Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FIIT-5208-52638

Bc. Lukas Martak

Modelling Music Structure using Artificial
Neural Networks

Master’s Thesis

Degree course: Information Systems
Field of study: 9.2.6 Information Systems
Place: Institute of Informatics, Information Systems and Software Engineering

Supervisor: Ing. Marius Sajgalik, PhD.

May 2017

ZADANIE

NAVRH ZADANIA

CESTNE PREHLASENIE

Cestne prehlasujem, Ze zavereCnu pracu som vypracoval samostatne s pouZitim uvedenej

literatiry a na zdklade svojich vedomosti a znalosti.

Bc. Lukas Martak

PODAKOVANIE

Predovsetkym by som sa chcel pod’akovat’ vSetkym, ktori ma akokol’ vek podporovali nie
len pocas prace na nielen tomto projekte, ale taktiez pocas celej doby mdjho Stidia.

Pod’ akovanie patri taktiez fakulte za moZnost’ ucit’ sa a pracovat’ na projektoch v doméne,
ktord mi je mozno bliz§ia ako iné.

Specidlne pod’ akovanie' patri najmi veddcemu tejto prace, doktorovi Mariusovi Saj-
galikovi, za otvorenost’ novym vyzvam, trpezlivost’ a edukativny pristup pri nekonciacich
konzulticidch. Taktiez by som rad pod’akoval docentke Wande BeneSovej za ochotne poskyt-
nuté odborné diskusie, postrehy a pripomienky k mojej praci a jej pribuznym témam.

Na zdver tieZ patri nemald vd’aka vSetkym, ktori zdiel’ali moje nadSenie pre tento projekt

a zivou diskusiou vo mne Casto podnecovali nové myslienky a pohl’ady na vec.

I'Této Cast’ je stdle nachylnd na exponencidlnu expanziu v pripade obh4jenia tejto prace.

Anotacia

Slovenska technickd univerzita v Bratislave

FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII

Studijny program: Informacné Systémy

Autor: Bc. Lukas Martak

Diplomovd praca: Modelovanie Hudobnych Struktir pomocou Umelych Neurénovych Sieti
Vedici prace: Ing. Mérius Sajgalik, PhD.

Mij 2017

S nastupom éry digitdlnych technolégii moéZeme vidiet” dramaticky vyvoj hudobného prie-
myslu spolu s radikdlnym rastom mnoZstva hudobného obsahu. Virtudlne kniZnice sd plné
hudby, pripravené podl'a potreby poskytnut” komprimované, no stale vel'mi kvalitné hudobné
nahravky. S tym ako bohatost’ hudobného obsahu rastie, je doleZité mat’ nové metddy na
opis tohto obsahu, navrhnuté pre rdzne tcely pouzitia. Music Information Retrieval je in-
terdisciplindrna veda o ziskavani informdcii z hudby. V rdmci tejto vyskumnej oblasti boli
identifikované rozli¢né ulohy, s ciel’'om vyrieSit’ rozne redlne problémy.

V tejto praci sa zameriame na ulohu automatického prepisu hudby, o je proces ziska-
vania hudobnej notécie zo zvukového zdznamu hudby. Hlavny problém, ktory treba riesit’
pri tejto ulohe, sa odborne vold Multiple Fundamental-Frequency Estimation, teda odhad
viacndsobnych zdkladnych frekvencii. V minulosti tento problém rieSili experti z oblasti
spracovania signalov s vyuZzitim doménovych znalosti a ¢ft Sitych na mieru danému problému,
pre extrakciu informdcie zo signdlu.

My sa na tento problém pozrieme z kontextu rozvijajicej sa oblasti strojového ucenia,
so zameranim na metddy hlbokého ucenia. Aby sme mohli efektivne modelovat’ Struktiry
hudobného obsahu v audio signdle, potrebujeme najskor vybudovat’ architektiru hlboke;j
neurénovej siete a potom ju optimalizovat’ tak, aby nadobudla dostato¢nu kapacitu pre

modelovanie hudobnych signalov.

Annotation

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Degree Course: Informatics

Author: Be. Lukas Martdk

Master thesis: Modelling Music Structure using Artificial Neural Networks
Supervisor: Ing. Marius Sajgalik, PhD.

May 2017

With the era of digital technologies, we can see dramatic evolution of music industry to-
gether with radical growth of music content. Libraries are crowded with music, ready to
stream compressed, but still great quality audio tracks on demand. As the richness of music
content grows, it is crucial to have new methods to describe this content, designed for various
purposes. Music Information Retrieval is an interdisciplinary science of retrieving information
from music. Various tasks have been identified within the field, which aim to solve different
real-world problems.

In this work, we approach the task of Automatic Music Transcription, which is a process
of retrieving musical notation from audio piece containing music recording. The main subp-
roblem to be solved here is called Multiple Fundamental-Frequency Estimation. In the past, it
has been approached mostly by signal processing domain experts, using handcrafted features
to extract information from signal.

We approach this problem within the context of emerging field of machine learning,
focusing on deep learning methods. To be able to effectively model the structure of musical
content within audio signal, we need to build an architecture of deep neural network and

optimize it to gain this modelling capacity.

Obsah

1 Introduction

1.1 Background
1.2 Motivation e e e e e e e e e e e
1.3 Document Structure e e e
1.4 Terms and Abbreviations

2 Music Information Retrieval

2.1 Preprocessing of Audio Signal
2.1.1 Fourier Transform
2.1.2 Constant-Q Transform
2.1.3 PitchClassProfile
2.1.4 MFCC e
22 PreviousWork
2.2.1 Polyphonic Music Transcription
2.2.1.1 Polyphonic Piano Transcription
2.2.2 Music and Speech Categorization
2.2.3 Music Annotation L e
2.2.4 Automatic Chord Estimation
2.2.5 Extraction of Instrumental Controls
23 Openlssues e

3 Machine Learning in Music Information Retrieval

3.1 BayesianNetworks

3.2 Hidden MarkovModels o

3.3 Support Vector Machines oo
33.01 Conclusion

4 Neural Networks and Deep Learning

4.1 History
4.2 Learning Algorithmso o
4.2.1 Supervised Learning
422 Unsupervised Learning

XV

10
11
11
12
13
14
15
16
17

19
19
20
21
22

4.3

4.4

4.2.3 Reinforcement Learning

Training techniques and strategies

4.3.1 Regularization techniques

4.3.2 Hyperparameters e

Architectures

4.4.1 Feedforward Models
4.4.2 Representation Learning Models

4.42.1
4422

Restricted Boltzmann Machines

Autoencoders e

443 Convolutional Models
444 RecurrentModels

445 General Considerations

4.45.1
4452

5 Task Definition

6 Our approach

6.1

6.2

Time Complexity
Space Complexity

Modelling Features in Frequency Domain
6.1.1 Method Description
6.1.2 PreprocessingPhase,

6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4

Re-sampling Method
Spectrogram Calculation
Piano Roll Alignment
Further Steps before Training

6.1.3 Architecture Design and Training Phase

6.1.4 Postprocessing e

Modelling Features in Time Domain

6.2.1 WaveNet for Transcription

6.2.1.1
6.2.1.2

7 Evaluation

7.1

Methodology

The WaveNet Architecture
Proposed Adjustments

Xvi

37

41
41
41
42
42
42
43
44
45
48
48
49
49
51

53

7.1.1 Visualizations 54

7.2 DataSets e 56

7.2.1 LabROSA 56

7.2.1.1 LabREC - Recorded Tunes 56

7.2.1.2 LabSYNTH - Synthesized Tunes 57

7.2.1.3 LabCOMP - Complete Dataset for Reference Evaluation. 58

722 PIMIDE. e 59

723 MAPS . . . e 60

7.2.4 Common Preprocessing Parameters 61

7.3 EXperiments e e e 61

7.3.1 Inmitial Attempts 62

7.3.1.1 MLP-Spec: Model Depth 62

7.3.1.2 RNN-Spec: Context Sequence Length 63

7.3.1.3 Model Comparison: MLP-Spec vs. RNN-Spec 64

7.3.2 UsualChords 66

7.3.2.1 Model Comparison: MLP-Spec vs. RNN-Spec 66

7.3.3 Large-scale Training 67

7.3.3.1 Model Comparison: MLP-Spec vs. RNN-Spec 67

7.3.3.2 Initial Training of WN4T 69

7.3.4 Additional Experiments oL 69

7.3.4.1 Bi-directional Recurrency 69

7.3.4.2 Gradual Trainingof WN4T 71

7.3.5 Comparison to Previous Work, 72

7.4 Human-Level Evaluation 73

7.4.1 Roleof Temporal Context 74

7.4.2 Examining Gradually Trained WN4T 75

7.4.3 Testing Robustness of Proposed Method 76

8 Conclusion 79
Literatira

A Technical Documentation A-1

A.1 ProjectStructure A-1

A.2 Packagesand Modules oL,
A2.1 Preprocessing
A.2.2 Utlity Functions
A23 DataReaders o o
A.2.4 Neural Network Models

A.3 Online Data Processing with Multi-Threading
A3.1 WaveformDataReading
A.3.2 Spectral DataReading

B Usage and Maintenance Guide

B.1 InstallGuide.
B.1.1 Install CUDA Toolkit
B.1.2 InstallcuDNN library
B.1.3 Install pip and Jupyter Notebook
B.1.4 Install TensorFlow
B.1.5 Install Auxiliary Python Libraries

B.1.5.1 Librosa.
B.1.5.2 Pretty MIDI
B.1.53 FluidSynth
B.1.54 MIREval
B2 UserGuide e
B.2.1 ConfigurationFiles
B.2.1.1 Note Generator
B.2.1.2 WN4TParams
B.2.1.3 SpecModels Params, ..
B.2.2 Training a Model with TensorBoard Monitoring
B.2.3 Using Trained Model for Transcription and Evaluation
C Contents of Attached Electronic Media
D Project Schedule

D.1 Summer2016

D.2 Autumn 2016 (DP2)

D.3 Winter 2016/2017o

D.4 Spring 2017 (DP3) D-2

Paper Accepted to II'T.SRC 2017 1
Resume in Slovak Language F-1
F1 Uvod . ..o F-1
F1.1 Motivdcia o F-1
F2 Analyza problémovejoblasti F-2
F2.1 ExistujicerieSenia o i F-3
F.3 Navrhnuté metédy aopisrieSenia F-4
F3.1 Modelovanie hudby v spektrdlnej doméne F-4
F3.1.1 Predspracovanie F-5
F.3.1.2 Navrh architektdry a trénovanie F-5
F3.2 Postspracovanie F-7
F3.3 Modelovanie hudby v ¢asovejdoméne F-8
F4 Dosiahnuté vysledky F-9
F4.1 Vyhodnocované metriky F-10
F42 Pouzitédata. F-10
F4.3 Vysledky experimentov F-10
F4.3.1 Vzdjomné porovnanie naSich modelov F-13
F.4.3.2 Porovnanie s referen¢nym pristupom F-13
ES5 Zhodnotenie L F-14

Xix

Z.oznam obrazkov

AN B W N =

10

11
12
13
14
15

16

17
18
19
20
21
22
23
24

Example STFT spectrogram of audio signal 7
Constant pattern of harmonic frequencies; reprinted from [45]. 8
Minimum redundancy CQT vs. Rasterized CQT; reprinted from [77].
Chromagram of opening to Let It Be (McCartney); reprinted from [61].. . . 10
Signal transformation through the processing pipeline; reprinted from [63]. 13
Visualization of the four different phonemes and their corresponding first-

layer CDBN bases. For each phoneme: the spectrograms of the five randomly
selected phones; five first-layer bases with the highest average activations on

the given phoneme; reprinted from [55]. 14
The CNN Chord Recognition Architecture; reprinted from [40]. 16
Bayesian network representing first-order Markov process; reprinted from [34]. 19

Bayesian network of conditional independence relations for first-order HMM;

reprinted from [34]. 20
Transformation to higher dimensional feature space by kernelized SVN allo-

wing the construction of separating hyperplane there; reprinted from [79]. . 22
Feedforward Neural Network; retrieved from [3]. 25
Diagram of single neural processing unit activation; retrieved from [6]. . . . 25
Diagram of RNN cell unrolled in time; reprinted from [12]. 32
Diagrams of most used recurrent unit architectures. 33

Empirical results on performance as a function of model depth; retrieved

from [42]. 34
Empirical results on performance as a function of number of parameters;

retrieved from [42]. 35
Spectral envelope of a signal; retrieved from [4]. 38
Time envelope contour; retrieved from [5]. 39
Example of input data aligned to labels. 44
Outline of MLP-Spec architecture. 45
Graph plots of used activation functions; reprinted from [8]. 46
Outline of recurrent architectures. 47
Stack of dilated causal convolutions; reprinted from [84]. 49

Overview of WaveNet architecture and its residual block; reprinted from [84]. 51

XX

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Evaluationplots. 55
Distribution of polyphony in number of samples across LabSYNTH. 57
Note occurrence histograms in training and test subsets of LabSYNTH. . . . 58
Distribution of polyphony in number of samples across LabCOMP. 59
Note occurrence histograms in training and test subsets of LabCOMP. . . . 59
MLP-Spec performance at different model depths. 62
Example visualization of estimations against true labels. 63
RNN-Spec performance at different input sequence lengths. 64
Performance of MLP-Spec vs. RNN-Spec on classical music. 65
Performance of MLP-Spec vs. RNN-Spec on usual chords. 66
Performance of MLP-Spec vs. RNN-Spec on classical music. 68
Example predictions of non-converging WN4T. 69
Validation performance on synthesized data. 70
Temporal smoothing by recurrent layer and input time context. 74
Evaluation and certainties of WN4T predictions 75
Raw predictions of WN4T. 76
Diagram illustrating project structure and component dependencies. A-2
Diagram illustrating data processing for WN4T training. A-6
Diagram illustrating fundamentals of model training workflow. A-7
Screen shot of SCALARS dashboard. B-7
[lustrative screenshot of GRAPHS dashboard. B-8
INustrative screenshot of IMGAES dashboard. B-8
N&crt MLP-Spec architektiary. L. F-6
N4&crt rekurentnych architektir zalozenychna MLP. F-7
Z4asobnik dilatovanych kauzalnych konvolucii; prekresleny z [84]. F-8

Prehl’ad rezidudlneho bloku a celej WaveNet architektiry; prekresleny z [84]. F-9

ValidaCny vykon na syntetizovanom korpuse. F-12

Xxi

1 Introduction

In order to set this work properly to the broader context, we first share some thoughts on how
music content can be analyzed differently by various study fields.
We also state some emerging problems and challenges, which motivated some notable

amount of research efforts in the field, while focusing on the ones which inspired this work.

1.1 Background

From the history perspective, music has been evolving within cultures, driven by inventions of
new tools and instruments, to provide a man with new means of expressive communication.

While music theory captures some rules and dependencies that describe how musically
reasonable patterns can be created, our perception of them seems to lie beyond rational
reasoning. Some measurements have proven that humans respond to musical signals rather
emotionally [56].

However, most of these inventions were probably driven by desire to communicate on
various levels of abstraction. Considering hypothesis, that there is causal relationship between
abstract thinking and intelligent reasoning, we could find evidence of human evolution, in the
evolution of abstract communication channels. One such channel which remains actual and

still evolves, is music.

1.2 Motivation

With the rise of digital era, we observe dramatic evolution of music industry together with ra-
dical growth of music content. Libraries are crowded with music, ready to stream compressed,
but still great quality audio tracks on demand.

Music is often created by combining not only naturally created and recorded sounds, but
rather digitally created ones!. As the richness of music content grows, it is crucial to have
proper methods and means to describe this content, designed for various purposes.

Some of the problems to drive the invention of such purpose-oriented methods would be
e.g. melody pitch tracking, harmonic content description or even automatic lyrics extraction.

These would be fundamental for tasks such as genre-based categorization or similarity-based

"By digitally created sounds, we refer to oscillator based digital sound synthesis.

search for personalized music recommendation, generating necessary meta-data directly from
music content.

Also, people who study music professionally (musicians, composers) mostly need to
gain deep understanding of its various aspects. Yet, it often implies the need to learn and
reproduce existing musical pieces. Therefore, they spend tremendous amounts of time and
effort transcribing, analyzing, and reproducing musical content.

Although there is clearly an educational purpose to the repetition of these tasks, at some
point, one would appreciate having a choice of skipping at least the routine work of notes
transcription, as it is vastly time consuming and the educational gain is not always present or
required.

We thus go for a challenging task, which in broader context fits into the discipline of
Music Information Retrieval (MIR). Within this research area, we examine multiple tasks
and approaches, however, with focus on task of Automatic Music Transcription (AMT). The

remainder of this document is structured by content according to following description.

1.3 Document Structure

In Section 2, we analyze and discuss some relevant problems and approaches from broader
domain of MIR. Next, in Section 3, we describe some common machine learning methods used
within respective MIR works, including some theoretical background of relevant methods.

Since our work is focused on recently very popular and successful, specific kind of
machine learning, namely deep learning with artificial neural networks, we dedicate whole
Section 4 to its analysis. In this section, we state history and fundamental components of
recent deep learning methods, which are preliminary to understand and further apply the
method to any problem. In Section 5 we choose the problem that will approached in the
scope of our work, outline its fundamental subproblems and define our priorities within given
problem set.

We describe our method in Section 6 which is further divided according to two diverse
approaches we examine. First, in 6.1 we describe our approach to modelling musical signals
in spectral domain. Additionally, we examine novel approach to modelling music in time
domain and describe our method in 6.2.

In Section 7, we describe our evaluation methodology and show various results of multiple

experiments and evaluations performed with proposed methods.

2

In Section 8, the last one, we summarize the results of our work, conclude its contribution

and discuss possible future directions of this research.

1.4 Terms and Abbreviations

MIR - Music Information Retrieval

DSP - Digital Signal Processing

DAW - Digital Audio Workstation

ACE - Automatic Chord Estimation

AMT - Automatic Music Transcription
MIREX - Music Information Retrieval Evaluation eXchange
MIDI - Musical Instrument Digital Interface
F0 - Fundamental Frequency

ADSR - Attack-Decay-Sustain-Release
FFT - Fast Fourier Transform

STFT - Short Time Fourier Transform

CQT - Constant-Q Transform

PCP - Pitch Class Profile

MFCC - Mel Frequency Cepstral Coefficient
RBM - Restricted Boltzmann Machine
DBN - Deep Belief Network

SVM - Support Vector Machine

HMM - Hidden Markov Model

EM - Expectation Maximization

ANN - Artificial Neural Network

MLP - Multi-Layer Perceptron

PCA - Principal Component Analysis

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

LSTM - Long Short Term Memory

GRU - Gated Recurrent Unit

ReLU - Rectified Linear Unit

Monophony - Single melodic line

Homophony - One dominant melodic line accompanied by chords
Polyphony - Two or more simultaneous lines of independent melody
Timbre - Sound color, tone color, tone quality

Nyquist Frequency - Maximum frequency that can be carried without distortion, given a

fixed sampling rate

Backpropagation - Backward propagation of errors, explained in 4.2

2 Music Information Retrieval

The broad domain of Music Information Retrieval is analyzed in this section. Existing methods
for different problems are examined, with focus on methods that extract musical information
directly from audio. Open problems are identified and state-of-the art is reviewed. Alternative
approaches to these problems are considered in the conclusion.

Music Information Retrieval (MIR) is the interdisciplinary science of retrieving informa-
tion from music. It is a small field of research, but with many real-world applications. Some

methods are common to multiple MIR tasks, so we list those tasks below for further reference.

1. Automatic chord estimation
2. Instrument recognition and audio track separation
3. Automatic music categorization

4. Automatic music transcription

Automatic chord estimation (ACE) consists of annotating audio track in the time domain
by chords, typically with onset time, offset time and label for every frame, where single chord
sounds. ACE systems are benchmarked in Music Information Retrieval Evaluation eXchange
(MIREX) subtask, which measures their accuracy in terms of percentage of correctly identified
frames on a set of songs for which the ground truth is known [61].

Audio track separation is about recognizing all various instruments used in a recording,
and further separating the audio into multiple tracks, one track per instrument. It is used to
extract vocals when generating karaoke tracks from original audio tracks. Though, existing
techniques still fail to clearly separate tracks with overlapping frequencies.

When it comes to automatic music categorization, ACE is often used before extraction of
abstract properties from musical piece. Although chord progressions are mostly used when
studying harmonic content of a piece, they can further be used for automatic key and mood
detection, genre classification, audio-to-lyrics alignment, or to measure similarity for cover
song identification [61]. But there are other methods for feature extraction, which are prelimi-
nary for music categorization systems, that enable categorization based on properties defined
by these features, such as handcrafted features, machine learning methods or combination
thereof [64].

Automatic music transcription (AMT) is task of annotating an audio track with some
symbolic musical notation'. Most music transcription systems use Musical Instrument Digital
Interface (MIDI) or MusicXML formats for score notation [83]. It is a task, which includes
some non-trivial sub-tasks. To mention some of them, there is onset and offset detection
(which together form note duration estimation), multi-pitch detection, instrument identification
and extraction of rhythmic and tempo information. Difficulty of this task grows with number
of instruments and degree of polyphony?.

A problem of multi-pitch detection is also often denoted as multiple FO estimation and is
major subtask of polyphonic music transcription. Here, FO stands for fundamental frequency,
which in terms of harmonic components represents the 1st harmonic component of the sound.
All following harmonic components are called overtones, while 2nd harmonic is 1st overtone,
3rd harmonic is 2nd overtone and so on. In terms of musical sounds, fundamental frequency
is the original frequency of the musical tone sounding. Thus, musical notes identification

basically consists in correctly estimating all fundamental frequencies contained in the signal.

2.1 Preprocessing of Audio Signal

For different tasks, different audio processing techniques and feature descriptors have been

developed. In this subsection the vastly used ones are mentioned.

2.1.1 Fourier Transform

Researchers found evidence that human auditory system performs a transform from time to
frequency domain [27]. Consequently, first step of audio processing pipeline in most feature
extraction algorithms is transformation of raw audio signal into frequency domain [61]. This
is mostly done by some variant of Fast Fourier Transform [26] which is an efficient algorithm
for calculation of Discrete Fourier Transform of a time-based audio sequence.

In order to preserve the timing information of the frequency spectral content, Short Time
Fourier Transform (STFT) is taken by sliding window over the audio signal. Calculation of
STFT is parametrized by the window length in terms of number of samples, and consists of

taking the dot product of input signal with the Fourier matrix, which describes all different

'Sometimes chord recognition is denoted a subtask of AMT, because chord annotation is only higher-level
form of symbolic notation.
2Number of simultaneous melodic lines in polyphony.

6

frequencies containable in a window of specified length. Thanks to special self-similar

structure of Fourier matrix, this calculation can be done in O(n logn) time complexity.
Results of STFT calculation over time frame of audio signal are stored into column of

spectrogram matrix, where each column stores spectral magnitudes for given time frame

while rows represent different frequency bands.

11025 +0 dB
-5 dB
-16 dB
-24 dB
-32 dB
-40 dB
-48 dB
-56 dB
452.2
-64 db
-12dB

-80 dB

Obr. 1: Example STFT spectrogram of audio signal

STFT has been successfully used for time-frequency analysis in Automatic Music Trans-
cription [16, 86, 59] and Automatic Chord Estimation [61, 78, 85] tasks. However, there is
still issue with precision when describing the audio frequency content. This is because STFT
algorithm uses fixed-length window for signal analysis.

The lower bound of frequency resolution is defined by lowest frequency wavelength
which yet fits into the window. Since the sliding window is moving with fixed size overlap,
this parameter also defines the temporal resolution of STFT. Therefore, setting length of the

window involves trading off resolutions between frequency and time [61].

2.1.2 Constant-Q Transform

This issue has been addressed by researchers at the Center for Computer Research in Music
Acoustics (CCRMA) at Stanford, with so called Bounded-Q Transform [46]. This method

7

introduced variable frequency and time resolution, while maintaining the computational speed
of FFT.

Few years later, Constant-Q Transform (CQT) was proposed, having advantage of calcu-
lation simplicity and sufficient time-frequency resolution for music analysis. Here Q stands
for Q-factors (ratios of center frequencies to bandwidths) of all spectral bins being equal.
It means there is frequency-dependent window length. It is therefore appropriate for note
identification in music analysis, due to operating in logarithmic frequency scale, where sounds

with harmonic frequency content give rise to so called constant pattern [45].

F'\
rAMPLITUDE
log(f) log(2t) log(3f) log(4f)
log(treq) —*
¢ P
DIFFERENCES

(2)60)
(z/£)60)
(e/v)Bo)

Obr. 2: Constant pattern of harmonic frequencies, reprinted from [45].

Using this knowledge, problem of fundamental frequency (FO) identification could be
reduced to a problem of recognizing previously determined pattern [45]. But difficulty of
this problem also grows with the degree of polyphony, since harmonic frequencies can
interfere with fundamental frequencies. Even though, J. Brown proposed an elegant solution
to fundamental frequency identification, by means of Constant-Q Transform and simple
pattern recognition algorithm.

Although CQT improves the time resolution while maintaining the frequency resolution,

due to constant sampling grid' for each frequency, there are many overlaps at low frequency
windows, causing lots of redundant computations.

!Constant sampling grid means that stride of sliding window is equal between frequencies.

This redundancy can be solved by allowing adaptive resolution in frequency, as stated on

the left plot from the figure below.

Rl e @B S 8.0 2 8 3 8 5 5 4 il S ST IR EREE R EE S

ikt & ¥ & & T S s & e fit = o« =« « o« « & £™% 4w & e

t t

Obr. 3: Minimum redundancy CQT vs. Rasterized CQT; reprinted from [77].

This adaptation made it possible to construct an invertible non-stationary Gabor transform
with a constant-Q factor on relevant frequency bins which allows modification of CQT-
coefficients with subsequent re-synthesis [15]. This can be used in digital signal processing

tasks, such as real-time frequency masking or key transposition.

2.1.3 Pitch Class Profile

Although spectrograms are mostly used for note identification in AMT, they are not optimal for
ACE, since they still contain lot of information irrelevant for the task. Fortunately, Fujishima

defined new feature representation called Pitch Class Profile [61].

Pitch Class Profile (PCP) is often visualized via chromagrams, where each pitch class
represents one semi-tone of western musical scale, often referred to as chroma feature.

Example is shown in figure below.

Reference Chord Annotation

[C:maj [Gmaj [Amin [F:maj [C:maj [Gma] [Fmaj [C:maj |

Pitch Class

Time (seconds)

Obr. 4: Chromagram of opening to Let It Be (McCartney); reprinted from [61].

