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Abstract

While moving in the environment, the
robot is often supposed to stay on the
specified terrain to maximize its motion
efficiency. A special case of such a setup is
the road following problem. In this work,
two different approaches for road follow-
ing are utilized, i.e. the visual and tactile
based approaches. Their outputs are com-
bined to improve the overall system ro-
bustness. The proposed visual road detec-
tion allows a smooth motion on the roads.
However, it is based on exteroceptive sen-
sor, which is biased by the environmental
conditions. On the other hand, the tactile
terrain classification is less vulnerable to
ambient conditions. It is using propriocep-
tive sensing, which cannot foresee surface
in front of the robot, but it rather pro-
vides information about the actual or past
crawled surfaces. Therefore, performance
of independent visual and tactile sensing
are joined together, that enables the robot
to keep on the road even in case one of
the sensing modality fails. The experi-
mental results demonstrate performance
of the both independent approaches and
also how they mutually enhance if the
visual and tactile information are used
together.

Keywords: hexapod, walking robot,
road following
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Abstrakt

Castym pozadavkem na pohyb robotu
prostiedim je zustat na daném typu te-
rénu z divodu maximalizovat efektivitu
pohybu a snizit energetické naroky. Spe-
cidlnim pripadem tohoto pozadavku je
sledovani cesty. V této praci jsou pouzity
dva razné pristupy sledovani cesty zalo-
zené na vizudlni a taktilni senzorické in-
formaci. Jejich vystupy jsou kombinoviny
za Ucelem zvyseni robustonsti. Vizudlni
sledovani cesty umoznuje plynuly pohyb
po cesté. Nicméné jedna se o pristu zalo-
zeny na exteroceptivnim senzoru, ktery
je ovlivnén svételnymi podminkami pro-
stfedi. Na druhé strané taktilni klasifikace
terénu je odolna viaci vliviim okolntho pro-
stfedi, ale je zalozena na proprioceptivnim
meéreni, které je schopné poskytnout in-
formaci pouze o aktudlnim nebo minulém
terénu. Proto jsou v praci oba pristupy
kombinovany, coz umoznuje udrzet robot
na cesté i v pripadé selhani jednoho z nich.
Experimentélni vysledky demonstruji vy-
hody kombinace vizualniho a taktilniho
sledovani cesty.

Kli¢ova slova:
sledovani cesty

hexapod, kréacejici robot,

Preklad nazvu: Autonomni sledovani
cesty Sestinohym kracejicim robotem
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Chapter 1

Introduction

One of the goals in mobile robotics and artificial intelligence is to deploy
results of research to challenging environments encountered in a common
life. Therefore a lot of effort is put into development of robust devices and
methods which allow the robot, e.g. to navigate through an outdoor terrain
such as a forest or field, participate in rescue missions or patrol and monitor
various areas.

In an urban environment or a slightly uneven terrain, it is possible to use
wheeled vehicles. They are easy to control and can carry heavy loads. The
robot’s traversability through the terrain can be increased by adding tracks.
These robots are nowadays used for exploration after accidents, where human
life can be threatened (risk of collapse, explosion, radioactivity, etc.). A
good example of employing track robots is the elimination of consequences in
Fukushima where a nuclear power plant has been damaged. As reported in
the popular magazine [31], many different vehicles are operating there.

Compared to the ordinary wheeled robots, crawling robots can operate in
even more diverse, difficult and unstructured terrains. However, the control
requirements are much more demanding due to a higher number of the degrees
of freedom (DOF). The hexapod walking robot, used in this work, has 18
control DOF in constrast to 2 control DOF of a common car-like robot.
Moreover, the robot’s body stability has to be preserved while moving the
legs, which is not a simple task, especially for bipods and tripods [6].

Predefined trajectories for each leg can be created to handle robots with
high number of DOF, i.e. create a motion gait [10]. Such a predefined gaits
are usually efficient only on flat terrains, because of the fixed lift height. Leg
is periodically lifted to the required height, moved forward, and in the end
it is laid back on the ground. However, when crawling rough terrains, the
leg can stuck at an obstacle or can stand at different height than the ground
terrain surface. Both cases can cause stability loss or incapability to move on.

Closing the control loop and considering the sensory input can solve the
drawbacks of the regular gaits and increase traversability through rough
terrains [27]. As shown in [27], the actuator information about a position
error in a leg joint can be used to detect leg contact with the surface. This
approach is minimalistic and requires no additional sensory equipment.

Also the actuator information can be utilized to perform terrain classifica-
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tion. The method presented in [4] is based on differences between expected
and real leg trajectories. Besides, Discrete Fourier Transform (DFT) is used
to analyse the frequency spectrum of the gait cycle. However, it considers a
regular periodic gait not suitable for rough terrains with obstacles.

Therefore, this approach is not directly applicable for the adaptive gait
developed in [27]. A modification of the feature extraction has been proposed
in [26]. The authors shown, that differences of the expected and real leg
trajectories are sufficient to correctly classify the crawled terrain. Thus, a
technically blind robot is able to provide information about crawled terrain
based solely on its proprioceptive sensing. At the same time, the ability of
crawling challenging terrains using adaptive motion gait is preserved.

Nonetheless, it is almost impossible for a blind robot to navigate through
the environment without any other sensory equipment. There is a vast number
of sensors available for supporting the robot navigation, e.g. sonars, laser
scanners, radars, etc. Most of them suffer from various disadvantages like
weight, size, costs or precision. In a case of active sensors, such as sonars,
interference may cause sensor failure or incorrect measurements.

During the last decades, vision based sensors became cheaper, small and
can provide a high resolution image of the robot surroundings. With compu-
tational power available today they are ideal tool for robotic tasks. These
sensors can be considered as a standard equipment, e.g. for object detection,
navigation or path detection. This work is concerned with path recognition.

However, there are several issues in visual path recognition. The first one
is road appearance. It is difficult to generally define the road since its colour,
shape, and width may vary. The other problem is a scene illumination that
may significantly change the result of road recognition, especially in outdoor
environment. Also when road border is similar to the road itself (e.g. brown
cobblestones and dirt), robot can be easily led off the road.

In this work, the robustness of the vision based road recognition is addressed.
The goal is to propose a control strategy that will combine visual information
and proprioceptive terrain classification. This combination shall remove
drawbacks of the visual navigation related to illumination issues and false
positive road detection, while keeping a desired behaviour.

The work is organized as follows. In Chapter [2] a brief overview of existing
methods for terrain classification are introduced. Then, the utilized adaptive
motion gait and terrain classification are described. Chapter |3| provides
an overview of visual road recognition techniques together with detailed
principles of the method used in this work. The proposed control strategy
design is presented in Chapter |4 and the experimental results are reported in
Chapter 5. The concluding remarks are in Chapter (6.



Chapter 2

Terrain Classification

Humans intuitively adjust their walking style according to the traversed
terrain in diverse environments. This property arises from the need of
maintaining stability, increasing the motion speed and energy efficiency. A
walk on slippery ice, grass and rocky hill can be considered as an example.
On the ice surface, humans make short slow steps and do not lift the feet too
much above the surface. On grass, humans can safely run making long leaps
with a medium lift height. And finally, while walking the rocky hill, the feet
have to be lifted high to avoid collisions with the rocks.

Using the same walking style for all terrains can mean either stability loss
(running on ice), unnecessarily slow motion (using the ice walking style on
grass) or redundant energy consumption [I8]. A similar behaviour can be
implemented for mobile robots to improve efficiency while traversing different
terrains. Therefore, it is necessary to develop on-line terrain classification
method to recognize traversed terrain and switch the control to the most
suitable motion strategy.

. 2.1 Related work

As the authors of [4] propose, the terrain classification can be described
as a process of assigning terrain patches to some of the predefined classes.
According to the way how terrain patches are acquired, terrain classification
can be divided into two categories based on

B exteroceptive sensing,
B proprioceptive sensing.

Eventually both approaches can be combined.

For exteroceptive sensing mostly the cameras or laser range finders are used.
The main advantage of these methods is the ability to predict the terrain
ahead of the robot. On the other hand, it does not provide any information
about the robot experience and its performance during the terrain traversing.
Proprioceptive sensing allows the robot to analyse the interaction with the
surface and thus, gives information about the performance, which can be
utilized to change the current motion style.

3
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In the rest of this section, selected existing approaches are briefly described.
In particular, Section [2.1.1| describes various methods of exteroceptive sensing
based classification. In Section 2.1.2, proprioceptive methods are discussed.
The goal of this related work overview is to show common elements in the
terrain classification and highlight few remarkable approaches.

B 2.1.1 Exteroceptive sensing based terrain classification

Although many exteroceptive sensors are available, mostly visual and range
sensors are used for terrain classification, especially laser scanners and cameras.
In the following text, data samples (images, laser scans) capturing more than
one terrain type are referred as multi-terrain samples, whereas samples with
one terrain type are referred as single-terrain samples.

In [40], two types of laser scanners are used. Both of them emit the
near-infrared spectrum able to reflect certain information about material
properties in addition to distance. These additional properties are returned
as an intensity I, of the point p. The authors propose to create a map from
particular laser scans in 3 different heights and under 2 lightning conditions.
The map contains terrain elevation and intensity values I, representing the
material properties. The method was evaluated on 12 different terrains, where
some of them were flat; thus, their elevation map was the same, or at least very
similar to each other. The map was then divided into a grid where particular
grid cells were joined to form terrain patches of 11 x 11 cells. Over each
terrain patch the feature extraction was performed to obtain a feature vector
for Support Vector Machine (SVM). Four different ways of feature extraction
are discussed" statistical, texton [I7], Fourier Transform, and elevation map.
The particular approaches of feature extraction are described in detail in
following paragraphs.

In the statistical approach, the mean, variance, standard deviation and
kurtosis for intensity values are computed in each patch. These values then
compose the feature vector x4 for statistical approach:

x5 = [u(I,),var (I,),0 (1), kurtosis (I,)] . (2.1)

The feature vector x. for the elevation map was computed in the same manner
as the vector x;. Only the intensity values I, were replaced by cell height
H,,. Therefore the elevation map feature vector is

Xe = [ (Hp) ,var (Hy) ,o (H,), kurtosis (H,)] . (2.2)

The texton approach relies on the texture of the surface [40]. Textons [17]
describe the relation between neighbouring pixels and thus the texture itself.
The map intensity values are considered as a grey-scale image. The texton
feature vector x; for the pixel p; ; is composed of the intensity differences in
3 x 3 neighbourhood

Xt = [Ipm? ([Pi—l,j—l - Ipm) ’ (Ipi—l,j - Ipi,j) T (Ipi+1,j+1 - Ipm)}('z 3
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The vectors x; of all cells are then clustered into 12 generic classes using
K-means algorithm. For each terrain patch the histogram of the generic
classes contained within the patch is then calculated and used as a feature
vector for SVM.

The last classification method presented in [40] is based on 2D Fast Fourier
Transform (FFT) of the intensity values. Three masks, vertical, horizontal,
and circular, were used in order to extract desired frequencies from the
patches. A feature vector is then made from the mean values computed from
the patch after performing FFT with and without the masks.

The results presented by the authors of [40] show that considering intensity
values instead of the elevation map significantly improves the classification
performance. With a combination of statistical and Fourier Transform ap-
proaches they reached the success rate 98.47%. Besides, the benefit of the
method is possibility to classify multi-terrain samples.

Another laser based classification was proposed in [21], where an infra-red
camera is used to capture reflected laser beam line. In this way, the height
profile and intensity values can by acquired from each sample. Both the height
profile and intensity values are considered as two separate input data and
their performance is compared according to lightning conditions. A terrain
profile illuminated by the laser is extracted from the greyscale image and its
FFT is performed in order to create a feature vector. In contrast to texton
description of the texture from [40], authors of [21I] propose a statistical
processing of the Grey-Level Co-occurrence Matrix (GLCM). In the GLCM,
the contrast, correlation, energy, and homogeneity are computed. The feature
vector for texture is then created as

x¢ = [contrast, correlation, energy, homogeneity] . (2.4)

Then, the authors consider a probabilistic neural network as a classifier
and terrain profile and texture were trained and tested separately [21I]. Both
approaches reach in most cases more than 90% success rate. However, as it
is shown in [21], texture classification can be influenced by light conditions.
The main drawback of the laser-camera combined approach is the possibility
to classify only single terrain samples.

