VSB — Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Programme for the Post-processing and
Analysis of Complex Large-Scale
Spectroscopic Surveys Using the Virtual
Observatory Protocols

Program pro post-processing a analyzu
komplexnich rozsahlych
spektroskopickych prohlidek v ramci
protokolui Virtualni observatore

2016 Bc. David Andresic

VSB - Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Diploma Thesis Assignment

Student: Bc. David Andresic

Study Programme: N2647 Information and Communication Technology

Study Branch: 2612T025 Computer Science and Technology

Title: Programme for the Post-processing and Analysis of Complex Large-

Scale Spectroscopic Surveys Using the Virtual Observatory Protocols
Program pro post-processing a analyzu komplexnich rozsahlych
spektroskopickych prohlidek v rdmci protokolii Virtualni observatore

The thesis language: English

Description:

The goal of this Master Thesis is the development of new functionalities as well as fundamental refactoring
of current SPLAT-VO programme facilitating the preview, post-processing and advanced analysis of large
amount of astronomical spectra obtained from archives of large scale spectra surveys (e.g. SDSS or
LAMOST) using protocols of Virtual Observatory. We expect the student to become a member of a wider
international development team using standard software methodologies, implementing and testing the
required parts of the programme in accordance with priorities and schedule established during regular
teleconferences and virtual (e.g. Skype) meetings. The main development language is Java with embedded
C/C++ modules and

libraries.

1. The identification of limits and bottlenecks of current version of SPLAT-VO with respect to the
processing of large spectra sets (of order of thousands spectra).

2. Refactoring of the main data handling units to allow the simultaneous analysis and processing of pre-
configured groups of spectra related by their physical or semantic properties (the containers may be nested).
3. Modification of visualisation capabilities to allow the customisation of output graphics driven by
semantic contents (delivered by VO service) as well as user interaction (e.g. save and restore of
visualisation parameters for individual groups).

4. Correction of minor errors and inconsistencies of UX design.

5. Implementation of selected algorithms required for efficient quality check as well as final science
output. Functions considered here may be related to normalisation of spectra, dynamic quotient and
differential spectra, Stokes polarimetry mode, visualisation of echelle, multi-fibre and namely IFU
spectroscopy. The simple datacubes analysis is foreseen as well.

6. Customisation of query GUI for experimental visualisation of photometric light curves using the
medified SSAP protocol as well as synthetic stellar spectra using TSAP and S3 protocol of IVOA.

7. Preparation of development documentation and user manual and its regular updating - synchronised
within all the team of developers.

We expect the (even partial) results to be presented at the IVOA interoperability meetings as well as
published in appropriate form (web, arXiv preprint, technical proceedings of or SPIE}.

References:

[1] McDowell, Jonathan; Tody, Doug; Budavari, Tamas; Dolensky, Markus; Kamp, Inga; McCusker,
Kelly; Protopapas, Pavles; Rots, Arnold; Thompson, Randy; Valdes, Frank; Skoda, Petr; Rino, Bruno;
Derriere, Sebastien; Salgado, Jesus; Laurino, Omar; IVOA Data Access Layer, the; Data Model Working
Groups: IVOA Recommendation: Spectrum Data Model 1.1
http://adsabs.harvard.edu/abs/2012arXiv1204.3055M

[2] Skoda, Petr: Common Methods of Stellar Spectra Analysis and their Support in Virtual Observatory.
Proceedings of EURO-VO Workshop Astronomical Spectroscopy and Virtual Observatory, ESAC, 21-23
March 2007, Villafranca del Castillo, 97-104. 2011

http://adsabs.harvard.edu/abs/2011arXiv1112.27878

[3] Skoda, Petr: Multi-line Analysis of Stellar Spectra in the VO Environment. 4 pages, 2 figures;
Proceedings of EURO-VO workshop Multiwavelength Astronomy and Virtual Observatory, ESAC,
Villafranca del Castillo, Spain, 1-3 December 2008,

http://adsabs.harvard.edu/abs/2011arXiv1112.27885

[4] Skoda, P.: Optical Spectroscopy with the Technology of Virtual Observatory. Baltic Astronomy, Vol.
20, p. 531-539, 2011

http://adsabs.harvard.edw/abs/2011BaltA..20..5315

[5] SPLAT-VO: Spectral Analysis Tool:

http://www.g-vo.org/pmwiki/About/SPLAT

[6] http://star-www.dur.ac.uk/~pdraper/splat/sun243.htx/sun243 html

Extent and terms of a thesis are specified in directions for its elaboration that are opened to the public on
the web sites of the faculty.

Supervisor: doc. RNDr. Petr Saloun, Ph.D.
Consultant: RNDr. Petr Skoda, CSc.
Date of issue: 01.09.2014

Date of submission: 29.04.2016

Ulssart %é«/

doc. Dr. Ing. Eduard Sojka
Head of Department

\

/prof. RNDr. Viéclav Snésel, CSc.
Dean of Faculty

I hereby declare that this master’s thesis was written by myself. I have quoted all the references

I have drawn upon.

Ostrava, April 29, 2006 ! e voen v v

I hereby agree to the publishing of the master’s thesis as per s. 26, ss. 9 of the Study and
Examination Regulations for Master’s Degree Programmes at VSB — Technical University of
Ostrava.

Ostrava, April 29, 2016 enidl “‘—'/&’L f;ﬂ"

I would like to thank all people that helped me with this thesis, namely, Petr Skoda for his
patience, passion and scientific advices, Petr Saloun for his attitude, patience and publications
help and Jiri Nadvornik for his help with time series protocol and data model.

I would also like to thank other members of SPLAT-VO development team: Margarida
Castro Neves, Markus Demleitner, Peter W. Draper and Mark Taylor for consulting.

For the assistance on a Nostradamus 2015 conference contribution where part of this thesis
was presented, I would like to thank Ivan Zelinka.

And finally, I would like to thank my girlfriend Radka for her never ending support since we

know each other.

Abstract

SPLAT-VO is a leading stellar spectra analysis tool that allows displaying, modifying and analys-
ing astronomical spectra. It was developed in 2003 as a part of Starlink project and during
its lifecycle, it was extended to include facilities that allows an interoperability with the Virtual
Observatory.

At these days, SPLAT-VO also serves as a reference implementation of new Virtual Obser-
vatory protocols and data models and is being enhanced in a way of interaction with other tools
and collaboration, as well as user experience.

My adjustments were accepted by community enhancing its current capabilitites and will
be a part of the next release. Expert community has been partially notified about my results
at Nostradamus 2015 conference and will be fully notified at SIMS2016 conference, where I will

submit my actual results with deadline after finishing this thesis.

Key Words: Spectrum, time series, astroinformatics, Virtual Observatory, SPLAT-VO, Java,

data cubes

Contents

List of Symbols and Abbreviations

List of Figures

1

2

Introduction

Astroinformatics and Virtual Observatory
2.1 Virtual Observatory e

Basic Terms and Concepts
3.1 Astronomy and Astroinformatics L.

3.2 Software Engineering

SPLAT-VO

4.1 History e e
4.2 Team and Development Organization
4.3 User Interface
4.4 Most Typical Use Cases o it
4.5 Technical Description L
4.6 Build Exampleo
4.7 Building Using Build Script oo
4.8 Creating Installation Package L 0oL

Realized Improvements of SPLAT-VO

5.1 More Efficient Work with SAMP Protocol
5.2 Access to All FITS Extensions,
5.3 Time Series Demonstrational Support
5.4 SSA Query Results Enhancements
5.5 Spectral Data CSV Export
5.6 More Effective Spectra Deletion by Means of Visual Selection

Improvements Being Prepared for SPLAT-VO

6.1 Time Series and Data Cubes Support via New Protocol
6.2 Working Space
6.3 Spectra Groups o o v i
6.4 Spectral Data Lazy Loading

10

12

15

16
16
20

22
22
28

37
37
37
40
44
45
48
o1
51

54
o4
57
o8
59
60
61

8

9

SPLAT-VO Development Process Improvements

7.1 Wiki Documentation
7.2 TIssue Tracking
7.3 Automatized Build with Jenkins CI inside Docker

Suggestions for Further Refactoring

Conclusion

References

Appendix

A

B

C

SpecData Class Diagram

SpecList Class Diagram
GlobalSpecPlotList Class Diagram
SpectrumlIO Class Diagram
SpecDataFactory Class Diagram

Selected Diffs and Source Codes

F.1 SSAP: Time Series Product Type Detection
F.2 Plot Window: Y-axis Flipping for Time Series
F.3 SAMP: Spectra as Tables Action Manager
F.4 SAMP: VOTable Send Action Manager
F.5 JTable Utilities o o
F.6 SSA Query Results Selection Menu,
F.7 Spectrum Export to CSV and Text File
F.8 Plot Control Key Listenero
F.9 PlotControl: Remove Current Spectrum From Plot

G Spectra Group VOTable example

73
73
73
76

78

80

81

83

84

85

86

87

88

List of Symbols and Abbreviations

VO
HTTP
SOAP
WSDL
REST
XML
DNS
1SO/OSI

SAMP
SSAP
ObsCore
SDM
TAP
SIAP
URL
ADQL
SQL
GNU/GPL
FITS
NASA
CI
CVS
IDE
LDAP
00D
0]0) 5
API
UML
CPU
OLTP
OLAP
ERP
ETL
GUI
MIME

