
decisions that are quite different from GNU R.

**Homepage: https://github.com/reactorlabs/rir
#'The interpreter uses C, the reason being that it could eventually become a part of GNU R.
The compiler and analysis framework are intended as packages and are written in C++.
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2. ABouTt RIR

dyn.load("~/rir/build/librir.so") # path to the shared object
source("~/rir/rir/R/rir.R") # load the API for RIR compiler
# RIR is now ready:

f <- rir.compile(function() {})

> f

function() {}

<bytecode: 0x34b4510>

> rir.disassemble(f)

0x2180538

guard fun_ { == 0x2077cd8

push_ 23 # NULL

ret

V V VYV

Listing 2.1: Loading RIR at runtime

In general, where GNU R uses complex instructions that have to cover a lot of
work, RIR aims to achieve the same results by using lighter and more specialized

instructions (reminiscent of the reduced instruction set ideals).

Firstly, the bytecodes have statically defined how they behave, i.e. if they have
observable side-effects and how many elements they pop off and how many
they push on the stack. This information allows the analyses to better reason
about the code.

Secondly, RIR instructions aim to be predictable and self-contained.

For instance, when compiling a call, GNU R emits MAKEPROM.OP instructions
for non-constants. Later at runtime, when a list of arguments is built on the
stack, their behavior depends on the type of the callee. Each decides at runtime
whether it will allocate a promise (for closures), evaluate the code right away
(for builtins) or do nothing at all (for specials).

RIR behaves much more regularly in such a case. It prepares the arguments
at runtime and either evaluates them all eagerly or allocates them all as

promises.

Another example is a for loop. GNU R uses three instructions that handle
everything: one for initializing the loop variable, one for advancing it along

the loop sequence, and one to clean up.
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RIR on the other hand emits instructions for every operation, such as incre-
menting the index variable, checking its bounds, jumping out of the loop con-
ditionally, extracting the appropriate element of the loop sequence, storing it

in the loop variable etc.

Furthermore, as opposed to the assumptions used by the GNU R compiler
(see 1.3.1), RIR uses guard instructions that check at runtime whether the
assumption holds or not (i.e. whether the inlined function is still the same

as it was at compile time).

RIR is at present slower than GNU R. This is caused by several factors. First, RIR
falls back to the AST interpreter more often than GNU R. Second, RIR allocates
more memory than GNU R. For example, GNU R does not create promises out
of constant arguments passed to a closure. RIR, on the other hand, creates
promises from each argument. Moreover, the GNU R bytecode interpreter loop

is very optimized and efficient, as opposed to RIR’s.

Some examples of RIR instructions are listed in table 2.1.

Table 2.1: Description of some RIR bytecodes

Instruction  Description

push_ Push on top of stack

pop Pop off the stack

ldvar_ Look up binding

stvar_ Update binding

close Create closure

ret Standard return

return Non-local return

asbool_ Convert top of stack to TRUE or FALSE
brtrue Jump based on top of stack
brobj Jump if top of stack is object
br Jump unconditionally

dup_ Duplicate top of stack
dup2_ Duplicate two top elements
add Arithmetic addition

guard_fun_ Check function is same as at compile time
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Instruction  Description

extractl  Get an element of vector

inc_ Increment integer on top of stack
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CHAPTER

Improvements

In this chapter I will discuss in detail the changes made to RIR in an attempt to
bring it up to speed with GNU R byte-compiled code. The improvements can

be divided into several categories:

The first group consists of the extensions of the bytecode instruction set itself.
Here, new instructions are added for some functions that GNU R inlines but

which were missing in the RIR (and thus were compiled as standard calls).

The next section talks about changes made to the RIR compiler. These consist

mainly of loop context handling.

Finally, the RIR interpreter loop itself was refactored to run more efficiently,

and this is described in the last section of this chapter.

Throughout, for ensuring that the improvements had positive effects, a kind of
microbenchmarks, such as the one in listing 3.1, were checked by hand in fresh
sessions of GNU R (with JIT disabled and with JIT set to 2) and RIR (with JIT
enabled). In the code, a function is defined and measured repeatedly. The final
reported time is computed as arithmetic mean of only a tailing part of the runs.
This is to ensure a proper warmup (i.e. everything is byte-compiled by the JIT

and possibly the processor branch predictors warm up).
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f <- function() {
i <- 10000000L
while (i > 0) i <-1i -1

}
t <- c()
for (x in 1:10) t <- c(t, system.time(f())[[3]11])

mean(t[5:10])

Listing 3.1: Microbenchmark code

3.1 Instruction set extensions

The GNU R bytecode compiler assumes certain invariants about the code at
compile time, as was described in section 1.3.1. Of course, the instruction set of
the default compiler reflects this. Having specialized bytecode instructions for

specific tasks is where virtual machines generally get a lot of speedup [8].

The first step was to work through the documentation of the GNU R bytecode
compiler [15]. Here, all the inlining done by default by the compiler was
determined and experiments were carried out to compare their list to RIR,
usually by using the disassemblers of both GNU R and RIR, examining the

results of compilation of different calls and studying the C source codes.

The GNU R compiler has four different levels of the optimize option (from
0 to 3) and the amount of inlining performed is directly influenced by this
setting. The default value is 2, at which the compiler inlines functions in
the base packages (including those that are syntactically special or considered
core language functions) that are not shadowed at compile time (by function
arguments and local bindings). Some of these are listed in table 3.1.

