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Abstract

This thesis describes a solution to the subgraph isomorphism problem using
the color coding technique. The subgraph isomorphism problem, its variants,
and its applications are shown. The problem of constructing a nice tree de-
composition of optimal width for a given graph is addressed, as such structure
is required for the corresponding approach. As a main part of the thesis,
several modifications and optimizations of the original color coding algorithm
are proposed. Practical result of this work is a module implemented in C des-
ignated to solve large instances of the subgraph isomorphism problem along
with the enumeration of the results.

Keywords subgraph isomorphism problem, color coding, tree decomposi-
tion, treewidth

ix



Abstrakt

Tato práce popisuje řešeńı problému izomorfismu podgraf̊u pomoćı techniky
barevného kódováńı. V práci je popsán problém izomorfismu podgraf̊u, jeho
varianty a jeho aplikace. Dále je rozebrán problém tvorby hezkého stromového
rozkladu optimálńı š́ı̌rky pro zadaný graf, jelikož takováto struktura je pro
daný př́ıstup vyžadována. Jako hlavńı část práce je popsáno několik modi-
fikaćı a optimalizaćı p̊uvodńıho algoritmu založeného na barevném kódováńı.
Praktickým výsledkem práce je modul implementovaný v jazyce C, který je
navržen pro řešeńı velkých instanćı problému izomorfismu podgraf̊u včetně
výpisu nalezených výsledk̊u.

Kĺıčová slova problém izomorfismu podgraf̊u, barevné kódováńı, stromový
rozklad, stromová š́ı̌rka
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Introduction

Many real-world domains incorporate large and complex networks of inter-
connected units. Namely speaking, we can see such networks represented in
many examples – social networks, the Internet, or biological and chemical sys-
tems. Among with these networks arise interesting questions regarding their
structure. One of those questions may ask whether a given network contains
a particular pattern. By successfully answering this question, we can gain
a very needed piece of information about the network we conduct the search
in. Most notably, we can learn about the regularity of the given pattern in
the structure of the network.

To approach the situation we can naturally represent both networks and
patterns as graphs. The problem of locating a particular pattern in the given
network can then be restated as a problem of locating a subgraph isomorphic
to the given pattern graph in the network graph. Unfortunately, it is well
known that such a problem is NP-complete. If we combine this fact with the
possible sizes of the networks to be searched (possibly thousands of nodes),
it becomes clear, that to solve this problem, we must employ advanced tech-
niques. One of these techniques, which is described and used in this thesis, is
the color coding technique.

Goals of the thesis

The main goal of this thesis is to develop a module which is capable of solving
the subgraph isomorphism problem by using color coding technique for net-
works of large sizes. In practice it means that a suitable approach needs to be
surveyed and specifically augmented for our usage. For the best results, the
study has to be conducted from both theoretical and implementational points
of the view.

Final implementation of the module is to be benchmarked by qualitative
and performance-related measures and compared to results of other related
work.
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Introduction

Thesis structure

Chapter 1 consists of precise formulation and survey of the subgraph iso-
morphism problem and analysis of possible algorithmic approaches to solving
it in a non-trivial way. We also explain, why the approach using the color
coding technique has been chosen for this thesis. Chapter 2 describes tree
decomposition and treewidth, which are very important concepts for the used
algorithm. As the algorithm requires a computation of a tree decomposition
of the searched pattern, we also theoretically describe how is the computation
carried out in the implementation. Chapter 3 focuses on the analysis of the
main algorithm used to solve the subgraph isomorphism problem and on the
description of its undertaken modifications. Chapter 4 addresses the imple-
mentational view of the algorithm and describes the choice of libraries used to
implement the module. Chapter 5 consists of benchmarks of the final module,
discussion of the results, and of its comparison to the related work.

Appendices contain a list of used acronyms, a description of the contents
of the enclosed CD and details about the implemented module and its install
guide.
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Chapter 1

Subgraph isomorphism problem

In this chapter we describe the subgraph isomorphism problem and its appli-
cations in various fields. We also address possible variants of this problem and
survey known approaches to solving either of the variants. Finally, we show
a time bound for solving this problem that is based on the treewidth of the
searched pattern and describe why the algorithm based on the color coding
technique has been chosen for the implementation in this thesis.

In order to precisely formulate problem statement, we also introduce the
graph theory notation we use and some basic graph theory terms. It is useful
to do so, as the described notation and terms are also to be found throughout
the whole thesis.

1.1 Applications of subgraph isomorphism

Firstly, we present the applications of the subgraph isomorphism problem
without precisely formulating its problem statement. This serves several pur-
poses, as we want both to show how widely is this problem applicable to the
real world problems and also how we arrived to the actual form of the problem
statement, on which we base this thesis.

In layman’s terms, the subgraph isomorphism problem aims to detect
whether a given network pattern is present in some other network. Just from
this inexact description it is clear, that there are many areas for which a net-
work pattern detection is a relevant problem. This follows from the fact that
almost in every system there are agents who interact with each other. These
interactions naturally form a network containing information about the system
itself. Some of the domains for which the subgraph isomorphism is applicable
are:

• Biological systems – In biological systems there is a large number of
interactions on a molecular level, e.g., protein-protein interaction. To
properly understand such a system, it is mostly required to identify

3



1. Subgraph isomorphism problem

topological similarities, from which it is possible to understand the un-
derlying mechanisms. Detailed information about the applications of
the subgraph isomorphism problem in this domain can be found in [6].

• Social networks – Human interaction can be represented by social net-
works. Especially nowadays, there is a lot of information about human
interaction gained from the the internet. In these human interaction
networks, it is, as in the previous case, possible to obtain information
from the contained network patterns. Most notably, the ability to search
for patterns in social networks can be used in recommendation engines.

• Fraud detection – Any type of fraud, let it be e-mail fraud, bussiness
fraud, or possibly even a terrorist attack, admits particular types of
patterns on many levels. For example, fraud e-mails are likely to be
sent from hubs specialized for sending fraud e-mails. By elaborating
a network of computers, we might detect these hubs, as there are typical
patterns of computer networks specialized for sending such content.

In general, the applicability of the subgraph ismorphism follows from the
fact, that any network can be represented as a graph. This fact gives us
a powerful framework to operate with networks, as it is in the case of the
subgraph ismorphism problem.

From the described applications, we can see that real world graphs might
consist of a very large number of vertices. Because of that, to be able to solve
the subgraph isomorphism problem for a real-world application, we need to
devise a method, which is able to handle even very large input graphs.

We now describe variants of the subgraph isomorphism problem, together
with graph theory needed to precisely elaborate the problem.

1.2 Graph theory notation

Basic graph notation that we use in this thesis contains the following terms:

• V (G): Set of vertices of a graph G. Moreover, we denote |V (G)| by nG.

• E(G): Set of edges of a graph G. Moreover, we denote |E(G)| by mG.

• degG(x): Degree of a vertex x in a graph G.

• dG(x, y): Distance between vertices x and y in a graph G.

• excG(x): Eccentricity of a vertex x in a graph G.

• NG(x): Set of neighbors of a vertex x in a graph G.

• NG[x]: Set of neighbors of a vertex x in a graph G and x itself.

4



1.3. Subgraph isomorphism problem statement and its variations

• G[A]: Subgraph of graph G induced by A, where A ⊆ V (G).

All graphs considered in this thesis are undirected and do not contain self
loops or multiple edges. We also suppose that every such a graph consists of
a single connected component.

1.3 Subgraph isomorphism problem statement and
its variations

Before stating the problem, we need to properly define what a subgraph and
an induced subgraph is and describe differences between them.

1.3.1 Graph definitions related to subgraph isomorphism

Definition 1.1 Graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G).

Definition 1.2 Graph G′ is a subgraph of a graph G induced by A ⊆ V (G),
if G′ is a subgraph of G, V (G′) = A, and there is an edge e ∈ E(G′) between
a pair of vertices x, y ∈ V (G′) if and only if there is an edge f ∈ E(G) between
x and y.

We would like to emphasize the difference between induced and non-
induced subgraphs, because it is heavily noticable in the context of the sub-
graph isomorphism problem. A simple example of this difference is illustrated
in Figure 1.1. We shall discuss the difference more in detail in the further
sections.

1 2 3 4

Figure 1.1: Difference between induced and non-induced subgraph. Marked
graph (which is a path of length 3, shortly P3) is indeed a subgraph of the
whole graph in the figure, but it isn’t a subgraph induced by set of vertices
{2, 3, 4}, because it is short of one edge (2, 4).

The most important definition for our problem is the definition of graph
isomorphism. An example showing that the planar embedding of two isomor-
phic graphs can indeed look very differently is present in Figure 1.2.

Definition 1.3 Graphs G and G′ are isomorphic if there exists a bijective
mapping ϕ : V (G) 7→ V (G′) for which the following condition holds for all
x, y ∈ V (G): (x, y) ∈ E(G)⇔ (ϕ(x), ϕ(y)) ∈ E(G′).

5



1. Subgraph isomorphism problem

1 2

3 4

5 6

ISOMORPHISM
1

23

4

5 6

Figure 1.2: Example of two isomorphic graphs.

1.3.2 Subgraph isomorphism problem variations

Having shown all of the needed basic definitions, we can proceed to precisely
formulate the subgraph isomorphism problem as a decision problem.

Problem statement SubIso – Subgraph isomorphism problem

• Input: Two graphs G and F .

• Output: Decide whether there is a subgraph of G isomorphic to F .

This problem is NP-complete, which can be shown by a polynomial many-
one reduction of the k-Clique problem to the SubIso problem. Such a re-
duction is sufficient, because it is well known that the k-Clique is NP-
complete problem. First, let us formally specify the k-Clique problem:

Problem statement k-Clique – Finding a clique of size k

• Input: Graph G and k ∈ N

• Output: Decide whether graph G contains a complete graph Kk on k
vertices as a subgraph

Theorem 1.1 SubIso is NP-complete.

Proof Clearly, SubIso ∈ NP, because given a candidate solution as a cer-
tificate we can easily determine in polynomial time whether the solution is
correct or not. To perform the reduction k-Clique ≤m SubIso, for input G
and k in the k-Clique problem, it suffices to create a complete graph Kk on
k vertices. The result of the reduction is an instance of the SubIso problem
in the form of G and Kk. �

Naturally, another variant of the subgraph isomorphism problem is its
restriction to induced subgraphs.
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1.3. Subgraph isomorphism problem statement and its variations

Problem statement SubIsoInd – Induced subgraph isomorphism problem

• Input: Two graphs G and F .

• Output: Decide whether there is an induced subgraph of G isomorphic
to F .

So far we have only discussed decision variants of the subgraph isomor-
phism problem. A result of such a problem is already valuable and provides
information about the input graph. But to gain even more information, we
need to extend the problem statement. In particular, we would like to not only
decide a presence of an isomorphic subgraph, but also, e.g., count the num-
ber of such subgraphs. From this follows a counting variant of the subgraph
isomorphism problem.

Problem statement SubIsoCount – Counting isomorphic subgraphs

• Input: Two graphs G and F .

• Output: Count the number of subgraphs of G isomorphic to F .

It comes as no surprise that the SubIsoCount problem is at least as
hard as the SubIso problem. That is because an answer to this problem
contains more information than an answer to the SubIso problem, where any
nonzero number of counted isomorphic subgraphs during the solution of the
SubIsoCount problem directly implies a positive answer to the the SubIso
problem.

To widen our knowledge about the input graphs even further, we need
to opt to solve a possibly even harder problem. In such a problem, on top of
counting, we also require an enumeration of the result subgraphs as the output
of the problem. It is an enumeration variant of the subgraph isomorphism
problem.

Problem statement SubIsoEnum – Enumeration of isomorphic subgraphs

• Input: Two graphs G and F .

• Output: Enumerate subgraphs of G isomorphic to F .

Again, we easily see that a solution to the SubIsoCount can be easily
deduced from a solution to the SubIsoEnum variant.

7



1. Subgraph isomorphism problem

1.4 Approaches to solving the subgraph
isomorphism problem

To solve the subgraph isomorphism problem, we could, of course, proceed in
a naive way. That however consists of the enumeration of all possibilities,
which becomes unfeasible even for graphs of a small size.

The most known approaches to the subgraph isomorphism problem are
based on the representation of the problem as a searching process. The effi-
ciency of those approaches is based on the pruning of unprofitable paths in
the search space. Some of the algorithms that are based on this idea are Ull-
mann’s algorithm [17], VF algorithm [7], or its successor VF2 algorithm [8].
The largest drawback of this style of approach is the fact that the algorithms
are based on backtracking. Therefore, there exist some instances of the sub-
graph isomorphism problem, for which the algorithm solves the problem no
better than the naive one.

A special type of algorithm is the Nauty algorithm [14], which firstly trans-
forms the searched graph into its canonical form. However, as mentioned in
[8], there also exist instances of the subgraph isomorphism problem for which
it behaves exponentially.

Another family of approaches incorporates a technique called color coding.
Its idea is to randomly color the input graph and search only for its subgraphs,
isomorphic to the pattern graph, that are colored in distinct colors. This
approach is described in, e.g., [1], [19] or [11].

The algorithm for subgraph isomorphism problem described in [1] makes
use of tree decompositions and its complexity is thus related to treewidth (de-
fined in Chapter 2). There is a result proposed by [13], which links the bound
on the time needed to solve the subgraph isomorphism problem with ETH
(Exponential Time Hypothesis). The time bound is also related to treewidth,
which makes [1] a very reasonable candidate to be used for solving the sub-
graph isomorphism problem. The bound is shown for a special type of the
subgraphs isomorphism problem, which is the partitioned subgraph isomor-
phism problem.

Theorem 1.2 (Dániel Marx [13]) If there is a recursively enumerable class G
of graphs with unbounded treewidth, an algorithm A, and an arbitrary func-
tion f such that A correctly decides every instance of Partitioned Subgraph

Isomorphism with the smaller graph F in G in time f(F )n
o
(

tw(F )
log tw(F )

)
G , then

ETH fails.

1.5 Chosen problem variant and approach to it

With the knowledge of all variants of the subgraph isomorphism problem and
approaches to solve it, we can now specify the problem that we will tackle in

8



1.5. Chosen problem variant and approach to it

this thesis and the algorithm we will use to solve it.
In Section 1.3, we defined both induced and non-induced variants of the

problem. There are many reasons to solve the non-induced variant. For
example, the recovery of input graphs from biological systems is indeed not
errorless. If we solve only the induced variant of the problem, we might miss
an important subgraph just because an information about a single connection
in the network was lost during the recovery of the input graph.

Also, based on the discussed applications, we would like to solve the hard-
est version of the problem – the SubIsoEnum problem, as it allows us to
recover the most information from a network.

From the last section we can see, that the color coding algorithm from [1]
is theoretically very suitable to solve the SubIso problem. We will thus use
it as a base element of our approach and properly extend it to solve the
SubIsoEnum problem.

It is clear that the subgraph isomorphism problem is solved mainly on
graphs of a very large size. As the chosen algorithm is exponential in the size
of the searched pattern (as later shown in its description in Chapter 3), we
must make a compromise. Because of that, we will restrict the domain of
graph on which we will solve the problem to pattern graphs of a very small
size, i.e., at most 20 vertices.

9





Chapter 2

Tree decomposition and
treewidth

This chapter consists of description of treewidth related terminology and prob-
lems. We examine this domain, because as we’ve shown in the previous chap-
ter, the subgraph isomorphic problem complexity relates to the treewidth of
the searched pattern. For the chosen algorithm based on the color coding
technique, we also propose a suitable way to compute so-called nice tree de-
composition of the searched pattern. It turns out that it is a non-trivial task
that requires advanced graph theory concepts.