Classification based solely on the images from colour camera has been
proposed in [2]. The feature extraction time versus class differentiability
is examined and then the most efficient solution is designed. The authors
propose to build a hierarchy of Bayesian classifiers and stop the classification
at the moment when the class can be distinguished from the other classes
with a particular confidence. Based on the error rate and computational time,
the authors of [2] select the average colour, colour histogram and textons as
a terrain features.

The hierarchy is build in a form of a decision tree, where at each level,

the Bayesian classifier with a different feature extraction procedure is used.
Classification is then considered as a problem of finding posterior probability
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of the class w; while having a measurement X

p(X|w;)p(w;)
I p(X wy)p(w;)’

where probability p(X|w;) can be determined from the training set and the
path in the hierarchy. If at any level classifier cannot certainly decide a proper
class, the decision tree is subdivided to separate the overlapping classes from
the others. The classes are passed to another classifier at the lower level of
the structure, where different and more demanding features are used. This
is repeated until the classification is successful (a high probability of the
classified terrain or the hierarchy bottom is reached).

A classification based on colour might be remarkably influenced by illu-
mination conditions of the environment. More robust classification can be
accomplished by using terrain landmarks as proposed in [I1], where for each
terrain a set of Speeded Up Robust Features (SURF) [3] are gathered to
generate a bag of visual words (BOVW). To create such a vocabulary a set
of single-terrain images is acquired and SURF descriptors are extracted. The
descriptors are clustered by the K-means algorithm and cluster centres are
added to the vocabulary.

Moreover, the authors of [I1] discuss the problem of single-terrain and
multi-terrain images. In the single-terrain case, only one terrain type for the
whole image is expected as an output. Therefore, each SURF descriptor d;
found in the image is assigned to a vocabulary word v; so that the Euclidean
distance is minimized

P (wil X) =

(2.5)

arg min ||v; — d;l|. (2.6)

The histogram of assigned words v; is then computed and treated as a feature
vector for the SVM classifier. However, if the image contains more terrains, the
aforementioned procedure is not applicable. Therefore, pixels on the regular
grid are selected from the image and a circular neighbourhood containing
specified number of features is established. The SVM classifier then predicts
the terrain in the bounded area and all pixels within are labelled. Note, pixels
can be involved in more than one area; thus, all labels for the pixels are stored
and at the end of the classification, a voting procedure is performed for each
pixel. The class with the highest number of votes is determined as the final
pixel class.

This terrain classification was afterwards utilized to switch the gait patterns
for the LittleDog robot. A planning algorithm was supposed to select one of
three predefined gaits:

B fast gait with low ground clearance,
B slow gait with high ground clearance,
® hybrid gait with medium clearance.

However, experimental results of [I1] are not promising since the authors
encountered problems with camera focusing during the online evaluation.

6
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A similar approach is presented in [44]. In addition to the SURF features,
also SIFT features are tested and the performance of both is compared.
Beside the terrain classification, the authors also address a selection the gait
according to the energy consumption of the hexapod walking robot. Each
learned terrain is examined by a neural network and the most effective gait
with the lowest energy consumption is selected. Employing this knowledge it
is shown how the robot changes gaits as it crawls different terrains.

B 2.1.2 Proprioceptive sensing based terrain classification

Contrary to the exteroceptive sensing, proprioceptive sensing provides infor-
mation about robot own experience with the environment. The majority of
the existing methods is based on measuring vibrations, force or torque. As
it can be concluded from the following state of the art, the vibrations are
utilized mainly for wheeled robots, whereas walking robots take advantage of
the force and torque. In this section, both approaches are discussed without
differentiating between legged and wheeled robots unless stated otherwise.

A feasibility of the vibration based terrain classification is presented in
[41]. Data from accelerometer were collected while the experimental platform
(wheeled cart) was moving on six different terrains. Raw data were then
processed and feature vector were generated by four different methods as
follows.

The first feature vector is composed from the power spectral density
(PSD) using Welch’s estimate. The second vector is composed by 128-points
produced by the FFT. The authors present their own feature vector which is
computationally less demanding than PSD and FFT and can be described in
the following way. Let v be the vector of raw data. Then, p is its mean value,
n is the number of sign changes in v and ¢ is the number of occurrences where
data pass the mean value. Autocorrelation r; for lag k = 1 is calculated.
The minimum mién and maximum max values are found and the norm of the
raw data ||v|| is computed. Combining all these values, the feature vector is
generated in the form

x¢ = [n,t, oy, 1, max, ||v]|, min, u] . (2.7)

The last type of feature vector is created by a simple concatenation of PSD
and the authors’ feature vector.

The SVM with RBF kernel was used for the classification. Performance of
all four feature types was compared with respect to the needed computational
time. It is shown that the best classification rate is achieved with the proposed
combined feature vector presented in Eq. 2.7

In [42], the authors extend their previous work based solely on vibration
classification [41] by visual classification. A description of the image is
provided by integral invariants, which are computed for each of the HSV
channels and the invariants are then treated as a feature vector. Feature
vectors of all three channels are merged together for classification with SVM.
The vibration classification slightly differs from the method presented in [41].

7
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Raw data from all three sensor axes are divided into time segments of 1 s
and features are extracted using 128-point FFT. This results in three vectors
with 64 features each being concatenated into one 192-element feature vector.

Both visual and vibration classification methods can be applied inde-
pendently. However, their success rate is lower. Therefore predictions are
combined and a stronger classifier is created as follows. At first, vibration
data have to be assigned to the correct visual data. Therefore a local coor-
dinate frame is created for the image. With the odometry information, the
robot is able to estimate its translation and assign the correct image to the
current vibrations. Prediction integration is accomplished by summing the
probabilities of each class from visual and vibration based classifications and
the class with the highest probability is selected as the final terrain class.

An estimation of the terrain solely based on vibrations may fail since
vibrations are highly dependent on the particular vehicle speed and weight.
This issue is addressed in [8], where the authors propose to interpolate several
basic datasets, instead of learning a large number of datasets gathered for
different speeds and loads. The tracked values for classification are frequency
response of acceleration, roll and pitch angular velocities. The feature vector
is constructed as

x = [[§(3w)], [wron (@)1, lwpiten (Gw)] - (2.8)

For learning the terrain, only few point clouds consisting particular feature
vectors with known speed and load are collected as follows. Let v be a set
of conditions for which the point cloud is valid, i.e. a combination of known
speed and weight, and -, is a set of conditions for a learned point cloud.
Each learned point cloud is represented by a matrix X,,. Then, it can be
decomposed by the Singular Value Decomposition (SVD) into

X, =U,%, VL (2.9)

and mean value Ty, can be computed from the cloud points. For two learned
point clouds with conditions v; and 11 a point cloud with a condition
satisfying v, < v < 4x+1 can be interpolated. The estimated mean value
%7 of the interpolated point cloud is found using the cubic Catmull-Rom
splines. The singular value matrix 3+ is estimated using a linear interpolation
between 3, and X, . Matrix logarithm and exponential are utilized to
interpolate the matrices U, and V. as

U, = rU,, (2.10)
Qu, = log (U%HUQ) : (2.11)

Another remarkable approach of dealing with a speed dependency is pre-
sented in [7]. However, it is applicable only for wheeled robots. The authors
suggest to model each wheel as a single input — single output (SISO) system.
At first, it is shown (using control theory), how the vibration output, i.e.
vibrations measured on the robot body, depends on the speed. Four wheel
models are then combined into one multiple input — multiple output (MIMO)

8
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system representing the robot. The transfer function is denoted G(s), output
Z(s) and the input X(s)

[Gi(s)  Gi(s) Gi(s)  Gils)
G(s) = |Ga(s)  Ga(s) —Ga(s) —Ga(s)]|, (2.12)
Gs(s) —Gs(s) —Gs(s)

y Xl(s)
Y (s)
2(s) = |wpen(s) |, X(s) = jﬁzgsi (2.13)
L Wroll(s) X4(S)
Z(s) = G(s)X(s), (2.14)

where the corresponding time-domain variable g(¢) is the vertical speed of the
robot body and wpitch (), wren(t) are pitch and roll angular velocities. X;(s)
represents terrain responses for particular wheel 7. The transfer functions
Gi(s) define the relations between the wheels and robot body in relation to
Y(t), wpiten(t), and wyoy(t). With independent system input for each wheel,
the multi-terrain classification can be performed as follows.

First, the system from Eq. 2.14 is inverted, since values of the vector Z(s)
are easily measurable on the robot body and it is much more complicated to
obtain values in X (s); so, the system equations are solved for X (s)

X(s) =G 1(s)Z(s). (2.15)

For such a system, multiple solutions exist. Thus, the solution is constrained
and simplified to estimate a virtual input for the left and right side of the

robot as .
X(s) = [ﬁ;g] . (2.16)

These virtual inputs are then processed by FFT and learned by probabilistic
neural network. Even though the result shows feasibility of the method, it
was tested only in simulation.

Vibration based classification is applicable for both wheeled and legged
robots. Beside, the vibrations, force, torque and motor current in the legs
are useful for terrain classification for legged robots. In [16], force and motor
current are measured. The classification is shown on the leg detached from
the body. Note, the leg is divided into coxa, femur, and tibia. In tibia, three
force sensitive resistors (FSR) are placed around the leg perimeter and the
current is measured in the active joint. The authors aim to predict terrain
shape and surface independently in the following way.

For the terrain shape classification, the leg oscillates with the amplitude
1° and frequency 0.5 Hz. The scratching motion is executed to capture the
terrain friction and thus, allow the surface type classification. In both cases,
the feature vector is generated from the vector containing data for a given
terrain (three FSR and one current measurements). The values of interest are
the standard deviation og, minimum and maximum values and the mean pug in
the time domain. Then, the FFT is computed and in frequency domain, the
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2. Terrain Classification

dominant frequencies larger than 5 Hz and standard deviation of the frequency
spectrum oy, are determined. The feature vector is finally composed as

x; = |05, min(s), max(s), us, FFT(s).0¢4] . (2.17)

The feature vectors are then trained by the AdaBoost algorithm with strategy
one-versus-all.

Instead of placing the sensors in the middle of the leg, 6-DOF force-torque
sensor is placed at the tip of the leg in [39]. The sensor provides three-axis
information about the applied force and torque. The author exploits data
from all 6 axes separately and one combination of force and torque in the
z-axis to classify the terrain. The feature vector x; is generated by the data
variance, skewness, kurtosis and fifth moment:

Xy = {02, skewness, kurtosis, fifth moment} . (2.18)

The authors of [39] present three different types of discriminant analysis
for the classification - linear (LDA), quadratic (QDA) and function with
Mahalanobis distances. The best reported performance is achieved by using
a combination of z-axis force and torque with QDA.

All of the aforementioned approaches need additional sensory equipment to
measure vibrations, forces etc. The minimalistic way of terrain classification
is proposed in [4] where intelligent servo drives were used. The servos
communicate via half-duplex serial line and can provide information about
its state, such as the current speed, motor load, current and goal positions
and more. The authors propose to exploit the differences between goal and
actual position read from the servos of two front legs. Raw data with the
sample rate around 20 Hz from the last three whole gait cycles are saved and
interpolated using cubic Hermite spline and resampled again with the rate
100 Hz. The gait cycle is divided into 16 subwindows. In each subwindow,
the minimum, maximum, mean, median, and standard deviation of the error
signal are calculated giving 480 features for all six servos of the front legs.

