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S nástupom éry digitálnych technológií môžeme vidiet’ dramatický vývoj hudobného prie-

myslu spolu s radikálnym rastom množstva hudobného obsahu. Virtuálne knižnice sú plné

hudby, pripravené podl’a potreby poskytnút’ komprimované, no stále vel’mi kvalitné hudobné

nahrávky. S tým ako bohatost’ hudobného obsahu rastie, je dôležité mat’ nové metódy na

opis tohto obsahu, navrhnuté pre rôzne účely použitia. Music Information Retrieval je in-

terdisciplinárna veda o získavaní informácií z hudby. V rámci tejto výskumnej oblasti boli

identifikované rozličné úlohy, s ciel’om vyriešit’ rôzne reálne problémy.

V tejto práci sa zameriame na úlohu automatického prepisu hudby, čo je proces získa-

vania hudobnej notácie zo zvukového záznamu hudby. Hlavný problém, ktorý treba riešit’

pri tejto úlohe, sa odborne volá Multiple Fundamental-Frequency Estimation, teda odhad

viacnásobných základných frekvencií. V minulosti tento problém riešili experti z oblasti

spracovania signálov s využitím doménových znalostí a čŕt šitých na mieru danému problému,

pre extrakciu informácie zo signálu.

My sa na tento problém pozrieme z kontextu rozvíjajúcej sa oblasti strojového učenia,

so zameraním na metódy hlbokého učenia. Aby sme mohli efektívne modelovat’ štruktúry

hudobného obsahu v audio signále, potrebujeme najskôr vybudovat’ architektúru hlbokej

neurónovej siete a potom ju optimalizovat’ tak, aby nadobudla dostatočnú kapacitu pre

modelovanie hudobných signálov.
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With the era of digital technologies, we can see dramatic evolution of music industry to-

gether with radical growth of music content. Libraries are crowded with music, ready to

stream compressed, but still great quality audio tracks on demand. As the richness of music

content grows, it is crucial to have new methods to describe this content, designed for various

purposes. Music Information Retrieval is an interdisciplinary science of retrieving information

from music. Various tasks have been identified within the field, which aim to solve different

real-world problems.

In this work, we approach the task of Automatic Music Transcription, which is a process

of retrieving musical notation from audio piece containing music recording. The main subp-

roblem to be solved here is called Multiple Fundamental-Frequency Estimation. In the past, it

has been approached mostly by signal processing domain experts, using handcrafted features

to extract information from signal.

We approach this problem within the context of emerging field of machine learning,

focusing on deep learning methods. To be able to effectively model the structure of musical

content within audio signal, we need to build an architecture of deep neural network and

optimize it to gain this modelling capacity.
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1 Introduction

In order to set this work properly to the broader context, we first share some thoughts on how

music content can be analyzed differently by various study fields.

We also state some emerging problems and challenges, which motivated some notable

amount of research efforts in the field, while focusing on the ones which inspired this work.

1.1 Background

From the history perspective, music has been evolving within cultures, driven by inventions of

new tools and instruments, to provide a man with new means of expressive communication.

While music theory captures some rules and dependencies that describe how musically

reasonable patterns can be created, our perception of them seems to lie beyond rational

reasoning. Some measurements have proven that humans respond to musical signals rather

emotionally [56].

However, most of these inventions were probably driven by desire to communicate on

various levels of abstraction. Considering hypothesis, that there is causal relationship between

abstract thinking and intelligent reasoning, we could find evidence of human evolution, in the

evolution of abstract communication channels. One such channel which remains actual and

still evolves, is music.

1.2 Motivation

With the rise of digital era, we observe dramatic evolution of music industry together with ra-

dical growth of music content. Libraries are crowded with music, ready to stream compressed,

but still great quality audio tracks on demand.

Music is often created by combining not only naturally created and recorded sounds, but

rather digitally created ones1. As the richness of music content grows, it is crucial to have

proper methods and means to describe this content, designed for various purposes.

Some of the problems to drive the invention of such purpose-oriented methods would be

e.g. melody pitch tracking, harmonic content description or even automatic lyrics extraction.

These would be fundamental for tasks such as genre-based categorization or similarity-based

1By digitally created sounds, we refer to oscillator based digital sound synthesis.
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search for personalized music recommendation, generating necessary meta-data directly from

music content.

Also, people who study music professionally (musicians, composers) mostly need to

gain deep understanding of its various aspects. Yet, it often implies the need to learn and

reproduce existing musical pieces. Therefore, they spend tremendous amounts of time and

effort transcribing, analyzing, and reproducing musical content.

Although there is clearly an educational purpose to the repetition of these tasks, at some

point, one would appreciate having a choice of skipping at least the routine work of notes

transcription, as it is vastly time consuming and the educational gain is not always present or

required.

We thus go for a challenging task, which in broader context fits into the discipline of

Music Information Retrieval (MIR). Within this research area, we examine multiple tasks

and approaches, however, with focus on task of Automatic Music Transcription (AMT). The

remainder of this document is structured by content according to following description.

1.3 Document Structure

In Section 2, we analyze and discuss some relevant problems and approaches from broader

domain of MIR. Next, in Section 3, we describe some common machine learning methods used

within respective MIR works, including some theoretical background of relevant methods.

Since our work is focused on recently very popular and successful, specific kind of

machine learning, namely deep learning with artificial neural networks, we dedicate whole

Section 4 to its analysis. In this section, we state history and fundamental components of

recent deep learning methods, which are preliminary to understand and further apply the

method to any problem. In Section 5 we choose the problem that will approached in the

scope of our work, outline its fundamental subproblems and define our priorities within given

problem set.

We describe our method in Section 6 which is further divided according to two diverse

approaches we examine. First, in 6.1 we describe our approach to modelling musical signals

in spectral domain. Additionally, we examine novel approach to modelling music in time

domain and describe our method in 6.2.

In Section 7, we describe our evaluation methodology and show various results of multiple

experiments and evaluations performed with proposed methods.
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In Section 8, the last one, we summarize the results of our work, conclude its contribution

and discuss possible future directions of this research.

1.4 Terms and Abbreviations

MIR - Music Information Retrieval

DSP - Digital Signal Processing

DAW - Digital Audio Workstation

ACE - Automatic Chord Estimation

AMT - Automatic Music Transcription

MIREX - Music Information Retrieval Evaluation eXchange

MIDI - Musical Instrument Digital Interface

F0 - Fundamental Frequency

ADSR - Attack-Decay-Sustain-Release

FFT - Fast Fourier Transform

STFT - Short Time Fourier Transform

CQT - Constant-Q Transform

PCP - Pitch Class Profile

MFCC - Mel Frequency Cepstral Coefficient

RBM - Restricted Boltzmann Machine

DBN - Deep Belief Network

SVM - Support Vector Machine

HMM - Hidden Markov Model

EM - Expectation Maximization

ANN - Artificial Neural Network

MLP - Multi-Layer Perceptron

PCA - Principal Component Analysis

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

LSTM - Long Short Term Memory

GRU - Gated Recurrent Unit

ReLU - Rectified Linear Unit
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Monophony - Single melodic line

Homophony - One dominant melodic line accompanied by chords

Polyphony - Two or more simultaneous lines of independent melody

Timbre - Sound color, tone color, tone quality

Nyquist Frequency - Maximum frequency that can be carried without distortion, given a

fixed sampling rate

Backpropagation - Backward propagation of errors, explained in 4.2

4



2 Music Information Retrieval

The broad domain of Music Information Retrieval is analyzed in this section. Existing methods

for different problems are examined, with focus on methods that extract musical information

directly from audio. Open problems are identified and state-of-the art is reviewed. Alternative

approaches to these problems are considered in the conclusion.

Music Information Retrieval (MIR) is the interdisciplinary science of retrieving informa-

tion from music. It is a small field of research, but with many real-world applications. Some

methods are common to multiple MIR tasks, so we list those tasks below for further reference.

1. Automatic chord estimation

2. Instrument recognition and audio track separation

3. Automatic music categorization

4. Automatic music transcription

Automatic chord estimation (ACE) consists of annotating audio track in the time domain

by chords, typically with onset time, offset time and label for every frame, where single chord

sounds. ACE systems are benchmarked in Music Information Retrieval Evaluation eXchange

(MIREX) subtask, which measures their accuracy in terms of percentage of correctly identified

frames on a set of songs for which the ground truth is known [61].

Audio track separation is about recognizing all various instruments used in a recording,

and further separating the audio into multiple tracks, one track per instrument. It is used to

extract vocals when generating karaoke tracks from original audio tracks. Though, existing

techniques still fail to clearly separate tracks with overlapping frequencies.

When it comes to automatic music categorization, ACE is often used before extraction of

abstract properties from musical piece. Although chord progressions are mostly used when

studying harmonic content of a piece, they can further be used for automatic key and mood

detection, genre classification, audio-to-lyrics alignment, or to measure similarity for cover

song identification [61]. But there are other methods for feature extraction, which are prelimi-

nary for music categorization systems, that enable categorization based on properties defined

by these features, such as handcrafted features, machine learning methods or combination

thereof [64].
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Automatic music transcription (AMT) is task of annotating an audio track with some

symbolic musical notation1. Most music transcription systems use Musical Instrument Digital

Interface (MIDI) or MusicXML formats for score notation [83]. It is a task, which includes

some non-trivial sub-tasks. To mention some of them, there is onset and offset detection

(which together form note duration estimation), multi-pitch detection, instrument identification

and extraction of rhythmic and tempo information. Difficulty of this task grows with number

of instruments and degree of polyphony2.

A problem of multi-pitch detection is also often denoted as multiple F0 estimation and is

major subtask of polyphonic music transcription. Here, F0 stands for fundamental frequency,

which in terms of harmonic components represents the 1st harmonic component of the sound.

All following harmonic components are called overtones, while 2nd harmonic is 1st overtone,

3rd harmonic is 2nd overtone and so on. In terms of musical sounds, fundamental frequency

is the original frequency of the musical tone sounding. Thus, musical notes identification

basically consists in correctly estimating all fundamental frequencies contained in the signal.

2.1 Preprocessing of Audio Signal

For different tasks, different audio processing techniques and feature descriptors have been

developed. In this subsection the vastly used ones are mentioned.

2.1.1 Fourier Transform

Researchers found evidence that human auditory system performs a transform from time to

frequency domain [27]. Consequently, first step of audio processing pipeline in most feature

extraction algorithms is transformation of raw audio signal into frequency domain [61]. This

is mostly done by some variant of Fast Fourier Transform [26] which is an efficient algorithm

for calculation of Discrete Fourier Transform of a time-based audio sequence.

In order to preserve the timing information of the frequency spectral content, Short Time

Fourier Transform (STFT) is taken by sliding window over the audio signal. Calculation of

STFT is parametrized by the window length in terms of number of samples, and consists of

taking the dot product of input signal with the Fourier matrix, which describes all different

1Sometimes chord recognition is denoted a subtask of AMT, because chord annotation is only higher-level
form of symbolic notation.

2Number of simultaneous melodic lines in polyphony.
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frequencies containable in a window of specified length. Thanks to special self-similar

structure of Fourier matrix, this calculation can be done in O(n log n) time complexity.

Results of STFT calculation over time frame of audio signal are stored into column of

spectrogram matrix, where each column stores spectral magnitudes for given time frame

while rows represent different frequency bands.

Obr. 1: Example STFT spectrogram of audio signal

STFT has been successfully used for time-frequency analysis in Automatic Music Trans-

cription [16, 86, 59] and Automatic Chord Estimation [61, 78, 85] tasks. However, there is

still issue with precision when describing the audio frequency content. This is because STFT

algorithm uses fixed-length window for signal analysis.

The lower bound of frequency resolution is defined by lowest frequency wavelength

which yet fits into the window. Since the sliding window is moving with fixed size overlap,

this parameter also defines the temporal resolution of STFT. Therefore, setting length of the

window involves trading off resolutions between frequency and time [61].

2.1.2 Constant-Q Transform

This issue has been addressed by researchers at the Center for Computer Research in Music

Acoustics (CCRMA) at Stanford, with so called Bounded-Q Transform [46]. This method
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introduced variable frequency and time resolution, while maintaining the computational speed

of FFT.

Few years later, Constant-Q Transform (CQT) was proposed, having advantage of calcu-

lation simplicity and sufficient time-frequency resolution for music analysis. Here Q stands

for Q-factors (ratios of center frequencies to bandwidths) of all spectral bins being equal.

It means there is frequency-dependent window length. It is therefore appropriate for note

identification in music analysis, due to operating in logarithmic frequency scale, where sounds

with harmonic frequency content give rise to so called constant pattern [45].

Obr. 2: Constant pattern of harmonic frequencies; reprinted from [45].

Using this knowledge, problem of fundamental frequency (F0) identification could be

reduced to a problem of recognizing previously determined pattern [45]. But difficulty of

this problem also grows with the degree of polyphony, since harmonic frequencies can

interfere with fundamental frequencies. Even though, J. Brown proposed an elegant solution

to fundamental frequency identification, by means of Constant-Q Transform and simple

pattern recognition algorithm.

Although CQT improves the time resolution while maintaining the frequency resolution,

due to constant sampling grid1 for each frequency, there are many overlaps at low frequency

windows, causing lots of redundant computations.

1Constant sampling grid means that stride of sliding window is equal between frequencies.
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This redundancy can be solved by allowing adaptive resolution in frequency, as stated on

the left plot from the figure below.

Obr. 3: Minimum redundancy CQT vs. Rasterized CQT; reprinted from [77].

This adaptation made it possible to construct an invertible non-stationary Gabor transform

with a constant-Q factor on relevant frequency bins which allows modification of CQT-

coefficients with subsequent re-synthesis [15]. This can be used in digital signal processing

tasks, such as real-time frequency masking or key transposition.

2.1.3 Pitch Class Profile

Although spectrograms are mostly used for note identification in AMT, they are not optimal for

ACE, since they still contain lot of information irrelevant for the task. Fortunately, Fujishima

defined new feature representation called Pitch Class Profile [61].

Pitch Class Profile (PCP) is often visualized via chromagrams, where each pitch class

represents one semi-tone of western musical scale, often referred to as chroma feature.

Example is shown in figure below.
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Obr. 4: Chromagram of opening to Let It Be (McCartney); reprinted from [61].

It is created by removing redundant information from spectrogram feature, such as

background noise, percussive elements of the music or harmonic frequencies. Frequencies

which are close to each pitch class are collected and collapsed to form a 12–dimensional

chroma vector for each time frame. That includes identification of salient frequencies for

pitch class salience calculation, summing energy of pitch classes over octaves and smoothing

which is also often stated as beat synchronization [61].

2.1.4 MFCC

Another feature representation of audio signal called Mel Frequency Cepstral Coefficients

(MFCCs) was designed to accurately describe the shape of a vocal tract.

The basic idea is to compute a frequency analysis based upon a filter bank with approxi-

mately critical band spacing of the filters and bandwidths [69].

MFCC features are designed to describe envelope of short time power spectrum and

have been successfully applied in Automatic Speech Recognition (ASR) tasks, e.g. keyword

spotting [68]. In addition, it has also been successfully applied in MIR for music annotation

and classification tasks [64].
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2.2 Previous Work

The motivation for MIR research is big. Even human performance in this tasks is − in terms

of accuracy − constrained by experience, training and musical talent. Therefore, human

resources are very valuable and limited. Various approaches have been tried in order to

develop new or improve the accuracy of existing solutions to different MIR tasks. We briefly

describe some of them. Several machine learning approaches to MIR tasks are mentioned as

well, so for some overview description of those methods please refer to Section 3.

2.2.1 Polyphonic Music Transcription

Different analytical approaches have been developed to address the problem of note iden-

tification in polyphonic music. Early methods for note identification and source separation

consisted mostly in acoustic analysis based on expert domain knowledge [23, 24]. Although

they were limited in terms of practical application, they served very well as a building blocks

for future development of music analysis systems.

One of such systems, meant to recognize rhythm, chords and source-separated musical

notes, used complex hierarchy of components to analyze the musical scene. Markov Random

Field (MRF)-based hypothesis network was compared to Bayesian Network (BN), while

system also employed computationally intensive simulated annealing algorithm, for edge-

detection in MRF-based signal modelling [48]. MRF-based system outperformed BN-based

system in terms of note recognition rates by ≈ 10%.

Another heuristic-based system used knowledge about auditory physiology, physical

sound production and musical practice [59]. This system is very limited in many different

terms. Some of those limitations are, that it can only transcribe piano music, it can’t recog-

nize multiple tones on different octaves and note hypothesis rating function has problems

identifying higher notes in piano ranges.

One decade later, researchers started employing machine learning methods for AMT

task [67, 66]. Generally, Support Vector Machines (SVM) were trained on spectral features

to generate note presence hypothesis note-wise, meaning 87 hypothesis for 87 notes. These

hypothesis were then treated as posterior probabilities1 for further ’smoothing’ by Hidden

Markov Models (HMM).

1http://www.investopedia.com/terms/p/posterior-probability.asp
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A completely different and novel approach to polyphonic note transcription comprised of

designing genetic algorithm (GA) for MIDI generation from audio. Yet, this approach seem

to be too computationally intensive, because for simple chord progression, it took over 1 hour

to find the 100% accurate transcription [86].

Extensive work has also been done for the task of musical source identification in polyp-

honic music [13].

2.2.1.1 Polyphonic Piano Transcription

The problem of polyphonic music transcription can also occur in an form where only single

sound source (musical instrument) appears musical audio signal. For instance, polyphonic

piano transcription is a task of transcribing solo piano music. It thus belongs to the simpler

subtasks of AMT, since no instrument identification is required. Juhan Nam and colleagues

approached this problem with combination of several machine learning methods [63].

They first reviewed the task of multiple F0 estimation by listing 3 major state-of-the art

approaches:

1. iterative F0 search [51],

2. joint source estimation [36],

3. classification-based approach.

They chose the use of classification-based approach, because it addresses polyphonic transc-

ription in a completely different way − as a pattern-recognition problem [63].

First, they applied unsupervised feature learning with DBNs to normalized, PCA-whitened

spectrograms. This choice is reasoned by stating its previous successful applications to music

classification tasks [37, 55]. They trained 2 layers of RBMs in a greedy layer-wise manner.

This training comes in two phases which are often called unsupervised pre-training and

supervised fine-tuning.

In second phase, they build upon Poliner and Ellis’ piano transcription model, consisting

of 88 independent SVM binary classifiers, predicting presence of corresponding 88 piano

notes.

One improvement is, that rather than feeding spectrogram frames directly into SVM, they

use features extracted by DBN instead. Another improvement is that instead of training single

classifier at a time, they employ so called ’multi-note training’, by feeding the features jointly
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to all SVMs and treating their output as a single binary 88-dimensional vector. Thus, training

SVMs as a single classifier.

In last phase, post-processing is done with Hidden Markov Model to smooth the SVM

predictions, which were converted to posterior probabilities, before feeding to HMM.

Obr. 5: Signal transformation through the processing pipeline; reprinted from [63].

Figure above shows how signal is processed through the whole pipeline. To sum it all up:

Spectrogram of audio frame is first calculated and fed directly into DBN. Activations on hidden

layer of DBN are then fed into the set of SVM classifiers. Outputs from SVMs (representing

distance to the boundary for each piano note) are converted to posterior probabilities and fed

into HMM, which outputs the predicton of notes present in the signal.

Based on experiments with this setup on different datasets, authors conclude several things.

First, fine-tuning generally improves accuracy. Second, multi-note training improved not only

accuracy, but also training speed as well [63].

2.2.2 Music and Speech Categorization

Another task where DBNs were used for feature extraction is music categorization [37].

Authors used activations of trained DBN as inputs to SVM classifier. Features were learned to

solve the task of genre recognition on dataset which contained 10 different genres.

Overall classification accuracy was significantly better for features aggregated over 5-

second frames than for frame-level features. Learned features also outperformed MFCCs in

both cases. [37].

Researchers from Computer Science Department on Stanford University also decided

to study deep learning approaches for auditory data [55]. In their work, authors applied
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Convolutional Deep Belief Networks (CDBN) for unsupervised learning to extract relevant

features from audio and consequently use them for various audio classification tasks.