2.1 Definitions related to tree decomposition

For the beginning we need to define what a tree decomposition is.

Definition 2.1 A tree decomposition of a graph G is a pair (T, β), where T is
a rooted tree and β is a mapping β : V (T ) 7→ 2V (G) and for which the following
conditions hold:

(i)
⋃
x∈V (T ) β(x) = V (G);

(ii) for all (u, v) ∈ E(G) there is x ∈ V (T ), such that u, v ∈ β(x);

(iii) for all u ∈ V (G) the nodes {x ∈ V (T ) | u ∈ β(x)} form a connected
subtree of T .

Informally, we could describe a tree decomposition of graph G as a rooted
tree of nodes, each of which contains a bag of some vertices from G. Contents
of such bags need to meet requirements stated above. We shall denote bag
β(x) as Vx. Illustration of a tree decomposition of a particular graph can be
seen in Figure 2.1.

11



2. Tree decomposition and treewidth

1

2

3

4

5
6

TREE DECOMPOSITION

1, 2, 3

2, 3, 4

3, 4, 5 4, 6

Figure 2.1: Example of a tree decomposition of a graph.

We can see that the tree decomposition definition allows the existence of
multiple tree decompositions of one particular graph. As the matter of fact,
we can trivially construct a tree decomposition for every graph by forming
a tree of single node with all vertices from the original graph in its bag. It
is clear that this approach contributes no new information about the original
graph. To distinguish quality of tree decompositions, we introduce a metric
called the width of a tree decomposition.

Definition 2.2 Width of tree decomposition (T, β) equals maxx∈V (T ) |Vx|−1.

Being able to determine width of a tree decomposition, we can ask, which of
the tree decompositions of a particular graph is of the minimal width. We can
see that we can no longer use trivial approaches to create a tree decomposition,
if we want to minimize its width. To be able to describe such a minimal width,
we speak of a treewidth of a particular graph.

Definition 2.3 Treewidth tw(G) of graph G equals the minimal width of
a tree decomposition of G over all such decompositions.

Treewidth of a graph can be described as a similarity of the graph to a tree.
It is then clear, that such a property carries from a graph to its subgraphs.

Proposition 2.1 For a graph G and its subgraph G′, tw(G′) ≤ tw(G) holds.

Proof We can easily see that the relation of being a subgraph implies both
V (G′) ⊆ V (G) and E(G′) ⊆ E(G). It then suffices to declare a tree decom-
position of G with minimal width (i.e., treewidth) as a tree decomposition of
G′ (with some adjustments), as neither of the structural differences in G′ can
increase the width of such tree decomposition. �
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2.2. Tree decomposition construction

As shown in Theorem 1.2, the computational complexity of subgraph iso-
morphism problem is related to a treewidth of the searched pattern. The de-
pendency states that the computational complexity grows with the treewidth
of the searched pattern (even in the cases when the dependency is indirect). It
is then important to realize that the treewidth of a graph isn’t generally known
beforehand. Moreover, for a given graph G and an integer k, the problem of
determining whether the treewidth of G is at most k, is NP-complete [2].
However, by constructing a tree decomposition of G that has a certain width,
we retrieve an upper-bound for the treewidth of G. Therefore, all algorithms
that use tree decomposition in their process are not only dependant on the
treewidth of the input graph, but also on the quality of used tree decompo-
sition, i.e., its width. This restriction also happens to limit us in our case,
as described in Chapter 3 – the complexity of the chosen algorithm directly
depends on the treewidth of the searched pattern. Because of that, we need
to present an algorithm to construct a tree decomposition for a given graph
whose width is as close to the optimal treewidth as possible. We elaborate
our options in this issue in the next section.

2.2 Tree decomposition construction

For the discussion about the optimal algorithm for tree decomposition con-
struction, we would like to emphasize, that we seek a practically usable algo-
rithm for a restricted class of graphs. Precisely, as mentioned in Section 1.5,
we only consider graphs that have at most 20 vertices.

2.2.1 Construction exponential only in treewidth

Most of the theoretical results about the construction of a tree decomposition
rely on a supplied bound for treewidth. We can formalize such construction
in a k-Treewidth problem.

Problem statement k-Treewidth

• Input: Graph G and k ∈ N.

• Output: Decide whether tw(G) ≤ k and if so, output a tree decompo-
sition of G which has width at most k.

The first result in solving this problem has been shown in [2] and is of the
following form.

Theorem 2.1 (Arnborg et al. [2]) There exists an algorithm which solves

k-Treewidth problem for a graph G in O
(
nk+2
G

)
time.

13



2. Tree decomposition and treewidth

This result has been progressively improved and as of now, the current state-
of-the-art algorithm makes use of fixed parameter tractability of the problem.
Unfortunately, the algorithm holds a large drawback in terms of practical use,
because the function of the parameter k grows very fast.

Theorem 2.2 (Bodlaender [3]) There exists an FPT-algorithm that solves

k-Treewidth problem for a graph G in O
(

2O(k3)nG

)
.

This approach to the construction of a tree decomposition seemingly con-
tradicts the facts we mentioned in the last section. Most notably, while con-
structing a tree decomposition, we do not know the minimal possible width
(i.e., treewidth of the input graph) beforehand. From the theoretical stand-
point of view, this isn’t an issue, as mentioned in [5]. That is, because we
can iterate over all possible values of the parameter k and for each of its fixed
value we can use the algorithm from Theorem 2.2 as a subroutine. Due to
the theoretical nature of this iterative algorithm, we deem this aproach to the
computation of a tree decomposition as practically unusable. This conclusion
has been verified in [15] and holds also for our domain of very small graphs,
even if we later show a way to find a treewidth of a graph in a plausible time
(Algorithm 2.5).

The main problem of this type of construction is the fact that the corre-
sponding algorithms focus on the minimalization of the complexity involving
the size of the input graph and are instead exponential in treewidth. Due to
our problem domain restriction to a class of graphs with only a small num-
ber of vertices, we would like to minimize the complexity contribution for all
parameters, but the number of vertices of the input graph. Because of this,
we do not use any of the algorithms described so far, but instead we propose
a construction based on elimination orderings, which is exponential only in
the number of vertices of the input graph.

2.2.2 Construction based on an elimination ordering

To directly construct a tree decomposition of minimal treewidth, we employ
a technique based on graph triangulation, as described in [5]. To fully under-
stand this approach, we again need to define some terms.

Definition 2.4 Graph G is chordal, if every cycle in G of length greater or
equal to four has an edge connecting two non-consecutive vertices in the cycle.

Definition 2.5 Graph Gt is a triangulation of a graph G, if Gt is a chordal
graph obtained from G by adding a possibly nonzero number of edges to G,
i.e., E(Gt) ⊆ E(G).

Definition 2.6 An elimination ordering of a graph G is a bijective mapping
e : V (G) 7→ {1, 2, . . . , nG}.
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2.2. Tree decomposition construction

Definition 2.7 Elimination ordering e of graph G is perfect, if for all u ∈
V (G) the higher numbered vertices adjacent to u, i.e., {v | (u, v) ∈ E(G) ∧
e(v) > e(u)}, form a clique.

Now we estabilish relations between chordal graphs and elimination order-
ings and show how do these terms relate to tree decompositions. We omit the
proof of the theorem, because its results are rather well known and we would
have to define many subsequent terms in order to form a rigid proof.

Theorem 2.3 (see [10]; [5]) For a graph G, the following are equivalent:

(i) G is chordal;

(ii) there exists a perfect elimination ordering of G;

(iii) there exists a tree decomposition (T, β) of G, where for each x ∈ V (T )
bag Vx is a clique in G.

Imagine a situation in which we are given an arbitrary graph G. To make
use of part (iii) of Theorem 2.3, we need to describe a way to create a chordal
graph G′ from G. To achieve that, we also use part (ii) of the theorem and
build G′ by adding edges to G accordingly to the elimination ordering π. The
idea is that we construct G′ from G and π in a way such that π becomes
a perfect elimination ordering of G′. For the sake of clarity, we denote the
resulting graph G′ as Gπ, to emphasize that it has been created from the
elimination ordering π. By equivalence in the theorem, we then can declare
Gπ as a chordal graph and get information about its tree decomposition from
part (iii) of the theorem. Due to the fact that we constructed Gπ from G just
by adding edges, G is a subgraph of Gπ and by Proposition 2.1 we also have
information about G.

For the described construction of graph Gπ from G and π, we specify an
algorithm in Algorithm 2.2 and its subroutine in Algorithm 2.1.

We have to formally prove, what we really achieve by applying Algo-
rithm 2.2 on a particular graph.

Proposition 2.2 For a graph G and an elimination ordering π, the result Gπ
of FillGraph(G, π) is a triangulation of G.

Proof By the specification of the subroutine AddPerfectEdges, we can
see that π is a perfect elimination ordering of Gπ, because the subroutine
merely adds a minimal number of edges needed to satisfy the definition of a
perfect elimination ordering. By the equivalence between statements (i) and
(ii) in Theorem 2.3, graph Gπ is chordal. Because the only difference between
G and Gπ is in edge sets, Gπ is also a triangulation of G. �
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2. Tree decomposition and treewidth

Algorithm 2.1 AddPerfectEdges(G, π, u)

Input: Graph G, elimination ordering π and vertex u ∈ V (G).
Output: A graph G′, in which all higher numbered (in π) neighbors of u form
a clique.
Procedure:

1. Set G′ := G.

2. For each pair v, w of higher numbered neighbors of u, where v and w are
distinct and non-adjacent, add an edge between v and w to G′. Formally,
for all v, w ∈ V (G) where (u, v) ∈ E(G) ∧ (u,w) ∈ E(G) ∧ (v, w) /∈
E(G′)∧v 6= w∧π(v) > π(u)∧π(w) > π(u) do E(G′) := E(G′)∪{(v, w)}.

3. Return G′.

Algorithm 2.2 FillGraph(G, π)

Input: Graph G and elimination ordering π.
Output: A graph Gπ for which π is a perfect elimination ordering.
Procedure:

1. Set Gπ := G.

2. Let us denote by π−1(i) the i-th vertex in elimination ordering π. For
all i ∈ {1, 2, . . . , nG} do Gπ :=AddPerfectEdges(Gπ, π, π

−1(i)).

3. Return Gπ.

We have shown even a little stronger claim – the result Gπ of Fill-
Graph(G, π) is not only a chordal graph, but also a triangulation of G. We
can use this fact in the next theorem, that describes equivalences between
different characterizations of treewidth.

Theorem 2.4 (Bodlaender, Koster [5]) For a graph G and k ∈ N, the follow-
ing are equivalent:

(i) G has treewidth at most k;

(ii) there exists a triangulation Gt of G, such that the maximal size of any
clique in Gt is at most k + 1;

(iii) there exists an elimination ordering π, such that the maximal size of any
clique in Gπ is at most k + 1;

(iv) there exists an elimination ordering π, such that there is no vertex u ∈
V (G) that has more than k higher numbered (in π) neighbors in Gπ.
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2.2. Tree decomposition construction

As the result, we can see that each elimination ordering π yields a tree
decomposition of a certain width. It is also clear, that the optimality of
such tree decomposition (in terms of its width) is directly related to the input
elimination ordering. We shall address the problem of constructing the optimal
elimination ordering further in this chapter. Now, we show how does the
process of retrieving a tree decomposition from an elimination ordering look
like. It is described in Algorithm 2.4 which uses Algorithm 2.3 as a subroutine.

Algorithm 2.3 VertexElimination(G, π, u)

Input: Graph G, elimination ordering π of G and vertex u ∈ V (G)
Output: A graph G′, in which all higher numbered (in π) neighbors of u form
a clique and in which u is not contained
Procedure:

1. Let G′ := AddPerfectEdges(G, π, u).

2. Set V (G′) := V (G′) \ {u}.

3. Return G′.

Proposition 2.3 For a graph G and an elimination ordering π the result
(T, β) obtained from Algorithm 2.4 is a tree decomposition of G. Its width is
by one smaller than the size of the maximal clique in Gπ and it has exactly
nG nodes.

Proof Firstly, for a tree decomposition (T, β), let us denote by Tu a subgraph
of T , which contains tree decomposition nodes with vertex u in their bags,
i.e., Tu = T [{x ∈ V (T ) | u ∈ Vx}]. We prove the first part of this proposition
by induction on graph size (vertex-wise) based on the recursive execution of
Algorithm 2.4. In both induction cases, we are working with the “first” vertex
u = π−1(1) in the elimination ordering π.

The base case of induction is for nG = 1. Bag Vxu of tree decomposition
node xu indeed contains the only vertex in the elimination ordering – u. Also,
there are no edges in G and as nTu = 1, Tu forms a connected subtree.

For all other cases, nG > 1. We recieve a tree decomposition (T ′, β′) as
a result of calling the same algorithm on a graph G′, which we obtained from
Algorithm 2.3 and for which V (G′) = V (G) \ {u} holds. We then construct
a tree decomposition (T, β) for graph G. By having β(xu) = NG[u], we in
fact construct a new bag Vxu , which contains vertex u and all of its higher
numbered neighbours in π.

We now show that all three conditions for (T, β) to be a tree decomposition
hold. By induction,

⋃
y∈V (T ′) Vy = V (G′), and thus

⋃
y∈V (T ) Vy = V (G). Also,

by adding node xu with bag Vxu into tree decomposition (T, β), we have a bag
containing all {u,w | (u,w) ∈ E(G) \ E(G′)}. By induction, for all edges
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2. Tree decomposition and treewidth

Algorithm 2.4 TDFromEO(G, π)

Input: Graph G and elimination ordering π of G
Output: A tree decomposition (T, β) corresponding to π
Procedure:

• If nG = 1:

1. Let u := π−1(1).

2. Return a tree decomposition (T, β) consisting of a single node xu
which contains only u in its bag, i.e., V (T ) = {xu}, E(T ) = ∅ and
β(xu) = {u}.

• In other cases:

1. Let u := π−1(1).

2. Let G′ := VertexElimination(G, π, u).

3. Let π′ := π
∣∣
V (G)\{u} − 1 (coordinate-wise).

4. Let (T ′, β′) := TDFromEO(G′, π′).

5. Let v be the lowest numbered (in π) neighbour of u in G, i.e., let
v := π−1(i), where i = min(u,π−1(j))∈E(G) j.

6. Return a tree decomposition (T, β), where V (T ) = V (T ′) ∪ {xu},
E(T ) = E(T ′) ∪ {(xu, xv)}, and where for all x ∈ V (T ′) β(x) =
β′(x) and β(xu) = NG[u].

(a′, b′) ∈ E(G′) there is y ∈ V (T ′), such that a′, b′ ∈ Vy. Therefore, for all
edges (a, b) ∈ E(G) there is y ∈ V (T ), such that a, b ∈ Vy. By induction,
for all u′ ∈ V (G′), T ′u′ is a connected subtree. During the construction of
T , we connect the newly created node xu with node xv. Because we apply
Algorithm 2.3 on u in G to obtain G′, all neighbours w ∈ NG(u) are adjacent
to v in G′ (v is adjacent trivially) and thus T ′w contains xv. Because xu is
adjacent to xv in T , Tw forms a connected subtree, even though v ∈ Vu.