Beside the gait phase domain, frequency domain features are also gener-
ated in [4]. The required assumption for frequency domain features is the
periodicity of the gait cycle which is fulfilled for standard gait patterns. Then,
the FFT can be computed for position error data of the whole gait cycle. The
first 25 frequency bins are directly used as features, which gives 150 features
for 6 servos. Additional features are obtained in a form of centroid, standard
deviation, skewness and kurtosis of the spectrum. Moreover, the spectrum
energy is calculated, which is then utilized in constructing the feature vector.
The whole feature extraction results in the 660-dimensional feature vector.

Before training the classifier, all features are scaled to have mean of 0 and
standard deviation of 1 in order to suppress domination of the features with
large numeric ranges. The scaling factors are saved and used in the same way
during the classification itself. SVM is used as the classifier.

10



2.2. Utilized terrain classification with adaptive motion gait

B 2.2 Utilized terrain classification with adaptive
motion gait

Many methods of the terrain classification have been published in literature
and some of them are highlighted in the previous section. However, the
goal of this work is to propose the minimalistic approach and utilize only
servo drive feedback. Moreover, the hexapod walking robot is considered
to traverse rough terrains with obstacles. The standard gaits with constant
leg trajectories provide reliable locomotion only on flat terrains. A lower
traversability is usually caused by the fixed leg trajectory endpoints that
force the leg to be placed in every gait cycle to exactly the same position,
and therefore, the robot is not able to adapt to the current terrain. Since the
outdoor environment is uneven, gait adaptation is a crucial part of the gait
pattern generation.

Therefore, the adaptive motion gait presented in [27] accompanied by the
terrain classification method [26] are used in the proposed solution. In the
following parts of this section, the hexapod walking robot, adaptive gait, and
terrain classification used in this work are described.

B 2.2.1 Hexapod platform

The hardware platform is based on the commercial hexapod kit PhantomX
Hexapod Mark II marketed by Trossen Robotics [30]. The basic robot
structure is shown in Fig. 2.1a. The robot has six identical legs, each
composed of three servo drives dividing the leg into coxa, femur, and tibia
as shown in Fig|2.1bl Thus, the whole robot has 18 controllable DOF. The
legs are mounted to the body symmetrically with respect to the body axis
dividing it to the left and right side.

The joints are actuated by the Dynamixel AX-12A servo drives [29] depicted
in Fig. 2.2l These are intelligent servos with build-in 10-bit digital controller.
Their operating radius is 300° with the angular resolution approximately
0.29°. Unlike the common servos, where the only input signal is PWM, the
Dynamixel AX-12A servos communicate via a half-duplex serial line. Each
device has its unique ID and a simple protocol with a variable number of
data bytes is used. The packets are secured with a checksum to provide data
consistency and allow an error detection.

Due to the build-in intelligence, each servo provides several information
about its state and allows to set various parameters for its operation such
as speed, maximal torque, and goal position. Also safety flags like overheat,
overload, and more are implemented to prevent any damage to the servos.
Detailed description of the servos is available online at [29].

B 2.2.2 Adaptive gait

Adaptive gait for the hexapod with the Dynamixel AX-12A servos was
proposed in [25] and [27]. It was designed with two fundamental requirements.
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2. Terrain Classification

(a): Hexapod platform [30] (b): The hexapod leg [27]

Figure 2.1: Hexapod platform and leg schema. Leg consists of coxa, femur, and
tibia.

Figure 2.2: Dynamixel AX-12A servo [29)

The first one is to detect the leg contact with the surface without any
additional sensors except the data from servo itself. The second one is to
preserve the robot stability and uniformly distribute the load among all legs.
Although in [27] the gait is proposed in a pentapod variant, the current
version supports tripod gait allowing the robot to move much faster.

The task of the adaptive gait design can be divided into two subtasks —
surface contact detection and body levelling. When detecting the leg’s contact
with the surface, the most natural way is to measure the force applied to the
leg. This force results in the torque in the servos. However, the servos do not
provide information about the actual torque. In [27], the servo position error
is considered to be linearly dependent on the torque, and therefore, it may
be used as an estimate of the torque.
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Figure 2.3: Position error and leg elevation during one gait cycle [27]

During the gait cycle, the torque affects mainly the tibia and femur joint
actuators. Regarding the robot’s construction (Fig. 2.1a) the most of the
momentum is reflected by the femur joint and thus, it can be used as a
sufficient approximation of the torque applied to the leg. Taking into account
this consideration, the surface detection is a simple task of thresholding the
position error from the femur joint actuator.

An example of the position error trend with respect to the leg elevation is
shown in Fig. [2.3| As it can be seen after the leg hits the ground, the error
grows. If the leg motion is not stopped in such a case, it may happen that the
leg will be overloaded or the robot can lose the support of other legs. Thus,
the threshold e;peshoig has to be set properly to stop the leg motion.

The value of espresnolg depends on the robot weight and the easiest way
to estimate the proper epreshola is to stand the robot on the ground so that
all the legs support the robot equally. Then, each femur joint servo has a
position error e; implying the approximation equation

1
€threshold ~ 6 Z €;. (2'19)
i

After the leg detects the ground and new foothold position is established,
the body is moved and levelled. The body levelling is intentionally separated
from the leg motion. Firstly, the body has to rotate to reflect the leg position.
For this purpose, a plane, which minimizes the square distance from each leg
endpoint, is found. The equation of the plane is

z=ax+by+ec, (2.20)

where the parameters a, b and ¢ can be computed using the linear regression
from the feet positions [27].
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2. Terrain Classification

The coordinate system of the robot is placed in the center of the body.
It forms a right-handed system, where the z-axis points upwards and is
perpendicular to the body, the z-axis points forward, and the y-axis points
to the left. When levelling the body, it is rotated in a way that the x —y
plane is parallel to the one found in Eq. |2.20L

The second step of body motion is translation. A new body center is
considered only in =z and y coordinates, since the body height h in the
direction of the z-axis is predefined constant and x — y plane is parallel to
the found plane. The body position is calculated as an average position
of the legs. The whole body transformation to the new coordinate system
is composed of a rotation _r)epresented by the matrix R and a translation
represented by the vector ¢ and can be written as

'y INRE:

/

vp| _ | R RE1IUB| (2.21)
Zp ZB

1 0 0 0 1 1

In fact, if the robot shall move forward, the body has to follow the legs,
and therefore, the legs, after they are place to the new foothold positions,
have to move backwards with respect to the body. Transformed leg positions
can be expressed as

) INRE
/ T .
wl_| R AR (2.22)
ZZ Zq
1 0O 0 0 1 1

In order to create the rotation matrix R, the orthogonal ba_s)e is created
from the plane parameters estimated by Eq. |2.20. The vector b , is deﬁrﬁd
directly from the plane, since it has to preserve the forward _n>10tion. Also b,
perpendicular to the plane can be created directly. Finally b, is constructed

%
to be linearly independent and orthogonal to b, and b ,. All three vectors
have the form

N 1 - —ab N —a
b.= (0|, by=|a®+1|, b,=]|-b]. (2.23)
a b 1

The rotation matrix is then constructed from the basis vectors and normalized:

_>
1 —ab  —al |l bzl _0> 0
R=[0 a®+1 —b 0 | byl 9 : (2.24)
a b1 0 0 b

Rewriting Eq. 2.22 with knowledge of Eq. [2.24] the transformed leg position
can be expressed as
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2.2. Utilized terrain classification with adaptive motion gait

Figure 2.4: Body levelling [25]
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From Eq.|2.25/for all the legs, the final body translation 7 can be computed.
The = and y components of the translation follow the idea of computing the
new body position as a center of the foot positions. However, the z-axis
has to compensate the change of the heigh above the ground to reach the
predefined height h:

=
ty ’
; 617
z C

6l bzl

The simplified model of the body levelling is shown in Fig. 2.4. The grey
robot outline depicts the robot in the default position. Then, the right leg
(orange) is lifted and a new foothold is found on a terrain obstacle. When all
the lifted legs are laid, the plane is estimated by the linear regression (bottom
light blue dashed line) and shifted to the height A (the top light blue dashed
line). From the plane parameters, the rotation matrix is computed and finally,
the translation is determined. Note that the rotation is performed prior the
translation. The new robot coordinate system is denoted as (O%,2', v/, 2").

Fig. 2.5 shows the whole gait cycle with the separated ground detection
and body levelling. After a new cycle is started, legs to move are selected. In

15



2. Terrain Classification

STABLE STATE

Choose next legs
from given order

Move legs up

v

Move legs forward

o Transform all |
! leg positions |

= Compute Move legs
(R, t) from < down until

leg positions ground detected

7 Tuwonow Sor]

,,,,,,,,,,,,,,,,,,,,

Figure 2.5: Gait diagram [26]

a case of the tripod scheme, alternating triples of legs are selected at once.
Then, the legs are moved up and forward. Afterwards, the legs are laid down
until all of them reach the ground. From such a new foothold positions the
rotation and translation are computed. The legs positions are transformed
and body levelling is applied in order to move the body forward.

The adaptive gait [27] allows the robot to traverse various rough terrains
including stairs. The approach is minimalistic and does not need any addi-
tional sensors. The only bottleneck is the communication, because all the
servos are connected to the same serial line. Therefore, this configuration
allows to communicate only with one servo at the time. This drawback slows
the overall movement of the robot.

B 2.2.3 Terrain classification for adaptive gait

The principles of the terrain classification based on the servo drive feedback
only [4] have been discussed in Section 2.1.2. It is worth mentioning, that
the approach [4] relies on the periodicity of the gait to build features in the
frequency domain by the FFT. However, this is not directly applicable for
the adaptive gait, because the time when all the legs are laid is a priori
unknown. Therefore, the ideas of [4] were modified in [26] to allow the terrain
classification. The terrain classification method [26] works as follows.

The position error in all servo drives of the two front legs are measured with
a sample rate approximately 20 Hz. Then, the gathered data are interpolated
and resampled at the frequency of 100 Hz and windowed according to the
following gait phases. The leg motion in the adaptive tripod gait is divided
into 4 phases:

® body levelling,
B leg lifting,

® moving the leg forward,
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Figure 2.6: Servo position error (the left chart) of the servo drive for three
different terrains and its statistical values (the right chart) in the particular
subwindows of the whole tripod gait cycle. The subwindows are denoted as
follows: BL - body levelling, UP - leg lifting, F - moving the legs forward, D -
laying the legs down. The first triple of the legs is moving during the phases
denoted without the prime superscript, whereas the second triple of the legs is
moving during the phases denoted with the prime superscript

B laying the leg down.

These phases are repeated for both triples of the legs and thus, 8 phases are
considered in total for the whole gait cycle. For each phase, the basic statistics
of the servo position error are computed, i.e. the minimum, maximum, mean,
median, and standard deviation. This gives 5 features (the statistical values)
in the 8 subwindows for each of the 3 servo drives of the front legs resulting
in 240-dimensional feature vector per one complete gait cycle. An example of
the resampled position error data in one servo drive and statistical values in
the particular gait phases are shown in Fig. [2.6. The feature vectors are then
trained by the SVM, which performs the classification.

The authors of [26] report a high success rate of the terrain classification
of the various terrains. That is why this approach has been considered in this
work for the terrain classification.
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Chapter 3

Visual Road Following

One of the most desired feature for mobile robots is autonomy. It is necessary
to obtain a complex view of the robot surrounding to achieve a high level
of robot autonomy. Many sensors is available and the most suitable sensor
seems to be a digital camera. It is affordable, small, and easy to use. Various
features and regions can be extracted from a camera image. In the context
of this thesis, the main task for image processing is a robust road detection.
However, due to a wide range of road surfaces and shapes, it is difficult to
define a road generally. Therefore, it is a very complex task to develop road
detection method for all types of road. Moreover, environmental conditions
(like light, season changes, etc.) in which the autonomous systems operate
make the task even harder. Many approaches for vision based road following
have been proposed in literature. Each of them relies on different road features.
In the following section, selected techniques are highlighted and summary of
the theoretical foundations of the approaches employed in the work of this
thesis is provided in Section |3.2

. 3.1 Related work

A survey of vision based road detection is presented in [23]. The authors
divide the techniques into three main categories:

1. activity driven;
2. feature driven;

3. model driven.