To reduce high dimensionality of spectrograms, PCA whitening1 was applied first. Unla-

beled speech audio data was used to learn CDBN features. Empirical evaluation of CDBN

features revealed, that for speech data, learned features closely correspond to phonemes, as is

observable in the figure below.

Obr. 6: Visualization of the four different phonemes and their corresponding first-layer CDBN bases.

For each phoneme: the spectrograms of the five randomly selected phones; five first-layer bases with

the highest average activations on the given phoneme; reprinted from [55].

Further experiments showed, that CDBN features can easily outperform MFCC features

in tasks such as speaker identification and speaker gender classification.

In addition, musical audio data was used for genre and artist identification. Features

learned by CDBN on classical music data also outperformed MFCC features in both of these

tasks [55].

2.2.3 Music Annotation

Juhan Nam and colleagues also tried various combinations of different feature learning

algorithms with different classifiers for the task of music annotation [64].

They propose using Mel-frequency spectrogram instead of MFCC features as input to

feature learning algorithm and use both these alternatives in experiments for comparison.

1http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/
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Further, three different feature learning algorithms are described and employed for com-

parison: K-Means Clustering, Sparse Coding (SC) and Sparse Restricted Boltzmann Machine

(SRBM).

For classification, Linear SVM is compared to neural network with single hidden layer.

They furthermore apply several different pre-processing and post-processing steps before

and after feature learning, until features are fed to classifier. Detailed description of this

processing pipeline is to be found in their work [64].

Different configurations of the setup have been evaluated on CAL500 dataset. For annota-

tion and retrieval tasks, RSBM features learned from Mel-frequency spectrograms provided

best results, so they were further used for classifiers evaluation. In this setup, neural network

performed better than linear SVM in task of music retrieval [64].

2.2.4 Automatic Chord Estimation

There has been an intensive ongoing research effort for the ACE task, initiated by the

design of Pitch Class Profile [61]. First methods used template matching to identify chords

in chromagrams. Some works relied purely on the abilities of HMMs to model temporal

dependencies in musical chord progressions [72], others relied on handcrafted pitch-tracking

and preprocessing of chroma features [85].

Development of expert-driven systems continued concurrently with data-driven ones,

while in data-driven systems, Hidden Markov Models and Dynamic Bayesian Networks seem

to be most frequently used.

Although, one alternative approach to ACE has been adopted by Humphrey and Bello

in [40]. They state that major effort in previous ACE research was spent on tuning system

components while developing better hand-crafted features, instead of developing system itself.

They further point out that deep learning methods has already been employed to successfully

produce robust Tonnetz features [41].

They mixed songs from several POP song datasets, used CQT for time-frequency transform

and trained Convolutional Neural Networks (CNN) on 5 second tiles of pitch spectra to

estimate an ongoing chord class, producing a jointly optimized chord recognition system.
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Obr. 7: The CNN Chord Recognition Architecture; reprinted from [40].

In the figure above, spectrogram tile (a) is input to a CNN (b) which outputs probability

distribution (c) between chord labels.

Using transposition of Constant-Q Gabor filtered representation and shifting the chord

labels accordingly, they literally increased amount of data by factor of 12. They denote this

data manipulation as extended training data (ETD). With such labeled data for supervised

learning, their approach achieved state-of-the art performance.

2.2.5 Extraction of Instrumental Controls

Specific kind of information retrieval from music has been done in [21]. In this work, learning

to extract violin instrumental controls from audio signal was performed with tree-based

models and multilayer perceptrons.

However, this work required construction of database of multimodal data from violin

performances. This database was constructed through acquisition of instrumental gestures

from live performances of musical scores, monitored by expensive sensors in complex setups.

That is also motivation to create system for indirect instrumental controls acquisition (by

processing the audio signal).

Six different instrumental controls were monitored, namely, string being played, finger

position on that string, bowing force, bowing velocity and bow tilt. Database contained
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spectral features of audio recorded with special pickup and instrumental controls data.

With low-level spectral descriptors (pitch and MFCCs) fed to multilayer perceptron

classifier seemed to give best prediction results. Although, automatic acquisition from any

violin recording would be more difficult, due to specific recording conditions and violin

causing different spectral properties of audio signal [21]. For such task, automatic calibration

would be necessary.

2.3 Open Issues

We notice, that most approaches to different MIR tasks have problems with robustness against

acoustic variations in musical signal, causing them poor accuracy when evaluated on real-

world data. This issue is common to both hand-crafted expert-driven systems and data-driven

systems.

In task of polyphonic music transcription, major problem is to correctly identify funda-

mental frequencies in a musical signal, thus to correctly identify notes in polyphonic texture.

Whether those systems rely on hand-crafted features or learned ones, the filtering of harmonic

components in musical sounds is still the most critical factor influencing accuracy. In worst

case, the information necessary to distinguish fundamental frequencies between different

sound sources is lost or damaged during conversion to representations being analyzed. Hope-

fully, and also more probably, this information is contained in the signal, but we still miss the

ëncryption key"so far.

Therefore, one idea is to study the processes underlying human perception of music. This

could inspire formation of mechanism that would realistically mimic the brain processes of

musical expert when manually extracting musical information from audio.

Considering supervised learning approaches, their performance depends strongly on

richness of the training data. Fortunately, thanks to vast libraries of musical instrument

samples, audio data can be generated directly from MIDI notation. This is a huge advantage,

though another fact is, that MIDI generated music lacks some kinds of acoustic variations

which are specific for live played music.

Unlike polyphonic music transcription, for other tasks, such as music annotation or

classification, the disadvantage is that we can’t generate heaps of labeled data automatically.

With song annotation, the problem is a bit easier, since expert knowledge is not necessary in

most cases. Mostly, crowdsourcing methods and tools can be used to help us gather labels, as
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demonstrated in [49, 52].

In task of automatic chord estimation, we observe that most systems in research efforts

are evaluated on the same benchmark datasets, which could globally lead to overfitting [61].

The occurrence of different chords in music data also seems to correlate with their harmonic

complexity. Adding more examples of complex chords and chord progressions in different

musical and acoustic variations to music datasets could probably improve the accuracy of

existing machine learning based ACE systems.
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3 Machine Learning in Music Information Retrieval

In previous century, machine learning emerged as a new subfield of computer science. It

studies construction of algorithms with ability to build a model of computational logic just

through experience, i.e., instead of following strictly defined set of instructions, to learn the

rules by observing data. It has been evolving for several decades now and currently it is

used in vast majority of approaches in autonomous systems [88] and artificial intelligence

generally.

We briefly review some machine learning methods which have been applied to problems in

MIR. Since this work aims to explore the potential of neural networks applied to our domain,

we rather analyze the progressive field of deep learning within dedicated Section 4.

3.1 Bayesian Networks

Bayesian networks are inferred from concept of Bayesian probability. It builds on Bayes’

theorem, which provides inference method to compute posterior probability.

Posterior probability, also denoted as conditional probability, can be interpreted as proba-

bility of A conditioned by previous observation of B, or informally, probability P of A given

that B was observed. Formula definition of posterior probability:

P (A | B) =
P (B | A) P (A)

P (B)

Bayesian networks are used to model conditional independencies between set of random

variables. Specifically, when represented by (acyclic) graph, each variable is a node in this

graph, while arcs represent conditional independence.

Dynamic Bayesian networks are subclass of Bayesian networks for modelling time series

data [34]. They are just Bayesian networks for dynamic processes. One of the simplest

Bayesian network models is the first-order Markov process, where each variable is directly

influenced only by previous variable [34].

Obr. 8: Bayesian network representing first-order Markov process; reprinted from [34].
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Bayesian networks have been employed for MIR tasks such as musical scene analysis [48]

or music transcription [22, 35, 47]. Dynamic Bayesian networks have also been crucial in

ACE system which achieved best performance on MIREX evaluation in 2012 [61].

3.2 Hidden Markov Models

A hidden Markov models are special kind of Bayesian networks. They are used to model

probability distributions over sequences of observations, which are sampled at discrete,

equally-spaced time intervals [34].

They are special by advantage that they can model latent or hidden dependencies of these

observations. They gain this ability by modelling hidden states behind these observations.

In other words, hidden Markov model assumes that observation at time t was generated

by some process in state St which is hidden from the observer [34]. It also assumes, that each

state St is independent from all previous states except from St−1, which is called first order

Markov property.

Obr. 9: Bayesian network of conditional independence relations for first-order HMM; reprinted

from [34].

Higher order Markov models also exist, but they must satisfy corresponding order Markov

property, which means, assuming that state St is only dependent on order-number of previous

states, and that state at some time point encapsulates all we need to know about the history of

the process in order to predict the future of the process [34].

Higher order HMMs can be used to model different properties of musical harmony.

Example of such model could see chromagram as observation in time frame t with underlying

latent states modelling key, chord and bass annotations for that time frame [61].

To learn the parameters of HMM, Expectation-Maximization (EM) algorithm is used in

most applications. To learn the hidden parameters of HMM with EM, necessary expectations

are computed using Forward-Backward algorithm [34].
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In audio processing tasks such as ASR but also ACE, Viterbi algorithm[87] is very useful.

It is used instead of forward-backward algorithm, to more effectively compute single most

probable sequence of states.

Besides applications in ACE tasks [61, 78, 72], HMMs have been very useful in polyphonic

music transcription systems for post-processing discrete classifier outputs. By performing

temporal smoothing on these independent classifications, they have been able to significantly

influence the transcription accuracy [67, 66, 63]. This motivated HMM tuning as a subject to

further research interests.

3.3 Support Vector Machines

Support vector machines (SVMs) are supervised learning methods used for both classification

and regression problems. Their training algorithm builds a model from set of labeled training

data to classify new, previously unseen examples.

Originally, SVMs were developed to implement statistical learning theory, to estimate a

function from set of examples, while minimizing empirical risk that estimated function will

differ from the actual one [79]. Since it assumes data to be linearly separable, this type of

SVM is referred to as linear SVM, being a non-probabilistic linear binary classifier.

Assuming that training set consists of n-dimensional feature vectors and is separable by a

hyperplane in n-dimensional space, margin of a hyperplane is the minimal distance of training

examples from decision surface represented by this hyperplane. Training SVM consists in

finding hyperplane with maximal margin that correctly separates training examples. Choice of

this hyperplane is supported by set of training examples, thereby called support vectors [79].

One key innovation associated with SVMs is the kernel trick [42]. Learning of linear SVM

is driven by function w⊤x + b. SVM classifier discriminates between classes based on the

sign of the reslut. It has been shown [42] that this function can be rewritten as:

b +
∑

i

αik(x, x
(i))

where α is vector of coefficients and k(x, x
(i)) is our kernel function. This function can be

non-linear with respect to x. Applying non-linear kernel function to input actually transforms

it to a higher-dimensional space. When kernelized learning function is non-linear with respect

to x, it is learning in new non-linear feature space [42].
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Obr. 10: Transformation to higher dimensional feature space by kernelized SVN allowing the construc-

tion of separating hyperplane there; reprinted from [79].

Intuitively, it can be thought of as training classifier on new, linearly separable representa-

tion of data, which were not linearly separable in original feature space.

SVM classifiers have been employed widely in MIR for tasks such as annotation [64],

tagging and genre classification [37] and music transcription [67, 66, 63].

3.3.0.1 Conclusion

Although there are other machine learning algorithms, not mentioned in this section, we

reviewed the most relevant ones, with respect to state-of-the art in MIR research.

Neural networks are of course as a machine learning method very relevant as well. In MIR

tasks, their applications have been mostly classification for note detection [32, 58, 33, 63],

chord recognition [65, 40] and genre/artist/key detection [55, 44, 37, 64]. Another meaningful

and successful use of neural nets was for feature extraction with unsupervised learning [55,

37, 64]. Recently, some effort also led to success with purely audio-based neural network

music generation [84].
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4 Neural Networks and Deep Learning

The historical context of deep learning1 is bound to development of computational models

called Artificial Neural Networks (ANNs). Terminology in ANN research has been undergoing

rich variations due to different perspectives of scientists from various disciplines contributing

to the field. However, knowing this context is certainly useful to understand some causalities

of contemporary state-of-the art.

Different learning algorithms and optimization techniques have been developed in order

to improve the cognitive capabilities of neural network models. We examine existing archi-

tectures, their main characteristics and review the major progress that has been done in past

research of artificial neural networks.

4.1 History

Few trends in history of deep learning have been identified [42]:

• Popularity of deep learning noticed significant fluctuation as only few people actually

understood what was going on.

• Usability of deep learning increased with the amount of available training data.

• Deep models and their capabilities have been growing in size together with hardware

and software infrastructure.

• Deep learning has been solving problems with growing complexity but too growing

accuracy over time.

These trends are also observable in this brief selection from the major milestones of the

deep learning research journey.

1943 - Warren McCulloch and Walter Pitts created a computational model for neural ne-

tworks based on threshold logic.

1958 - Frank Rosenblatt introduced the perceptron.

1980 - Kunihiko Fukushima proposed the Neoconitron, a hierarchical, multilayered artificial

neural network used for pattern recognition problems.

1Though the term deep learning has interdisciplinary scope such as cognitive sciences, computer science or
neurobiology, we use it in the context of computer science and artificial intelligence.
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1989 - Deep neural networks with training times measured in days, making them impractical

for real-world use.

2006 - Geoffrey Hinton and Ruslan Salakhutdinov showed how many-layered neural network

could be pre-trained layer-wise as unsupervised restricted Boltzmann machines.

2009 - NIPS Workshop on Deep Learning for Speech Recognition discovered that with a

large enough data set, the neural networks don’t need pre-training, and the error rates

drop significantly.

2012 - Artificial pattern-recognition algorithms achieved human-level performance on certain

tasks.

2016 - Google DeepMind’s algorithm AlphaGo mastered the art of the complex board game

Go and beats the professional Go player Lee Sedol.

4.2 Learning Algorithms

Machine learning algorithms are broadly categorized as unsupervised or supervised according

to the way their training is realized [42]. Although, there are more subcategories of machine

learning algorithms out there. To name a few, there are supervised, unsupervised, semi-

supervised, multi-instance and reinforcement learning algorithms.

But first things first, the holy grail of neural networks learning process − backward

propagation, is preliminary for understanding those algorithms. It is responsible for correct

calculation of desired modifications on synaptic weights − the learned parameters of neural

network. Learning algorithms differ mainly in the way they obtain measure of error, which is

further used to update parameters during backpropagation.

Conventional feedforward ANN consisting of multiple layers of neurons, each having

synaptic connections to all neurons in the next layer, is called Multi-Layer Perceptron (MLP).

Simple MLP model with 3 input neurons, 3 hidden neurons and 2 output neurons is shown in

Figure 11. We further describe fundamentals of forward and backward propagation in terms

of calculation steps.
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Obr. 11: Feedforward Neural Network; retrieved from [3].

Forward propagation:

• Input neurons observe features of a data point x, which are in turn propagated forward

to the next layer of neurons, weighted over synaptic weights w.

• Each neuron applies its activation function f to weighted sum of its inputs. Result of

such calculation is called activation or output of the unit.

• Activations are used as inputs to next layer and the procedure is repeated until the

output layer is reached.

Obr. 12: Diagram of single neural processing unit activation; retrieved from [6].

Backward propagation:

• When activations on output layer of neurons are calculated, they are used and measure

of error is provided by the learning algorithm.
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• Error is calculated according to specific optimization algorithm and regularization

factors. It is typically further factorized by learning rate. These belong to set of hyper-

parameters.

• Each synaptic weight is then updated1 by its contribution to the error, which is calculated

by reverse-mode differentiation2 using chain rule for composite functions [1].

Similarly to forward propagation, backward propagation is performed layer-wise, since

architecture of the network in terms of intra-layer connections defines mathematical depen-

dencies between its parameters.

An important property to mention is the time complexity of backward propagation. It is at

most a constant factor slower than the forward computation of the output.

4.2.1 Supervised Learning

Supervised learning is based on data containing input observations together with their corres-

ponding output labels. One iteration of supervised learning cycle in ANN consists of whole

forward-backward propagation.

Input observations are fed to the network, expected output labels are provided to the

algorithm, error measure is calculated and propagated back through the network, updating

weights (parameters) accordingly.

Supervised learning is used to train models for classification or regression tasks. But it

is often accompanied with a problem called overfitting. Overfitting occurs when model is

optimized too much on training data, and it is signalized by great performance on training

data, but poor on new data examples. It basically means, that model learned too much about

the training data chunk. Instead of just general properties of given type of data, it learned

specifics of examples from the training set. An overfitted model fails to generalize on training

data, thus instead of learning the rules, it memorizes properties of training examples.

In order to improve the learning process and prevent model from overfitting, it is important

to use and search for optimal setting of regularization techniques. These are further explained

in 4.3 along with importance of hyperparameters, such as weights initialization, loss function,

optimization strategy, learning rate decay and others.

1Update is naturally performed in the direction, which would potentially lower the error contribution.
2Note that composite function must be continuous, to be differentiable, for this rule to be applicable.
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4.2.2 Unsupervised Learning

Unsupervised learning is family of algorithms that learn from a dataset of examples with

many features but with no use of labels. They learn to extract and interpret the properties

of the data, which are most useful in determining data points identity. Therefore, they are

sometimes denoted as feature learning or representation learning algorithms.

Some examples of unsupervised learning algorithms besides those neural-based would

be K-means Clustering algorithm used to find groups of similar data examples, or Principal

Component Analysis (PCA) used to extract most relevant features from data and thereby

reduce the size of feature sets.

In the context of deep learning, we usually want to learn the entire probability distribution

that generated a dataset, whether explicitly as in density estimation or implicitly for tasks like

synthesis or denoising [42].

Since unsupervised and supervised learning are not completely distinct concepts, there

are many machine learning models, which perform both tasks [42].

4.2.3 Reinforcement Learning

Reinforcement learning is very specific type of learning. It does not experience data examples

from a fixed dataset, but rather through interactions with an environment instead. Network is

learning based on its experience, gaining feedback from the environment to each interaction it

has, thus, being able to evaluate utilization of each interaction.

It has been major contribution to the success of above mentioned AlpaGo algorithm

designed by Google DeepMind. It can also be viewed as a way to represent non-continuous

cost functions such as sets of rules as continuous thanks to reward function. This way, any

non-differentiable function can be learned with reinforcement backpropagation, as authors

demonstrate with music theory rules in [43].

4.3 Training techniques and strategies

The performance of neural networks proved to be very sensible to various settings and

configurations of the model architecture, and even training algorithm. Therefore, instead of

simple usual parameters, they have rather been called hyperparameters.

We first write down some common regularization techniques, which are used to prevent

27



the training from overfitting. They also add up to the set of hyperparameters since some of

them have to be tuned too.

4.3.1 Regularization techniques

• Momentum − smoothes the gradient vector by number of previous values. Used to

improve convergence of optimizer to the global minimum on the error surface.

• Early termination − stops training when error measured on validation data starts

growing. Used to prevent from overfitting.

• L2-norm − penalizes large weights by adding normalized weight term to the loss

function. Leads to better convergence.

• Dropout − randomly turns off some neurons. Makes the model create different redun-

dant representations of the data, thus learn context, and prevents it from memorizing,

what means overfitting.

All hyperparameters have generally influence on different aspects of model performance.

Sometimes, previous work might indicate which settings are optimal for certain problems, but

mostly they need to be fine-tuned by hand based on evaluation results, since optimal setup

differs between various datasets and problems.

4.3.2 Hyperparameters

• Depth of the model − number of hidden layers of the model.

• Width of the model − number of neurons1 in hidden layers. Too few causes underfitting,

too much, instead overfitting.

• Set of activation functions − typically, activation functions are defined per layer of

neurons. These choices are important in terms of mathematical modelling capacity of

the network.

• Weight initialization − generally random distribution with zero mean and small, equal

variance along whole distribution. Size of the variance depends.

1Neurons as a computational units of neural network are sometimes denoted as units.
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• Optimization algorithm − optimizer, which chooses how to feed the model, measure

error and apply it to minimize loss function. Choice is generally model-dependent and

problem-dependent.

• Learning rate decay − velocity of adjustments made to the weights, representing how

fast the model learns. Helps to find higher global optimum1.

• Dropout probability − probability of discarding neuron’s activation. Equally for all

neurons where dropout is used.

Tuning of hyperparameters is a manual process driven by evaluation of model’s perfor-

mance on validation (development) dataset, based on human intuition and expert knowledge.