Virtual Observatory

Hypertext Transfer Protocol
Simple Object Access Protocol
Web Services Description Language
Representational state transfer
Extensible Markup Language

Domain Name System

International Organization for Standardization / Open Systems In-

terconnection

Simple Application Messaging Protocol
Simple Spectra Access Protocol
Observation Data Model Core
Spectral Data Model

Table Access Protocol

Simple Image Access Protocol
Uniform Resource Locator
Astronomical Data Query Language
Simple Query Language

GNU General Public License

Flexible Image Transport System
National Aeronautics and Space Administration
Continuous Integration

Code Versioning System

Integrated Development Environment
Lightweight Directory Access Protocol
Object-oriented Design
Object-oriented Programming
Application Programming Interface
Unified Modeling Language

Central Processing Unit

On-Line Transaction Processing
On-Line Analytical Processing
Enterprise Resource Planning
Extract, transform, load

Graphical User Interface

Multipurpose Internet Mail Extensions

10

WYSIWYG — What You See Is What You Get
AT CAS — Astronomical Institute of the Czech Academy of Sciences

11

List of Figures

1 IVOA Architecture Level 2. Source: [5]., 18
2 The SAMP hub architecture. Source: [6]. 19
3 Comparison of photographic and intensity plot spectra for a star. Source: [14]. . 23
4 Continuous, emission and absorption spectra and their sources. Source: [14]. . . . 23
5 A simple light curve. Source: [15]. L Lo 24
6 The structure of FITS file. Source: [17]. 25
7 A waterfall model of software developmnet. Source: [21]. 28
8 An iterative model of software development. Source: [22]. 28
9 Jenkins CI - example of UL 30
10 An example of data cube (with totals). Source: [26]. 34
11 An example of star data warehouse schema. Source: [29]. 35
12 An example of snow flake data warehouse schema. Source: [29]. 36
13 SPLAT-VO at work. Source: [30]. 38
14 Many spectra in SPLAT-VO. Source: [30]., 38
15 Main window. L 41
16 Query VO for spectra. e 42
17 ObsCore browser. Source: [34]. 43
18 Plot window. 44
19 View/modify a spectrum. 45
20 Use-case model of the most typical use cases. Source: [34]. 46
21 Workflow of loading spectra in native format to internal SpecData format. Source: [34]. 47
22 Simplified spectra loading sequence diagram. 49
23 Simplified class diagram of spectra as table SAMP sender. 55
24 Sending spectrum as table via SAMP from Main Window. 56
25 Sending spectrum as table via SAMP from Query VO for spectra window. 57
26 Time series demonstrational support example. 58
27 SSA Query Results window enhancements 59
28 Export to CSV and text file feature. 60
29 Visual delete of spectrum in action. oo oo oo 61
30 Default rendering properties factory. 63
31 Working space - use case diagram. Source: [34]. 66
32 Working space - class diagram. L L Lo 67
33 Working space - component diagram.o 67
34 Working space - instantiation. oo oL 68
35 Working space - handling events. L L Lo 69
36 Working space options menu - wireframe. 69
37 Working space settings - wireframe. oL 70

12

38
39

40
41
42
43
44
45
46
47
48
49
50
o1
92
93
o4
95
o6

Memory usage of SPLAT-VO. Source: [34]. 71
Memory usage of spectra. Please note the highlighted sections that shows how

much memory spectral data consumes. It is clear that the spectral data are the

largest objects of spectra instances. 72
SPLAT-VO page at Stellar Department of the AT CAS wiki. 73
Deprecated SPLAT-VO issue tracker created in Google Spreadheet. 74
Deprecated SPLAT-VO issue tracker created in Google Spreadsheet - filling form. 75
Official SPLAT-VO issue tracker in GitHub Issues. 76
Jenkins CI for SPLAT-VO - main job. 7
Jenkins CI for SPLAT-VO - main job detail with parameters and result. 7
Jenkins CI for SPLAT-VO - build artifacts history. 77
Complete SpecData and RemoteSpecData class diagram. Source: [34]. 84
Complete SpecList class diagram. Source: [34]. 85
Complete GlobalSpecPlotList class diagram. Source: [34]. 86
SpectrumlO and its dependencies class diagram. 87
SpecDataFactory and its dependencies class diagram. 88
Time series product type detection in VOTable. 89
Y-axis flipping for time series in Plot window. 90
Spectrum export to CSV and text file - actions. 102
Spectrum export to CSV and text file - file choosers and writing methods. 103
PlotControl: Algorithm fot removing current spectrum from plot. 105

13

Listings

1 VOTable example. Source: [19]

14

1 Introduction

As a result of technical development during last decades, many fields of science were digitized
in order to use the growing power of computers, supercomputers and their grids. Since then, in-
struments and computers produce large amounts of data that increase exponentially and at these
days, scientists face a real data avalanche.

In order to solve this, an appropriate data and computational structures were created. In as-
troinformatics, we have Virtual Observatory that with its data archives, server-side processing
capabilities, and specialized protocols, as well as client applications, allows to handle these
amounts of data efficiently.

One of these client applications is SPLAT-VO that was (at the beginning) designed for stellar
spectra analysis and that is also a primary subject of this thesis. Since the beginning, it is one
of the best tools for stellar spectra analysis that can use the power of Virtual Observatory.
Several years ago, its development was basically took over by Heidelberg University and Czech
Academy of Sciences, under which we are attempting to improve it in a way of user experi-
ence, handling large amount of data, adding support for time series and making it a reference
implementation of new Virtual Observatory protocols.

In the near future, we plan to finalize the work on time series protocol and data model
implementation, general refactoring of user interface that should allow more organized work
with SPLAT-VO and to improve loading large amounts of spectra and time series, as well

as other minor tweaks of user interface.

15

2 Astroinformatics and Virtual Observatory

When informatics reached borders of other fields of science, new disciplines emerged. During
last decades, we newly recognized bioinformatics, geoinformatics, and basically any other X-
informatics (where X stands for any other science) [1].

In case of astronomy, the astroinformatics helps to handle large amounts of data produced
by observational instrumentations (reaching petabytes per each observing night) and supercom-
puter simulations that are impossible to process on a single local machine [2]. For example,

these are numbers for the several famous projects:

e Sloan Digital Sky Survey (SDSS) Data Release (DR) 12: 116 Terabytes!;
e Large Synoptic Survey Telescope (LSST): 15 Terabytes every night?;

e Pan-STARRS: several terabytes every night>.

As we can see later, the Sloan Digital Sky Survey is only one possible data source of many.
In this sense, using the power of supercomputer grids and specialized communication proto-
cols, astroinformatics helps to traditional astronomy with data-to-knowledge transformations,
information visualization, knowledge extraction, sky-based and catalog-based indexing tech-
niques, data mining and knowledge discovery, data-intensive computing, and astrostatistics [1].
Basically, we can say that astroinformatics is the new data-oriented paradigm for 215 century

astronomy research [1].

2.1 Virtual Observatory

Virtual Observatory (VO) is the vision that astronomical data sets and other resources should
work as a seamless whole [3]. It is a collection of interoperating data archives and software
tools which utilize the internet to form a scientific research environment in which astronomical
research programs can be conducted [4].

For an astronomer, there is a great overview of Virtual Observatory benefits at GAVO* Wiki
sited.

VO is being guided and standardized by IVOA®, a world-wide organization that shelters
individual country organisations (e.g. GAVO). Except the work on new standards and protocols,
IVOA also organises Virtual Observatory conferences and regular inter-operability meetings all

around the World, where our results were also published.

!Taken from SDSS homepage: http://www.sdss.org/dri2/data_access/volume/.

2Taken from LSST homepage:http://www.lsst.org/.

3Taken from Pan-STARRS homepage: http://pan-starrs.ifa.hawaii.edu/public/design-features/
data-handling.html.

4German Astrophysical Virtual Observatory. Homepage: http://www.g-vo.org/

Shttp://www.g-vo.org/pmwiki/About/About

SInternational Virtual Observatory Alliance. Homepage: http://ivoa.net/

16

http://www.sdss.org/dr12/data_access/volume/
http://www.lsst.org/
http://pan-starrs.ifa.hawaii.edu/public/design-features/data-handling.html
http://pan-starrs.ifa.hawaii.edu/public/design-features/data-handling.html
http://www.g-vo.org/
http://www.g-vo.org/pmwiki/About/About
http://ivoa.net/

2.1.1 Architecture

From technical point of view, VO is a world-wide ecosystem of mutually compatible data sets,
resources, services, and software tools which use a common set of technologies and a common set
of standards [3]. Many of the VO systems communicate with each other via custom application-
layer” protocols (using especially HTTP, SOAP/WSDL or REST) stated by IVOA that heavily
use XML format for transferred messages and data. The VO infrastructure is based on a concept
of [3]:

e Resources that represents databases of any kind with some standardized metadata about

themselves;

e Services as processing nodes (e.g. data service querying a database behind and/or pro-
cessing obtained data, communicating with other systems via specialized and standardized

protocols, and publishing metadata about itself).