It is created by removing redundant information from spectrogram feature, such as
background noise, percussive elements of the music or harmonic frequencies. Frequencies
which are close to each pitch class are collected and collapsed to form a 12—dimensional
chroma vector for each time frame. That includes identification of salient frequencies for
pitch class salience calculation, summing energy of pitch classes over octaves and smoothing

which is also often stated as beat synchronization [61].

214 MFCC

Another feature representation of audio signal called Mel Frequency Cepstral Coefficients
(MFCCs) was designed to accurately describe the shape of a vocal tract.

The basic idea is to compute a frequency analysis based upon a filter bank with approxi-
mately critical band spacing of the filters and bandwidths [69].

MFCC features are designed to describe envelope of short time power spectrum and
have been successfully applied in Automatic Speech Recognition (ASR) tasks, e.g. keyword
spotting [68]. In addition, it has also been successfully applied in MIR for music annotation

and classification tasks [64].

10

2.2 Previous Work

The motivation for MIR research is big. Even human performance in this tasks is — in terms
of accuracy — constrained by experience, training and musical talent. Therefore, human
resources are very valuable and limited. Various approaches have been tried in order to
develop new or improve the accuracy of existing solutions to different MIR tasks. We briefly
describe some of them. Several machine learning approaches to MIR tasks are mentioned as

well, so for some overview description of those methods please refer to Section 3.

2.2.1 Polyphonic Music Transcription

Different analytical approaches have been developed to address the problem of note iden-
tification in polyphonic music. Early methods for note identification and source separation
consisted mostly in acoustic analysis based on expert domain knowledge [23, 24]. Although
they were limited in terms of practical application, they served very well as a building blocks
for future development of music analysis systems.

One of such systems, meant to recognize rhythm, chords and source-separated musical
notes, used complex hierarchy of components to analyze the musical scene. Markov Random
Field (MRF)-based hypothesis network was compared to Bayesian Network (BN), while
system also employed computationally intensive simulated annealing algorithm, for edge-
detection in MRF-based signal modelling [48]. MRF-based system outperformed BN-based
system in terms of note recognition rates by ~ 10%.

Another heuristic-based system used knowledge about auditory physiology, physical
sound production and musical practice [59]. This system is very limited in many different
terms. Some of those limitations are, that it can only transcribe piano music, it can’t recog-
nize multiple tones on different octaves and note hypothesis rating function has problems
identifying higher notes in piano ranges.

One decade later, researchers started employing machine learning methods for AMT
task [67, 66]. Generally, Support Vector Machines (SVM) were trained on spectral features
to generate note presence hypothesis note-wise, meaning 87 hypothesis for 87 notes. These
hypothesis were then treated as posterior probabilities' for further ’smoothing’ by Hidden
Markov Models (HMM).

'"http://www.investopedia.com/terms/p/posterior-probability.asp

11

http://www.investopedia.com/terms/p/posterior-probability.asp

A completely different and novel approach to polyphonic note transcription comprised of
designing genetic algorithm (GA) for MIDI generation from audio. Yet, this approach seem
to be too computationally intensive, because for simple chord progression, it took over 1 hour
to find the 100% accurate transcription [86].

Extensive work has also been done for the task of musical source identification in polyp-

honic music [13].

2.2.1.1 Polyphonic Piano Transcription

The problem of polyphonic music transcription can also occur in an form where only single
sound source (musical instrument) appears musical audio signal. For instance, polyphonic
piano transcription is a task of transcribing solo piano music. It thus belongs to the simpler
subtasks of AMT, since no instrument identification is required. Juhan Nam and colleagues
approached this problem with combination of several machine learning methods [63].

They first reviewed the task of multiple FO estimation by listing 3 major state-of-the art

approaches:

1. iterative FO search [51],
2. joint source estimation [36],

3. classification-based approach.

They chose the use of classification-based approach, because it addresses polyphonic transc-
ription in a completely different way — as a pattern-recognition problem [63].

First, they applied unsupervised feature learning with DBNs to normalized, PCA-whitened
spectrograms. This choice is reasoned by stating its previous successful applications to music
classification tasks [37, 55]. They trained 2 layers of RBMs in a greedy layer-wise manner.
This training comes in two phases which are often called unsupervised pre-training and
supervised fine-tuning.

In second phase, they build upon Poliner and Ellis’ piano transcription model, consisting
of 88 independent SVM binary classifiers, predicting presence of corresponding 88 piano
notes.

One improvement is, that rather than feeding spectrogram frames directly into SVM, they
use features extracted by DBN instead. Another improvement is that instead of training single

classifier at a time, they employ so called *'multi-note training’, by feeding the features jointly

12

to all SVMs and treating their output as a single binary 88-dimensional vector. Thus, training
SVMs as a single classifier.

In last phase, post-processing is done with Hidden Markov Model to smooth the SVM

predictions, which were converted to posterior probabilities, before feeding to HMM.

250
=12 100 100
T 15 o - = z 2
Z B ~ E 30/[0N E 80
= , = 150 - - = H R S e £ 2 T——
g = 5 - 2 - 2 - -
Z [| 5w g 60 = g 60 i
Eosiiiie = — -] B 5 -
e, S e = mi = == S 4 g 4
" = - =
100 200 300 400 00 200 300 400 00 200 300 400 00 200 300
Time (10ms) Time (10ms) Time {10ms) Time { 10ms)
Input (Spectrogram) Hidden layer activation SVM output HMM output
p! P 2 ¥ P! p!

Obr. 5: Signal transformation through the processing pipeline; reprinted from [63].

Figure above shows how signal is processed through the whole pipeline. To sum it all up:
Spectrogram of audio frame is first calculated and fed directly into DBN. Activations on hidden
layer of DBN are then fed into the set of SVM classifiers. Outputs from SVMs (representing
distance to the boundary for each piano note) are converted to posterior probabilities and fed
into HMM, which outputs the predicton of notes present in the signal.

Based on experiments with this setup on different datasets, authors conclude several things.
First, fine-tuning generally improves accuracy. Second, multi-note training improved not only

accuracy, but also training speed as well [63].

2.2.2 Music and Speech Categorization

Another task where DBNs were used for feature extraction is music categorization [37].
Authors used activations of trained DBN as inputs to SVM classifier. Features were learned to
solve the task of genre recognition on dataset which contained 10 different genres.

Overall classification accuracy was significantly better for features aggregated over 5-
second frames than for frame-level features. Learned features also outperformed MFCCs in
both cases. [37].

Researchers from Computer Science Department on Stanford University also decided

to study deep learning approaches for auditory data [55]. In their work, authors applied

13

Convolutional Deep Belief Networks (CDBN) for unsupervised learning to extract relevant
features from audio and consequently use them for various audio classification tasks.

To reduce high dimensionality of spectrograms, PCA whitening' was applied first. Unla-
beled speech audio data was used to learn CDBN features. Empirical evaluation of CDBN
features revealed, that for speech data, learned features closely correspond to phonemes, as is
observable in the figure below.

Example phones ("ah”) Example phones ("oy") Example phones ("el") Example phones {"s7)

T HTH TR

T — -

£

TR TR

» e

UL L =3

: ¥ § &

"
Wi,
L

T ET

ftin
NTTLIS

P ¢

First layer bases First layer bases First layer bases

NN rk |

4
Obr. 6: Visualization of the four different phonemes and their corresponding first-layer CDBN bases.
For each phoneme: the spectrograms of the five randomly selected phones; five first-layer bases with
the highest average activations on the given phoneme; reprinted from [55].

;ﬁ_

!

i b e 2 RE

(YT

| L]

Further experiments showed, that CDBN features can easily outperform MFCC features
in tasks such as speaker identification and speaker gender classification.

In addition, musical audio data was used for genre and artist identification. Features
learned by CDBN on classical music data also outperformed MFCC features in both of these
tasks [55].

2.2.3 Music Annotation

Juhan Nam and colleagues also tried various combinations of different feature learning
algorithms with different classifiers for the task of music annotation [64].
They propose using Mel-frequency spectrogram instead of MFCC features as input to

feature learning algorithm and use both these alternatives in experiments for comparison.

"http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

14

http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

Further, three different feature learning algorithms are described and employed for com-
parison: K-Means Clustering, Sparse Coding (SC) and Sparse Restricted Boltzmann Machine
(SRBM).

For classification, Linear SVM is compared to neural network with single hidden layer.

They furthermore apply several different pre-processing and post-processing steps before
and after feature learning, until features are fed to classifier. Detailed description of this

processing pipeline is to be found in their work [64].

Different configurations of the setup have been evaluated on CAL500 dataset. For annota-
tion and retrieval tasks, RSBM features learned from Mel-frequency spectrograms provided
best results, so they were further used for classifiers evaluation. In this setup, neural network

performed better than linear SVM in task of music retrieval [64].

2.2.4 Automatic Chord Estimation

There has been an intensive ongoing research effort for the ACE task, initiated by the
design of Pitch Class Profile [61]. First methods used template matching to identify chords
in chromagrams. Some works relied purely on the abilities of HMMs to model temporal
dependencies in musical chord progressions [72], others relied on handcrafted pitch-tracking

and preprocessing of chroma features [85].

Development of expert-driven systems continued concurrently with data-driven ones,
while in data-driven systems, Hidden Markov Models and Dynamic Bayesian Networks seem

to be most frequently used.

Although, one alternative approach to ACE has been adopted by Humphrey and Bello
in [40]. They state that major effort in previous ACE research was spent on tuning system
components while developing better hand-crafted features, instead of developing system itself.
They further point out that deep learning methods has already been employed to successfully

produce robust Tonnetz features [41].

They mixed songs from several POP song datasets, used CQT for time-frequency transform
and trained Convolutional Neural Networks (CNN) on 5 second tiles of pitch spectra to

estimate an ongoing chord class, producing a jointly optimized chord recognition system.

15

(a) (b) (c)
Obr. 7: The CNN Chord Recognition Architecture; reprinted from [40].

In the figure above, spectrogram tile (a) is input to a CNN (b) which outputs probability
distribution (c) between chord labels.

Using transposition of Constant-Q Gabor filtered representation and shifting the chord
labels accordingly, they literally increased amount of data by factor of 12. They denote this
data manipulation as extended training data (ETD). With such labeled data for supervised

learning, their approach achieved state-of-the art performance.

2.2.5 Extraction of Instrumental Controls

Specific kind of information retrieval from music has been done in [21]. In this work, learning
to extract violin instrumental controls from audio signal was performed with tree-based
models and multilayer perceptrons.

However, this work required construction of database of multimodal data from violin
performances. This database was constructed through acquisition of instrumental gestures
from live performances of musical scores, monitored by expensive sensors in complex setups.
That is also motivation to create system for indirect instrumental controls acquisition (by
processing the audio signal).

Six different instrumental controls were monitored, namely, string being played, finger

position on that string, bowing force, bowing velocity and bow tilt. Database contained

16

spectral features of audio recorded with special pickup and instrumental controls data.

With low-level spectral descriptors (pitch and MFCCs) fed to multilayer perceptron
classifier seemed to give best prediction results. Although, automatic acquisition from any
violin recording would be more difficult, due to specific recording conditions and violin
causing different spectral properties of audio signal [21]. For such task, automatic calibration

would be necessary.

2.3 Open Issues

We notice, that most approaches to different MIR tasks have problems with robustness against
acoustic variations in musical signal, causing them poor accuracy when evaluated on real-
world data. This issue is common to both hand-crafted expert-driven systems and data-driven
systems.

In task of polyphonic music transcription, major problem is to correctly identify funda-
mental frequencies in a musical signal, thus to correctly identify notes in polyphonic texture.
Whether those systems rely on hand-crafted features or learned ones, the filtering of harmonic
components in musical sounds is still the most critical factor influencing accuracy. In worst
case, the information necessary to distinguish fundamental frequencies between different
sound sources is lost or damaged during conversion to representations being analyzed. Hope-
fully, and also more probably, this information is contained in the signal, but we still miss the
éncryption key"so far.

Therefore, one idea is to study the processes underlying human perception of music. This
could inspire formation of mechanism that would realistically mimic the brain processes of
musical expert when manually extracting musical information from audio.

Considering supervised learning approaches, their performance depends strongly on
richness of the training data. Fortunately, thanks to vast libraries of musical instrument
samples, audio data can be generated directly from MIDI notation. This is a huge advantage,
though another fact is, that MIDI generated music lacks some kinds of acoustic variations
which are specific for live played music.

Unlike polyphonic music transcription, for other tasks, such as music annotation or
classification, the disadvantage is that we can’t generate heaps of labeled data automatically.
With song annotation, the problem is a bit easier, since expert knowledge is not necessary in

most cases. Mostly, crowdsourcing methods and tools can be used to help us gather labels, as

17

demonstrated in [49, 52].

In task of automatic chord estimation, we observe that most systems in research efforts
are evaluated on the same benchmark datasets, which could globally lead to overfitting [61].
The occurrence of different chords in music data also seems to correlate with their harmonic
complexity. Adding more examples of complex chords and chord progressions in different
musical and acoustic variations to music datasets could probably improve the accuracy of

existing machine learning based ACE systems.

18

3 Machine Learning in Music Information Retrieval

In previous century, machine learning emerged as a new subfield of computer science. It
studies construction of algorithms with ability to build a model of computational logic just
through experience, i.e., instead of following strictly defined set of instructions, to learn the
rules by observing data. It has been evolving for several decades now and currently it is
used in vast majority of approaches in autonomous systems [88] and artificial intelligence
generally.

We briefly review some machine learning methods which have been applied to problems in
MIR. Since this work aims to explore the potential of neural networks applied to our domain,

we rather analyze the progressive field of deep learning within dedicated Section 4.

3.1 Bayesian Networks

Bayesian networks are inferred from concept of Bayesian probability. It builds on Bayes’
theorem, which provides inference method to compute posterior probability.

Posterior probability, also denoted as conditional probability, can be interpreted as proba-
bility of A conditioned by previous observation of B, or informally, probability P of A given

that B was observed. Formula definition of posterior probability:

P(B | A)P(A)
P(B)

Bayesian networks are used to model conditional independencies between set of random

P(A| B) =

variables. Specifically, when represented by (acyclic) graph, each variable is a node in this
graph, while arcs represent conditional independence.

Dynamic Bayesian networks are subclass of Bayesian networks for modelling time series
data [34]. They are just Bayesian networks for dynamic processes. One of the simplest
Bayesian network models is the first-order Markov process, where each variable is directly

influenced only by previous variable [34].

D@D D

Obr. 8: Bayesian network representing first-order Markov process; reprinted from [34].

19

Bayesian networks have been employed for MIR tasks such as musical scene analysis [48]
or music transcription [22, 35, 47]. Dynamic Bayesian networks have also been crucial in
ACE system which achieved best performance on MIREX evaluation in 2012 [61].

3.2 Hidden Markov Models

A hidden Markov models are special kind of Bayesian networks. They are used to model
probability distributions over sequences of observations, which are sampled at discrete,
equally-spaced time intervals [34].

They are special by advantage that they can model latent or hidden dependencies of these
observations. They gain this ability by modelling hidden states behind these observations.

In other words, hidden Markov model assumes that observation at time ¢ was generated
by some process in state .S; which is hidden from the observer [34]. It also assumes, that each
state S; is independent from all previous states except from S;_1, which is called first order

Markov property.

Obr. 9: Bayesian network of conditional independence relations for first-order HMM; reprinted
from [34].

Higher order Markov models also exist, but they must satisfy corresponding order Markov
property, which means, assuming that state .5; is only dependent on order-number of previous
states, and that state at some time point encapsulates all we need to know about the history of
the process in order to predict the future of the process [34].

Higher order HMMs can be used to model different properties of musical harmony.
Example of such model could see chromagram as observation in time frame ¢ with underlying
latent states modelling key, chord and bass annotations for that time frame [61].

To learn the parameters of HMM, Expectation-Maximization (EM) algorithm is used in
most applications. To learn the hidden parameters of HMM with EM, necessary expectations

are computed using Forward-Backward algorithm [34].

20

In audio processing tasks such as ASR but also ACE, Viterbi algorithm[87] is very useful.
It is used instead of forward-backward algorithm, to more effectively compute single most
probable sequence of states.

Besides applications in ACE tasks [61, 78, 72], HMMs have been very useful in polyphonic
music transcription systems for post-processing discrete classifier outputs. By performing
temporal smoothing on these independent classifications, they have been able to significantly
influence the transcription accuracy [67, 66, 63]. This motivated HMM tuning as a subject to

further research interests.

3.3 Support Vector Machines

Support vector machines (SVMs) are supervised learning methods used for both classification
and regression problems. Their training algorithm builds a model from set of labeled training
data to classify new, previously unseen examples.

Originally, SVMs were developed to implement statistical learning theory, to estimate a
function from set of examples, while minimizing empirical risk that estimated function will
differ from the actual one [79]. Since it assumes data to be linearly separable, this type of
SVM is referred to as linear SVM, being a non-probabilistic linear binary classifier.

Assuming that training set consists of n-dimensional feature vectors and is separable by a
hyperplane in n-dimensional space, margin of a hyperplane is the minimal distance of training
examples from decision surface represented by this hyperplane. Training SVM consists in
finding hyperplane with maximal margin that correctly separates training examples. Choice of
this hyperplane is supported by set of training examples, thereby called support vectors [79].

One key innovation associated with SVMs is the kernel trick [42]. Learning of linear SVM
is driven by function w' 2 + b. SVM classifier discriminates between classes based on the

sign of the reslut. It has been shown [42] that this function can be rewritten as:

b+ aik(x,x)

where « is vector of coefficients and k(x, x(*)) is our kernel function. This function can be
non-linear with respect to x. Applying non-linear kernel function to input actually transforms
it to a higher-dimensional space. When kernelized learning function is non-linear with respect

to x, it is learning in new non-linear feature space [42].

21

x X » x %
x
X . b4 X
x \ x
,,f — _'--._‘_\ x
x xs7 o \\x \) G X
i/")) 2 \ xf \)\ x
T R ; o \')\X
X \\ 5 >/ \\))}) N X 2,
X o x == 0
x”“‘—-—-"" P Y \ ¢ o
X o s
N
x x » X -"'2.2 \ ._/
) SRV

Obr. 10: Transformation to higher dimensional feature space by kernelized SVN allowing the construc-
tion of separating hyperplane there; reprinted from [79].

Intuitively, it can be thought of as training classifier on new, linearly separable representa-
tion of data, which were not linearly separable in original feature space.

SVM classifiers have been employed widely in MIR for tasks such as annotation [64],
tagging and genre classification [37] and music transcription [67, 66, 63].

3.3.0.1 Conclusion

Although there are other machine learning algorithms, not mentioned in this section, we
reviewed the most relevant ones, with respect to state-of-the art in MIR research.

Neural networks are of course as a machine learning method very relevant as well. In MIR
tasks, their applications have been mostly classification for note detection [32, 58, 33, 63],
chord recognition [65, 40] and genre/artist/key detection [55, 44, 37, 64]. Another meaningful
and successful use of neural nets was for feature extraction with unsupervised learning [55,
37, 64]. Recently, some effort also led to success with purely audio-based neural network

music generation [84].

22

4 Neural Networks and Deep Learning

The historical context of deep learning' is bound to development of computational models
called Artificial Neural Networks (ANNs). Terminology in ANN research has been undergoing
rich variations due to different perspectives of scientists from various disciplines contributing
to the field. However, knowing this context is certainly useful to understand some causalities
of contemporary state-of-the art.

Different learning algorithms and optimization techniques have been developed in order
to improve the cognitive capabilities of neural network models. We examine existing archi-
tectures, their main characteristics and review the major progress that has been done in past

research of artificial neural networks.

4.1 History
Few trends in history of deep learning have been identified [42]:

* Popularity of deep learning noticed significant fluctuation as only few people actually

understood what was going on.
 Usability of deep learning increased with the amount of available training data.

* Deep models and their capabilities have been growing in size together with hardware

and software infrastructure.

* Deep learning has been solving problems with growing complexity but too growing

accuracy over time.

These trends are also observable in this brief selection from the major milestones of the

deep learning research journey.

1943 - Warren McCulloch and Walter Pitts created a computational model for neural ne-
tworks based on threshold logic.

1958 - Frank Rosenblatt introduced the perceptron.

1980 - Kunihiko Fukushima proposed the Neoconitron, a hierarchical, multilayered artificial

neural network used for pattern recognition problems.

IThough the term deep learning has interdisciplinary scope such as cognitive sciences, computer science or
neurobiology, we use it in the context of computer science and artificial intelligence.

23

1989 - Deep neural networks with training times measured in days, making them impractical
for real-world use.

2006 - Geoftrey Hinton and Ruslan Salakhutdinov showed how many-layered neural network
could be pre-trained layer-wise as unsupervised restricted Boltzmann machines.

2009 - NIPS Workshop on Deep Learning for Speech Recognition discovered that with a
large enough data set, the neural networks don’t need pre-training, and the error rates
drop significantly.

2012 - Artificial pattern-recognition algorithms achieved human-level performance on certain
tasks.

2016 - Google DeepMind’s algorithm AlphaGo mastered the art of the complex board game
Go and beats the professional Go player Lee Sedol.

4.2 Learning Algorithms

Machine learning algorithms are broadly categorized as unsupervised or supervised according
to the way their training is realized [42]. Although, there are more subcategories of machine
learning algorithms out there. To name a few, there are supervised, unsupervised, semi-

supervised, multi-instance and reinforcement learning algorithms.

But first things first, the holy grail of neural networks learning process — backward
propagation, is preliminary for understanding those algorithms. It is responsible for correct
calculation of desired modifications on synaptic weights — the learned parameters of neural
network. Learning algorithms differ mainly in the way they obtain measure of error, which is

further used to update parameters during backpropagation.

Conventional feedforward ANN consisting of multiple layers of neurons, each having
synaptic connections to all neurons in the next layer, is called Multi-Layer Perceptron (MLP).
Simple MLP model with 3 input neurons, 3 hidden neurons and 2 output neurons is shown in
Figure 11. We further describe fundamentals of forward and backward propagation in terms

of calculation steps.

24

Obr. 11: Feedforward Neural Network; retrieved from [3].

Forward propagation:

* Input neurons observe features of a data point z, which are in turn propagated forward

to the next layer of neurons, weighted over synaptic weights w.

» Each neuron applies its activation function f to weighted sum of its inputs. Result of

such calculation is called activation or output of the unit.

* Activations are used as inputs to next layer and the procedure is repeated until the

output layer is reached.

Inputs —

2

f

Sum

Activation
Function

Output

Obr. 12: Diagram of single neural processing unit activation, retrieved from [6].

Backward propagation:

* When activations on output layer of neurons are calculated, they are used and measure

of error is provided by the learning algorithm.

25

* Error is calculated according to specific optimization algorithm and regularization
factors. It is typically further factorized by learning rate. These belong to set of hyper-

parameters.

« Each synaptic weight is then updated' by its contribution to the error, which is calculated

by reverse-mode differentiation” using chain rule for composite functions [1].

Similarly to forward propagation, backward propagation is performed layer-wise, since
architecture of the network in terms of intra-layer connections defines mathematical depen-
dencies between its parameters.

An important property to mention is the time complexity of backward propagation. It is at

most a constant factor slower than the forward computation of the output.

4.2.1 Supervised Learning

Supervised learning is based on data containing input observations together with their corres-
ponding output labels. One iteration of supervised learning cycle in ANN consists of whole
forward-backward propagation.

Input observations are fed to the network, expected output labels are provided to the
algorithm, error measure is calculated and propagated back through the network, updating
weights (parameters) accordingly.

Supervised learning is used to train models for classification or regression tasks. But it
is often accompanied with a problem called overfitting. Overfitting occurs when model is
optimized too much on training data, and it is signalized by great performance on training
data, but poor on new data examples. It basically means, that model learned too much about
the training data chunk. Instead of just general properties of given type of data, it learned
specifics of examples from the training set. An overfitted model fails to generalize on training
data, thus instead of learning the rules, it memorizes properties of training examples.

In order to improve the learning process and prevent model from overfitting, it is important
to use and search for optimal setting of regularization techniques. These are further explained
in 4.3 along with importance of hyperparameters, such as weights initialization, loss function,

optimization strategy, learning rate decay and others.

'Update is naturally performed in the direction, which would potentially lower the error contribution.
Note that composite function must be continuous, to be differentiable, for this rule to be applicable.

26

4.2.2 Unsupervised Learning

Unsupervised learning is family of algorithms that learn from a dataset of examples with
many features but with no use of labels. They learn to extract and interpret the properties
of the data, which are most useful in determining data points identity. Therefore, they are
sometimes denoted as feature learning or representation learning algorithms.

Some examples of unsupervised learning algorithms besides those neural-based would
be K-means Clustering algorithm used to find groups of similar data examples, or Principal
Component Analysis (PCA) used to extract most relevant features from data and thereby
reduce the size of feature sets.

In the context of deep learning, we usually want to learn the entire probability distribution
that generated a dataset, whether explicitly as in density estimation or implicitly for tasks like
synthesis or denoising [42].

Since unsupervised and supervised learning are not completely distinct concepts, there

are many machine learning models, which perform both tasks [42].

4.2.3 Reinforcement Learning

Reinforcement learning is very specific type of learning. It does not experience data examples
from a fixed dataset, but rather through interactions with an environment instead. Network is
learning based on its experience, gaining feedback from the environment to each interaction it
has, thus, being able to evaluate utilization of each interaction.

It has been major contribution to the success of above mentioned AlpaGo algorithm
designed by Google DeepMind. It can also be viewed as a way to represent non-continuous
cost functions such as sets of rules as continuous thanks to reward function. This way, any
non-differentiable function can be learned with reinforcement backpropagation, as authors

demonstrate with music theory rules in [43].

4.3 Training techniques and strategies

The performance of neural networks proved to be very sensible to various settings and
configurations of the model architecture, and even training algorithm. Therefore, instead of
simple usual parameters, they have rather been called hyperparameters.

We first write down some common regularization techniques, which are used to prevent

27

the training from overfitting. They also add up to the set of hyperparameters since some of

them have to be tuned too.

4.3.1 Regularization techniques

* Momentum — smoothes the gradient vector by number of previous values. Used to

improve convergence of optimizer to the global minimum on the error surface.

* Early termination — stops training when error measured on validation data starts

growing. Used to prevent from overfitting.

e L2-norm — penalizes large weights by adding normalized weight term to the loss

function. Leads to better convergence.

* Dropout — randomly turns off some neurons. Makes the model create different redun-
dant representations of the data, thus learn context, and prevents it from memorizing,

what means overfitting.

All hyperparameters have generally influence on different aspects of model performance.
Sometimes, previous work might indicate which settings are optimal for certain problems, but
mostly they need to be fine-tuned by hand based on evaluation results, since optimal setup

differs between various datasets and problems.

4.3.2 Hyperparameters

* Depth of the model — number of hidden layers of the model.

* Width of the model — number of neurons' in hidden layers. Too few causes underfitting,

too much, instead overfitting.