It is fundamentally different from optimization of model parameters performed by optimizer

in scope of training session, which is actual training of the network. Although this tuning is

still an optimization in a sense, it is by one abstraction layer higher.

4.4 Architectures

One fundamental key consideration for design of neural networks is determining the architec-

ture. The word architecture refers to the overall structure of the network: how many units it

should have and how these units should be connected to each other [42].

There are several different architectures and models being proved and used for specific

applications. Some architectures also contain well known architectural patterns, recognized

for their particular function. We describe some of the well known network architectural

patterns and modules.

4.4.1 Feedforward Models

The architecture of conventional deep feedforward network, often denoted as MLP, is pretty

straightforward. It is based on the model of perceptron, introduced by Rosenblatt in [73]. A

layer alone has no connections, while two adjacent layers are fully connected. Such layer

of neurons, where each unit has connections to each unit of previous layer, is called fully

connected layer.

1Similarly to principle of system cooling in simulated annealing algorithm.
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The major advantage of MLP consists in utilization of its deep structure. It learns feautre

representations of input data on multiple layers, while recognizing the relevant structures in

the data and modelling relationship between input and output.

In practice, this architecture alone showed to have limited use, but is often combined with

different architectures to form new, more complex ones.

4.4.2 Representation Learning Models

The goal of representation learning within neural networks is to find different code or feature

descriptor for the data observation, to extract the most relevant features for given task.

In principle, the learning is performed by encoding (in terms of compression) input vector

to a vector with possibly different density, and then forcing the reconstruction of the input

from this representation. The distance between reconstructed data and original data is used

for learning.

4.4.2.1 Restricted Boltzmann Machines

Boltzmann Machines (BM), inspired by Hopfield Networks (HN), have been preliminary to

representation learning models, and introduced in [38]. Each neuron is connected to each

other neuron, resulting in fully connected network. Training is initialized with random weights

and performed through repetitive back and forth propagation until network reaches state of

equilibrium. Activations are controlled by global temperature level.

Restricted Boltzmann Machines (RBM), introduced in are special variation of BMs. Main

difference is, that they are restricted in sense of disabling connections between neurons within

the same layer, so that only pairs of neurons, each from different layer, can have direct synaptic

connection.

Special kind of deep architecture is Deep Belief Network (DBN) introduced in [18]. It

combines unsupervised learning with supervised learning approach. It builds on layers of

RBMs stacked one on another, pre-trains these layers in a greedy layer-wise unsupervised

manner, and then attaches the classifier with fully connected layer on the top of the model.

It fine-tunes the model by supervised training with backpropagation. Thus, model is using

self-learned feature representations and supervised classifier.
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4.4.2.2 Autoencoders

Autoencoders (AE) are roughly identical to MLP in terms of architecture, while main diffe-

rence is in how they are trained and used. Their purpose is to automatically find parameters of

an encoding decoding function, while in contrast to RBMs, parameters are not shared between

those functions.

The idea is to compress the information into hidden layers which are smaller than input

and output layer. They can be trained by backward propagating error as a distance of output

from input activations.

Since they have been introduced [19], they inspired formation of different model variations,

such as Sparse Autoencoders, Variational Autoencoders or Denoising Autoencoders, used

mostly in different ways for various purposes [7].

4.4.3 Convolutional Models

Convolutional Neural Networks (CNNs) also called ConvNets are very special kind of neural

networks. They are designed (but not restricted) to learn features from graphical content.

They have been successful in tasks such as object recognition and image classification. In

combination with other networks they were also able to generate image descriptions.

But digital representation of 2-dimensionally spaced image by 1-dimensional vector is

not really suitable for a network, to understand the graphical content, since for most tasks,

image locations of features to be recognized can be spaced differently amongst training data.

Therefore, the new way of looking on the input was employed by introducing convolutional

layers [53].

A convolutional layer, consisting of so called filters, is generated using convolution kernels,

where values of the kernel are the trained parameters. By striding this kernel over input image,

the filter values of next convolutional layer are calculated pixel-wise. These convolutions thus

share their synaptic weights across the space.

Their major advantage from other models is, that their convolutional layers of neurons

are immune to so called translation invariance of their inputs. In other words, they learn to

recognize patterns no matter where they occur on the input.

This property borrows them new incredible abilities. By combining variously sized

convolution filters, different modules have been created, that can learn to model graphical

content on different levels of abstraction.
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One such example are inception modules. They combine multiple layers of convolutions

together to create one semantically rich layer capturing much more information than would

be possible with single convolutional layer.

Thanks to their translational invariance, modern ConvNets are also vastly used for tasks

besides computer vision, where this property is desirable.

4.4.4 Recurrent Models

Recurrent Neural Networks (RNNs) introduced in [29] are different from conventional ANNs

in a way similar to CNNs. They are also deep models but instead of space, they are deep in

time. Designed to deal with semantic and latent relationships between members of sequences

in time series.

Their analogy to CNNs is actually pretty straightforward. RNNs also have shared their

parameters, but only instead of space, they share them across time. The concept of sharing

weights across time only means, to re-use them while processing each observation in a

sequence.

Obr. 13: Diagram of RNN cell unrolled in time; reprinted from [12].

RNNs are designed to model sequences of inputs in time domain, so they contain a

recurrent connection(s) from the past states to current. Although, while sharing weights over

time, the error backpropagation also needs to get through time.

This means lots of little correlated updates to the same set of weights all at once. It causes

problems with gradient, since due to strong correlations between these updates, either gradient

explodes (goes to infinity) or vanishes (goes to zero).

To solve the problem of exploding gradient, simple hack called gradient clipping was

employed. It only lets gradient grow to a certain defined maximum value.
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However, vanishing gradient is a bit harder problem to solve. In sequence modelling it

actually causes memory loss. To solve the problem of vanishing gradient, Long Short-Term

Memory (LSTM) cell was introduced [39] as an alternative kernel of RNN.

It encapsulates the memory of recurrent unit with "protection"gates for read, write and

forget operations. These gates filter the input signals, behaving as a single-unit layers of neural

nets, having sets of weights and continuous activation functions, which makes them differen-

tiable and trainable together with other parameters of the model through backpropagation.

One recent variation of LSTM cell is called Gated Recurrent Unit (GRU) cell. Internally

it uses one update gate instead of separate input, output and forget gate. Therefore, GRU is

slightly faster to train than LSTM, but also slightly less expressive. It has been shown, that in

some extra cases, when expressiveness is not required, GRUs can outperform LSTMs [7, 25].

(a) LSTM cell; reprinted from [11]. (b) GRU cell; reprinted from [11].

Obr. 14: Diagrams of most used recurrent unit architectures.

Mathematical details if these internals, as depicted in Figures 14a and 14b are also

explained by Chris Olah in his blog post [11].

4.4.5 General Considerations

4.4.5.1 Time Complexity

The computational complexity of neural network is an important characteristic. It depends

strongly on composition of architecture and should be considered when design decisions are

made.

Generally, time complexity of model training is proportional to
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O = E × T × Q, (1)

where E is number of training epochs, T is number of observations in training data and Q

is time complexity of single forward-backward pass through the network, specific for each

model [62].

4.4.5.2 Space Complexity

Since the structure of the network must be stored somehow, there is always some overhead

due to this. Therefore, space complexity of a model is only roughly equal to its number of

parameters.

Empirical results showed, that deeper networks generalize better when used to transcribe

multi-digit numbers from photographs of addresses. On the figure below, it is shown that the

test set accuracy is consistently increased with increasing depth [42].

Obr. 15: Empirical results on performance as a function of model depth; retrieved from [42].

Moreover, another experiment shows, that increasing the number of parameters in layers

of convolutional networks without increasing their depth is not nearly as effective at increasing

test set performance [42].
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Obr. 16: Empirical results on performance as a function of number of parameters; retrieved from [42].
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5 Task Definition

In this work we approach the problem of automatic music transcription from audio, with some

specific requirements in terms of information retrieval. Our goal is to transcribe polyphonic

music with best possible accuracy, and then find mapping of played notes to their sound

sources (possibly musical instruments). Ideally, preserving information about dynamics of the

sound such as velocity and volume over time. Assuming, that number of played instruments

is unknown, additional challenge is to correctly identify different sound sources contained in

an audio piece.

For the sake of accuracy, music transcription should be done by processing small consecu-

tive time fragments. In addition, if sufficiently low time complexity is achieved, construction

of real-time processing system would be possible as well. This would be restricted in case of

need to pass through the whole audio performance in multiple iterations, calculating different

features and based on known time context.

This is a challenging task, because for every tone present in a polyphony, we need to

recognize its specific timbre1. Timbre is a characteristic of sound, which makes sounds with

the same pitch and loudness sound different from one another. It has been called, "...the

psychoacoustician’s multidimensional waste-basket category for everything that cannot be

labeled pitch or loudness."by McAdams and Bregman, in their work [20].

Attempts have been made to decompose timbre into set of fundamental attributes. Schouten

describes them as "determined by at least five major acoustic parameters-[76] and states them

as follows:

1. The range between tonal and noiselike character.

2. The spectral envelope.

3. The time envelope.

4. The changes of spectral envelope and fundamental frequency.

5. The prefix (onset) of a sound, quite dissimilar to the ensuing lasting vibration.

It is also important to note, that the tone color is known to be mostly determined by pattern

of its harmonic components and their relative strength in time. From above stated attributes,

the 2nd and 4th are the ones indicating this property.

1In music terminology, timbre is a quality of musical note, known also as tone color.
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It seems, that some physical characteristics of sound which significantly contribute to the

human perception of timbre include spectral envelope and time envelope.

Spectral envelope describes an envelope of the spectrum. It wraps tightly around the

magnitude spectrum, linking the peaks [9]. It describes one time frame of audio signal, and

carries information about the distribution of the signal’s energy over frequency in that time

frame. Example is show on figure below.

Obr. 17: Spectral envelope of a signal; retrieved from [4].

Time envelope, also known as Attack Decay Sustain Release (ADSR) envelope, as defined

in [10] has its contour specified by attack time, decay time, sustain level and release time.

Every musical instrument has its characteristic attack, sustain, and decay pattern. Therefore,

time envelope is an important element of timbre.
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Obr. 18: Time envelope contour; retrieved from [5].

Additionally, while transcribing music directly from audio, we would like to preserve the

expressive means of musical tones. For stringed instruments, those would be vibrato, tremolo

or pizzicato. Erickson states, that these means are related to specific physical attributes of

timbre [31]. For example, vibrato seems to be mainly related to frequency modulation, while

tremolo is physically an amplitude modulation.

Then, we also need a way to describe these expressive means for particular musical tones.

For example, correctly played vibrato has its own tempo parameter.

Since there seems to be quite a bit of challenge in recognition required by the task

described above, we might need to do some trade-offs while designing our model. Therefore,

in terms of performance measured by transcription accuracy, we establish priorities for our

subtasks from the highest to lowest as follows:

1. Detect tones in polyphony.

2. Assign tones to sound sources.

3. Detect and describe possible expressive means of musical tones.
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6 Our approach

With previously mentioned specifics of acoustics and musical signals in mind, we consider

multiple alternatives to approach the problem of polyphonic music transcription from the

perspective of neural computing.

These alternatives differ mainly upon the way we represent musical data to the neural

network, which also determines the scope of problem to be solved by the model and drives

further design decisions about its architecture. We describe our ideas and proposed methods

in this section.

6.1 Modelling Features in Frequency Domain

The initial step in almost each Digital Signal Processing (DSP) pipe-line for music content

analysis is transformation of signal from time to frequency domain, thus construction of

spectrogram. This is very intuitive and straightforward, according to the relationship between

spectral content of the signal and harmonic content of corresponding music. Therefore, we

first examine learning capacity of some neural network models trained on spectral feature

descriptors.

6.1.1 Method Description

The overall process in steps necessary to apply this method is following:

1. Preprocess input audio data, generate spectrograms.

2. Preprocess reference labels, generate piano rolls.

3. Save inputs (spectrograms) with labels (piano rolls) correctly aligned in time.

4. Divide data into train, validation and test sets while attempting to maintain equal variety

of musical content across these subsets.

5. Train the model on training set with periodical evaluation on validation data. Adjust

hyperparameters across training sessions to maximize the validation accuracy.

6. Test the model by inference on test data. Treat output layer activations as estimated

piano roll for quantified and empirical evaluations.
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6.1.2 Preprocessing Phase

Initially, audio with reference notation is preprocessed one element at a time. In case of MIR

data sets, one data element is mostly a pair of sound file and a notation file, containing single

musical piece. Depending on the character of the data set, musical piece can be e.g. song,

chord or a scale.

6.1.2.1 Re-sampling Method

To re-sample loaded audio signal, we use method described in [80]. It is based on interpolation

by the Kaiser windowed sinc function as defined by (2) normalized to 16 zero-crossings.

Kaiser window is calculated according to formula (3)

sinc(x) =
sin(x)
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where N is number of samples of the windowed function, I0 is zeroth-order modified

Bessel function of the first kind and parameter β is set to 8.5 to satisfy standard setup used for

fast re-sampling.

6.1.2.2 Spectrogram Calculation

The CQT calculation is done by recursive sub-sampling method, described in [75]. The

advantage of this method is that it allows to choose frequency resolution in terms of number

of bands per note, lowest frequency to be examined and number of bins spaced geometrically

among spectrum, satisfying Constant-Q factor condition. This results in having ability to

choose range of musical notes to capture, in terms of fundamental frequencies.

Possible disadvantage of spectral bins being linearly spaced w.r.t fundamental frequencies

of notes, is just the implication, that they end up spaced exponentially across the frequency

range. Therefore, resolution at higher frequencies is lower, which may result in timbral

features being captured with insufficient accuracy for instrument identification. This is not

an issue, while we work with solo instrumental music, but as timbre relevance grows with
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different subtasks, replacing CQT by standard STFT spectrogram calculation method is a

reasonable subject to consideration and possibly experimental comparison. Also, combination

of multiple spectral feature descriptors could be used as an input to the network.

Since this method uses recursive sub-sampling to calculate DFTs for octaves from highest

to lowest, it places restrictions to sampling rate of input signal. Therefore, in case loaded

audio has different sampling rate than required, initial step of this method is re-sampling.

Next, signal is processed by sliding window of size determined by sampling frequency

and number of octaves being analyzed. Temporal resolution of resulting representation is

given by the size of this window and length of stride in number of samples, which is another

parameter to the algorithm.

Time resolution as the number of spectral feature descriptors per second of signal is given

as a ratio of sample rate to stride size. For each time sample, Hann window is applied to

extracted sequence and zero padding is performed up to the length of nearest power of 2.

Each frequency band in octave has its own filter length, which remains constant during

the calculation, where logarithmic frequency spacing is utilized by sub-sampling between

octaves and discarding already extracted information (higher frequencies).

6.1.2.3 Piano Roll Alignment

Along with spectrogram calculation, piano roll is calculated from reference notation file. It is

a format for visual presentation of musical MIDI events - specifically notes duration in time -

created and used within instances of Digital Audio Workstations (DAW) software.

Internally we represent it as a matrix of values indicating which notes (rows) are being

played in which time frames (columns). We use all 128 MIDI notes by default, although this

is a bit redundant for piano music where the 88 notes of piano keyboard are sufficient.

The temporal resolutions of spectrogram and piano roll are chosen to be equal, so that

they can be precomputed and stored together with correct time alignment, for purposes of

easy and quick retrieval at the time of training.

The visualization of spectrogram aligned to piano roll is shown on Figure 19, where color

intensity represents spectral amplitude power or note velocity power, respectively.
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Obr. 19: Example of input data aligned to labels.

6.1.2.4 Further Steps before Training

As the values of computed amplitudes may vary widely among the data, they are normalized

to interval [−1
2
, 1

2
] according to peak amplitude contained in the whole audio piece. The choice

of this mapping is also motivated by general observation, that neural networks yield better

performance on data with zero mean and small, equal variance [54].

Another variation of preprocessing is to discard the dynamics information, which is what

we do to reduce the task by estimation of dynamics to simple detection of notes presence,

otherwise the task is to estimate both at the same time. It is done by simply truncating the

velocity values in piano roll matrix to {0, 1}. This makes the piano roll a binary matrix,

indicating just presence of notes in time.

Lastly, the data are divided into training, validation and testing sets in some reasonable

ratios. This is, however, done in such a manner, that preserves the most possible musical

variety within all constructed subsets.
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6.1.3 Architecture Design and Training Phase

To be able to iteratively build optimal architecture, we initiate our efforts with following

configuration. We build simple MLP model and feed it with spectral coefficients on the input,

yielding discrete probabilities of presence per note from the output. Therefore, we denote this

model as MLP-Spec.

(a) Multi-Layer Perceptron (b) Default setup of MLP model

Obr. 20: Outline of MLP-Spec architecture.

The size of input layer depends on spectral resolution chosen during the preprocessing as

a combination of parameters to CQT spectrogram calculation. Size of output layer is given

by range of estimated notes defined through provided piano roll labels. Number and size of

hidden layers and their activation functions belong to set of model hyperparameters.

Initial setup shown on Figure 20 consists of single hidden layer and an output layer. To

compute activations on hidden layer we use Rectified Linear Unit (ReLU) activation for

computational efficiency and sufficient modelling capacity.

We use sigmoid activation on the output layer, since estimating presence of notes in polyp-

hony is a multi-class classification task. This function activates the output layer preactivations

to a set of values from interval (0, 1) representing discrete probability estimations per note.

On Figure 21, we plot these default activation functions. Additionaly, we use Adam [50]

as the default algorithm for model optimization. However, this is just a default setup and

experimental search is to be done in order to find optimal set of hyperparameters.
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Obr. 21: Graph plots of used activation functions; reprinted from [8].

In next iteration of architecture design based on initial results, we propose slight modifi-

cation to MLP-Spec. In order to provide the model with some context of the estimated time

frame, we add a recurrent layer on the input and feed it with a sequence of spectral descriptors

of consecutive time frames, instead of single one as opposed to MLP-Spec feeding method.

First, we apply classical uni-directional recurrent layer to process sequence of consecutive

spectral descriptors. At prediction time of each frame, hidden state of recurrent unit encodes

information gained by sequence of past time frames.

Although predictions are made for each time frame, only last one of the sequence is

predicted with utilization of whole sequence. Therefore, at training time, it is considerable

whether to backpropagate error from whole sequence of predictions, or only from the last one.

At the inference time, we use only the last prediction of the sequence at the cost of higher

inference time, since we need to feed spectrogram fragments with huge overlap of n-1 where

n is length of the sequence.

Additionally, in order to enable utilization of time context from both sides of estimated

frame, we examine the use of bi-directional recurrent layer. In order to provide equal time

context from both sides, we only use sequences of odd lengths and train to predict the frame

at the center of sequence, instead of the last one.

Based on type of recurrent layer used within particular model variation, as outlined

on Figure 22, we denote the model with classical one as RNN-Spec and the model with

bi-directional one as BiRNN-Spec.
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(a) Classical RNN

(b) Default setup of recurrent models(c) Bi-directional RNN

Obr. 22: Outline of recurrent architectures.

Though length of the sequence is not restricted by RNN, as we currently have no means

of determining the desired length of context, we choose a constant value for each training

session, ending up with additional hyperparameter to tune.

There are of course many possible adjustments to these models we could examine, e.g.

placement of recurrent unit on the top of MLP classifier, between the last hidden layer and

fully connected output layer. Multiple recurrent units can be also used on different places and

their outputs combined using residual connections.

It should be made clear, that generating batch of data samples during training differs

among these model, since each model takes different data unit as input observation and

according to this, output labels are also chosen specifically.

During training of MLP-Spec model, frames are sampled from training set according to

pseudo-randomly generated distribution of indices to array or queue of training examples,

based on size of data set and thus batching method. In similar fashion, sequences of frames

are pseudo-randomly sampled during training of recurrent models.

At time of inference for testing, sequential batching is a straightforward method to use,

although recurrent models get zero-padded spectrograms in order to compensate the time

missing context at start (or end) and get equal shape of estimated piano roll to ground truth.
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6.1.4 Postprocessing

In scope of simple note detection task where information about dynamics of individual notes

is discarded, the last processing step we do is thresholding, which simply means rounding

estimated probabilities to logical values. This is performed according to specified threshold q,

which is a parameter of evaluation, given

Rn,t =







1, if Pn,t ≥ q

0, otherwise







(4)

where note n and time frame t are indexes to arrays P for estimated probabilities and R

for resulting piano roll.