Activity driven approaches are aimed mainly for the lane detection in traffic
with a static camera. Even though these methods are not well suitable for
mobile robots, two examples are briefly discussed to provide complex overview
of the existing road detection methods. Feature driven methods rely on a
feature extraction from a particular image. The features are classified and
assigned to one of the learnt surfaces. Finally, the model based methods try
to assign some defined road model to the image.

A simple activity driven lane detection is proposed in [37]. Motion of
the vehicles is detected from the difference of two consecutive frames. The
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3. Visual Road Following

difference image is then filtered to remove light conditions effect and suppress
the false positive detection. The filtered image is then accumulated in the
activity map. Also a decay process for the activity map is proposed in order
to ensure adaptability.

More robust approach of lane detection is presented in [22]. Firstly, a
background model is created from the static parts of the camera image.
Moving objects are recognized by subtraction of the background model from a
new image. The object (vehicles) are then tracked with Kalman filer allowing
to keep all positions of the object. Finally, the positions are clustered by
K-means or RANSAC algorithms to estimate the centres of lanes.

According to the division of road detection methods from [23] texture and
colour based methods can be considered as a feature based detection. In [45],
the authors propose to differentiate textures according to statistical values.
For each pixel a covariance matrix of the window 5 x 5 pixels is computed.
The texture anisotropy strength is calculated from the covariance matrix and
used together with the pixel position as a three dimensional feature vector.

Following feature segmentation is divided into two phases. First, un-
supervised segmentation with Mahalanobis distance is used to obtain the
probabilities of particular textures. After the statistical model is created, a
Bayessian classifier compares each pixel with the model and assigns it to a
road or non-road regions.

Another way of texture based road segmentation is presented in [5], where
a texture descriptor is composed of the actual pixel colour and intensity of the
surrounding pixels. 16 texton classes are found by K-means clustering. All
the feature vectors in the image are represented by these classes in a way that
the Euclidean distance of the classes from the feature vectors is minimized.

After the classes are established, their histograms are computed in 32 x 32
windows. The histograms are then again clustered by K-means in order
to find representative histogram profiles. The texture from a new image is
classified by the histogram comparison with the histogram profiles using the
Euclidean distance.

Described texture classification is combined with stereo-vision to detect the
road in [5]. The image is segmented according to the texture and stereo-vision
marks the segment as a road based on their flatness and width.

Beside a texture, a colour segmentation can be considered as a feature
based road recognition method. A robust approach of the colour segmentation
is proposed in [9]. At first, the horizon is found in the image considering one
assumption - horizon appears approximately as a straight line. The Sobel
operator is applied and resulting grey-scale image is thresholded by Otsu
method. This gives a binary image which is eroded to filter out noise. Then,
the image is divided into ten horizontal sub-images in two phases: the first
phase divides the image from the border and the second phase starts division
with offset equal to the half of the sub-image height. The number of pixels
marked as a horizon is counted in each sub-image and the sub-image with the
highest amount is chosen as a horizon. The whole image is ten cropped and
only the part under the horizon is further processed for the road detection.
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After the image is cropped, segmentation is performed. Two methods
are proposed - graph-based and quick shift segmentations. A quick shift
is based on the mean shift filter and is explained in [38]. The graph-based
segmentation creates a fully connected undirected graph with pixels as nodes.
Each edge is evaluated by a weight computed from colour difference, intensity,
and position of the connected pixels. The weight represents the dissimilarity
of the pixels. The high weight indicates pixels belonging to different segments,
whereas the low weight indicates pixels from the same segment. The image is
segmented according to these weights. Each segment is further represented
in the RGB space by a Gaussian with the given mean and covariance matrix.
The RGB mean and covariance are then converted to the HSV space.

The road is marked with a rectangular region of interest (ROI) at the
bottom of the image. Within the ROI, similar segments are merged together.
When merging two segments, their Gaussians are also merged. Thus, the road
area is described by a mixture of Gaussians. The similarity is established
from Mahalanobis distance for two Gaussian distributions. Once no other
segments can be merged, other segments out of ROI are classified as road or
non-road comparing them to the mixture of Gaussians from ROL.

However, ROI can also contain outliers that do not belong to the road.
Therefore, only segments with area larger than some specified threshold are
considered as the road. The results presented in [9] show that the method is
very robust and work in various environments and can handle even slightly
unstructured roads.

For a well structured roads a shape model can be defined and Hough
transformation can be used to find defined shapes in the image. This approach
is utilized in [43]. The authors assume that the road boundary can be
parametrized as a parabolic curve. Canny edge detection is applied to find
edges in the image. Multiresolution Hough transformation then searches the
parabolic model in the binary edge image. Described approach works well for
the roads with clear boundaries or drawn lanes.

On the other hand, mobile robots often have to operate in unstructured
environments where most of the described methods fail. The road can be
outlined only by a tracks, for example. The method that can deal with such
cases is vanishing point detection. The authors of [24] utilize two dimensional
Gabor filter to find the dominant orientation at each pixel. The image is
convolved with a bank of predefined filters with various orientations.

The Gabor energy is computed for all filtered images. For each pixel,
the orientation with the highest energy is found and marked as a dominant
orientation. However, sufficiently precise results can be achieved only by
convolving a large number of filters. This time demanding process is overcome
in [24] where only four filters with basic angles are used. The final dominant
orientation is calculated as a linear combination of the two orientations with
the highest energy. Coefficients of the linear combination are determined by
the energy. After that, the vanishing point is selected by voting. Each pixel
has a weighted vote for every pixel above itself in the dominant direction.
The weight is calculated from the orientation and pixel distance. The pixel
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with the most votes is chosen as the resulting vanishing point.

B 3.2 Utilized vision road following methods

Challenging part of the image processing for road recognition are shadows.
Due to shadows, additional edges can be observed in the image and also
colours of the same surface may differ in different parts of the image. This
is the reason, why some of the road following algorithms may fail under
presence of shadows. Since in this work, the robot is expected to crawl in
outdoor environments, a shadow removal method has been considered as the
crucial part of the proposed solution, and therefore, it has been implemented
and evaluated. The employed approach is described in this section. Also for
a clear description of the approach, theoretical background of the shadow
removal is introduced first.

One of the most utilized method for shadow removal is presented in [12].
The approach assumes that the camera sensor has indefinitely narrow band and
the bands do not overlap. Moreover, all surfaces are considered Lambertian
and the illumination is provided by a black body. None of these assumptions
are completely satisfied, but [12] shows feasibility of the proposed method.
The main idea of method is as follows.

Let R = (R,, Ry, Ry) be the colour intensity of a RGB pixel sensed by
a camera. The value of the colour, with the previous assumptions, can be
calculated as

Ri—o / EOSNQrN, k=7, g,b, (3.1)

where o is Lambertian shading, E()) is the illumination spectral power
distribution, S(A) is the surface reflectance, Qi () is the sensor sensitivity
function for each colour, and A is a wavelength. Considering indefinitely
narrow band camera, ;. becomes Dirac impulse and Eq. 3.1 can be simplified
to

Rk = UE()\k)S()\k)qk (32)

It is possible to approximate the light by the Wien’s approximation for the
Planck’s law with X
E(\T) ~ Ik A\ Pe T4, (3.3)

where k1 and ko are constants and 7T is a temperature characterizing the light
colour. I defines the overall illumination intensity. Substitution of Eq. 3.3
into Eq. |3.2 gives

k
Ry, = 0Tk A e ™% S(\)d. (3.4)

After reduction of the three dimensional RGB space to the two dimensional
log-chromaticity, intensity and shading information are removed:

R, _ k
Crg = Rl;g’ sk =kiAS(\e)aw,  er = _)\%’ (3.5)
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AN

log(G/B)

Figure 3.1: Log-chromaticity space. Three surface types are highlighted by
different colours. Vector e denote the illumination change. As the light changes,
surface colours are projected onto line. Vector s is the illumination invariant
vector.

rg — 1
(erg —cb) =s+ —e. (3.6)

s
pr.g = logc, 4 = log (T’g) + T T

Sb

The two vector s is independent of illuminant, while vector e is independent
of surface. A graphical representation of Eq. [3.6| in the log-chromaticity
space is shown in Fig. 3.1, With a known correct angle 6 same surface
colours are projected onto straight lines as the light varies. # depends on
a camera sensor and can be obtained from the sensor sensitivity. However,
sensitivity is usually unknown. Nevertheless, the angle 6 can be estimated
by the calibration method presented in [I3], which is described later in this
chapter.

Eq. 3.5/ and [3.6| a division by a blue channel is considered for a conversion
to the chromaticity space. The selection of the dividing channel may not be
clear. Therefore, in real implementation, the geometric mean is used (denoted

by the M subscript)
Ry = \3/ RngRb, SM = J/SrSgSh (3.7)

which changes Eq.3.6| to

€rgb — eM)
T .

Sr.g.b
Pr.gb = logcp gy = log ( 9, ) + ( (3.8)
SM

As the result, all three components of the chromaticity are obtained. Since the
goal is to transform the RGB space into the two dimensional log-chromaticity
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Figure 3.2: Projection of the surfaces in the log-chromaticity space into a grey-
scale image (adopted from [I3]). For the correct angle, peak appear in the pdf.
Incorrect angle spreads the pdf and increase the entropy.

space, a projection, which transforms the three dimensional chromaticities to
a plane, is then performed as
x = Up. (3.9)

From x a grey-scale invariant image is formed as
Z = x1cos6 + xosin . (3.10)

The idea of the € estimation proposed in [13] is following: a vector per-
pendicular to the vector e can be found and all the projected surfaces in the
log-chromaticity space can be projected onto this line in a direction of the
vector e. The perpendicular line represents a grey-scale invariant image. If
the angle is determined correctly, the probability density function (pdf) of
the image contains several peaks and thus, the entropy is low. Otherwise, the
pdf will be spread and the entropy will be higher. An illustration of the idea
is shown in Fig. 3.2

Thus, an invariant image can be computed for angles from the interval
(0°,180°) and the angle with the lowest Shannon entropy is selected as the
best value of 6.

Reliability of the estimation approach is discussed in [1]. The authors show
cases of the self-calibration instability and propose a new calibration method.
First, the Chebyshev’s theorem is used to remove outliers from the image.
Secondly, the entropy from several images is analysed and 6 is estimated
from a set of samples. However, for the purpose of this work, the calibration
method [I3] showed to be sufficient, and it is utilized in the proposed road
following with the hexapod crawling robot.

The road detection method utilized in this work is based on the approach
[19]. A greyscale invariant image Z is computed following Eq. 3.7 to 3.10L
The image 7 is then filtered and thresholded. The thresholded binary image
contains separated road and surrounding pixels. Details about the emplyed
filtering and thresholding together with the particular implementation are
described in Section 4.3.2.
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Chapter 4
Proposed Road Following Strategy

. 4.1 Problem definition

When visual road following is used to keep the robot on the road, few
drawbacks have to be considered in order to make the control robust and
do not allow the robot to leave the road. In the outdoor environments, any
image processing method has to deal with changing light conditions. The
influence of the scene illumination may have crucial impacts on the quality of
the processed output. The key issue in the road detection is how to define
a road. There are several approaches in literature and couple of the most
representative are discussed in Chapter |3l

The problem addressed in this work is considered in the context of a hexapod
walking robot crawling structured roads with different terrain structure than
the surroundings areas, e.g. an asphalt road with a grass or dirt around.
For a road defined in this manner, colour or border detection is in most
cases sufficient. Advantage of such road detection methods is that they are
computationally efficient and can be deployed on the on-board, low powerfull
computational resources of the hexapod walking robot. However, a simple
road detection is usually unable to adapt to new conditions and can be
easily affected by environmental changes. For example when a colour of the
surrounding terrain is similar to the road colour or overexposure of a camera
sensor occurs, it can lead to the false positive detection. The robot is then
led off the road. Because the goal of this work is to keep the robot on the
road, a false positive detection is considered to be much more costly than
false negative.