Table 3.1: Examples of inlined functions

Function Optimize level Note

+, -0, F, <, T=="efc 2 Operators
e 2 Expression grouping
{ 2 Block

if’ 2 Control flow
‘repeat’, ‘while®, " for® 2 Control flow
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Function Optimize level Note

‘break’, “next’ 2 Control flow
return 2 Control flow
function 2 Closure constructor
sin, cos, floor, sign etc. 3 1 arg. math
is.null, is.atomic etc. 3 Predicates

The inlining happens in both GNU R and RIR when the compiler sees a function
call. Both first try to inline calls to special and builtin functions. If the inlining
fails, the compilers fall back to the standard call mechanism, and that means
calling the same C routines that the AST interpreter uses, effectively running
interpreted code.

Thus the way to speed things up is to add more special cases that handle code
that originally fell back to the AST interpreter, the trade-off being that the

generated code is not always safe (see listing 1.15).

When adding a new bytecode instruction, several steps have to be performed.
First, the instruction has to be added to the instruction list in the insns.h header
file. The new instruction needs to have a name and also have some properties

specified.

These are imm (the number of immediate arguments that the instruction
expects — immediates are inserted directly into the code stream), pop and push
(the number of elements that the instruction removes from and adds to the stack,
respectively) and pure (a flag that says if the instruction has side-effects, e.g., it

can force a promise — purity is good to know for optimization purposes).

The format is displayed in listing 3.2. DEF_INSTRis a C preprocessor macro that
needs to be defined each time this header file is included, and can be used to
get information about the instructions. For instance, a method that returns the

number of immediates is shown in listing 3.3.

Second, the instruction has to be manually added at some places in the class that
implements the bytecode instruction type and is used throughout the compiler

and the analysis framework. This step is mostly mechanical.
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DEF_INSTR(gt , 0, 2, 1, 0)

Listing 3.2: Adding new opcode to RIR bytecode

static unsigned immCount(Opcode bc) {
switch (bc) {
#define DEF _INSTR(name, imm, opop, opush, pure) \
case Opcode: :name: |
return imm;
#include "insns.h"

default:
assert(false);
return 0;

}

Listing 3.3: Getting number of immediates for instructions

After that, the compiler must be taught to use the instruction. This is done
during the inlining step. A special case for the function call that the instruction
implements has to be added. In this special case, the instruction opcode,
together with any other instructions needed (such as the guard instructions
explained in chapter 2) are inserted into a code stream. See listing 3.4 for a
code snippet that demonstrates this.

It is also here while the instructions are being added into the stream that
constant pool is filled (since the indices of constant pool objects are needed
as immediates).

bool compileSpecialCall(Context& ctx, SEXP ast, SEXP fun, SEXP args ) {
RList args(args );
CodeStream& cs = ctx.cs();
// ...
if (fun == symbol::Add && args.length() == 1) {
// emit instructions...
return true;
}
// ...
return false;

Listing 3.4: RIR compiler inlining
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Finally, the instruction itself has to be implemented and added to the dispatch-
ing mechanism in the interpreter. This is where the code that executes the
instruction is located. The skeleton of the RIR evaluator can be seen in listing
3.5. BEGIN_MACHINE, INSTRUCTION and LASTOP are all C macros that implement
dispatching.

SEXP evalRirCode(Code* c, Context* ctx, SEXP env, unsigned numArgs) {

/X L. x/
BEGIN MACHINE {
/X .. x/
INSTRUCTION(eq ) { /* body */ }
VALY
LASTOP:
}

return ostack pop(ctx);

Listing 3.5: RIR evaluator

Summary of the various newly added instructions is in table 3.2. One that does
not fit anywhere is nop_. As one would expect, it does not do anything, takes
no immediates or stack arguments and is, by definition, pure. It will be useful
later when eliminating loop contexts. The rest are described in the following
sections.

Table 3.2: Newly added BC instructions

Name imm pop push pure
nop_ 0 0 0 yes
gt 0 2 1 no
le 0 2 1 no
ge 0 2 1 no
eq 0 2 1 no
ne_ 0 2 1 no
uplus 0 1 1 no
uminus_ 0 1 1 no
not 0 1 1 no
colon 0 2 1 no
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Name imm pop push pure

ldvar2 1 0 1 no
stvar2_ 1 1 0 no

3.1.1 Relational operators

Originally, RIR only had "<" out of the six usual relational operators. The rest,
'>', "<=", '>=", "==" and " !=" were being compiled as calls to the builtin C

routines, but were newly added.

All these instructions behave in the same way as arithmetic binary operators
do. They take no immediate arguments, and instead expect their operands to
be left for them at the top of the stack. They pop two values off the stack,
compute the respective operation, and push one result back. They are impure,
since their arguments may be promises in which case they would have to force
them.”

The speedup of adding these operations as standalone instructions lies in
the fact that they are quite often called with “scalar” arguments, and as was
mentioned before, R does not have any scalar values, since they are simply
boxed in vectors of length one. If the operands are of a suitable type, and both
have a single element, then a fast path can be taken and a call to the standard
C builtin avoided.

Listing 3.6 shows the body of the eq instruction. INSTRUCTION, DO RELOP and
NEXT are C preprocessor macros. The code first gets the two operands from the
stack, then it performs the operation, puts the result back on the stack, and after

that moves the control to the next instruction.