On the side of user interaction, VO acts according to a typical client-server model: client
sends its request to a server via a common communication protocol and server responds appro-
priately. To hide the complexity of VO infrastructure from an user, there is a built-in mechanism
in VO for discovering resources. This mechanism is called VO Registries® and it acts like a com-
mon internet DNS: it holds all identifiers and metadata of all known VO resources. Every
resource that is supposed to be available in VO needs to be registered in at least one publish-
ing registry (this is done by XML record with unique identifier and other resource metadata).
Other registries share these metadata among themselves (similar to DNS) via web services.
When a client application wants to query some resource, it discoveres available resources via
searchable registries (again, via web service).

For a better idea about positioning of resources, services, protocols, data models and client

applications in VO architecture, see Fig. 1 from IVOA Architecture specification [5].

2.1.2 Protocols

As said before, Virtual Observatory elements heavily communicates with each other via special-
ized protocols. In this section, most commonly used protocols called by client applications will

be shortly presented.

SAMP - Simple Application Messaging Protocol is used as a part of XML-based, event-
driven publish/subscribe messaging system. It allows to publish some generic weak-typed data

in XML format to all registered subscribers that are interested in the published message type.

TOf ISO/08I model - see for example http://www.cisco1900router.com/
what-is-ios-model-the-overall-explanation-of-ios-7-layers.html

8For full specification of VO Registry, see http://www.ivoa.net/documents/RegistryInterface/20091104/
REC-RegistryInterface-1.0.pdf

17

http://www.cisco1900router.com/what-is-ios-model-the-overall-explanation-of-ios-7-layers.html
http://www.cisco1900router.com/what-is-ios-model-the-overall-explanation-of-ios-7-layers.html
http://www.ivoa.net/documents/RegistryInterface/20091104/REC-RegistryInterface-1.0.pdf
http://www.ivoa.net/documents/RegistryInterface/20091104/REC-RegistryInterface-1.0.pdf

USERS ==
LEVEL 2 . |
¥ COMPUTERS
All standards % @, - InProgress
USER LAYER .
Browser Based Script Based
Apps Desktop Apps Apps
[sso" USING cop | WsBP
Registry Interface |~~~ e g g D
N R e e A P
: Languages Units ' scs | TR
E ; PaL guag o
G ; s spectumbM || [ssap| | A O
) i RNafa 1
é IVOI:IataSer\ncel Samantics ngE Ghotb ?_?EEQIP?M TAP A (.;
T ApplicationRegExt - vocabularies ObsProvDM SSLDM | SLAP c 't
R lStandurdRegExtl PhotDI TETE co
Y simpleDALRegExt Formats SimDM SimDAL E L
' Resource Identifier || VOTable | i S S
————— e e e il
| vospace | voPipe SHARING uws
o Data and Metadata Collection Saiiiics
9¢ RESOURCE LAYER P
e T T
WoR Arehitecture PROVIDERS =

Figure 1: IVOA Architecture Level 2. Source: [5].

9 as well as asynchronous'® and the message can be broad-

The publishing can be synchronous
casted to all subscribers (interested in the published message type) or sent to an individual
subscriber only.

As shown on Fig. 2, the entire communication is centralized via SAMP hub. An SAMP-
interested application uses a discovery mechanism to look for a hub on the same network
(and the hub itself using the same mechanism guarantees that there will be only one running hub
on the network). If no SAMP hub is discovered, the application launches its own one. Otherwise,
it subscribes to the discovered hub, providing its name and message types that it is interested in
and asks the hub for information about other registered applications. When a publisher publishes
a message, the hub will decide (based on the interested message types of subscribers) which sub-
scribers will be notified. A notified subscriber then asks hub for the message from the publisher.

Details about SAMP protocol can be found in [6].

SSAP - Simple Spectra Access Protocol is used to remotely discover and access one-

dimensional spectra [7]. To access the spectra data sets:

1. The client queries the global resource registry (see 2.1.1) in order to find services of inter-
est [7].

9Waiting for a response from subscriber.
1Not waiting for any response from subscriber

18

Client 1 ,Cllent2

.*°" _ Client 3
\ L -..‘\ . _—-"
’ e
¢+ Hub -

A Client n

Figure 2: The SAMP hub architecture. Source: [6].

2. The client makes a data discovery query to selected services.

3. The service returns a VOTable (see 3.1.4) with result data sets metadata.

4. The client retrieves selected data sets via access reference in metadata [7].

The query for selected services is in the following format [7]:
http://www.myvo.org/ssa?REQUEST=queryData&P0S=22.438,-17.2&SIZE=0.02

As it can be seen, the query may be parametrized with interested data set format, position,
size, band, time and some optional parameters [7].

The VOTable returned by queried service may contain some significant columns identified
by Spectral Data Model (SDM): a part of SSAP that attempts to unify the meaning (identified
by UTYPE [7] and UCD [7]) of results from various resources.

There is a lot of other query parameters and resulting VOTable details behind SSAP protocol
that are beyond the scope of this thesis. If interested, please refer to full SSAP specification
in [7].

ObsCore - Observation Data Model Core is used as a data discovery and data access
protocol for observation data of basically any kind (so unlike, for example, SSAP, ObsCore does
not focus on spectra only). Nevertheless, it aims at providing a simple model easy to understand
and to implement by data providers that wish to publish their data in the Virtual Observatory [8].

To do so, it defines lists of mandatory table names etc.

Other IVOA developed many protocols for different purposes. Their complete list is beyond
the scope of this thesis'!, anyway, the following list summarizes other most used and significant
of them:

SIAP - Simple Image Access Protocol is used for image data access from a variety
of astronomical repositories through a uniform and reasonably simple interface [9]. Candidate
images are retrieved as a list in VOTable format (see 3.1.4) with access reference URLs based
on query defining a rectangular region on the sky [9]. Images themselves can be in various
formats, including FITS (see 3.1.3).

"More complete list can be found at: http://www.ivoa.net/documents/

19

http://www.ivoa.net/documents/

TAP - Table Access Protocol is a protocol for accessing general table data, including
data catalogs as well as general database tables (including metadata) [10]. TAP supports multi-
ple query languages, including ADQL (Astronomical Data Query Language)'? - a specific query
language for astronomical purposes derived from standard SQL by IVOA. Results are returned
as VOTable (see section 3.1.4) as usual in IVOA protocols. TAP also supports simple spatial

cross-matching [10].

ConeSearch is a simple query protocol for retrieving records from a catalog of astronom-
ical sources [11]. The query describes sky position and an angular distance, defining a cone
on the sky and response returns a list of astronomical sources from the catalog whose positions
lie within the cone, formatted as a VOTable (see 3.1.4) [11].

2.2 Tools

This section covers a list of most used and most popular tools compatible with VO, especially
those that immediately relates with the aim of this thesis. The complete list of VO applications
can be found at IVOA’s VO Applications for Astronomers page'>.

2.2.1 SPLAT-VO

SPLAT-VO is a spectral analysis tool, that received a VO support several years ago. For more
information, please see section 4 that is dedicated to it, since SPLAT-VO and its enhancements

are the aim of this thesis.

2.2.2 TOPCAT

TOPCAT is a shortcut for Tool for OPerations on Catalogues And Tables [12] and it is a powerful
interactive graphical viewer and editor for (not just astronomical) tabular data [12]. It supports
data visualization and various data formats and protocols including SAMP which makes it a per-
fect cooperative tool for use cases that are not covered by TOPCAT itself.

It is a part of Starlink and its Starjava project as well as SPLAT-VO (see section 4)
and is available under GNU/GPL license'?.

2.2.3 Aladin

Aladin Sky Atlas is a tool for interactive accessing to astronomical images with connection

to Simbad™® and VizieR'S services. It is developed by the Centre de Données astronomiques

12ADQL specification: http://www.ivoa.net/documents/latest/ADQL.html
3http://www.ivoa.net/astronomers/applications.html

" GNU General Public License - see http://www.gnu.org/licenses/gpl-3.0.en.html
http://simbad.u-strasbg.fr/simbad/
http://vizier.u-strasbg.fr/viz-bin/VizieR

20

http://www.ivoa.net/documents/latest/ADQL.html
http://www.ivoa.net/astronomers/applications.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://simbad.u-strasbg.fr/simbad/
http://vizier.u-strasbg.fr/viz-bin/VizieR

de Strasbourg'”, written in Java and available under GNU/GPL license. It has a Lite version
that can run directly from web browser. Same as TOPCAT or SPLAT-VO, Aladin supports

SAMP protocol which makes it a great cooperative tool.

Yhttp://aladin.u-strasbg.fr/aladin.gml

21

http://aladin.u-strasbg.fr/aladin.gml

3 Basic Terms and Concepts

This section covers basic terms and basic concepts from astronomy, astroinformatics and software

engineering necessary for understanding of following sections.

3.1 Astronomy and Astroinformatics

Full description of basic astronomical and astroinformatical terms would of course be beyond
the scope of this thesis. This section therefore covers a minimum in a form of entities and data
formats required for understanding to following sections, where modifications of SPLAT-VO tool
will be described.