Therefore, the proprioceptive sensing is employed to eliminate false positive
detections of the vision-based road following method. The idea is to use servo
drive feedback to determine the currently crawled terrain. A desired behaviour
of the control strategy is shown in Fig. 4.1. Based on this motivation, one of
the main problems addressed in this thesis is to propose control strategy, that
will steer the robot in a way of the red dashed trajectory shown in Fig. 4.1}
To achieve it, a history of the crawled terrains have to be stored. However, it
is not expected the robot will stay entirely on the road all the time, since it
needs to perceive sensor information of crawling off the road.

The proposed solution shall combine complementary visual based and
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4. Proposed Road Following Strategy

Figure 4.1: Behaviour of the robot on the road with and without considering
the terrain history. The blue dash-dotted trajectory depicts steering where only
the current terrain is used to control the robot. The red dashed trajectory shows
desired motion where the robot is able to estimate the real road direction based
on the history of the terrain types.

tactile based road following methods in a way that increases the overall
system robustness and keeps the robot on the road even in cases of false
positive visual detections and in conditions where the visual detection is
unreliable, i.e. overexposure or darkness. The terrain classification steering
uses no additional sensors; thus, the robot is practically blind and can react to
current or past events only. Since the visual road following is able to foresee
the road ahead the robot and produce smooth control, it shall be prioritized
over the terrain classification. The task can be divided into three phases:

B tactile road following,
® visual road following,
® fusion of the produced control actions.

The proposed tactile road following is described in Section [4.2, the adopted
visual methods are discussed in Section |4.3|and the proposed fusion of control
actions from the tactile and visual controllers is designed in Section |4.4.

B 22 Tactile road following

B 4.2.1 General considerations

The construction of the robot platform, as discussed in Section [2.2.1), divides
the body into left and right sides. A road following method based on the
terrain classification requires the ability to recognize different terrains on both
sides of the robot. Prior the road following approach presented below, we
firstly consider a separate classification for left and right sides in which one
SVM model has been created for each side. However, our early experimental
results have not been promising even on easily distinguishable terrains.
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4.2. Tactile road following

After further investigation it was revealed that during walking, one side of
the legs significantly affects servo trajectories on the other one. The influence
then causes failure of the terrain classification. Thus, more general framework
has been defined, in which four basic types of the terrain can be distinguished
with respect to the robot:

1. On road - terrains of the defined road, the robot has all legs on the
desired road surface.

2. Off road - all other terrains than on road, the robot has all legs off the
road surface.

3. Left off road - the left border of the road, left legs are off the road.
4. Right off road - the right border of the road, right legs are off the road.

The introduced terrain types define a set of generic terrain classes 7¢ (for
brevity, the names are shortened):

Tc = {On, Off, Offiese, Offright}. (4.1)

Notice, multiple terrains can be represented by a single class from 7g, e.g.
grass and dirt can both represent 0ff class.

Because separate prediction for both sides failed, a single classification
model has been created in a way described in [26]. Terrain surfaces (grass,
asphalt, dirt, etc.) and their borders were trained to follow the idea of 7¢ set.
A disadvantage of this approach is in increased complexity of the training
phase, which requires training of the borders between the On and Off classes
(the borders assigned to 0ffieer and 0ffyigne, respectively).

It is worth noticing that for training the classifier data from a straight
walk are currently used. Rotation speed changes the trajectories of the servo
drives, which are used directly as a features for the SVM. This fact is further
taken into account during the design of a control law. Here, we would also
like to highlight that the proposed approach has been accepted as the ICRA
2016 conference paper [35].

B 4.2.2 Road following control strategy

As depicted in Fig. [4.1, the challenge of the tactile road detection without any
other sensory equipment is to estimate the road direction. A simple reactive
controller, which steers the robot using the single last measurement, may
exhibit oscillations (blue dash-dotted line in Fig. 4.1)), since it only pushes
the robot away from the off road. The goal is to design a controller that
will achieve a trajectory shown by the red dashed line in Fig. [4.1. Such a
controller design problem can be described as follows.

The robot is considered to walk forward with a constant velocity. Therefore,
the problem of controller design is to compute the angular velocity steering the
robot away from the off road. Note that for the tactile terrain classification,
a robot has to crawl the terrain for some time to collect new data. Due to
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4. Proposed Road Following Strategy

this constrain, it is not expected the robot will stay entirely on the road, but
it is rather assumed the robot can partially leave the road. The controller’s
task is then to return the robot back on the road and approximately follow
the road direction. For this purpose a history of the last N crawled terrains
samples T; is utilized, where

T; €Te (4.2)

holds. Each sample contributes to the final angular velocity 6, but the older
the sample is, the weaker its contribution should be. Moreover, for each
sample, all preceding history has to be taken into account, i.e. the same
terrain types from 7¢ for a different 7; may have various contribution if the
previous samples are different. Thus, the control low is proposed as

) N oq
0=k, Z %siwi, (4.3)
=1

where 6 is the angular velocity directly applicable to the gait controller, k,
stands for a proportional control gain, n is an ageing factor, and s; is a sign
of the steering weight w;. The terrain sample T} is the most recent and T
is the oldest one.

The ageing factor i decreases the influence of the particular sample to the
final control action as ¢ is increasing. The weight w; and its sign s; reflect
the history according to the actual and previously detected terrains T;. At
the end of each gait cycle, the terrain is classified from data gathered in the
last 3 gait cycles. A new terrain sample T; € 7¢ is predicted and added at
the beginning of the terrain history queue. For a new T;, a weight w; is set
from one of three possible values:

Wopp i T; is Off,
wi(T;) = ¢ Wy if T; is Off1ery Or Offrigne, (4.4)
Won (1) if T; is On.

Wo s and W, are predefined constant values standing for the off road and
border weights. When the robot hits the terrain border, usually a slight
correction by the weight W} is enough to return the robot back to the road.
On the other hand, after going completely off the road, more aggressive action,
represented by Wy, is required. Thus, the values are considered to satisfy
inequality

0< Wy <Wyyy. (4.5)

The weight we,(i) is, however, a function of the previous terrains T;.
Therefore, once a robot is on the road for a few last gait cycles, it should keep
its straight heading. But if the robot was previously off the road, it should
keep the turning radius to return the robot to the expected road direction.
Similarly a slight change is required in the case the robot was crawling the
border. For these reasons, the weight function wyy, (i) is computed as
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4.2. Tactile road following

Wors i mors 2 Nogy,
won(i) =W, if ny > N and Noff < Noff, (46)

0 otherwise — keep the direction.

The number of samples T; in the history queue classified as 0ff is denoted
Noff, the number of 0ffieey or 0ffrigne is denoted ny,. The constant values
Norr and Ny determine the number of T; samples for which the history is
considered mostly off road or mostly as the border terrain, respectively.

The second variable to reflect the terrain history is a sign s; of the weight
w;. The sign has two possible values

si € {-1,1}. (4.7)

The positive sign denotes the counter-clockwise rotation, whereas the negative
sign stands for the clockwise rotation. The value of s; assigned to the weight
w; is determined from the actual terrain class T; and the previous terrain
T;—1 in following way:

-1 if T; = 0ff10s¢ — left side border,

1 if T; = 0ffrigne — right side border,

S; = . (4.8)
—s;—1 if T; = 0On and T;_1 # On,
Si—1 otherwise.

The first two conditions in Eq. 4.8 simply force the robot to crawl away
from the road boundaries. The third and fourth conditions capture the
transition from the off road or the road border to the on road and set the
sign opposite to the previous one. In combination with Eq. 4.6, the current
terrain class T; contributes conrary to the final action. This allows the robot
to compensate the whole manoeuvre and partially return to the original road
direction. After w; and its corresponding s; are established, the control action
is computed using Eq. 4.3.

B 4.2.3 Limits of the proposed control strategy

The proposed strategy and control law can handle most of the common
situations encountered during crawling the robot on the road. However, it is
necessary to mention the following important assumption — the control strategy
determines the direction (represented by s;) from the border terrain. Thus,
if the direct transition from On to 0ff occurs, there is no information about
the road direction and s; cannot be set correctly. Using tactile information
only, this situation is impossible to handle.

The SVM model is trained from straight walks data only. Since it uses
leg trajectories to create the feature vector, different trajectories can cause
a confusion in the classification. It follows that for classification only the
straight or slightly rotated steps can be used. With respect to the size of
the robot and size of the outdoor roads it is acceptable to alter one straight
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4. Proposed Road Following Strategy

step (without applied control action) with turning steps if the rotation is
too large. In a case the rotation does not exceed the defined threshold, the
terrain prediction is carried out for all steps. This approach allows to react
to the terrain other than on road as quickly as possible, because on the road,
the action is equal to zero.

B 2.3 Visual road following

In contrast to the tactile road following, which can recognize the terrain after
it is crawled, the vision based approach can recognize the scene ahead of the
robot. The goal is therefore to steer the robot to the region with detected
road. This allows a smooth motion through the environment.

A general task in the visual road following is to divide the image pixels
or pixel areas to two groups of road and non-road pixels. From the road
pixels, the forward and angular robot velocities are then computed. In this
work, two different methods for road pixel recognition are employed. The first
method is a simple approach based on the colour distance of the pixels from
the previously learned colours, that is presented in Section |4.3.1l Section |4.3.2
describes the second approach based on shadow removal and road search in
the intrinsic image. Both methods use the same algorithm to compute the
forward and angular speed, which is discussed in Section [4.3.3|

B 4.3.1 Colour based road recognition

The colour similarity can serve as a simple feature for differentiating the road
pixels from the rest of the image. This method has been mostly implemented
according to [20] and works as follows. After the image is captured by the
camera, the default RGB colours are converted to the HSV model. The HSV
model partially eliminates the influence of the various illumination of the
same colour. The pixels are then evaluated independently. For each pixel a
colour distance from know road colour is computed as

(Se — S)° L (Ve Vi)?
4 16 ’

AE* = ¢ (H, — H))* + (4.9)
where H, S, V are particular components of the pixel colour, the subscript e
denotes the current pixel and the subscript [ denotes the learnt pixel or pixels,
respectively. If the distance is lower than the predefined threshold, the pixel
is marked as a road pixel. However, it can be computationally demanding to
compute Eq. 4.9| for each pixel in the image. Moreover, it is required to learn
more than one reference pixel and thus, the computation would be repeated
for every learnt pixel.

Repeated calculation of Eq. 4.9 during the online road recognition has been
avoided by the following approach. Assuming 24-bit colour depth, the RGB
space can be represented by a three dimensional array with size 256 x 256 x 256.
This space can be reduced, since absolute accuracy is not necessary. Therefore,
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4.3. Visual road following

during the road recognition the whole RGB space is four times reduced to
array 64 x 64 x 64, where each cell substitutes neighbouring colour in the
neighbourhood 4 x 4 x 4. This smaller array is then used in the decision
process as a memory of the classification results indexed by the particular
colour of the examined pixel. Logical 1 is stored in the array cell in a case
the colour represented by the cell belongs to the road, logical 0 is stored
otherwise. This approach simplifies the online road recognition to checking
the values in the offline precomputed array.

When learning new colour, the distance from the learnt colour is computed
for each RGB value according to Eq. 4.9l Logical 1 is added to the array if
the evaluated colour has lower distance to the learnt pixel than the given
threshold. Cells are not reset to logical 0 since it is required to learn more
colours at once and storing logical 0 can overwrite results from previous
learning.

Road colour learning can be accomplished in two different ways: manually
and autonomously. In the manual mode, the camera image is displayed and
user can teach the colour by selecting the road pixel with a mouse click. The
system is also able to learn the colour autonomously and periodically refresh
the knowledge. In this case, it is assumed that the road is in the middle of
the lower part of the image. Thus, this area can be marked as a source of
the road pixels. Every N steps, where N should be selected according to the
robot forward velocity, the algorithm resets the evaluation array to zeros and
learns the colours from the pixel within the marked area.