With this representation, standard metrics for evaluation of information retrieval tasks

can be computed. We further use this representation for empirical evaluation. Visual plots of

piano rolls can be created and MIDI representation can be reconstructed, which can be played

using different soundfonts and libraries of various musical instrument audio samples.

6.2 Modelling Features in Time Domain

Although spectral analysis is very important step in most signal processing tasks, it comes

at the cost of losing some (howsoever small) amount of information about the signal. By

windowing the audio snippets during spectral analysis, we disrupt the signal continuity

information and yet still some artifacts are generated in the spectrum.

Alternatively, excluding any feature extraction from preprocessing phase, one could treat

the musical data in its raw form, as a sequence of samples in time. However, this way, the

frequency content analysis is an additional task left for the neural network to tackle.

The idea is inspired by success of various deep models applied to signal processing tasks,

which could learn multiple feature maps on different layers of representation.

The fact, that raw audio signal contains all the necessary information for human brain to

understand and perceive the musical content of the signal is tempting for attempts to design

a deep neural network architecture with sufficient capacity to be trained for this task and

mimic this process. After all, recent advances in various image processing tasks made by

deep neural networks have demonstrated relevance of this approach. This suggests, that deep

neural networks could be able to learn feature representations, which will be more robust

against acoustic variations in audio signal, and therefore also better tailored for the task at
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hand. Also with raw signal on the input, network has enough information to gain ability to

perform multiple transcription tasks simultaneously, such as dynamics estimation or sound

source recognition.

Besides the recent success of deep CNNs at processing visual data, which is a raw signal

too, recent advancements also demonstrated, how deep networks can effectively learn to

model structure of signal from raw sequences of audio samples [84]. They proved this by

generating highly comprehensible quality utterances of speech and musical signals with

WaveNet: A Generative Model for Raw Audio [2].

We initiate our work in this direction by examination of possibilities to re-use the funda-

mental ideas of WaveNet architecture. Since this model has been proven effective on task of

audio synthesis, our goal is to examine its capacity on task of multiple F0 estimation.

6.2.1 WaveNet for Transcription

In this section, we describe the WaveNet architecture as introduced in DeepMind paper [84].

We further describe how we adjust and train this model to perform frame-level transcription

of polyphonic music.

6.2.1.1 The WaveNet Architecture

The architecture of WaveNet is built out of 1D convolutions with some special properties.

Figure 23 depicts an exemplary stack of dilated causal convolutions with dilation factors

1,2,4, and 8.

Obr. 23: Stack of dilated causal convolutions; reprinted from [84].
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The important thing about causal convolutions is that they do not use any of the future

timesteps when calculating prediction for timestep t, in order to preserve any possible causal

relationship between subsequent values in given series. This enables to model conditional

probability distribution for value of next sample, conditioned over sequence of preceding

samples [84].

The issue with regular causal convolutions applied to 16 kHz audio is the lack of means

to effectively increase receptive field1 of the network, since the formula is

receptive field = |layers| + filter width − 1 (5)

and therefore to achieve any reasonably large receptive field would require too many layers or

very large filters.

That is why dilation factor is very useful. It enables to increase the receptive field by

orders of magnitude, without greatly increasing computational cost, through enabling to apply

convolution filter over an area larger than its length by skipping input values with a certain

step [84]. Provided that all layers use same filter width and one simple causal convolution is

applied first, followed by stack of dilated causal convolutions, the formula is

receptive field = (filter width − 1) ×

(

dilations
∑

d

(d) + 1

)

+ 1 (6)

where dilations is a set of dilation factors describing by the stack of dilated convolutions.

By increasing dilation of successive layers by factor of 2, receptive field of the network

grows exponentially with its depth. Another means of increasing the receptive field is to

further stack multiple such blocks, one on another. This helps to increase the receptive field

size as well as model capacity. For example, authors state their experimental configuration as

follows:

1, 2, 4, ..., 512, 1, 2, 4, ..., 512, 1, 2, 4, ..., 512.

Additionally, in order to make the prediction of samples more tractable, authors train

WaveNet on samples quantized to 256 possible values, to predict the value of next sample

using softmax distribution over these 256 possible values.

Another key feature of WaveNet is the engagement of residual and skip connections

across the whole stack of dilated convolution layers. By introducing addition operation to

1Receptive field is the number of samples WaveNet can use to compute single prediction.
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network computation graph, they help to speed up convergence and enable training of much

deeper models. This again starts to make sense once we realize how addition benefits the

propagation of gradient through the network back to the initial layers, in terms of reverse-

mode differentiation [1]. Their use within a single residual block along with entire WaveNet

architecture is depicted on Figure 24.

Obr. 24: Overview of WaveNet architecture and its residual block; reprinted from [84].

Also,the residual and skip connections are parameterised, which means each connection

has its set of weights being optimized to let the exactly required amount of information flow

through their channels.

Further features of WaveNet architecture include global and local conditioning on the

input. For TTS model it makes sense to be conditioned globally e.g. on a speaker embedding,

whilst locally on some linguistic features such as sequence of phonemes to generate.

6.2.1.2 Proposed Adjustments

Inspired by previous success of WaveNet in audio modelling domain, we build our version

based on its open source implementation1 and adjust it for the task of frame-level transcription.

Since generation and transcription are fundamentally different tasks, the data preparation

for training and inference differs as well. However, the advantage of WaveNet convolution
1https://github.com/ibab/tensorflow-wavenet
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mechanics which allows the parallel processing of sequences significantly longer than the

receptive field to be processed in single inference step, producing sequence of predictions

of length (input length − receptive field + 1), becomes quite obsolete. This is because

WaveNet yields output sequence at temporal resolution equal to input sample rate, which

is at least 16 kHz in music transcription scenario, while temporal resolution of 100 fps

is established as absolutely sufficient for frame-level transcription, according to measured

limitations in human perception of rhythm.

In order to utilize the convolution mechanics of WaveNet, we train and evaluate on large

sequences. However, in real world use-case when we want to visualize or MIDI-reconstruct

the output, we further sub-sample it by average pooling to get reasonable temporal resolution.

Alternatively, we could append another layer or pooling operation to the network output for

sub-sampling and work with appropriate resolution of output all the time.

In order to provide the network with time context from both sides, similarly to BiRNN-

Spec, we force the alignment of estimated piano roll frame to the center of input sequence.

This is done by padding input sequence by
⌈

receptive field−1
2

⌉

zeros from left side and by
⌊

receptive field−1
2

⌋

zeros from right side.

As opposed to generative WaveNet, we omit the non-linear quantization of input samples

and feed raw data instead, since quantized representation has proved redundant by showing

little to none influence on transcription performance.

We replace softmax activation function with sigmoid on the output to get multi-class

classifier network, instead of single-class classifier. The number of output channels changes

from 256 originally quantization channels to 128 now MIDI note numbers.

We don’t have a way to employ model conditioning at the moment, since audio signal is

the single relevant data source for given task. However, in Section 8 we mention some of our

ideas to utilize local and global conditioning in several various AMT scenarios.

For further reference and evaluation purposes, we denote this adjusted WaveNet model by

acronym WN4T (WaveNetForTranscription) within the scope of this work.
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7 Evaluation

To evaluate our methods, we combine resulting estimations with ground truth to quantify

the results. For empirical evaluation, we also visualize this combination and additionally, we

generate MIDI from estimations and compare audio representations of estimated notation to

ground truth.

7.1 Methodology

It is common that training sessions of deep networks on large data sets take not just hours, but

rather days. Therefore, performance of trained models is evaluated in regular intervals, and

results serve to track the progress of training.

For this intermediate evaluation, validation set of data is reserved. Based on performance

on this data set, different model configurations are examined across experiments1. Finally,

when training and tuning is finished, model is evaluated on test set, which is another set of

data reserved for this purpose.

In sake of correctness, training, validation and testing data should always consist of

disjoint sets of data samples. Unless explicitly stated otherwise, we stick to standard ratios of

distribution between these sets, as stated in Table 1.

Tabul’ka 1: Standard ratios of data set distribution in machine learning.

Training Validation Testing

80 % 10 % 10 %

From estimations and ground truth labels on evaluation data, we compute standard infor-

mation retrieval metrics. Namely precision, as ratio of correctly estimated notes against all

estimated notes, and recall, as ratio of correctly estimated notes against all ground truth notes.

We mainly track their harmonic mean - F1 score, as a single and most relevant indicator of

performance, given by (7).

F1 = 2 ·
1

1
precision

+ 1
recall

= 2 ·
precision · recall

precision + recall
(7)

1In deep learning jargon, this is also called tuning the hyperparameters.
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Though we track measure of accuracy as number of correctly estimated values against

all values, we don’t report this metric since it is much less informative than F1 score. This is

because musical data representation by piano roll yields a very sparse matrix1 in which any

model is always able to gain first ≈ 95% of accuracy just by correctly estimating silence.

However, in order to enable comparison to previous work, we also measure frame-level

accuracy (8) as proposed by Dixon in [28]

Acc =
TP

(FP + FN + TP )
(8)

where TP , FP and FN denote total counts of true positives, false positives and false

negatives. Evaluation metrics are computed from estimations and labels. To examine confusion

empirically, we further create visualizations of estimations or use piano roll to construct

playable MIDI file.

Since we tackle a multi-class classification problem, construction of confusion matrix is

not an option. Therefore, to understand the performance issues of our models, we examine

cherry-picked transcription fragments at least manually using colorful visualizations of true

positive, false negative and false positive estimations.

Additionally, we use early stopping technique on training sessions, in terms of regularly

validating model performance and saving checkpoint of model parameters, in case perfor-

mance is improved against current maximum. When there is no improvement for specified

number of checks, training is stopped, best model checkpoint is restored and evaluated on test

data.

7.1.1 Visualizations

We demonstrate the use of our evaluation plots to examine the transcription fragments as

depicted below on Figure 25. In all plots, horizontal axis represents time in seconds, while

vertical axis represents notes ordered chromatically according to piano keyboard - from lowest

(bottom) to highest (top).

1Most of time in music, only tiny fraction of all playable notes are being played.
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(a) Estimations (b) Certainties (c) Evaluations

Obr. 25: Evaluation plots.

On Subfigure 25a we see raw matrix of predicted probabilities with colorbar denoting

probability values.

Next, Subfigure 25b shows certainty of predicted note events after piano roll is converted

to set of MIDI events. Conversion is performed by linear scan of each note across time axis.

Note event is generated from each coherent sequence of predictions with value above specified

threshold 0.007, since sigmoid activation function will never return zeros, only values close

to zero. Certainty of prediction is calculated as mean of all prediction values in given sequence

and it is expressed through alpha channel of plotted note bar, thus by color intensity. Onset

and offset times are set to first and last predictions of the sequence.

Finally, on Subfigure 25c we see the retrieved values after thresholding in contrast with

ground truth. White space represents True Negatives, while legend explains the remaining

colors. This allows us to instantly observe the fail modes of our models.

To generate these visualizations, we utilize mir_eval [71], an open-source python

library of evaluation functions for MIR and audio signal processing algorithms.
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7.2 Data Sets

In this section we state details of data sets used in our experiments. Parameters of preproces-

sing which were applied equally to all data with no variations amongst experiments are stated

as well.

7.2.1 LabROSA

The Laboratory for the Recognition and Organization of Speech and Audio1 (LabROSA)

provides a data set of recorded live piano performances2 to public. This is a part of larger data

set which has been used by Poliner & Ellis in their work [67].

It is meant to extend the larger subset of data generated from MIDI notation, to enrich the

training and testing set by timbral variations of live music performance.

Recorded part of data set consists of .wav audio files and .mid reference files. Audio is

sampled at sample rate 8000 Hz and depth of dynamic range 16 bits.

This, according to Nyquists sampling theorem, is theoretically sufficient for piano music,

as denoted in [67], because highest note playable by piano is B7 with fundamental frequency

of 3951.1 Hz. However, some timbral features of higher tones are definitely lost, since

they are located far above the Nyquist frequency of 4000 Hz.

In following paragraphs, we describe three variations of this dataset, which have been

used across our experiments.

7.2.1.1 LabREC - Recorded Tunes

The set of recorded performances provided by LabROSA contains first 60 seconds of 29

different compositions.

From each of these labeled recordings, first 40 seconds were divided into 32 training,

4 validation and 4 testing seconds of data. With resolution of 100 frames per second this

amounts to 92800 training, 11600 validation and 11600 testing samples.

We start our initial experiments with this subset, as its size allows for fast prototyping

and quick experimentation with simple models. Since we further use different variations of

LabROSA dataset, we denote this variation as LabREC.

1http://labrosa.ee.columbia.edu/
2http://labrosa.ee.columbia.edu/projects/piano/
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7.2.1.2 LabSYNTH - Synthesized Tunes

For next set of experiments, we use MIDI files of tunes from LabREC and synthesize the

audio using high quality piano soundfonts1, resulting in another LabROSA variation we call

LabSYNTH.

For audio synthesis, we use 3 different piano soundfonts: Nice-Keys-Extreme-V1.52,

Arachno3 and Yamaha Disklavier4. During the training, batches are generated by random

sampling from randomly chosen tunes with randomly chosen version of synthesis. The goal

is to prevent the models from overfitting to timbral characteristics of single piano instrument.

This set is divided into subsets in exactly same way as LabROSA-rec, resulting in 89600

training, 11200 validation and 11200 testing samples

Since LabREC and LabSYNTH contain the identical collection of MIDI files, they can

both be described equally in terms of musical content.

Tabul’ka 2: Statistics for musical pieces and note events of LabSYNTH.

Duration of pieces Note events

Total Average Max Min Average duration Total count
29 m 60 s 60 s 59 s 0.22 s 15066

Table 2 summarizes data set statistics on level of musical pieces and note events. Figure

26 shows distribution of frames with various polyphony levels. On Figure 27 note occurrence

histograms in training and test subsets are shown side-by-side for easy visual comparison.
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Obr. 26: Distribution of polyphony in number of samples across LabSYNTH.

1http://www.synthfont.com/sfspec24.pdf
2https://sites.google.com/site/soundfonts4u/
3http://www.arachnosoft.com/main/soundfont.php
4http://zenvoid.org/audio/
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Obr. 27: Note occurrence histograms in training and test subsets of LabSYNTH.

7.2.1.3 LabCOMP - Complete Dataset for Reference Evaluation

To enable comparison of our method to reference approach, we try to obtain the most

possible similar reconstruction of dataset used in the paper [67]. Although the paper contains

comprehensive description of used data set in a table, its content contradicts with detailed

description of used data in Section 2.1 Audio Data, which states that data contains "95 training,

25 testing and 13 validation pieces", while table lists only 87 training and 24 testing pieces.

Nevertheless, we retrieved the published recordings from publication web site and col-

lected MIDI files of remaining tunes from referenced site1 according to table of MIDI

compositions attached with the paper [67]. Additionally, we also used the same soundfont for

MIDI synthesis - Yamaha Disklavier grand piano. This variation is denoted as LabCOMP.

We describe the exactly same statistics as previously to enable comparison of data sets.

Tabul’ka 3: Statistics for musical pieces and note events of LabCOMP.

Duration of pieces Note events

Total Average Max Min Average duration Total count
2.04 h 59 s 60 s 23 s 0.23 s 65510

1http://piano-midi.de/
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Obr. 28: Distribution of polyphony in number of samples across LabCOMP.

(a) Training set

20 40 60 80 100

0

500

1,000

1,500

2,000

MIDI note number

#
no

te
ev

en
ts

(b) Test set

40 60 80 100

0

100

200

300

400

500

MIDI note number

#
no

te
ev

en
ts

Obr. 29: Note occurrence histograms in training and test subsets of LabCOMP.

7.2.2 PIMIDE

This set represents the largest collection of classical piano tunes we collected. After duplicates

removal, it consists of 337 MIDI tunes all retrieved from Classical Piano MIDI Page website1

including format0 MIDI files2.

Purpose of this dataset is to enable training of large-scale deep models with bigger size

1http://piano-midi.de/
2http://piano-midi.de/midis/format0/
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and capacity, although due to time constraints we only performed two large-scale experiments

with this data set.

Yet before we finding that PIMIDE is over one order of magnitude larger than previously

used datasets, in preparation for even larger models, we extend this dataset with 12-fold

transposition1, in order to get each tune into each of 12 different keys. We denote this model

as PIMIDE_EXT and provide statistics of both sets in tables below.

Tabul’ka 4: Statistics for musical pieces and note events of PIMIDE.

Duration of pieces Note events

Total Average Max Min Average duration Total count
22.97 h 4.09 m 33.52 m 23.34 s 0.21 s 784262

Tabul’ka 5: Statistics for musical pieces and note events of PIMIDE_EXT.

Duration of pieces Note events

Total Average Max Min Average duration Total count
264.71 h 3.66 m 33.52 m 3.95 s 0.21 s 8853029

7.2.3 MAPS

MIDI Aligned Piano Sounds2 (MAPS), is a piano sound database dedicated to research on

multi-F0 estimation and automatic music transcription [30].

It is distributed under Creative Commons License and we obtained access to a somewhat

limited (10GB) version of this data set upon e-mail request. Construction of contents of this

data set is described in detail in [14]. This data set provides following categories of sounds in

a denoted subsets:

• ISOL - isolated notes and monophonic sounds.

• RAND - random chords.
1Our algorithm for 12-fold transposition attempts to transpose each tune into all different keys. If there is

free piano range, direction is chosen such that center of transposition octave approaches center of the keyboard.
Its implementation is located at /prep/transp.py on electronic medium attached to this work. For more
details refer to Appendix A.

2http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-

piano-database-for-multipitch-estimation-and-automatic-transcription-of-

music/
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• UCHO - usual chords.

• MUS - pieces of music.

Dataset consists of .wav audio format sampled at sample rate 44100 Hz and depth of

dynamic range 16 bits. Ground truth is provided in MIDI and also text format.

7.2.4 Common Preprocessing Parameters

To perform DSP routines necessary for audio preprocessing, we used librosa - python

library for audio and music analysis [60]. To generate piano rolls from MIDI files and vice-

versa, we utilized another python library pretty-midi [70] and implemented custom

routine for MIDI reconstruction from piano-roll. Though this representation does not carry

most of the notation metadata, in some situations, simply note onsets and offsets are sufficient

for data examination.

In order to achieve sufficient time and frequency resolution of CQT spectral analysis, we

used following parameters to the algorithm.

• sample rate = 25600 Hz for initial re-sampling.

• hop length = 256 samples for temporal resolution1.

• minimum frequency = 27.5 Hz corresponding to note A0.

• number of spectral bins = 88 * 3 having 3 bands per note.

• bins per octave = 12 * 3 since octave has 12 semi-tones.

For this configuration, temporal resolution of piano roll was set to 100 fps, in order to

align properly to spectrograms.

Note, that this is the baseline configuration for preprocessing phase. Wherever we used

data which were preprocessed with different parameters, the difference is explicitly stated.

7.3 Experiments

In this section we present several performed experiments, which exposed some interesting

results. At all of our experiments, we used the value of threshold q = 0.5 unexceptionally.

1This configuration results in temporal resolution of 100 fps (frames per second).
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7.3.1 Initial Attempts

First set of experiments was conducted on LabREC - a subset of recorded piano performances.

7.3.1.1 MLP-Spec: Model Depth

We examined influence of model width on validation accuracy during training, by visualizing

F1 score convergence curve.

Tabul’ka 6: Experimental setup: model depth

Model Batch size Width

MLP-Spec 300 frames 200 units

Number of hidden layers (depth) of the model was variable parameter, while others

remained constant between the runs. Hidden activation functions (ReLU) and optimizer

(Adam) remained from default configuration.
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Obr. 30: MLP-Spec performance at different model depths.
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Results on Figure 30 show us trend of decreasing validation performance with increasing

model depth.

Apparently, this is related to so called skinny jeans problem, which basically means to find

the right model size for the size of training data. With increasing model size but same data

corpus size, problem of overfitting occurs. On the contrary, if model size and thus capacity is

too small for the data size, underfitting occurs.