From the process of construction in Algorithm 2.4, it is clear that we in
fact constructed a tree decomposition of Gπ, because we imitated the process
of adding edges in Algorithm 2.2 by consecutively using Algorithm 2.3. In
addition, each bag Vxu , xu ∈ T of the tree decomposition contains a clique
in Gπ. Because we consecutively used Algorithm 2.3 on all vertices in π,
during the construction we gradually added all cliques in Gπ to bags of the
tree decomposition. Width of the resultant tree decomposition of Gπ is thus
by one smaller than the size of the maximal clique in Gπ. We can also easily
see, that the resultant number of nodes in the tree decomposition is exactly
nG, as we construct a single node for each vertex in the elimination ordering.
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2.3. Elimination ordering construction

Because G is a subgraph of Gπ and V (G) = V (Gπ), any tree decomposi-
tion of Gπ is a tree decomposition of G. Tree decomposition obtained from
Algorithm 2.4 is thus a tree decomposition of G. �

2.3 Elimination ordering construction

As shown in the previous section, in order to minimize the width of the tree
decomposition obtained from Algorithm 2.4, we need to find an elimination
ordering, from which such a construction is possible. To do so, we employ
an exact algorithm from [4] that computes treewidth tw(G) for a particular
graph G by constructing an elimination ordering. After the computation, we
can simply take the elimination ordering created in the process, and use it in
Algorithm 2.4 with graph G to obtain a tree decomposition of G with width
equal to tw(G).

We mentioned earlier in Section 2.1 that the process of determining tw(G)
is NP-complete. Due to that, the chosen exact algorithm requires exponential
time and space (relative to the number of vertices of the input graph G) to
compute tw(G). That is perfectly sufficient due to the fact, that we only need
to compute treewidth for graphs with at most 20 vertices.

To explain and prove the correctness of the used algorithm, we would
need to define many subsequent terms. That is, because the main idea of the
algorithm is to work with an elimination ordering π, but to avoid working with
the triangulation Gπ of the input graph G. This approach is extensively shown
and proven in [4] and thus we only define terms and propositions needed to
be able to analyze and implement the algorithm correctly.

Definition 2.8 For an elimination ordering π of G and a vertex u ∈ V (G),
we define π<,u as the set of the lower numbered vertices (in π) relatively to u.
Formally, π<,u = {v ∈ V (G) | π(v) < π(u)}.

Definition 2.9 For an elimination ordering π of G, a set of vertices S ⊆
V (G) and a vertex u ∈ V (G) \ S, we define QG(S, u) to be the following set:
QG(S, u) = {v ∈ V \S\{u}| there exists a path from u to v in G[S∪{u}∪{v}]}.

Proposition 2.4 The set QG(S, u) can be computed in O (nG +mG) time.

Proof It suffices to try all candidate vertices v ∈ V \S \{u} and for each one
check, whether it has a neighbour in the connected component of G[S ∪ {u}],
which contains u. Connected component can be retrieved by a simple depth-
first search inO (nG +mG) time. Having computed the connected component,
each check can be done in a constant time. We perform the checking for
O (nG) vertices and the maximal number of checkings performed is equal to
the number of edges, which is O (mG). The checking phase thus also takes
O (nG +mG) time. �
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2. Tree decomposition and treewidth

Definition 2.10 For an elimination ordering π of G and a nonempty set of
vertices S ⊆ V (G), we define a function tw(S) = minπ maxu∈S |Q(π<,u, u)|.

Theorem 2.5 (Bodlaender et al. [4]) For a graph G, tw(G) = tw(V (G)).

Theorem 2.6 (Bodlaender et al. [4]) For a graph G and a nonempty set of
vertices S ⊆ V (G), we can compute a function tw(S) as follows: tw(S) =
minu∈S max{tw(S \ {u}), |QG(S \ {u}, u)|}.

From the Theorem 2.6 we can directly obtain a dynamic programming
algorithm that computes the treewidth for a given graph. We show how to do
the computations in a top-down fashion in Algorithm 2.5.

Algorithm 2.5 Treewidth(G,S)

Input: Graph G and subset of its vertices S
Output: tw(S)
Procedure:

• If S = ∅:

1. Return −∞.

• In case tw(S) has already been computed:

1. Return the result directly.

• In other cases:

1. Return minu∈S max{Treewidth(G,S \ {u}), |Q(S \ {u}, u)|}.

Proposition 2.5 Algorithm 2.5, given a graph G and a subset of its vertices
S = V (G), computes tw(G) in O (nG(nG +mG)2nG) time and O (2nG) space.

Proof The algorithm computes tw(V (G)), which is by Theorem 2.5 equal to
tw(G). To memoize results of all possible subsets of V (G), the algorithm
requires O (2nG) space. In the worst case, it needs to go through all those
subsets. For a particular subset S, we need to compute |Q(S \ {u}, u)| for all
vertices u ∈ S. Asymptoticallly, there can be at most O (nG) vertices in S
and the computation of |Q(S\{u}, u)| takes, by Proposition 2.4, O (nG +mG)
time. �

By running Algorithm 2.5 on graph G and V (G) as its subset S, we retrieve
tw(G). The question is, how can we use this result to obtain an elimination
ordering, from which the construction of a tree decomposition of width tw(G)
is possible (by using Algorithm 2.4). To do so, we can reuse the information
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2.3. Elimination ordering construction

about the results of tw(S) that we obtained during the computation in Algo-
rithm 2.5. After the computation finishes, we have access to the results of all
S ⊆ V (G). We can then run a new computation in the same manner as used
in Algorithm 2.5, in which we don’t actually compute results, but just form
an elimination ordering from the already computed results. This approach is
described by Algorithm 2.6.

Algorithm 2.6 GetEO(G,S,K)

Input: Graph G, subset of its vertices S and a table K, where for all subsets
S′ ⊆ S, K contains the result of tw(S′), that is K(S′) = tw(S′).
Output: An elimination ordering π, from which a tree decomposition of width
tw(S) is constructable.
Procedure:

• If S = ∅:

1. Return ∅

• In other cases:

1. Let um := minu∈S{K(S \ {u})}.
2. Let π′ := GetEO(G,S \ {um},K).

3. Let π := π′ + 1 and extend π by π(um) = 1.

4. Return π.

As a result of this approach, we would like to have guaranteed that Al-
gorithm 2.6, if given optimal results of tw(S) for S = V (G) and its subsets,
computes an elimination ordering π, from which a construction of tree decom-
position of a minimal width is possible. This behavior is in fact guaranteed, as
it is implied from the proof of Theorem 2.6 in [4], which through many addi-
tional definitions explains set QG(S, u) in a wider context. As we don’t include
this proof, we also omit the corresponding part of the proof of Proposition 2.6.
For our purposes it suffices to explain Algorithm 2.6 as a procedure, which in
a reverse direction constructs an elimination ordering π from vertices, whose
consecutive elimination results in the minimal clique size in triangulation Gπ.
That as a result due to the previous theorems minimizes the width of a tree
decomposition created from π.

Proposition 2.6 Algorithm 2.6, given a graph G, a subset of its vertices
S = V (G) and results of tw(S′) for all subsets S′ ⊆ V (G), computes an
elimination ordering π, for which the maximal size of any clique in Gπ is
tw(G) + 1, in O

(
n2G
)

time and O (2nG) space.
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2. Tree decomposition and treewidth

Proof As mentioned above, we omit the proof of the first part of the propo-
sition. Space required by computation depends only on the size of the table
with the results of tw(V (G)) and its subsets. The space bound is thus O (2nG).
For each subset S visited during the computation, we find the minimal value
of tw(S \u), for all u ∈ S. However, we already have the results precomputed
in table K. The result retrieval in that case takes only a constant time. Be-
cause at each call of the recursive procedure we remove a single vertex from
V (G), we call the procedure only nG times. As each subset of V (G) is of size
O (nG), the determination of the minimal value in each call takes, due to the
constant time retrieval, O (nG) time. Therefore, the total time spent by the
construction is O

(
n2G
)
. �

2.4 Nice tree decomposition construction

Now that we presented a way how to construct a tree decomposition of a graph
G with optimal width, we need to construct a so called nice tree decomposition.
Such a decomposition is required for our main algorithm (and generally all
algorithms that use tree decompositions), because in contrast to regular tree
decompositions, their nice counterparts possess a regular structure, which can
then be exploited by various approaches. In this section, we define a nice tree
decomposition and show how to transform a regular tree decomposition to
a nice one.

Definition 2.11 A nice tree decomposition of a graph G is a triple (T, β, r),
where (T, β) is a tree decomposition rooted at node r and where degG(r) = 1
and Vr = ∅. Additionaly, there are only four possible types of a node x ∈ V (T )
of a nice tree decomposition. For these types following conditions hold:

• Start node – Vx = ∅;

• Introduce node – x has exactly one child y and Vx = Vy ∪ {u}, u ∈ Vy;

• Forget node – x has exactly one child y and Vx = Vy \ {u}, u ∈ Vy;

• Join node – x has exactly two children y, z and Vx = Vy = Vz.

2.4.1 Transformation from a tree decomposition

It is well known that any tree decomposition can be transformed to a nice one
without loosing its particular characteristics, such as treewidth or number of
nodes. We can formalize this statement in the next theorem.

Theorem 2.7 (Cygan et al. [9]) Any tree decomposition of a graph G that
consists of O (nG) nodes with width at most t, can be, in O

(
t2nG

)
time,

transformed to a nice tree decomposition of G with O (tnG) nodes and width
bounded by t.
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2, 4, 5

2, 5

Figure 2.2: Introduce node example.

3, 7

1, 3, 7

Figure 2.3: Forget node example.

2, 4

2, 4 2, 4

Figure 2.4: Join node example.

∅

Figure 2.5: Start node example.

Proof We now describe how to handle all possible situations during the con-
struction of a nice tree decomposition from a given tree decomposition. There
are exactly three situations we need to describe. Firstly, we need to create
a root of the resulting nice tree decomposition, which is a node with an empty
bag. That can be easily achieved by adding forget nodes on top of the tree
decomposition, as depicted in Figure 2.6. By doing so, we create at most O (t)
new nodes, each of which has a bag of size at most O (t). The construction
can thus be done in O

(
t2
)

time.

Secondly, we need to enforce the condition which states, that all bags of
neighboring nodes differ in at most a single vertex (with the exception of join
nodes, which we construct later). To do so, we connect all nodes previously

23



2. Tree decomposition and treewidth

∅

5

4, 5

2, 4, 5

FORGET 2

FORGET 4

FORGET 5

Figure 2.6: Nice tree decomposition root construction.

neighboring in the tree decomposition with a path of new introduce and forget
nodes. Each of those nodes extends or reduces the content of a bag by a single
vertex and the condition is thus fulfiled. An example of this approach is shown
in Figure 2.7. As in the previous case, by reconnecting two nodes we create
at most O (t) new nodes with bag sizes at most O (t). However this time,
we need to reconnect all nodes in the tree decomposition. Because any tree
decomposition is a tree, we need to apply this approach at most O (nG) times.
The construction can thus be done in O

(
t2nG

)
time and adds O (tnG) new

nodes to the tree decomposition.

1, 2, 7 2, 7 7 3, 7 3, 4, 7

FORGET 4

FORGET 3

INTRODUCE 2

INTRODUCE 1

Figure 2.7: Nice tree decomposition node connecting. Marked nodes were
previously adjacent and had to be reconnected.
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2.4. Nice tree decomposition construction

After we perform the described two operations, we already almost have
a nice tree decomposition, but there might be nodes with more than one
child. We handle this situation by creating a binary tree of join nodes in the
place of the original node with a large degree. Its previous neighbors are then
connected to the leaves of the constructed binary tree. The construction of
such a binary tree is shown in Figure 2.8. For each node with degree k > 1,
we create a binary tree of k leaves, which as a result consists of O (k) new
nodes. Such a binary tree can be constructed in O (tk) time. Because any tree
decomposition is a tree, the sum of degrees of all its nodes is O (nG). From
this fact follows that if we apply this construction to all nodes with more than
one child, we construct at most O (nG) new nodes in O (tnG) time.

After applying this construction to any tree decomposition, we indeed
obtain another tree decomposition with the same width. In addition, we can
see that the constructed tree decomposition is also a nice one. �

1, 6

1, 6

1, 6 1, 6

1, 6

Figure 2.8: Nice tree decomposition degree reduction. The marked node had
three children and so it was split into a binary tree of join nodes.

2.4.2 Specific modifications for usage in the algorithm

For the further usage of the computed nice tree decomposition in the main
algorithm, we need to modify the standard process of obtaining a nice tree
decomposition from a tree decomposition. As we will see throughout Chap-
ter 3, we slightly modify the definition of a nice tree decomposition for the
implementation purposes. Specifically, for the next usage of nice tree decom-
positions, we consider start nodes to have exactly single element in their bag.
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2. Tree decomposition and treewidth

This modification is necessary to simplify the color coding algorithm descrip-
tion, implementation and the performance of the final implementation.

Additional modification of the standard nice tree decomposition construc-
tion is the precomputation part. From Proposition 2.5 and a description of
the time and space complexity needed for the color coding algorithm in The-
orem 3.1, we can see that the resources spent on the computation of the nice
tree decomposition is insignificant. Also, as we later show in the final version
of the color coding algorithm in Algorithm 3.11, the nice tree decomposition
is constructed only once per a problem instance. Combination of these factors
practically forces us to precompute every single property we can, which is used
in the color coding algorithm and which is possible to obtain before running
the main algorithm. Although very implementational related, we feel obliged
to include the precomputation part in the following descriptions under the
name NTDPrecompute. A perfect example of what can be precomputed
are introduce/forgot positions for node mappings (described in Section 3.4.2),
which are used in Algorithm 3.8 and Algorithm 3.9.

We can now describe the final form of the algorithm that computes a
nice tree decomposition for a given pattern graph, which is then used by the
color coding algorithm. The algorithm is described in Algorithm 2.7 and its
theoretical properties are described in Theorem 2.8.

Algorithm 2.7 NiceTreeDecomposition(G)

Input: Graph G.
Output: A nice tree decomposition of G.
Procedure:

1. Compute Treewidth(G,V (G)) and store the results for all subsets S
of V (G) (i.e., Treewidth(G,S)) in a table K.

2. Let π :=GetEo(G,V (G),K).

3. Let (T, β) :=TDFromEO(G, π).

4. Construct a nice tree decomposition η from (T, β) as specified in the
proof of Theorem 2.7.

5. Let η′ :=NTDPrecompute(η).

6. Return η′.

Theorem 2.8 There is an algorithm, which for a graph G constructs its nice
tree decomposition of width tw(G) in O (nG(nG +mG)2nG) time and O (2nG)
space.
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2.4. Nice tree decomposition construction

Proof Proposition 2.6 states that by running the combination of Treewidth
and GetEo procedures (described in Algorithm 2.5 and Algorithm 2.6), we
obtain an elimination ordering π, for which the maximal size of any clique
in Gπ is tw(G) + 1. By Proposition 2.3, we obtain from procedure TD-
FromEO a tree decomposition of G whose width is by one smaller than the
maximal size of any clique in Gπ. Therefore, as a result, we obtain a tree
decomposition of G whose width is tw(G). Theorem 2.7 shows a way to cre-
ate a nice tree decomposition from a tree decomposition while maintaining its
width. Procedure NTDPrecompute is specified in Algorithm 2.7 mainly for
implementational purposes and therefore it doesn’t change properties of the
underlying nice tree decomposition.

By combining time and space bounds of all used procedures, as specified
in Proposition 2.3, Proposition 2.5 and Proposition 2.6, we can see that the
total time and space required to build a nice tree decomposition are exactly
as proposed. �
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Chapter 3

Color coding algorithm

In this chapter we describe color coding algorithm used in implementation
which solves the SubIso problem. The algorithm was originally described
in [1] and is based on dynamic programming. Due to the algorithm’s huge
memory requirements (as shown below in Theorem 3.1), we propose modifi-
cations that allow us to use this algorithm even on very large input instances.
Also, as this particular algorithm does not address the reconstruction of found
subgraphs, we also describe a way how to retrieve all subgraphs found during
the computation.