In listing 3.7 the fast paths are shown. After checking the types and lengths of
the two operands, either a NA value is assigned to the result, or the particular
operation is performed. This is possible because internally R uses the C types

int and double, so the actual comparison can be done in plain C.

*?Because R has eval, any arbitrary code may be run when forcing a promise.
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INSTRUCTION(eq ) {
SEXP lhs = ostack at(ctx, 1)
SEXP rhs = ostack at(ctx, 0)
DO RELOP(==);
ostack popn(ctx, 2);
ostack push(ctx, res);
NEXT () ;

’
’

Listing 3.6: The eq_ instruction

For the <" operator, only combinations of integer and double scalars had
fast paths implemented. This was amended and for all relational operators
there is now also a fast path for comparing two logical values. Furthermore,
the relational operators do not need to allocate a new vector for their result,
since the R logical objects are singletons and they are simply assigned to the

result.

#define DO RELOP(op) do {
if (IS SIMPLE SCALAR(lhs, LGLSXP) &&
IS SIMPLE SCALAR(rhs, LGLSXP)) {
/* handle NA */
res = *LOGICAL(lhs) op *LOGICAL(rhs) ? R _TrueValue
: R FalseValue;
break;
} else if (/* ... */) {
/* handle real + real, real + int, int + real, int + int */
}
BINOP_FALLBACK(#op);
} while (false)

Listing 3.7: The DO_RELOP macro

If the fast paths fail, the instruction falls back to the standard routine that
handles vectorized operations, vector recycling, type promotion and also any
possible problems (e.g., concerning incompatible operand types). This is shown
in listing 3.8. For every instruction, a static variable is used in this case to cache
the builtin function (or rather a pointer to it), so that the lookup (which is an
expensive operation) is only performed once. Here, the operands are added to
a linked list (that the builtin C routine expects), and the builtin is called.

35



3. IMPROVEMENTS

#define BINOP FALLBACK(op) do {
static SEXP prim = NULL;
static CCODE blt;
if (!prim) {
/* look up builtin */
}
SEXP call = getSrcForCall(c, pc - 1, ctx);
SEXP argslist = CONS NR(lhs, CONS NR(rhs, R NilValue));
ostack push(ctx, argslist);
res = blt(call, prim, argslist, env); /* call builtin */
ostack pop(ctx);
} while (false)

Listing 3.8: The BINOP_FALLBACK macro

3.1.2 Unary operators

Unary operators are in principle the same as binary. If their operand has one
element and appropriate type, a fast path can be taken. The logical negation
has a fast path for logical scalars in addition to numeric.

R has two arithmetic unary operators, '+ and " -, and logical negation " !".
These are all rather straightforward, they do not have immediates, pop one

argument and push one result back.

Since the instruction bodies correspond closely to those of binary operators
(except they only have a single operand), a snippet of a compiler code that emits
these is shown instead (listing 3.9). It is taken out of a function that performs the
inlining. It returns true if successful, and false otherwise, in which case the
compilation proceeds to the standard call mechanism (i.e. emitting a ldfun_
instruction, compiling the call arguments as promises and finally emitting a
call).

In the compiler, inserting into the code stream cs is done using the overloaded
operator <<. Factory methods are used to create the bytecode instruction ob-
jects (from their arguments, the immediates for the instructions are generated).
A reference to the original AST of the compiled call is saved into the code

stream, too.

The bytecode runtime system uses a stack architecture, therefore using recur-

sion ties in elegantly. First, a guard instruction is inserted (see chapter 2 for
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explanation). Then the bytecode that computes the value of the operand is
emitted recursively. Lastly, the operator instruction is added that processes the
result left for it on the stack.

if (args.length() == 1 &&
(fun == symbol::Add || fun == symbol::Sub ||
fun == symbol::Not)) {
cs << BC::guardNamePrimitive(fun);
compileExpr(ctx, args[0]);
if (fun == symbol::Add)
cs << BC::uplus();
else if (fun == symbol::Sub)
cs << BC::uminus();
else if (fun == symbol::Not)
cs << BC::Not();
cs.addSrc(ast);
return true;

Listing 3.9: The piece of code emitting unary operators

3.1.3 'The colon operator

The colon operator " : " in R provides a convenient way to generate sequences.
It is used very often, notably in for loops as an integer control sequence for the
loop variable. The values it generates can be both increasing and decreasing,
and they differ by 1. If the starting value is an integer, then the vector is also

integer.

A colon_ instruction was added that, similarly to arithmetic operators, takes
no immediates, expects two operands on the top of the stack and pushes back
the resulting sequence object. It is impure, because, same as the operators, its

operands could be unevaluated promises.

Adding it to the compiler was actually the same as adding an arithmetic binary
operator. The instruction itself adds a fast path for combinations of integer and
double operands (the doubles apply only if they represent an integer up to a
rounding error). The fast path allocates an integer vector of appropriate length

and fills it with the sequence values.