Enlarging the data set is one possible approach to fix this issue, although even if we can

easily get more data, this is not a reliable approach, since we want our model to be ready for

absorbing new data, just in case, and not rely on exact data size determined experimentally.

One common solution to this problem is to have model with larger capacity than it needs

for given data corpus, and introduce regularization techniques during the training, in order to

prevent the model from overfitting.

7.3.1.2 RNN-Spec: Context Sequence Length

Results of MLP-Spec model showed us, as visualized on Figure 31, that the predictor is

somehow missing the time context of predictions it generates. This is obvious from many

estimations of notes with very short duration. Therefore, we designed RNN-Spec, in order to

introduce the concept of note duration.

Obr. 31: Example visualization of estimations against true labels.

We examine how length of context provided to recurrent cell will influence the accuracy.
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Tabul’ka 7: Experimental setup: context length.

Model Batch size Width Depth Cell

RNN-Spec 64 sequences 1000 units 1 layer GRU

In this setup, parameter width as number of units is reused in both hidden and recurrent

layer. We also lower the batch size against previous experiments, but since each input is now

a sequence of frames, actual number of frames contained within one batch is larger.
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Obr. 32: RNN-Spec performance at different input sequence lengths.

On the plot of validation performance, we can see how extended context from 100 ms

to 300 ms providing the model with higher modelling capacity actually made the model

overfit the training data very quickly, so it became stuck in some local optimum after ≈ 4000

training steps.

7.3.1.3 Model Comparison: MLP-Spec vs. RNN-Spec

When taken two best performing setups of both models, the winning RNN-Spec setup is the

one with context length of 10 frames and GRU recurrent unit. Remaining parameters are
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given by Table 12.

Tabul’ka 8: Experimental setup: MLP-Spec vs. RNN-Spec on LabREC corpus.

Model Batch size Width Depth

MLP-Spec 64 frames 1000 units 1 layer

RNN-Spec 64 sequences 1000 units 1 layer
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Obr. 33: Performance of MLP-Spec vs. RNN-Spec on classical music.

Clearly, RNN-Spec converges into less optimal solution than MLP-Spec, despite its faster

acceleration. This is apparently caused by the same problem as in the experiment with different

depths. By introducing additional recurrent layer on the input, size and capacity of the model

has grown, while training corpus stayed the same size.

We suppose, that RNN-Spec was able to recognize specific structures in spectral changes

over time, thanks to provided context, and overfit to their occurrences in training set. Our

further work with larger corpus supports this theory.
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7.3.2 Usual Chords

From the MAPS dataset, the subset of usual chords (UCHO) was selected for additional

experiment. We reserved 1 chord for validation and 1 for test set from each chord category.

This resulted in distribution of chord examples described by Table 9.

Tabul’ka 9: Distribution of examples from subset MAPS_UCHO.

MAPS_UCHO Train Test Valid

Chord examples 1374 198 198
Minutes of audio 40 5 5

7.3.2.1 Model Comparison: MLP-Spec vs. RNN-Spec

We again evaluate our former models, although now on different data. Now with relatively

balanced sets of hyperparameters as depicted in Table 10.
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Obr. 34: Performance of MLP-Spec vs. RNN-Spec on usual chords.
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Tabul’ka 10: Experimental setup: MLP-Spec vs. RNN-Spec on MAPS_UCHO.

Model Threshold Batch size Width Depth Cell Context

MLP-Spec 0.5 8000 fragments 100 units 1 layer - -

RNN-Spec 0.5 100 sequences 128 units 1 layer GRU 10 fragments

Although relative rates of performance between concurrent models remains practically

the same, significant improvement of maximum precision is exposed by both models, against

classical music data.

The actual test set performance of validation top-performing model checkpoints was

remarkable, in contrast to previous results, as stated in table 11.

Tabul’ka 11: Test performance summary on F1 metric.

MLP-Spec RNN-Spec

LabREC 75.32% 70.64%
MAPS_UCHO 93.52% 91.64%

This suggests the importance of data set and its structure. Since usual chords are repeated

over dataset, just in different inversions and transpositions, the structural pattern of harmonic

components is repeated as well and is then more easily learned. Unlike classical music, full of

unique harmonic patterns and combinations.

7.3.3 Large-scale Training

In this chapter we mention some experiments performed on PIMIDE data corpus.

7.3.3.1 Model Comparison: MLP-Spec vs. RNN-Spec

For first experiment with large data corpus we take the two best performing setups of MLP-

Spec and RNN-Spec and examine their performance in similar fasion as in 7.3.1.3.

Tabul’ka 12: Experimental setup: MLP-Spec vs. RNN-Spec on PIMIDE corpus.

Model Batch size Width Depth Context Cell

MLP-Spec 100 frames 1000 units 1 layer - -

RNN-Spec 100 sequences 1000 units 1 layer 10 frames GRU
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After ≈ 5 days of training together and ≈ 2.1 millions of training steps per training

session, we terminate the experiment, since validation performance curves make it clear to

observe what was expected.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·106

0.4

0.5

0.6

0.7

training step

F
1
-s

co
re

MLP-Spec (smoothed)
RNN-Spec (smoothed)

MLP-Spec (raw)
RNN-Spec (raw)

Obr. 35: Performance of MLP-Spec vs. RNN-Spec on classical music.

On Figure 35 we see huge oscillations of raw validation performance curves. This is

clearly an opposite case than the comparison in 7.3.1.3, where due to lack of data, both

models were overfit. On the contrary, in this experiment, we have too large data corpus for

both models, therefore this is clearly an underfitting issue. Oscillating performance indicate

attempts to absorb small amounts of knowledge from huge data corpus. This might be caused

by proportions in sizes of models and data. Lowering learning rate or enlarging batch size

could also help, however, one adds computational costs, while the other adds memory costs.

The slightly better performance of RNN-Spec also confirms our previous assumption that

it has been overfit on the small training corpus due to higher modelling capacity. Now in case

of underfitting, the capacity added by recurrent layer and provided context finally provides

advantage to RNN-Spec over MLP-Spec.
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7.3.3.2 Initial Training of WN4T

Upon construction of large-scale data corpus and adjustment of WN4T training job, during the

development of evaluation module, we executed a 17 days long training session. Unfortunately,

only 30 epochs were passed during this period, since the data corpus is large, and WN4T

processing mechanics in high resolution over high-dimensional data, are also time-intensive.

After evaluation was implemented, we found that this corpus was also way too large even

for the WN4T model. After all this time, model was stuck at predicting constant probability

distributions across time, which means its predictions were not conditioned on input values

changes, so it did not really ever start to converge.

Obr. 36: Example predictions of non-converging WN4T.

7.3.4 Additional Experiments

In this section we describe tests performed on the LabSYNTH dataset with all proposed

architectures and finally summarize and compare all variants.

7.3.4.1 Bi-directional Recurrency

After implementation of BiRNN-Spec model, we trained this model along with MLP-Spec

and RNN-Spec on LabSYNTH corpus. Main parameters1 of training configuration are listed

1Each element in square brackets describes single layer.

69



in Table 13 below.

Tabul’ka 13: Parameters of *-Spec models trained on LabSYNTH.

MLP-Spec RNN-Spec BiRNN-Spec

batch size 500 100 100
sequence length - 20 21
recurrent layers - [1000] [1000]
recurrent activations - [tanh] [tanh]
fully connected layers [1000] [1000] [1000]
fully connected activations [relu] [relu] [relu]

In this experiment, each model was trained in 5 independent sessions with randomly

initialized weights. Validation performance curves of our models in Figure 37 are plotted

from mean values of these sessions, while standard deviations are included in the plot.
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Obr. 37: Validation performance on synthesized data.

Initial results make BiRNN-Spec appear as best improvement in our architecture design

so far. However, in this case it is clear, that additional modelling capacity comes at cost
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of additional computational complexity. Regardless, additional tests of this model will be

necessary to unveil its properties in robust evaluation and comparison.

7.3.4.2 Gradual Training of WN4T

Finally, we found a method to train our WN4T model and evaluate it on the same data as other

models, for comparison. However, we found it non-trivial to train this model for polyphonic

texture recognition from scratch. Especially randomly initialized model. Therefore, we train

this model gradually as follows.

1. First, pretrain WN4T on a corpus of monophonic piano notes with durations of 0.1, 0.5,

1, 3 and 7 seconds which gives 5 × 88 training files in total.

2. After convergence on this data, generate all different pairs of piano notes played as

harmonic intervals with duration of 1 second.

3. This gives 3828 training files which are added to the existing corpus and the training

continues until convergence on training data.

4. Start adding polyphonic data samples into training corpus, but maintain equal proportion

to monophonic data samples.

After few training epochs on monophonic and interval data, and upon convergence on

this data when model reaches reasonable training set error, we add LabSYNTH data to the

training set.

Model was trained on 16000 Hz audio. The stack of dilation layers of our model is

depicted in Table 14. It comprises of 33 layers and results in receptive field of 6143 audio

samples.

Tabul’ka 14: WN4T model layers setup in comparison experiment.

Dilation factors of successive layers

1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024

During the training, sample size was set to 10000 consecutive samples. This is the number

of time frame estimations generated within single training step, so it can be interpreted
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as parallelization of the training. We left batch size, which defines actual number of such

sequences in single training step, equal to 1, due to memory constraints of GPU we used for

training.

Input layer is processing mono audio, therefore number of input channels is 1. Number

of output and skip channels is 128 according to notes in MIDI standard. Between layers

throughout the model, we used 256 residual and dilation channels.

Finally, we report and compare the test performance of our models trained on LabSYNTH

corpus, which however, due to various sizes of train samples and batch sizes and constrained

training times, resulted in different numbers of training epochs. Numbers in parentheses

indicate the number of training epochs passed by given model in this comparison.

Tabul’ka 15: Comparison of our models trained on LabSYNTH corpus.

LabSYNTH MLP-Spec (56) RNN-Spec (12) BiRNN-Spec (12) WN4T*(13)

precision 82.26% 81.94% 84.21% 73.37%
recall 75.85% 74.70% 78.98% 37.84%
F1 78.93% 78.15% 81.51% 49.93%
Acc 65.19% 64.14% 68.80% 33.27%

Naturally, we used the best performing checkpoint for this evaluation, regarding our set

of MLP based models, since we had 5 different checkpoints of each model, according to

multiple training sessions described above.

7.3.5 Comparison to Previous Work

Additionally we compare our results to the reference approach [67] due to availability and

detailed description of data set used in their experiments, which we collect and denote as

LabCOMP.

After ≈ 3 training epochs we report frame level accuracy of our models . We acquired the

published recordings from publication web site2 and MIDI scores of remaining tunes from

referenced site3 according to table of MIDI compositions attached with the paper [67], which

*Although this model is included in the comparison, it is very different in nature and size from the other
models and therefore it has been trained differently, as was described above.

2https://labrosa.ee.columbia.edu/projects/piano/
3http://piano-midi.de/
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comprehensively describes used data set. We also used the same soundfont for synthesis as

stated in the paper, namely Yamaha Disklavier grand piano.

Tabul’ka 16: Comparison to reference approach.

Approach Recorded (10) Synthesized (25) Combined (35)

Poliner and Ellis [67] 56.5% 72.1% 67.7%
Nam et al [63] - - 72.5%
Ryynanen and Klapuri [74] 41.2% 48.3% 46.3%
Marolt [57] 38.4% 40.0% 39.6%
MLP-Spec 56.2% 61.2% 59.2%
RNN-Spec 46.3% 56.1% 52.1%
BiRNN-Spec 54.5% 63.5% 59.9%

Due to time insufficiency, our models are not fully trained, neither fine-tuned on validation

data of LabCOMP corpus, as opposed to concurrent approaches, so these results now serve

just as a proof of concept.

In this work, we propose several novel approaches and dedicate our focus to their realiza-

tion and iterative validation of subsequent design ideas. The search for optimal hyperpara-

meters, such as model size and regularization, training parameters will be subject to future

research, along with fine-tuning of these models on validation subset in order to prepare for

proper evaluation and comparison.

Also, the notable difference in performance of our models between evaluations on Lab-

SYNTH and LabCOMP datasets seems to follow the structural difference between those

datasets. While LabCOMP is divided into training, validation and test subsets by grouping

whole tunes into these 3, LabSYNTH cuts 3 pieces out of each tune and places those into

subsets. Since repetition of musical themes and phrases is typical for classical compositions,

LabSYNTH has higher probability to generate overlap of polyphonic textures between those

subsets, simply by design.

7.4 Human-Level Evaluation

In order to gain deeper insight into performance of our methods, we often visualize and

evaluate individual transcriptions on real-world data. Although this naturally belongs to the

development and debugging process, we share some takeaways from this process in this

chapter.
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Additionally, we test the robustness of our method by comparing transcription results of

digitally created audio snippet versus the same audio snippet reproduced and re-recorded with

a microphone embedded in smartphone.

7.4.1 Role of Temporal Context

After initial experiments with simple MLP-Spec model, we noticed plenty of noise in its

predictions. These are all the extra-short note predictions occurring with very little to none

support from neighboring time frames and indicate that system is missing capacity for

temporal modelling.

Some similar approaches previously used to employ Hidden Markov Model for temporal

smoothing of classifier outputs such as [67, 63]. However, we want to rely purely on the neural

network modelling capacity and thus approach this issue from the viewpoint of architecture

design.

By introducing time context to each prediction sample, the support for note presence from

neighboring time frames is encoded in the state of recurrent unit after the sequence leading

to particular prediction is processed. In case of bi-directional RNN, this state encodes the

sequence of time frames from both directions in time, which results in improved consistency

in predicted note durations, as should be clear from Figure 38.

For this examination, the used piece of music is intro to Freedom at Midnight by David

Benoit.

(a) MLP-Spec (b) BiRNN-Spec

Obr. 38: Temporal smoothing by recurrent layer and input time context.
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7.4.2 Examining Gradually Trained WN4T

After multiple sessions of gradual training of our WN4T model, as described in 7.3.4.2, we

examined its transcription abilities and fail modes on some audio snippets from different

music excerpts from those included in training data.

(a) Note certainties (b) Evaluation matrix

Obr. 39: Evaluation and certainties of WN4T predictions

On subfigure 39a at ≈ 4.5 seconds, there are 3 very short consecutive notes played

chromatically, which results in audio frames containing multiple overlapping parts of ADSR

envelopes of different notes. Response shows some very low certainty but at all different notes

during this time period. This and also other "vertical peeksïn prediction matrix suggests, that

this kind of confusion happens when multiple familiar waves get spotted in single sample as

previously unseen example of wave snippet.

Additionally, the ability of WN4T to transcribe monophonic texture is obvious from

subfigure 39b. While most of polyphony ends up getting only the strongest note transcribed, if

any, certainty plot shows networks’ familiarity with some harmonic intervals, possibly learned

from the small data set of synthesized tunes from LabROSA.

We also plot raw predictions on this piece for reference of how noisy prediction certainties

change over time.
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Obr. 40: Raw predictions of WN4T.

For this examination, we used piece of intro to well-known jazz standard Autumn Leaves.

7.4.3 Testing Robustness of Proposed Method

We decided to also make an extra test for robustness of our method, based on real-world use

case, while also checking for different parameters of our input data. We evaluate our currently

most accurate transcription method, which is based on BiRNN-Spec model.

Following test is intended to give some indication about the robustness of our method

against 3 parameters of audio piece being transcribed.

1. Musical genre of the tune.

2. Tempo of the tune.

3. Quality of audio recording.

We check for 1 by choosing non-classical compositions for the test of model trained

on purely classical music corpus. Next, we check for 2 by choosing two compositions with

opposite extremes in tempo parameter. Finally, we check for 3 by introducing two variants of

each piece excerpt.

First variation is classically synthesized audio (columns synthesis in the table), while

second variation is created by reproduction of synthesized audio through speakers1 and

1We used speakers model Genius SP-HF1800A for audio reproduction.
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subsequent re-recording of reproduced sound with smartphone1 built-in microphone (columns

recording in the table).

For both pieces we use performances by Japanese jazz virtuoso and composer Hiromi

Uehara: a slow tempo tune Place to Be2, and a fast tempo tune The Tom and Jerry Show3.

We trim first 100 seconds of each MIDI file, synthesize the resulting piece with previously

described soundfont Nice-Keys-Extreme and replay-record resulting audio files.

We further time-align the recordings to labels and test our BiRNN-Spec model checkpoint,

which was trained according to description in 7.3.4.1, on this data configuration4.

Tabul’ka 17: Testing performance of BiRNN-Spec model on different data variations.

Tune Place to Be (slow) Tom and Jerry (fast)
Variant synthesis recording synthesis recording

precision 89.40% 91.00% 72.36% 61.92%
recall 61.25% 37.98% 47.92% 24.31%
F1 72.69% 53.60% 57.65% 34.92%
Acc 57.10% 36.61% 40.50% 21.15%

According to parameters of this test and results presented in Table 17, we observe the

outcomes and make following notes.

1. The size of test sample is too small to enable us make any conclusions about robustness

against genre variations, however, average performance drop against test results on

classical music data is ≈ 15% which is significant.

2. Results indicate, that harmonic content together with tempo of the tune, in terms of

average frequency and duration of notes, are both important parameters of dataset

variety. They should be considered when approaching model robustness issues.

3. Quality of audio recording seems to be another important parameter of data variety.

Apparently, recall of many notes is based on their timber, since it drops significantly

with lowering audio quality, meaning that many new False Negatives are introduced.

1We used smartphone model Samsung Galaxy Ace 4 to create the recording.
2Acquired from https://musescore.com/user/6785046/scores/1718291.
3Acquired from http://www.mediafire.com/file/4kc3lzniptem1c1/Hiromi+Uehara+-

+The+Tom+and+Jerry+Show.mid.
4This data configuration is also stored on path /data/hiromi/ on electronic medium attached

to this work. Results of this test including metrics and medial content are also stored on path
/tests/robustness/hiromi/.
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Since sound quality is one of factors with significant influence to note color, the recognition

system must become more robust to their variations. Although we tried to accomplish this by

training on multiple-soundfont based synthesized data, we admit, that according to the size of

data corpus we trained the evaluated model on, it might still be overfit.

There are also numerous other means to introduce variations to timbral content of training

data which we might take into focus during our future work. Some examples might include

application of sound effects, filters and equalization with intention to mimic imperfections

of real-world recording setups. This might lead to creation of dataset with much higher

representativeness of expected production data.
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8 Conclusion

Although we have initially designated quite ambitious goal of approaching multiple music

transcription subtasks simultaneously, as stated in Section 5, due to problem complexity and

amount of resources available, we kept our initially stated priorities and stayed at the number

one task of detecting notes in polyphony, for the scope of this work.

We proposed several methods to approach the problem of Multiple Fundamental Frequ-

ency Estimation using artificial neural networks and deep learning methods. With focus on

network architecture design, we realized all of our proposals, evaluated and compared them

to concurrent approaches and amongst each other.

Currently the best performing amongst our approaches appears to be simple Multi-Layer

Perceptron model augmented by a single bi-directional recurrent layer. This is also our latest

approach and thus it still requires more exhaustive evaluation.

When compared to state-of-the-art approaches, our models have quite some limitations in

terms of evaluation performance. However, their full potential may have not been unveiled yet.

At first, our models could gain capacity just by increasing size and introducing regularization

techniques, which is pretty straightforward approach that actually has not been realized yet.

First branch of this work is based on iterative and incremental design of neural network

architecture tailored to learn the know-how related to music transcription process from spectral

domain. This branch has started from scratch and appears to be the more successful one at

the moment. Some possible future directions here include involvement of convolution layers

on the input and application of recurrency rather to higher level features. Additionally, our

spectrogram architecture might grow deeper by employing residual or skip connections across

its main building blocks.

The second main branch builds on sophisticated deep architecture with capacity to learn

new feature space directly from raw audio. Since this is a very dense data representation, it is

challenging for processing, in terms of time costs. However, there are countless options to

extend our current state of work with WaveNet architecture.

Initially, we could use adaptive threshold instead of static one. Implementation options

include for example use of binary activations on the output layer, based on threshold values

learned by biases for each output unit individually.