* Set of activation functions — typically, activation functions are defined per layer of
neurons. These choices are important in terms of mathematical modelling capacity of

the network.

* Weight initialization — generally random distribution with zero mean and small, equal

variance along whole distribution. Size of the variance depends.

'Neurons as a computational units of neural network are sometimes denoted as units.

28

* Optimization algorithm — optimizer, which chooses how to feed the model, measure
error and apply it to minimize loss function. Choice is generally model-dependent and

problem-dependent.

* Learning rate decay — velocity of adjustments made to the weights, representing how

fast the model learns. Helps to find higher global optimum!.

* Dropout probability — probability of discarding neuron’s activation. Equally for all

neurons where dropout is used.

Tuning of hyperparameters is a manual process driven by evaluation of model’s perfor-
mance on validation (development) dataset, based on human intuition and expert knowledge.
It is fundamentally different from optimization of model parameters performed by optimizer
in scope of training session, which is actual training of the network. Although this tuning is

still an optimization in a sense, it is by one abstraction layer higher.

4.4 Architectures

One fundamental key consideration for design of neural networks is determining the architec-
ture. The word architecture refers to the overall structure of the network: how many units it
should have and how these units should be connected to each other [42].

There are several different architectures and models being proved and used for specific
applications. Some architectures also contain well known architectural patterns, recognized
for their particular function. We describe some of the well known network architectural

patterns and modules.

4.4.1 Feedforward Models

The architecture of conventional deep feedforward network, often denoted as MLP, is pretty
straightforward. It is based on the model of perceptron, introduced by Rosenblatt in [73]. A
layer alone has no connections, while two adjacent layers are fully connected. Such layer
of neurons, where each unit has connections to each unit of previous layer, is called fully

connected layer.

!Similarly to principle of system cooling in simulated annealing algorithm.

29

The major advantage of MLP consists in utilization of its deep structure. It learns feautre
representations of input data on multiple layers, while recognizing the relevant structures in

the data and modelling relationship between input and output.

In practice, this architecture alone showed to have limited use, but is often combined with

different architectures to form new, more complex ones.

4.4.2 Representation Learning Models

The goal of representation learning within neural networks is to find different code or feature

descriptor for the data observation, to extract the most relevant features for given task.

In principle, the learning is performed by encoding (in terms of compression) input vector
to a vector with possibly different density, and then forcing the reconstruction of the input
from this representation. The distance between reconstructed data and original data is used

for learning.

4.4.2.1 Restricted Boltzmann Machines

Boltzmann Machines (BM), inspired by Hopfield Networks (HN), have been preliminary to
representation learning models, and introduced in [38]. Each neuron is connected to each
other neuron, resulting in fully connected network. Training is initialized with random weights
and performed through repetitive back and forth propagation until network reaches state of

equilibrium. Activations are controlled by global temperature level.

Restricted Boltzmann Machines (RBM), introduced in are special variation of BMs. Main
difference is, that they are restricted in sense of disabling connections between neurons within
the same layer, so that only pairs of neurons, each from different layer, can have direct synaptic

connection.

Special kind of deep architecture is Deep Belief Network (DBN) introduced in [18]. It
combines unsupervised learning with supervised learning approach. It builds on layers of
RBMs stacked one on another, pre-trains these layers in a greedy layer-wise unsupervised
manner, and then attaches the classifier with fully connected layer on the top of the model.
It fine-tunes the model by supervised training with backpropagation. Thus, model is using

self-learned feature representations and supervised classifier.

30

4.4.2.2 Autoencoders

Autoencoders (AE) are roughly identical to MLP in terms of architecture, while main diffe-
rence is in how they are trained and used. Their purpose is to automatically find parameters of
an encoding decoding function, while in contrast to RBMs, parameters are not shared between
those functions.

The idea is to compress the information into hidden layers which are smaller than input
and output layer. They can be trained by backward propagating error as a distance of output
from input activations.

Since they have been introduced [19], they inspired formation of different model variations,
such as Sparse Autoencoders, Variational Autoencoders or Denoising Autoencoders, used

mostly in different ways for various purposes [7].

4.4.3 Convolutional Models

Convolutional Neural Networks (CNNs) also called ConvNets are very special kind of neural
networks. They are designed (but not restricted) to learn features from graphical content.
They have been successful in tasks such as object recognition and image classification. In
combination with other networks they were also able to generate image descriptions.

But digital representation of 2-dimensionally spaced image by 1-dimensional vector is
not really suitable for a network, to understand the graphical content, since for most tasks,
image locations of features to be recognized can be spaced differently amongst training data.
Therefore, the new way of looking on the input was employed by introducing convolutional
layers [53].

A convolutional layer, consisting of so called filters, is generated using convolution kernels,
where values of the kernel are the trained parameters. By striding this kernel over input image,
the filter values of next convolutional layer are calculated pixel-wise. These convolutions thus
share their synaptic weights across the space.

Their major advantage from other models is, that their convolutional layers of neurons
are immune to so called translation invariance of their inputs. In other words, they learn to
recognize patterns no matter where they occur on the input.

This property borrows them new incredible abilities. By combining variously sized
convolution filters, different modules have been created, that can learn to model graphical

content on different levels of abstraction.

31

One such example are inception modules. They combine multiple layers of convolutions
together to create one semantically rich layer capturing much more information than would
be possible with single convolutional layer.

Thanks to their translational invariance, modern ConvNets are also vastly used for tasks

besides computer vision, where this property is desirable.

4.4.4 Recurrent Models

Recurrent Neural Networks (RNNs) introduced in [29] are different from conventional ANNs
in a way similar to CNNs. They are also deep models but instead of space, they are deep in
time. Designed to deal with semantic and latent relationships between members of sequences
in time series.

Their analogy to CNNss is actually pretty straightforward. RNNs also have shared their
parameters, but only instead of space, they share them across time. The concept of sharing

weights across time only means, to re-use them while processing each observation in a

1o

sequence.

= > > = A

ééé 6

Obr. 13: Diagram of RNN cell unrolled in time; reprinted from [12].

RNNs are designed to model sequences of inputs in time domain, so they contain a
recurrent connection(s) from the past states to current. Although, while sharing weights over
time, the error backpropagation also needs to get through time.

This means lots of little correlated updates to the same set of weights all at once. It causes
problems with gradient, since due to strong correlations between these updates, either gradient
explodes (goes to infinity) or vanishes (goes to zero).

To solve the problem of exploding gradient, simple hack called gradient clipping was

employed. It only lets gradient grow to a certain defined maximum value.

32

However, vanishing gradient is a bit harder problem to solve. In sequence modelling it
actually causes memory loss. To solve the problem of vanishing gradient, Long Short-Term
Memory (LSTM) cell was introduced [39] as an alternative kernel of RNN.

It encapsulates the memory of recurrent unit with "protection"gates for read, write and
forget operations. These gates filter the input signals, behaving as a single-unit layers of neural
nets, having sets of weights and continuous activation functions, which makes them differen-
tiable and trainable together with other parameters of the model through backpropagation.

One recent variation of LSTM cell is called Gated Recurrent Unit (GRU) cell. Internally
it uses one update gate instead of separate input, output and forget gate. Therefore, GRU is
slightly faster to train than LSTM, but also slightly less expressive. It has been shown, that in

some extra cases, when expressiveness is not required, GRUs can outperform LSTMs [7, 25].

he A
-\ h.-g__ 1
Ciy Ci
hi— f;
/
Ty xel
(a) LSTM cell; reprinted from [11]. (b) GRU cell; reprinted from [11].

Obr. 14: Diagrams of most used recurrent unit architectures.

Mathematical details if these internals, as depicted in Figures 14a and 14b are also
explained by Chris Olah in his blog post [11].

4.4.5 General Considerations
4.4.5.1 Time Complexity

The computational complexity of neural network is an important characteristic. It depends
strongly on composition of architecture and should be considered when design decisions are
made.

Generally, time complexity of model training is proportional to

33

O=ExTxQ, (D

where F is number of training epochs, 7" is number of observations in training data and ()

is time complexity of single forward-backward pass through the network, specific for each
model [62].

4.4.5.2 Space Complexity

Since the structure of the network must be stored somehow, there is always some overhead
due to this. Therefore, space complexity of a model is only roughly equal to its number of
parameters.

Empirical results showed, that deeper networks generalize better when used to transcribe
multi-digit numbers from photographs of addresses. On the figure below, it is shown that the

test set accuracy is consistently increased with increasing depth [42].

Effect of Depth

O6.5
96.1)
9551

950+

[

94.5

accuracy |

4.0

Test

9.5

4 5] 7 8 9 10 11
Number of hidden layers

Obr. 15: Empirical results on performance as a function of model depth; retrieved from [42].

Moreover, another experiment shows, that increasing the number of parameters in layers
of convolutional networks without increasing their depth is not nearly as effective at increasing

test set performance [42].

34

Effect of Number of Parameters
1 | | |

96 *—e 3, convolutional

+—+ 3, fully connected
V¥ 11. convolutional

a3 |- *\.__4,, =

92 + -

Test accuracy (%)
frsd
T
]

q] 1 1 1 | 1
0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters =10

Obr. 16: Empirical results on performance as a function of number of parameters; retrieved from [42].

35

5 Task Definition

In this work we approach the problem of automatic music transcription from audio, with some
specific requirements in terms of information retrieval. Our goal is to transcribe polyphonic
music with best possible accuracy, and then find mapping of played notes to their sound
sources (possibly musical instruments). Ideally, preserving information about dynamics of the
sound such as velocity and volume over time. Assuming, that number of played instruments
is unknown, additional challenge is to correctly identify different sound sources contained in
an audio piece.

For the sake of accuracy, music transcription should be done by processing small consecu-
tive time fragments. In addition, if sufficiently low time complexity is achieved, construction
of real-time processing system would be possible as well. This would be restricted in case of
need to pass through the whole audio performance in multiple iterations, calculating different
features and based on known time context.

This is a challenging task, because for every tone present in a polyphony, we need to
recognize its specific timbre!. Timbre is a characteristic of sound, which makes sounds with
the same pitch and loudness sound different from one another. It has been called, "...the
psychoacoustician’s multidimensional waste-basket category for everything that cannot be
labeled pitch or loudness."by McAdams and Bregman, in their work [20].

Attempts have been made to decompose timbre into set of fundamental attributes. Schouten
describes them as "determined by at least five major acoustic parameters-[76] and states them

as follows:

1. The range between tonal and noiselike character.

2. The spectral envelope.

3. The time envelope.

4. The changes of spectral envelope and fundamental frequency.

5. The prefix (onset) of a sound, quite dissimilar to the ensuing lasting vibration.

It is also important to note, that the tone color is known to be mostly determined by pattern

of its harmonic components and their relative strength in time. From above stated attributes,

the 2nd and 4th are the ones indicating this property.

'In music terminology, timbre is a quality of musical note, known also as tone color.

37

It seems, that some physical characteristics of sound which significantly contribute to the

human perception of timbre include spectral envelope and time envelope.

Spectral envelope describes an envelope of the spectrum. It wraps tightly around the
magnitude spectrum, linking the peaks [9]. It describes one time frame of audio signal, and
carries information about the distribution of the signal’s energy over frequency in that time

frame. Example is show on figure below.

Amplitude
—_—
p——
-

! il

Frequency

Obr. 17: Spectral envelope of a signal; retrieved from [4].

Time envelope, also known as Attack Decay Sustain Release (ADSR) envelope, as defined
in [10] has its contour specified by attack time, decay time, sustain level and release time.
Every musical instrument has its characteristic attack, sustain, and decay pattern. Therefore,

time envelope is an important element of timbre.

38

ATTACK

DECAY SUSTAIN RELEASE

AMPLITUDE

TIME

Obr. 18: Time envelope contour; retrieved from [5].

Additionally, while transcribing music directly from audio, we would like to preserve the
expressive means of musical tones. For stringed instruments, those would be vibrato, tremolo
or pizzicato. Erickson states, that these means are related to specific physical attributes of
timbre [31]. For example, vibrato seems to be mainly related to frequency modulation, while
tremolo is physically an amplitude modulation.

Then, we also need a way to describe these expressive means for particular musical tones.
For example, correctly played vibrato has its own tempo parameter.

Since there seems to be quite a bit of challenge in recognition required by the task
described above, we might need to do some trade-offs while designing our model. Therefore,
in terms of performance measured by transcription accuracy, we establish priorities for our

subtasks from the highest to lowest as follows:

1. Detect tones in polyphony.
2. Assign tones to sound sources.

3. Detect and describe possible expressive means of musical tones.

39

6 Our approach

With previously mentioned specifics of acoustics and musical signals in mind, we consider
multiple alternatives to approach the problem of polyphonic music transcription from the
perspective of neural computing.

These alternatives differ mainly upon the way we represent musical data to the neural
network, which also determines the scope of problem to be solved by the model and drives
further design decisions about its architecture. We describe our ideas and proposed methods

in this section.

6.1 Modelling Features in Frequency Domain

The initial step in almost each Digital Signal Processing (DSP) pipe-line for music content
analysis is transformation of signal from time to frequency domain, thus construction of
spectrogram. This is very intuitive and straightforward, according to the relationship between
spectral content of the signal and harmonic content of corresponding music. Therefore, we
first examine learning capacity of some neural network models trained on spectral feature

descriptors.

6.1.1 Method Description

The overall process in steps necessary to apply this method is following:

1. Preprocess input audio data, generate spectrograms.
2. Preprocess reference labels, generate piano rolls.
3. Save inputs (spectrograms) with labels (piano rolls) correctly aligned in time.

4. Divide data into train, validation and test sets while attempting to maintain equal variety

of musical content across these subsets.

5. Train the model on training set with periodical evaluation on validation data. Adjust

hyperparameters across training sessions to maximize the validation accuracy.

6. Test the model by inference on test data. Treat output layer activations as estimated

piano roll for quantified and empirical evaluations.

41

6.1.2 Preprocessing Phase

Initially, audio with reference notation is preprocessed one element at a time. In case of MIR
data sets, one data element is mostly a pair of sound file and a notation file, containing single
musical piece. Depending on the character of the data set, musical piece can be e.g. song,

chord or a scale.

6.1.2.1 Re-sampling Method

To re-sample loaded audio signal, we use method described in [80]. It is based on interpolation
by the Kaiser windowed sinc function as defined by (2) normalized to 16 zero-crossings.

Kaiser window is calculated according to formula (3)

sinc(x) = sin(z) (2)
x
To (W 1—(%—1)2)
wln| = Toh) , 0<n<N-1 (3)
0 otherwise

where NV is number of samples of the windowed function, [is zeroth-order modified
Bessel function of the first kind and parameter /3 is set to 8.5 to satisfy standard setup used for

fast re-sampling.

6.1.2.2 Spectrogram Calculation

The CQT calculation is done by recursive sub-sampling method, described in [75]. The
advantage of this method is that it allows to choose frequency resolution in terms of number
of bands per note, lowest frequency to be examined and number of bins spaced geometrically
among spectrum, satisfying Constant-Q factor condition. This results in having ability to
choose range of musical notes to capture, in terms of fundamental frequencies.

Possible disadvantage of spectral bins being linearly spaced w.r.t fundamental frequencies
of notes, is just the implication, that they end up spaced exponentially across the frequency
range. Therefore, resolution at higher frequencies is lower, which may result in timbral
features being captured with insufficient accuracy for instrument identification. This is not

an issue, while we work with solo instrumental music, but as timbre relevance grows with

42

different subtasks, replacing CQT by standard STFT spectrogram calculation method is a
reasonable subject to consideration and possibly experimental comparison. Also, combination

of multiple spectral feature descriptors could be used as an input to the network.

Since this method uses recursive sub-sampling to calculate DFTs for octaves from highest
to lowest, it places restrictions to sampling rate of input signal. Therefore, in case loaded

audio has different sampling rate than required, initial step of this method is re-sampling.

Next, signal is processed by sliding window of size determined by sampling frequency
and number of octaves being analyzed. Temporal resolution of resulting representation is
given by the size of this window and length of stride in number of samples, which is another

parameter to the algorithm.

Time resolution as the number of spectral feature descriptors per second of signal is given
as a ratio of sample rate to stride size. For each time sample, Hann window is applied to

extracted sequence and zero padding is performed up to the length of nearest power of 2.

Each frequency band in octave has its own filter length, which remains constant during
the calculation, where logarithmic frequency spacing is utilized by sub-sampling between

octaves and discarding already extracted information (higher frequencies).

6.1.2.3 Piano Roll Alignment

Along with spectrogram calculation, piano roll is calculated from reference notation file. It is
a format for visual presentation of musical MIDI events - specifically notes duration in time -

created and used within instances of Digital Audio Workstations (DAW) software.

Internally we represent it as a matrix of values indicating which notes (rows) are being
played in which time frames (columns). We use all 128 MIDI notes by default, although this

is a bit redundant for piano music where the 88 notes of piano keyboard are sufficient.

The temporal resolutions of spectrogram and piano roll are chosen to be equal, so that
they can be precomputed and stored together with correct time alignment, for purposes of

easy and quick retrieval at the time of training.

The visualization of spectrogram aligned to piano roll is shown on Figure 19, where color

intensity represents spectral amplitude power or note velocity power, respectively.

43

e e e Y S R l k
e —— — o — - o - — - —
B - - — — — — - -
o it - s r—

Obr. 19: Example of input data aligned to labels.

6.1.2.4 Further Steps before Training

As the values of computed amplitudes may vary widely among the data, they are normalized

11
T 202
of this mapping is also motivated by general observation, that neural networks yield better

to interval | | according to peak amplitude contained in the whole audio piece. The choice

performance on data with zero mean and small, equal variance [54].

Another variation of preprocessing is to discard the dynamics information, which is what
we do to reduce the task by estimation of dynamics to simple detection of notes presence,
otherwise the task is to estimate both at the same time. It is done by simply truncating the
velocity values in piano roll matrix to {0, 1}. This makes the piano roll a binary matrix,

indicating just presence of notes in time.

Lastly, the data are divided into training, validation and testing sets in some reasonable
ratios. This is, however, done in such a manner, that preserves the most possible musical

variety within all constructed subsets.

44

6.1.3 Architecture Design and Training Phase

To be able to iteratively build optimal architecture, we initiate our efforts with following
configuration. We build simple MLP model and feed it with spectral coefficients on the input,
yielding discrete probabilities of presence per note from the output. Therefore, we denote this
model as MLP-Spec.

Fully Connected Output vector

note probabilities

Fully Connected Hidden Layer(s)

Spectrogram SIice Input vector

spectral coefficients

(a) Multi-Layer Perceptron (b) Default setup of MLP model

Obr. 20: Outline of MLP-Spec architecture.

The size of input layer depends on spectral resolution chosen during the preprocessing as
a combination of parameters to CQT spectrogram calculation. Size of output layer is given
by range of estimated notes defined through provided piano roll labels. Number and size of

hidden layers and their activation functions belong to set of model hyperparameters.

Initial setup shown on Figure 20 consists of single hidden layer and an output layer. To
compute activations on hidden layer we use Rectified Linear Unit (ReLU) activation for

computational efficiency and sufficient modelling capacity.

We use sigmoid activation on the output layer, since estimating presence of notes in polyp-
hony is a multi-class classification task. This function activates the output layer preactivations
to a set of values from interval (0, 1) representing discrete probability estimations per note.

On Figure 21, we plot these default activation functions. Additionaly, we use Adam [50]
as the default algorithm for model optimization. However, this is just a default setup and

experimental search is to be done in order to find optimal set of hyperparameters.

45

Sigmoid RelLU
12 10

0 for z<0
8 —
f(l‘)—{:r: for >0

1.0 1
f(z) = T+e?

0.8
0.6
04
0.2

0.0
0.2 =2

Obr. 21: Graph plots of used activation functions; reprinted from [8].

In next iteration of architecture design based on initial results, we propose slight modifi-
cation to MLP-Spec. In order to provide the model with some context of the estimated time
frame, we add a recurrent layer on the input and feed it with a sequence of spectral descriptors
of consecutive time frames, instead of single one as opposed to MLP-Spec feeding method.

First, we apply classical uni-directional recurrent layer to process sequence of consecutive
spectral descriptors. At prediction time of each frame, hidden state of recurrent unit encodes
information gained by sequence of past time frames.

Although predictions are made for each time frame, only last one of the sequence is
predicted with utilization of whole sequence. Therefore, at training time, it is considerable
whether to backpropagate error from whole sequence of predictions, or only from the last one.
At the inference time, we use only the last prediction of the sequence at the cost of higher
inference time, since we need to feed spectrogram fragments with huge overlap of n—1 where
n is length of the sequence.

Additionally, in order to enable utilization of time context from both sides of estimated
frame, we examine the use of bi-directional recurrent layer. In order to provide equal time
context from both sides, we only use sequences of odd lengths and train to predict the frame
at the center of sequence, instead of the last one.

Based on type of recurrent layer used within particular model variation, as outlined
on Figure 22, we denote the model with classical one as RNN-Spec and the model with

bi-directional one as BiRNN-Spec.

46

Output vector
(note probabilities)

Fully Connected ‘

A

Fully Connected Hidden Layer(s)

OHCHO
SO0

. OO
OO
OHHO

a) Classical RNN L
Q Q Q Q Q Recurrent Unit Recurrent Layer(s)
€333 2 e R
GGL@@O sequence of spectral
OOOOO Fragment coefficients vectors
(¢) Bi-directional RNN (b) Default setup of recurrent models

Obr. 22: Outline of recurrent architectures.

Though length of the sequence is not restricted by RNN, as we currently have no means
of determining the desired length of context, we choose a constant value for each training
session, ending up with additional hyperparameter to tune.

There are of course many possible adjustments to these models we could examine, e.g.
placement of recurrent unit on the top of MLP classifier, between the last hidden layer and
fully connected output layer. Multiple recurrent units can be also used on different places and
their outputs combined using residual connections.

It should be made clear, that generating batch of data samples during training differs
among these model, since each model takes different data unit as input observation and
according to this, output labels are also chosen specifically.

During training of MLP-Spec model, frames are sampled from training set according to
pseudo-randomly generated distribution of indices to array or queue of training examples,
based on size of data set and thus batching method. In similar fashion, sequences of frames
are pseudo-randomly sampled during training of recurrent models.

At time of inference for testing, sequential batching is a straightforward method to use,
although recurrent models get zero-padded spectrograms in order to compensate the time

missing context at start (or end) and get equal shape of estimated piano roll to ground truth.

47

6.1.4 Postprocessing

In scope of simple note detection task where information about dynamics of individual notes
is discarded, the last processing step we do is thresholding, which simply means rounding
estimated probabilities to logical values. This is performed according to specified threshold g,

which is a parameter of evaluation, given

1, if P,; >
Rn,tz{’ ' ’t—q})

0, otherwise

where note n and time frame ¢ are indexes to arrays P for estimated probabilities and R
for resulting piano roll.

With this representation, standard metrics for evaluation of information retrieval tasks
can be computed. We further use this representation for empirical evaluation. Visual plots of
piano rolls can be created and MIDI representation can be reconstructed, which can be played

using different soundfonts and libraries of various musical instrument audio samples.

6.2 Modelling Features in Time Domain

Although spectral analysis is very important step in most signal processing tasks, it comes
at the cost of losing some (howsoever small) amount of information about the signal. By
windowing the audio snippets during spectral analysis, we disrupt the signal continuity
information and yet still some artifacts are generated in the spectrum.

Alternatively, excluding any feature extraction from preprocessing phase, one could treat
the musical data in its raw form, as a sequence of samples in time. However, this way, the
frequency content analysis is an additional task left for the neural network to tackle.

The idea is inspired by success of various deep models applied to signal processing tasks,
which could learn multiple feature maps on different layers of representation.

The fact, that raw audio signal contains all the necessary information for human brain to
understand and perceive the musical content of the signal is tempting for attempts to design
a deep neural network architecture with sufficient capacity to be trained for this task and
mimic this process. After all, recent advances in various image processing tasks made by
deep neural networks have demonstrated relevance of this approach. This suggests, that deep
neural networks could be able to learn feature representations, which will be more robust

against acoustic variations in audio signal, and therefore also better tailored for the task at

48

hand. Also with raw signal on the input, network has enough information to gain ability to
perform multiple transcription tasks simultaneously, such as dynamics estimation or sound
source recognition.

Besides the recent success of deep CNNs at processing visual data, which is a raw signal
too, recent advancements also demonstrated, how deep networks can effectively learn to
model structure of signal from raw sequences of audio samples [84]. They proved this by
generating highly comprehensible quality utterances of speech and musical signals with
WaveNet: A Generative Model for Raw Audio [2].

We initiate our work in this direction by examination of possibilities to re-use the funda-
mental ideas of WaveNet architecture. Since this model has been proven effective on task of

audio synthesis, our goal is to examine its capacity on task of multiple F{, estimation.

6.2.1 WaveNet for Transcription

In this section, we describe the WaveNet architecture as introduced in DeepMind paper [84].
We further describe how we adjust and train this model to perform frame-level transcription

of polyphonic music.

6.2.1.1 The WaveNet Architecture

The architecture of WaveNet is built out of 1D convolutions with some special properties.
Figure 23 depicts an exemplary stack of dilated causal convolutions with dilation factors
1,2,4, and 8.

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
l Dilation = 2

O Hidden Layer
! o l Dilation = 1
Input

Obr. 23: Stack of dilated causal convolutions; reprinted from [84].

49

The important thing about causal convolutions is that they do not use any of the future
timesteps when calculating prediction for timestep #, in order to preserve any possible causal
relationship between subsequent values in given series. This enables to model conditional
probability distribution for value of next sample, conditioned over sequence of preceding
samples [84].

The issue with regular causal convolutions applied to 16 kHz audio is the lack of means

to effectively increase receptive field! of the network, since the formula is
receptive field = |layers| + filter width — 1 5)

and therefore to achieve any reasonably large receptive field would require too many layers or
very large filters.

That is why dilation factor is very useful. It enables to increase the receptive field by
orders of magnitude, without greatly increasing computational cost, through enabling to apply
convolution filter over an area larger than its length by skipping input values with a certain
step [84]. Provided that all layers use same filter width and one simple causal convolution is

applied first, followed by stack of dilated causal convolutions, the formula is

receptive field = (filter width — 1) X <dzlaznfms (d) + 1) +1 (6)
d
where dilations is a set of dilation factors describing by the stack of dilated convolutions.

By increasing dilation of successive layers by factor of 2, receptive field of the network
grows exponentially with its depth. Another means of increasing the receptive field is to
further stack multiple such blocks, one on another. This helps to increase the receptive field
size as well as model capacity. For example, authors state their experimental configuration as
follows:

1,2,4,...,512,1,2,4,...,512,1,2,4, ..., 512.