3.1.1 Spectrum

Probably everyone remembers the old primary school physics experiment with sunlight and prism,
where sunlight coming through a prism is dispersed to individual colors, or knows a rainbow,
where the sunlight is dispersed in the same way on rain drops acting like a prism. This is possible
due to a fact that the sunlight — as a form of electromagnetic radiation that consists of electro-
magnetic waves visible by naked human eye — is composed from several electromagnetic waves
with different frequencies (a.k.a. wavelengths) [13]. And this composition is visible as a result
of prism dispersion and known as a sunlight spectrum.

In more general way, spectrum is a graph of relative intensity vs. frequency of any wave
phenomena [13]. The spectrum is a "fingerprint" of its source. In case of astronomy, lets
imagine a hot star (composed from superhot plasma) or diffuse gas that emits light on different
wavelengths. What wavelength it is, depends on a original chemical element emitting the light.
These elements then can be identified in the spectrum using their wavelengths. The comparison
of photographic and intensity plot spectra of a star is shown in Fig. 3. We recognize 3 basic

types of spectra [14]:

Continuum spectrum A dense hot object (such as the core of a star) acts like a black body
radiator. If we were able to view the light from this source directly without any intervening

matter then the resultant spectrum would appear to be a continuum as shown in Fig. 4, left [14].

Absorption spectrum Most stars are surrounded by outer layers of gas that are less dense
than the core. Photons of specific frequency emitted by a star can be absorbed by electrons
in the diffuse outer layer of gas, causing the electron to change energy levels and emitting a new
photon of specific frequency. The direction of this re-emission however is random. By this,
the intensity of light at the wavelength of that photon will be less in the direction of an observer
and the spectrum will show dark absorption lines or a decrease in intensity as shown on Fig. 4.

Stellar spectra typically look like this [14].

22

Photo HD 124320

_1IIIIIIIIIIIIIIIIII[F!IIIPIJIIFIJIIIllIIIPliIIIIIIIIIlIIIIl

Trace HD 124320

:‘I —

t

a:

g

]

ik

i

lIIIIlIIIIlIIIIllIIIIliIIPIIIIIIlIIIllIIIIllIIPIlIIIIlIIIII

3900 4000 4100 4200 4300 4400 4500

Figure 3: Comparison of photographic and intensity plot spectra for a star. Source: [14].

Diffuse gas {eg
outer layers of a star

S sy bula) [
:;una'mm} urar-le |.1. /1‘1]'

wavelength

kﬁﬂ ‘v" Absorption spectrum

|

|

il
LTS N & W

wiavelength
Emission spectrum

intensity

Intensity
|
Intensity

i

wavalength
Continuum spectrum

Figure 4: Continuous, emission and absorption spectra and their sources. Source: [14].

23

Erightness (Magnitude)

May June July Aug
Time of 19335

Figure 5: A simple light curve. Source: [15].

Emission spectrum It occurs if an observer is not looking directly at a hot black body
source but instead at a diffuse cloud of gas that is not a black body. If this cloud can be
excited by a nearby source of energy such as hot, young stars or an active galactic nucleus then
the electrons in atoms of the gas cloud can get excited. When they de-excite they emit photons
of specific frequency and wavelength. As these photons can be re-emitted in any direction
an external observer will detect light at these wavelengths. The spectrum formed is an emission

or bright line spectrum, as shown in Fig. 4 [14].

3.1.2 Time Series / Light Curves

Astronomical time series (a.k.a. light curves) are graphs that show the brightness of an object
over a period of time [15] as shown in Fig. 5.

Light curves are useful in case of objects which change brightness in time, such as novae,
supernovae and variable stars [15]. Since we know generally what light curves look like for a set

of objects [15], we can compare it and understand an observed phenomena.

3.1.3 Data Format FITS

Stands for Flexible Image Transport System and is a specialized data format developed by NASA!®
and the International Astronomical Union!® for the transport, analysis, and archival storage
of scientific data sets [16]:

e Multi-dimensional arrays: 1D spectra, 2D images, 3D+ data cubes [16]
e Tables containing rows and columns of information [16]

e Header keywords provide descriptive information about the data [16]

18National Aeronautics and Space Administration - see https://www.nasa.gov/
Yhttp://www.iau.org

24

https://www.nasa.gov/
http://www.iau.org

FRTIW ARY
EADIER

TTA

EXTENS XIN
AEAINR
Extenalon 1

PRV

EXTEXSION
IAILR
Extenelon 2

TIATA

IXTENSI0N
ALADLR
Extenalon 3

TIATA

Figure 6: The structure of FITS file. Source: [17].

FITS has been exclusively used for almost all astronomical data storage for more than 30
years. It allows to store various data types inside a single file. For example, it can contain
an image of a star with its spectra in different wave bands. Each item is then stored in a form
of so-called extension of the respective type.

As shown on Fig. 6, FITS consists of items called Header Data Unit (HDU). There is a manda-
tory primary HDU that contains some mandatory metadata in a form of key/value pair (keys
are world-wide standardized) in ASCII header. There may also be other HDUs called exten-
stons. Fach extension has its own set of metadata in header an we recognize following standard

types of extensions [18]:

IMAGE This extension type provides a means of storing a multidimensional array similar
to that of the FITS primary header and data unit [18].

TABLE This ASCII table extension type contains rows and columns of data entries expressed
as ASCII characters [18].

BINTABLE This binary table extension type provides a more flexible and efficient means
of storing data structures than is provided by the TABLE extension type. The table
rows may contain a mixture of numerical, logical and character data entries. In addition,
each entry is allowed to be a single dimensioned array. Numeric data are kept in binary
formats [18].

3.1.4 Data Format VOTable

The VOTable format is an XML standard for the interchange of data represented as a set
of tables [19] endorsed by IVOA. It is an unordered set of rows, each of a uniform structure,

as specified in the table description (the table metadata). Each row in a table is a sequence

25

of table cells, and each of these contains either a primitive data type, or an array of such

primitives [19]. The data in VOTable may be expressed in one of the following formats:
TABLEDATA Pure XML format that can be used for small tables [19].
FITS Encapsulated or re-encoded FITS (see 3.1.3) [19].

BINARY and BINARY2 Ease of programming and support for streaming [19].

In order to describe the semantics of the contained data, VOTable uses UCD?’, Utypes?!,
Units?? and STC?3 [19].
An example of VOTable follows:

<?7xml version="1.0"7>
<VOTABLE version="1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.ivoa.net/xml/V0Table/v1.3"
xmlns:stc="http://www.ivoa.net/xml/STC/v1.30" >
<RESOURCE name="myFavouriteGalaxies">
<TABLE name="results">
<DESCRIPTION>Velocities and Distance estimations</DESCRIPTION>
<GROUP utype="stc:CatalogEntryLocation">
<PARAM name="href" datatype="char" arraysize="x"
utype="stc:AstroCoordSystem.href" value="ivo://STClib/CoordSys#
UTC-ICRS-TOPO"/>
<PARAM name="URI" datatype="char" arraysize="x*"
utype="stc:DataModel .URI" value="http://www.ivoa.net/xml/STC/stc-
v1.30.xsd"/>
<FIELDref utype="stc:AstroCoords.Position2D.Value2.C1" ref="coll"/>
<FIELDref utype="stc:AstroCoords.Position2D.Value2.C2" ref="col2"/>
</GROUP>
<PARAM name="Telescope" datatype="float" ucd="phys.size;instr.tel"
unit="m" value="3.6"/>
<FIELD name="RA" ID="coll" ucd="pos.eq.ra;meta.main"
datatype="float" width="6" precision="2" unit="deg"/>
<FIELD name="Dec" ID="col2" ucd="pos.eq.dec;meta.main"
datatype="float" width="6" precision="2" unit="deg"/>
<FIELD name="Name" ID="co0l3" ucd="meta.id;meta.main"

datatype="char" arraysize="8x"/>

20The UCD1+ controlled vocabulary - see http://www.ivoa.net/documents/latest/UCDlist.html
2See http://wiki.ivoa.net/bin/view/IVOA/Utypes

22Sce http://www.ivoa.net/documents/V0Units/

2Space-Time Coordinate Metadata - see Space-TimeCoordinateMetadata

26

http://www.ivoa.net/documents/latest/UCDlist.html
http://wiki.ivoa.net/bin/view/IVOA/Utypes
http://www.ivoa.net/documents/VOUnits/
Space-Time Coordinate Metadata

<FIELD name="RVel" ID="col4" ucd="spect.dopplerVeloc" datatype="int"
width="5" unit="km/s"/>
<FIELD name="e_RVel" ID="colb" ucd="stat.error;spect.dopplerVeloc"
datatype="int" width="3" unit="km/s"/>
<FIELD name="R" ID="col6" ucd="pos.distance;pos.heliocentric"
datatype="float" width="4" precision="1" unit="Mpc">
<DESCRIPTION>Distance of Galaxy, assuming H=75km/s/Mpc</DESCRIPTION>

</FIELD>
<DATA>
<TABLEDATA>
<TR>
<TD>010.68</TD><TD>+41.27</TD><TD>N 224</TD><TD>-297</TD><TD>5</TD><TD
>0.7</TD>
</TR>
<TR>
<TD>287.43</TD><TD>-63.85</TD><TD>N 6744</TD><TD>839</TD><TD>6</TD><TD
>10.4</TD>
</TR>
<TR>
<TD>023.48</TD><TD>+30.66</TD><TD>N 598</TD><TD>-182</TD><TD>3</TD><TD
>0.7</TD>
</TR>
</TABLEDATA>
</DATA>
</TABLE>
</RESOURCE>
</VOTABLE>

Listing 1: VOTable example. Source: [19].