The colour based road recognition is simple and with described array
checking it is also very computationally efficient algorithm. Nonetheless, it
is not robust to light changes and works only in environments, where the
road and surrounding terrain have sufficiently different colour. Therefore,
additional vision-based algorithm has been developed.

B 4.3.2 Intrinsic image based road recognition

The main disadvantage of the simple colour based approach from Section |4.3.1
is incapability do deal with varying light and shadows on the road. As
discussed in Section 3.2, assumptions for shadow removal were proposed
in [I2] together with a complete method of removing the shadows from
colour images. However, based on initial evaluation, the process [12] is too
computationally demanding to obtain a fully shadowless colour image in
real-time.

On the other hand, computation of the 2D log-chromaticity, as an in-
termediate step in the full shadow removal [12], is quite fast and can be
done in real-time using on-board computational resource of the utilized hexa-
pod walking robot. The authors of [19] suggest to search the road in the
2D log-chromaticity since it already does not contain shadows. With the
theoretical background described in Section |3.2 the implementation of the
2D log-chromaticity image is straightforward and the algorithm is listed in
Alg. [4.11
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4. Proposed Road Following Strategy

Algorithm 4.1: Computation of the 2D log-chromaticity image.

function computeLogChromaticity(Z, 6)
for x = 0 to Z.width do
for y = 0 to Z.height do
R, 4p = ZIx,y]l scale to (0,1)
Ry = YR, Ry Ry
Pr.gb = log (Rr,g,b/RM)
x=U:-p
Zi[x,y] = (cos® sind)-x
end for
end for

Z; = I; scale to (0,255)

return 7;
end function

The image is walked through pixel by pixel. Colours of each RGB channel
are normalized to the interval (0, 1) and saved in the variables R,, R,, and
Ry. The geometric mean R); of all normalized channels is calculated. The
log-chromaticity p, g5 is then obtained and projected into a plane with the
matrix U, which is an orthogonal matrix with the dimensions 2 x 3. After
the projection, p, g is represented in the plane by x. In [I3], the suggested
value of U is

1 1 0
U= [VP vz, ] : (4.10)
V6o V6 Ve

The greyscale intrinsic image Z; is finally formed from x as
Z; = x1co860 + xosinb. (4.11)

The angle 0 is a parameter of the camera, which can be determined from the
image entropy [13]. The estimation is implemented as an iterative process,
where an intrinsic image is calculated for all angles from 0° to 180° and the
lowest entropy is found with the corresponding angle 6. Alg. |4.2 shows how
0 estimation proceeds.

Algorithm 4.2: Estimation of the angle 6.

function estimateAngle(Z)
size = Z.width - Z.height
Iaw = 0.95 - 255
Lpin = 0.05 - 255
H,in = inf
0= -1

for 0; = 0 to 180 do
Z; = computeLogChromaticity(Z, 6;)
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4.3. Visual road following

Lin = Vi:1 € LN Inyin <1 < Ings
inliers = |Z;,|
outliers = size - inliers

mean (Z;,,)
std_dev(Z;,)

I
o

bin width = 3.49 - ¢ - inliers™!/3
H; = ShannonEntropy(Z;,, bin_width)

if H;, < H,,;,, then

Hmin = Hz
0 =0,
end if
end for
return 6

end function

The algorithm iterates through the integer values of the angle ; from 0° to
180°. In each iteration, an intrinsic image Z; is computed. 5% of the brightest
and darkest pixels from Z; are discarded and the numbers of inlier and outlier
pixels are determined. In Alg [4.2] the set of all inlier pixels is denoted Z;,.
From inliers only the mean p and standard deviation o are calculated.

After the outliers are removed from the image, a histogram of the image is
created and its bin width is established from the Scott’s rule that defines the
bin width h as

h=350n"'3 (4.12)

where o is the standard deviation of the processed data and n is the number
of samples. With the known bin width A the histogram and consequently a
sample probability p:(i) can be computed. The Shannon entropy H of the
image Z;, is then calculated as

H ==Y pi(i)logype(i), i€ Lip. (4.13)
t

During the road detection, an image passes several stages of the processing.
At first, the Gaussian blur is used to remove sharp edges and noise. After
the initial filtering, the intrinsic image Z; is computed and its histogram is
equalized. The image is then thresholded; so, the road is separated from the
surrounding. Then, the opening morphology is applied to filtered out the
noise in a form of the small granularity. Opening transformation is composed
of an erosion followed by a dilatation that removes small objects from the
image. At the end, the contours are found and redrawn to smooth the road
edges. The result of the whole processing is a binary image.

The whole image processing is summarized in Alg. 4.3l The parameter
7 denotes the input colour image, ogp is the standard deviation of the
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Gaussian blur, € stands for the best angle for the intrinsic image computation,
7 is a threshold for separation of the road and non-road pixels. Due to the
independent pixel-wise processing, the algorithm execution can be easily
parallelized. Results of particular algorithm phases are shown in Figl4.2l

Algorithm 4.3: Image processing from the source to the binary image.
function processImage(Z, ogp, 0, T)

7 = gaussianBlur(Z, ogp)

Z; = computeLogChromaticity(Z, 0)

Z; = equalizeHistogram(Z;)

Tvin, = threshold(Z;, 7)

Zpin, = morphologyOpen (Zy;,)

¢ = findContours (Zy;,)

drawContours (Zy;,, c)

return Ty,
end function

B 4.3.3 Road following algorithm

The output of the road recognition described in Section 4.3.1] and [4.3.2]is a
binary image in which road is represented by 1 and 0 denotes the surroundings.
A method based on [20] has been developed to find a path in the binary image
and compute the steering action. Additionally to [20], a road border search
and off road search have been implemented. These features are required for
the semi-autonomous learning procedure described in Section 4.4.4.

A Dbasic form of the algorithm (road search only) is listed in Alg. |4.4.
The input parameters are as follows: Z - binary image (product of the road
recognition), €4, - the maximal noise in the row, 0,4, - the maximal number
of consecutive image rows without a path, w,,;, - the minimal path width.
The image is considered to have the origin in the top left corner.

The image is processed from the bottom to the half in order to reduce the
required computation time. Each row is searched from the middle to the
sides - first to the right, then to the left. If a pixel is marked as a road, the
search continues. Otherwise, the column noise counter € is increased. If the
counter exceeds the threshold €,,4., the search on the current side is stopped
and the actual cursor position is saved as the road border position.

After the borders in the row are set, the path center and width are calculated.
The width has to be larger than the defined limit w,;,, otherwise the path
is considered too narrow to traverse. If it is not, the row noise counter § is
increased. Similarly to the noise in the row €, the threshold d,,4. is defined
for the consequent rows with the narrow or none path found. The processing
is terminated when the noise § exceeds the threshold 6,4z

The steering action, i.e. the angular velocity w and the forward velocity v,
are calculated from the path center in the last row and the path length (the
number of rows with the detected path), respectively.
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(b): Invariant image
S ——

(c): Equalized histogram

(e): Filtered and inverted image (f): Detected path

Figure 4.2: Example of road recognition using the invariant image. From input
image an invariant image is computed first. Then, its histogram
is equalized and the image is thresholded . Morphological opening
is applied to filter the binary image . At the end, the image is inverted;
so, logical 1 represents a road and its surroundings is denoted by logical 0. The
found path is shown in Fig.

Algorithm 4.4: Searching of the path in binary image.

function FindPath(Z, €mazs Omazs Wmin)
6 =0
path_length = 7Z.height / 2

for y = 7.height to Z.height / 2 do
e =0
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4. Proposed Road Following Strategy

end

= ¢, - path_center

< &
I

right_border = Z.width - 1
path_center = Z.width / 2

for x = path_center to Z.width do
if Z[x,y] == 0 then
e=€¢+1
if € > €4 then
right_border = X - €z

break
end if
else
€e=0
end if
end for
e=0

left border = Z.width - 1

for x = path_center to 0 do
if 7Z[x,y] == 0 then
e =€+ 1
if € > €4, then
left_border = x + €42
break
end if
else
e =0
end if
end for

path_width = right_border - left_border
if path_width < wp;, then
0=6+1
if 0 > 0,00 then
path_length = I.height / 2 - y

break
else

6 =0
end if

end if

path_center = (right_border + left_border)
for

// angular speed
Cy - path_length
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53
54 return w, v
55 end function

Alg. has been parametrized to allow additional off road and border
search as follows. The off road search can be achieved by modification of
the conditions on lines 77 and 26, which in Alg. check the presence of
the non-road pixels (logical 0). If the conditions are modified to check the
road pixel (logical 1), the off road search can be performed, since the noise
counter is increased in a case the road pixel is encountered. However, the
border search requires the change in direction of the row search. Fach row is
originally searched from the center to sides. Switching the search direction
from sides to the center results in the border search. Thus, the for-loop
conditions on lines 710 and 25 have to be adjusted depending on the side,
from which the border is searched.

The results of all search modes of the proposed road detection are depicted
in Fig. For the laboratory evaluation, the colour based road detection
has been utilized. The grey floor was marked as a road and highly contrast
materials (blue board and black cloth) have been used to bound the path.

(a): Onroad search (b): Offroad search

B W

A

(c): Left border search (d): Right border search

Figure 4.3: Example of searched path with all four possible criteria.

37



4. Proposed Road Following Strategy

. 4.4 Fusion of visual and tactile controllers

Fusion of the visual and tactile controllers should result in increased robustness
of the proposed road following system. The goal is to compute one final action
from the outputs of both controllers. Actions computed by each controller
are independent, and therefore, one possibility is to combine both actions
into a single command, however, the output of the controllers may differ
significantly and the resulting action may be incorrect.

Therefore, the propose solution is based on switch strategy to select the
most suitable control action based on evaluation of the image quality and
terrain classification reliability. It selects exactly one controller which has
a complete control over the robot’s motion. The controllers are switched
according to the defined criteria. The vision based technique is prioritized
because it provides a smooth crawling on the road for appropriate conditions.
There are two typical cases, where visual system shall be disabled and tactile
following shall take over the steering:

1. inappropriate light conditions,

2. other terrain that On is detected.

These two cases has been covered by two evaluation criteria proposed in
the following sections. In Section [4.4.1], the scene light conditions are checked
directly from the image. Then, the history of the crawled terrain is examined
and its reliability is analysed in Section [4.4.2]

B 4.4.1 Image quality criteria

The scene illumination can be evaluated using the image brightness and
contrast. The image brightness is computed as follows. The input image is
converted from the RGB to the HSV colour model. The average brightness
B is computed from the HSV model, namely from the V channel as

B 1 M N
B = WZZVM’ (4.14)
i=17=1
where M is the image height, NV is the image width, and V; ; is the value of
the V channel at the pixel position (3, j).
For the contrast evaluation, the RMS contrast is computed. To do so, the
input image has to be converted to greyscale. Then, average pixel intensity I
is computed from the particular intensities I; ; as

B 1 M N
I= ;;IJ (4.15)

With the known average intensity I, the RMS contrast Crasg can be calculated
as

N
Cryms = \J]\;]VZZ(I_Ii’j)Q' (4.16)

i=1j=1
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4.4. Fusion of visual and tactile controllers

(b): Acceptable scene

(c): Dark area

Figure 4.4: Experimental results of the image quality function from the labora-
tory environment. High contrast in Fig. caused the quality to drop to very
low value of 0.001. The quality is lower (0.22) as well if the image is too dark

(Fig.[4.4c). An acceptable image with the quality 0.71 is shown in Fig.

For both, the brightness and the contrast, separate Gaussians are created.
The mean values of brightness up and contrast uc, respectively, with cor-
responding variances 0% and 0’%: are determined experimentally from a set
of images. For various light conditions, the set is collected with a human
supervision. Visual road recognition algorithm is executed and the supervisor
evaluates the quality of the recognized road. If the road is recognized correctly,
the image is added into the set.