Additionally, in order to make the prediction of samples more tractable, authors train
WaveNet on samples quantized to 256 possible values, to predict the value of next sample
using softmax distribution over these 256 possible values.

Another key feature of WaveNet is the engagement of residual and skip connections

across the whole stack of dilated convolution layers. By introducing addition operation to

'Receptive field is the number of samples WaveNet can use to compute single prediction.

50

network computation graph, they help to speed up convergence and enable training of much
deeper models. This again starts to make sense once we realize how addition benefits the
propagation of gradient through the network back to the initial layers, in terms of reverse-
mode differentiation [1]. Their use within a single residual block along with entire WaveNet

architecture is depicted on Figure 24.

Residual

1x1

ﬂ'IwEEilxllm— Softmax —# Output
|

Dilated
Conv

Causa
Conv

A

Input

Obr. 24: Overview of WaveNet architecture and its residual block; reprinted from [84].

Also,the residual and skip connections are parameterised, which means each connection
has its set of weights being optimized to let the exactly required amount of information flow
through their channels.

Further features of WaveNet architecture include global and local conditioning on the
input. For TTS model it makes sense to be conditioned globally e.g. on a speaker embedding,

whilst locally on some linguistic features such as sequence of phonemes to generate.

6.2.1.2 Proposed Adjustments

Inspired by previous success of WaveNet in audio modelling domain, we build our version
based on its open source implementation! and adjust it for the task of frame-level transcription.
Since generation and transcription are fundamentally different tasks, the data preparation

for training and inference differs as well. However, the advantage of WaveNet convolution

"https://github.com/ibab/tensorflow-wavenet

51

mechanics which allows the parallel processing of sequences significantly longer than the
receptive field to be processed in single inference step, producing sequence of predictions
of length (input length — receptive field 4+ 1), becomes quite obsolete. This is because
WaveNet yields output sequence at temporal resolution equal to input sample rate, which
is at least 1 6 kHz in music transcription scenario, while temporal resolution of 100 fps
is established as absolutely sufficient for frame-level transcription, according to measured
limitations in human perception of rhythm.

In order to utilize the convolution mechanics of WaveNet, we train and evaluate on large
sequences. However, in real world use-case when we want to visualize or MIDI-reconstruct
the output, we further sub-sample it by average pooling to get reasonable temporal resolution.
Alternatively, we could append another layer or pooling operation to the network output for
sub-sampling and work with appropriate resolution of output all the time.

In order to provide the network with time context from both sides, similarly to BIRNN-

Spec, we force the alignment of estimated piano roll frame to the center of input sequence.

receptive field—1

5 W zeros from left side and by

This is done by padding input sequence by [

\f"eceptive field—1
2

As opposed to generative WaveNet, we omit the non-linear quantization of input samples

J zeros from right side.

and feed raw data instead, since quantized representation has proved redundant by showing
little to none influence on transcription performance.

We replace softmax activation function with sigmoid on the output to get multi-class
classifier network, instead of single-class classifier. The number of output channels changes
from 256 originally quantization channels to 128 now MIDI note numbers.

We don’t have a way to employ model conditioning at the moment, since audio signal is
the single relevant data source for given task. However, in Section 8 we mention some of our
ideas to utilize local and global conditioning in several various AMT scenarios.

For further reference and evaluation purposes, we denote this adjusted WaveNet model by
acronym WN4T (WaveNetForTranscription) within the scope of this work.

52

7 Evaluation

To evaluate our methods, we combine resulting estimations with ground truth to quantify
the results. For empirical evaluation, we also visualize this combination and additionally, we
generate MIDI from estimations and compare audio representations of estimated notation to

ground truth.

7.1 Methodology

It is common that training sessions of deep networks on large data sets take not just hours, but
rather days. Therefore, performance of trained models is evaluated in regular intervals, and
results serve to track the progress of training.

For this intermediate evaluation, validation set of data is reserved. Based on performance
on this data set, different model configurations are examined across experiments'. Finally,
when training and tuning is finished, model is evaluated on test set, which is another set of
data reserved for this purpose.

In sake of correctness, training, validation and testing data should always consist of
disjoint sets of data samples. Unless explicitly stated otherwise, we stick to standard ratios of

distribution between these sets, as stated in Table 1.

Tabul'ka 1: Standard ratios of data set distribution in machine learning.

Training Validation Testing
80 % 10 % 10 %

From estimations and ground truth labels on evaluation data, we compute standard infor-
mation retrieval metrics. Namely precision, as ratio of correctly estimated notes against all
estimated notes, and recall, as ratio of correctly estimated notes against all ground truth notes.
We mainly track their harmonic mean - F} score, as a single and most relevant indicator of

performance, given by (7).

gL, precision:recall o)
+ preciston + recall

precision recall

'In deep learning jargon, this is also called tuning the hyperparameters.

53

Though we track measure of accuracy as number of correctly estimated values against
all values, we don’t report this metric since it is much less informative than F) score. This is
because musical data representation by piano roll yields a very sparse matrix! in which any

model is always able to gain first ~ 95% of accuracy just by correctly estimating silence.

However, in order to enable comparison to previous work, we also measure frame-level

accuracy (8) as proposed by Dixon in [28]

TP
A= FP Y PN+ TP) ®

where T'P, F'P and F'N denote total counts of true positives, false positives and false
negatives. Evaluation metrics are computed from estimations and labels. To examine confusion
empirically, we further create visualizations of estimations or use piano roll to construct
playable MIDI file.

Since we tackle a multi-class classification problem, construction of confusion matrix is
not an option. Therefore, to understand the performance issues of our models, we examine
cherry-picked transcription fragments at least manually using colorful visualizations of true

positive, false negative and false positive estimations.

Additionally, we use early stopping technique on training sessions, in terms of regularly
validating model performance and saving checkpoint of model parameters, in case perfor-
mance is improved against current maximum. When there is no improvement for specified
number of checks, training is stopped, best model checkpoint is restored and evaluated on test
data.

7.1.1 Visualizations

We demonstrate the use of our evaluation plots to examine the transcription fragments as
depicted below on Figure 25. In all plots, horizontal axis represents time in seconds, while
vertical axis represents notes ordered chromatically according to piano keyboard - from lowest
(bottom) to highest (top).

'Most of time in music, only tiny fraction of all playable notes are being played.

54

1.0 C8r—r T T CBr— F T S S Sy
; [Estimate ; True Positive
0.9 ¢ |3 Reference { ||EEE False Negative
c7t T c7f | |mmm False Positive
0.8 L R I AES SR S S
N i =] N ﬂ: i N i i N i N i
0.7 C6E.. IS SIETIE HEEESE SRR SRS SRS C6E.. S IFESFE (NS RESRE SERS SSFIS P
]
! N = . 1
— - 0.6 | E—— | T
- - . € spinniini g rn Ccst
- - - - - o -_ [=
el o RS
ca v -ﬂlﬂm === = ca
- - - ™ LoDt L
- 10.4 ; e 0 o i ™
= = ma 103 c3 i n,:l DI?:I, C3p
: D e BEe
o 40.2 ! : : : =) Sr ! : : L
o e s EIIEE SEEIEE SRR S (o3 Y SRS RS 000 SEEEEE Hapees St S et
10.1 : 2 : ¢ w f
T T L10.0 CLp o] Clp o]
0 05 115 2 25 3 35 4 H | | i i i |] i i i L i L
Time 0.0 05 1.0 15 2.0 25 3.0 35 4.0 0.0 05 1.0 15 2.0 25 3.0 35 4.0
(a) Estimations (b) Certainties (c) Evaluations

Obr. 25: Evaluation plots.

On Subfigure 25a we see raw matrix of predicted probabilities with colorbar denoting

probability values.

Next, Subfigure 25b shows certainty of predicted note events after piano roll is converted
to set of MIDI events. Conversion is performed by linear scan of each note across time axis.
Note event is generated from each coherent sequence of predictions with value above specified
threshold 0. 007, since sigmoid activation function will never return zeros, only values close
to zero. Certainty of prediction is calculated as mean of all prediction values in given sequence
and it is expressed through alpha channel of plotted note bar, thus by color intensity. Onset

and offset times are set to first and last predictions of the sequence.

Finally, on Subfigure 25¢ we see the retrieved values after thresholding in contrast with
ground truth. White space represents True Negatives, while legend explains the remaining
colors. This allows us to instantly observe the fail modes of our models.

To generate these visualizations, we utilize mir_eval [71], an open-source python

library of evaluation functions for MIR and audio signal processing algorithms.

55

7.2 Data Sets

In this section we state details of data sets used in our experiments. Parameters of preproces-
sing which were applied equally to all data with no variations amongst experiments are stated

as well.

7.2.1 LabROSA

The Laboratory for the Recognition and Organization of Speech and Audio' (LabROSA)
provides a data set of recorded live piano performances?® to public. This is a part of larger data
set which has been used by Poliner & Ellis in their work [67].

It is meant to extend the larger subset of data generated from MIDI notation, to enrich the
training and testing set by timbral variations of live music performance.

Recorded part of data set consists of . wav audio files and .mid reference files. Audio is
sampled at sample rate 8000 Hz and depth of dynamic range 16 bits.

This, according to Nyquists sampling theorem, is theoretically sufficient for piano music,
as denoted in [67], because highest note playable by piano is B7 with fundamental frequency
of 3951.1 Hz. However, some timbral features of higher tones are definitely lost, since
they are located far above the Nyquist frequency of 4000 Hz.

In following paragraphs, we describe three variations of this dataset, which have been

used across our experiments.

7.2.1.1 LabREC - Recorded Tunes

The set of recorded performances provided by LabROSA contains first 60 seconds of 29
different compositions.

From each of these labeled recordings, first 40 seconds were divided into 32 training,
4 validation and 4 testing seconds of data. With resolution of 100 frames per second this
amounts to 92800 training, 11600 validation and 11600 testing samples.

We start our initial experiments with this subset, as its size allows for fast prototyping
and quick experimentation with simple models. Since we further use different variations of
LabROSA dataset, we denote this variation as LabREC.

'ttp://labrosa.ee.columbia.edu/
’http://labrosa.ee.columbia.edu/projects/piano/

56

http://labrosa.ee.columbia.edu/
http://labrosa.ee.columbia.edu/projects/piano/

7.2.1.2 LabSYNTH - Synthesized Tunes

For next set of experiments, we use MIDI files of tunes from LabREC and synthesize the
audio using high quality piano soundfonts', resulting in another LabROSA variation we call
LabSYNTH.

For audio synthesis, we use 3 different piano soundfonts: Nice—Keys—Extreme—Vl.Sz,
Arachno® and Yamaha Disklavier*. During the training, batches are generated by random
sampling from randomly chosen tunes with randomly chosen version of synthesis. The goal
is to prevent the models from overfitting to timbral characteristics of single piano instrument.

This set is divided into subsets in exactly same way as LabROSA-rec, resulting in 89600
training, 11200 validation and 11200 testing samples

Since LabREC and LabSYNTH contain the identical collection of MIDI files, they can

both be described equally in terms of musical content.

Tabul’'ka 2: Statistics for musical pieces and note events of LabSYNTH.

Duration of pieces | Note events |

Total | Average | Max | Min || Average duration | Total count
29 m 60 s 60s | 59s 0.22s 15066

Table 2 summarizes data set statistics on level of musical pieces and note events. Figure
26 shows distribution of frames with various polyphony levels. On Figure 27 note occurrence

histograms in training and test subsets are shown side-by-side for easy visual comparison.

5 400 377 359.8 i
: 2717 2196
2 20011954 . }
H*) 9.2
| O O 177 31 13 19
I

0 1 2 3 4 5 6 7 8 9 10
polyphony level

Obr. 26: Distribution of polyphony in number of samples across LabSYNTH.

1http://www.synthfont.com/sfspec24.pdf
https://sites.google.com/site/soundfontsdu/
Shttp://www.arachnosoft.com/main/soundfont.php
‘http://zenvoid.org/audio/

57

note events

(a) Training set

400 ‘

300

200

100

40

60 80

MIDI note number

(b) Test set
|

60

40

note events

20 |-

O,I]d]]m]]

40

60 80

MIDI note number

Obr. 27: Note occurrence histograms in training and test subsets of LabSYNTH.

7.2.1.3 LabCOMP - Complete Dataset for Reference Evaluation

To enable comparison of our method to reference approach, we try to obtain the most
possible similar reconstruction of dataset used in the paper [67]. Although the paper contains
comprehensive description of used data set in a table, its content contradicts with detailed
description of used data in Section 2.1 Audio Data, which states that data contains "95 training,
25 testing and 13 validation pieces", while table lists only 87 training and 24 testing pieces.
Nevertheless, we retrieved the published recordings from publication web site and col-
lected MIDI files of remaining tunes from referenced site! according to table of MIDI

compositions attached with the paper [67]. Additionally, we also used the same soundfont for
MIDI synthesis - Yamaha Disklavier grand piano. This variation is denoted as LabCOMP.

We describe the exactly same statistics as previously to enable comparison of data sets.

Tabul’'ka 3: Statistics for musical pieces and note events of LabCOMP.

| Duration of pieces

| Note events

|

Total

Average

Max

Min

Average duration

Total count

2.04h

59 s

60 s

23s

0.23 s

65510

'"http://piano-midi.de/

58

2,000 F 1.486.51,589.2 |
2 1,500 |- 1,280 ' -
§ 1,000 |- 879 983.6 |
g 1.
+ 5001 oTLY D 375.5 |
' [0 500 3 33 26 |
T T T T T T T T T T T
0 1 2 3 4) 6 7 8 9 10
polyphony level
Obr. 28: Distribution of polyphony in number of samples across LabCOMP.
(a) Training set (b) Test set
2,000 [| |] 500 F |]
1,500 - . 400
5 5 300
15} >
1,000 -)
3 0
g S 200
- :
500 .
100
0 7 ; | 0@

T T T
20 40 60 80 100

T T T
MIDI note number 40 60 80 100

MIDI note number

Obr. 29: Note occurrence histograms in training and test subsets of LabCOMP.

7.2.2 PIMIDE

This set represents the largest collection of classical piano tunes we collected. After duplicates
removal, it consists of 337 MIDI tunes all retrieved from Classical Piano MIDI Page website'
including format 0 MIDI files.

Purpose of this dataset is to enable training of large-scale deep models with bigger size

http://piano-midi.de/
http://piano-midi.de/midis/format0/

59

http://piano-midi.de/
http://piano-midi.de/midis/format0/

and capacity, although due to time constraints we only performed two large-scale experiments
with this data set.

Yet before we finding that PIMIDE is over one order of magnitude larger than previously
used datasets, in preparation for even larger models, we extend this dataset with 12-fold
transposition', in order to get each tune into each of 12 different keys. We denote this model
as PIMIDE_EXT and provide statistics of both sets in tables below.

Tabul’'ka 4: Statistics for musical pieces and note events of PIMIDE.

Duration of pieces | Note events |
Total | Average | Max Min | Average duration | Total count
2297h | 409m |3352m | 23.34s 0.21s 784262

Tabul'ka 5: Statistics for musical pieces and note events of PIMIDE_EXT.

Duration of pieces | Note events |
Total | Average | Max Min || Average duration | Total count
26471 h | 3.66m | 33.52m | 3.95s 0.21s 8853029

7.2.3 MAPS

MIDI Aligned Piano Sounds? (MAPS), is a piano sound database dedicated to research on
multi-FO estimation and automatic music transcription [30].

It is distributed under Creative Commons License and we obtained access to a somewhat
limited (10GB) version of this data set upon e-mail request. Construction of contents of this
data set is described in detail in [14]. This data set provides following categories of sounds in

a denoted subsets:

* ISOL - isolated notes and monophonic sounds.

¢ RAND - random chords.

'Our algorithm for 12-fold transposition attempts to transpose each tune into all different keys. If there is
free piano range, direction is chosen such that center of transposition octave approaches center of the keyboard.
Its implementation is located at /prep/transp.py on electronic medium attached to this work. For more
details refer to Appendix A.

’http://www.tsi.telecom—paristech.fr/aao/en/2010/07/08/maps—database-a—
piano-database-for-multipitch-estimation-and-automatic-transcription-of-
music/

60

http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/
http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/
http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/

* UCHO - usual chords.
e MUS - pieces of music.

Dataset consists of . wav audio format sampled at sample rate 44100 Hz and depth of

dynamic range 16 bits. Ground truth is provided in MIDI and also text format.

7.2.4 Common Preprocessing Parameters

To perform DSP routines necessary for audio preprocessing, we used 1ibrosa - python
library for audio and music analysis [60]. To generate piano rolls from MIDI files and vice-
versa, we utilized another python library pretty-midi [70] and implemented custom
routine for MIDI reconstruction from piano-roll. Though this representation does not carry
most of the notation metadata, in some situations, simply note onsets and offsets are sufficient
for data examination.

In order to achieve sufficient time and frequency resolution of CQT spectral analysis, we

used following parameters to the algorithm.

* sample rate = 25600 Hz for initial re-sampling.

* hop length = 256 samples for temporal resolution'.

* minimum frequency = 27.5 Hz corresponding to note AO.

* number of spectral bins = 88 x 3 having 3 bands per note.

* bins per octave = 12 % 3 since octave has 12 semi-tones.

For this configuration, temporal resolution of piano roll was setto 100 fps, in order to
align properly to spectrograms.

Note, that this is the baseline configuration for preprocessing phase. Wherever we used

data which were preprocessed with different parameters, the difference is explicitly stated.

7.3 Experiments

In this section we present several performed experiments, which exposed some interesting

results. At all of our experiments, we used the value of threshold ¢ = 0.5 unexceptionally.

I'This configuration results in temporal resolution of 100 fps (frames per second).

61

7.3.1 Initial Attempts

First set of experiments was conducted on LabREC - a subset of recorded piano performances.

7.3.1.1 MLP-Spec: Model Depth

We examined influence of model width on validation accuracy during training, by visualizing

F1 score convergence curve.

Tabul'ka 6: Experimental setup: model depth

Model Batch size Width
MLP-Spec 300 frames 200 units

Number of hidden layers (depth) of the model was variable parameter, while others
remained constant between the runs. Hidden activation functions (ReLLU) and optimizer

(Adam) remained from default configuration.

0.8]

0.7 i

0.6 | " -
0.5 |

04 e i

Fi-score

0.3 i

0.2 |

—eo— depth: 1 hidden layer
0.1F —— depth: 3 hidden layers a
" —=— depth: 5 hidden layers

0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
training step 104

Obr. 30: MLP-Spec performance at different model depths.

62

Results on Figure 30 show us trend of decreasing validation performance with increasing
model depth.

Apparently, this is related to so called skinny jeans problem, which basically means to find
the right model size for the size of training data. With increasing model size but same data
corpus size, problem of overfitting occurs. On the contrary, if model size and thus capacity is
too small for the data size, underfitting occurs.

Enlarging the data set is one possible approach to fix this issue, although even if we can
easily get more data, this is not a reliable approach, since we want our model to be ready for
absorbing new data, just in case, and not rely on exact data size determined experimentally.

One common solution to this problem is to have model with larger capacity than it needs
for given data corpus, and introduce regularization techniques during the training, in order to

prevent the model from overfitting.

7.3.1.2 RNN-Spec: Context Sequence Length

Results of MLP-Spec model showed us, as visualized on Figure 31, that the predictor is
somehow missing the time context of predictions it generates. This is obvious from many
estimations of notes with very short duration. Therefore, we designed RNN-Spec, in order to

introduce the concept of note duration.

! True Positive (match) W False Negative (ground truth) BB False Positive (bad estimate)

F# &

BL -— ! ! - P peim _ m we -
g - gy T — - =
TF = i = - R W ™ =T Ve W e
21 gem o mmmn e o N w — L BESAEY o T Eanr L
Cafs o E— — L = 1 — - " n
R L o - = — — T - -
- "™ —— -— - d "N e L . - — m -
=== —-— i - - s
" — [
- oo p— — e —
D3 = = i o] — — L —
ZitaREc 1 omm — = =m ow
: —— : T - — o — -
Ezp..." - — B — - -

F# 1 [

P
Gz

=1

Obr. 31: Example visualization of estimations against true labels.

We examine how length of context provided to recurrent cell will influence the accuracy.

63

Tabul'ka 7: Experimental setup: context length.

Model Batch size Width Depth Cell
RNN-Spec 64 sequences 1000 units 1 layer GRU

In this setup, parameter width as number of units is reused in both hidden and recurrent
layer. We also lower the batch size against previous experiments, but since each input is now

a sequence of frames, actual number of frames contained within one batch is larger.

0.8 i
0.7 i
0.6 - i
0.5 i

04 i

F’-score

0.3 i

0.2 i

0.1} —e— context length: 10 frames 8
L —=— context length: 30 frames

| | | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
training step

Obr. 32: RNN-Spec performance at different input sequence lengths.

On the plot of validation performance, we can see how extended context from 100 ms
to 300 ms providing the model with higher modelling capacity actually made the model
overfit the training data very quickly, so it became stuck in some local optimum after ~ 4000

training steps.

7.3.1.3 Model Comparison: MLP-Spec vs. RNN-Spec

When taken two best performing setups of both models, the winning RNN-Spec setup is the

one with context length of 10 frames and GRU recurrent unit. Remaining parameters are

64

given by Table 12.

Tabul'ka 8: Experimental setup: MLP-Spec vs. RNN-Spec on LabREC corpus.

Model Batch size Width Depth
MLP-Spec 64 frames 1000 units 1 layer

RNN-Spec 64 sequences 1000 units 1 layer

0.75 i
0]
S
2
oot l
0.65 —e— MLP-Spec | |
—=— RNN-Spec

| |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
training step -10*

Obr. 33: Performance of MLP-Spec vs. RNN-Spec on classical music.

Clearly, RNN-Spec converges into less optimal solution than MLP-Spec, despite its faster
acceleration. This is apparently caused by the same problem as in the experiment with different
depths. By introducing additional recurrent layer on the input, size and capacity of the model
has grown, while training corpus stayed the same size.

We suppose, that RNN-Spec was able to recognize specific structures in spectral changes
over time, thanks to provided context, and overfit to their occurrences in training set. Our

further work with larger corpus supports this theory.

65

7.3.2 Usual Chords

From the MAPS dataset, the subset of usual chords (UCHO) was selected for additional

experiment. We reserved 1 chord for validation and 1 for test set from each chord category.

This resulted in distribution of chord examples described by Table 9.

7.3.2.1

Tabul’ka 9: Distribution of examples from subset MAPS_UCHO.

| MAPS_UCHO | Train | Test | Valid |

Chord examples

1374

198

198

Minutes of audio

40

5

5

Model Comparison: MLP-Spec vs. RNN-Spec

We again evaluate our former models, although now on different data. Now with relatively

balanced sets of hyperparameters as depicted in Table 10.

0.8

0.6

Fi-score

0.4

0.2

—e— MLP-Spec
—=— RNN-Spec

0.2 0.4 0.6

training step

0.8

1.4

Obr. 34: Performance of MLP-Spec vs. RNN-Spec on usual chords.

66

1.6
-10*

Tabul'ka 10: Experimental setup: MLP-Spec vs. RNN-Spec on MAPS_UCHO.

Model Threshold Batch size Width Depth Cell Context
MLP-Spec 0.5 8000 fragments 100 units 1 layer - -
RNN-Spec 0.5 100 sequences 128 units 1layer GRU 10 fragments

Although relative rates of performance between concurrent models remains practically
the same, significant improvement of maximum precision is exposed by both models, against
classical music data.

The actual test set performance of validation top-performing model checkpoints was

remarkable, in contrast to previous results, as stated in table 11.
Tabul’ka 11: Test performance summary on F1 metric.

| MLP-Spec RNN-Spec
LabREC 75.32% 70.64%

MAPS_UCHO || 93.52% 91.64%

This suggests the importance of data set and its structure. Since usual chords are repeated
over dataset, just in different inversions and transpositions, the structural pattern of harmonic
components is repeated as well and is then more easily learned. Unlike classical music, full of

unique harmonic patterns and combinations.

7.3.3 Large-scale Training

In this chapter we mention some experiments performed on PIMIDE data corpus.

7.3.3.1 Model Comparison: MLP-Spec vs. RNN-Spec

For first experiment with large data corpus we take the two best performing setups of MLP-

Spec and RNN-Spec and examine their performance in similar fasion as in 7.3.1.3.

Tabul'ka 12: Experimental setup: MLP-Spec vs. RNN-Spec on PIMIDE corpus.

Model Batch size Width Depth Context Cell
MLP-Spec 100 frames 1000 units 1 layer - -
RNN-Spec 100 sequences 1000 units 1 layer 10 frames GRU

67

After ~ 5 days of training together and ~ 2.1 millions of training steps per training
session, we terminate the experiment, since validation performance curves make it clear to

observe what was expected.

Fi-score

0-71 LA A & ‘ LB byl il
|“ v 4 " "lll lﬂlll“"-l'-“.um'm"r- """"‘":'“'hl N0 Vs e et T et
: 1 ,
Wlﬂ 2 L A0 L
0.6 ‘ i
0.5 i
—e— MLP-Spec (smoothed)
—=— RNN-Spec (smoothed)
0.4 — MLP-Spec (raw) |
RNN-Spec (raw)

0 02 04 06 0.8 1 1.2 14 16 18 2 22 24
training step .10

Obr. 35: Performance of MLP-Spec vs. RNN-Spec on classical music.

On Figure 35 we see huge oscillations of raw validation performance curves. This is
clearly an opposite case than the comparison in 7.3.1.3, where due to lack of data, both
models were overfit. On the contrary, in this experiment, we have too large data corpus for
both models, therefore this is clearly an underfitting issue. Oscillating performance indicate
attempts to absorb small amounts of knowledge from huge data corpus. This might be caused
by proportions in sizes of models and data. Lowering learning rate or enlarging batch size
could also help, however, one adds computational costs, while the other adds memory costs.

The slightly better performance of RNN-Spec also confirms our previous assumption that
it has been overfit on the small training corpus due to higher modelling capacity. Now in case
of underfitting, the capacity added by recurrent layer and provided context finally provides
advantage to RNN-Spec over MLP-Spec.

68

7.3.3.2 Initial Training of WN4T

Upon construction of large-scale data corpus and adjustment of WN4T training job, during the
development of evaluation module, we executed a 17 days long training session. Unfortunately,
only 30 epochs were passed during this period, since the data corpus is large, and WN4T
processing mechanics in high resolution over high-dimensional data, are also time-intensive.

After evaluation was implemented, we found that this corpus was also way too large even
for the WN4T model. After all this time, model was stuck at predicting constant probability
distributions across time, which means its predictions were not conditioned on input values

changes, so it did not really ever start to converge.

Note

+0.04

+0.03

—40.02

10.01

15
Time

Obr. 36: Example predictions of non-converging WN4T.