37



3. IMPROVEMENTS

INSTRUCTION(colon ) {
/¥ ... X/
if (IS _SIMPLE SCALAR(lhs, INTSXP)) {
int from = *INTEGER(lhs);
if (IS_SIMPLE SCALAR(rhs, INTSXP)) {
/¥ ... X/
} else if (IS SIMPLE SCALAR(rhs, REALSXP)) {
double to = *REAL(rhs);
if (from != NA INTEGER && to != NA REAL &&
R FINITE(to) && INT MIN <= to &&
INT MAX >= to && to == (int)to) {
res = seq_int(from, (int)to);
}
}
} else if (IS SIMPLE SCALAR(lhs, REALSXP)) {
/* real + int, real + real */

}
if (res == NULL) {
BINOP_FALLBACK(":");

}
/¥ .. X/

Listing 3.10: The colon_ instruction

3.1.4 Superassignment

Superassignment operator “<<-' differs from normal assignment in that it
works in an enclosing environment. Thus, the local environment where
superassignment occurs is skipped during the binding lookup. For simple
assignment of the form x <<- vy, that is all there really is.

The semantics of a complex subset assignment are a bit more complicated,
as is shown in listing 3.11 (taken from [13]), because it is not a matter of
simply creating or changing a binding, but a part of a binding’s object has to
be extracted and modified first. This model applies recursively for still more

complex assignments.

The target object is looked up and stored into a variable "*tmp*" (it is not
recommended to use this name for anything in user code, since, as a side-effect,
this will overwrite and then delete it). Then, a function name is constructed
from the left-hand side call expression by appending an assignment arrow. The

resulting name must refer to a function that takes the same arguments as the
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# The result of this command. ..

x[3:5] <- 13:15

# ... 1s as if the following had been executed
TRtmp*T <- X

X <- "[<-"("*tmp*", 3:5, value=13:15)

rm( " *tmp*")

Listing 3.11: Complex subset assignment

original one as well as an additional value argument. This function is called,
the right-hand side expression is passed as the value, and its result is stored to

the target. Then the temporary binding is removed.

For superassignment the same principles apply, however, the target binding
(and only the target binding) is looked up in an enclosing environment of the

expression.

Two new bytecode instructions were added for handling the superassignment
semantics of looking up bindings. The first is for loading a symbol. It takes one
immediate argument, an index into the constant pool where it finds the symbol
to look up. It does not pop anything from the stack but pushes one object,
the value of the binding. The second is symmetrical to the first, it takes an
immediate constant pool index, pops one object, does not push anything. Both
are impure: the load may evaluate a promise, and the store modifies non-local
bindings (unlike normal stvar_that writes only into the local environment and

hence is pure).

These new bytecodes were added to the compiler at a point where it inlines

normal assignment and subset assignment.

In the instructions themselves, the environment for looking up bindings gets
replaced with its enclosing environment. This is shown in listing 3.12, where
the call to R internal setVar function takes as the last argument the enclosing
environment of the current one. The symbol is read from the constant pool at
the index determined by the immediate. The value to store is taken from the
stack.

One additional detail comes up: how the program counter (PC) is manipulated.

With every instruction, the dispatcher reads its opcode from the current
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position of the PC and moves the PC to the next position (opcodes take up
a single byte). If the instruction has any immediates, it is up to the instruction
code to manipulate the PC accordingly. This is done by the advanceImmediate

macro.

INSTRUCTION(stvar2 ) {
SEXP sym = readConst(ctx, readImmediate());
advancelmmediate();
SEXP val = ostack pop(ctx);
INCREMENT NAMED(val);
setVar(sym, val, ENCLOS(env));
NEXT () ;

Listing 3.12: The stvar2_instruction

3.2 Compiler modifications

In this section, some changes that were made directly to the compiler are
discussed. Included at the end is a section about refactoring loops compilation
in a way that saves some jumps. Ultimately, this was not used because it turned

out that it had a negative impact on performance.

3.2.1 Loop context removal

One of the consequences of lazy evaluation in R is that the control flow
statements break and next can in fact be non-local jumps (i.e. across multiple
stack frames).”> Listing 3.13 presents a possible way of producing non-local
break. The arguments to the foo function are wrapped in promises, and may
or may not be evaluated. However, if the second argument ever gets evaluated,
it has to break out of the repeat loop that called foo.

To implement this behavior, C long jumps have to be used. Thus, both GNU R
and RIR have a bytecode instruction that sets up the long jump, and another

that cleans up after the loop finishes.

**This is true for return as well, however non-local returns are not handled by loop contexts.
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function(n) {

repeat {
foo(n, break)
n<-n-1

}

Listing 3.13: Context for break required

Quite often the runtime loop context is not needed, as is shown in listing 3.14. In
such cases only local jump suffices because the break can only ever be evaluated

in the same stack frame.

function(n) {
repeat {
if (n <= 0) break
n<-n-1

Listing 3.14: Safe break

The rule for when the runtime context is needed and when not is as follows. If a
loop contains any break or next statements that are wrapped in a promise, the
loop context is needed. However, if all such statements are wrapped inside their
promises in another loop (or the closure constructor function), the context can
still be left out.

RIR used to create the runtime loop contexts for all loops, so a mechanism was
added to enable skipping them in the safe cases. The compiler uses a Context
object that holds a stack of CodeContext objects. Each code context in turn
contains a code stream for the generated code and its own stack of LoopContext

objects. The original structure can be seen in listing 3.15.

A new CodeContext was pushed when the compiler entry point was invoked,
and then each time a promise was compiled. The system of mutually recursive
compiler functions then worked in the code context that was on the top of the
stack. When a loop was encountered, a new LoopContext was pushed to the
stack of the top code context.
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class Context {
public:
class LoopContext { /* ... */ };
class CodeContext {
public:
CodeStream cs;
std: :stack<LoopContext> loops;

// ...
};
std: :stack<CodeContext> code;
// ...