After the parameters are established, the Gaussians are scaled to the interval
(0,1). When the image quality is evaluated, the values of the brightness (¢p)
and contrast (gc) Gaussians are obtained. The resulting image quality ¢ is
computed as the multiplication of both values

¢=qB-qc, qe<(0,1). (4.17)

Experimental results of the proposed image quality criteria are shown in
Fig.

A threshold with a specified hysteresis is used to switch the active controller
from the visual to the tactile and back. The hysteresis reduces influence of
the image noise in situations, where the image quality is near to the specified
threshold value.
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B 4.4.2 Terrain classification criteria

The second switching criteria covers false positive detection, i.e. the scenario
where the visual system detects road on the different terrain than On. This
may happen, for example, if the road surrounding has similar colour to
the road. The robot then crawls off the road and the terrain classification
recognizes the road border or the off road. Then, it is a task for the tactile
road following method presented in Section [4.2] to lead the robot back on
road.

In the tactile road following, a history of the crawled terrains 7; is utilized.
For each terrain its contribution in a form of the weight w; and the sign s;
is determined according to the previously detected terrains. From all the
contributions, the variance o4 is calculated (E(x) denotes the mean value)

(wisi - F (wisi))Z . (4.18)

M=

s 1
oTC T N :
=1
Also the number of terrain changes ncy in the history, i.e. T; # T;_q, is
counted.

The values O'%C and nog are then used as a tactile road following reliability
indicator. For both indicators, threshold values are set and tactile following
is considered reliable only if both values are lower than the thresholds. nog
eliminates frequent altering between terrain types. The variance U%C filters
out misclassifications with a radical impact on the output action, e.g. 0ffiess
between 0ff igne terrains.

Besides, the action computed by the tactile road following is checked. If
it is large enough and conditions of the variance and the number of terrain
changes are fulfilled, tactile following can be activated.

B 4.4.3 Rules of the controller switching

The switching logic is depicted in Fig. |4.5. It can be represented by a simple
state machine with two states. The current state can be changed only if the
criteria presented in Section 4.4.1] and |4.4.2] pass the defined conditions. The
system starts in the visual road following mode. If at least one of the criteria
requests to disable visual following, steering is passed to the tactile following.
The control is handed back to the visual following in a case the image quality
is high enough and the robot crawls the On terrain.

B 4.4.4 System learning

A raw terrain data from servo drives has to be gathered first for all expected
terrain types of T¢ to train the SVM for terrain classification. Therefore,
a learning method has been designed to simplify the deployment in a new
environment. It offers two possible ways of learning - manual and semi-
autonomous. In the manual mode, the user controls the robot with a standard
USB joystick. In the semi-autonomous mode, the visual road following leads

40



4.4. Fusion of visual and tactile controllers

@ low quality
OR
@ off road detected

Tactile road
following

Visual road

Start following

(Dhigh quality
AND
@on road detected

Figure 4.5: Logic of the controller switching with necessary conditions of image
quality (1) and detected terrain (2) criteria

the robot using algorithms for the border and off road detection described in
Section 4.3.3l

The learning procedure is the same for both modes of the learning. It is
based on a simple state machine. The robot crawls the specified number
of steps on the given terrain while controlled by the selected mode. A user
is then asked if the data collection for the terrain should be repeated or it
can continue with a new terrain. When a new terrain is selected, the robot
has to be manually placed on the new terrain. Gathering can then continue.
After data for all terrains are collected, the SVM model is trained. The flow
diagram of the learning process is shown in Fig. |4.6|

—> tei?frftfrréz{tﬁ; Joystick (manual control)

% Steering
Walk N steps <+«—F— XOR

X f
Visual following

(semi-autonomous
control)

Repeat

Continue to
next terrain
or repeat?

Create
SVM model

Any terrain left to
learn?

+ No

Figure 4.6: Flow diagram of the system learning
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Chapter 5

Experimental Results

B 51 Experimental setup

The proposed method has been experimentally verified in a series of indoor
and outdoor experiments to provide representative and realistic validations
of the developed solution. Moreover, the method has been further evaluated
in the competition Robotem rovné 2016 held annually by [28§].

The experimental setup has been prepared in a way allowing offline or
laboratory evaluation of the proposed methods. First, the particular com-
ponents of the system have been tested separately. After the functionality
has been verified, outdoor experiments of the whole system with fully on-line
processing have been carried out. In Section |5.2| and results of the tactile
and visual road following are presented including drawbacks of each method.
Section then shows how these drawbacks are compensated when the
proposed combination is employed.

All the algorithms have been implemented in C/C++ in Robot Operating
System (ROS) [14], version Hydro. Implementation in ROS allows to split
the software into smaller functional units and simplify the parametrization
while launching the algorithms. On-board processing has been provided by
the ARM-based computer Odroid U3 [15] with 2GB of RAM and 1.7GHz
Quad-Core processor, which is shown in Fig.[5.1, Camera and communication
with servo drives were connected via USB.

Even though the system is able to run onboard, during the experiments
the robot has been controlled via USB cable from a laptop computer, to allow
simple data logging, synchronization, and system monitoring. The interaction
with the robot (start/stop, learning) has been provided by the standard PC
joystick.

B 5.2 Tactile road following

B 5.2.1 Laboratory experiments

The feasibility of the control strategy proposed in Section has been
verified on the terrains easy to recognize. Simple surface distinguishability
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5. Experimental Results

Figure 5.1: The on-board computer Odroid U3, adopted from [15]

reduces the impact of the misclassified samples to the decision process and
control action calculation. A high contrast in the surface softness proved to
be the good sign for a reliable terrain recognition. These conditions were
assured in the laboratory by the wooden board marked as On terrain and soft
pillows representing the 0ff terrain class. The considered setup is shown in
Fig.

Prior the evaluation itself, the parameters from Eq. and have
been also tuned in the laboratory setup. The used values of the parameters
of the control law have been set as follows

® History length N = 10,

Ageing factor n = 2,

Proportional control gain &, = 0.5,

Offroad weight W, ¢y = 1,

Border weight W, = 0.5,

Offroad count N,;s = 5,

Border count N, = 4.

B 5.2.2 Outdoor experiments

The outdoor experiments have been performed in urban park at Karlovo
néméstﬂ The asphalt paths are surrounded by a grass or a dirt. According
to T¢, the 0ff class has represented a grass and a dirt, whereas an asphalt
has been marked as the On class. Examples of the terrain borders considered
during the experiments are depicted in Fig. with their assignment of
surface to 7¢ classes.

LGPS coordinates of the park are 50.0767292N, 14.4202022E
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5.2. Tactile road following

Figure 5.2: Experimental setup for the laboratory evaluation. The wooden board
and soft pillows were chosen because of their easy distinguishability. During the
experiment, the surfaces have been assigned to 7¢ in the following way: wood -
On, wood-pillows - 0ff igne, pillows-wood - 0ffye¢t, pillows - Off.

The classification model fidelity has been validated first. For the training
data gathering, the robot has been controlled manually by the joystick. The
model has been then created offline. The accuracy has been evaluated by
two-fold the cross-validation, as in [26]. The results are summarized in
Tab.

The overall accuracy achieved during the validation is 96.2%. However,
almost 86% of the misclassified samples have been related to the dirt surface.
Regarding the feature vector described in Section where position errors
of the legs are assumed, the terrain classification is sensitive to deviations in
leg trajectories. Since the dirt or the borders between a dirt and an asphalt,
respectively, were flat as well as an asphalt, such a misclassification has been
expected. The other false predictions arise from the similarity of the different
road borders. Thus, they belong to the same 7¢ class and are acceptable for
the road following.

During the experiments, the robot has been supposed to deal with several
types of the borders. The most reliable borders to detect have been the
ones with the large difference in the surface. A significant transition from an
asphalt to a dirt can be seen in Fig. The stones rise the off road to a
higher level and the robot can easily sense the deviation in the leg position
error used in the classification feature vectors.

Another reliably predicted borders have been between an asphalt and a
grass (Fig. and . Grass is in contrast to asphalt soft and thus,
the situation is close to the conditions prepared artificially in the laboratory.
Moreover, there is usually a small difference in the elevation.

The last dirt surface proved to be the most difficult to classify. Basically
two types of the asphalt-dirt transitions have been included. The first one
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(a): Border stone (b): Flat border with grass

(c): Steep border with grass

(e): Blurred border of the dirt

Figure 5.3: Various terrain borders included in the outdoor experiments. Ac-
cording to the 7¢, surfaces were assigned as follows: asphalt - On, asphalt-grass -
Off,ignt, grass-asphalt - Offieeq, asphalt-dirt - 0ff igne, dirt-asphalt - 0ffie¢s,
grass and dirt - Off

had a strict border with a small elevation difference (Fig. [5.3d)), the second
one has been flat and blurred (Fig. 5.3¢)). Because of the lower accuracy on
the dirt terrains, it has taken the robot a longer time to return back to the
road.

As discussed in Section the algorithm needs information about the
side where border is detected. Therefore, the robot approached additionally to
the border under various angles to evaluate the limits of the control strategy.
Regarding the length of the step and the fact that the terrain is predicted
from the last three gait cycles, a direct transition from On to 0ff has been
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5.2. Tactile road following

Table 5.1: Two—fold cross-validation confusion matrix of the sample gait cycles.
The overall accuracy reached 96.2%. Class names are shortened in the table in
the following way: D - Dirt, A - Asphalt, G - Grass.

Class G D-A D A-D A G-A A-G
G 99 0 O 0 0 0 0
D-A 0 116 7 0 1 0
D 0 9 62 0 0 0
A-D 0 4 1 82 0 0 1
A 0 0 O 112 0 0
G-A 0 0 0 0 0 117 0
A-G 0 0 0 2 0 0 122

Figure 5.4: Result of the tactile road following in one of the outdoor trials.
Travelled trajectory is highlighted by the red line.

reported for angles larger than approximately 45°. For larger values, it is
impossible to return to the road in the desired way described in Section 4.2

Described trials have been documented in the video published in [36].
Tracked trajectory from one of the trials is highlighted by the red line in
Fig.[5.4. The robot has been set to approach the border on the left side. The
Off1e¢t class has been detected and the control strategy pushed the robot
back on the asphalt road. When On has been detected again, the maneuvre
has been compensated by the counter action and the robot aligned to the
road direction.
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(a): High constrast between road (b): Low colour distance causes
and grass ensures correct road false positive detection at the half
recognition of the image

Figure 5.5: The road is detected correctly only if the colour distance between
the road terrain and off road is high enough. Otherwise false positive detection
occurs.

B 5.3 Visual road following

Bl 5.3.1 Colour based road recognition

As discussed in Section the colour based recognition is simple, but
not robust enough for outdoor environments. It works well in cases, where
the road and surrounding terrain are contrastive and the road boundaries
are sharp. Such a case is shown in Fig. [5.5a. However, if the image quality
is lower or road and off road are similar, the surrounding terrain may be
mistaken for the the road. This is the worst case scenario, since it leads
the robot out of the road. An example of the false positive detection is in
Figl5.5b, where the road is reported through whole image width because of
the flowers on the grass in the half of the image.

Another weakness of the simple color-based vision road following approach
are shadows. In the RGB space, shadows may have absolutely different
colour from the surface directly illuminated by the sun. The HSV space
reduces partially this effect, but in most cases it is not sufficient. Therefore,
the shadows cause false negative detections, that lead to blurred (Fig.
or narrowed (Fig. path. There is a possibility, to teach system both
colours, in shadow and at the sun. Nonetheless, this may lead to overfitting
and in contrary to the initial issue, false positives are then reported. The
slight overfitting can be seen in Fig. [5.6¢. Therefore, intrinsic image has been
considered in such situations.