As it can be seen from VOTable above, it consists of Metadata (Parameters + Infos +
Descriptions + Links + Fields + Groups) and Table data (stream of Rows that contains Cells
of Primitives - integers, chars, etc.) arranged as a set of Tables (list of Fields + TableData) [19].

To better understand the example, there is one Table called results under a Resource
myFavouriteGalaxies. This table has some Parameters identifying the telescope used and co-
ordinate system (based on STC). This Table has six columns with meaning described in Fields,
each with reference identificator ID. The data itself are contained within Table data section.
There are three Rows with Cells ordered in the same order, as Fields in Metadata, which gives

them a meaning. For example: the second galaxy in the table has declination -63.85 degrees.

27

—)

Design

H

Implementation

Verification 7

Maintenance

Figure 7: A waterfall model of software developmnet. Source: [21].

equirements Analysis & Design
Planning
Implementation
Initial
Planning

Deployment
' Testing g

Figure 8: An iterative model of software development. Source: [22].

Evaluation 4

3.2 Software Engineering

As well as in case of the previous section, full description of all major software engineering terms
and concepts would be beyond the scope of this thesis. Therefore, only those terms and concepts

neccessary for understanding the following sections are described in this section.

3.2.1 Basic Methodics and Development Processes

During a history of software development, several processes evolved. From a most basic waterfall
model (see Fig. 7), that suffered from several drawbacks (long period from requirements collec-
tion to a final product, a significant risk of delivering a system with misunderstandings, etc.),
the software process moved to an iterative way of software development (see Fig. 8) [20], that
attempts to solve major drawbacks of waterfall model by segmentation of the whole software
process to several "small waterfalls" called iterations.

In each iteration then, we recognize the following actions that are realized in greater or lesser

degree (based on the development phase) [20]:

28

e Business modeling

e Collecting requirements

e Analysis and prioritization of requirements
e Development

o Testing

e Deployment

e Feedback and Change management

e Project management

There are several other methodologies in software development, that builds on the waterfall
and iterative software development (RUP, SCRUM, etc.). Their description is behind the scope

of this thesis, so for more information, please refer to [20] or [22].

3.2.2 Continuous Integration and Jenkins CI

Continuous Integration (CI) is a software development practice where members of a team inte-
grate their work frequently, usually each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an automated build (including test) to detect
integration errors as quickly as possible [23].

This leads to significant elimination of many integration problem, such as breaking the ex-
isting code, wrong use of API among development teams (or inside a development team).

CI can be used in cooperation with code versioning systems (see 3.2.3), system scripting,
build tools (such as Ant, Maven, etc.), specific software development tools for checking code
coverage (by tests), copy/paste detection, automated bug finders etc. It can therefore be used
as a tool for a complete Continuous Delivery (delivering the system to production use at every

moment).

Jenkins CI Is one of the best tools for Continuous Integration with large user base. It is writ-
ten in Java with web user interface (see Fig. 9), so it can be deployed to production on every

1?4 can be used for automated builds,

Java Application Server or Servlet Container. Jenkins C
testing, deploying and (also in cooperation with many plugins) for basically every automated
action one can think. Individual automated actions (called build) can be triggered by multiple

events, such as period, commit to repository, manual, by other upstream build etc.

24 Jenkins CI homepage: https://jenkins-ci.org/

29

https://jenkins-ci.org/

Jenkins @ g

2 w Hame | Lost Suseess Last Fadure Last Duraties L
@ M o d T] 1a EXl =
e ks 31 gigelie Ll wa
s R beinct - o - 1 a
9 i S -
L a
7 =
a
L -
=

g s

& remote-siaved [ottinie]

& remolesiaved fottrel

Figure 9: Jenkins CI - example of Ul

3.2.3 Code Versioning Systems

Code Versioning Systems (a.k.a. CVS) are important in software development for several rea-

sons:

e It allows to track history of the project on file level, including traversing it (reverting

changes, etc.).

e [t makes team cooperation much faster and easier. CVS automatically merges files modi-

fied by several members of the development team.

e [t keeps the source code at one place.
There are several main CVS:

CVS The oldest (1986 [24]) and most primitive CVS still in use (especially for small projects.).

SVN A.k.a. Subversion is probably the version control system with the widest adoption [24].
Many large and well-known projects still uses it. It also has a large support in IDEs

and many user clients.

Git Initially developed by Linux kernel author Linus Torvalds, Git is currently one of the best,
fastest and most used CVS, especially in large projects. It is considered to be a Swiss
Army Knife of the code versioning - it is capable of almost every imaginable use case,
altough the way of achieving it might not be as user-friendly, as in case of other CVS.
In contrast with other CVS, Git uses a distributed version control system, so there is not

one centralized code base to pull the code from [24].

30

Mercurial Designed for larger projects, Mercurial is extremely fast and capable of all usual use
cases with ease, which is something, that makes it different from Git (ease of use vs. count

of features).

Bazaar Calls itself “Version control for human beings.” [24] One of the main features of Bazaar
is the fine-grained control over the setup [24]. Otherwise it is very similar to other modern
CVS, like Git or Mercurial.

Microsoft Visual SourceSafe Microsoft’s attempt to create a CVS to use in cooperation
with its Visual Studio. After a criticism, it was discontinued and is no longer distributed

with current versions.

3.2.4 Issue Tracking

Issue tracking system allows an organization to register, watch, prioritize and generally organize
every issue related to some project. It allows to track the history of every issue, modify its states,
add comments or attachments etc.

Modern issue tracking systems also supports project management use cases, such as making
time estimates for each issue, creating Gantt’s charts, network chart and critical path, etc.

Among other requirements, we can present the capability to integrate the issue tracking
system with company’s LDAP system, ability to integrate with company’s database infrastruc-
ture and runtime environment in general, web user interface etc. Among the mostly used issue

trackers, we recognize:

Projectlibre Local machine Java application supporting issue tracking and several charts.

Redmine One of the most used issue trackers, written in Ruby on Rails, highly configurable

with many plugins and charts support.

Trac and Apache Bloodhound Another mostly used issue tracker and its Apache spin-off.
Trac is written in Python and stands on using many plugins in order to meet general

requirements on issue tracking system.

Phabricator Is written in PHP and developed by Facebook, currently also in use by many

significant projects, such as Mediawiki, Blender, Dropbox, etc.

Atlassian JIRA Mostly commercial, but very favorite issue tracking system with its own

ecosystem. Many signifact projects uses it (e.g. Spring, Hibernate, etc.).

Github Issues Favorite issue tracker of Github?°.

2 Github homepage: https://github.com/

31

https://github.com/

3.2.5 Project Documentation

Project documentation is a desirable part of every software project. It describes the software
architecture, its API, used technologies and software libraries, build process etc.

We can look at the project documentation from the following perspectives:

Software API Usually written by programmers themselves as a part of source code, that is dur-
ing compilation transformed to a HTML, PDF or other user-friendly form. Typical exam-

ple of this is Javadoc.

Used technologies, architecture and software libraries Usually listed in master project
documentation - a Wiki page or a set of documents. Maintained by programmers and soft-

ware architects.

Project development organization Usually listed in master project documentation and main-

tained by project manager and/or team leader.

Project build information Usually listed in master project documentation and maintained

by programmers and software architects.
Other information - project history etc. Usually listed in master project documentation.
Based on these requirements, we can divide project documentation to the following:
Source code documentation Javadoc in Java, XML documentation in .NET etc.

Master project documentation Can be in a form of a single document (appropriate for small
projects), multiple documents (typical for corporations), Wiki-like systems (used in gen-
eral) or their combination. It should contain an overview of software project architecture
(including UML diagrams), used technologies and 3rd party software libraries, development
team organization and processes, information about obtaining source code and building
the project, project history etc. In modern age, it should also support collaborative work

for multiple simultaneous authors, revision history, adding comments and discussion etc.

3.2.6 Virtualization, Containers and Docker

The power of modern computers allows to run multiple services on a single host machine.
At these days, it is only a question of security, required /reserved computational power and or-

ganization structure requirements what of the following approaches will be used:

No virtualization This is the most basic approach for running multiple services on a single
machine: directly on the host machine. It is the most effective in sense of speed and system
resources, but also most vulnerable to attacks (if the attacker takes control over a service, it
also gains its privileges inside the entire host system) and difficult for system administration

(security, library conflicts etc.).

32

Containers Uses a single kernel and resources from the host system. Virtual machines running
inside a container have a direct access to host machine hardware via its shared kernel.
This leads to very small overhead and high performance with a great level of isolation.

Typical example of container is Linux chroot, FreeBSD Jail or Docker.