For clarity, throughout this chapter we denote by F the pattern graph, i.e
the graph that we are looking to find, and by G the graph in which we search.

3.1 Color coding technique

Color coding technique was first introduced in [1] to solve exactly the problem
of subgraph isomorphism. The main idea of this approach is to randomly color
the vertices of the graph in which we are looking for subgraphs, and to search
only for colorful subgraphs (i.e., subgraphs with all colors assigned to them
being distinct). By doing so, we lighten the amount of information needed
to be remembered during the algorithm. That is because we do not have to
remember all vertex assignements in a particular solution, which is what we
do to prevent a multiple inclusion of a vertex to the resulting subgraph. In
such a case, it suffices to only remember colors used so far.

The number of colors applied in the coloring should be chosen carefully,
as we want subgraphs isomorphic to the searched pattern graph to be colored
in a way, that allows us to easily and efficiently locate colorful subgraphs.
The chosen way of coloring should also imply that subgraphs are colorful with
a high probability.

In our case, for a graph G and a pattern graph F , we color the vertices
of G with exactly nF colors. Formally speaking, we create a random coloring
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3. Color coding algorithm

ζ : V (G) 7→ {1, 2, . . . , nF }. After the coloring, the algorithm considers as
a valid result only such subgraphs G′ of G, that are colorful copies of F .

Definition 3.1 Subgraph G′ of a graph G is a colorful copy of F with respect
to a random coloring ζ : V (G) 7→ {1, 2, . . . , k}, if G′ is isomorphic to F and
all of its vertices are colored by distinct colors in ζ.

To address the probablity of any subgraph G′ of G with nG′ = nF vertices
being colorful, we formulate the next proposition.

Proposition 3.1 For any given graph G and a random coloring ζ : V (G) 7→
{1, 2, . . . , k}, any subgraph G′ of G on nG′ = k vertices is colorful with a prob-
ability at least e−k.

Proof There are kk possible colorings of G′. All vertices of G′ are of different
color in ζ in k! cases. Therefore, the probability Pc of G′ being colorful is:

Pc =
k!

kk

By Stirling’s approximation, k! ≈
√

2πk(ke )k and so the following holds:

Pc ≈
kk
√

2πk

kkek
=

√
2πk

ek
>

1

ek
= e−k

�

It is clear that if an algorithm is based on random coloring of the input
graph, the results it produces are also heavily dependant on the chosen col-
oring. Even though it is possible to derandomize such algorithms, e.g., by
the approach shown in [9], the described method for derandomization is im-
practical due to the complexity of its implementation. In conclusion, we are
to use the randomized version of this algorithm. We discuss the impact of
the randomness of the algorithm in the following sections, as we are yet to
describe the algorithm itself.

3.2 Main algorithm idea

The algorithm is based on the dynamic programming approach. We apply this
approach on the nice tree decomposition of the pattern graph F . The result of
the dynamic programming part is in the form of a dynamic programming table
Dt, filled accordingly to a particular function D. The definition of function D
incorporates the main idea of the algorithm, which connects the color coding
approach with the gradual building of the result mapping. We formally define
the function D below.
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3.2. Main algorithm idea

The original approach differs to our modified approach in the dynamic
programming part. The original approach handles the dynamic programming
in a top-down fashion, in contrast to our modified algorithm, which constructs
the table bottom-up. As noted previously, the way of reconstructing found
results from the formed dynamic programming table has not (to our knowl-
edge) been described, because this particular algorithm is mainly devised to
solve the original decision SubIso problem. We thus omit the description of
the reconstuction for the original version of the algorithm, as we implemented
only the modified variant of the algorithm.

If we break the algorithm step by step, we obtain the following high-level
description:

1. Obtain a nice tree decomposition (T, β, r) of graph F by applying Algo-
rithm 2.7;

2. create a random coloring ζ : V (G) 7→ {1, 2, . . . , nF };

3. accordingly to function D construct a dynamic programming table Dt,
with respect to the nice tree decomposition (T, β, r) and the coloring ζ;

4. reconstruct the results from Dt.

We now formally describe the dynamic programming part of the algorithm.
The target is to create a graph isomorphism Φ: V (F ) 7→ V (G). We do so
by traversing the nice tree decomposition (T, β, r) of the pattern graph F
and at each tree decomposition node x ∈ V (T ), we progressively construct
possible partial mappings ϕ : Vx 7→ V (G) with regard to required colorfullness
of vertices of the result subgraph. Such a partial mapping can be viewed as
an assignment of vertices contained in Vx to a subset of vertices in G. If
we manage to build altogether consistent partial mappings in all nodes of
the tree decomposition, we can easily see that a combination of those partial
mappings forms a desired result mapping. To describe a partially constructed
isomorphism in the algorithm (i.e., isomorphism on the subgraph of F induced
only by its vertices processed so far), we introduce a new notation V∗x.

Definition 3.2 For a nice tree decomposition (T, β, r), we denote by V∗x the
set of vertices in Vx and in Vy for all descendants y of x in T . Formally
V∗x = Vx ∪ {u ∈ Vy | y is a descendant of x in T}.

From Definition 3.2 it follows, that for the root r of T , V∗r = V (F ) and
F [V∗r ] = F .

The definition of the dynamic programming approach is as follows. For
any tree decomposition node x ∈ V (T ), any partial mapping ϕ : Vx 7→ V (G)
and any color subset C ⊆ {1, 2, . . . , nF }, we define D(x, ϕ,C) = 1 if there is
an isomorphism Φ: F [V∗x] 7→ V (G) forming a subgraph G′ of G, such that:
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3. Color coding algorithm

(i) For all u ∈ Vx,Φ(u) = ϕ(u);

(ii) G′ is a colorful copy of F [V∗x] using exactly the colors in C, that is
ζ(Φ(V∗x)) = C.

In other cases, we define D(x, ϕ,C) = 0, which denotes that there is no such
isomorphism to be found with respect to the particular configuration. In
further text we denote all configurations (x, ϕ,C) for which D(x, ϕ,C) = 1 as
nonzero configurations.

3.3 Original top-down algorithm

The original version of the algorithm is based on top-down dynamic program-
ming approach. Such an approach merely follows the recursive definition of
the dynamic programming with an addition of memoization of already com-
puted results. That immediately implies a big disadvantage of this approach
– it requires the underlyling dynamic programming table (which is used for
memoization) to be fully available throughout the whole run of the algorithm.
Such a table has three dimensions; each describing one parameter in a con-
figuration D(x, ϕ,C). Vizualization of a dynamic programming table for the
top-down approach is depicted in Figure 3.1.

Mappings ϕ Color sets C

Nodes x

Figure 3.1: Top-down dynamic programming table. Note that the number of
possible mappings varies according to the size of a bag of a nice tree decom-
position node, while the number of possible color sets stays the same for all
nodes.

We now describe a way to compute the result value of a particular con-
figuration D(x, ϕ,C) in the dynamic programming table, for all four possible
types of a nice tree decomposition node x.

For a start node x ∈ V (T ), there is only a single vertex u in V∗x to con-
sider. We can thus map u to all possible vertices of G, by which we obtain
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3.3. Original top-down algorithm

D(x, ϕ, {ζ(ϕ(u))}) = 1 for all such mappings, and D(x, ϕ,C) = 0 for all other
configurations.

For an introduce node x ∈ V (T ) and its child y in T , we denote by u
the vertex being introduced in x, i.e., {u} = Vx \ Vy. It is clear that we
set D(x, ϕ,C) = 1 only if there is a configuration D(y, ϕ′, C ′) = 1, where ϕ′

and C ′ are of a particular form. First of all, we require that ϕ is an edge
consistent mapping. In this case a mapping ϕ is edge consistent if and only
if for all edges (v, w) ∈ E(F ) between mapped vertices v, w ∈ Vx, there is an
edge (ϕ(v), ϕ(w)) ∈ E(G). To form a nonzero configuration, ϕ must also be
an extension of ϕ′, i.e., ϕ′ = ϕ

∣∣
Vy . For color sets we require that C ′ differs

from C exactly in the color used to extend mapping ϕ′ by vertex u , i.e.,
C ′ = C \ {ζ(ϕ(u))}. In any other case we set D(x, ϕ,C) = 0.

For a forget node x ∈ V (T ) and its child y in T , situation is similar to
the previous case. Only this time, a vertex has been forgotten instead of
introduced. We denote this vertex by u, as the vertex being forgotten in x,
i.e., {u} = Vy \Vx. Again, we set D(x, ϕ,C) = 1 only if we find a configuration
D(y, ϕ′, C ′) = 1 with suitable ϕ′ and C ′. In this case, for an edge consistent
mapping ϕ, we require that ϕ′ is an extension of ϕ, i.e., ϕ = ϕ′

∣∣
Vx . No new

color is added to color sets a forget node, and we thus look only at C ′ = C.
In any other case we set D(x, ϕ,C) = 0.

For a join node x ∈ V (T ), we denote by y and w its children in T .
We set D(x, ϕ,C) = 1 only if we find configurations D(y, ϕ′, C ′) = 1 and
D(w,ϕ′′, C ′′) = 1 with suitable ϕ′, ϕ′′ and C ′, C ′′. Since Vx = Vy = Vw, it
must hold that ϕ′ = ϕ′′ = ϕ. The only concern in this case are the colors in
C ′ and C ′′ that were used to build particular isomorphic subgraphs. It is clear,
that the union of sets C ′ and C ′′ must result in C and also the intersection
of both those sets must contain exactly the colors to color the vertices in Vx.
Formally, it must hold that C ′ ∪ C ′′ = C and C ′ ∩ C ′′ = {ζ(ϕ(Vx))}. The
former condition is implied by the construction, while a failure to comply with
the latter condition would mean that either one color would be used twice in
the resulting subgraph (in the case when the intersection contains more col-
ors), or there would be not enough colors to color the vertices in Vx (in the
other case). If any of these conditions is not fulfilled, we set D(x, ϕ,C) = 0.

From the description we can see, that the steps taken in all four types of
nodes correspond to the specification of a nonzero configuration D(x, ϕ,C).
Therefore, it remains to analyze the time and space required to run this algo-
rithm.

Theorem 3.1 There is an algorithm that solves the SubIso problem for an
input graph G and a pattern graph F with probability at least (1 − 1

e ) in

O
(
n
tw(F )+1
G 2O(nF )

)
time and O

(
n
tw(F )+1
G tw(F )nF 2nF

)
space.

Proof At each node of the tree decomposition, there are n
tw(F )+1
G possible
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3. Color coding algorithm

Table 3.1: Memory required by the top-down algorithm for tw(F ) = 1.

nG nF Required memory [B]

100 5 1.6 · 106

100 20 2.1 · 1011

10000 5 1.6 · 1010

100000 5 1.6 · 1012

100000 20 2.1 · 1017

mappings and 2nF possible color sets. Because of the Theorem 2.7 and Propo-
sition 2.3, there are O (tw(F )nF ) vertices in a nice tree decomposition of F
that we have. From these facts we can see that the bound for used space
holds.

By Proposition 3.1, the probability of the algorithm answering correctly
is e−nF . The probability of an incorrent answer is thus (1 − e−nF ). If we
repeat the algorithm enF times, the probability of an incorrent answer is
(1− e−nF )

enF
. Because the inequality 1 + x ≤ ex holds, we can write the

probability of an incorrect answer as:

(
1− e−nF

)enF ≤
(

e−e
−nF

)enF

= e−1 =
1

e

From the Theorem 2.8 we can see, that the time and space required to
create a nice tree decomposition is, although exponential, irrelevant the in
comparison to the time required to run the color coding algorithm. In addi-
tion, we construct the nice tree decomposition only once, while we repeat the
algorithm enF times. �

We have shown, that to solve the SubIso problem by color coding in a
top-down fashion, we require a large amount of memory which can be by no
means reduced. That is, because the dynamic programming table needs to
contain the results of all configurations (whether zero, nonzero, or unset). To
demonstrate how large the memory requirements are, lets assume the result of
a configuration D(x, ϕ,C) requires 1 bit of memory in the table Dt. Tables 3.1
and 3.2 show the required amount of memory for several combinations of sizes
of input graphs G, F and tw(F ).

Lets suppose we have a computer with an above-standard memory avail-
able with the value of 100 GB. That is equivalent to 1011 B of memory. It
is clear from the above tables, that for a slightly larger input and pattern
graphs, we do not have enough memory to handle this way of computation.
We might have enough memory for some larger input sizes for pattern graphs
of treewidth equivalent to 1, but such pattern graphs only cover the family of
trees.
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Table 3.2: Memory required by the top-down algorithm for tw(F ) = 2.

nG nF Required memory [B]

100 5 3.2 · 108

100 20 4.2 · 1013

10000 5 3.2 · 1014

100000 5 3.2 · 1017

100000 20 4.2 · 1022

Another big issue is that the fast growth of the complexity affects not
only the space complexity, but also the time required for the computation.
We percieve time complexity less critical than the space complexity, because
with large time requirements, the algorithm can still be run. On the other
hand, the space complexity and the parameters of the computer can restrict,
whether we are even able to run the algorithm.

As a conclusion, the first priority is to modify the original algorithm in a
way, that it uses less space for the computation. However, the time complexity
of the modified algorithm should not be neglected either. We describe the
modifications to the original algorithm in the next section.

3.4 Modified bottom-up algorithm

We can divide proposed modifications of the original algorithm into several
parts. Firstly, we introduce the key change of the approach as we describe
how to handle the dynamic programming computation in a bottom-up fash-
ion. Secondly, we focus on the precise minimization of the memory and time
required by the algorithm, by carefully altering and optimizing some of the
performed operations. As a last part, we describe how to reconstruct found
subgraphs from the dynamic programming table used to solve the decision
variant of the problem.

It should be stated that neither of these modifications improves the com-
plexities in the worst case situation, but as we later show in Chapter 5, the
proposed modifications greatly reduce time and space required to run the
modified version of the algorithm.

3.4.1 Dynamic programming approach modifications

The main motivation to use a bottom-up dynamic programming approach
is derived from the large memory requirements of the top-down approach,
that cannot be mitigated in any way. It follows from the fact that in the
dynamic programming table, while using top-down approach, we need to store
results for all configurations, whether nonzero (and thus potential to form an
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3. Color coding algorithm

isomorphic subgraph), or not. By using the bottom-up approach, we fill the
table in the reverse direction.

As described in Section 3.3, for a configuration D(x, ϕ,C) in a nice tree
decomposition node x, we previously (in general) tried all possible partial
mappings ϕ′ and color subsets C ′ and checked, whether for a children node
y there is a nonzero configuration D(y, ϕ′, C ′) = 1. In this approach, we aim
to construct all nonzero configurations of a parent node just from the list of
nonzero configurations in its child/children.

For that purpose, we formally divide the dynamic programming table Dt
into lists of nonzero configurations, where each nice tree decomposition node
has a list of its own. We basically split the three-dimensional table in the
dimension of nodes and instead of storing a two-dimensional table of results
of all combinations of partial mappings and color sets for the particular node,
we store only the nonzero configurations in lists. Formally, for every node
x ∈ V (T ), let us denote by Dt,x a list of all mappings ϕ with a list of their
corresponding color sets C, for which D(x, ϕ,C) = 1. Such a list for a partic-
ular node is depicted in Figure 3.2. We can easily see, that the information
contained in Dt,x for all x ∈ V (T ) is, in terms of contained information, equiv-
alent to maintaining the whole table Dt, as all configurations not present in
the lists can be considered as configurations with a result equal to zero.