7.3.4 Additional Experiments

In this section we describe tests performed on the LabSYNTH dataset with all proposed

architectures and finally summarize and compare all variants.

7.3.4.1 Bi-directional Recurrency

After implementation of BIRNN-Spec model, we trained this model along with MLP-Spec
and RNN-Spec on LabSYNTH corpus. Main parameters' of training configuration are listed

'Each element in square brackets describes single layer.

69

in Table 13 below.

Tabul'ka 13: Parameters of *-Spec models trained on LabSYNTH.

| MLP-Spec RNN-Spec BiRNN-Spec

batch size 500 100 100
sequence length - 20 21
recurrent layers - [1000] [1000]
recurrent activations - [tanh] [tanh]
fully connected layers [1000] [1000] [1000]
fully connected activations | [relu] [relu] [relu]

In this experiment, each model was trained in 5 independent sessions with randomly
initialized weights. Validation performance curves of our models in Figure 37 are plotted

from mean values of these sessions, while standard deviations are included in the plot.

0.85 -

H g}w %ﬁﬁ‘% Mﬁ%}ﬁ%ﬁ R

0.8

Fi-score

©

\]

ot
T
—e—

 a

|

0.7 .z a
—— MLP-Spec
x —=— RNN-Spec

0.65 - —eo— BiRNN-Spec | |
| | | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

training step 104

Obr. 37: Validation performance on synthesized data.

Initial results make BiRNN-Spec appear as best improvement in our architecture design

so far. However, in this case it is clear, that additional modelling capacity comes at cost

70

of additional computational complexity. Regardless, additional tests of this model will be

necessary to unveil its properties in robust evaluation and comparison.

7.3.4.2 Gradual Training of WN4T

Finally, we found a method to train our WN4T model and evaluate it on the same data as other
models, for comparison. However, we found it non-trivial to train this model for polyphonic
texture recognition from scratch. Especially randomly initialized model. Therefore, we train

this model gradually as follows.

1. First, pretrain WN4T on a corpus of monophonic piano notes with durations of 0.1, 0.5,

1, 3 and 7 seconds which gives 5 x 88 training files in total.

2. After convergence on this data, generate all different pairs of piano notes played as

harmonic intervals with duration of 1 second.

3. This gives 3828 training files which are added to the existing corpus and the training

continues until convergence on training data.

4. Start adding polyphonic data samples into training corpus, but maintain equal proportion

to monophonic data samples.

After few training epochs on monophonic and interval data, and upon convergence on
this data when model reaches reasonable training set error, we add LabSYNTH data to the
training set.

Model was trained on 16000 Hz audio. The stack of dilation layers of our model is
depicted in Table 14. It comprises of 33 layers and results in receptive field of 6143 audio
samples.

Tabul'ka 14: WN4T model layers setup in comparison experiment.

Dilation factors of successive layers

1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024

During the training, sample size was set to 10000 consecutive samples. This is the number

of time frame estimations generated within single training step, so it can be interpreted

71

as parallelization of the training. We left batch size, which defines actual number of such
sequences in single training step, equal to 1, due to memory constraints of GPU we used for
training.

Input layer is processing mono audio, therefore number of input channels is 1. Number
of output and skip channels is 128 according to notes in MIDI standard. Between layers
throughout the model, we used 256 residual and dilation channels.

Finally, we report and compare the test performance of our models trained on LabSYNTH
corpus, which however, due to various sizes of train samples and batch sizes and constrained
training times, resulted in different numbers of training epochs. Numbers in parentheses

indicate the number of training epochs passed by given model in this comparison.

Tabul'ka 15: Comparison of our models trained on LabSYNTH corpus.

LabSYNTH || MLP-Spec (56) | RNN-Spec (12) | BIRNN-Spec (12) | WN4T*(13) |

precision 82.26% 81.94% 84.21% 73.37%
recall 75.85% 74.70% 78.98 % 37.84%
F1 78.93% 78.15% 81.51% 49.93%
Acc 65.19% 64.14% 68.80% 33.27%

Naturally, we used the best performing checkpoint for this evaluation, regarding our set
of MLP based models, since we had 5 different checkpoints of each model, according to

multiple training sessions described above.

7.3.5 Comparison to Previous Work

Additionally we compare our results to the reference approach [67] due to availability and
detailed description of data set used in their experiments, which we collect and denote as
LabCOMP.

After ~ 3 training epochs we report frame level accuracy of our models . We acquired the
published recordings from publication web site? and MIDI scores of remaining tunes from

referenced site® according to table of MIDI compositions attached with the paper [67], which

*Although this model is included in the comparison, it is very different in nature and size from the other
models and therefore it has been trained differently, as was described above.

https://labrosa.ee.columbia.edu/projects/piano/

Shttp://piano-midi.de/

72

comprehensively describes used data set. We also used the same soundfont for synthesis as

stated in the paper, namely Yamaha Disklavier grand piano.

Tabul'ka 16: Comparison to reference approach.

Approach | Recorded (10) | Synthesized (25) | Combined (35) |
Poliner and Ellis [67] 56.5% 72.1% 67.7%
Nam et al [63] - - 72.5%
Ryynanen and Klapuri [74] 41.2% 48.3% 46.3%
Marolt [57] 38.4% 40.0% 39.6%
MLP-Spec 56.2% 61.2% 59.2%
RNN-Spec 46.3% 56.1% 52.1%
BiRNN-Spec 54.5% 63.5% 59.9%

Due to time insufficiency, our models are not fully trained, neither fine-tuned on validation
data of LabCOMP corpus, as opposed to concurrent approaches, so these results now serve
just as a proof of concept.

In this work, we propose several novel approaches and dedicate our focus to their realiza-
tion and iterative validation of subsequent design ideas. The search for optimal hyperpara-
meters, such as model size and regularization, training parameters will be subject to future
research, along with fine-tuning of these models on validation subset in order to prepare for
proper evaluation and comparison.

Also, the notable difference in performance of our models between evaluations on Lab-
SYNTH and LabCOMP datasets seems to follow the structural difference between those
datasets. While LabCOMP is divided into training, validation and test subsets by grouping
whole tunes into these 3, LabSYNTH cuts 3 pieces out of each tune and places those into
subsets. Since repetition of musical themes and phrases is typical for classical compositions,
LabSYNTH has higher probability to generate overlap of polyphonic textures between those
subsets, simply by design.

7.4 Human-Level Evaluation

In order to gain deeper insight into performance of our methods, we often visualize and
evaluate individual transcriptions on real-world data. Although this naturally belongs to the
development and debugging process, we share some takeaways from this process in this

chapter.

73

Additionally, we test the robustness of our method by comparing transcription results of
digitally created audio snippet versus the same audio snippet reproduced and re-recorded with

a microphone embedded in smartphone.

7.4.1 Role of Temporal Context

After initial experiments with simple MLP-Spec model, we noticed plenty of noise in its
predictions. These are all the extra-short note predictions occurring with very little to none
support from neighboring time frames and indicate that system is missing capacity for
temporal modelling.

Some similar approaches previously used to employ Hidden Markov Model for temporal
smoothing of classifier outputs such as [67, 63]. However, we want to rely purely on the neural
network modelling capacity and thus approach this issue from the viewpoint of architecture
design.

By introducing time context to each prediction sample, the support for note presence from
neighboring time frames is encoded in the state of recurrent unit after the sequence leading
to particular prediction is processed. In case of bi-directional RNN, this state encodes the
sequence of time frames from both directions in time, which results in improved consistency
in predicted note durations, as should be clear from Figure 38.

For this examination, the used piece of music is intro to Freedom at Midnight by David

Benoit.

-
—
—y W — — —— — o3 _— = - ——— Fa— 05
W - -
| ' o 0.4 L — - - - 0.4
e - = -
i ™ I = — 0.3 - - - i 03
.
| [
o be h |] s . — — 02

0.1 ! ' 0l

Time Time

(a) MLP-Spec (b) BiRNN-Spec

Obr. 38: Temporal smoothing by recurrent layer and input time context.

74

7.4.2 Examining Gradually Trained WN4T

After multiple sessions of gradual training of our WN4T model, as described in 7.3.4.2, we
examined its transcription abilities and fail modes on some audio snippets from different

music excerpts from those included in training data.

o .I E_IE 1 I:'||1:i;
L g e bb
Lt 4 it

SobyiRge SR JI

CJ'IIéFE i ':'i |I EL . T .‘;'“ | c

w

L - |
=
[B SR o o —
! - —
C5 I — = T_l — 5 -"-'ZZ"-'Z- -
"L .
- e g B ” - . -
e et Rl - aa= —
b &=k " — L] - - -_
i ENED R e ‘ - . .
= | 1 H
u 3 o .
e o %n‘ﬂn’fr“: — i
|0 :'_fi_l_ J_h_tll‘“é —— — =
11 I.:"_. |_':il |4 . S—

H 3 4 5 & T i

(a) Note certainties (b) Evaluation matrix

Obr. 39: Evaluation and certainties of WN4T predictions

On subfigure 39a at ~ 4.5 seconds, there are 3 very short consecutive notes played
chromatically, which results in audio frames containing multiple overlapping parts of ADSR
envelopes of different notes. Response shows some very low certainty but at all different notes
during this time period. This and also other "vertical peeksin prediction matrix suggests, that
this kind of confusion happens when multiple familiar waves get spotted in single sample as
previously unseen example of wave snippet.

Additionally, the ability of WN4T to transcribe monophonic texture is obvious from
subfigure 39b. While most of polyphony ends up getting only the strongest note transcribed, if
any, certainty plot shows networks’ familiarity with some harmonic intervals, possibly learned
from the small data set of synthesized tunes from LabROSA.

We also plot raw predictions on this piece for reference of how noisy prediction certainties

change over time.

75

Obr. 40: Raw predictions of WN4T.
For this examination, we used piece of intro to well-known jazz standard Autumn Leaves.

7.4.3 Testing Robustness of Proposed Method

We decided to also make an extra test for robustness of our method, based on real-world use
case, while also checking for different parameters of our input data. We evaluate our currently
most accurate transcription method, which is based on BIRNN-Spec model.

Following test is intended to give some indication about the robustness of our method

against 3 parameters of audio piece being transcribed.

1. Musical genre of the tune.
2. Tempo of the tune.

3. Quality of audio recording.

We check for 1 by choosing non-classical compositions for the test of model trained
on purely classical music corpus. Next, we check for 2 by choosing two compositions with
opposite extremes in tempo parameter. Finally, we check for 3 by introducing two variants of
each piece excerpt.

First variation is classically synthesized audio (columns synthesis in the table), while

second variation is created by reproduction of synthesized audio through speakers' and

'We used speakers model Genius SP-HF1800A for audio reproduction.

76

subsequent re-recording of reproduced sound with smartphone' built-in microphone (columns
recording in the table).

For both pieces we use performances by Japanese jazz virtuoso and composer Hiromi
Uehara: a slow tempo tune Place to Be?, and a fast tempo tune The Tom and Jerry Show?.
We trim first 100 seconds of each MIDI file, synthesize the resulting piece with previously
described soundfont Nice-Keys-Extreme and replay-record resulting audio files.

We further time-align the recordings to labels and test our BIRNN-Spec model checkpoint,

which was trained according to description in 7.3.4.1, on this data configuration®.

Tabul'ka 17: Testing performance of BIRNN-Spec model on different data variations.

Tune Place to Be (slow) Tom and Jerry (fast)
Variant synthesis | recording | synthesis | recording
precision || 89.40% 91.00 % 72.36 % 61.92%
recall 61.25% 37.98% 47.92% 24.31%
F1 72.69 % 53.60% 57.65% 34.92%
Acc 57.10% 36.61% 40.50 % 21.15%

According to parameters of this test and results presented in Table 17, we observe the

outcomes and make following notes.

1. The size of test sample is too small to enable us make any conclusions about robustness
against genre variations, however, average performance drop against test results on

classical music data is & 15% which is significant.

2. Results indicate, that harmonic content together with tempo of the tune, in terms of
average frequency and duration of notes, are both important parameters of dataset

variety. They should be considered when approaching model robustness issues.

3. Quality of audio recording seems to be another important parameter of data variety.
Apparently, recall of many notes is based on their timber, since it drops significantly

with lowering audio quality, meaning that many new False Negatives are introduced.

'We used smartphone model Samsung Galaxy Ace 4 to create the recording.

2Acquired from https://musescore.com/user/6785046/scores/1718291.

3Acquired from http://www.mediafire.com/file/4kc3lzniptemlcl/Hiromi+Uehara+-
+The+Tomtand+Jerry+Show.mid.

“This data configuration is also stored on path /data/hiromi/ on electronic medium attached
to this work. Results of this test including metrics and medial content are also stored on path
/tests/robustness/hiromi/.

77

https://musescore.com/user/6785046/scores/1718291
http://www.mediafire.com/file/4kc3lzniptem1c1/Hiromi+Uehara+-+The+Tom+and+Jerry+Show.mid
http://www.mediafire.com/file/4kc3lzniptem1c1/Hiromi+Uehara+-+The+Tom+and+Jerry+Show.mid

Since sound quality is one of factors with significant influence to note color, the recognition
system must become more robust to their variations. Although we tried to accomplish this by
training on multiple-soundfont based synthesized data, we admit, that according to the size of
data corpus we trained the evaluated model on, it might still be overfit.

There are also numerous other means to introduce variations to timbral content of training
data which we might take into focus during our future work. Some examples might include
application of sound effects, filters and equalization with intention to mimic imperfections
of real-world recording setups. This might lead to creation of dataset with much higher

representativeness of expected production data.

78

8 Conclusion

Although we have initially designated quite ambitious goal of approaching multiple music
transcription subtasks simultaneously, as stated in Section 5, due to problem complexity and
amount of resources available, we kept our initially stated priorities and stayed at the number
one task of detecting notes in polyphony, for the scope of this work.

We proposed several methods to approach the problem of Multiple Fundamental Frequ-
ency Estimation using artificial neural networks and deep learning methods. With focus on
network architecture design, we realized all of our proposals, evaluated and compared them
to concurrent approaches and amongst each other.

Currently the best performing amongst our approaches appears to be simple Multi-Layer
Perceptron model augmented by a single bi-directional recurrent layer. This is also our latest
approach and thus it still requires more exhaustive evaluation.

When compared to state-of-the-art approaches, our models have quite some limitations in
terms of evaluation performance. However, their full potential may have not been unveiled yet.
At first, our models could gain capacity just by increasing size and introducing regularization
techniques, which is pretty straightforward approach that actually has not been realized yet.

First branch of this work is based on iterative and incremental design of neural network
architecture tailored to learn the know-how related to music transcription process from spectral
domain. This branch has started from scratch and appears to be the more successful one at
the moment. Some possible future directions here include involvement of convolution layers
on the input and application of recurrency rather to higher level features. Additionally, our
spectrogram architecture might grow deeper by employing residual or skip connections across
its main building blocks.

The second main branch builds on sophisticated deep architecture with capacity to learn
new feature space directly from raw audio. Since this is a very dense data representation, it is
challenging for processing, in terms of time costs. However, there are countless options to
extend our current state of work with WaveNet architecture.

Initially, we could use adaptive threshold instead of static one. Implementation options
include for example use of binary activations on the output layer, based on threshold values
learned by biases for each output unit individually.

Next, it would be very interesting to visualize activations of hidden layers of WaveNet,

since the model is actually forced to invent its own method for extraction of spectral features,

79

during the training. By feeding noise to the trained network and visualizing hidden layers
activations, similarly to famous DeepDream’, it might be very useful to actually see what is
going on within deep representations of this large, complex network architecture.

Interesting option is also to further iteratively build on current WaveNet architecture by
introducing slight changes with goal to optimize it for task of transcription. Also, significance
of context size and receptive field size for transcription task has not been examined yet.

We also consider our idea to use local conditioning of WaveNet as a placeholder to
supply the network with spectral magnitude data and provide it along with raw audio, which
could fundamentally unburden the network from the cognitive load of spectral analysis, or
at least provide significant help with the task, very interesting. This extra capacity could
improve the network performance or help it to learn perform multiple transcription subtasks
simultaneously.

Additionally, global conditioning could be used to define e.g. sound source which the
network should focus on during the transcription. Actually, one interesting initiative already
gave rise to a comprehensive data set of all possible sound sources and sound colors used
in modern music production, with a goal to train the networks as much as it goes about the
timber, and possibly even provide a tool for live performance based on neural audio synthesis?>.

Fortunately, deep learning will obviously continue its evolution in a rapid tempo and will

find various applications in possibly every domain, leaving no excuse for audio and music.

https://github.com/google/deepdream
’https://magenta.tensorflow.org/nsynth

https://github.com/google/deepdream
https://magenta.tensorflow.org/nsynth

Literatiara

[1]

[4]

[6]

[7]

(8]

[9]

Backpropagation algorithm.
http://colah.github.io/posts/2015-08-Backprop/.
[Visited 10.05.2016].

Deepmind’s blog post on wavenet. https://deepmind.com/blog/wavenet—
generative-model-raw—audio/. [Visited 10.11.2016].

Image example for feedforward neural network. https://en.wikibooks.org/

wiki/Artificial Neural Networks/Feed-Forward Networks.
[Visited 10.05.2016].

Image example for spectral envelope of a signal.
https://www.researchgate.net/figure/247773842_fig7_Figure-
17-Spectral-envelope-of—-a-signal. [Visited 01.05.2016].

Image example for time envelope of a signal. http:
//www.dragonflyalley.com/constructionJHtrapezoidVCA.htm.
[Visited 01.05.2016].

Introduction to artificial neural networks.
http://www.theprojectspot.com/tutorial-post/introduction-—
to-artificial-neural—-networks—part—-1/7. [Visited 10.11.2016].

Neural network zoo.

http://www.asimovinstitute.org/neural-network—zoo/.
[Visited 10.11.2016].

A practical introduction to deep learning with caffe and python.
http://adilmoujahid.com/posts/2016/06/introduction-deep-
learning-python-caffe/. [Visited 10.11.2016].

Spectral envelopes in sound analysis and synthesis. http://recherche.ircam.

fr/anasyn/schwarz/da/specenv/3_3Spectral_Envelopes.html.
[Visited 01.05.2016].

http://colah.github.io/posts/2015-08-Backprop/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Feed-Forward_Networks
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Feed-Forward_Networks
https://www.researchgate.net/figure/247773842_fig7_Figure-17-Spectral-envelope-of-a-signal
https://www.researchgate.net/figure/247773842_fig7_Figure-17-Spectral-envelope-of-a-signal
http://www.dragonflyalley.com/constructionJHtrapezoidVCA.htm
http://www.dragonflyalley.com/constructionJHtrapezoidVCA.htm
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
http://www.asimovinstitute.org/neural-network-zoo/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://recherche.ircam.fr/anasyn/schwarz/da/specenv/3_3Spectral_Envelopes.html
http://recherche.ircam.fr/anasyn/schwarz/da/specenv/3_3Spectral_Envelopes.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Time envelope in musical sound.

http://www.britannica.com/science/envelope-sound.

[Visited 01.05.2016].

Understanding Istms.
http://colah.github.io/posts/2015-08-Understanding—-LSTMs/.
[Visited 10.11.2016].

Visualizations of rnn units.
http://kvitajakub.github.i0/2016/04/14/rnn-diagrams/.
[Visited 10.11.2016].

Vipul Arora and Laxmidhar Behera. Musical source clustering and identification in

polyphonic audio. IEEE Transactions on Audio, Speech and Language Processing,
22(6):1003-1012, 2014.

Roland Badeau. MAPS - A piano database for multipitch estimation and automatic
transcription of music MAPS - Base de données de sons de piano pour 1’ estimation de
fréquences fondamentales multiples et la transcription automatique de la musique

Département Traitement d. 2010.

P. Balazs, M. Doerfler, F. Jaillet, N. Holighaus, and G. Velasco. Theory, implementation
and applications of nonstationary Gabor frames. Journal of Computational and Applied
Mathematics, 236(6):1481-1496, 2011.

Juan P. Bello, Giuliano Monti, and Mark Sandler. Techniques for automatic music

transcription. International Symposium on Music, pages 1-8, 2000.

E Benetos, S Dixon, D Giannoulis, H Kirchhoff, and A Klapuri. Automatic music
transcription: challenges and future directions. Journal of Intelligent Information
Systems, 41(3):407-434, 2013.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
Layer-Wise Training of Deep Networks. Advances in Neural Information Processing
Systems, 19(1):153, 2007.

H Bourlard and Y Kamp. Auto-Association by Multilayer Perceptrons and Singular
Value Decomposition. Biol. Cybern, 59:291-294, 1988.

http://www.britannica.com/science/envelope-sound
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://kvitajakub.github.io/2016/04/14/rnn-diagrams/

[20] Albert Bregman and Stephen Mcadams. Musical Streams. Computer Music Journal,
3(4):26-43, 2014.

[21] Alfonso Perez Carrillo and Marcelo M. Wanderley. Learning and Extraction of Violin
Instrumental Controls from Audio Signal. Proceedings of the 2nd International ACM
Workshop on Music Information Retrieval with User-Centered and Multimodal
Strategies (MIRUM), pages 25-30, 2012.

[22] A.T. Cemgil, H. J. Kappen, and D. Barber. A generative model for music transcription.
IEEE Transactions on Audio, Speech, and Language Processing, 14(2):679—694, March
2006.

[23] C Chafe, D Jaffe, K Kashima andB. Mont-Reynaud, and J Smith. Techniques for Note
Identification in Polyphonic Music, 1985.

[24] Chris Chafe and David Jaffe. Source Separation and Note Identification in Polyphonic
Music, 1986.

[25] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical
Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv, pages
1-9, 2014.

[26] W.T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C.
Maling, D. E. Nelson, C. M. Rader, and P. D. Welch. What is the fast fourier transform?
Proceedings of the IEEE, 55(10):1664—1674, Oct 1967.

[27] D. Deutsch. The Psychology of Music. Academic Press Series. Academic Press, 1999.

[28] Simon Dixon. On the computer recognition of solo piano music. Proceedings of

Australasian Computer Music Conference, pages 31-37, 2000.
[29] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211, 1990.

[30] Valentin Emiya, Roland Badeau, and Bertrand David. Multipitch estimation of piano
sounds using a new probabilistic spectral smoothness principle. Trans. Audio, Speech
and Lang. Proc., 18(6):1643—-1654, August 2010.

[31] R. Erickson. Sound Structure in Music. University of California Press, 1975.

[32] Daniel R Franklin and Joe E Chicharo. Paganini - a music analysis and recognition

program. pages 22-25, 1999.

[33] T. Gagnon, S. Larouche, and R. Lefebvre. A neural network approach for
preclassification in musical chords recognition. The Thrity-Seventh Asilomar
Conference on Signals, Systems & Computers, 2003, 2:2106-2109, 2003.

[34] ZOUBIN GHAHRAMANI. An Introduction To Hidden Markov Models And Bayesian
Networks, 2001.

[35] Simon Godsill and Manuel Davy. Bayesian harmonic models for musical pitch
estimation and analysis. IEEE International Conference on Acoustics Speech and
Signal Processing, pages 11-1769-11-1772, 2002.

[36] M. Goto. A predominant-f0 estimation method for cd recordings: Map estimation using
em algorithm for adaptive tone models. In Acoustics, Speech, and Signal Processing,
2001. Proceedings. (ICASSP °01). 2001 IEEE International Conference on, volume 5,
pages 3365-3368 vol.5, 2001.

[37] Philippe Hamel and Douglas Eck. Learning Features from Music Audio with Deep
Belief Networks. International Society for Music Information Retrieval Conference
(ISMIR), (Ismir):339-344, 2010.

[38] Ge Hinton, Ge Hinton, Tj Sejnowski, and Tj Sejnowski. Learning and relearning in
Boltzmann machines. MIT Press, Cambridge, Mass., 1986, 1(January):283-317, 1986.

[39] Sepp Hochreiter, S Hochreiter, Jiirgen Schmidhuber, and J Schmidhuber. Long
short-term memory. Neural computation, 9(8):1735-80, 1997.

[40] E J Humphrey and J P Bello. Rethinking Automatic Chord Recognition with
Convolutional Neural Networks. Machine Learning and Applications (ICMLA), 2012
11th International Conference on, 2:357-362, 2012.

[41] E.J. Humphrey, T. Cho, and J. P. Bello. Learning a robust tonnetz-space transform for
automatic chord recognition. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 453-456, March 2012.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep learning. Book in
preparation for MIT Press, 2016.

Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning Recurrent
Neural Networks with Reinforcement Learning. Thesis, pages 410420, 2016.

Li Lei Jiayin Sun, Haifeng Li. KEY DETECTION THROUGH PITCH CLASS
DISTRIBUTION MODEL AND ANN lJiayin Sun, Haifeng Li, Li Lei School of
Computer Science and Technology, Harbin Institute of Technology, Harbin 150001,
China. (2), 2009.

Judith C. Brown. Calculation of a Constant—Q spectral transform, 1990.

Kyle L. Kashima and Bernard Mont-Reynaud. The bounded-Q frequency transform.
pages 1-10, 1985.

K. Kashino and S. J. Godsill. Bayesian estimation of simultaneous musical notes based
on frequency domain modelling. In 2004 IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 4, pages iv—305-iv—308 vol.4, May 2004.

Kunio Kashino and Norihiro Hagita. A Music Scene Analysis System with the
MRF-Based Information Integration Scheme. (Figure 1):725-729, 1996.

Youngmoo Kim, Erik Schmidt, and Lloyd Emelle. Moodswings: A collaborative game
for music mood label collection. In Proceedings of the 9th International Conference on
Music Information Retrieval, pages 231-236, Philadelphia, USA, September 14-18
2008. http://ismir2008.ismir.net/papers/ISMIR2008_257.pdf.

Diederik P Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization.
ICLR, pages 1-15, 2015.

A. P. Klapuri. A perceptually motivated multiple-fO estimation method. In /IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, 2005., pages
291-294, Oct 2005.

Edith Law and Luis Von Ahn. Input-Agreement : A New Mechanism for Collecting
Data Using Human Computation Games. Proc. SIGCHI Conference on Human Factors

in Computing Systems, pages 1-10, 2009.

http://ismir2008.ismir.net/papers/ISMIR2008_257.pdf

[53] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.

[54] Yann A. LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Muller. Efficient
backprop. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU:9-48, 2012.

[55] Honglak Lee, Pt Pham, Y Largman, and Ay Ng. Unsupervised feature learning for

audio classification using convolutional deep belief networks. Nips, pages 1-9, 2009.

[56] Megumi Maekawa, Kazuhiko Takahashi, and Masafumi Hashimoto. Remarks on
computational emotion classification from physiological signal - Evaluation of how jazz
music chord progression influences emotion. International Conference on Intelligent
Systems Design and Applications, ISDA, (C):967-972, 2012.