Paravirtualization (Hypervisors) Uses a modified host kernel that contains a hypervisor,
that allows guest machines to access host hardware (via hypervisor calls). The guest
knows that it is running inside a virtual machine, yet the level of isolation is much higher
than in case of containers (which is on the other hand redeemed by higher usage of host

system resources). A typical example is XEN.

Full virtualization Simply emulates all hardware except CPU. The guest has no idea that it is run-
ning inside a virtual machine, so the level of isolation on the same CPU architecture
is the highest possible (as well as host resources consumption). A typical examples are Vir-

tualBox, VM Ware or even XEN configured in full virtualization mode.

Emulation Simply emulates all hardware including CPU. This allows to run for example old
Amiga applications on a modern z86-6/ computer, so the level of isolation (and host
system resources consumption) is the highest possible. This leads to poor performance,

yet it has its use cases. A typical example is QEMU.

3.2.7 Datacubes and Data Warehouses
To understand this section, we need to describe a difference between OLTP and and OLAP:

OLTP On-Line Transaction Processing - transactional systems for real-time data collecting
and storage (ERP, accounting software etc.). Thousands of transactions are being made
within a minute. It is considered to be a primary data source. These systems contain large

amounts of data and their analysis causes a significant delays in primary usage [25].

OLAP On-Line Analytical Processing is based on a multidimensional database concept. Its ba-
sis is multidimensional table (datacube), that allows to analyze the data from many points
of view (dimensions) directly by the user (so they do not need to work just with pre-
prepared views). They are designed for data analysis of periodically (not real-time) up-
dated data obtained from OLTP [25].

Data Cube As tables in relational databases, data cubes are used for storage in OLAP
databases [25]. Data cube is a multidimensional extension of database table (2-dimensional,
3-dimensional and n-dimensional in general) [25]. An example of data cube is shown on Fig. 10.

This data cube has 3 dimensions (Part, Store Location and Customer).

Dimension Elements can be a name of product, its price, size, etc. In case of Fig. 10 and
Part dimension, it is P1 - P.

33

- 13]4}7]3
e b T2 173
e N PR i P 31 |5] [14]6]14]8
e F I K R 12 16l 7] 2] [2]7
1 T2l 7] 94 13 21 2] o] [2]s
P2[13 2l L3 8[13]| |2 2 40(17(28(26
pal 111l [o 7171 (@ o) [[3[13[Jag]}--------
EP4 1 3[4] [31]7 38| .---- Allison
p5 2[5]7] 8 2USQY. oot Rt
7|5l .- ’ Jomet
Ab$>§§ Vance Cu
FF S &
& &

Store Location

Figure 10: An example of data cube (with totals). Source: [26].

Hierarchy of Elements can be created on a dimension level for groups of relating elements.

For Fig. 10, let’s imagine a geographical hierarchy of Parts based on where they have been
produced:

e Parts

- EU
*x P1
* P2
— USA

* P38
* PJ
* P5

Basic operations with Data Cubes There are several operations that can be performed on

a data cube. Those most basic are:
Slicing selects one particular dimension from a given cube and provides a new sub-cube [27].
Dicing selects two or more dimensions from a given cube and provides a new sub-cube [27].

Roll-up performs aggregation on a data cube in a way of climbing up a concept hierarchy

for a dimension or dimension reduction [27].

Drill-up is the reverse operation of roll-up. It is performed either by stepping down a concept

hierarchy for a dimension or introducing a new dimension [27].

34

time sales item
Dimension table Fact table Dimension table
time_key time_key item_key
day iterm_key ifem_name
day_of the wesk branch_key brand
Franth [Geation_key type
guarter dollars_sold supplier_typd
year units_scld
Branch Lecation
Dimension table Dimension table
branh_key location_key
hranch_name street
branch_type city
province or_state
country

Figure 11: An example of star data warehouse schema. Source: [29].

Pivoting is also known as rotation. It rotates the data axes in view in order to provide an al-

ternative presentation of data [27].

A more complete description of data cube operations including simple, easy-to-understand
illustrations can be found in [27].

Data Warehouses A data warehouse is a relational database that is designed for query
and analysis rather than for transaction processing [28]. It usually contains historical data
derived from transaction data and separates analysis workload from transaction workload [28].

In addition to a relational database, a data warehouse environment includes an extraction,
transportation, transformation, and loading (ETL) solution, an online analytical processing

(OLAP) engine, client analysis tools, and other applications that manage the process of gathering

data and delivering it to business users [28].

Star and Snowflake Schemas In data warehousing, we recognize two basic database schemas
(similar to traditional database schemas). In center of both of them, we can find a fact table
- table of business facts, measurements etc with foreign keys to surrounding dimension tables,

that contains descriptive metadata used for filtering etc.

Star schema Each dimension in a star schema is represented with only one-dimension table,

that contains the set of attributes (see an example on Fig. 11) [29].

Snowflake schema Some dimension tables in the Snowflake schema are normalized, which

causes the data to be splitted up into additional tables (see an example on Fig. 12) [29].

35

time sales itemn supplier
dimension table fact table dimension table dimension table
time key time_key itern_key supplier_key
day item_key item_name | / |SYRRlier_typ
day_of week branch_key brand
manth Tocation_Key type
quarker dollars_sold supplisr_key
year units_sold
Branch Lacation
Dimension tahle Dimension table
branh_key _ location_key
branch_name oty street
Branch_type dimension takle City_key
City_key
City
Province_or_state
country |

Figure 12: An example of snow flake data warehouse schema. Source: [29)].

In my work, the international project SPLAT-VO (see section 4) is ready for star schema mainly.
There is also work on enabling basic data cubes operations within it (see section 6.1). For a

more complete description and other data warehouse schemas, please refer to [29].

36

4 SPLAT-VO

SPLAT-VO and its modifications is the main subject of this thesis. Its name (SPLAT) is a short-
cut for SPectral. Analysis Tool [30] and it is a software application for displaying, modifying

and analysing astronomical spectra [31] (see Fig. 13 and Fig. 14 respectively, for example).

4.1 History

SPLAT was originally developed in 2003 as a part of Starlink (and its STARJAVA package)
project [31]. During its development, the original SPLAT was extended to include facilities that
allowed an interoperability with the Virtual Observatory (see Sec. 2.1) [32], which resulted
in a VO suffix in its name in 2005.

SPLAT was also a leader project for moving future developments into the Java language,
with the obvious benefits of improved portability, modern language capabilities (OOD, OOP)
and core-level support for features like Uls and Internet protocols and services. This work
eventually led to the formation of what became the StarJava project, containing also the well-
known table processor TOPCAT [4] (see section 2.2.2).

The original Starlink project was eventually shut down in 2005, yet its development continued
until now under Joint Astronomy Centre?® (that released some parts under GNU/GPL licence)
and since 2015 by Fast Asian Observatory®” [33].

4.2 Team and Development Organization

SPLAT-VO development was took over in 2012 by GAVO?® (German Astrophysical Virtual
Observatory), Astronomical Institute of the Czech Academy of Sciences?® and VSB - Technical

30 Tts current

University of Ostrava, Faculty of Electrical Engineering and Computer Science
development is focused on new and experimental IVOA standards implementation, handling

large data sets and other data types and data models as well as improving user interface.

4.2.1 Current Development Team
As mentioned before, SPLAT-VO is currently developed by several organizations:
Astronomical Institute of the Czech Academy of Sciences Fricova 298, 251 65 Ondre-

jov, Czech Republic.
Web: http://www.asu.cas.cz/

26 Joint Astronomy Centre homepage: http://www.jach.hawaii.edu/
2"Bast Asian Observatory homepage: http://wuw.eaobservatory.org/
28German Astrophysical Virtual Observatory homepage: www.g-vo.org
Pnttp://www.asu.cas.cz/

3nttp://www.fei.vsb.cz/

37

http://www.asu.cas.cz/
http://www.jach.hawaii.edu/
http://www.eaobservatory.org/
www.g-vo.org
http://www.asu.cas.cz/
http://www.fei.vsb.cz/

Siariink SPLATAGT SIS
Fin anayels. Fatt, Ao Geaghire Hiip

C |y el | | | R | L | T e W

wsslaying:

ik ntnes i = v biwies e [awaniic |- | o

Wanslengit: S135.062 Clites

walibes Tvmana Bl o] o=

Figure 13: SPLAT-VO at work. Source: [30].

HrariinR SRS SRt
Fin anayels. Fatt, Ao Geaghire Hiip

C |y el | | | R | b | T g W

pe— =

v 5 D T A AR T L G B 0 [aimaniic || et

Lzt et A

Figure 14: Many spectra in SPLAT-VO. Source: [30].

38

e Petr Skoda Scientific advisor and coordinator, IVOA Interoperability Meetings presenter.

E-mail: skoda@sunstel.asu.cas.cz.

Heidelberg University Astronomisches Rechen-Institut (ARI) Zentrum fiir Astronomie, Uni-
versitat Heidelberg (ZAH) Monchhofstr. 12 - 14, 69120 Heidelberg, Germany.
Web: http://www.uni-heidelberg.de/

e Margarida Castro Neves Maintainer and Java developer for SSA, ObsCore and DatalLink
protocol-related features.