Mappings ϕ Color sets C

Figure 3.2: Bottom-up dynamic programming list.

Again, as in the previous approach, we describe how to compute the result
of a particular configuration D(x, ϕ,C) for all types of a nice tree decom-
position node. In difference to the previous case, this time we describe the
computation of a list Dt,x from the knowledge of list/lists of its child/children.

For a start node x ∈ T , there is only a single vertex u in V∗x to consider. We
can thus map u to all possible vertices of G, and so we obtain a list with nG
partial mappings ϕ, in which the color list for each mapping contains a single
color set {ζ(ϕ(u))}, where u is the mapped vertex.

For an introduce node x ∈ T its child y in T , we denote by u the vertex
being introduced in x, i.e., {u} = Vx \ Vy. For all nonzero combinations
of a partial mapping and a color set in Dt,y, i.e., for all Dt,y(ϕ′, C ′) in the
list, we try to extend ϕ′ by all possible mappings of the vertex u to the
vertices of G. We denote one such a mapping as ϕ. We can consider mapping
ϕ as correct, if two conditions are fulfilled. Firstly, we must guarantee ϕ
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3.4. Modified bottom-up algorithm

Algorithm 3.1 SubIsoBottomUp(G,F, ζ, η)

Input: Graph G, pattern graph F , random coloring ζ, and a nice tree
decomposition η of F .
Output: A bottom-up dynamic programming list of the nonzero configura-
tions in the root of η.
Procedure:
Execute the following recursive subroutine SubIsoRec(G,F, ζ, η, r) on the
root r of η and return its output. The subroutine shares the input and output
with this procedure. The only additional input parameter is x ∈ η, which
corresponds to the currently processed node of η.

SubIsoRec(G,F, ζ, η, x):

• If x is a leaf node:

1. Return SubIsoLeaf(G,F, ζ, η, x), as described in Algorithm 3.6.

• If x is an introduce node:

1. Let y be the child of x in η.

2. Let Dt,y := SubIsoRec(G,F, ζ, η, y).

3. Return SubIsoIntroduce(G,F, ζ, η, x,Dt,y), as described in Al-
gorithm 3.9.

• If x is a forget node:

1. Let y be the child of x in η.

2. Let Dt,y := SubIsoRec(G,F, ζ, η, y).

3. Return SubIsoForget(G,F, ζ, η, x,Dt,y), as described in Algo-
rithm 3.8.

• Else x is a join node:

1. Let y, w be the children of x in η.

2. Let Dt,y := SubIsoRec(G,F, ζ, η, y).

3. Let Dt,w := SubIsoRec(G,F, ζ, η, w).

4. Return SubIsoJoin(G,F, ζ, η, x,Dt,y,Dt,w), as described in Algo-
rithm 3.7.
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3. Color coding algorithm

to be edge consistent. This condition is fulfilled if and only if for all edges
(v, w) ∈ E(F ) between currently mapped vertices, i.e., in our case v, w ∈ Vx,
there must be an edge (ϕ(v), ϕ(w)) ∈ E(G). However, because ϕ′ was by
construction already edge consistent, it suffices to check the edge consistency
only for all edges in F [Vx] with u as one of their endpoints, i.e. for all edges
(u,w) ∈ E(F [Vx]) with w ∈ NF [Vx](u). The second condition is that the new
mapping ϕ(u) of the vertex u must extend the previous colorset C ′. That is,
C = C ′ ∪ {ζ(ϕ(u))} 6= C ′. After checking those two conditions, we can add
(ϕ,C) to Dt,x.

For a forget node x ∈ V (T ) and its child y in T , there is not much work
to do, as in the bottom-up construction, we directly obtain the parent list of
nonzero configurations. We denote by u, the vertex being forgotten in x, i.e.,
{u} = Vy \ Vx. In this case, for all partial mappings ϕ′ in the list Dt,y, we
create a new mapping ϕ that excludes the mapping ϕ′(u) for vertex u, i.e.,
ϕ = ϕ′

∣∣
Vx . Particular color sets corresponding to ϕ′ are not changed, as they

represent colors already used in the construction. After this step, we might
need to merge color lists of previously different mappings, as after the removal
of the mapping ϕ′(u), they might have become the same mappings.

For a join node x ∈ V (T ), we denote by y and w its children in T . We
traverse the children lists Dt,y and Dt,w and look for partial mappings ϕ′ and
ϕ′′ , for which ϕ′ = ϕ′′ holds. Such mappings are the only ones to potentially
form a new nonzero configuration in the parent list, as due to the fact that
Vx = Vy = Vw, we construct the new partial mapping ϕ as ϕ = ϕ′ = ϕ′′.
However, for each such mapping ϕ, we must also construct the new list of
color sets, which would afterwards be corresponding to the mapping in the
parent list. We do that by travelling color lists corresponding to mappings ϕ′

and ϕ′′ in Dt,y and Dt,w, respectively, and for particular sets C ′ and C ′′ from
the color lists of ϕ′ and ϕ′′ construct a new color set C = C ′ ∪ C ′′. Similarly
to the the top-down approach, we also check, whether the intersection of C ′

and C ′′ contains exactly the colors to color the vertices in Vx. That is, for
mapping ϕ, we add to Dt,x a color set C, if C ′ ∩ C ′′ = {ζ(ϕ(Vx))}.

As a last part of the description of the bottom-up approach, we need to
describe the way to travel the nice tree decomposition, during which the above
described processing of its nodes happens. Because we build the result from
the leaves of the nice tree decomposition, we employ a recursive procedure
on its root, in which we perform the computations in a way of a post-order
traversal of a tree. From each visited node, we obtain a bottom-up dynamic
programming list of nonzero configurations. After the whole nice tree decom-
position is traversed, we obtain a list of configurations, that were valid in its
root. Such configurations thus represent solutions found during the algorithm,
from which we afterwards reconstruct results. To formally define the bottom-
up approach, the traversal is described in Algorithm 3.1. The algorithm is
mainly composed of sub-routines that handle the situations for each of the
nice tree decomposition nodes’ type. These sub-routines are described in the
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3.4. Modified bottom-up algorithm

next section, as we first need to explain underwent optimalizations that are
used in them.

From this high-level description of the bottom-up approach, we can see
that several efficiency challenges arise. To point some out, we need to some-
how merge color lists in forget nodes, or traverse mapping lists in join nodes
to check for mappings that are equal. All such operations, if performed in-
efficiently, could negatively influence the time complexity of the algorithm.
Because of that, we address these smaller implementation problems in the
next section, where we in detail describe the algorithm.

3.4.2 Complexity optimization modifications

As a first step, we need to estabilish a way to represent mappings and color
sets in our version of the algorithm. It is important to do so, because the
subsequent optimizations minimizing the memory requirements are derived
from the used representations.

Representation of mappings

For a mapping representation, we suppose the content of all bags of the used
nice tree decomposition stay in the same order during the whole algorithm
procedure. Such condition can be fulfilled easily and naturally, but the pro-
posed representation relies on it. The reason is that to minimize the memory
needed, in a mapping representation we only store the vertices to which the
vertices inside a particular bag are mapped to. Because the order of the ver-
tices in a bag doesn’t change, we can easily determine which vertex from F is
mapped to which vertex in G. Also, for a mapping in an introduce or a forget
node, we can describe a position in the mapping, on which the process of
introducing/forgetting takes place.

A mapping ϕ : Vx 7→ V (G) in a nice tree decomposition node x is then
represented as an ordered tuple of |Vx| vertices from G. An example of a rep-
resentation of a particular mapping ϕ can be seen in Figure 3.3.

1, 3, 4Vx :

ϕ : 2 1 6
1

23

4
5

F :

1

2

3

4

5
6

7

G :

Figure 3.3: Representation of partial mappings.
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When mappings change size of their tuple during the processing of intro-
duce or forget nodes, for convenience in the description of the algorithm, we
allow an operation which concatenates two tuples (or a tuple with a vertex)
representing mappings. We denote this operation as Concatenate. For
example, the result of performing Concatenate((1, 7, 2), 6, (4, 5)) is a tuple
(1, 7, 2, 6, 4, 5).

Representation of color sets

Color sets can be represented as bitmasks, where an i-th bit states, whether a
color i is contained in the set or not. For optimization purposes, we represent
bitmasks with an integer number. To retrieve a bitmask from a number, we
simply express the number in a binary numeral system. This representation
proves as very useful and effective, mostly because in the algorithm we use nF
colors (as described in Section 3.2) and we aim at pattern graphs with at most
20 vertices (see 1.5). In the implementation we can then represent a color set
with a 32-bit number.

Compression optimizations

We describe a way to reduce the memory requirements needed to store all
of the dynamic programming lists. From the description of the operations in
section 3.4.1, we can see that we are never processing information from more
than one partial mapping contained in a particular input dynamic program-
ming list. Although we will need to store information about more than one
partial mapping (e.g., during the merging of color sets of multiple mappings
in forget nodes), we truly process the input list (or lists in join nodes) one
mapping at a time. That allows us to store the dynamic programming lists in
a compressed way and to decompress it only on a mapping retrieval basis.

For a compression, we would like to serialize dynamic programming lists
into a simple buffer of bytes. To do so, we need to design a way how to store
and retrieve serialized lists. The way of doing this is straightforward, as we
can store a list as a continuous group of records, each of which represents
one partial mapping and its corresponding list of color sets. Each record then
needs to contain:

• A mapping in the form of ordered tuple of vertices,

• color sets corresponding to the mapping in the form of non-negative
integer numbers,

• the number of color sets included.

To be able to deserialize a record, we of course need to store those items in
a different order. Particularly, for color sets we first need to know the number
of color sets in order to retrieve the correct number of stored information.
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3.4. Modified bottom-up algorithm

The items stored for a single mapping record are thus in order: mapping,
the number of color sets, color sets. We do not need to store the number of
vertices in a mapping, because we will be accessing dynamic programming
lists during the processing of nice tree decomposition nodes. The number of
vertices in a mapping can in that case be easily determined by the size of
a bag of a particular node. An example of how two mappings from a dynamic
programming list are serialized to a buffer is depicted in Figure 3.4.

4 5 1 3

2 3 8 7 4 9

Mapping ϕ1

Mapping ϕ2

Color sets of ϕ1

Color sets of ϕ2

SERIALIZATION

2 3 4 8 7 4 9 4 5 1 1 3

Mapping ϕ1 Mapping ϕ2

Color sets of ϕ1 Color sets of ϕ2

Figure 3.4: Serialization of mappings from a dynamic programming list.

We can now see that a serialized buffer and a dynamic programming list
are the two equivalent objects in terms of the contained information. In the
following text, we thus don’t distinguish between those two terms.

The largest part of the serialized buffer is, in the worst case, formed by
color sets corresponding to mappings. In particular, a serialized record of a
single mapping consists of two numbers representing lengths, tw(F ) numbers
representing a mapping, and at most 2nF numbers representing particular
color sets. However, in difference to the mapping, there isn’t any requirement
on the order of the color sets. We can thus keep these sets sorted in the
increasing order of their number representation, which allows us to use delta
compression on them.

The usage of delta compression is in this case very beneficial, because
before storing the numbers in the buffer, we aim to encode them with a variable
length code. It follows from the fact that the standard integer data types in
programming languages consist of 32 bits, which is way too much for our
purpose. By additionaly using the delta compression on the numbers, we are
guaranteed to distinctively decrease the memory needed to store serialized
lists of sorted color sets, which is, as argued above, the largest part of the
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3. Color coding algorithm

Table 3.3: Bits needed to encode integer numbers by the LibUCW variable
length code.

Range of encoded numbers Required memory [B]

〈0; 128) 1

〈128; 16512) 2

〈16512; 2113664) 3

〈2113664; 270549120) 4

〈270549120; 34630287488) 5

dynamic programming lists. To make the implementation easier, we use delta
compression on all numbers in the record, even though they might not be in a
sorted order. This fact doesn’t hurt us, because in these cases when we store
a large or negative difference (these two are equal in 2’s complement), we use
the same memory as if we stored the numbers without the variable length
code. However, the unsorted part of the record is neglectible in comparison to
the possible number of sorted color sets. We measure and discuss how much
memory does this approach save in the corresponding Section 5.5.1.

The variable length code we use is a part of the LibUCW library, which
was used to implement the algorithm. The library and its functionalities we
use are described in the implementation chapter in Section 4.3. The properties
of the variable length code from the library are shown in Table 3.3.

We have now described the way of storing and accessing dynamic pro-
gramming lists. To formally introduce these procedures, we first show how to
decode and encode a single number in Algorithm 3.2 and Algorithm 3.3. In
these procedures, we don’t describe a way how to append or retrieve numbers
to the resulting serialized buffer, as this part of the algorithm is purely imple-
mentational. We however mention the type of buffer we use in Chapter 4. In
Algorithm 3.4 and Algorithm 3.5, we show how to work with a single map-
ping record in context of dynamic programming lists. To make the description
clearer, all of these procedures expect the underlying buffers to persistently
remember some information about the history of encoding/decoding.

Mapping order optimization

We derive the next optimization directly from the operations performed in join
nodes. For two dynamic programming lists from a join node’s children, we
need to locate equal partial mappings. Such operation, if performed naively,
could lead to a quadratic complexity in terms of the number of mappings
present in the lists. On the other hand, have the lists been sorted, it is
fairly easy to go through those lists in a two-pointer fashion and locate equal
mappings in a time linear in the number of mappings in the lists. Due to
this, we are going to process nice tree decomposition nodes in a way that all
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3.4. Modified bottom-up algorithm

Algorithm 3.2 EncodeNumber(B, x)

Input: A data buffer B, which stores the last number eB encoded into it, and
an integer number x.
Output: Data buffer B with x in the compressed form appended to it.
Procedure:

1. Let eB := 0 if B is empty.

2. Set d := x− eB.

3. Let dv be d encoded in a variable length encoding, i.e., in our case
dv :=LibUcwVarintEncode(d).

4. Append dv to B.

5. Set eB := x.

6. Return B.

Algorithm 3.3 DecodeNumber(B)

Input: A data buffer B, which stores the last number rB read from it and
which is set to read p-th number encoded in it.
Output: A pair (x,B′), where x is the p-th number decoded from B and B′

is B set to read (p+ 1)-th number encoded in it..
Procedure:

1. Set rB := 0 if B has not been read yet, i.e., p = 1.

2. Let d be the first number decoded from B in terms of variable length
encoding, i.e., in our case d :=LibUcwVarintDecode(B).

3. Set B to point to the next number stored after x.

4. Set x := rB + d.

5. Set rB := x.

6. Return (x,B).
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3. Color coding algorithm

Algorithm 3.4 StoreRecord(B,ϕ,Clist)

Input: A data buffer B, a mapping ϕ and a list of color sets Clist .
Output: Data buffer B with the record about ϕ appended in serialized form
to B.
Procedure:

1. For all numbers ϕx in the tuple representing ϕ, do B := EncodeNum-
ber(B,ϕx).

2. Do B := EncodeNumber(B, |Clist |).

3. For all color sets C ∈ Clist , do B := EncodeNumber(B,C).

4. Return B.

Algorithm 3.5 GetRecord(B,S)

Input: A data buffer B set to read p-th record encoded in it, and a size S of
a bag of corresponding nice tree decomposition node.
Output: A tuple (ϕ′, C ′list , B

′), where ϕ′ is a mapping and C ′list is a list of
color sets, both decoded from p-th record in B, and B′ is B set to read (p+1)-
th record encoded in it.
Procedure:

1. For the count of numbers equal to S, do (x,B) := DecodeNumber(B)
and store x to the corresponding position in ϕ′.

2. Do (Clength , B) := DecodeNumber(B).

3. For Clength numbers do (C,B) := DecodeNumber(B) and append C
to C ′list .

4. Return (ϕ′, C ′list , B).

dynamic programming lists used throughout the computation remain sorted in
the lexicographical order of the contained mappings. As a result, all operations
performed in nice tree decomposition nodes can be based on the fact the input
children lists are sorted accordingly. The requirement on the order however
makes the handling of introduce and forget nodes a bit more complex.