[57] M. Marolt. A connectionist approach to automatic transcription of polyphonic piano
music. IEEE Transactions on Multimedia, 6(3):439-449, June 2004.

[58] Matija Marolt and Student Member. Transcription of polyphonic piano music with
neural networks. 11:512-515, 2000.

[59] K D Martin. A Blackboard System for Automatic Transcription of Simple Polyphonic
Music. (385), 1996.

[60] Brian McFee, Matt McVicar, Colin Raffel, Dawen Liang, Oriol Nieto, Eric Battenberg,
Josh Moore, Dan Ellis, Ryuichi YAMAMOTO, Rachel Bittner, and et al. librosa: 0.4.1,
Oct 2015.

[61] Matt McVicar, Radl Santos-Rodriguez, Yizhao Ni, and Tijl De Bie. Automatic chord
estimation from audio: A review of the state of the art. IEEE Transactions on Audio,
Speech and Language Processing, 22(2):556-575, 2014.

[62] Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. Proceedings of the International Conference on
Learning Representations (ICLR 2013), pages 1-12, 2013.

[63] J Nam, J Ngiam, Honglak Lee, and Malcolm Slaney. A Classification-Based
Polyphonic Piano Transcription Approach Using Learned Feature Representations.
Ismir, (Ismir):175-180, 2011.

[64] Juhan Nam, Jorge Herrera, Malcolm Slaney, and eus Smith. Learning Sparse Feature
Representations for Music Annotation and Retrieval. International Conference on
Music Information Retrieval, (Ismir):565-570, 2012.

[65] Julien Osmalskyj, Marc Van Droogenbroeck, and Jean-jacques Embrechts. Neural
networks for musical chords recognition. Actes des Journées d’Informatique Musicale
JIM 2012, (May):39-46, 2012.

[66] Graham E Poliner and Daniel P W Ellis. IMPROVING GENERALIZATION FOR
POLYPHONIC PIANO TRANSCRIPTION LabROSA , Dept . of Electrical
Engineering Columbia University , New York NY 10027 USA. pages 86—89, 2007.

[67] Graham E Poliner and Daniel P W Ellis Labrosa. A Discriminative Model for
Polyphonic Piano Transcription. pages 1-16, 2006.

[68] Rohit Prabhavalkar, Raziel Alvarez, Carolina Parada, Preetum Nakkiran, and Tara N
Sainath. AUTOMATIC GAIN CONTROL AND MULTI-STYLE TRAINING FOR
ROBUST SMALL-FOOTPRINT KEYWORD SPOTTING WITH DEEP NEURAL
NETWORKS Google Inc ., Mountain View , USA ; 2 University of California ,
Berkeley , Department of EECS , USA. Proceedings of International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, (1):2-6, 2015.

[69] Lawrence R Rabiner and Ronald W Schafer. Introduction to Digital Speech Processing,
volume 2. 2007.

[70] Colin Raffel and Daniel P W Ellis. INTUITIVE ANALYSIS , CREATION AND
MANIPULATION OF MIDI DATA WITH pretty _ midi. 2014.

[71] Colin Raffel, Brian Mcfee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen
Liang, and Daniel P. W. Ellis. mir_eval: A Transparent Implementation of Common
MIR Metrics. Proc. of the 15th International Society for Music Information Retrieval
Conference, pages 367-372, 2014.

[72] Christopher Raphael. Automatic transcription of piano music. CEUR Workshop
Proceedings, 379, 2008.

[73] F Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386-408, 1958.

[74] M. P. Ryynanen and A. Klapuri. Polyphonic music transcription using note event
modeling. In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2005., pages 319-322, Oct 2005.

[75] Christian Schorkhuber and Anssi Klapuri. Constant-Q transform toolbox for music
processing. 7th Sound and Music Computing Conference, JANUARY):3-64, 2010.

[76] Jan Frederik Schouten. The perception of timbre. In Reports of the 6th International
Congress on Acoustics, volume 76, page 10, 1968.

[77] Christian Schorkhuber, Anssi Klapuri, and Alois Sontacchi. Audio pitch shifting using
the constant-q transform. J. Audio Eng. Soc, 61(7/8):562-572, 2013.

[78] Alexander Sheh and D.P.W. Ellis. Chord segmentation and recognition using
EM-trained hidden Markov models. Proc. ISMIR, pages 185-191, 2003.

[79] A Shmilovici. Data Mining and Knowledge Discovery Handbook. Data Mining and
Knowledge Discovery, pages 257-267, 2005.

[80] Julius O. Smith. Digital Audio Resampling Home Page. Center for Computer Research
in Music and Acoustics (CCRMA), Stanford University, pages 1-20, 2002.

[81] Julius O. Smith. Digital Audio Resampling Home Page. Center for Computer Research
in Music and Acoustics (CCRMA), Stanford University, pages 1-20, 2002.

[82] Daylin Troxel. Music transcription with a convolutional neural network. MIREX, 2016.

[83] George Tzanetakis. Signal Processing Methods for Music Transcription (review),
volume 32. 2004.

[84] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A
Generative Model for Raw Audio. pages 1-15, 2016.

[85] Matthias Varewyck, Johan Pauwels, and Jean-Pierre Martens. A novel chroma
representation of polyphonic music based on multiple pitch tracking techniques.
Proceeding of the 16th ACM international conference on Multimedia - MM ’08, page
667, 2008.

[86] Francisco Fernandez De Vega. A Novel Approach to Automatic Music Transcription
Using Electronic Synthesis and Genetic Algorithms. Most, pages 2915-2922, 2007.

[87] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260-269, April
1967.

[88] Xin Xu, Haibo He, Dongbin Zhao, Shiliang Sun, Lucian Busoniu, and Simon X Yang.
Machine Learning with Applications to Autonomous Systems. 2015:2-4, 2015.

A Technical Documentation

In this section, we present details of technical realization of our method with focus on selected

aspects of our solution.

A.1 Project Structure

This project is organized into modules of python scripts. It also provides some Jupyter
Notebooks for purposes of functionality demonstration or fast prototyping in development
use cases.

Root directory of this project is located in directory /source on electronic medium

attached to this work. It is structured into logical units by directories as described below.

data/ - data sets and subsets organized into folders and subfolders.
sf2/ - directory containing SF2 format audio sample libraries used for synthesis.
logs/ - logs from TensorFlow training sessions and saved trained model checkpoints.
prep/ - module of utility scripts for data preparation and preprocessing. Also some obsolete
code for manual preprocessing into pickle files is included in files:
pickle_routines.py - setof functions for audio and MIDI data preprocessing
and storage.
prepare_data.ipynb - development notebook for preprocessing methods.
pickle_data.ipynb - demonstration notebook with examples of pickling,
saving, loading and visualizing prepared data.
readers/ - module containing readers for multi-threaded data loading and preprocessing,
used by executable training and testing scripts of different models.
utils/ - module that aggregates source files of various utility functions imported by other
modules and used across the project.
models/ - training and usage implementation of neural network models in TensorFlow.
Also, obsolete code for training on data stored in pickle format is included in notebooks

mlp_spec.ipynband rnn_spec.ipynb.

On Figure 41 is outlined structure of our implementation by means of UML package and

class diagram components, although with extensions in terms of custom stereotypes.

A-1

<<project workspace>>

Deep Learning for Music Transcription

Storagel
<<data source>> <<data source>> <<data store>>
data sf2 logs
H- > r- - -3> << - -, <|- -
| Storage for Labeled 1 Storage for Instrument Storage for TensorBoard logs 1
| Music Data 1 Samples in SF2 format : and trained model checkpoints 1
| 1 |
1 A] U 1
I L T L I
<<lokd>> 1
0 1 1 1
I I U I
I |Sources | ! 1 ! |
1 "<<load>> 1
| <<package>> 1 <<package>> |<*Oad <<package>> .
prep 1 utils 1 readers
0 1 AN 1
|
! Preprocessing scripts 1 General utility functions | Handlers for reading data !
! 1 \ from disk, preprocessing !
! 1 | and batching !
1 1 1
1 <<development>> 1 <<executable>> : I
1 pickle_routines.py 1 check_gpus.py | 1
I ~pickle_data ipynb !
I pickle_ py! 1 1 <<class>> - b
! I - |
' ! CERIEEEE !
1 <<library>> | 1
1 ¥
1 <<executable>> ; filesystem.py > | |
i 1
| transp.py . plano._roll.py Licsave>>
1 trim.py [- metrics.py ||
1 synth.py loggers.py <<classs>> 1 |
—_— é—q
1 summ.py renderers.py spec_reader.py | 1
I settings.py —_————— | | :
1 | 1
A 1
1 <z I | |
e e e e e - e m e e e e e e e e e e e e e e e e . e e —m—m—m—m—— == d I ||
<<package>> | | ||
models 1 | |I
1 i<<in t> |I
| 1 0
<<module template>> 1 <<module instantiations>> I ||<<LnsL>>
neural network model | neural network model ! I|
| i 1 !
1
<<module template>> | I I | ||
|
net <<module>> <<module>> 1] I|
| <finkt>h
| mlp_spec rnn_spec I I|
L | I
o |
TensorFlow Graph defition D1 | Development module Development module l I|
| for MLP-Spec for RNN-Spec l :|
<<class>> 1 I <<inst>>] !
-t === == - - = = R e - R
Ir I model.py 1 I 1 1 :
1 I<<import> ql I "II
H [1
11 U ' : 1
i 1 <<module>> <<module>>
! I<<‘mst>> sdloiyEe = =~ |) - . 1 !
11 ops.py I birnn_spec wnit 1
11 | EI)
1| | Development module Development module !
11 I for BiRNN-Spen for WN4T !
1
|
I . <<executable>> > <<executable>> 1 '_ e e e e e e e e e 2
: test.py train.py |
— - 7 i
1 ! <<lrnp:>rtj>> 1
1 e O e
1
1 <<inst>> ! <<import>> 1
R e e e

Obr. 41: Diagram illustrating project structure and component dependencies.

A-2

A.2 Packages and Modules

Since we use custom notation for several aspects of our solution organization, we further
provide some context to the above diagram. We divide the project sources into packages
and modules according to their purpose. We implement several executable python programs,
which follow standard CLI interaction behavior. We also try to follow established code style

conventions'.

A.2.1 Preprocessing

This package, located in directory prep/, contains 4 executable python scripts serving for

dataset manipulation and analysis.

transp.py - our 12-fold transposition algorithm, already mentioned in 7.2.2.

trim.py - trimming of given time interval from MIDI file collection and saving new
collection with same file names into arbitrary location.

synth.py - synthesis of WAV audio provided MIDI data collection and valid paths to SF2
file indexed through file soundfonts. json also located in this folder.

summ.py - summarization of dataset statistics by parsing events from MIDI files and
counting corresponding WAV files. Requires each MIDI file to have at least 1 respective
WAV file in same directory with same file name and optional postfix. This dataset
file naming structure is implicitly created by synth.py and is also required by data

readers to work properly during training.

Additionally, Jupyter Notebook usage . ipynb is provided for usage demonstration of
these data processing scripts.

Package also contains open-source implementation for computation of inverse CQT
icqt . py for development purposes, and demonstration notebook sample_check.ipynb

for examination of preprocessed data.

A.2.2 Utility Functions

In directory prep/, the executable script check_gpus . py serves simply for availability
of GPU devices and proper configuration of tensorflow-gpu installation.

All other scripts in this package are organized into python module and their parts are
importable by external scripts. Main purpose of this library is code re-usability. Source file
filesystem. py contains routine functions for filesystem manipulation used widely across
project. By simply importing piece of functionality from common location, we prevent code

redundancy and enhance code sustainability.

'https://www.python.org/dev/peps/pep-0008/.

A-3

https://www.python.org/dev/peps/pep-0008/

Rest of the source files provide functionality respective to their names, thus namely for
piano roll data structure manipulation, metrics calculation, tensorboard logging routines,
evaluation-level audio and image rendering routines and training session settings definition.
These components are mainly imported by training and testing scripts of neural network

models implementations.

A.2.3 Data Readers

Data readers have been aggregated into separate package for the sake of future reusability and
unification, since their functionalities overlap. They might be refactored for use with some
design patterns in the future.

Currently, spec_reader.py implements SpecReader class which is sufficient data
processing worker for all three *-Spec models, provided modest but sufficient parametrization.

For training of WN4T model, wave_reader.py provides multiple data acquisition
methods. First is traditional loading of audio from disk files. Alternatively, notes are generated
with many degrees of randomization and synthesized on the fly, which gives rise to training
method with potentially infinite training data variance. That is also why this program loads

SF2 data source.

A.2.4 Neural Network Models

Since we implement four different neural network models into individual modules, we used
somewhat abusive representation in our diagram. By generalization relationship between
module instantiation and module template neural network model packages, we denote that
each individual module instantiation ({mlp, rnn, birnn}_spec and wn4t) has the same
structure, contents and relationships to other components in the diagram, as is represented by
module template package.

Further, by «inst» stereotype, we denote instantiation of destination component by
source component, respective to the arrow direction.

Each module of specific neural network model contains executable python CLI programs
for training and testing, both richly parametrizable through program arguments and external
file.

In following diagram, we try to visualize fundamental aspects of model training me-

chanism, with focus on data processing and interactions between trainer and data reader

A-4

thread.

A.3 Online Data Processing with Multi-Threading

Previously, we performed one-time preprocessing and saved prepared data into single file,
which was whole loaded into operational memory during the training process. Due to inc-
reasing demands on size of training data throughout the work, we had to switch our data

processing method to more scalable one.

As depicted on Figure 43 while main thread executes training and evaluation on GPU,
reader threads effectively use free CPU time to preprocess data and prepare training samples
into TensorFlow Queue'. Since enqgueue and dequeue are blocking operations, if data prepro-
cessing speed is not in balance with training speed, the faster process waits for the slower
one on these Queue operations. More detailed description of specific data reading variants

follows.

A.3.1 Waveform Data Reading

Since we train WN4T model on 16k H 2 temporal resolution data, the piano roll labels in
this resolution result in increase of memory requirements by factor of 128 for each training

example snippet.

Therefore, we get rid of the redundancy of piano roll representation by simply constructing
table of unique polyphony texture vectors and further keep only vector of indices into this
table. This way, we reduce the memory requirements increase down to factor of 1 from factor

of previous 128. We further optimize this by subsampling the vector of indices.

'"https://www.tensorflow.org/programmers_guide/threading_and_queues.

A-5

https://www.tensorflow.org/programmers_guide/threading_and_queues

Tune Data Queue BoAd Doto. Queue

MIDI Files W(T|T s Wikl — N

Thread 1
IR Ran o . rocezsh\':??dst?uences :
. WAV - vector W (samples) 5 L Main Thread

of length <= sample size
+ cut sequence from W — w
. cut sequence from | — i
+ T,i = decode — rollr
- enqueue [w,r]

I MID - piano roll
. roll » encode » T, |
- T:table of unigue slices
- lzvector of indices into T
- engueue [W, T, 1]

SRl

Obr. 42: Diagram illustrating data processing for WN4T training.

+ degue batch
+ GPU train
- save loss

Following tuple (wave form W, table T,indicces I) represents thus encodes the tune
data and labels in much memory effective way. Single thread is dedicated to loading tunes
from disk, performing this encoding and storing results in first Tune Data Queue. Next thread
(possibly several threads), operates on tune data retrieved as tuple from this Queue. This thread
performs backward up-sampling of indices vector and processes piece data and reference by
(sample_size) fragments, reconstructing full size piano roll only one fragment at a time. This
results in pairs (wave form W, pianoroll P) which are further enqueued into Batch Data
Queue for the training thread. Hihg-level overview of this processing pipeline is depicted on
Figure 42.

We use simple t f.FIFOQueue! for Tune Data Queue implementation, since tunes
are already being selected randomly by the reader thread. Although for implementation of
Batch Data Queue we use t f . PaddingFIFOQueue?, since cutting audio pieces into fixed
size sequences almost always leaves last sequence of arbitrary size. This is where padding
comes in, by dequeue-ing multiple samples from this kind of Queue, all sample sequences are

automatically zero-padded up to the maximum sequence length within given batch.

A.3.2 Spectral Data Reading

In similar fashion, the spec_reader . py implements batching of data from corpus of WAV
and MIDI files. Although only single Queue is used this time, since no intermediate encoding

is appropriate here. Workflow goes as follows.

'https://www.tensorflow.org/api_docs/python/tf/FIFOQueue.
’https://www.tensorflow.org/api_docs/python/tf/PaddingFIFOQueue.

A-6

https://www.tensorflow.org/api_docs/python/tf/FIFOQueue
https://www.tensorflow.org/api_docs/python/tf/PaddingFIFOQueue

Training session

Main thread

Reader thread(s)

Initialize Reader
Define TF Graph
Initialize TF Session

v

)

[Start Reader threads

LOOP: iterate over

training steps

Get batch

o

Training step

Time to

‘ evaluate?

Terminate

‘ condition?

True

Evaluate
Log metrics
Checkpoint

False

stop 5|gnal /

Save Model Checkpoint
Close Session

Terminate

LOOP: iterate

LO

over training files

[Load random piece](—\\

-

L

Pre-process piece data]

OP: iterate

i over data samples

~

u

Take random data sample](—\,

Last sample?

False

Stop signal?

Obr. 43: Diagram illustrating fundamentals of model training workflow.

A-T7

1. Reader thread randomly loads tune from data corpus.
2. Reader thread performs CQT transformation and retrieves piano roll.

3. Reader thread iteratively enqueues training samples randomly chosen from piece data

until tune sample rate ratio given by tune_sr argument is satisfied.

! is used,

For additional randomness in data sampling, t £ . RandomShuffleQueue
with emptiness constraint min_after_dequeue is set to 0.5, which specifies minimum number
of elements that will remain in the Queue after dequeue operation, ensuring a minimum level

of mixing elements.

'mttps://www.tensorflow.org/api_docs/python/tf/RandomShuffleQueue.

A-8

https://www.tensorflow.org/api_docs/python/tf/RandomShuffleQueue

B Usage and Maintenance Guide

B.1 Install Guide

This install guide is provided for users of 64-bit Linux operating system and was tested on
Ubuntu 16.04 LTS! distribution. In case you are running different operating system, please
refer to official instructions online?.

All installation commands need to be issued with root-level privileges, which is demon-
strated by sudo prefix in provided examples, but may need different approach under various

operating systems.

B.1.1 Install CUDA Toolkit

If your machine has CUDA compatible GPU, in order to utilize its computing capabilities,
installation of NVIDIA’s CUDA Toolkit, and additionally cuDNN library is required.

1. Onsite https://developer.nvidia.com/cuda-downloads select Linux
as your target platform, architecture x86_64, distribution, version of your operating
system and finally installer type "runfile (local).

2. Install CUDA Toolkit from within directory where you downloaded the installer using
command sudo sh cuda_8.0.44_1linux.run (edit to the file name you down-

loaded) and follow the command-line instructions.
3. Install the CUDA Toolkit into default directory.

If it is not usr/local/cuda/, make sure there is symbolic link at this path

pointing to the installation directory.

B.1.2 Install cuDNN library

Note, that registration to NVIDIA Developers site will be necessary to access the installation
of cuDNN library.

1. Download cuDNN library from NVIDIA?®.

'ttp://releases.ubuntu.com/16.04/
https://www.tensorflow.org/get_started/os_setup
Shttps://developer.nvidia.com/cudnn

B-1

https://developer.nvidia.com/cuda-downloads
http://releases.ubuntu.com/16.04/
https://www.tensorflow.org/get_started/os_setup
https://developer.nvidia.com/cudnn

2. Assuming that CUDA Toolkit is installed in usr/local/cuda/, uncompress and
copy files from downloaded cuDNN library into this directory.

3. Run the following commands (edited to reflect the cuDNN version you downloaded).
tar xvzf cudnn-8.0-linux-x64-v5.1l-ga.tgz
sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h
/usr/local/cuda/lib64/libcudnn=*

B.1.3 Install pip and Jupyter Notebook

If you wish to run on python3, instead of pip use pip3 in each of following commands.
1. Install pip - the package management system for python software - by running follo-
wing command.
sudo apt—-get install python-pip python-dev
2. Install Jupyter Notebook - interactive development environment for python.
sudo pip install —-upgrade pip

sudo pip install Jjupyter

B.1.4 Install TensorFlow

1. Install Tensorflow either with GPU support, or without, depending on your hardware

and preferences.
sudo pip install tensorflow-gpu
sudo pip install tensorflow

2. In case this command reports errors, please to this section on official page' for specific

installation instructions.

3. Trigger TensorFlow installation.

sudo pip install -upgrade S$STF_BINARY_URL

'"https://www.tensorflow.org/get_started/os_setup#pip_installation

B-2

https://www.tensorflow.org/get_started/os_setup#pip_installation

B.1.5 Install Auxiliary Python Libraries

Choose some local path, e.g. /usr/local/1lib, to store installations of required python

libraries.

B.1.5.1 Librosa

e Toinstall 1ibrosa, run following command.

sudo pip install librosa

B.1.5.2 Pretty MIDI

 Toinstall pretty_midi library, fork the project repository! into some local directory.
* In command line, within this working directory, run following command.

sudo python setup.py install

B.1.5.3 FluidSynth

* Toinstall F1uidSynth library for MIDI sound synthesis in python, first download

project sources?.
» Extract them into some local directory using following command.
tar —-zxvf pyFluidSynth-1.2.4.tar.gz
* In command line, within this working directory, run following command.

sudo python setup.py install

B.1.5.4 MIR Eval

» Toinstallmir_eval library for evaluation routines, fork project repository’ into some

local directory.
* In command line, in this working directory, run following command.

sudo python setup.py install

'https://github.com/craffel/pretty-midi
https://pypi.python.org/pypi/pyFluidSynth
Shttps://github.com/craffel/mir_eval

B-3

https://github.com/craffel/pretty-midi
https://pypi.python.org/pypi/pyFluidSynth
https://github.com/craffel/mir_eval

B.2 User Guide

In this user guide, we describe two fundamental use cases with usage examples: training and
usage for transcription / testing.
Additionally, in order to browse the Jupyter Notebooks for demonstration of usage or

development and prototyping, follow these steps:

1. Start terminal, set your working directory to the root directory of this project (source/)

as retrieved from attached medium.
2. Run following command.
Jjupyter notebook

3. Open your web browser, and visit address http://localhost:8888/

You should now be able to see root directory of the project in web interface of jupyter

notebook.

B.2.1 Configuration Files

To be able to set up the training or evaluation session, it is necessary to properly setup the
program parameters. These are mostly inserted as CLI program arguments, or through a json
file. Since CLI program arguments are properly documented and their list with meaning and
usage is accessible through execution of given CLI program with argument -h according to

conventions, we only explicitly explain formatting of json configuration files.

B.2.1.1 Note Generator

This configuration file, located at /models/wn4t/note_generator_params. json,
is used to specify how notes are generated by WaveReader during training of WN4T and

contains following parameters.

poly - integer (1, 2, ...) specifying polyphony level to generate examples at.

combined - boolean (t rue/false) value, whether to generate random polyphony from 1
to specified degree, or only polyphony of specified degree.

maxlen - integer (1, 2, ...) specifying upper limit number of seconds to generate for single

piece.

B.2.1.2 WN4T Params

This configuration file, located at /models/wn4t/default_params. json, defines
model parameters of WN4T for given training/testing session. These parameters must stay

the same between training and testing of same model checkpoints.

initial_filter_width - integer value, size of the filter of initial non-dilated causal
convolution used as first layer of the network.

filter_ width - integer value, size of single filter of dilated causal convolution used
across the network.

dilations - array of integers, specifies dilation factors of successive dilation layers,

together with number of dilation layers implicitly by size of this array.

The remaining parameters are self-explanatory.

B.2.1.3 Spec Models Params

This configuration file, located at /models/*_spec/default_params. json, defines
model parameters of *-Spec model for given training/testing session. These parameters must

also stay the same between training and testing of same model checkpoints.

temporal_resolution_hz - integer value, specifying resolution required from piano
roll and spectrograms for training, in Hz, which is number of time frames per second.

base_audio_sample_rate - integer value, base for audio sample rate, must be power
of 2.

bottom_frequency_note - integer value, the lowest frequency examined by CQT
spectral analysis.

number_of_examined_notes - integer value, number of notes upward adjacent from
the bottom one, whose fundamental frequencies will be examined by CQT spectral
analysis.

bins_per_note - integer value, number of spectral bins examined per fundamental
frequency of each note, specifies spectral resolution of resulting spectrogram.

outputs_note_range - array of 2 integer values, first represents the bottom and se-
cond top musical note range interval to be examined in scope of network predictions,

determines size of output layer.

B-5

fc_sizes - array of integer values, specifying sizes of fully connected layers within MLP
part of given model, size of array implicitly defines number of layers.
fc_activations - array of strings, specifying activation functions of fully connected
layers within MLP part of given model, cardinality of this set must match with fc_sizes.
rnn_cell_type - string, specifies type of RNN cell, possible values are listed in rnn_cell_factory
defined in file /models/birnn_spec/net/ops.py along with possible values
for x_activations.
rnn_cell_size - integer, specifies number of units in RNN cell.
rnn_cell_activation - string, specifies activation function for RNN cell(s).

rnn_number_of_cells - integer, specifies number of RNN stacked together.

The remaining, non-mentioned parameters are self-explanatory.

B.2.2 Training a Model with TensorBoard Monitoring

In order to start a neural network model training, make sure you have prepared training and
validation data in discrete directories. Initially, for both sets, the same set containing single
test file is used, namely path /data/sample/mono.

Also, make sure you forked this project folder structure on your own writable medium

with sufficient disk space (at least 1GB of free space for initial TensorBoard logs).
1. Open terminal.

2. Set your working directory to the module of model to be trained.

3. Type python train.py -hin order to see the list of arguments with their descrip-
tions and default values.

4. Type the command again with arguments specifying your data, log directory and other

session parameters.

Optionally add redirection of command output to a file in the log directory (e.g.

train.loqg).

Example training execution command might look like following:

python train.py ——data_dir_train././data/LABROSA/train ——data_dir_valid././data/LABROSA/valid »
» ——histograms True ——num_steps 100l ——evaluate_every 100 ——logdir .././logs/demo &>>../../logs/»

» demo/train.log

B-6

Optionally, in order to monitor and track the progress of training session in terms of logged

metrics and intermediate evaluation on validation data, follow these steps for TensorBoard

usage:

1. Open command line and go to project rooot directory.
2. Navigate to the logging directory specified for training session you want to monitor.
3. Launch TensorBoard by following command.
tensorboard -logdir=.
4. Navigate to the URL from the console output (possibly http://0.0.0.0:6006).

5. In SCALARS dashboard, you will be able to see logged scalar metrics, such as minibatch

loss, F1, and accuracy.