};

Listing 3.15: RIR compiler context

The loop context objects contain the target labels for the local control flow.
A new flag was added that signals whether a runtime loop context is needed
for the given loop. The class is shown in listing 3.16.

class LoopContext {
public:
LabelT next_;
LabelT break ;
bool context needed = false;
LoopContext(LabelT next , LabelT break )
: next (next ), break (break ) {}
i

Listing 3.16: Loop context class

To implement the rules for skipping runtime loop contexts, a PromiseContext
class was added that is used when the compiler compiles a promise. This is
shown in listing 3.17.

FunIdxT compilePromise(Context& ctx, SEXP exp) {
ctx.pushPromiseContext(exp); // instead of CodeContext
compileExpr(ctx, exp);
ctx.cs() << BC::ret();
return ctx.pop();

Listing 3.17: Compiling a promise
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The CodeContext was changed to store a pointer to its parent (a context below it
on the stack). This change allows for finding out transitively if the compiler is in
any loop, not just one from the current context, and also to set the LoopContext
flag in the first enclosing loop. The new functionality is presented in listing
3.18

class CodeContext {
public:
// ...
CodeContext* parent;
bool inLoop() {
return !loops.empty() || (parent && parent->inLoop());
}
void setContextNeeded() {
if (loops.empty() && parent)
parent->setContextNeeded();
else
loops.top().context needed = true;

};

Listing 3.18: Hierarchy of CodeContext objects

The PromiseContext class inherits from CodeContext. When compiling break
or next in a promise, the parent context (i.e. where the promise was created) is
notified to set the loop context flag. This is shown in listing 3.19.

bool loopIsLocal() override {
if (loops.empty()) {
parent->setContextNeeded(); // set flag in parent
return false; // and do not inline

}

return true;

Listing 3.19: Promise context class

One last missing piece is being able to remove an instruction from a code stream.
The stream originally did not have this functionality, but it was added to allow
removing unnecessary loop context instructions. The trick used is to replace the
instruction opcode together with its immediates by nop_ instructions (which

get removed later during BC cleanup).
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Finally, when compiling the loops, the instruction beginloop is emitted just
as before. However, after the loop is compiled, it is removed from the stream
if the context is not needed. The code for the repeat loop is shown in listing
3.20.

if (fun == symbol: :Repeat) {
I/ oo
ctx.pushLoop(loopBranch, nextBranch);
unsigned beginLoopPos = cs.currentPos();
cs << BC::beginloop(nextBranch)
<< loopBranch;
compileExpr(ctx, body);
cs << BC::pop() << BC::br(loopBranch)
<< nextBranch;
if (ctx.loopNeedsContext())
cs << BC::endcontext();
else
cs.remove (beginLoopPos) ;
cs << BC::push(R NilValue) << BC::invisible();
ctx.popLoop();
return true;

Listing 3.20: repeat loop inlining

Compiling next and break then involves checking with the context if inlining
is ok (i.e. the statement is not in a promise or it is in a loop in a promise). The
code for inlining break is in listing 3.21.

if (fun == symbol::Break) {
if (!ctx.inLoop()) return false;
if (ctx.loopIsLocal()) {
cs << BC::guardNamePrimitive (fun)
<< BC::br(ctx.loopBreak())
<< BC::push(R_NilValue);
return true;

Listing 3.21: break inlining
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3.2.2 BC cleanup

A few small improvements were made to the optimization pass that RIR runs
on the bytecode after it is compiled. The recursive compiler and possibly
other transformations applied to the bytecode sometimes produce sequences
of BC instructions where some are redundant or can be replaced. Examples of

this include loading a variable twice or pushing to the stack and immediately
popping.

The modified compilation of loops described previously produces for one
some nop_ instructions. Moreover, the pair of instructions pick 1; pick 1
occurred quite often. The pick instruction removes the stack element at the
index given by its immediate and puts it to the top of stack. If the code picks
the element just under the top of stack twice in a row, the effect is as if nothing
happened. Therefore, the code in listing 3.22 was added to the BC cleanup pass
to fix these.

The two methods are located in an analysis class that implements the visitor
pattern over instructions. Thus adding new cleanup code means simply

overriding the particular bytecode instruction.

void nop (CodeEditor::Iterator ins) override {
CodeEditor::Cursor cur = ins.asCursor(code );
cur.remove();
return;
)
void pick (CodeEditor::Iterator ins) override {
if (ins != code .begin() &&
ins.asCursor(code ).bc().immediate.i == 1) {
auto prev = ins - 1;
if ((*prev).is(Opcode::pick ) && *ins == *prev) {
CodeEditor: :Cursor cur = prev.asCursor(code );
cur.remove();
cur.remove();
return;

Listing 3.22: nop_ and double pick 1 elimination

Finally, the cleanup analysis is run iteratively until a constant number of runs

happens or the analysis reaches a fixpoint (i.e. it does not change the code
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anymore), whichever comes first. The constant limiting the number of runs
was previously set to 2, which often left a lot of easy cleanup unfinished. This
limit was therefore increased to 10.

3.2.3 Loop refactoring

Theoretically, it is possible to optimize the code generated for while loops by
swapping the loop’s body and its condition. The intuitive way is to compile
the condition first, then insert a conditional jump to the end of the body, then
compile the body and jump unconditionally to the top again. In pseudocode

this is shown in listing 3.23.