Having formally defined the procedures that work with the dynamic pro-
gramming lists and the way of ordering of the mapping records, we can now
describe the subroutines used in Algorithm 3.1. In particular, we show in Al-
gorithm 3.6 how to process start nodes, and in Algorithm 3.7 how to process
join nodes For introduce and forget nodes, we are yet to describe additional
steps that are needed to be taken in their processing, as mentioned above.
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3.4. Modified bottom-up algorithm

Algorithm 3.6 SubIsoLeaf(G,F, ζ, η, x)

Input: Graph G, pattern graph F , random coloring ζ, a nice tree decompo-
sition η of F and a start node x ∈ η.
Output: A dynamic programming list Dt,x with nonzero configurations after
processed in a start node x.
Procedure:

1. Initialize Dt,x as an empty dynamic programming list.

2. For all vertices u ∈ V (G) in increasing order, do Dt,x := StoreRe-
cord(Dt,x, (u), {ζ(u)}).

3. Return Dt,x.

The problem in introduce and forget nodes arises from the fact that even
though the input dynamic programming list is sorted in a lexicographical
order of mappings, by consecutively performing the corresponding operation
on mappings in both introduce and forget nodes, we can destroy the original
order. For introduce nodes, one would say it suffices to extend the mappings
by vertices in order of their number in graph G. That is however untrue, as
shown in a counterexample in Figure 3.5.

. . .Mappings in Dt,y : 1 4 1 5

Introduce position

INTRODUCE 2, 3

, . . . ,Mappings in Dt,x : 1 2 4 1 3 4 1 2 5 1 3 5

Wrong order

Figure 3.5: Disruption in the order of mappings in an introduce node.

For forget nodes it can be seen fairly easy, that by the removal of a number
from an arbitrary position in a mapping tuple, we can destroy the original
order. Again, an example proving this can be seen in Figure 3.6.

To address this problem, while working with mappings, we split them into
a prefix containing elements of the mapping tuple located before the position
to which a new mapping of a vertex is introduced (or the position from which
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3. Color coding algorithm

Algorithm 3.7 SubIsoJoin(G,F, ζ, η, x,Dt,y, Dt,w)

Input: Graph G, pattern graph F , random coloring ζ, a nice tree decomposi-
tion η of F , a join node x ∈ η, and dynamic programming lists Dt,y and Dt,w.
Output: A dynamic programming list Dt,x with nonzero configurations after
processed in a join node x.
Procedure:

1. Initialize Dt,x as an empty dynamic programming list.

2. Do (ϕ′, C ′list , Dt,y) := GetRecord(Dt,y, |Vx|) and (ϕ′′, C ′′list , Dt,w) :=
GetRecord(Dt,w, |Vx|).

3. If there was an attempt to use GetRecord on Dt,y or Dt,w while any
of these lists was already completely read, go to step 5.

4. Distinguish three cases:

• If ϕ′ is lexicographically smaller than ϕ′′, then (ϕ′, C ′list , Dt,y) :=
GetRecord(Dt,y, |Vx|) and go to step 3.

• If ϕ′ is lexicographically greater than ϕ′′, then (ϕ′′, C ′′list , Dt,w) :=
GetRecord(Dt,w, |Vx|) and go to step 3.

• Else ϕ′ = ϕ′′:

(1) Initialize Clist as an empty list.

(2) For all C ′ ∈ C ′list and for all C ′′ ∈ C ′′list , if C ′ ∩C ′′ = ζ(ϕ′(Vx)),
then Clist := Clist ∪ {C ′ ∪ C ′′}.

(3) Order Clist in order of increasing numbers.

(4) Do Dt,x := StoreRecord(Dt,x, ϕ
′, Clist).

(5) Go to step 2.

5. Return Dt,x.
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, . . . ,

Forget position

Mappings in Dt,y : 1 2 4 1 2 5 1 3 4 1 3 5

FORGET

, . . . ,Mappings in Dt,x : 1 4 1 5 1 4 1 5

Wrong order

Figure 3.6: Disruption in the order of mappings in a forget node.

a mapping of a vertex is forgotten) and into a suffix of the rest of the elements.
Such a division is useful, because it can be seen that possible disruptions in
order occur only between mappings with the same prefixes. It follows from
the fact that mappings are transformed exactly at the position between their
prefix and their suffix, and so the order of mappings’ prefixes is unharmed.

Because the mappings we process are ordered, their prefixes are also or-
dered. To maintain the mappings in the correct order during and after we
process them, it then suffices to correctly order suffixes for the currenly pro-
cessed prefix. After we reach a mapping with a different prefix, we can safely
append already processed mappings (and their corresponding records) with
the same prefix to the resulting dynamic programming list.

Such an approach is good for two reasons. Firstly, for the cases of mappings
with a non-empty prefix, we don’t have to sort all the mappings contained
in a particular dynamic programming list at once, but just the mappings
with the same prefix at a time. Secondly, this approach allows us to easily
implement the operation needed in forget nodes, in which we need to merge
color sets of mappings that have become equal after the processing. Because
only mappings with the same prefix can become equal, we just append the
color sets of mappings with equal suffixes.

To efficiently sort and access suffixes, for each prefix we use a binary search
tree, in which we store a pair consisting of (suffix , color sets list). After en-
countering a different prefix, we obtain the correct order of all suffixes corre-
sponding to a previous prefix by an in-order traversal of the particular binary
search tree. We describe the sub-routine of Algorithm 3.1, which is used to
process forget nodes formally in Algorithm 3.8. To describe the sub-routine
for introduce nodes, we still need to explain additional optimizations that are
used in it.
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3. Color coding algorithm

Algorithm 3.8 SubIsoForget(G,F, ζ, η, x,Dt,y)

Input: Graph G, pattern graph F , random coloring ζ, a nice tree decompo-
sition η of F , a forget node x ∈ η, and a dynamic programming list Dt,y.
Output: A dynamic programming list Dt,x with nonzero configurations after
processed in a forget node x.
Procedure:

1. Initialize Dt,x as an empty dynamic programming list and initialize t as
an empty binary search tree of pairs (suffix , color sets list), with suffix
as a key. Tree t is ordered lexicographicaly with respect to keys.

2. For each record in Dt,y, set (ϕ′, C ′list , Dt,y) := GetRecord(Dt,y, |Vx|+1)
and do the following:

(1) Let c be the position in ϕ′ at which the process of forgetting occurs.

(2) Let p(ϕ′) be the prefix of ϕ′ consisting of elements in tuple ϕ′ before
position c and let s(ϕ′) be the suffix of ϕ′ consisting of elements in
tuple ϕ′ after position c.

(3) If p(ϕ′) is not the first prefix processed in Dt,x and p(ϕ′) 6= pt, do:

(3.1) Perform an in-order traversal of t and for each stored record
(st, Clist) order Clist in order of increasing numbers and do
Dt,x := StoreRecord(Dt,x,Concatenate(pt, st), Clist).

(3.2) Set t to be empty.

(4) Add a record (s(ϕ′), C ′list) into t. That is, if t contains a record
(s(ϕ′), X), set (s(ϕ′), X) := (s(ϕ′), X ∪ C ′list), else insert in t a new
record (s(ϕ′), C ′list).

(5) Set pt := p(ϕ′).

3. For the last unprocessed prefix, do the same as in (4.1).

4. Return Dt,x.
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3.4. Modified bottom-up algorithm

Mapping expansion optimization #1

The main “brute-force” work of the algorithm is performed in two types
of nodes – leaf and introduce. This follows from the algorithm description
in 3.4.1, which states that we need to try all possible mappings of a particular
vertex in a leaf node, or all possible mappings of an introduced vertex in a in-
troduce node, to every vertex from G. However, there is a way to reduce the
vertices needed to be tried in the case when we are processing an introduce
node.

The idea is based on the fact, that we always need to check whether the
new mapping of an introduced vertex is edge consistent with the mapping of
the remaining vertices for the corresponding bag (as the rest of the bag is
always already mapped). To comply with the edge consistency condition, for
every edge between vertices in the bag, there must be a corresponding edge
in the mapping of the vertices in the bag. Because it suffices to check only
the edges between the newly mapped vertex and its neighbors, we can easily
determine which vertices of G would be edge consistent without using any
brute-force approach. To obtain such candidates for a vertex u that is being
introduced to a nice tree decomposition node x, we look at the neighbors of u in
F [Vx]. If there are any (i.e., degF [Vx](u) > 0), we look at the vertices they are
mapped to. Formally, we look at vertices of G in the set ϕ(NF [Vx](u)). From
the edge consistency condition, it is clear that the only possible candidate
vertices in G, on which the vertex u can be mapped, must be adjacent to all
vertices in ϕ(NF [Vx](u)). Note that after performing this selection of mapping
candidates, we do not have to check the edge consistency condition for the
remaining vertices anymore. The idea is illustrated in Figure 3.7.

2, 4, 5Vx :

ϕ : 2 6 2

4
5

F [Vx] :

1

2
3

4

5

6

G :

Figure 3.7: Mapping expansion modification based on edge consistency.
The vertex labeled 4 in F [Vx] is being introduced. The only possible ver-
tex to extend the mapping ϕ is the vertex 3 in G.

In the case degF [Vx](u) = 0 we have to use the regular approach, in which
we try all possible nodes of G. Because such case is the most computationaly
demanding part of the algorithm, in the next section we further optimize it.
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Mapping expansion optimization #2

In the case the vertex u being introduced to an introduce node x has no
neighbors in F [Vx], in the worst case we need to try to map u onto all vertices
of G. That is unfavorable for us, because as discussed in Section 1.5, we aim
to use the algorithm for input graphs G of a possibly large size. On the other
hand, the pattern graphs F tend to be smaller than the input graphs G by
several orders of magnitude, which is the fact we exploit in this optimization.

For such an introduce node, the partial mappings we work with already
contain the mapping of all vertices in Vx but the introduced vertex u. A partial
mapping processed in an introduce node already anchors the possible resulting
subgraph to a certain position in G. During the construction of possible
mapping of u, it is then pointless to try mapping u to vertices in G that could
by no means form a resulting subgraph isomorphic to F . A decision when
the mapping is pointless or not can be made due to a possible sheer difference
between the position of a candidate vertex on which u is to be mapped and
the position of the vertex on which another vertex from Vx is already mapped.
Such a decision is possible because we assume input graphs consist of a single
connected component.

We obtain the maximal possible distance to be considered in G by the
eccentricity in F of the vertices from Vx, that are already mapped to vertices
of G. If we happen to need to try all vertices of G to obtain a mapping of u (in
order to extend a mapping ϕ), we determine the already mapped vertex w with
minimal eccentricity in F , i.e., we determine minv∈Vx\{u} excF (v). It is then
clear, that to construct all possible mappings of u, it suffices to try vertices
from G that are located at most exc(w) units of distance far from ϕ(w). We
could in fact restrict the set of candidate vertices for mapping even further,
by determining which vertices are in suitable distance from all of the vertices
already mapped in ϕ. That would however be purposeless, as this optimization
aims to drastically reduce the number of candidate vertices mainly in the cases
when of a graph G with a large number of vertices and a large diameter. The
reduction of an already reducted list of vertex candidates is thus insignificant
to the total achieved result. The principle of this optimization is illustrated
in Figure 3.8.

We can now describe the last sub-routine of Algorithm 3.1, which is used
to process introduce nodes. It is described in Algorithm 3.9. By analyzing
Algorithm 3.1, we arrive at the following conclusion.

Theorem 3.2 There is an algorithm that solves the SubIso problem for an
input graph G and a pattern graph F with probability at least (1 − 1

e ) in

O
(
n
tw(F )+1
G 2O(nF ) logR

)
time and O (R) space, where R is the maximal num-

ber of nonzero dynamic programming configurations encountered over all runs
of its internal dynamic programming procedure. Dynamic programming con-

figurations are part of a state space of size O
(
n
tw(F )+1
G tw(F )nF 2nF

)
.
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2, 3, 5Vx :

ϕ : 1 7
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Figure 3.8: Mapping expansion modification based on eccentricity. In the
depicted case, we cannot use the optimization based on the edge consistency,
as the introduced vertex 5 has no neighbors in F [Vx]. The vertex with the
minimal eccentricity in F is the vertex labeled with 2. It can be easily seen,
that the introduced vertex can not be mapped to the vertex labeled 9 in G,
because its distance d to ϕ(2) (vertex 1 in G) would be inconsistent with the
eccentricity of the vertex 2 in F .

Proof In Section 3.4.1 we argued the equivalence between a top down and
bottom up approach of the color coding algorithm. In the worst case, the
space needed by the modified bottom up algorithm is the same as in the
unmodified version. Both versions thus share the same space bound described
in Theorem 3.1. However, as we described above, in the bottom up version
of the algorithm we only store the nonzero configurations during the dynamic
programming part and so the space used is in fact bounded by R.

In the described bottom-up version of the algorithm, at each node of the
tree decomposition we in addition store all actual mappings in a binary search
tree. Querying of such tree results in a O (logR) slowdown in comparison to
the original algorithm. All other operations do not modify the bounds proven
in Theorem 3.1. �

3.4.3 Reconstruction of the result

We reconstruct the result in a reverse direction to the bottom-up approach by
using the dynamic programming lists computed during the first phase of the
computation in Algorithm 3.1. That is, we consecutively, from root to leaves,
take nonzero records in dynamic programming lists and as follows from the
main idea in Section 3.2, we gradually construct a result mapping Φ from the
encountered partial mappings ϕ.
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Algorithm 3.9 SubIsoIntroduce(G,F, ζ, η, x,Dt,y)

Input: Graph G, pattern graph F , random coloring ζ, a nice tree decompo-
sition η of F , an introduce node x ∈ η, and a dynamic programming list Dt,y.
Output: A dynamic programming list Dt,x with viable (nonzero) configura-
tions after processed in an introduce node x.
Procedure:

1. Initialize Dt,x as an empty dynamic programming list and initialize t as
an empty binary search tree of pairs (suffix , color sets list), with suffix
as a key. Tree t is ordered lexicographicaly with respect to keys.

2. For each record in Dt,y, set (ϕ′, C ′list , Dt,y) := GetRecord(Dt,y, |Vx|−1)
and do the following:

(1) Let c be the position in ϕ′ at which the process of introducing occurs.

(2) Let p(ϕ′) be the prefix of ϕ′ consisting of elements in tuple ϕ′ upto
position c and let s(ϕ′) be the suffix of ϕ′ consisting of elements in
tuple ϕ′ after position c.

(3) If p(ϕ′) is not the first prefix processed in Dt,x and p(ϕ′) 6= pt, do:

(3.1) Perform an in-order traversal of t and for each stored record
(st, Clist) order Clist in order of increasing numbers and do
Dt,x := StoreRecord(Dt,x,Concatenate(pt, st), Clist).

(3.2) Set t to be empty.

(4) Let u ∈ V (F ) be the vertex introduced in x.

(5) Consider following two cases:

• If degF [Vx](u) > 0:

(5.1) Let S := {v ∈ V (G) | v is adjacent to all ϕ′(NF [Vx](u))}.
• In the other case:

(5.1) Let w := minv∈Vx\{u} excF (v).