Next, it would be very interesting to visualize activations of hidden layers of WaveNet,

since the model is actually forced to invent its own method for extraction of spectral features,
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during the training. By feeding noise to the trained network and visualizing hidden layers

activations, similarly to famous DeepDream1, it might be very useful to actually see what is

going on within deep representations of this large, complex network architecture.

Interesting option is also to further iteratively build on current WaveNet architecture by

introducing slight changes with goal to optimize it for task of transcription. Also, significance

of context size and receptive field size for transcription task has not been examined yet.

We also consider our idea to use local conditioning of WaveNet as a placeholder to

supply the network with spectral magnitude data and provide it along with raw audio, which

could fundamentally unburden the network from the cognitive load of spectral analysis, or

at least provide significant help with the task, very interesting. This extra capacity could

improve the network performance or help it to learn perform multiple transcription subtasks

simultaneously.

Additionally, global conditioning could be used to define e.g. sound source which the

network should focus on during the transcription. Actually, one interesting initiative already

gave rise to a comprehensive data set of all possible sound sources and sound colors used

in modern music production, with a goal to train the networks as much as it goes about the

timber, and possibly even provide a tool for live performance based on neural audio synthesis2.

Fortunately, deep learning will obviously continue its evolution in a rapid tempo and will

find various applications in possibly every domain, leaving no excuse for audio and music.

1https://github.com/google/deepdream
2https://magenta.tensorflow.org/nsynth
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A Technical Documentation

In this section, we present details of technical realization of our method with focus on selected

aspects of our solution.

A.1 Project Structure

This project is organized into modules of python scripts. It also provides some Jupyter

Notebooks for purposes of functionality demonstration or fast prototyping in development

use cases.

Root directory of this project is located in directory /source on electronic medium

attached to this work. It is structured into logical units by directories as described below.

data/ - data sets and subsets organized into folders and subfolders.

sf2/ - directory containing SF2 format audio sample libraries used for synthesis.

logs/ - logs from TensorFlow training sessions and saved trained model checkpoints.

prep/ - module of utility scripts for data preparation and preprocessing. Also some obsolete

code for manual preprocessing into pickle files is included in files:

pickle_routines.py - set of functions for audio and MIDI data preprocessing

and storage.

prepare_data.ipynb - development notebook for preprocessing methods.

pickle_data.ipynb - demonstration notebook with examples of pickling,

saving, loading and visualizing prepared data.

readers/ - module containing readers for multi-threaded data loading and preprocessing,

used by executable training and testing scripts of different models.

utils/ - module that aggregates source files of various utility functions imported by other

modules and used across the project.

models/ - training and usage implementation of neural network models in TensorFlow.

Also, obsolete code for training on data stored in pickle format is included in notebooks

mlp_spec.ipynb and rnn_spec.ipynb.

On Figure 41 is outlined structure of our implementation by means of UML package and

class diagram components, although with extensions in terms of custom stereotypes.
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Obr. 41: Diagram illustrating project structure and component dependencies.
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A.2 Packages and Modules

Since we use custom notation for several aspects of our solution organization, we further

provide some context to the above diagram. We divide the project sources into packages

and modules according to their purpose. We implement several executable python programs,

which follow standard CLI interaction behavior. We also try to follow established code style

conventions1.

A.2.1 Preprocessing

This package, located in directory prep/, contains 4 executable python scripts serving for

dataset manipulation and analysis.

transp.py - our 12-fold transposition algorithm, already mentioned in 7.2.2.

trim.py - trimming of given time interval from MIDI file collection and saving new

collection with same file names into arbitrary location.

synth.py - synthesis of WAV audio provided MIDI data collection and valid paths to SF2

file indexed through file soundfonts.json also located in this folder.

summ.py - summarization of dataset statistics by parsing events from MIDI files and

counting corresponding WAV files. Requires each MIDI file to have at least 1 respective

WAV file in same directory with same file name and optional postfix. This dataset

file naming structure is implicitly created by synth.py and is also required by data

readers to work properly during training.

Additionally, Jupyter Notebook usage.ipynb is provided for usage demonstration of

these data processing scripts.

Package also contains open-source implementation for computation of inverse CQT

icqt.py for development purposes, and demonstration notebook sample_check.ipynb

for examination of preprocessed data.

A.2.2 Utility Functions

In directory prep/, the executable script check_gpus.py serves simply for availability

of GPU devices and proper configuration of tensorflow-gpu installation.

All other scripts in this package are organized into python module and their parts are

importable by external scripts. Main purpose of this library is code re-usability. Source file

filesystem.py contains routine functions for filesystem manipulation used widely across

project. By simply importing piece of functionality from common location, we prevent code

redundancy and enhance code sustainability.

1https://www.python.org/dev/peps/pep-0008/.
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Rest of the source files provide functionality respective to their names, thus namely for

piano roll data structure manipulation, metrics calculation, tensorboard logging routines,

evaluation-level audio and image rendering routines and training session settings definition.

These components are mainly imported by training and testing scripts of neural network

models implementations.

A.2.3 Data Readers

Data readers have been aggregated into separate package for the sake of future reusability and

unification, since their functionalities overlap. They might be refactored for use with some

design patterns in the future.

Currently, spec_reader.py implements SpecReader class which is sufficient data

processing worker for all three *-Spec models, provided modest but sufficient parametrization.

For training of WN4T model, wave_reader.py provides multiple data acquisition

methods. First is traditional loading of audio from disk files. Alternatively, notes are generated

with many degrees of randomization and synthesized on the fly, which gives rise to training

method with potentially infinite training data variance. That is also why this program loads

SF2 data source.

A.2.4 Neural Network Models

Since we implement four different neural network models into individual modules, we used

somewhat abusive representation in our diagram. By generalization relationship between

module instantiation and module template neural network model packages, we denote that

each individual module instantiation ({mlp,rnn,birnn}_spec and wn4t) has the same

structure, contents and relationships to other components in the diagram, as is represented by

module template package.

Further, by «inst» stereotype, we denote instantiation of destination component by

source component, respective to the arrow direction.

Each module of specific neural network model contains executable python CLI programs

for training and testing, both richly parametrizable through program arguments and external

file.

In following diagram, we try to visualize fundamental aspects of model training me-

chanism, with focus on data processing and interactions between trainer and data reader
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thread.

A.3 Online Data Processing with Multi-Threading

Previously, we performed one-time preprocessing and saved prepared data into single file,

which was whole loaded into operational memory during the training process. Due to inc-

reasing demands on size of training data throughout the work, we had to switch our data

processing method to more scalable one.

As depicted on Figure 43 while main thread executes training and evaluation on GPU,

reader threads effectively use free CPU time to preprocess data and prepare training samples

into TensorFlow Queue1. Since enqueue and dequeue are blocking operations, if data prepro-

cessing speed is not in balance with training speed, the faster process waits for the slower

one on these Queue operations. More detailed description of specific data reading variants

follows.

A.3.1 Waveform Data Reading

Since we train WN4T model on 16kHz temporal resolution data, the piano roll labels in

this resolution result in increase of memory requirements by factor of 128 for each training

example snippet.

Therefore, we get rid of the redundancy of piano roll representation by simply constructing

table of unique polyphony texture vectors and further keep only vector of indices into this

table. This way, we reduce the memory requirements increase down to factor of 1 from factor

of previous 128. We further optimize this by subsampling the vector of indices.

1https://www.tensorflow.org/programmers_guide/threading_and_queues.
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Obr. 42: Diagram illustrating data processing for WN4T training.

Following tuple (waveform W, table T, indicces I) represents thus encodes the tune

data and labels in much memory effective way. Single thread is dedicated to loading tunes

from disk, performing this encoding and storing results in first Tune Data Queue. Next thread

(possibly several threads), operates on tune data retrieved as tuple from this Queue. This thread

performs backward up-sampling of indices vector and processes piece data and reference by

(sample_size) fragments, reconstructing full size piano roll only one fragment at a time. This

results in pairs (waveform W, pianoroll P ) which are further enqueued into Batch Data

Queue for the training thread. Hihg-level overview of this processing pipeline is depicted on

Figure 42.

We use simple tf.FIFOQueue1 for Tune Data Queue implementation, since tunes

are already being selected randomly by the reader thread. Although for implementation of

Batch Data Queue we use tf.PaddingFIFOQueue2, since cutting audio pieces into fixed

size sequences almost always leaves last sequence of arbitrary size. This is where padding

comes in, by dequeue-ing multiple samples from this kind of Queue, all sample sequences are

automatically zero-padded up to the maximum sequence length within given batch.

A.3.2 Spectral Data Reading

In similar fashion, the spec_reader.py implements batching of data from corpus of WAV

and MIDI files. Although only single Queue is used this time, since no intermediate encoding

is appropriate here. Workflow goes as follows.

1https://www.tensorflow.org/api_docs/python/tf/FIFOQueue.
2https://www.tensorflow.org/api_docs/python/tf/PaddingFIFOQueue.
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Obr. 43: Diagram illustrating fundamentals of model training workflow.
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1. Reader thread randomly loads tune from data corpus.

2. Reader thread performs CQT transformation and retrieves piano roll.

3. Reader thread iteratively enqueues training samples randomly chosen from piece data

until tune sample rate ratio given by tune_sr argument is satisfied.

For additional randomness in data sampling, tf.RandomShuffleQueue1 is used,

with emptiness constraint min_after_dequeue is set to 0.5, which specifies minimum number

of elements that will remain in the Queue after dequeue operation, ensuring a minimum level

of mixing elements.

1https://www.tensorflow.org/api_docs/python/tf/RandomShuffleQueue.
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B Usage and Maintenance Guide

B.1 Install Guide

This install guide is provided for users of 64-bit Linux operating system and was tested on

Ubuntu 16.04 LTS1 distribution. In case you are running different operating system, please

refer to official instructions online2.

All installation commands need to be issued with root-level privileges, which is demon-

strated by sudo prefix in provided examples, but may need different approach under various

operating systems.

B.1.1 Install CUDA Toolkit

If your machine has CUDA compatible GPU, in order to utilize its computing capabilities,

installation of NVIDIA’s CUDA Toolkit, and additionally cuDNN library is required.

1. On site https://developer.nvidia.com/cuda-downloads select Linux

as your target platform, architecture x86_64, distribution, version of your operating

system and finally installer type "runfile (local).

2. Install CUDA Toolkit from within directory where you downloaded the installer using

command sudo sh cuda_8.0.44_linux.run (edit to the file name you down-

loaded) and follow the command-line instructions.

3. Install the CUDA Toolkit into default directory.

If it is not usr/local/cuda/, make sure there is symbolic link at this path

pointing to the installation directory.

B.1.2 Install cuDNN library

Note, that registration to NVIDIA Developers site will be necessary to access the installation

of cuDNN library.

1. Download cuDNN library from NVIDIA3.

1http://releases.ubuntu.com/16.04/
2https://www.tensorflow.org/get_started/os_setup
3https://developer.nvidia.com/cudnn
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2. Assuming that CUDA Toolkit is installed in usr/local/cuda/, uncompress and

copy files from downloaded cuDNN library into this directory.

3. Run the following commands (edited to reflect the cuDNN version you downloaded).

tar xvzf cudnn-8.0-linux-x64-v5.1-ga.tgz

sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include

sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h

/usr/local/cuda/lib64/libcudnn*

B.1.3 Install pip and Jupyter Notebook

If you wish to run on python3, instead of pip use pip3 in each of following commands.

1. Install pip - the package management system for python software - by running follo-

wing command.

sudo apt-get install python-pip python-dev

2. Install Jupyter Notebook - interactive development environment for python.

sudo pip install -upgrade pip

sudo pip install jupyter

B.1.4 Install TensorFlow

1. Install Tensorflow either with GPU support, or without, depending on your hardware

and preferences.

sudo pip install tensorflow-gpu

sudo pip install tensorflow

2. In case this command reports errors, please to this section on official page1 for specific

installation instructions.

3. Trigger TensorFlow installation.

sudo pip install -upgrade $TF_BINARY_URL

1https://www.tensorflow.org/get_started/os_setup#pip_installation
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B.1.5 Install Auxiliary Python Libraries

Choose some local path, e.g. /usr/local/lib, to store installations of required python

libraries.

B.1.5.1 Librosa

• To install librosa, run following command.

sudo pip install librosa

B.1.5.2 Pretty MIDI

• To install pretty_midi library, fork the project repository1 into some local directory.

• In command line, within this working directory, run following command.

sudo python setup.py install

B.1.5.3 FluidSynth

• To install FluidSynth library for MIDI sound synthesis in python, first download

project sources2.

• Extract them into some local directory using following command.

tar -zxvf pyFluidSynth-1.2.4.tar.gz

• In command line, within this working directory, run following command.

sudo python setup.py install

B.1.5.4 MIR Eval

• To install mir_eval library for evaluation routines, fork project repository3 into some

local directory.

• In command line, in this working directory, run following command.

sudo python setup.py install

1https://github.com/craffel/pretty-midi
2https://pypi.python.org/pypi/pyFluidSynth
3https://github.com/craffel/mir_eval
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B.2 User Guide

In this user guide, we describe two fundamental use cases with usage examples: training and

usage for transcription / testing.

Additionally, in order to browse the Jupyter Notebooks for demonstration of usage or

development and prototyping, follow these steps:

1. Start terminal, set your working directory to the root directory of this project (source/)

as retrieved from attached medium.

2. Run following command.

jupyter notebook

3. Open your web browser, and visit address http://localhost:8888/

You should now be able to see root directory of the project in web interface of jupyter

notebook.

B.2.1 Configuration Files

To be able to set up the training or evaluation session, it is necessary to properly setup the

program parameters. These are mostly inserted as CLI program arguments, or through a json

file. Since CLI program arguments are properly documented and their list with meaning and

usage is accessible through execution of given CLI program with argument -h according to

conventions, we only explicitly explain formatting of json configuration files.

B.2.1.1 Note Generator

This configuration file, located at /models/wn4t/note_generator_params.json,

is used to specify how notes are generated by WaveReader during training of WN4T and

contains following parameters.

poly - integer (1, 2, ...) specifying polyphony level to generate examples at.

combined - boolean (true/false) value, whether to generate random polyphony from 1

to specified degree, or only polyphony of specified degree.

maxlen - integer (1, 2, ...) specifying upper limit number of seconds to generate for single

piece.
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B.2.1.2 WN4T Params

This configuration file, located at /models/wn4t/default_params.json, defines

model parameters of WN4T for given training/testing session. These parameters must stay

the same between training and testing of same model checkpoints.

initial_filter_width - integer value, size of the filter of initial non-dilated causal

convolution used as first layer of the network.

filter_width - integer value, size of single filter of dilated causal convolution used

across the network.

dilations - array of integers, specifies dilation factors of successive dilation layers,

together with number of dilation layers implicitly by size of this array.

The remaining parameters are self-explanatory.

B.2.1.3 Spec Models Params

This configuration file, located at /models/*_spec/default_params.json, defines

model parameters of *-Spec model for given training/testing session. These parameters must

also stay the same between training and testing of same model checkpoints.

temporal_resolution_hz - integer value, specifying resolution required from piano

roll and spectrograms for training, in Hz, which is number of time frames per second.

base_audio_sample_rate - integer value, base for audio sample rate, must be power

of 2.

bottom_frequency_note - integer value, the lowest frequency examined by CQT

spectral analysis.

number_of_examined_notes - integer value, number of notes upward adjacent from

the bottom one, whose fundamental frequencies will be examined by CQT spectral

analysis.

bins_per_note - integer value, number of spectral bins examined per fundamental

frequency of each note, specifies spectral resolution of resulting spectrogram.

outputs_note_range - array of 2 integer values, first represents the bottom and se-

cond top musical note range interval to be examined in scope of network predictions,

determines size of output layer.
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fc_sizes - array of integer values, specifying sizes of fully connected layers within MLP

part of given model, size of array implicitly defines number of layers.

fc_activations - array of strings, specifying activation functions of fully connected

layers within MLP part of given model, cardinality of this set must match with fc_sizes.

rnn_cell_type - string, specifies type of RNN cell, possible values are listed in rnn_cell_factory

defined in file /models/birnn_spec/net/ops.py along with possible values

for *_activations.

rnn_cell_size - integer, specifies number of units in RNN cell.

rnn_cell_activation - string, specifies activation function for RNN cell(s).

rnn_number_of_cells - integer, specifies number of RNN stacked together.

The remaining, non-mentioned parameters are self-explanatory.

B.2.2 Training a Model with TensorBoard Monitoring

In order to start a neural network model training, make sure you have prepared training and

validation data in discrete directories. Initially, for both sets, the same set containing single

test file is used, namely path /data/sample/mono.

Also, make sure you forked this project folder structure on your own writable medium

with sufficient disk space (at least 1GB of free space for initial TensorBoard logs).

1. Open terminal.

2. Set your working directory to the module of model to be trained.

3. Type python train.py -h in order to see the list of arguments with their descrip-

tions and default values.

4. Type the command again with arguments specifying your data, log directory and other

session parameters.

Optionally add redirection of command output to a file in the log directory (e.g.

train.log).

Example training execution command might look like following:

python train.py −−data_dir_train ../../data/LABROSA/train −−data_dir_valid ../../data/LABROSA/valid »
» −−histograms True −−num_steps 1001 −−evaluate_every 100 −−logdir ../../logs/demo &>> ../../logs/»
» demo/train.log
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Optionally, in order to monitor and track the progress of training session in terms of logged

metrics and intermediate evaluation on validation data, follow these steps for TensorBoard

usage:

1. Open command line and go to project rooot directory.

2. Navigate to the logging directory specified for training session you want to monitor.

3. Launch TensorBoard by following command.

tensorboard -logdir=.

4. Navigate to the URL from the console output (possibly http://0.0.0.0:6006).

5. In SCALARS dashboard, you will be able to see logged scalar metrics, such as minibatch

loss, F1, and accuracy.

Obr. 44: Screen shot of SCALARS dashboard.

6. In GRAPHS dashboard, browse the computational graph of neural network model you

are training in current session.
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Obr. 45: Illustrative screenshot of GRAPHS dashboard.

7. During the training, in dashboards IMAGES and AUDIO you shall find audio and visual

representations of validation data estimations.

Obr. 46: Illustrative screenshot of IMGAES dashboard.
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B.2.3 Using Trained Model for Transcription and Evaluation

In order to test performance of neural network model checkpoint, prepare test data into

discrete directory.

1. Open terminal.

2. Set your working directory to the module of model to be trained.

3. Type python train.py -h in order to see the list of arguments with their descrip-

tions and default values.

4. Type the command again with arguments specifying your test data directory, log

directory where checkpoint of trained model is stored and specify, if audio and image

media should be generated, since by default, they will not.

Since by default, best performing models are saved into checkpoint files in subfolder

$LOGDIR/best/, this is probably the directory where testing script should be instructed to

look for model checkpoint to use for testing. Example test execution command might look

like following:

python test.py −−media True −−data_dir ../../data/LABROSA/test −−logdir ../../logs/demo/best

Test results should now be saved in file $LOGDIR/best/metrics.json while trans-

cription results in terms of audio and visualizations should be in the same directory.
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C Contents of Attached Electronic Media

The electronic media attached to this document has following structure and contents:

/doc

− master’s thesis document together with annotations in Slovak and English language

/doc/bibtex

− reference files in BibTeX format

/doc/latex

− documentation files in LaTeX format

/doc/latex/tables/

− source tables of own graphs printed in thesis

/doc/latex/figures/

− pictures and visualizations printed in thesis

/doc/resources

− available resources used

/source

− root directory of project implementation

/source/data

− data sample for used in experiments described in this work

/source/logs

− logs from training sessions and checkpoints of some pretrained models

/source/sf2
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− soundfonts used for sound synthesis and cited within this work

/tests

− complex outputs from tests

readme.txt

− description of media content in Slovak and English language
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D Project Schedule

D.1 Summer 2016

− Deeper analysis and upcoming selection of appropriate preprocessing methods.

− Dataset selection and preprocessing for easy further access during experiments. Selec-

tion of benchmark problem and its benchmark data.

− Deeper analysis of existing models and their applications.

− Hypothesis preparation and design of models for upcoming experiments.

− Experiments with different architectures. Combining modules and testing different

models on benchmark data.

D.2 Autumn 2016 (DP2)

− Evaluation of experiments and selection of promising setups.

− Writing design part of thesis report, revision of analysis.

− Implementation and extension of proposed method(s).