// code for the condition
brfalse END

// code for the body
br COND

Listing 3.23: while loop bytecode

However, if the condition and the body are swapped, half of the jumps can be
saved. The body is compiled first, then follows the condition and a conditional
jump back to the body. Additionally, a single unconditional jump is inserted
before the body. Listing 3.24 demonstrates this.

br COND
// code for the body

// code for the condition
brtrue BODY

Listing 3.24: Refactored while loop bytecode

Similar change can be done to for loops. The repeat loops are infinite by design

and do not have a condition, so nothing can be done there.
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Unfortunately, this change proved to be a slowdown rather than a speedup in
anything more complicated than a loop with an empty body, and even there
the gains were quite small.

This is probably caused by changing the backward jump from unconditional
to conditional. Because RIR profiles the backward jumps (they signal the
presence of a loop), it seems that one forward conditional jump combined with
one backward unconditional are cheaper than a single conditional backward

jump.

3.3 Interpreter refactoring

As it turned out, the biggest speedup was gained by refactoring the RIR
bytecode interpreter. Originally, the interpreter was quite straightforward. The
main evaluator function evalRirCode contained in its core an infinite loop, and
in its body there was a large switch statement with one case for each bytecode

instruction.

In the switch cases there was a call to a function that implemented the
instruction. These functions were defined with the C inline and static
modifiers, and to make sure the compiler really inlined them, the GCC specific

attribute _attribute ((always_inline)) was also used.

However, the compiler clearly had trouble with optimizing this version,
possibly due to alias analysis being degraded (e.g., the interpreter passed the
PC around as a pointer to a pointer, which means double indirection).”*

In the interpreter refactoring, I have built on the version where instruction
functions were replaced by macros and directly used in the interpreter loop.
Further, the infinite loop was replaced by a label and a goto. The dispatching
was left to the switch statement as before. One level of indirection was removed
from the PC handling and the bytecode access functions that use the PC were
also turned into macros.”

**The inlining itself was actually happening, because the compiler would otherwise
complain [5].
*Done by Oli Fliickiger.
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To demonstrate the difference, a microbenchmark and its results are presented
in listings 3.25 and 3.26.

f <- function() {
i <- 10000000L
while (i >0) i <-1i -1

t <- c()
for (x in 1:10) t <- c(t, system.time(f())[[3]11])
mean(t[5:10])

>
+
—+
+}
>
>
>
[1] 1.141833

Listing 3.25: Effects of inlining instructions by hand — before

> # same code as before...
> mean(t[5:10])
[1] 0.6458333

Listing 3.26: Effects of inlining instructions by hand — after

Following the example of GNU R, where the interpreter almost never calls
any functions and instead inlines the code via C preprocessor macros, some
functions that manipulated the bytecode stack or retrieved the constant and

source pool objects were converted into macros.

To further improve the interpreter, a switch based dispatch technique was
replaced with threaded code dispatching. The technique is popular in languages
such as Forth, and is described in, e.g., [4].

Dispatching is the mechanism that transfers control in a virtual machine in-
terpreter between individual bytecode instructions. When a switch statement
is used, the dispatching takes place at one location (the switch header), where
the address to jump to for a given instruction is determined (by looking into a
jump table). After the instruction finishes, another jump is needed to transfer
the control back to the switch.

This can be made more efficient by eliminating this last jump. Since the code
that does the dispatching is typically very short, it can be replicated at the
end of every instruction. If a jump table can be created with the addresses

of all instructions, then the switch can be removed, and completely replaced
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by looking into the jump table (which is indexed by the instruction opcodes)
and jumping to the next instruction. This is called indirect threading because
of the need to look for the addresses in the jump table.

There is no way to implement threading in standard C. Fortunately, GCC
supports an extension called computed goto [6], that allows for taking the
address of a label. Using this, it is easy to create the jump table. This is shown
in listing 3.27. The INSTRUCTION macro becomes simply a label, the NEXT macro
uses the jump table to get the address of the next instruction and computed
goto to jump there. The jump table is constructed statically using the list of all
instructions.

GNU R uses a similar technique, called direct threading. The difference is in
removing even the lookup of a label address in the jump table, and instead
encoding it directly into the opcodes of instructions. When finalizing the
bytecode object, GNU R substitutes all the opcodes by the addresses of their
code. Thus, the address to continue computation can be obtained by simply
dereferencing the PC.

This was not implemented in RIR, mainly for the reason that doing so causes the
opcodes to become longer, changing from a single byte to the size of a pointer
on a given machine (i.e. to 8 bytes on a 64-bit architecture), and the benefits of

changing switch dispatching to threading seemed quite small.

#define INSTRUCTION(name) op_ ##name:

#define NEXT() (__extension _ ({goto *opAddr[advanceOpcode()];}))
static void* opAddr[numInsns ] = {

# define DEF INSTR(name, ...) (__extension _ && op ##name),

# include "ir/insns.h"

# undef DEF INSTR
}

Listing 3.27: Threaded dispatching

Lastly, some experimenting was done with forcing the C compiler to allocate
certain variables in registers. Most of the local variables defined in the
instructions were factored out to the beginning of the evaluator function. Then
the form register OpcodeT* pc asm ("rl12"); was used to keep some of the

often used variables in specific registers.
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However, as described in [7], the compiler takes this only as a hint. No
consistent improvement was achieved and, on the contrary, specifying two or

more variables to be in registers seemed to degrade the performance.