E-mail: mcneves®@ari.uni-heidelberg.de.

e Markus Demleitner Server side implemetation of VO protocols and data models, GAVO
coordinator.

E-mail: msdemlei®@ari.uni-heidelberg.de.

VSB - Technical University of Ostrava Department of Computer Science, Faculty of Elec-
trical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu
15, 708 33 Ostrava-Poruba, Czech Republic.

Web: http://www.cs.vsb.cz/

e David Andresic¢ Java developer for spectra visualization, data export, time series imple-
mentation, refactoring suggestions and general tweaking.

E-mail: david.andresic.st@vsb.cz.

4.2.2 Previous Members of Development Team

The main developers of the original SPLAT-VO are:

e Peter W. Draper SPLAT architecture and main developer.

E-mail: p.w.draper@durham.ac.uk

e Mark Taylor Current developer of TOPCAT (see 2.2.2).

E-mail: m.b.taylor@bris.ac.uk

4.2.3 Current development process

Since the SPLAT-VO development is literally a world-wide activity, it does not fit exactly
into any usual software process model such as those described in section 3.2.1. For the last
several years, it is anyway close to agile methodics, since it has its backlog that contains (still

updated) requirements coming mainly from:

e conferences;

39

skoda@sunstel.asu.cas.cz
http://www.uni-heidelberg.de/
mcneves@ari.uni-heidelberg.de
msdemlei@ari.uni-heidelberg.de
http://www.cs.vsb.cz/
david.andresic.st@vsb.cz
p.w.draper@durham.ac.uk
m.b.taylor@bris.ac.uk

e practical experience at Stellar Dept. of Astronomical Institute of Czech Academy of Sci-

ences;

e IVOA Interoperability Meetings.

Based on current needs of astroinformatics community, the coordinators set the priorities to
the requirements and in cooperation with developers perform an implementation analysis. Based
on the estimated required time, the requirement is scheduled for implementation. It is usual
to make a proof-of-concept of the requirement implementation first, so it may be presented
on IVOA Interoperability Meetings and conferences to receive an expert feedback. This makes
the scope of every version totally open, so it is mainly maintainer’s choice when the final release
will be made (usually after the preplanned features are tested enough). Every implemented
requirement is continuously tested by our coordinators. Before the release, the maintainer
updates the changelog and user documentation and prepares a final build with installer that
is linked from SPLAT-VO homepage. In certain sense, SPLAT-VO development is therefore
iterative - each requirement (and its implementaton) is re-evaluated for several times during
its development until all sides are satisfied enough to close the scope of the version and make
a release.

The bottleneck of this process is that the "backlog", communication and the entire inter-
operability are subject of e-mails. This makes tracking features in backlog, its implementation
status, discussion and time estimates as well as scope of versions, very hard to control. In order
to solve these issues, an issue tracking system is being introduced (see section 7.2).

Another problem is unability of coordinators to build a snapshot version (from current
state of the repository) on their own and check the state of repository by means of continuous
integration (see 3.2.2). In order to solve this problem, the "Dockerized" Jenkins CI system
is being introduced and deployed in Stellar Department of the AT CAS (see sections 3.2.2, 3.2.6
and 7.3).

4.3 User Interface

SPLAT-VO is a multi-window application. This section covers the most important of them
and their basic concepts. A complete description of SPLAT-VO user interface is a subject

of official documentation 3!.

4.3.1 Main Window

This is a starting and central window of SPLAT-VO. As shown on Fig. 15, it contains a Global
list of spectra currently loaded to a running instance. Right side is a place of visualization

settings for the spectrum or spectra selected in Global list of spectra. The top of the Main

3ISPLAT-VO original homepage: http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html,
GAVO SPLAT homepage: http://www.g-vo.org/pmwiki/About/SPLAT

40

http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html
http://www.g-vo.org/pmwiki/About/SPLAT

Starlink SPLAT-VO: A Sp

Eile Edit View Qptions Operations Interop Help

o S e e rd— 7 | m + oA
@ @ "J\Iul"" Hstont I"'E: @ ﬁj\ URiTS _TE B g Afn <&
Global list of spectra: Properties of current spectra;
aloLwr

tmo/SPLATIT0842050069 | Shortname: /tmp/SPLAT6736477683619336888 fits
gL

Full name: http://ssaproxy.asu.cas.cz/getproduct/heros/NORM/BLUE/
Format: TABLE

Coordinates Data Errors
Columns:
WAVE v |FLUX v w

Colour: M| |Save Reset
Composite: | 100% v
Line type: polyline =
Linewidth: |1 ¥ |Styler line Y

Paint type: |dot v-[Szel 5.0 | v

Error bars: M1 v |1

Views of current spectra:

Figure 15: Main window.

Window contains the application menu - an entry point to where the spectra can be loaded
and processed.
Some of the most used and most interesting windows achievable in SPLAT-VO from the

Main Window are:

e Query VO for spectra (see section 4.3.2)

ObsCore Browser (see section 4.3.3)

Plot Window (see section 4.3.4)

View/modify a spectrum (see section 4.3.5)

There are many other windows in SPLAT-VO, but those listed above should be sufficient

for understanding of the aim of this thesis.

4.3.2 Query VO for spectra

This window (shown on Fig. 16) is an entry point to VO, where the user can search for spectra
(in IVOA terms: perform a data discovery) and download them (in IVOA terms: perform a data

access) through the SSAP protocol (see section 2.1.2). A complex interface consists of:

Service selection options on the left side where the user can select:

41

Starlink SPLAT-VO: Query VO for Spectra X

Eile Options Resolver Interop Help

Service selection options Search parameters:

Data Source- 4 Simple Query Optional Parameters

=) Observed data d Object: vega Lookup Clear U.. Name Value uco

Wave Band f ||| & APERTURE S NULL_ instr.fov

T rad 5| e RA:|18:36:56.336 Dec: +38:47:01.28 L SNR __NULL__ stat.snr

= = | REDSHIFT |__NULL__ |src.redshift

| Optical 1 uv Radius: | 10.0 MAXREC:) TARGETCLASS |__NULL__ src.class

iy J i L/ PUBDID __NULL__

| Band: / L/ CREATORDID |__NULL__ meta.id
Tags i | MTIME __NULL__
= / | WILDTARGET |__NULL__
——— 7| © WILDTARGET... |-_NULL__
: v
SSAP Sarvars— Query Format: fits o ToP]
[RSTRTNITSS PaTam
short n.., ~ ||title Wavelength calibration: MNone »
HEAVENS"'lt' Fliaseatbation Nana 7 Select all Deselectall | Update
S T <SERVER>?REQUES T=queryData&P05=272.23473333333334,38.78368888888889&F0R

HER Hyperbacas, Y A T=fits 85 1ZE=0.16666666666666666 gean
HFA SSA |HyperLeda.. =i s
HIG HI Extraga... Query results: -
HiG 55A HiG - Sim... [1 g
HPOL \Wisconsin .. HEROS OND CUTOUT | HEROS OND
HST.FOS ... |Hubble 5p... i i 2 i I
HST.GHR... |Hubble Sp.. l... |ssa_score ssa_targname | ssa_location ssa_specstart ssa_sPecend ssa_a.pertureg
HST Spectra|Hubble Sp... 1 6. alplyr Position ICRS 279.2349175...| 3.700@1E-7 5.70001E-7 0.008167
HSTSTIS .. [HST Spac... 2| 8. alplyr Position ICRS 279.2349179...| 3.70001E-7 [5.70001E-7 | 0.00016;
HUT Hopkins U... = IR alpLyr Position ICRS 279.2349179...| 3.700@1E-7 5.70001E-7 0.008167
INES ARC... |INES: The... 4 0. alpLyr Position ICRS 279.2349179...| 5.850G1E-7 | B8.30801E-7 | 0.000816,
ISQ SSAP |ThelSOD...
M PR Display Display Download Download Deselect Deselect

catsecain| |oasaiasian selected all selected all table all

Query re.. | Add New .. Save query results 5] Restore query results . Close

Figure 16: Query VO for spectra.

e Data source - observed or theoretical data
e Wave band - radio, optical, infrared, X-ray, etc.
o SSAP servers - concrete servers to be queried
Search and optional parameters in the middle and right, where the user can input param-

eters for data discovery (object name, right ascension, declination, radius, band, data

format etc.)

Query results and data access options at the bottom of the window, where the user can
find a tab for each SSAP server that found at least one spectrum
4.3.3 ObsCore Browser

ObsCore Browser is an experimental implementation of the ObsCore protocol (see section 2.1.2)
for general observation data discovery and access (see Fig. 17). Similar to Query VO for spectra

window, the user can select ObsCore services and perform a:

Cone search via Cone search protocol (see section 2.1.2) based on object name, right ascension,

declination, radius, band etc.

42

Query

Object: vega

Radius: | 10.0

Band:

Time;

short name

Guery Parameters

Cone search | ADGL search

Lookup

RA:| 18:36:56.33€ Dec: +38:47:01.2¢

SEND QUERY

Obscore Spectral Services

title

WiggleZ TAP WiggleZ Final Data ...
SkyMapper TAP SkyMapper TAP
wagesdsstap Laurino et al 2011 ...
CSIRO ASKAP TAP |CSIRO ASKAP Scien...
MACHO TAP MACHO TAP L
XCATDB TAP interface of the ...