− Experiments with implemented method(s) on different data and different problems.

Tuning the model.

Most of tasks listed in project schedule for summer and autumn of year 2016 were

successfully fulfilled. Some of them only partially, and very few of them postponed, since

they were not relevant yet, as we originally expected.

Anyway, the actual time scale of their fulfillment was slightly shifted against the schedule.

Mostly, implementation tasks were performed during the summer, while documentation and

analysis tasks were shifted to autumn.

Nevertheless, the time required for implementation tasks even during autumn was much

larger than initially estimated. This is also why time reserve was and continues to be incorpo-

rated within project schedule.

Project schedule for upcoming semester has been updated according to latest progress and

results.
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D.3 Winter 2016/2017

− Implementation of model for transcription from raw audio.

- specifically work plans outlined in Section 6.2.

− Large model-specific dataset preparation.

− Large-scale evaluation of proposed method(s).

− Preparation of research article for IIT.SRC 2017.

− Exploration of feature extraction methods and their influence to performance.

D.4 Spring 2017 (DP3)

− Experimental search for optimal setup of promising architectures.

− Final set of experiments and their evaluation.

− Thesis report finalization, including Slovak language extracted version.

− Time reserve for unexpected complications during previous work.

Since the implementation of WN4T model has been more complex task than expected

due to significant memory issues, this task has been ongoing for whole winter and significant

part of spring. However remaining points did not struggle too much because of this, since we

have been able to work on then as well in parallel.

Although we did not get to exploration of feature extraction methods as was originally

planned, we focused on experimentation with large data sets and large networks. This, however

cause us way too large time delay, which forced us to finish the documentation of this work in

an uncomfortably small time span.
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Abstract. As deep learning approaches arise thanks
to availability of large datasets and high computing
power, they show increasing competence at solving
various tasks of growing complexity. Automatic mu-
sic transcription is one such problem, which has been
approached by computer scientists in music informa-
tion retrieval for decades, remaining unsolved. Recent
advances introduced deep architectures with signifi-
cant audio modelling capacity. Since transcription of
complex polyphony requires distinct cognitive capa-
bilities, we believe, that deep learning could success-
fully tackle this problem. On top of spectral analysis,
we propose neural network for frame-level classifica-
tion, evaluate on standard dataset and conclude com-
petitive and promising results.

1 Introduction

With the advent of new technologies, we have seen
some dramatic transformations in music industry to-
gether with radical growth of music content. These
transformations have influenced our means for musi-
cal content production, storage, distribution and con-
sumption. As the richness of music content grows, it is
crucial to have new methods to describe this content.

Music Information Retrieval (MIR) is an inter-
disciplinary science of retrieving various information
from music. To list some interesting problems ad-
dressed by research in the field, there is Similarity
Search, Query by Singing, Key Detection, Chord Esti-
mation, Beat Tracking, Tempo Estimation and notably
Multiple Fundamental Frequency Estimation.

All these tasks are motivated by a demand from
either academia or industry, to provide software means
for music analysis, production, distribution, organiza-
tion, storage or reproduction.

Manually performed music transcription, also

called musical dictation in music pedagogy, is a
skill of identification music elements solely by hear-
ing, which even talented musicians need to develop by
practice (ear training).

In this paper, we address the problem of Auto-
matic Music Transcription (AMT). It is considered
one of the Holy Grails in the field, since a reliable
transcription yields us symbolic representation of mu-
sic content, which contains information substantial to
many other MIR tasks. It may be also practically used
for computational musicology or effective compres-
sion of musical data.

Many approaches to multi-pitch estimation have
been examined so far. They break down by philoso-
phy into these:

1. Frame-level - separate estimations per time frame.

2. Note-level - tracking notes from onset to offset.

3. Stream-level - tracking pitch streams by sources.

Those methods can be further categorized by do-
main of operation (time vs. frequency), or core algo-
rithm (e.g. based on rules, signal processing domain
knowledge, probabilistic or classification-based).

Since AMT is a complex task, many methods have
been tuned to fit specific usage scenario or dataset
characteristics. This variety in previous approaches
also gave rise to different evaluation methodologies
and metrics.

However, the common property of all present
methods is the lack of accuracy, represented by sev-
eral transcription errors per musical piece, which is
still deep below human expert performance [1].

We examine a data-driven classification-based ap-
proach to frame-level multi-pitch estimation, based
on neural networks. We further restrict our method to
solo piano music and evaluate on corpus of classical
piano tunes.

∗ Master study programme in field: Information Systems
Supervisor: Dr. Márius Šajgalík, Institute of Informatics, Information Systems and Software Engineering, Faculty of
Informatics and Information Technologies STU in Bratislava
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2 Related work

To reach the context of our research hypotheses, we
focus here mostly on approaches to AMT and music
audio modelling, based on machine learning.

Although there are some more recent relevant
works, we refer to the project Automatic Piano Tran-
scription by LabROSA laboratory1 due to availability
of used dataset. In this work [4], for each of 88 pi-
ano keys, an one-versus-all binary SVM classifier is
trained on spectral features. Classification outputs
are then processed a posteriori by a Hidden Markov
Model for temporal smoothing. Results of this work
have been used as a baseline in other similar work [3].

Recently, deep learning with Convolutional Neu-
ral Networks (CNNs) has been applied to spectral im-
ages in order to detect notes in polyphony [7]. After
note onset times were detected, rectangular slices of
spectrogram centered at those times were processed
by CNN. Resulting 88 note probabilities were filtered
by rule-based algorithm to obtain final predictions2.
Though it has good results at detecting note onsets,
this approach lacks ability to track note durations.

Additionally, new architecture of deep neural net-
work was introduced by DeepMind, which demon-
strated significant raw audio modelling capacity [8].
WaveNet3 has been able to generate high quality
speech and music audio fragments, one sample at a
time. This suggests, that deep hierarchical structures
in architecture of neural network could provide ca-
pacity for modelling musical structures in AMT and
related subtasks, such as timbre recognition or dynam-
ics estimation.

3 Frame-level spectral classification

Our method relies purely on a neural network multi-
class classifier. It is trained on spectral amplitude data
obtained from dataset of labeled music. Classifier out-
puts are truncated and used for frame-level evaluation.

1. Preprocess labeled music data.

– Generate spectrograms from audio.
– Generate piano rolls from notation.
– Divide set into train, validation and test sub-

sets with even distribution of data samples.

2. Train the model on training data.

– Tune hyperparameters on validation data.

3. Evaluate on testing data.

– Calculate relevant metrics.
– Examine sample results empirically.

3.1 Preprocessing

Preprocessing is performed element-wise, where sin-
gle data element is a pair of audio and notation file,
describing single musical piece, e.g. tune or chord.

To enable time-frequency transformation, audio is
initially re-sampled using method described in [6].

Spectrogram is calculated using Constant-Q
Transform (CQT), which has constant ratio of fre-
quency to bandwidth, resulting in equally represen-
tative spectral bands across all notes being analyzed.
Since human perception of pitch operates in spectrum
on a logarithmical scale, this gives CQT advantage
over standard STFT, when it comes to musical data.
To calculate CQT spectrum, we use recursive sub-
sampling method for efficiency, as described in [5].

Piano roll is constructed from reference notation,
as a matrix of numbers denoting absence or presence
of notes (rows) in time frames (columns). Values from
〈0; 127〉 denote velocity of played notes.

We further normalize spectral magnitude values
into 〈−0.5; 0.5〉 to help neural net with convergence.
For now, we also truncate piano roll values to {0, 1},
in order to discard the information about music dy-
namics and reduce the task to simple note detection.

Finally, data are divided into training, develop-
ment and testing subsets roughly by ratios 8 : 1 : 1.

3.2 Building the network architecture

In order to iteratively build optimal network architec-
ture, we initiated our efforts with simple Multi-Layer
Perceptron (MLP) model and feed it with spectral co-
efficients on the input, gaining discrete probabilities of
presence per note on the output. Therefore, we denote
this model as MLP-Spec.

Figure 1. Architecture of MLP-Spec.

Since number, size and activation functions of hid-
den layers are subject to experimentation, we start with
model depicted on Figure 1.

1 http://labrosa.ee.columbia.edu/projects/piano/
2 https://www.lunaverus.com/cnn
3 https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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Rectified Linear Units (ReLU) on hidden layer
work as computationally efficient non-linearity, while
Sigmoid activations on output layer yield probability
values from 〈0; 1〉 for presence of all notes, which
makes the model a multi-class classifier. We use
Adam [2] for model optimization by default.

Based on initial results, we introduced slight mod-
ification to MLP-Spec. In order to provide the model
some time context, we added Gated Recurrent Unit
(GRU) between the input and first hidden layer. We
denote this model as RNN-Spec and feed it with a se-
quence of consecutive spectral descriptors, finished by
the time frame being estimated.

Though length of the sequence is not restricted by
RNN, since we do not aim to determine desired length
of context dynamically, we experiment with constants.

During the training, we regularly perform infer-
ence on validation data, and checkpoint model param-
eters after each improvement, based on key metric. We
also tried various combinations of model hyperparam-
eters between training sessions, in order to maximize
performance on validation data. We examined their
dependencies based on convergence curves and top
validation performance.

3.3 Postprocessing

If we discard velocity values in labels, we also reduce
estimated probabilities to binary values according to
specified threshold q, which is a parameter of evalua-

tion, given

Rn,t =

{

1, if Pn,t ≥ q

0, otherwise
(1)

where note n and time frame t are indices to array
P for estimated probabilities and array R for resulting
piano roll.

4 Evaluation

4.1 Metrics

As a key metric for performance evaluation we track
F1-Score, which is a harmonic mean of precision prec
and recall rec, given by (2).

F1 = 2 ·
1

1

prec
+ 1

rec

= 2 ·
prec · rec

prec+ rec
(2)

To enable comparison to reference approach, we
also measure frame-level accuracy (3)

Acc =
TP

(FP + FN + TP )
(3)

where TP , FP and FN denote total counts of
true positives, false positives and false negatives.

Evaluation metrics are computed from estimations
and labels. To examine confusion empirically, we fur-
ther create visualizations of estimations or use piano
roll to construct playable MIDI file.

4.2 Data

We first carefully selected preprocessing parameters.
Time resolution of 100 frames per second turned
out to be sufficient, also conforming to reference ap-
proach [4]. Bottom frequency was set to 27.5 Hz,
hence fundamental frequency of lowest piano note
A0. Spectral resolution was initialized to 3 frequency
bands per note, while 300 consecutive bands up from
the lowest one were analyzed in order to capture the
timbral artifacts of the highest piano notes.

LabROSA Most of our experiments with architec-
tures were conducted on set of labeled recordings re-
leased by LabROSA [4] containing 28 classical piano
pieces performed by a professional concert pianist.

From each tune, first 36 seconds were divided
into 30 training, 3 validation and 3 testing seconds
of data. With resolution of 100 frames per second
this amounts to 87000 training samples and 8700

validation and testing samples.

4.3 Results

At all of our experiments, we stick to threshold value
q = 0.5 and CQT calculation parameters sample
rate = 25600 Hz and hop length = 256 in
order to preserve time resolution of 100 Hz.

4.3.1 MLP-Spec: model depth dependency

With an experimental setup having 200 units wide
hidden layers and 300 frames large batch size, we
examined the influence of model depth on validation
performance.
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Figure 2. Validation performance of MLP-Spec at

different depths.
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In this case, results showed trend of decreasing
validation performance with increasing model depth.
Results on test data also confirmed this dependency.

In similar fashion, we examined the influence of
context sequence length to RNN-Spec model perfor-
mance. Results showed, that context did not help to
improve performance. In fact, it actually dropped with
growing context.

4.3.2 Comparing models performance

With the best performing variants of both examined ar-
chitectures having single fully connected hidden layer
with 1000 neurons, we trained and validated both on
same data and compare their convergence curves in
Figure 3.
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Figure 3. Validation performance comparison.

It is clear, that RNN-Spec converged into less opti-
mal solution than MLP-Spec. We suppose, that RNN-

Spec was able to recognize specific structures in spec-
tral changes over time, thanks to provided context, and
overfitted to their occurrences in test set. Our further
work with larger corpus supports this theory.

Additionally we compare our results to the refer-
ence approach [4]. This comparison is only approxi-
mate, since the training and testing sets were differing
in size between referenced evaluation and ours.

Table 1. Comparison to reference approach.

MLP-Spec RNN-Spec SVM

Acc 64.3% 56.2% 56.5%

4.4 Further observations

From additional experiments with different datasets,
we also observed the general tendency of neural net-
work models to overfit to timbral characteristics of
training data.

For example, models trained on synthesized au-
dio achieved test performance with F1-Score of ≈ 0.7
on synthesized audio data, while on data of recorded
audio it was contrasting ≈ 0.3.

Another set of experiments on dataset of chords
played in different inversions and transpositions
showed the strong influence of dataset structure.
Test performance of our models reached F1-Score of
≈ 0.92 here, in contrast to best results on LabROSA
set, which was ≈ 0.75.

5 Discussion

We have shown that even the simplest neural network
architectures can be tuned to achieve competitive re-
sults on AMT tasks. It is therefore viable to further
seek improvements in neural network architectures.

However, our current models seem to have issues
identifying inter-frame dependencies, such as note du-
rations. Therefore, one of the upcoming challenges
will be finding effective representations and structures
for time context modelling.

Some future directions include new feeding of
spectrogram fragments with analyzed frame at the
center of the sequence. Such fragments could be pro-
cessed using combination of convolutional layers and
recurrent layers.

Additionally, learning from raw audio could give
interesting results with architectures employing mul-
tiple 1-dimensional convolutions and residual or skip
connections.

Acknowledgement: This work was partially supported
by the Scientific Grant Agency of Slovak Republic,
grant No. VG 1/0646/15.
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F Resume in Slovak Language

F.1 Úvod

Ciel’om tejto práce je navrhnút’, zrealizovat’ a otestovat’ metódu automatickej transkripcie

hudby s využitím metód hlbokého učenia. Súčasne je prioritou práce inšpirovat’ sa existujúcimi

architektúrami neurónových sietí a aplikovat’ identifikované vzory pri vlastnom návrhu

architektúry.

F.1.1 Motivácia

Music Information Retrieval (MIR) je medzinárodná vedecká disciplína zaoberajúca sa

získavaním informácií z hudby. Je to malá výskumná oblast’, avšak s vel’kým potenciálom

pre aplikáciu vo svete. Zmienime iba niektoré zo zaujímavých problémov adresovaných

výskumom v tejto oblasti.

1. Hl’adanie podobnosti skladieb.

2. Dotazovanie spievaním či hmm-kaním melódie.

3. Automatické odhadovanie akordov znejúcich v polyfónií.

4. Sledovanie rytmu.

5. Odhadovanie tempa.

6. Viacnásobné odhadovanie fundamentálnej frekvencie.

7. Automatická kategorizácia.

8. Automatická transkripcia.

Všetky tieto úlohy sú motivované dopytom bud’ z akadémie, alebo priemyslu, aby poskytli

softvérové prostriedky pre analýzu, produkciu, distribúciu, organizáciu v databázach, či

reprodukciu hudby.

Manuálne vykonávaná transkripcia hudby je proces identifikácie hudobného obsahu

väčšinou čisto na základe sluchu, čo dokonca aj talentovaní hudobníci potrebujú rozvíjat’

cvikom ucha.
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F.2 Analýza problémovej oblasti

V tejto práci adresujeme problém Automatickej Transkripcie Hudby (Automatic Music

Transcription - AMT). Táto úloha je považovaná za Svätý Grál v oblasti, ked’že dostatočne

presná transkripcia poskytuje symbolickú reprezentáciu hudobného obsahu, ktorá už zahŕňa

podstatnú čast’ informácie potrebnú pre riešenie ostatných príbuzných problémov. Taktiež

by mohla byt’ prakticky využitá pri výskume počítačovej muzikológie, či pre efektívnu

kompresiu záznamov hudobných nahrávok do formátu symbolickej notácie.

Viacero prístupov k problému odhadovania polyfónie už bolo vyskúšaných. Z hl’adiska

filozofie ich môžeme rozdelit’ do nasledovných kategórií.

1. Na úrovni rámcov - odhadovanie polyfónie v každom časovom rámci zvlášt’.

2. Na úrovni nôt - sledovanie nôt od nástupu po odznenie.

3. Na úrovni prúdov - sledovanie prúdov tónov podl’a charakteristiky ich zdrojov.

Tieto metódy by sme mohli d’alej kategorizovat’ aj inak, napríklad podl’a domény v

ktorej operujú (časová / frekvenčná), či typu jadra použitého algoritmu (napríklad pravid-

lové systémy, algoritmy založené na expertných znalostiach z oblasti spracovania signálov,

pravdepodobnostné modelovanie, či klasifikačné algoritmy).

Ked’že AMT je komplexná úloha, vel’a metód bolo ladených pre špecifický používatel’ský

prípad, či špecifický charakter hudby. Táto rozmanitost’ v predchádzajúcich prístupoch taktiež

podnietila vznik rôznych metodológií vyhodnocovania a metrík pre sledovanie úspešnosti

týchto metód.

Avšak spoločná vlastnost’ všetkých súčasných metód je stále nedostatočná presnost’

reprezentovaná štatistickou pravdepodobnost’ou chyby meranou v desiatkach percent za

predikciu, čo v praxi predstavuje niekol’ko chýb transkripcie za čo i len minútu skladby. Toto

je stále hlboko pod úrovňou výkonu l’udského experta - človeka s hudobným sluchom a

praxou v transkripcií [17].

V tejto práci skúmame prístup budovaný predovšetkým na dátach, klasifikácií na úrovni

rámcov a založený na neurónových siet’ach. Obmedzujeme sa však v rozsahu tejto práce iba

na úlohu transkripcie sólovej klavírnej hudby. Našu metódu budujeme a aj vyhodnocujeme na

korpuse klasických klavírnych skladieb.
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F.2.1 Existujúce riešenia

V analýze predchádzajúcej práce sa venujeme prevažne prístupom k AMT problému a

modelovaniu zvuku hudby založeným na metódach strojového učenia.

Hoci už existujú novšie relevantné práce v tejto oblasti, zvolili sme si ako referenčný

prístup projekt s názvom Automatic Piano Transcription od laboratória LabROSA1, vzhl’adom

na charakter použitého prístupu a dostupnost’ dát ktoré boli využité na učenie modelu. V tomto

článku [67] je pre každý z 88 klavírnych tónov samostatný SVM klasifikátor trénovaný na

spektrálnych koeficientoch. Výstupy klasifikácie sú d’alej spracované skrytým markovským

modelom (HMM) pre časové vyhladenie výstupov. Výsledky tejto práce už boli taktiež

využité ako podklad pre porovnanie inými podobnými prácami, ako napríklad práca autora

menom Juhan Nam a kolektívu [63].

V tejto práci autori pristupujú k problému polyfonickej transkripcie hudby s použitím

niekol’kých metód strojového učenia. Ich prístupom je najskôr aplikovat’ techniku PCA

(Principal Component Analysis) bielenia a následne normalizáciu na spektrogram. V d’alšej

fáze sa učením bez učitel’a trénuje dvojvrstvová neurónová siet’ DBN (Deep Belief Network),

čo sa už v minulosti ukázalo ako úspešné pri úlohách klasifikácie hudby [37, 55]. Tieto boli

vrstvy boli trénované tzv. chamtivým spôsobom, vrstvou po vrstve. Aktivácie na skrytej vrstve

DBN boli d’alej spracované sadou SVM klasifikátorov. Predikcie týchto klasifikátorov boli

aktivované funkciou sigmoid na zadné (posterior) pravdepodobnosti, ktoré boli následne

spracované dvoj-stavovým HMM pre časové vyhladenie.

Avšak nedávno bolo hlboké učenie konvolučnými neurónovými siet’ami (CNNs) apliko-

vané na obrázky spektier za účelom detekcie nôt v polyfónií [82]. Najskôr sa jednoduchým

algoritmom pre hl’adania vrcholov v spektre našli časy nástupov tónov, následne obdĺžnikové

plátky spektrogramu centrované voči časom zdetekovaných tónov boli spracované CNN sie-

t’ou. Siet’ klasifikovala 88 pravdepodobností znenia tónov, ktoré boli ešte následne filtrované

algoritmom založeným na pravidlách získaných heuristikou. za účelom získania finálnych pre-

dikcií2. Hoci má tento prístup dobré výsledky v detekcií nástupov tónov, chýba mu schopnost’

sledovat’ dĺžky trvania tónov.