It is probably best to allow the register allocator do its job without any

influencing, as is recommended in the documentation.
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CHAPTER

Evaluation

This chapter discusses how the changes implemented in chapter 3 impact the

performance of RIR.

For evaluation, the Shootout benchmarks were used (see [8, 10]). These are
small programs that focus on different parts of R, such as recursive calls, loops,
vector arithmetic, string manipulation etc. The details are in table 4.1, taken
from [8].

Table 4.1: The Shootout benchmark suite

Benchmark  Description

binarytrees Allocates and traverses binary trees
GC benchmark, recursive calls, recursive lists
fannkuchred Solves a combinatorial problem
Loops, indexing short vectors
fasta Generates DNA sequence by copying, rand. selection
String operations, scalar arithmetic
fastaredux Solves same problem as fasta
Adds more loops, vector indexing and arithmetic
knucleotide  Finding patterns in gene sequences
Uses environment as a hashmap, string operations
mandelbrot Calculates a Mandelbrot set (fractal image)
Vector arithmetic on complex numbers

51



4. EVALUATION

Benchmark  Description

nbody Solves the N-body problem (simulation)
Arithmetic, Math with short vectors
pidigits Calculate digits of pi using spigot algorithm

Arbitrary precision arithmetic in R (diverse code)
regexdna Matching, replacing regex-specified gene sequences

Regular expressions (falls back to regex library)
reversecompl Computing reverse-complements for gene sequence

String vector indexing using string names
spectralnorm Computing eigenvalue using power method

Loops, function calls, scalar arithmetic

The benchmark problems come from The Computer Language Benchmarks
Game.”* The R language mutation was added by Leo Osvald [10]. There are
several versions of most problems, the naive ones being more or less a literal
translation from C or Java to R. The alternative implementations solve the same
problems, however, they use different styles of programming that leverage

various features available in R, as experienced R programmers would.

The benchmarks were run on a machine with Intel(R) Core(TM) i5-6500 (4 cores)
and 8 GB of memory. For every benchmark, three experiments were measured:
GNU R interpreted code (JIT set to 0), GNU R byte-compiled code (JIT set to 2
and optimize to 2) and RIR compiled code (JIT set to 2).

Each experiment took place in a fresh R session. The benchmark code was
sourced, then it was executed 12 times, and the last 8 measured times were
logged. This ensured that the machine was warmed up properly. Any compile
time overheads were disregarded. The same measurements were performed for

every set of added features.

Figure 4.1 shows the summary of how much the difference between RIR and
GNU R was lowered for each benchmark, as well as an overall average (smaller

values are better).

*See http://benchmarksgame.alioth.debian.org/.
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The lighter color refers to the state before any feature was added, the darker
after all the changes described in chapter 3.

The slowdowns are computed relative to the running time of GNU R byte-
compiled code, which was normalized to 1 (and is indicated by the solid black

line).

Overall, an average slowdown against GNU R was lowered by about 50 % (from
a factor of 1.678 to 1.336).

It can be clearly seen that the most speedup was gained for the naive versions
of benchmarks. These are the programs that use a lot of nested loops, lot of
arithmetic operations and have relatively long functions, which is exactly the

area where the efforts of chapter 3 were focused.

The revisions that were used to monitor the progress, together with their
features, are listed in table 4.2. The table also shows the average speedup over

all benchmarks of each feature set, relative to the first revision.

Table 4.2: Git revisions used in the benchmarks

Hash Features Avg. speedup
€1091b9 State before the first changes 1.0
594af0c  Added relational and unary operators 1.029
ce30085 Loop contexts removal 1.043
6¢c4f526  BC cleanup and colon operator 1.054
f8e8238  Superassignment operator 1.081
12ef757 Interpreter loop refactoring 1.199
ff73d75  Use indirect threading 1.206

Figure 4.2 captures the running times of each benchmark over the course of the
work described in chapter 3.

In the figure, the light blue color represents performance of the GNU R bytecode.
As all measurements were carried out on the same version of GNU R (namely
3.3.2) the times are identical.
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4. EVALUATION

RIR performance for some benchmarks was comparable to GNU R even before
the first modifications, with some (notably pidigits) outperforming GNU R. In
particular, the pidigits code is the longest of the benchmarks (in terms of lines
of code), has a lot of user-defined functions and seems to spend most of the time
executing the bytecode. Together with the mandelbrot versions where RIR is
faster that do mostly just arithmetic in loops, this suggests that when there are
few calls into plain R and all work is done in the bytecode interpreters, RIR is
competitive.

Other benchmarks have remained more or less constant throughout. This is
because they do not use that much bytecode instructions and instead spend the
majority of time inside builtin C code. Therefore changes to the bytecode have

almost no effect on them.

Generally, the biggest improvements were brought by inlining the instructions
into the interpreter loop. With the exception of some benchmarks not
affected by any changes, all others gained a boost. The nature of this change
is such that it speeds up every bytecode instruction a tiny bit. Thus all
benchmarks that spend some considerable time in the bytecode interpreter see

an improvement.