(5.2) Let S := {v ∈ V (G) | dG(ϕ′(w), v) ≤ excF (w)}.
(6) For all v ∈ S do:

(6.1) Let Clist := {C ∈ C ′list | C ∪ {ζ(v)} 6= C}.
(6.2) If Clist 6= ∅, let sI :=Concatenate(v, s(ϕ′)) and add a record

(sI , Clist) into t. That is, if t contains a record (sI , X), set
(sI , X) := (sI , X∪Clist), else insert in t a new record (sI , Clist).

(7) Set pt := p(ϕ′).

3. For the last unprocessed prefix, do the same as in (4.1).

4. Return Dt,x.
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To represent result mappings Φ: V (F ) 7→ V (G), we can use the same
tuple structure as in the representation of partial mappings in the record
in dynamic programming lists. Only this time, tuples representing result
mappings contain nF elements.

For the reversed traversal, the roles of introduce and forget nodes swap.
In particular, as we now traverse from the root of the nice tree decomposition
to its leaves, extensions and restrictions of partial mappings occur between
introduce and forget nodes in the reverse order. Because in the reconstruction
we are only going to extend result mappings step by step, the work will be done
in forget nodes, as in the reverse direction a forget node implies an addition
of a vertex to partial mappings. In any other type of node we do not have to
compute anything, as the result is indeed built from mapping extensions only.

During the reconstruction, the procedure in a node x of a nice tree de-
composition η will work with a list R of result mappings, where any mapping
Φ ∈ R contains a partial solution built from the mapping extensions in forget
nodes encountered so far on the way from the root of the nice tree decom-
position. For any node that is not a forget node, we merely pass R to all
children (if the node is not a start node). For a forget node x, suppose y is
a child of x in η. We need to check for all mappings ϕ ∈ Dt,y and for all
Φ ∈ R, whether ϕ was used as a part of the solution encoded in Φ. To do
so, it suffices to check some properties of the forgotten node u, {u} = Vy \ Vx
for all possible combinations of ϕ and Φ. Namely we require that the color
of ϕ(u) extends the color set of all mapped vertices in Φ. That is, we require
ζ(Φ(V (F ))) ∪ ζ(ϕ(u)) 6= ζ(Φ(V (F ))). Even though we use V (F ) in the con-
dition, it is important to realize that Φ is in this phase defined only for some
subset of V (F ) and the condition thus can be fulfilled. Also, it is needed for Φ
to be an extension of ϕ in all vertices of Vy but u (because u is not yet included
in Φ). As such a set in fact equals Vx, it needs to hold ϕ

∣∣
Vx = Φ

∣∣
Vx . For each

valid pair of ϕ and Φ, we add a new mapping consisting of Φ extended by
mapping of u in ϕ to the output list of solutions for this node.

We formally describe the reconstruction algorithm in Algorithm 3.10 and
discuss its properties in Theorem 3.3.

Theorem 3.3 For a filled dynamic programming table Dt of the color cod-
ing algorithm described in Algorithm 3.1, which solves the SubIso problem
for a graph G and a graph F , there exists an algorithm which reconstruct
subgraphs found during the run of the color coding algorithm, i.e., solves the
SubIsoEnum problem. If Dt contains R nonzero records and there are S so-
lutions to the SubIsoEnum problem, then the reconstructing algorithm runs
in O (SR · tw(F )) time and uses O (R+ S · nF ) space.

Proof Time and space bounds follow directly from the combination of the
description of the color coding algorithm in Algorithm 3.1 and the description
of algorithm used for reconstruction in Algorithm 3.10. For each of S possible
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Algorithm 3.10 ReconstructResults(G,F, ζ, η)

Input: Graph G, pattern graph F , random coloring ζ, and a nice tree
decomposition η of F .
Output: A list of mappings of subgraphs which correspond to nonzero
configurations in Dt,x.
Procedure:
Execute the following recursive subroutine with parameters Reconstruc-
tRec(G,F, ζ, η, r,R0), where r is the root of η and a list R0 contains a single
empty result mapping. The subroutine shares the input and output with this
procedure. The two additional input parameters are x ∈ η, which corresponds
to the currently processed node of η and R which represents the current set
of solutions.

ReconstructRec(G,F, ζ, η, x,R):

• If x is a leaf node:

1. Return R.

• If x is an introduce node:

1. Let y be the child of x in η.

2. Return ReconstructRec(G,F, ζ, η, y,R).

• If x is a forget node:

1. Let y be the child of x in η.

2. Initialize R′ as an empty list of mappings V (F ) 7→ V (G).

3. Let {u} := Vy \ Vx (u is the vertex forgotten in x).

4. For each record in the child dynamic programming list Dt,y, set
(ϕ,Clist , Dt,y) := GetRecord(Dt,y, |Vy|) and do the following:

(1) For all Φ′ ∈ R:

◦ If ζ(Φ′(V (F ))) ∪ ζ(ϕ(u)) 6= ζ(Φ′(V (F ))) and at the same
time ϕ

∣∣
Vx = Φ′

∣∣
Vx :

(1.1) Let Φ := Φ′ with the extension of Φ(u) = ϕ(u).

(1.2) Set R′ := R′ ∪ Φ.

5. Return ReconstructRec(G,F, ζ, η, y,R′).

• Else x is a join node:

1. Let y and w be the children of x in η.

2. Let R′ := ReconstructRec(G,F, ζ, η, y,R).

3. Return ReconstructRec(G,F, ζ, η, w,R′).
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3.5. Final form of the algorithm and its properties

solutions, we iterate through R nonzero records and compare the mappings
in O (tw(F )) time. Nonzero records take O (R) space, and to represent all
solutions we require O (S · nF ) space. �

3.5 Final form of the algorithm and its properties

Theorem 3.2 states that by running Algorithm 3.1 enF times, we can solve the
SubIso problem with the probablity at least 1

e . But what if we would like the
algorithm to have a different probability of successfully solving the problem?
Formally, we are interested in the number of repetitions needed, so that the
probability of the algorithm not founding a subgraphs which should have been
found is ε.

Proposition 3.2 By running the color coding algorithm (described in Al-

gorithm 3.1) enF log 1
ε times each time with a random coloring ζ : V (G) 7→

{1, 2, . . . , nF }, the probablity of the algorithm not founding a proper solution
to the SubIso problem is at most ε.

Proof The algorithm only detects colorful subgraphs. By Proposition 3.1, the
probablity of a subgraph being colorful in the case of random coloring with
nF colors is e−nF . Therefore, the probability of the algorithm not detecting
a particular subgraph is 1 − e−nF . After repeating the algorithm enF log 1

ε

times, the probablity (with the usage of inequality (1 + x) ≤ ex) is:

(
1− e−nF

)enF log 1
ε

=

((
1− 1

enF

)enF
)log 1

ε

<

(
1

e

)log 1
ε

= elog ε = ε

�

In Table 3.4, Table 3.5 and Table 3.6 we show how many repetitions of the
main algorithm would be needed in the case of the desired error rate ε = 0.5,
ε = 1

e and ε = 0.01, respectively.

Table 3.4: Number of the algorithm repetitions needed to achieve ε = 0.5.

nF Number of repetitions

2 2

3 3

4 4

5 5

10 21

15 90

20 403
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3. Color coding algorithm

Table 3.5: Number of the algorithm repetitions needed to achieve ε = 1
e .

nF Number of repetitions

2 8

3 21

4 55

5 149

10 22027

15 3269017

20 485165196

Table 3.6: Number of the algorithm repetitions needed to achieve ε = 0.01.

nF Number of repetitions

2 55

3 404

4 2981

5 22027

10 485165196

15 1.06 · 1013

20 2.35 · 1017

The number of repetitions needed to achieve a promisingly low error rate is
in theory rather high. However, the nature of the algorithm at least partially
solves this problem. Because we are repeating the algorithm which on itself
produces continuous results, it is possible to obtain already found subgraphs
progressively, even though the whole procedure has not in theory finished
yet. By extending the running time, we gradually lower the error rate of the
algorithm and we can thus run the algorithm as long as we are not satisfied
with the result. This is a very good property of the algorithm, as we are not
required to wait for it to become finished, which could possible take (as seen
in Table 3.6) many repetitions.

We can now formulate the final and complete version of the algorithm,
which solves the SubIsoEnum problem, in which we also require the algorithm
to locate and ouput the isomorphic subgraphs (as described in Section 1.3).
The algorithm is described in Algorithm 3.11 and its properties are formally
proved in Theorem 3.4.

Theorem 3.4 There is an algorithm that solves the SubIsoEnum problem
for an input graph G and a pattern graph F with probability at least (1− ε) in

O
(
n
tw(F )+1
G 2O(nF log 1

ε) logR+ enF log 1
εSR · tw(F )

)
time and O (R+ S · nF )

space, where S is the number of solutions to the problem and R is the maximal
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3.5. Final form of the algorithm and its properties

Algorithm 3.11 SubIsoAlgorithm(G,F, ε)

Input: Graph G, graph F and an error rate ε.
Output: A set of subgraphs of G which are isomorphic to F with error ε.
Procedure:

1. Let R := ∅.

2. Let η := NiceTreeDecomposition(F ), as described in Algorithm 2.7.

3. Repeat enF log 1
ε times:

(1) Let ζ be a random coloring ζ : V (G) 7→ {1, 2, . . . , nF }.
(2) Perform the dynamic programming part of the algorithm, that is
Dt,r :=SubIsoBottomUp(G,F, ζ, η), as described in Algorithm
3.1.

(3) Perform the reconstruction from Dt,r into Rζ , that is Rζ := Re-
constructResults (Dt), as described in Algorithm 3.10.

(4) Set R := R∪Rζ .

4. Return R.

number of nonzero dynamic programming configurations encountered over all
runs of its internal dynamic programming procedure. Dynamic programming

configurations are part of a state space of size O
(
n
tw(F )+1
G tw(F )nF 2nF

)
.

Proof The corresponding Algorithm 3.11 is a combination of three algo-
rithms: Algorithm 2.7, Algorithm 3.1 and Algorithm 3.10. As we discussed in
the proof of Theorem 3.1, time and space requirements of Algorithm 2.7 are in-
significant, if compared with the requirements of Algorithm 3.1. The time and
space requirements of the reconstruction algorithm (described in Algorithm
3.10) for a single run of the dynamic programming algorithm are by Theorem
3.3 dependent on the number of solution to the problem S and on the number
of nonzero configurations encountered R. Time required for a single recon-
struction of results is O (SR · tw(F )) and space required is O (R+ S · nF ).

To achieve an error rate of ε, by Proposition 3.2 it suffices to repeat the
core procedure and the reconstruction of results enF log 1

ε times, which gives us
the time complexity required in total. �
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Chapter 4

Implementation

This chapter contains a description of a module, which implements the color
coding algorithm presented in Algorithm 3.11 and all of its affiliated proce-
dures. So far, in numerous parts of the thesis, we have estabilished that to
effectively solve the extended SubIso problem, we need to optimize our ap-
proach down to the slightest detail. In the previous chapter, we primarily
concentrated on the optimizations of the color coding algorithm itself. The
necessity of optimization however holds also for the implementational part of
the algorithm, which is what influenced the solution of several design ques-
tions.

4.1 Chosen technologies

To be able to make the resulting module as efficient as possible, we opted
to create the implementation in C. To address the performance matter even
further, the module is based on a low-level C library LibUCW. The library
contains many tools needed to achieve an efficient implementation and we
closely describe it in Section 4.3.

4.2 Licensing and availability

The implemented module is available under the LGPL license, with compliance
to the license of this thesis. Its source codes can be found on the enclosed
CD, or in a public Github repository located at http://github.com/josik/
subiso/.

4.3 LibUCW library

The used LibUCW library is a C library freely available under the LGPL
license. Its home page is located at http://www.ucw.cz/libucw/.
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4. Implementation

The library offers a set of efficient tools in order to maximize the perfor-
mance of C programs. The performance of the library code is achieved by
a highly optimized code, most particularly in a way directed to reduce the
number of function calls. Many parts of the code are thus generated by C
preprocessor directly for the intended usage. To make the implementation of
the module efficient, we used the following parts of the LibUCW library:

• Growing arrays – Arrays that automatically handle their size and per-
form possibly needed reallocations. They allow to store items of an
arbitrary type and are represented by a simple pointer. We use these
arrays instead of regular C arrays in all cases when an array without
a fixed size is needed.

• Growing fastbuffers – Data buffers that are optimized for speed and
dynamically adapt their size to the size of their content. It is not allowed
to interleave requests to read and write to the buffers, as only a single
mode (read/write) is allowed at a time. We use these buffers to store
serialized and compressed data of dynamic programming lists.

• Hash tables – Hash tables that are generated specifically for the given
parameters, such as key type, or key comparison function. We use hash
tables to represent adjacency list for graphs.

• Red black trees – Red black trees are similarly to hash tables generated
for the given parameters. We mainly use red black trees during the
processing of dynamic programming lists.

• Sorter – Sorting routine which is a combination of quick sort and insert
sort and is optimized by limiting function calls by inlining.

• Variable length encoding – Variable length encoding of integer numbers,
whose propeties are described in Table 3.3. We use the encoding to
reduce the memory needed for dynamic programming lists.

4.4 Structure of the module

Because the final form of the implemented algorithm consists of several sub-
routines, each of which covers a specific part of the computation, the module
can be logically divided into parts. The division is as follows:

• Part covering the creation of a tree decomposition for a given pattern
graph. This part is implemented in tree_dec.c.

• Part covering the transformation of a tree decomposition to a nice one.
This part is implemented in nice_tree_dec.c.

60



4.5. Usage of the module

• Part covering the searching for isomorphic subgraphs based on a nice
tree decomposition. This part is implemented in subiso.c.

• Part covering the processing of found results and their interpretation.
This part is implemented in graph_result.c.

In addition to the parts of the implemented algorithm, the module also
contains a part covering the testing of the structures created during the run
of the algorithm, which is implemented in tests.c. Namely, it contains pro-
cedures to test the properties either of created nice tree decompositions or
found result subgraphs. A detailed description of the implemented tests can
be found in Section 5.3.

4.5 Usage of the module

The module is accessible through command-line interface and the input is
loaded through specifiable external files. The output from the module is di-
rected to the standard output. After a successful installation (which is de-
scribed in Appendix C), the module can be run via binary file grs created
during the installation.

4.5.1 Run parameters

To run the module, there are mandatory parameters which have to be speci-
fied. The full interface of the module is as follows:

./grs <source graph file> <pattern graph file>

[computation seed] [number of repetitions]

The meaning of each particular parameter is:

• Mandatory parameters:

– <source graph file> – file with graph G in the format specified
below.

– <pattern graph file> – file with graph F in the format specified
below.

• Optional parameters:

– [computation seed] – number for random number generator ini-
tialization (in case it is not specified, the seed is determined ran-
domly).

– [number of repetitions] – number of repetitions of the main
algorithm (in case it is not specified, the algorithm is repeated
until a theoretical rate of error ε = 1

e is achieved).
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4. Implementation

4.5.2 Graph file format

Graph files which are presented to the module must be in accordance to a spe-
cific format, which is in the following form.

On the first line of the graph file, there is a number of vertices n of the
graph. On the i-th from the next n lines, there is information about the
neighbors of the (i− 1)-th vertex (vertices are thus to be numbered from 0).
Specifically, there is a number si−1 of neighbors of vertex i − 1. After that,
there are si−1 numbers, each of which represents a neighbor of vertex i − 1.
An example of this input format is shown in Figure 4.1.

4

3 2 3 1

1 0

2 3 0

2 0 2 0 1

2 3

Figure 4.1: Graph representation in files.