IMAGES AU CRAPHS DISTRIBUTIONS HISTOGRAME EMBEDDSNGS

Wnte a regex bo create a tag group > vabdaton_summaries
. v daTion_summanes/sce_mesaune walidation_summanesT_meatune i dation_summvanessTatae_discovery_rate waidation_sumimane alatie_poasitive_rate
[7] o ciata download links i = fi 2
S g 100 | Lo] oa
B amare aitliers in chant ataling | | |
L) ; DB B | [0 |
Tooltip sorting methed: Sefault = o || 3 3 1 aee || |
p sering defal 2 aae || D6 A AT awo || ueo ||
009 || P s nepg || o || na ||
ame | ¥ 1 a0 || ~
i oz || L om0 | ke e !
s 738 s s v I O O 3 e o i 000 |
- L 0000 AOGK EONNN 0RO 0060 AN BODN ONOGK 0000 000K BOON 000K 000 A0 SO0 000K
b afitatian_surmmanes peecision_rate el afian_summaries/recall rate
om0 |l e e
oma |- e
¢ | A
fae neoo || 000 || AP
Wiite 3 regew to fiter runs oma || o ||
- e —t g
B I 1
0o W00k WOME 8000k oo W00k EOO0R G000k
wavenel_1
wavenet_1/loss/loss
1o ||
oEo |
oo (|
oen ||
LE R
O I o e e e
TOUELE AL RIS LL L

Obr. 44: Screen shot of SCALARS dashboard.

6. In GRAPHS dashboard, browse the computational graph of neural network model you

are training in current session.

B-7

TensorBoard

Fitto screen
¥ Download PNG
Run
(1)
Session
runs (o)
Upload Choose File
Traceinputs |
Color @ Structure
o Device
colors same substructure

— unique substructure

SCALARS IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS
Main Graph Auxiliary Nodes
Adam
gradients S Adam ey s
Adam

P \ECEP‘;'
=

wavenet_1

Placehol ..
wavenet “7 Adem

Obr. 45: Illustrative screenshot of GRAPHS dashboard.

7. During the training, in dashboards IMAGES and AUDIO you shall find audio and visual

representations of validation data estimations.

TensorBoard

IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS

Write & regex to create a tag group

Runs

Write & regex to filter rung

X

EC

validation_summaries

imag walidation_summaries/estim/imags;1 idati i im/imege’?
tep

5tep 93000 (Mon Apr 24 2017 21:17:50 GMT+0200 [CEST)) tap Ape 282017 211750 GMT 3TH) Aar 24 2017 21:77:50 GWT [cEsT)

Obr. 46: lllustrative screenshot of IMGAES dashboard.

B-8

B.2.3 Using Trained Model for Transcription and Evaluation

In order to test performance of neural network model checkpoint, prepare test data into

discrete directory.

1. Open terminal.
2. Set your working directory to the module of model to be trained.

3. Type python train.py -h inorder to see the list of arguments with their descrip-

tions and default values.

4. Type the command again with arguments specifying your test data directory, log
directory where checkpoint of trained model is stored and specify, if audio and image

media should be generated, since by default, they will not.

Since by default, best performing models are saved into checkpoint files in subfolder
$LOGDIR/best/, this is probably the directory where testing script should be instructed to

look for model checkpoint to use for testing. Example test execution command might look

like following:

python test.py ——media True ——data_dir ././data/LABROSA/test ——logdir .././logs/demo/best

Test results should now be saved in file SLOGDIR/best/metrics. json while trans-

cription results in terms of audio and visualizations should be in the same directory.

B-9

C Contents of Attached Electronic Media

The electronic media attached to this document has following structure and contents:

/doc
— master’s thesis document together with annotations in Slovak and English language
/doc/bibtex
— reference files in BibTeX format
/doc/latex
— documentation files in LaTeX format
/doc/latex/tables/
— source tables of own graphs printed in thesis
/doc/latex/figures/
— pictures and visualizations printed in thesis
/doc/resources
— available resources used
/source
— root directory of project implementation
/source/data
— data sample for used in experiments described in this work
/source/logs
— logs from training sessions and checkpoints of some pretrained models
/source/sf2

C-1

— soundfonts used for sound synthesis and cited within this work
/tests

— complex outputs from tests
readme.txt

— description of media content in Slovak and English language

C-2

D.1

D.2

Project Schedule

Summer 2016

Deeper analysis and upcoming selection of appropriate preprocessing methods.

Dataset selection and preprocessing for easy further access during experiments. Selec-

tion of benchmark problem and its benchmark data.
Deeper analysis of existing models and their applications.
Hypothesis preparation and design of models for upcoming experiments.

Experiments with different architectures. Combining modules and testing different

models on benchmark data.

Autumn 2016 (DP2)

Evaluation of experiments and selection of promising setups.
Writing design part of thesis report, revision of analysis.
Implementation and extension of proposed method(s).

Experiments with implemented method(s) on different data and different problems.

Tuning the model.

Most of tasks listed in project schedule for summer and autumn of year 2016 were

successfully fulfilled. Some of them only partially, and very few of them postponed, since

they were not relevant yet, as we originally expected.

Anyway, the actual time scale of their fulfillment was slightly shifted against the schedule.

Mostly, implementation tasks were performed during the summer, while documentation and

analysis tasks were shifted to autumn.

Nevertheless, the time required for implementation tasks even during autumn was much

larger than initially estimated. This is also why time reserve was and continues to be incorpo-

rated within project schedule.

Project schedule for upcoming semester has been updated according to latest progress and

results.

D-1

D.3 Winter 2016/2017

— Implementation of model for transcription from raw audio.
- specifically work plans outlined in Section 6.2.

— Large model-specific dataset preparation.

— Large-scale evaluation of proposed method(s).

— Preparation of research article for IIT.SRC 2017.

— Exploration of feature extraction methods and their influence to performance.

D.4 Spring 2017 (DP3)
— Experimental search for optimal setup of promising architectures.
— Final set of experiments and their evaluation.
— Thesis report finalization, including Slovak language extracted version.

— Time reserve for unexpected complications during previous work.

Since the implementation of WN4T model has been more complex task than expected
due to significant memory issues, this task has been ongoing for whole winter and significant
part of spring. However remaining points did not struggle too much because of this, since we
have been able to work on then as well in parallel.

Although we did not get to exploration of feature extraction methods as was originally
planned, we focused on experimentation with large data sets and large networks. This, however
cause us way too large time delay, which forced us to finish the documentation of this work in

an uncomfortably small time span.

D-2

E Paper Accepted to IIT.SRC 2017

Modelling Music Structure using Artificial Neural
Networks

Luka$ MARTAK*

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies
Ilkovicova 2, 842 16 Bratislava, Slovakia
martak.lukas@gmail.com

Abstract. As deep learning approaches arise thanks
to availability of large datasets and high computing
power, they show increasing competence at solving
various tasks of growing complexity. Automatic mu-
sic transcription is one such problem, which has been
approached by computer scientists in music informa-
tion retrieval for decades, remaining unsolved. Recent
advances introduced deep architectures with signifi-
cant audio modelling capacity. Since transcription of
complex polyphony requires distinct cognitive capa-
bilities, we believe, that deep learning could success-
fully tackle this problem. On top of spectral analysis,
we propose neural network for frame-level classifica-
tion, evaluate on standard dataset and conclude com-
petitive and promising results.

1 Introduction

With the advent of new technologies, we have seen
some dramatic transformations in music industry to-
gether with radical growth of music content. These
transformations have influenced our means for musi-
cal content production, storage, distribution and con-
sumption. As the richness of music content grows, it is
crucial to have new methods to describe this content.

Music Information Retrieval (MIR) is an inter-
disciplinary science of retrieving various information
from music. To list some interesting problems ad-
dressed by research in the field, there is Similarity
Search, Query by Singing, Key Detection, Chord Esti-
mation, Beat Tracking, Tempo Estimation and notably
Multiple Fundamental Frequency Estimation.

All these tasks are motivated by a demand from
either academia or industry, to provide software means
for music analysis, production, distribution, organiza-
tion, storage or reproduction.

Manually performed music transcription, also

* Master study programme in field: Information Systems

called musical dictation in music pedagogy, is a
skill of identification music elements solely by hear-
ing, which even talented musicians need to develop by
practice (ear training).

In this paper, we address the problem of Auto-
matic Music Transcription (AMT). It is considered
one of the Holy Grails in the field, since a reliable
transcription yields us symbolic representation of mu-
sic content, which contains information substantial to
many other MIR tasks. It may be also practically used
for computational musicology or effective compres-
sion of musical data.

Many approaches to multi-pitch estimation have
been examined so far. They break down by philoso-
phy into these:

1. Frame-level - separate estimations per time frame.
2. Note-level - tracking notes from onset to offset.
3. Stream-level - tracking pitch streams by sources.

Those methods can be further categorized by do-
main of operation (time vs. frequency), or core algo-
rithm (e.g. based on rules, signal processing domain
knowledge, probabilistic or classification-based).

Since AMT is a complex task, many methods have
been tuned to fit specific usage scenario or dataset
characteristics. This variety in previous approaches
also gave rise to different evaluation methodologies
and metrics.

However, the common property of all present
methods is the lack of accuracy, represented by sev-
eral transcription errors per musical piece, which is
still deep below human expert performance [1].

We examine a data-driven classification-based ap-
proach to frame-level multi-pitch estimation, based
on neural networks. We further restrict our method to
solo piano music and evaluate on corpus of classical
piano tunes.

Supervisor: Dr. Marius Sajgalik, Institute of Informatics, Information Systems and Software Engineering, Faculty of

Informatics and Information Technologies STU in Bratislava

HT.SRC 2017, Bratislava, April 27, 2017, pp. 1-8.

2 To Be Added by Editor

2 Related work

To reach the context of our research hypotheses, we
focus here mostly on approaches to AMT and music
audio modelling, based on machine learning.

Although there are some more recent relevant
works, we refer to the project Automatic Piano Tran-
scription by LabROSA laboratory' due to availability
of used dataset. In this work [4], for each of 88 pi-
ano keys, an one-versus-all binary SVM classifier is
trained on spectral features. Classification outputs
are then processed a posteriori by a Hidden Markov
Model for temporal smoothing. Results of this work
have been used as a baseline in other similar work [3].

Recently, deep learning with Convolutional Neu-
ral Networks (CNNs) has been applied to spectral im-
ages in order to detect notes in polyphony [7]. After
note onset times were detected, rectangular slices of
spectrogram centered at those times were processed
by CNN. Resulting 88 note probabilities were filtered
by rule-based algorithm to obtain final predictions’.
Though it has good results at detecting note onsets,
this approach lacks ability to track note durations.

Additionally, new architecture of deep neural net-
work was introduced by DeepMind, which demon-
strated significant raw audio modelling capacity [8].
WaveNet® has been able to generate high quality
speech and music audio fragments, one sample at a
time. This suggests, that deep hierarchical structures
in architecture of neural network could provide ca-
pacity for modelling musical structures in AMT and
related subtasks, such as timbre recognition or dynam-
ics estimation.

3 Frame-level spectral classification
Our method relies purely on a neural network multi-
class classifier. It is trained on spectral amplitude data
obtained from dataset of labeled music. Classifier out-
puts are truncated and used for frame-level evaluation.
1. Preprocess labeled music data.
— Generate spectrograms from audio.
— Generate piano rolls from notation.
— Divide set into train, validation and test sub-
sets with even distribution of data samples.
2. Train the model on training data.
— Tune hyperparameters on validation data.
3. Evaluate on testing data.
— Calculate relevant metrics.
— Examine sample results empirically.

3.1 Preprocessing

Preprocessing is performed element-wise, where sin-
gle data element is a pair of audio and notation file,
describing single musical piece, e.g. tune or chord.

To enable time-frequency transformation, audio is
initially re-sampled using method described in [6].

Spectrogram is calculated using Constant-Q
Transform (CQT), which has constant ratio of fre-
quency to bandwidth, resulting in equally represen-
tative spectral bands across all notes being analyzed.
Since human perception of pitch operates in spectrum
on a logarithmical scale, this gives CQT advantage
over standard STFT, when it comes to musical data.
To calculate CQT spectrum, we use recursive sub-
sampling method for efficiency, as described in [5].

Piano roll is constructed from reference notation,
as a matrix of numbers denoting absence or presence
of notes (rows) in time frames (columns). Values from
(0;127) denote velocity of played notes.

We further normalize spectral magnitude values
into (—0.5;0.5) to help neural net with convergence.
For now, we also truncate piano roll values to {0, 1},
in order to discard the information about music dy-
namics and reduce the task to simple note detection.

Finally, data are divided into training, develop-
ment and testing subsets roughly by ratios 8 : 1 : 1.

3.2 Building the network architecture

In order to iteratively build optimal network architec-
ture, we initiated our efforts with simple Multi-Layer
Perceptron (MLP) model and feed it with spectral co-
efficients on the input, gaining discrete probabilities of
presence per note on the output. Therefore, we denote
this model as MLP-Spec.

Fully Connected |

/|\
| Fully Connected | RelU activations

Figure 1. Architecture of MLP-Spec.

Note probabilities

Sigmoid activations

Spectral coefficients

Since number, size and activation functions of hid-
den layers are subject to experimentation, we start with
model depicted on Figure 1.

! http://labrosa.ee.columbia.edu/projects/piano/

2 https://www.lunaverus.com/cnn

3 https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Lukds Martdk: Modelling Music Structure using Artificial Neural Networks 3

Rectified Linear Units (ReLU) on hidden layer
work as computationally efficient non-linearity, while
Sigmoid activations on output layer yield probability
values from (0; 1) for presence of all notes, which
makes the model a multi-class classifier. We use
Adam [2] for model optimization by default.

Based on initial results, we introduced slight mod-
ification to MLP-Spec. In order to provide the model
some time context, we added Gated Recurrent Unit
(GRU) between the input and first hidden layer. We
denote this model as RNN-Spec and feed it with a se-
quence of consecutive spectral descriptors, finished by
the time frame being estimated.

Though length of the sequence is not restricted by
RNN, since we do not aim to determine desired length
of context dynamically, we experiment with constants.

During the training, we regularly perform infer-
ence on validation data, and checkpoint model param-
eters after each improvement, based on key metric. We
also tried various combinations of model hyperparam-
eters between training sessions, in order to maximize
performance on validation data. We examined their
dependencies based on convergence curves and top
validation performance.

3.3 Postprocessing

If we discard velocity values in labels, we also reduce
estimated probabilities to binary values according to
specified threshold ¢, which is a parameter of evalua-

tion, given
1
R,: = ’
)t {07

where note n and time frame ¢ are indices to array
P for estimated probabilities and array R for resulting
piano roll.

if Po > g
otherwise

e))

4 Evaluation
4.1 Metrics

As a key metric for performance evaluation we track
F'1-Score, which is a harmonic mean of precision prec
and recall rec, given by (2).

1 prec - rec
=27 + L :2'prec—|—rec)
prec rec

To enable comparison to reference approach, we
also measure frame-level accuracy (3)
TP
Acc = 3
“T(FP+FN+TP))
where T'P, F'P and F'N denote total counts of
true positives, false positives and false negatives.

Evaluation metrics are computed from estimations
and labels. To examine confusion empirically, we fur-
ther create visualizations of estimations or use piano
roll to construct playable MIDI file.

4.2 Data

We first carefully selected preprocessing parameters.
Time resolution of 100 frames per second turned
out to be sufficient, also conforming to reference ap-
proach [4]. Bottom frequency was setto 27.5 Hz,
hence fundamental frequency of lowest piano note
AO0. Spectral resolution was initialized to 3 frequency
bands per note, while 300 consecutive bands up from
the lowest one were analyzed in order to capture the
timbral artifacts of the highest piano notes.

LabROSA Most of our experiments with architec-
tures were conducted on set of labeled recordings re-
leased by LabROSA [4] containing 2 8 classical piano
pieces performed by a professional concert pianist.

From each tune, first 36 seconds were divided
into 30 training, 3 validation and 3 testing seconds
of data. With resolution of 100 frames per second
this amounts to 87000 training samples and 8700
validation and testing samples.

4.3 Results

At all of our experiments, we stick to threshold value
q = 0.5 and CQT calculation parameters sample
rate = 25600 Hz andhop length = 256in
order to preserve time resolution of 100 Hz.

4.3.1 MLP-Spec: model depth dependency

With an experimental setup having 200 units wide
hidden layers and 300 frames large batch size, we
examined the influence of model depth on validation
performance.

0.8
0.6
]
1S
2 04
= —e— 1 hidden layer
0.2 —4a— 3 hidden layers | |
0 —— 5 hidden layers
L I I il
0 1 2 3
training step -10*

Figure 2. Validation performance of MLP-Spec at
different depths.

4 To Be Added by Editor

In this case, results showed trend of decreasing
validation performance with increasing model depth.
Results on test data also confirmed this dependency.

In similar fashion, we examined the influence of
context sequence length to RNN-Spec model perfor-
mance. Results showed, that context did not help to
improve performance. In fact, it actually dropped with
growing context.

4.3.2 Comparing models performance

With the best performing variants of both examined ar-
chitectures having single fully connected hidden layer
with 1000 neurons, we trained and validated both on
same data and compare their convergence curves in
Figure 3.

0.8
© 0.75
g
w 07
0.65 —e— MLP-Spec | |
—m— RNN-Spec
| | T T
0 0.5 1 1.5
training step -10*

Figure 3. Validation performance comparison.

It is clear, that RNN-Spec converged into less opti-
mal solution than MLP-Spec. We suppose, that RNN-
Spec was able to recognize specific structures in spec-
tral changes over time, thanks to provided context, and
overfitted to their occurrences in test set. Our further
work with larger corpus supports this theory.

Additionally we compare our results to the refer-
ence approach [4]. This comparison is only approxi-
mate, since the training and testing sets were differing
in size between referenced evaluation and ours.

Table 1. Comparison to reference approach.

MLP-Spec | RNN-Spec | SVM
64.3% 56.2% 56.5%

Acc

4.4 Further observations

From additional experiments with different datasets,
we also observed the general tendency of neural net-
work models to overfit to timbral characteristics of
training data.

For example, models trained on synthesized au-
dio achieved test performance with F-Score of ~ 0.7
on synthesized audio data, while on data of recorded
audio it was contrasting ~ 0.3.

Another set of experiments on dataset of chords
played in different inversions and transpositions
showed the strong influence of dataset structure.
Test performance of our models reached Fi-Score of
=~ 0.92 here, in contrast to best results on LabROSA
set, which was ~ 0.75.

5 Discussion

We have shown that even the simplest neural network
architectures can be tuned to achieve competitive re-
sults on AMT tasks. It is therefore viable to further
seek improvements in neural network architectures.

However, our current models seem to have issues
identifying inter-frame dependencies, such as note du-
rations. Therefore, one of the upcoming challenges
will be finding effective representations and structures
for time context modelling.

Some future directions include new feeding of
spectrogram fragments with analyzed frame at the
center of the sequence. Such fragments could be pro-
cessed using combination of convolutional layers and
recurrent layers.

Additionally, learning from raw audio could give
interesting results with architectures employing mul-
tiple 1-dimensional convolutions and residual or skip
connections.

Acknowledgement: This work was partially supported
by the Scientific Grant Agency of Slovak Republic,
grant No. VG 1/0646/15.

References

[1] Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H.,
Klapuri, A.: Automatic music transcription: challenges
and future directions. Journal of Intelligent Information
Systems, 2013, vol. 41, no. 3, pp. 407-434.

[2] Kingma, D.P,,Ba,J.L.: Adam: A method for stochastic
optimization. ICLR, 2015, pp. 1-15.

[3] Nam, J., Ngiam, J., Lee, H., Slaney, M.: A
Classification-Based Polyphonic Piano Transcription
Approach Using Learned Feature Representations. Is-
mir, 2011, no. Ismir, pp. 175-180.

[4] Poliner, G.E., Labrosa, D.P.W.E.: A Discriminative
Model for Polyphonic Piano Transcription, 2006, pp.
1-16.

[5] Schorkhuber, C., Klapuri, A.: Constant-Q transform
toolbox for music processing. 7th Sound and Music
Computing Conference, 2010, no. JANUARY, pp. 3—
64.

[6] Smith, J.O.: Digital Audio Resampling Home Page.
Center for Computer Research in Music and Acoustics
(CCRMA), Stanford University, 2002, pp. 1-20.

[7] Troxel, D.: Music transcription with a convolutional
neural network. MIREX, 2016.

[8] vanden Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
Kavukcuoglu, K.: WaveNet: A Generative Model for
Raw Audio, 2016, pp. 1-15.

F Resume in Slovak Language

F.1 Uvod

Ciel’om tejto préace je navrhnit’, zrealizovat’ a otestovat’ metddu automatickej transkripcie
hudby s vyuZzitim metdd hlbokého ucenia. Stcasne je prioritou prace inSpirovat’ sa existujicimi
architektirami neurénovych sieti a aplikovat’ identifikované vzory pri vlastnom ndvrhu

architektury.

F.1.1 Motivacia

Music Information Retrieval (MIR) je medzindrodnd vedeckd disciplina zaoberajica sa
ziskavanim informdcii z hudby. Je to mald vyskumnd oblast’, avSak s vel'’kym potencidlom
pre aplikiciu vo svete. Zmienime iba niektoré zo zaujimavych problémov adresovanych

vyskumom v tejto oblasti.

1. HI'adanie podobnosti skladieb.

2. Dotazovanie spievanim ¢i hmm-kanim melddie.

3. Automatické odhadovanie akordov znejtcich v polyfénii.
4. Sledovanie rytmu.

5. Odhadovanie tempa.

6. Viacndsobné odhadovanie fundamentélnej frekvencie.

7. Automatickd kategorizdicia.

8. Automatickd transkripcia.

Vsetky tieto tlohy st motivované dopytom bud’ z akadémie, alebo priemyslu, aby poskytli
softvérové prostriedky pre analyzu, produkciu, distribiciu, organizdciu v databazach, Ci
reprodukciu hudby.

Manuélne vykondvand transkripcia hudby je proces identifikdcie hudobného obsahu
vicSinou Cisto na zdklade sluchu, o dokonca aj talentovani hudobnici potrebuju rozvijat’

cvikom ucha.

F-1

F.2 Analyza problémovej oblasti

V tejto praci adresujeme problém Automatickej Transkripcie Hudby (Automatic Music
Transcription - AMT). Této uloha je povazovand za Svity Gral v oblasti, ked’Ze dostato¢ne
presnd transkripcia poskytuje symbolicku reprezenticiu hudobného obsahu, ktord uz zahiia
podstatnu Cast’ informdcie potrebnu pre rieSenie ostatnych pribuznych problémov. Taktiez
by mohla byt prakticky vyuZitd pri vyskume pocitacovej muzikoldgie, ¢i pre efektivnu
kompresiu zdznamov hudobnych nahravok do formétu symbolickej notécie.

Viacero pristupov k problému odhadovania polyfénie uz bolo vyskidsanych. Z hl'adiska

filozofie ich md6Zeme rozdelit’ do nasledovnych kategorii.

1. Na drovni rdmcov - odhadovanie polyfonie v kazdom ¢asovom ramci zv1ast’.
2. Na trovni ndt - sledovanie nét od ndstupu po odznenie.

3. Na drovni prudov - sledovanie pridov tonov podl’a charakteristiky ich zdrojov.

Tieto metédy by sme mohli d’alej kategorizovat’ aj inak, napriklad podl'a domény v
ktorej operuju (Casova / frekvencnd), ¢i typu jadra pouzitého algoritmu (napriklad pravid-
lové systémy, algoritmy zaloZené na expertnych znalostiach z oblasti spracovania signalov,
pravdepodobnostné modelovanie, ¢i klasifikacné algoritmy).

Ked’Zze AMT je komplexn4 tloha, vel’a metdd bolo ladenych pre Specificky pouZivatel sky
pripad, Ci Specificky charakter hudby. Tato rozmanitost’ v predchadzajucich pristupoch taktiez
podnietila vznik rdznych metodol6gii vyhodnocovania a metrik pre sledovanie dspeSnosti
tychto metdd.

AvSak spolocnd vlastnost’ vSetkych sicasnych metdd je stile nedostatocnd presnost’
reprezentovana Statistickou pravdepodobnost’ou chyby meranou v desiatkach percent za
predikciu, ¢o v praxi predstavuje niekol’ko chyb transkripcie za €o i len minttu skladby. Toto
je stale hlboko pod droviiou vykonu I'udského experta - ¢loveka s hudobnym sluchom a
praxou v transkripcii [17].

V tejto praci skimame pristup budovany predovsetkym na datach, klasifikécii na trovni
rdmcov a zaloZeny na neurénovych siet’ach. Obmedzujeme sa vSak v rozsahu tejto prace iba
na ulohu transkripcie sélovej klavirnej hudby. NaSu metédu budujeme a aj vyhodnocujeme na

korpuse klasickych klavirnych skladieb.

F-2

F.2.1 Existujice rieSenia

V analyze predchadzajicej priace sa venujeme prevazne pristupom k AMT problému a
modelovaniu zvuku hudby zaloZenym na metddach strojového ucenia.

Hoci uz existuji novsie relevantné prace v tejto oblasti, zvolili sme si ako referencny
pristup projekt s ndzvom Automatic Piano Transcription od laboratéria LabROSA!, vzhl’adom
na charakter pouZzitého pristupu a dostupnost’ dat ktoré boli vyuZzité na ucenie modelu. V tomto
Clanku [67] je pre kazdy z 88 klavirnych ténov samostatny SVM Kklasifikétor trénovany na
spektrdlnych koeficientoch. Vystupy klasifikdcie su d’alej spracované skrytym markovskym
modelom (HMM) pre Casové vyhladenie vystupov. Vysledky tejto prace uz boli taktiez
vyuzité ako podklad pre porovnanie inymi podobnymi pracami, ako napriklad prica autora
menom Juhan Nam a kolektivu [63].

V tejto praci autori pristupuju k problému polyfonickej transkripcie hudby s pouZitim
niekol’kych metdd strojového ucenia. Ich pristupom je najskor aplikovat’ techniku PCA
(Principal Component Analysis) bielenia a nasledne normalizédciu na spektrogram. V d’alSej
faze sa uCenim bez ucitel'a trénuje dvojvrstvovd neurénova siet’ DBN (Deep Belief Network),
¢o sa uz v minulosti ukdzalo ako dspesné pri ulohdch klasifikacie hudby [37, 55]. Tieto boli
vrstvy boli trénované tzv. chamtivym spdsobom, vrstvou po vrstve. Aktivicie na skrytej vrstve
DBN boli d’alej spracované sadou SVM Kklasifikétorov. Predikcie tychto klasifikdtorov boli
aktivované funkciou sigmoid na zadné (posterior) pravdepodobnosti, ktoré boli ndsledne
spracované dvoj-stavovym HMM pre Casové vyhladenie.