Navyše taktiež nedávno DeepMind na scénu uviedol novú architektúru hlbokej neuró-

novej siete, ktorá demonštrovala znamenitú kapacitu pre modelovanie surového zvukového

1http://labrosa.ee.columbia.edu/projects/piano/.
2https://www.lunaverus.com/cnn
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signálu [? ]. WaveNet1 dokázal vygenerovat’ vysoko kvalitné úryvky reči a hudby, a to vzorku

po vzorke, čisto modelovaním podmienenej pravdepodobnostnej distribúcie nasledujúcej

vzorky na základe existujúcej sekvencie vzoriek. To nám napovedá, že hlboké hierarchické

štruktúry v architektúrach neurónových sietí by mohli poskytnút’ dostatočnú kapacitu pre

modelovanie hudobných štruktúr priamo zo zvukového signálu, za účelom AMT a podobných

podproblémov, ako rozpoznávanie farby tónu či odhad dynamiky hraného tónu.

F.3 Navrhnuté metódy a opis riešenia

Vzhl’adom na špecifickost’ akustických a hudobných signálov uvažujeme v tejto práci viacero

alternatívnych prístupov k problému polyfonickej transkripcie hudby z hl’adiska metód

neurónových sietí.

Tieto alternatívy sa líšia najmä v spôsobe, akým reprezentujú hudobný signál na vstupe

neurónovej siete, čo taktiež určuje rozsah problému, ktorý musí daná siet’ riešit’, čo následne

ovplyvňuje rozhodnutia o návrhu architektúry danej siete.

F.3.1 Modelovanie hudby v spektrálnej doméne

Prvým krokom v takmer každom systéme spracovania zvuku za účelom analýzy hudobného

obsahu je logicky a už tradične transformácia z časovej domény do frekvenčnej. My preto

taktiež najskôr skúšame trénovat’ neurónové siete na deskriptoroch spektrálnych čŕt.

Celkový proces v krokoch potrebný pre aplikovanie tejto metódy je teda nasledovný.

1. Predspracovanie zvuku, generovanie spektrogramu.

2. Predspracovanie referenčnej notácie do značiek, generovanie piano rollov.

3. Časová synchronizácia predspracovaných dát a značiek.

4. Rozdelenie dát na trénovaciu, validačnú and testovaciu množinu so snahou zacho-

vat’ podl’a možností najvyváženejšiu rôznorodost’ hudobného obsahu naprieč týmito

množinami.

5. Trénovanie modelu na trénovacej množine s periodickým vyhodnocovaním na vali-

dačných dátach. Prispôsobovanie hyperparametrov naprieč trénovaniami za účelom

maximalizácie validačnej presnosti (teda presnosti na validačnej množine).

1https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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6. Testovanie modelu na testovacej množine. Vyhodnotenie presnosti transkripcie pomo-

cou vypočítaných metrík vyhl’adávania informácií a taktiež manuálnym preskúmaním

výstupov.

F.3.1.1 Predspracovanie

Predspracovanie sa urobí po samostatných dátových jednotkách, ktoré reprezentujú samostatná

jednotky hudobného obsahu, ako napríklad skladby, stupnice, či akordy, v závislosti od

štruktúry datasetu.

Za účelom umožnenia transformácie do frekvenčnej domény je najskôr zvuk pre-vzorkovaný

metódou popísanou v [81].

Spektrogram je vypočítaný s použitím CQT (Constant-Q Transform) algoritmu, ktorý

má výhodu oproti klasickému STFT (Short-Time Fourier Transform) takú, že má konštantný

pomer frekvencie voči frekvenčnému rozsahu, ktorý analyzuje. To má za následok rovno-

merné rozmiestnenie reprezentatívnych spektrálnych pásiem naprieč frekvenciami všetkých

skúmaných nôt. Ked’že l’udské vnímanie výšky tónu operuje v spektre na logaritmickej škále,

toto dáva CQT algoritmu výhodu oproti STFT ak sa jedná o analýzu hudobných dát. Na výpo-

čet CQT spektra používame metódu rekurzívneho pod-vzorkovania za účelom výpočtovej

efektivity tak, ako je popísaná v [75].

Piano roll je skonštruovaný z referenčnej notácie ako matica čísel značiacich absencie

alebo prezencie nôt (riadky) v časových fragmentoch (stĺpce). Hodnoty z intervalu 〈0; 127〉

značia dynamiku (velocity) znejúcich nôt. Táto sa však v čase nemení, udáva iba silu úderu

na začiatku tónu a ostáva konštantná až po jeho koniec.

V d’alšom kroku normalizujeme hodnoty spektrálnych magnitúd do 〈−0.5; 0.5〉 s ciel’om

dopomôt’ neurónovej sieti ku konvergencií. V súčasnej fáze projektu taktiež zarovnávame

piano roll hodnoty na {0, 1}, za účelom zbavenia sa informácie o dynamike hudby a súčasného

zredukovania úlohy o úlohu detekcie dynamiky na úlohu čistej detekcie prítomnosti nôt.

Na záver rozdelíme dáta do trénovacej, vývojovej a testovacej podmnožiny zhruba v

pomere 8 : 1 : 1.

F.3.1.2 Návrh architektúry a trénovanie

Za účelom postupného budovania optimálnej architektúry začíname s jednoduchým modelom

viac-vrstvového perceptrónu (MLP) a trénujeme ho na spektrálnych koeficientoch, dostá-
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vajúc diskrétne hodnoty pravdepodobností prítomnosti noty na výstupe. Preto tento model

označujeme ako MLP-Spec.

(a) Viac-Vrstvový Perceptrón (b) Prvotné nastavenie MLP modelu

Obr. 47: Náčrt MLP-Spec architektúry.

Vel’kost’ vstupnej vrstvy závisí od spektrálneho rozlíšenia zvoleného v čase predspraco-

vania dát formou kombinácie parametrov výpočtu CQT spektrogramu. Vel’kost’ výstupnej

vrstvy je daná rozsahom nôt, ktoré si povieme, že chceme aby siet’ predikovala. Počet a

vel’kosti skrytých vrstiev a ich aktivačné funkcie patria do množiny hyperparametrov modelu.

Prvotné nastavenie obsahuje jedinú skrytú vrstvu a výstupnú vrstvu. Aktivačná funkcia

na skrytej vrstve je použitá ReLU (Rectified Linear Unit), za účelom výpočtovej efektivity a

postačujúcej nelinearity modelu.

Na výstupe máme sigmoid aktiváciu, ked’že chceme z našej siete mat’ viac-triedovú

klasifikáciu, podobne ako majú aj relevantné existujúce prístupy, ked’že táto funkcia aktivuje

pred-aktivácie výstupnej vrstvy do sady hodnôt z intervalu (0, 1) reprezentujúceho diskrétne

pravdepodobnosti estimácií jednotlivých tónov.

V d’alšej iterácií návrhu architektúry na základe prvotných výsledkov pridávame reku-

rentnú vrstvu na začiatok ako vstupnú vrstvu siete, za účelom poskytnutia časového rámca

ktorého polyfóniu predikujeme. Túto rekurentnú vrstvu kŕmime sekvenciou spektrálnych

deskriptorov po sebe idúcich časových rámcov.

V prvej iterácií používame jednosmernú rekurentnú vrstvu na spracovanie sekvencie.

V čase trénovania predikujeme všetky rámce zo sekvencie pre rýchlejšie učenie. V čase

testovania berieme do úvahy vždy iba tie predikcie ktoré ukončujú danú sekvenciu ktorá bola

na vstupe, za účelom zúžitkovania všetkej kontextuálnej informácie.
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Navyše za účelom využitia časového kontextu z oboch strán odhadovaného rámca v

čase, teda aj z minulých a aj z budúcich okolitých rámcov, skúmame možnost’ využitia oboj-

smernej rekurentnej vrstvy. Takejto sieti potom dávame predikovat’ časový rámec uprostred

poskytnutej sekvencie, namiesto toho koncového.

Na základe typu rekurentnej vrstvy použitej vrámci konkrétnej variácie modelu označu-

jeme model s jednostrannou rekurentnou vrstvou ako RNN-Spec a model s obojstrannou ako

BiRNN-Spec.

(a) Klasická RNN

(b) Základné nastavenie rekurentných modelov(c) Obojsmerná RNN

Obr. 48: Náčrt rekurentných architektúr založených na MLP.

Hoci dĺžka sekvencie nie je obmedzená rekurentnou vrstvou, ked’že v súčasnosti nemáme

metódu určovania žiadanej dĺžky sekvencie inú ako experiment, vyberáme hodnotu konštantne

pre každé trénovanie a pracujeme s ňou ako s hyperparametrom.

F.3.2 Postspracovanie

V zmysle úlohy detekcie nôt kde informácia o dynamike je nedostupná, posledným krokom

spracovania je prahovanie, čo v jednoduchosti znamená zaokrúhl’ovanie odhadovaných

pravdepodobností do logických hodnôt. Toto robíme na základe daného prahu q, ktorý je

parametrom vyhodnocovania. Ak máme
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Rn,t =







1, if Pn,t ≥ q

0, otherwise







(9)

kde nota n a časový rámec t sú indexy do polí P pre odhadované pravdepodobnosti a R

pre originálny piano roll.

Z tejto reprezentácie výstupu už počítame štandardné metriky pre kvantifikované vy-

hodnotenie. Taktiež robíme vizualizácie výstupov a manuálnym skúmaním pozorujeme a

vyhodnocujeme výkony našich metód.

F.3.3 Modelovanie hudby v časovej doméne

Ked’že spektrálna analýza, aj ked’ je vel’mi cenná a dôležitá, predsa len prichádza za cenu

narušenia signálu, strácame nejaké množstvo informácie. Pri windowingu zvukových úsekov

počas spektrálnej analýzy zahadzujeme informáciu o kontinuite signálu a zároveň predsa len

vytvárame v spektre nejaké artefakty.

Preto má zmysel skúšat’ učit’ neurónovú siet’ priamo zo časovej domény, teda zo surovej

reprezentácie vzorkovaného signálu. Začíname experimentovat’ s architektúrou WaveNet,

ktorá už ukázala svoj potenciál pre spracovanie zvuku pri generatívnych úlohách [84].

Architektúra WaveNetu je poskladaná z vrstiev tzv. dilatovaných kauzálnych konvolúcií

zobrazených nižšie.

Obr. 49: Zásobník dilatovaných kauzálnych konvolúcií; prekreslený z [84].

Zvyšovaním dilatácie po sebe idúcich vrstiev o faktor 2-ky zvyšujeme zorné pole1 siete

exponenciálne. Ďalším prostriedkom rozširovania zorného pol’a siete je aplikácia viacerých

1Zorné pole predstavuje počet vzoriek, ktoré je WaveNet schopný spracovat’ na vstupe naraz v jednom kroku
odvodenia.
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zásobníkov po sebe. Toto pomáha zvýšit’ nie len zorné pole, ale aj kapacitu siete. Celá

architektúra WaveNetu je načrtnutá na obrázku nižšie.

Obr. 50: Prehl’ad reziduálneho bloku a celej WaveNet architektúry; prekreslený z [84].

Na základe inšpirácie predošlým úspechom WaveNet architektúry v doméne modelovania

zvuku, zakladáme našu verziu na open-source implementácií1 a prispôsobujeme ju našej úlohe.

Zámenou softmax aktivácie za sigmoid na výstupe získavame viac-triedový klasifikátor. Vel’-

kost’ finálnej vrstvy zužujeme na 128 MIDI tónov z predošlých 255 hodnôt kvantizovaného

zvukového signálu.

Za účelom odlíšenia našej upravenej verzie WaveNetu od pôvodnej si ju aj pre potreby

d’alšieho značenia a vyhodnocovania tejto práce označíme ako WN4T (WaveNetForTranscrip-

tion).

F.4 Dosiahnuté výsledky

Za účelom priebežného vyhodnocovania sme počas trénovania priebežne vykonávali vyhodno-

tenie na validačnej množine dát a uložili si stav modelu pri každom zlepšení kl’účovej metriky

na historické maximum v rámci daného trénovania. Týmto spôsobom sme boli schopní hl’adat’

vhodné nastavenie hyperparametrov vrámci viacerých trénovaní za účelom maximalizovat’

presnost’ na validačnej množine.

1https://github.com/ibab/tensorflow-wavenet
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F.4.1 Vyhodnocované metriky

Kl’účová metrika ktorú meriame pre vyhodnotenie presnosti je F1, čo je harmonický priemer

presnosti prec and úplnosti rec, danej nasledovne.

F1 = 2 ·
1

1
prec

+ 1
rec

= 2 ·
prec · rec

prec + rec
(10)

Pre umožnenie porovnania voči referenčným prístupom taktiež meriame rámcovú presnost’

tak, ako bola navrhnutá Dixonom [28]

Acc =
TP

(FP + FN + TP )
(11)

kde TP , FP a FN označujú celkové počty správne pozitívnych, nesprávne pozitívnych

a nesprávne negatívnych odhadov.

Tieto metriky sú počítané z porovnania estimácií a značiek. Pre empirické skúmanie po-

mýlenia d’alej vizualizujeme estimácie či používame piano roll pre zostrojenie prehratel’ného

MIDI zápisu.

F.4.2 Použité dáta

V našich experimentoch sme použili na trénovanie, validáciu aj testovanie niekol’ko variácií

datasetu LabROSA zverejneného referenčným projektom, ktorý pozostáva z 29 klasických

klavírnych skladieb hraných profesionálnym koncertným klaviristom a štúdiovo nahraných.

Taktiež sme z týchto MIDI súborov syntetizovali audio s použitím vysoko kvalitných zvuko-

vých fontov formátu SF21.

Pre syntézu vlastnej verzie datasetu sme z každej skladby vzali prvých 40 sekúnd a roz-

delili ich do 32 trénovacích, 4 validačných a 4 testovacích sekúnd dát. S časovým rozlíšením

100 rámcov za sekundu nám toto dáva 92800 trénovacích rámcov, 11600 validačných a

11600 testovacích rámcov spektrálnych magnitúd.

F.4.3 Výsledky experimentov

V rozsahu experimentov ktoré sa nám podarilo vykonat’ sme zostali pri konštantných hodno-

tách pre prah q = 0.5 a parametre CQT kalkulácie sample rate = 25600 Hz a hop

1http://www.synthfont.com/sfspec24.pdf
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length = 256 za účelom zachovania časového rozlíšenia o vel’kosti 100 Hz.

Po implementácií BiRNN-Spec modelu sme ich trénovali všetky tri na rovnakom korpuse

syntetizovanom z LabROSA datasetu. Podstatné hyperparametre uvádzame v tabul’ke nižšie1.

Tabul’ka 18: Parametre Spec modelov trénovaných na syntetizovanom korpuse.

MLP-Spec RNN-Spec BiRNN-Spec

batch size 500 100 100
sequence length - 20 21
recurrent layers - [1000] [1000]
recurrent activations - [tanh] [tanh]
fully connected layers [1000] [1000] [1000]
fully connected activations [relu] [relu] [relu]

V tomto experimente bol každý model trénovaný v 5 nezávislých behoch s náhodne

inicializovanými váhami. Priebehy úspešností na validačnej množine sú vykreslené ako

priemerné hodnoty z týchto pätíc, spolu s uvedením štandardnej odchýlky pre každú priemernú

hodnotu.

1Každý element v hranatých zátvorkách popisuje samostatný vrstvu.
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Obr. 51: Validačný výkon na syntetizovanom korpuse.

Prvotné výsledky naznačujú, že BiRNN-Spec model vyzerá ako naše doteraz najlepšie

zlepšenie v návrhu architektúry. Avšak sú potrebné rozsiahlejšie testy.

Po natrénovaní modelu WN4T spôsobom postupného pridávania príkladov do trénovacej

množiny od najjednoduchších monofónnych tónov cez dvojtóny až ku zložitejším polyfóniám

sme otestovali aj tento model a porovnali ho s ostatnými.

WN4T model bol trénovaný na 16000 Hz zvuku. Zásobník dilatačných vrstiev nami

použitej konfigurácie modelu je načrtnutý v tabul’ke nižšie.

Tabul’ka 19: Zoznam dilatácií modelu WN4T.

Dilatačné faktory po sebe idúcich vrstiev

1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024

Zásobník pozostáva z 33 vrstiev a zabezpečuje zorné pole vel’kosti 6143 zvukových

vzoriek. Vel’kost’ jednej trénovacej sekvencie je 10000 zvukových vzoriek.
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F.4.3.1 Vzájomné porovnanie našich modelov

V tabul’ke nižšie je porovnanie testovacieho výkonu našich modelov trénovaných na synteti-

zovanom zvuku z korpusu LabROSA.

Tabul’ka 20: Porovnanie našich modelov.

MLP-Spec RNN-Spec BiRNN-Spec WN4T*

precision 0.81 0.8 0.84 0.74
recall 0.74 0.75 0.76 0.37
F1 0.78 0.77 0.8 0.5
Acc 0.63 0.63 0.66 0.33

F.4.3.2 Porovnanie s referenčným prístupom

Na záver sme ešte skúsili porovnat’ naše výsledky voči prístupu [67] vd’aka dostupnosti

referenčného datasetu, ktorého čo najvernejšiu kópiu sme sa snažili pre toto porovnanie

zrekonštruovat’

Po ≈ 3 trénovacích epochách sme trénovanie ukončili, porovnanie výsledkov je načrtnuté

v tabul’ke nižšie.

Tabul’ka 21: Porovnanie s referenčnými prístupmi.

Approach Recorded (10) Synthesized (25) Combined (35)
Poliner and Ellis [67] 56.5% 72.1% 67.7%
Nam et al [63] - - 72.5%
Ryynanen and Klapuri [74] 41.2% 48.3% 46.3%
Marolt [57] 38.4% 40.0% 39.6%
MLP-Spec 56.2% 61.2% 59.2%
RNN-Spec 46.3% 56.1% 52.1%
BiRNN-Spec 54.5% 63.5% 59.9%

Kôli nedostatku času sme nestihli naše modely optimalizovat’ na validačnej množine dát,

na rozdiel od konkurenčných prístupov, preto sú tieto výsledky iba dočasné porovnanie a pre

overenie vhodnosti navrhnutého konceptu.

*Hoci je tento model zahrnutý v porovnaní, ked’že sa vel’kost’ou aj parametrami líši od ostatných, bol
trénovaný odlišne, tak ako je opísané vyššie.

F-13



W d’alšej práci bz sme mali optimalizovat’ hyperparametre ako vel’kosti vrstiev, regulari-

začné parametre, dĺžky trénovacích behov a podobne. Takto by sme chceli optimalizovat’ naše

modely na validačných dátach za účelom vykonania správneho vyhodnotenia a porovnania.

F.5 Zhodnotenie

V tejto práci sme navrhli, implementovali a overili niekol’ko rôznych metód na riešenie

problému automatickej transkripcie hudby súčasne.

Porovnali sme navrhnuté metódy medzi sebou a aj voči konkurenčným prístupom.

Ukázali sme, že aj tie najjednoduchšie architektúry sú schopné dávat’ zaujímavé, konku-

rencie schopné výsledky.

Naše súčasné modely však pravdepodobne kôli obmedzeniam časovým aj pamät’ovým sú

nie sú trénované optimálne.

V d’alšej práci by bolo vhodné sa venovat’ experimentovaniu s regularizáciou a rôznymi

vel’kost’ami modelov a datasetov.

Navyše sme ukázali, že učenie zo surového audia použitím architektúry WaveNet dáva

zaujímavé výsledky pri iných ako generatívnych úlohách, hodné d’alšieho skúmania. Aj

ked’ vel’kosti modelu a trénovacích časov sú ovel’a väčšie ako pri ostatných, jednoduchších

modeloch, kapacita je ovel’a väčšia a teda model môže byt’ schopný naučit’ sa o hudbe z

danej reprezentácie ovel’a viac. Tento smer preto konštatujeme zaujímavý a hodný d’alšej

práce vo výskume MIR a špeciálne problémovej oblasti AMT.
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