B 5.3.2 Intrinsic image based road recognition

The intrinsic image recognition in the form presented in Section [4.3.2] requires
thresholding of the equalized image. This seems as a fundamental disadvantage
of the method. It implies an assumption on a road and surrounding log-
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5.3. Visual road following

(a): Blurred path due to the tree (b): Consistent road within the
shadow shadow

(c): Overfitted road colour

Figure 5.6: Shadows in the colour based road recognition

chromaticity. Because the threshold is by default a constant, log-chromaticity
(mainly of the road) is supposed to vary only a little. Regarding this drawback,
approach presented in [1] is more suitable for environments with the wide
range of road surfaces, since it technically implements adaptive segmentation.
However, for the purposes of this work, the method from Section has
been found sufficient.

Before each experiment itself, the angle 6 has been estimated and the
threshold 7 set. For the rest of the experiment, these values remained the
same. During evaluation, three datasets have been used. The first one has
been dataset from [19]. Here, 6 has been varying in wide ranges, as the video
contains different environmental conditions. It was necessary to tune 6 before
entering the new area.

The other two datasets have been gathered by the smart-phone camera.
The range of the estimated # for the phone camera varied in the interval
(144°,169°). According to the estimation method, which relies only on the
image content, the range has been narrow contrary to [1] allowing good results
of the invariant image computation.

Figures to display the results of invariant image computation
followed by the road recognition. Majority of the shadows have been removed
successfully. However, with an inaccurate 6 produced by the self calibration,
strong shadows remain visible in some cases, e.g. see Fig[5.8bl Nevertheless,
due to the properly set threshold 7 shadows have been neglected in the
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thresholding phase.

Fig. and show straight road without crossroad. The recognized
path is also straight with the center marked by the green pixels. Fig. and
5.9 contain crossroad. Therefore, the path center is not continuous and in
the area of the crossroads, it deflects from the straight direction.

The invariant image implementation has been considered successful. Despite
the fact that 6 has to be tuned before the area with different conditions can
be traversed, there has not been a situation encountered where the algorithm
recognized the path incorrectly.

(d): Morphology, inversion (e): Recognized path

Figure 5.7: Invariant image road recognition 1 (6 = 152°)

Bl 5.3.3 Comparison of the colour based and intrinsic image
based road recognition

The performance of the both visual and tactile based road detection algorithms
have been compared on dataset with images of the size 640 x 480 pixels.
The evaluation has been performed on-board on the Odroid U3 computer
[15] presented in Section 5.1, The number of frames per second has been
measured to evaluate the computational requirements of the algorithms.

The results are summarized in Tab. and examples of the detected path
are shown in Fig. As it can be seen, the colour based approach is slightly
faster; however, the detected path in Fig. is blurred due to the shadow
and thus, the computed steering action may be incorrect. On the contrary,
the intrinsic image based approach detected the road correctly in Fig.
at the cost of about 5 FPS slower performance. Since the robot motion is
slow, the frame rate 15 FPS of the intrinsic image based method is sufficient
and therefore, it is used by default.
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5.3. Visual road following

(a): Input image (b): Invariant image (c): Thresholded image

(d): Morphology, inversion (e): Recognized path

Figure 5.8: Invariant image road recognition 2 (8 = 169°)

—-1
£ T T : T 1 T

(d): Morphology, inversion (e): Recognized path

Figure 5.9: Invariant image road recognition 3 (6 = 169°)

Table 5.2: FPS of the utilized vision based road following methods

Method FPS
Colour based 20
Intrinsic image based 15
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= " L Lo

(a): Input image

(d): Morphology, inversion (e): Recognized path

Figure 5.10: Invariant image road recognition 4 (8 = 144°)

. 5.4 Fusion of visual and tactile controllers

The switching strategies have been firstly evaluated in the laboratory. An
artificial road corridor has been created. The laboratory floor has been
considered as the On terrain, while the partially soft boards from Fig.
formed the road borders and the 0ff terrain. The first scenario simulated
the case where the image quality is high enough, but false positive detection
occurs. The tactile following has been expected to take over the steering and
lead the robot out back on the road. Using the algorithm from Section [4.3.3|
the robot has been intentionally led to the road border. After it entered the
0ff terrain and walked several steps, the tactile following has been activated.

The proposed control strategy successfully steered the robot from the
0ff terrain and when the first On terrain has been detected, it has been
switched back to the visual road following method. Trajectory travelled
during the experiment, predicted terrain and steering action are depicted
in Fig. After the robot left 0ff,igne terrain, two misclassified samples
occurred. However, the switching criteria filtered them out and the visual
following kept the control. The video of this experiment is available at [32].

After the prior laboratory evaluation, the main experiments have been
performed outdoors. As a testing environment, an urban park with asphalt
and stone roads surrounded by grass has been ChOSGHEl. From several trials,
two have been selected to be presented in the following paragraphs.

The first run is shown in Fig. [5.13], the video of the whole experiment is
available at [33]. The predicted terrain is highlighted in the robot’s trajectory

2Vysehrad park, 50.0657458N, 14.4174986E
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(a): Input image - colour based (b): Detected path - colour based
approach approach

(c): Input image - intrinsic image (d): Detected path - intrinsic im-
based approach age based approach

Figure 5.11: Comparison of the road detection results for colour based and
intrinsic image based methods.

in Fig. The control strategy currently used, the image quality, steering
action applied to the motion controller and predicted terrain are charted in
Fig.

The robot started on the left side of the road. At the beginning, it has
been controlled by the visual following approximately straight. Before it
gathered enough data to reliably predict the terrain, the On terrain has been
considered as an initial terrain class. At the time of roughly 40 s, the first
terrain prediction has been reported; however, it has been misclassified. But
since the following step, the predictions have been correctly reported as the
On terrain.

At the time 100 s, the camera has been covered by the black lid. Thus,
the image quality dropped to 0 and tactile following has been activated
immediately. Then, the robot has been turned towards the grass by hand to
provide a disturbance and lead the robot towards the border of the road. In
few steps, the road border has been encountered. The steering action has
been calculated so it leads the robot from 0ff;.s. Note the altering straight
and turning steps in steering action in Fig. in order to collect data for
the terrain classification. Because the applied action overflows the threshold,
altering is necessary to correctly predict terrains.

When the robot has been heading back to the road, the camera lid has
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been removed (approximately at the time 235 s). It can be seen in Fig. 5.13b
that visual following has been not activated at the moment the image quality
raised, but rather until the On terrain has been reported. The lower image
quality in the second visual control part has been caused by the dark bush in
front of the robot.

Before the experiment has been terminated, one misclassified terrain sample
occurred. Due to the terrain classification criteria proposed in Section 4.4.2|
it has been filtered and had no influence on the control.

The second trial followed the scenario of the first one. The tracked position
is in Fig.[5.14al the internal system information in Fig. [5.14b, and recorded
experiment is available at [34]. At the beginning, the visual control applied
large actions, therefore, again, altering between straight and turning steps
has been necessary.

The 0ffi.¢¢ terrain has been detected earlier before the robot actually
traversed it. It has been caused by the small declination at the road border,
which has been due to the terrain classification approach mistaken with the
real border. At the time 110 s, the On terrain has been predicted. Since the
image quality has been still low, tactile following kept the control. Finally at
the time 120 s, the visual following has been activated. However, the robot
has been not able to return completely to the road direction, because the bush
and the bench formed unfortunate shape of the road boundary. Since the
main camera is low, it is impossible for the robot to get the wide perspective
of the road and handle such cases. This issue can be solved by rising the
camera higher above the ground.
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(a): Tracked position. Blue markers denote On terrain, the green denote 0f frignt
and Off is red.
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(b): Predicted terrain, image quality, and applied steering action. The colour of
the background fill determines the current control strategy - visual (green) or
tactile (yellow).

Figure 5.12: Trajectory of the robot with highlighted predicted terrain classes
and decision process diagram, laboratory experiment
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(a): Tracked position. Blue markers denote On terrain, while the orange denote
Offieft
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(b): Predicted terrain, image quality, and applied steering action. The colour of
the background fill determines the current control strategy - visual (green) or
tactile (yellow).

Figure 5.13: Trajectory of the robot with the highlighted predicted terrain
classes and decision process diagram, run 1
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(a): Tracked position. Blue markers denote On terrain, while the orange denote
Offrese
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(b): Predicted terrain, image quality, and applied steering action. The colour of
the background fill determines the current control strategy - visual (green) or
tactile (yellow).

Figure 5.14: Trajectory of the robot with the highlighted predicted terrain
classes and decision process diagram, run 2
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Chapter 6

Conclusion

The mobile robots are desired to reach the highest level of autonomy possi-
ble. One of the most common tasks is the road following. In this work, a
robust road following method is proposed to address the problem of terrain
classification in road following. The approach is based on the visual road
recognition supported by the proprioceptive information. The main require-
ments on the solution are to keep the robot on the road even in the case
the visual following fails, e.g. due to light conditions or false positive road
detection. Both situations can cause the robot off the road. These drawbacks
are compensated by the terrain classification based on the tactile information
from the robot actuators.

The work is concerned with two fundamental problems: visual road fol-
lowing and tactile terrain classification. Both problems are solved separately
first. Then, they have been combined in the proposed switching strategy to
achieve the desired behaviour.

The terrain classification is discussed generally for various types of mobile
robots. Then, the specific solution for the hexapod platform is presented.
It exploits the proprioceptive information provided by the intelligent servo
drives. From the actual and the required position a feature vector is created
at several phases of the gait cycle. The vectors are then trained by the SVM
classifier.

Based on the terrain classification, the tactile road following has been
proposed. For this problem, the robot is considered technically blind. The
tactile strategy uses history of the classified terrain classes to compute the
steering action. However, the terrain can be classified after it is crawled.
Thus, the robot is allowed to crawl partially off the road to gather necessary
data to make a decision. Note that the tactile road following method has
been published at ICRA 2016 [35].

The second addressed problem is concerned with the visual road following.
Several approaches are discussed and two of them are chosen to be employed
in this work. The simple colour based method recognizes road pixels using
the colour distance of the current pixel and pixels in the set of learnt colours.
Such a set is defined by a human supervisor prior to the robot traversing.
However, this approach suffers from many drawbacks. Therefore, more robust
method has been considered. It is based on the intrinsic image computation.
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6. Conclusion

The input colour image is projected into the log-chromaticity space, where the
invariant image is computed. The invariant image does not contain shadows,
which are the main source of issues in the simple colour based recognition.
Then, using the thresholding, the path is found in the invariant image.

Finally, the tactile and visual controller are combined to create a robust
road following strategy. The robot is controlled by exactly one controller
at the time and the controllers are switched whenever it is necessary. Two
criteria are proposed for switching between the proposed vision and tactile
based methods of road following. The first criterion evaluates the image
quality in the sense of brightness and contrast. The second criterion measures
the reliability of the terrain classification.

The proposed approach has been experimentally evaluated in the laboratory
and outdoor environments. Both experiments support feasibility of the
proposed solution. The main considered contribution of the work is in the
novel fusion of the visual and tactile road following. Processing of both, visual
and tactile information, allows to compensate drawbacks of the particular
approaches and thus, increase the overall system robustness.
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Appendix A
Contents of attached CD

Attached CD contains electronic version of this work and all source codes
necessary to run presented approach. The codes are in form of ROS nodes,
thus to run them it is sufficient to copy them to arbitrary ROS workspace and
compile. Moreover, video datasets used for visual road recognition evaluation
are available. Also examples of the raw training data for terrain classification
and trained SVM model are included. To demonstrate method feasibility CD
contains videos recorded during the experiments.

Table A.1: Structure of the CD root

Folder, file Description

stejsma6_dp.pdf | Electronic version of the work

datasets Contains subdirectories with datasets for visual road
recognition and terrain classification

datasets/video | Video datasets for visual road recognition

datasets/tc Examples of training data and trained SVM model for
terrain classification from office and outdoor experi-
ments

video Demo videos from experiments

src Source codes of the ROS nodes
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