For some benchmarks, a particular revision brings minor slowdowns. The
reasons are not entirely clear and require some more investigation. For instance,
an operator that checks a fast path and then falls back to the builtin call anyway
may be slower than calling the builtin directly. On the other hand, taking
into consideration branch prediction in the CPU and the fact that the call
instruction has some overhead too (e.g., for preparing the argument list), this

seems unlikely.

Two of the benchmarks were rerun with 20 iterations and their plots then
zoomed to present a more detailed view. These were nbody naive, to show
the steep bump, and knucleotide brute, because it originally had very wide
confidence intervals. This suggested that perhaps the CPU was loaded by some

other work during the original measurements.*’

»’Unfortunately, rerunning all of the benchmarks was not possible due to time constraints
on the test server.
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The detailed view of the nbody naive benchmark is in figure 4.3. The benchmark
gained the most with inlining superassignment, as it uses it heavily in nested
loops. Another large speedup was due to the interpreter refactoring and is so
distinctive because the produced bytecode for the main hotspot (the function
advance) is very arithmetic heavy with a lot of loops and subsetting and few
calls. This means that long sequences of instructions get executed at once, thus

leveraging the improved interpreter loop.

nbody-naive.r

Experiment
2 R_ENABLE JIT=2 vanilla-
= 3 R_ENABLE_JIT=2 rir

Time [s]
IS

Revision

Figure 4.3: Detail of the nbody naive benchmark

As for the knucleotide brute benchmark in figure 4.4, the confidence intervals
were indeed a byproduct of the CPU load and disappeared after the rerun.
However, there are still some inexplicable fluctuations for the GNU R version,
which will require future investigation.

The average speedup versus GNU R over the measured revisions is captured
in figure 4.5. The result was obtained by averaging the measurements for each
benchmark and then taking the average of those values. Of the changes, the
most debatable is threading. It seems that this feature only starts to pay off for

larger and longer programs.
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4. EVALUATION

knucleotide-brute.r

= e |

Experiment
2 R_ENABLE JIT=2 vanilla-r
— 3 R_ENABLE JIT=2 rir

Time [s]

Revision

Figure 4.4: Detail of the knucleotide brute benchmark
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Figure 4.5: History of average speedup vs. GNU R
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Conclusion

The goal of this thesis was to bring RIR, an alternative bytecode compiler and
interpreter for the R language, closer to R’s reference impelemtation in terms
of performance.

First, the R language and RIR were explored and their internal workings exam-
ined and compared. Experiments were carried out to discover their similari-
ties and differences. Improvements to RIR infrastructure were implemented in

three areas:

New bytecode instructions were added to its instruction set and employed in

its compiler.

The compiler was extended to be more aware of its context and this was used to
eliminate generating loop contexts in the common case when all loop control
is local.

Finally, the interpreter loop was refactored and its dispatching mechanism
changed from switch-based to threaded code.

All the implemented changes were evaluated using the Shootout benchmarks.
Overall, the performance deficiency of RIR relative to GNU R was decreased by
about 50 %.

RIR is still under active development and further work is needed.

The benchmarks where RIR lags behind would deserve a still more thorough

investigation to uncover the remaining bottlenecks.

The call mechanism of RIR is generally slower than GNU R and ways to improve
it should be explored. A way to avoid the unnecessary promise allocations for

constant arguments while preserving the ideas of RIR should be found.
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CONCLUSION

Still more extensions to the instruction set are possible. It could be worth
looking into superinstructions (i.e. identifying what common pairs, maybe

even triples of instructions occur often and combining them).

The abstract interpretation framework of RIR is another direction for future
efforts. It can be improved and extended on one hand, and on the other be
used to implement new analysis and optimization passes for RIR bytecode. For
instance, promises could be avoided if an interprocedural analysis showed that

the callee for sure evaluates its arguments.

In the early stages of this thesis, unsuccessful experiments were carried out
with a tool called STOKE.?®

STOKE is a stochastic superoptimizer for the x86-64 architecture developed at
Stanford University. It tries to optimize code sequences by randomly searching
the space of possible program transformations. Repeatedly applying minor
changes can surprisingly produce code that runs faster than the original.
New and non-obvious ways to compute equivalent results can sometimes be

discovered.

STOKE is able to optimize code for performance or size, syntesize implemen-
tations from scratch and verify equivalence between different code sequences
for all possible inputs.

Unfortunately, it appears that it has trouble with running on dynamically linked
code, and thus could not be used directly. New ways of applying it to RIR could
be explored.

*8See https://github.com/StanfordPL/stoke
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API
AST
BC
CLI
CRAN
GNU
GCC
IDE
JIT
PC
REPL
VM

APPENDIX

Acronyms

Application programming interface
Abstract syntax tree

Bytecode

Command line interface

The Comprehensive R Archive Network
GNU’s Not Unix!

GNU Compiler Collection

Integrated development environment
Just-in-time compilation

Program counter

Read-eval-print loop

Virtual machine
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APPENDIX

Contents of the enclosed CD

| thesis.iiiiiiii sources for the thesis in XgiTEX
benchmarks.........oovvviiiiiiiiinnnns scripts for benchmarks and plots
1 - measured data
AMAGES o plots used in the thesis
L MT Jecmen Jan 2017.pdf ...cevriiiiiiiiiiiiniieeeeeennnnns PDF of the thesis
| revisions.txt.....coiiiiiiiiiiiinn, list of revisions that added new features

Directory structure B.1: Contents of the enclosed CD
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