AvSak neddvno bolo hlboké u€enie konvoluénymi neurénovymi siet’ami (CNNs) apliko-
vané na obrazky spektier za ti¢elom detekcie not v polyfonii [82]. Najskor sa jednoduchym
algoritmom pre hl’adania vrcholov v spektre nasli ¢asy ndstupov ténov, nasledne obdiznikové
platky spektrogramu centrované voci casom zdetekovanych ténov boli spracované CNN sie-
tou. Siet” klasifikovala 88 pravdepodobnosti znenia tonov, ktoré boli este ndsledne filtrované
algoritmom zaloZenym na pravidlach ziskanych heuristikou. za ti¢elom ziskania findlnych pre-
dikcii?. Hoci m4 tento pristup dobré vysledky v detekcii ndstupov ténov, chyba mu schopnost’
sledovat’ dizky trvania ténov.

Navyse taktiez neddvno DeepMind na scénu uviedol novu architektiru hlbokej neurd-

novej siete, ktord demonstrovala znameniti kapacitu pre modelovanie surového zvukového

'http://labrosa.ee.columbia.edu/projects/piano/.
https://www.lunaverus.com/cnn

F-3

signalu [?]. WaveNet! dokdzal vygenerovat’ vysoko kvalitné tiryvky re¢i a hudby, a to vzorku
po vzorke, Cisto modelovanim podmienenej pravdepodobnostnej distribicie nasledujice;j
vzorky na zédklade existujicej sekvencie vzoriek. To ndm napovedd, Ze hlboké hierarchické
Struktiry v architektdrach neurénovych sieti by mohli poskytnit’ dostato¢nu kapacitu pre
modelovanie hudobnych Struktir priamo zo zvukového signélu, za i¢elom AMT a podobnych

podproblémov, ako rozpoznavanie farby ténu ¢i odhad dynamiky hraného ténu.

F.3 Navrhnuté metédy a opis rieSenia

Vzhl'adom na Specifickost’ akustickych a hudobnych signdlov uvazujeme v tejto praci viacero
alternativnych pristupov k problému polyfonickej transkripcie hudby z hl’adiska metdd
neurénovych sieti.

Tieto alternativy sa liSia najméa v spdsobe, akym reprezentuji hudobny signdl na vstupe
neurénovej siete, Co taktieZ urcuje rozsah problému, ktory musi dand siet’ rieSit’, ¢o ndsledne

ovplyviluje rozhodnutia o ndvrhu architektiry danej siete.

F.3.1 Modelovanie hudby v spektralnej doméne

Prvym krokom v takmer kazdom systéme spracovania zvuku za u¢elom analyzy hudobného
obsahu je logicky a uZz tradi¢ne transformacia z Casovej domény do frekvencnej. My preto
taktiez najskor skiSame trénovat’ neurénové siete na deskriptoroch spektralnych Crt.

Celkovy proces v krokoch potrebny pre aplikovanie tejto metddy je teda nasledovny.

1. Predspracovanie zvuku, generovanie spektrogramu.
2. Predspracovanie referencnej noticie do znaciek, generovanie piano rollov.
3. Casova synchronizicia predspracovanych dét a znaciek.

4. Rozdelenie dat na trénovaciu, validacnu and testovaciu mnozinu so snahou zacho-
vat’ podl’a moZnosti najvyvazenejsiu réznorodost’ hudobného obsahu naprie€ tymito

mnozinami.

5. Trénovanie modelu na trénovacej mnozine s periodickym vyhodnocovanim na vali-
dac¢nych détach. Prispdsobovanie hyperparametrov naprie¢ trénovaniami za icelom

maximalizicie validacnej presnosti (teda presnosti na validanej mnoZine).

"https://deepmind.com/blog/wavenet-generative-model-raw-audio/

F-4

6. Testovanie modelu na testovacej mnoZine. Vyhodnotenie presnosti transkripcie pomo-
cou vypocitanych metrik vyhl’addvania informécif a taktieZ manudlnym preskiimanim

Vystupov.

F.3.1.1 Predspracovanie

Predspracovanie sa urobi po samostatnych datovych jednotkach, ktoré reprezentuju samostatna
jednotky hudobného obsahu, ako napriklad skladby, stupnice, ¢i akordy, v zdvislosti od
Struktdry datasetu.

Za tcelom umoZnenia transformdcie do frekvencnej domény je najskor zvuk pre-vzorkovany
metédou popisanou v [81].

Spektrogram je vypocitany s pouZitim CQT (Constant-Q Transform) algoritmu, ktory
ma vyhodu oproti klasickému STFT (Short-Time Fourier Transform) taku, Ze md konStantny
pomer frekvencie voci frekvenénému rozsahu, ktory analyzuje. To mé za ndsledok rovno-
merné rozmiestnenie reprezentativnych spektralnych pasiem naprie¢ frekvenciami vsetkych
skimanych noét. Ked’Ze I'udské vnimanie vySky tonu operuje v spektre na logaritmickej Skale,
toto dava CQT algoritmu vyhodu oproti STFT ak sa jednd o analyzu hudobnych dat. Na vypo-
cet CQT spektra pouzivame metddu rekurzivneho pod-vzorkovania za ticelom vypoctovej
efektivity tak, ako je popisand v [75].

Piano roll je skonStruovany z referencnej notdcie ako matica ¢isel znaciacich absencie
alebo prezencie not (riadky) v ¢asovych fragmentoch (stfpce). Hodnoty z intervalu (0; 127)
znacia dynamiku (velocity) znejicich nét. Tédto sa vSak v ¢ase nemeni, uddva iba silu dderu
na zaciatku ténu a ostdva konStantnd aZ po jeho koniec.

V d’alsom kroku normalizujeme hodnoty spektralnych magnitid do (—0.5;0.5) s ciel om
dopomodt’ neurénovej sieti ku konvergencii. V stcasnej faze projektu taktieZ zarovnavame
piano roll hodnoty na {0, 1}, za d¢elom zbavenia sa informdcie o dynamike hudby a sic¢asného
zredukovania tlohy o tlohu detekcie dynamiky na tlohu Cistej detekcie pritomnosti not.

Na zaver rozdelime dita do trénovacej, vyvojovej a testovacej podmnoZziny zhruba v
pomere 8 : 1: 1.

F.3.1.2 Navrh architektiry a trénovanie

Za ucelom postupného budovania optimdlnej architektiry zaciname s jednoduchym modelom

viac-vrstvového perceptronu (MLP) a trénujeme ho na spektralnych koeficientoch, dosta-

F-5

vajuc diskrétne hodnoty pravdepodobnosti pritomnosti noty na vystupe. Preto tento model

oznacujeme ako MLP-Spec.

Output vector
note probabilities

Fully Connected

Fully Connected Hidden Layer(s)

Spectrogram SIice Input vector

spectral coefficients

(a) Viac-Vrstvovy Perceptrén (b) Prvotné nastavenie MLP modelu

Obr. 47: Ndcrt MLP-Spec architektiiry.

Vel'kost’ vstupnej vrstvy zdvisi od spektrdlneho rozliSenia zvoleného v Case predspraco-
vania dat formou kombindcie parametrov vypoctu CQT spektrogramu. Vel'’kost’ vystupne;j
vrstvy je dand rozsahom not, ktoré si povieme, Ze chceme aby siet’ predikovala. Pocet a
vel'kosti skrytych vrstiev a ich aktivacné funkcie patria do mnoZiny hyperparametrov modelu.

Prvotné nastavenie obsahuje jedinu skrytu vrstvu a vystupnu vrstvu. Aktivacna funkcia
na skrytej vrstve je pouZzitd ReLLU (Rectified Linear Unit), za i¢elom vypoctovej efektivity a
postacujicej nelinearity modelu.

Na vystupe méme sigmoid aktivaciu, ked'Ze chceme z naSej siete mat’ viac-triedovu
klasifikaciu, podobne ako maju aj relevantné existujuce pristupy, ked Ze tato funkcia aktivuje
pred-aktivdcie vystupnej vrstvy do sady hodnét z intervalu (0, 1) reprezentujiceho diskrétne
pravdepodobnosti estimdcii jednotlivych ténov.

V d’alSej iterdcii ndvrhu architektiry na zdklade prvotnych vysledkov pridavame reku-
rentnd vrstvu na zaciatok ako vstupnd vrstvu siete, za ic¢elom poskytnutia casového ramca
ktorého polyféniu predikujeme. Tuto rekurentnu vrstvu kimime sekvenciou spektralnych
deskriptorov po sebe iducich ¢asovych ramcov.

V prvej iterdcii pouZivame jednosmernd rekurentnd vrstvu na spracovanie sekvencie.
V Case trénovania predikujeme vSetky rdmce zo sekvencie pre rychlejSie ucenie. V Case
testovania berieme do tvahy vzdy iba tie predikcie ktoré ukoncuji danu sekvenciu ktord bola

na vstupe, za ucelom zizitkovania vSetkej kontextudlnej informacie.

F-6

NavySe za ucelom vyuZitia Casového kontextu z oboch stran odhadovaného rdmca v
Case, teda aj z minulych a aj z buddcich okolitych rdimcov, skiimame moznost’ vyuZzitia oboj-
smernej rekurentnej vrstvy. Takejto sieti potom ddvame predikovat’ asovy rdmec uprostred
poskytnutej sekvencie, namiesto toho koncového.

Na zaklade typu rekurentnej vrstvy pouzitej vramci konkrétnej varidcie modelu oznacu-
jeme model s jednostrannou rekurentnou vrstvou ako RNN-Spec a model s obojstrannou ako
BiRNN-Spec.

Output vector
(note probabilities)

Q Fully Connected ‘
G _‘
OOO00

(a) Klasickd RNN |

Hidden Layer(s)

Q Q Q Q Q —> Recurrent Unit Recurrent Layer(s)
Spectrogram Input matrix
G@L@OO sequence of spectral
C)C) OOO Fragment coefficients vectors
(c) Obojsmernd RNN (b) Zékladné nastavenie rekurentnych modelov

Obr. 48: Ndcrt rekurentnych architektiir zaloZenych na MLP.

Hoci dlZka sekvencie nie je obmedzend rekurentnou vrstvou, ked’Ze v sicasnosti nemame
metddu urovania Ziadanej dlzky sekvencie inu ako experiment, vyberame hodnotu konStantne

pre kazdé trénovanie a pracujeme s nou ako s hyperparametrom.

F.3.2 Postspracovanie

V zmysle tlohy detekcie n6t kde informécia o dynamike je nedostupnd, poslednym krokom
spracovania je prahovanie, ¢o v jednoduchosti znamend zaokrihl’ovanie odhadovanych
pravdepodobnosti do logickych hodndt. Toto robime na zdklade daného prahu ¢, ktory je

parametrom vyhodnocovania. Ak mame

F-7

17 ian,t 2 q

0, otherwise

(€))

n,t —

kde nota n a Casovy rdmec ¢ su indexy do poli P pre odhadované pravdepodobnosti a R
pre origindlny piano roll.

Z tejto reprezentacie vystupu uz pocitame Standardné metriky pre kvantifikované vy-
hodnotenie. TaktieZ robime vizualizacie vystupov a manudlnym skiimanim pozorujeme a

vyhodnocujeme vykony naSich metdd.

F.3.3 Modelovanie hudby v ¢asovej doméne

Ked’'Ze spektralna analyza, aj ked’ je vel'mi cennd a doleZitd, predsa len prichddza za cenu
naruSenia signélu, stricame nejaké mnoZzstvo informécie. Pri windowingu zvukovych usekov
pocas spektralnej analyzy zahadzujeme informdciu o kontinuite signdlu a zaroven predsa len
vytvarame v spektre nejaké artefakty.

Preto mé zmysel skdsat’ ucit’ neurénovu siet’ priamo zo ¢asovej domény, teda zo surovej
reprezentacie vzorkovaného signdlu. Za¢iname experimentovat’ s architektirou WaveNet,
ktord uz ukdzala svoj potencidl pre spracovanie zvuku pri generativnych tlohéch [84].

Architektira WaveNetu je poskladana z vrstiev tzv. dilatovanych kauzdlnych konvoliicii

zobrazenych niZsie.

°©9.9 0 0.9

Output
Dilation = 8

Q.0 Q0 . Hidden Layer
i . e, Dilation = 4
Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

] , o .-

Obr. 49: Zdsobnik dilatovanych kauzdlnych konvoliicii; prekresleny z [84].

Input

ZvySovanim dilat4cie po sebe idicich vrstiev o faktor 2-ky zvySujeme zorné pole! siete

exponencidlne. Dal$im prostriedkom rozSirovania zorného pol’a siete je aplikdcia viacerych

1Zorné pole predstavuje pocet vzoriek, ktoré je WaveNet schopny spracovat’ na vstupe naraz v jednom kroku
odvodenia.

F-8

zasobnikov po sebe. Toto pomaha zvySit' nie len zorné pole, ale aj kapacitu siete. Cela

architektira WaveNetu je nacrtnutd na obrazku nizsie.

Residual

1x1 1 x1 H Softmax ‘—D Output

1
© it
:I I Skip-connections
@ o I
I
i
Dilated 1
Conv ! |
I
[N
I
k Layers It
O i it e i
gt el g e el I

Input

Obr. 50: Prehl’ad rezidudlneho bloku a celej WaveNet architektiiry; prekresleny z [84].

Na zédklade inSpiracie predoSlym uspechom WaveNet architektiry v doméne modelovania
zvuku, zakladdme nasu verziu na open-source implementécii' a prispdsobujeme ju nasej dlohe.
Zamenou softmax aktivacie za sigmoid na vystupe ziskavame viac-triedovy klasifikator. Vel -
kost” findlnej vrstvy zuZujeme na 128 MIDI ténov z predoslych 255 hodnét kvantizovaného
zvukového signalu.

Za ucelom odliSenia nasej upravenej verzie WaveNetu od pdvodnej si ju aj pre potreby
d’alSieho znacenia a vyhodnocovania tejto prace oznacime ako WN4T (WaveNetForTranscrip-

tion).

F.4 Dosiahnuté vysledky

Za ucelom priebezZného vyhodnocovania sme pocas trénovania priebezne vykondvali vyhodno-
tenie na validacnej mnoZine dét a uloZili si stav modelu pri kazdom zlepSeni kI'tiCovej metriky
na historické maximum v rdmci daného trénovania. Tymto spdsobom sme boli schopni hl’adat’
vhodné nastavenie hyperparametrov vramci viacerych trénovani za i¢elom maximalizovat

presnost’ na validacnej mnoZine.

'"https://github.com/ibab/tensorflow-wavenet

F-9

F4.1 Vyhodnocované metriky

KTI'a¢ova metrika ktord meriame pre vyhodnotenie presnosti je Fi, €o je harmonicky priemer
presnosti prec and uplnosti rec, danej nasledovne.
1 prec - rec
F1 - 2 . 1 1 — 2 .

(10)

prec s prec + rec

Pre umozZnenie porovnania voci referenénym pristupom taktieZ meriame ramcovu presnost’
tak, ako bola navrhnuta Dixonom [28]
TP

A= FP Y PN+ TP) (h

kde T'P, F'P a F'N oznacuju celkové poCty spravne pozitivnych, nespravne pozitivnych

a nespravne negativnych odhadov.

Tieto metriky st pocitané z porovnania estimécif a znaciek. Pre empirické skimanie po-
mylenia d’alej vizualizujeme estimdcie ¢i pouZivame piano roll pre zostrojenie prehratel’ ného
MIDI zapisu.

F.4.2 Pouzité data

V naSich experimentoch sme pouZili na trénovanie, validdciu aj testovanie niekol’ko variacii
datasetu LabROSA zverejneného referencnym projektom, ktory pozostava z 29 klasickych
klavirnych skladieb hranych profesiondlnym koncertnym klaviristom a Stidiovo nahranych.
TaktieZ sme z tychto MIDI suborov syntetizovali audio s pouZitim vysoko kvalitnych zvuko-
vych fontov formatu SF2!.

Pre syntézu vlastnej verzie datasetu sme z kazdej skladby vzali prvych 40 sekind a roz-
delili ich do 32 trénovacich, 4 validacnych a 4 testovacich sekund dét. S Casovym rozliSenim
100 ramcov za sekundu nam toto ddva 92800 trénovacich ramcov, 11600 valida¢nych a

11600 testovacich rdmcov spektralnych magnitid.

F.4.3 Vysledky experimentov

V rozsahu experimentov ktoré sa ndm podarilo vykonat’ sme zostali pri konstantnych hodno-
tach pre prah ¢ = 0.5 a parametre CQT kalkuldcie sample rate = 25600 Hz ahop

"http://www.synthfont .com/sfspec24.pdf

F-10

length = 256 za Gicelom zachovania Casového rozliSenia o vel'’kosti 100 Hz.

Po implementacii BiRNN-Spec modelu sme ich trénovali vsetky tri na rovnakom korpuse

syntetizovanom z LabROSA datasetu. Podstatné hyperparametre uvddzame v tabul’ke nizsie'.

Tabul'ka 18: Parametre Spec modelov trénovanych na syntetizovanom korpuse.

| MLP-Spec RNN-Spec BiRNN-Spec

batch size 500 100 100
sequence length - 20 21
recurrent layers - [1000] [1000]
recurrent activations - [tanh] [tanh]
fully connected layers [1000] [1000] [1000]
fully connected activations | [relu] [relu] [relu]

V tomto experimente bol kazdy model trénovany v 5 nezdvislych behoch s nahodne
inicializovanymi vdhami. Priebehy dspesnosti na validacnej mnozine su vykreslené ako
priemerné hodnoty z tychto pétic, spolu s uvedenim Standardnej odchylky pre kazdd priemernt
hodnotu.

'Kazdy element v hranatych z4tvorkdch popisuje samostatny vrstvu.

F-11

0.85 | | | ‘
#o
3 B i
| #} W :,1 _'"I t-"i :"" o8at (-'-{-I fi,]:"“ { il ii‘f.fr.. Ll?|) '_,H j s_’l: .
g 0.75 - } } - oy |
& iy

0.7 | I_ |

§ —— MLP-SpeC

e —m— RNN'SPCC
0.65 - —e— BiRNN-Spec | |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
training step 104

Obr. 51: Validacny vykon na syntetizovanom korpuse.

Prvotné vysledky naznacuji, ze BIRNN-Spec model vyzera ako nase doteraz najlepSie
zlepSenie v navrhu architektiry. AvSak si potrebné rozsiahlejsie testy.

Po natrénovani modelu WN4T sp6sobom postupného pridavania prikladov do trénovace;j
mnoziny od najjednoduchSich monofénnych ténov cez dvojtony az ku zlozitejSim polyfoniam
sme otestovali aj tento model a porovnali ho s ostatnymi.

WN4T model bol trénovany na 16000 Hz zvuku. Zdsobnik dilatacnych vrstiev nami

pouZzitej konfigurdcie modelu je nacrtnuty v tabul’ke niZsie.

Tabul'ka 19: Zoznam dilatdcii modelu WNA4T.

Dilatacné faktory po sebe idicich vrstiev

1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024
1 2 4 8 16 32 64 128 256 512 1024

Zasobnik pozostava z 33 vrstiev a zabezpeCuje zorné pole vel'’kosti 6143 zvukovych

vzoriek. Vel'kost’ jednej trénovacej sekvencie je 10000 zvukovych vzoriek.

F-12

F.4.3.1 Vzajomné porovnanie nasich modelov

V tabul’ke niZSie je porovnanie testovacieho vykonu naSich modelov trénovanych na synteti-

zovanom zvuku z korpusu LabROSA.

Tabul’ka 20: Porovnanie nasich modelov.

MLP-Spec | RNN-Spec | BiRNN-Spec | WN4T*
precision | 0.81 0.8 0.84 0.74
recall 0.74 0.75 0.76 0.37
F1 0.78 0.77 0.8 0.5
Acc 0.63 0.63 0.66 0.33

F.4.3.2 Porovnanie s referenénym pristupom

Na zéaver sme eSte skusili porovnat’ nase vysledky voci pristupu [67] vd’aka dostupnosti
referencného datasetu, ktorého €o najvernejsSiu képiu sme sa snaZzili pre toto porovnanie
zrekonStruovat’

Po ~ 3 trénovacich epochich sme trénovanie ukoncili, porovnanie vysledkov je nacrtnuté

v tabul’ke niZ$ie.

Tabul'ka 21: Porovnanie s referencnymi pristupmi.

Approach Recorded (10) | Synthesized (25) | Combined (35)
Poliner and Ellis [67] 56.5% 72.1% 67.7%
Nam et al [63] - - 72.5%
Ryynanen and Klapuri [74] 41.2% 48.3% 46.3%
Marolt [57] 38.4% 40.0% 39.6%
MLP-Spec 56.2% 61.2% 59.2%
RNN-Spec 46.3% 56.1% 52.1%
BiRNN-Spec 54.5% 63.5% 59.9%

Koli nedostatku casu sme nestihli nase modely optimalizovat’ na valida¢nej mnozine dat,
na rozdiel od konkurenénych pristupov, preto su tieto vysledky iba doasné porovnanie a pre

overenie vhodnosti navrhnutého konceptu.

“Hoci je tento model zahrnuty v porovnani, ked’Ze sa vel'’kost’'ou aj parametrami 1iSi od ostatnych, bol
trénovany odliSne, tak ako je opisané vysSie.

F-13

W d’alSej praci bz sme mali optimalizovat’ hyperparametre ako vel'’kosti vrstiev, regulari-
zatné parametre, dizky trénovacich behov a podobne. Takto by sme chceli optimalizovat’ nase

modely na validaénych datach za icelom vykonania spradvneho vyhodnotenia a porovnania.

F.5 Zhodnotenie

V tejto praci sme navrhli, implementovali a overili niekol'’ko r6znych metdd na rieSenie
problému automatickej transkripcie hudby sucasne.

Porovnali sme navrhnuté metédy medzi sebou a aj voci konkurenénym pristupom.

Ukazali sme, Ze aj tie najjednoduchsie architektdry si schopné davat’ zaujimavé, konku-
rencie schopné vysledky.

Nase sicasné modely vSak pravdepodobne koli obmedzeniam ¢asovym aj pamét' ovym sd
nie su trénované optimalne.

V d’alSej praci by bolo vhodné sa venovat’ experimentovaniu s regularizdciou a roznymi
vel'kost’ami modelov a datasetov.

NavysSe sme ukézali, Ze uCenie zo surového audia pouZitim architektiry WaveNet dava
zaujimavé vysledky pri inych ako generativnych dlohédch, hodné d’alSieho skimania. Aj
ked” vel’kosti modelu a trénovacich €asov su ovel’a vicSie ako pri ostatnych, jednoduchsich
modeloch, kapacita je ovel'a viacsia a teda model mdze byt' schopny naucit’ sa o hudbe z
danej reprezenticie ovel’a viac. Tento smer preto konStatujeme zaujimavy a hodny d’al3ej

prace vo vyskume MIR a Specidlne problémovej oblasti AMT.

F-14

	Introduction
	Background
	Motivation
	Document Structure
	Terms and Abbreviations

	Music Information Retrieval
	Preprocessing of Audio Signal
	Fourier Transform
	Constant-Q Transform
	Pitch Class Profile
	MFCC

	Previous Work
	Polyphonic Music Transcription
	Polyphonic Piano Transcription

	Music and Speech Categorization
	Music Annotation
	Automatic Chord Estimation
	Extraction of Instrumental Controls

	Open Issues

	Machine Learning in Music Information Retrieval
	Bayesian Networks
	Hidden Markov Models
	Support Vector Machines
	Conclusion

	Neural Networks and Deep Learning
	History
	Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Training techniques and strategies
	Regularization techniques
	Hyperparameters

	Architectures
	Feedforward Models
	Representation Learning Models
	Restricted Boltzmann Machines
	Autoencoders

	Convolutional Models
	Recurrent Models
	General Considerations
	Time Complexity
	Space Complexity

	Task Definition
	Our approach
	Modelling Features in Frequency Domain
	Method Description
	Preprocessing Phase
	Re-sampling Method
	Spectrogram Calculation
	Piano Roll Alignment
	Further Steps before Training

	Architecture Design and Training Phase
	Postprocessing

	Modelling Features in Time Domain
	WaveNet for Transcription
	The WaveNet Architecture
	Proposed Adjustments

	Evaluation
	Methodology
	Visualizations

	Data Sets
	LabROSA
	LabREC - Recorded Tunes
	LabSYNTH - Synthesized Tunes
	LabCOMP - Complete Dataset for Reference Evaluation

	PIMIDE
	MAPS
	Common Preprocessing Parameters

	Experiments
	Initial Attempts
	MLP-Spec: Model Depth
	RNN-Spec: Context Sequence Length
	Model Comparison: MLP-Spec vs. RNN-Spec

	Usual Chords
	Model Comparison: MLP-Spec vs. RNN-Spec

	Large-scale Training
	Model Comparison: MLP-Spec vs. RNN-Spec
	Initial Training of WN4T

	Additional Experiments
	Bi-directional Recurrency
	Gradual Training of WN4T

	Comparison to Previous Work

	Human-Level Evaluation
	Role of Temporal Context
	Examining Gradually Trained WN4T
	Testing Robustness of Proposed Method

	Conclusion
	Literatúra
	Technical Documentation
	Project Structure
	Packages and Modules
	Preprocessing
	Utility Functions
	Data Readers
	Neural Network Models

	Online Data Processing with Multi-Threading
	Waveform Data Reading
	Spectral Data Reading

	Usage and Maintenance Guide
	Install Guide
	Install CUDA Toolkit
	Install cuDNN library
	Install pip and Jupyter Notebook
	Install TensorFlow
	Install Auxiliary Python Libraries
	Librosa
	Pretty MIDI
	FluidSynth
	MIR Eval

	User Guide
	Configuration Files
	Note Generator
	WN4T Params
	Spec Models Params

	Training a Model with TensorBoard Monitoring
	Using Trained Model for Transcription and Evaluation

	Contents of Attached Electronic Media
	Project Schedule
	Summer 2016
	Autumn 2016 (DP2)
	Winter 2016/2017
	Spring 2017 (DP3)

	Paper Accepted to IIT.SRC 2017
	Resume in Slovak Language
	Úvod
	Motivácia

	Analýza problémovej oblasti
	Existujúce riešenia

	Navrhnuté metódy a opis riešenia
	Modelovanie hudby v spektrálnej doméne
	Predspracovanie
	Návrh architektúry a trénovanie

	Postspracovanie
	Modelovanie hudby v casovej doméne

	Dosiahnuté výsledky
	Vyhodnocované metriky
	Použité dáta
	Výsledky experimentov
	Vzájomné porovnanie našich modelov
	Porovnanie s referencným prístupom

	Zhodnotenie