4.5.3 Produced output

As described in Section 5.1, the algorithm continuously produces result sub-
graphs, because its main part is run repeatedly. To allow users of the module
to extract results in cases when the specified number of runs has not yet been
finished, it suffices to output found subgraphs after each run. In order to
make the output human readable (especially for this thesis), the enclosed im-
plementation outputs vertex unique subgraphs after all runs of the algorithm
are completed. The output format is in the form so it is easily readable. In
addition, current version of the module shows information about the current
computation (e.g., about the number of subgraphs found so far).
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Chapter 5

Results and performance

In this chapter we perform series of qualitative and quantitative tests of the
implemented module. To demonstrate its usability, we chose, with some ex-
ceptions, to test its performance on real-world graphs. We also measure how
efficient were in fact some of the optimizations we proposed and implemented.
In the end we discuss the results in the comparison to other related work.

5.1 Testing enviroment

The testing was performed on a 64-bit linux system with Intel Core i5-2400
CPU @ 3.10GHz. The module was compiled with gcc compiler (version 4.7.2)
with -O3 optimizations enabled. All quantitative results, if not said otherwise,
are an average of 5 independent measurements.

5.2 Testing data

As an input graph G, we used three different graphs of various properties. We
shall denote these graph instances as Ecoli, Trans and Slash.

The first of these instances, Ecoli, models protein-protein interactions of
bacterium Escherichia coli. It is a rather small and sparse network, which
consists of 673 vertices and 865 unoriented edges.

The second instance, Trans, is an artifically made graph, which simulates
transfers on bank accounts. It is a very sparse network, which consists of 45733
vertices and 44727 unoriented edges.

Third instance, Slash, models Slashdot social network interactions from
February 2009. More details about this instance can be found in [12]. It
consists of 82168 vertices and 543382 unoriented edges.

As we can see, all three instances are quite sparse. However, for the
problem SubIsoEnum, even such networks contain large amount of result
subgraphs. We will confirm that in quantitative tests, where we will have to
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5. Results and performance

restrict the number of enumerated solutions in order to measure the running
time.

For the pattern graphs, we use standard set of basic graph patterns, as
the treewidth of such graphs is well known and allows a clear interpretation
of the results. In particular, we use paths, cycles and stars of several sizes,
as well as grids and complete graphs. We shall denote a path on n vertices
Pn, a cycle on n vertices Cn, a star on n vertices Sn, a complete graph on n
vertices Kn and a n ×m grid Gn,m. Treewidths of these pattern graphs are
shown in Table 5.1.

Table 5.1: Treewidth of pattern graphs.

Pattern F tw(F )

Pn 1

Sn 1

Cn 2

Kn n− 1

Gn,m min{n,m}

5.3 Qualitative tests

To ensure the results produced by the module are correct, as a part of module
we implemented a set of tests in tests.c. With these tests we can check three
important structures created during the computation. Firstly, we can check
properties of the created tree decomposition and of the nice tree decomposi-
tion constructed from it. That is important because the tree decomposition
properties need to be ensured for the main algorithm to work correctly. Sec-
ondly, we can check if all found subgraphs are isomorphic to the given pattern
graph.

For all runs of the algorithm described and measured in this chapter, we
additionaly used the implemented tests to verify the corectness of created tree
decompositions and most importantly of computed results. There was no run
which would fail any of the described tests.

5.4 Quantitative tests

In this section we measure performance of the module, i.e., its real time and
memory requirements. First we measure the time and space needed to build
a nice tree decomposition. Then we show the requirements of the dynamic
programming part of the whole algorithm.
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5.4. Quantitative tests

5.4.1 Performance tests of nice tree decomposition
construction

We have already discussed that in theory, it suffices for us to compute a tree
decomposition in time expontential to the size of the pattern. We also claimed
that due to the incomparability of the requirements of the nice tree decompo-
sition construction procedure and of the main part of the algorithm, during
the construction we can precompute many useful things with no negative con-
sequences on the total running time.

We confirm the theoretical results by measuring the time and space needed
to build a nice tree decomposition for various patterns of a given size and
treewidth. The results of this test are shown in Table 5.2.

Table 5.2: Performance of nice tree decomposition construction.

nF tw(F ) Time [s] Memory [MB]

10 1 0.01 0.93

15 1 0.26 0.94

20 1 12.36 4.80

10 2 0.01 0.93

15 2 0.25 0.94

20 2 12.58 4.84

10 3 0.01 0.93

15 3 0.32 0.94

20 3 16.08 4.80

By observing the measured results, we can see that the algorithm used to
construct a tree decomposition is indeed exponential only in the size of the
input pattern graph. The slightly higher running time for tw(F ) = 3 can be
caused by a different structure of the tree decomposition, which as a result
makes the procedure of construction of a nice tree decomposition do more
work.

As a main result from this test, we see that compared to running times
mentioned in the next section, the construction of a nice tree decomposition
doesn’t induce a slowdown and the procedure which we are using was thus
chosen correctly.

5.4.2 Performance tests of the algorithm

Due to the randomized properties of the main algorithm, in order to achieve
a certain error rate, we need to repeat the computation more than once.
The number of found results thus depends not only on the quality of the
algorithm, but also on the choice of the number of its repetitions, as discussed
in Section 5.1. It is then only logical to measure performance of the algorithm
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in the context of a single run of the algorithm only. Results from such a testing,
however, should be still taken as an rough average, because the running time
of a single run of the algorithm depends on many factors.

In the light of these facts, we have approached the performance tests of
the algorithm in a way, where we average the results of many single runs
of the algorithm. We average not only the time and space needed, but also
the number of found subgraphs. To obtain the expected time needed to run
the whole algorithm, it suffices to sum the time needed to create a nice tree
decomposition and n times the time required for a single run, if there are n
runs in total.

For testing, we used the mentioned pattern graphs in various sizes, most
commonly in sizes 5, 10 and 15. We divided the time and space required
into two parts. One part covers the dynamic programming subroutine, which
solves the SubIso problem. We denote this part as a computational part,
shortly Comp. The second part we measure is the part of reconstruction of
the results. We denote this part as a reconstruction part, shortly Recon.
The reason behind this division is to measure how effectively we improved
the solution for the SubIso problem on its own – this corresponds to the
computational part. The reconstruction part then covers the retrieval of the
solution to the SubIsoEnum problem from the dynamic tables solving the
SubIso problem.

Also, because of the time bounds of the algorithm shown in Theorem 3.4,
the complexity of solution reconstruction depends directly on the number of
solutions. In order to be able to measure the computation for larger networks
with many result subgraphs, in reconstruction part we measure only the time
and space required to retrieve first 100000 solutions. We also restrict ourselves
with a 1000 MB memory limit for the computational part, as the dynamic
programming lists use the largest part of the memory for the computational
part, and the time required to reconstruct results also directly depends on
their size.

We show the results of the performance testing in Table 5.3 for Ecoli, in
Table 5.4 for Trans, and in Table 5.5 for Slash.
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Table 5.3: Performance of a single run of the algorithm on Ecoli dataset.

Pattern Comp. time [s] Comp. memory [MB] Recon. time [s] Recon. memory [MB] Results

P5 0.01 1.46 0.03 1.91 836

P10 0.01 1.81 0.71 15.43 3014

P15 0.05 4.48 6.24 97.70 1956

S5 0.01 1.67 0.03 3.49 640

S10 0.01 1.92 0.15 23.44 62

S15 0.02 3.7 0.31 31.18 1

C5 0.01 1.81 0.01 1.88 6

C10 0.11 6.45 0.09 6.82 2

C15 0.74 19.51 2.73 19.57 1

G3,4 0.42 13.13 – – 0

K4 0.01 1.40 – – 0
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Table 5.4: Performance of a single run of the algorithm on Trans dataset.

Pattern Comp. time [s] Comp. memory [MB] Recon. time [s] Recon. memory [MB] Results

P5 0.37 32.45 14.32 35.94 34572

P10 0.80 34.06 0.32 35.02 331

P15 1.07 34.83 0.55 35.49 5

S5 0.86 37.60 1.24 96.86 96615

S10 2.28 49.90 1.67 119.12 41277

S15 5.80 63.25 3.11 154.86 24274

C5 3.24 157.66 0.13 159.14 2

C10 7.14 227.46 – – 0

C15 9.73 253.30 – – 0

G3,4 – > 1000 – – –

K4 0.28 31.73 – – 0
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Table 5.5: Performance of a single run of the algorithm on Slash dataset.

Pattern Comp. time [s] Comp. memory [MB] Recon. time [s] Recon. memory [MB] Results

P5 13.3 231.67 230.95 299.67 > 100000

P10 49.13 825.60 274.63 944.52 > 100000

P15 – > 1000 – – –

S5 12.07 236.55 42.89 306.47 > 100000

S10 30.97 331.58 101.22 488.01 > 100000

S15 196.01 463.60 207.46 793.25 > 100000

C5 – > 1000 – – –

C10 – > 1000 – – –

C15 – > 1000 – – –

G3,4 – > 1000 – – –

K4 – > 1000 – – –
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5.5 Modification tests

In this section we test, whether the optimizations proposed in Section 3.4.2
have positive influence on the algorithm or not. In particular, we test whether
the compressed serialization of mapping records is of any use and we also test
the impact of optimizations regarding mapping expansion.

5.5.1 Tests of buffer compression

We tested the difference between buffers storing plain numbers and buffers
storing delta compressed numbers additionally encoded with variable length
code. To do so, we compared the time and space required for both implemen-
tations in a single run of the computational part of the algorithm on several
problem instances. The results are shown in Table 5.6 and Table 5.7.

Table 5.6: Time and space needed with uncompressed buffers.

Problem instance Time [s] Memory [MB]

Ecoli, C15 0.70 22.09

Trans, S15 5.51 73.99

Slash, P10 56.48 1298.17

Slash, S10 29.91 381.92

Table 5.7: Time and space needed with compressed buffers.

Problem instance Time [s] Memory [MB]

Ecoli, C15 0.74 19.51

Trans, S15 5.80 63.25

Slash, P10 49.13 825.60

Slash, S10 30.97 331.58

As a result, we can see that the compressed implementation of buffers really
helps to keep the memory requirements low. Table 5.8 shows, that the time
spent with the compression is irrelevant in contrast with the memory saved.
In one case the implementation with compression is even faster, as there is
much less content to be read from the buffer than in the uncompressed case.

5.5.2 Tests of mapping optimizations

Optimizations regarding mapping extensions were also tested. In this test, we
measured how many assignments to vertices from G were for some problem
instance candidates to be added to a certain mapping, both in cases with and
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Table 5.8: Compressed buffer space storage efficiency.

Problem instance Slowdown ratio Memory saved [MB]

Ecoli, C15 1.06 2.58

Trans, S15 1.05 10.74

Slash, P10 0.87 472.57

Slash, S10 1.04 50.34

without the mapping expansion optimization #1 and #2. The result of the
test is described in Table 5.9.

Table 5.9: Number of vertex candidates with/without mapping optimizations.

Problem instance Without opt. With opt. Ratio

Ecoli, C15 263442144 1368072 5.1 · 10−3

Trans, S15 29281742308 1892618 6.4 · 10−5

Slash, P10 25225493832 4383805 1.7 · 10−4

Slash, S10 60764961528 10520379 1.7 · 10−4

From the results it is clear that proposed mapping expansion optimizations
have huge effect on the computational part of the algorithm.

5.6 Discussion of results and comparison to
related work

Tests imply that our implementation of the color coding algorithm properly
solves the SubIsoEnum problem even for large instances of the input graph.
In particular, it has been shown that, in the computational part, we are able
to effectively solve the SubIso problem. From that, in the reconstruction
part, we are able to obtain the results of the SubIsoEnum problem.

The only cases when we are not able to obtain all of the results happen
when the input graph contains so many solutions, that we are not able to store
them due to the lack of space. Even though we devised a very efficient method
of compression of the used mapping structure, we can’t store an amount of
solutions, which is several magnitudes higher than the size of the memory we
posses.

5.6.1 Comparison to related work

The implementation of new VF2 algorithm presented in [8] is, compared to our
module, very fast, but only solves the induced variant of the SubIso problem.
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5. Results and performance

The implemenation presented in [19] incorporates similar approach of color
coding, but is in addition to our module implemented in parallel.

The solution in [16], as many of other subgraph isomorphism papers (e.g.,
[18] or [11]), solves the problem only for paths or trees . In contrast to this,
our solution allows to query for any pattern graph up to 20 vertices.
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Conclusion

We surveyed known results regarding the subgraph isomorphism problem and
we described the choice of the color coding approach. For the construction of
a nice tree decomposition, we discussed the preference of an algorithm expo-
nential in the size of the input graph. Within the same matter, we described
a non-trivial conjunction of the theory about chordal graphs, elimination or-
derings and tree decompositions in order to be able to obtain tree decomposi-
tions of optimal width. We modified and optimized the original color coding
algorithm in a way which allows its usage even on instances that would oth-
erwise not be admissible because of memory and/or time requirements.

We implemented an efficient C module which contains all parts of the
wide-ranging solution. Namely, we implemented the construction of a tree
decomposition, the transformation of a tree decomposition to a nice one, and
the modified bottom-up dynamic programming algorithm based on color cod-
ing. To maximize the performance of the module, we used various tools from
a low-level C library LibUCW.

We extensively tested the implemented module both from qualitative and
quantitative points of view. In particular, not only did we successfully verify
the validity of outputs created by the module, but we also showed its ability
to cope with instances of large size.

Future work

For the future research of the issue, there are two main directions to be con-
sidered. One of the them would be based on designing further optimalizations
of the module, mostly in an implementational way. Because the main com-
putational part of the algorithm lies in the genuine testing of assignments of
many vertices, there exists a possibility to enhance this very algorithm to run
in parallel. There are also many modifications that could be implemented into
the module, e.g., support of oriented graphs or support of vertex/edge labels,
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Conclusion

which allow us to more precisely specify the area of the input graph to be
searched.

The second direction would be to incorporate a theoretical approach, as
there are many interesting properties of the problem that could be exploited
to do some of the operations more effectively. In particular, it would be
interesting to more closely aggregate the computational and reconstruction
phase in the presented algorithm.
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Appendix A

Acronyms

DFS Depth-first search

ETH Exponential time hypothesis

LGPL GNU Lesser General Public License
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src .................................... the directory with source codes

subiso.......................... sources of the implemented module
instances....................graph files of instances used in testing
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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Appendix C

Module installation guide

C.1 Prerequisites

Module consists of C implementation files, C header files and an installation
file Makefile. It is intended to be run on a unix-like system. For the instal-
lation, the system is required to contain the following prerequisites:

• GNU tools:

– gcc version 4.0 or higher

– bash version 2.0 or higher

• LibUCW (for installation guide see http://www.ucw.cz/libucw/)

• Additional LibUCW prerequisites:

– perl

– pkg-config

C.2 Installation

The installation is to be performed from the folder containing installation
file Makefile. There are in total three modes in which the module can be
installed:

• Installation by command make – This is the default mode of installation.
It produces minimal information about the run and yields the maximal
performance. It is suitable for the regular usage of the module, or for
the performance testing of the module.

• Installation by command make tests – This is the testing mode of in-
stallation. It produces minimal information about the run, but in addi-
tion tests the validity of structures created during the run. It is suitable
for the qualitative testing of the module.
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C. Module installation guide

• Installation by command make debug – This is the debug mode of instal-
lation. It produces detailed information about the run and the structures
used in the run. It is suitable for the debugging purposes.

After a successful installation, a binary executable file grs is produced.
To uninstall the module or to change the installation type of the module, it
is required to execute command make clean. After its execution the module
folder is reverted to its original state.
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