GAVO DC TAP

GAVO Data Center ..

Query results

Add New Service | Query Registry

Figure 17: ObsCore browser. Source: [34].

ADQL search via ADQL protocol (see section 2.1.2) where more fine-grained parameters can
be set.

Results of the query are then shown to the user in the Query results panel on the right side

of the window.

4.3.4 Plot Window

Plot window is probably one of the most important SPLAT-VO windows at all. As the name
implies, this window serves for plotting spectra (see Fig. 14 and 18) based on parameters set
in Main Window (which can be overriden or precised within the Plot window itself).

The spectra plot itself covers most of the window, but at the top, the user can find an arsenal

of spectral analysis tools. Just for example:

e Cutting regions from spectrum

Fitting
e Comparing

Statistics

Multiple matching

And many more (a concrete description of the individual algorithms is beyond the scope
of this thesis). Within these menus, the user can also highly customize the plot, invert axes,

set them logarithmic and much more.

43

Starlink SPLAT-VO: <plotO> »

File Analysis Edit Options Graphics Help
2 3 - b +
EEaget@BEAI~YAaAh™IAH

Displaying: ——— ...0785762247217.fits ¥ | Remove | Y limits (¥): automatic V-hair
Wavelength: |4673.61 | ‘log Data count: |1.008807 :log i Track free|
| 1
X scale: b@| | |kt = Y scale; 1.0 vl =

Data count versus Wavelength

! Ll ™
'_:‘\v'rl"h."‘.'”"‘I-"".-,-"-- o LRI e
! I

4400 4600 4800 5000 5200 5400
Figure 18: Plot window.

4.3.5 View/modify a spectrum

A simple window that allows the user to view spectral data itself in a form of a table (see Fig. 19).
This window is (compared to others) very simple and almost featureless, yet it allows a manual
manipulation with spectral data, both axes transformation, adding columns by computation,

and newly data export to CSV format (see section 5.5).

4.4 Most Typical Use Cases

As the user interface implies, SPLAT-VO is capable of opening the spectra (and also light curves,
if they are represented as a spectrum with time axis instead of wavelength axis) contained
in multiple formats [34]. These data (files) can be loaded:

e locally from a file (many formats are supported) [34];
e via SSAP protocol®? (Virtual Observatory) [34];
e via SAMP protocol®® (Virtual Observatory) [34];

e as a in-memory result of some operations performed on other spectra [34].

32Gee 2.1.2
33See 2.1.2

44

Starlink SPLAT-VO: View/modify a spectrum X

Eile Edit Operations Help
Spectrum:

Short name; |/tmp/SPLAT6736477683619336888 fits

Full name: http://ssaproxy.asu.cas.cz/getproduct/heros/NORM/BLUE/NORMbxn0728 fits
Format; TABLE

~ Readonly

Values;

Wavelength Data count U
3700.01 0.1399953
3700.11 0.2033958
3700.21 0.1806011
3700.31 0.2019644
3700.41 0.2119476
3700.51 0.2051935
3700.61 0.2006759
3700.71 0.1930411
3700.81 0.2276451
3700.91 0.2012619
3701.01 0.1581418
3701.11 0.1934062
3701.21 0.2388298
3701.31 0.2244663
3701.41 0.2118397
3701.51 0.225551%
3701.61 0.1887358
3701.71 0.1902618
3701.81 0.1740983
3701.21 0.1639073
3702.01 0.2005912
3702.11 0.1974865

0 Close

Figure 19: View/modify a spectrum.

User can also send the opened spectra via SAMP protocol to other tool and/or save the spectra
in a different format and/or save the entire list of spectra to a local file [34]. He/she can perform

many operations on the spectra. Just to get an idea:

e plotting one or more spectra to a plot window [34]
e performing actions on a plotted spectrum/spectra (e.g. cutting, fitting) [34]

e adjusting the visualization of plotted spectra (e.g. color or style of line etc.) [34]

4.5 Technical Description

SPLAT-VO is a desktop application written in Java SE34 1.6 (yet the original SPLAT was com-
patible with version 1.5). The GUI is built using Java Swing library, which makes it look
the same way on all supported platforms.

Using the Java platform, SPLAT-VO is in general multi-platform and multi-arch application,
yet the internal usage of native libraries from the original Starlink project, that are written

in Fortran, C and C++, limits the platform support to following:

e GNU/Linux

34 Java platform homepage: https://java.com

45

https://java.com

Open local spectra <=extend==
=<entend== e ST T e -
-f-sskte'nd>> Receive spectra via SAMP ==

-7 e--eZétends= - - . !
< LT P i
T TTTTT T Download spectra via SSAP . Cleeng= 7 !
T~ - I |
oo e B i
< Tl L
Open in-memory result of operation ~SERENT> g <extend>>
o T Edit plot settings
;| =sextenden .
<<extend== e s, ==exend=¥ !
! i - open local lightcurves <<extsﬂd=->\ '
fo | ==ertend=> S <zextends
| N S |
“ B

|

|
i
|
v

i
) i
i
! ' <<extand>> Flot lightcurves |
AN | : <<s><tem1>> e i
d Open I\ght:uwes _ < e " aaextends= |
7 ; ~ 7 Recelve lightcurves via SAMP - i o
r ! p - s \‘ o
! t’cextsnd:-:- " -

[
,‘<<e>¢end;->/ \ ~
. 3 ~

\ <=eitends== A\

Plot spectra

,

' e
i Pl
i <
)

’,
' P Aeetendss!
|7 ==etend=>
‘\ Download lightcurves via SSAP
Save in a different format S, ertends= =
A ! \ ==edtends=:

! I
N re<eitends= C\

Send via SAMP @ {other operations]

Figure 20: Use-case model of the most typical use cases. Source: [34].

e MS Windows
e Mac OS

for two major architectures: x86 and x86-64.
For a build, SPLAT-VO uses a customized Apache Ant?> and some of its modules supports

scripting in BeanShell?® and using Java EE.

4.5.1 Basic Entities and Architecture Overview

This section covers fundamentals of SPLAT-VO architecture and concepts.

SpecData, RemoteSpecData and SpecDatalmpl SPLAT-VO is capable of loading spec-
tra in many data formats (e.g. FITS, VOTable, etc.). This is achieved by internal conversion
to an abstract entity called SpecData (see Fig. 21), that covers all common spectra properties
(data and metadata). For spectra that comes from remote sources, SPLAT-VO uses the exten-
sion of SpecData called RemoteSpecData [34]. For a complete UML class diagram, please refer
to appendix A.

This abstract representation of spectra is internally used by SPLAT-VO features. This ab-
stract representation of spectra is internally used by SPLAT-VO features. SpecData also keeps

a reference to SpecDatalImpl, which is an interface for format-specific operations of the original

spectrum file (e.g. FITSSpecDatalmpl).

35 Apache Ant homepage: http://ant.apache.org
3http://www.beanshell.org/

46

http://ant.apache.org
http://www.beanshell.org/

Hmad {native) Spectraﬂ(ionuer‘t ta SpecDataHAdd SpecData to global spectra list) é{:)

FITS, NF5. WOTable, T

Figure 21: Workflow of loading spectra in native format to internal SpecData format.
Source: [34].

SpecList is a singleton class that holds all spectra (instances of SpecData) loaded in SPLAT-
VO. In this text, the term SpecList is therefore interchangeable with Global list of spectra

(it is its implementation) [34]. For its complete class diagram, please refer to appendix B.

GlobalSpecPlotList is an aggregate singleton class that provides a direct access to the SpecList
instance and list of all plots. It provides integrated control interfaces to both these objects and
provides listeners for objects that want to be updated about changes in the lists of spectra or

plots [34]. For a complete class diagram, please refer to appendix C.

SplatBrowser GlobalSpecPlotList isalso referenced by SplatBrowser - the central SPLAT-
VO window (see 4.3.1). So whenever this text notes that a spectrum is added to SplatBrowser or
Global list of spectra, it means that it is actually added to GlobalSpecPlotList (and SpecList
respectively) instance.

SplatBrowser class contains (among others) one crucial method called tryAddSpectrum().
This method (and its overrides) is responsible for loading spectra to GlobalSpecPlotList in-

stance based on provided metadata (spectrum URL etc.).

SpectrumlO and Props As the name implies, SpectrumI0 class is responsible for loading
spectra to SplatBrowser (and Global list of spectra respectively), saving spectra (meaning in-
dividual SpecData instances) to various data formats (FITS, VOTable etc.) and serializing
the entire Global list of spectra to a single file. As many other core classes in SPLAT-VO,

SpectrumIO is a singleton class, so there is always a single existing instance.

Props is a public and static class embedded within SpectrumIO. It is a container class for
describing the properties of a spectrum to be loaded (name, URL, pre-defined type, shortname,
units etc.). Some metadata are required to be compatible with Starlink AST3" library (please
consult with JavaDoc for details). For a complete class diagram of SpectrumIO class, please

refer to appendix D.

37Starlink AST homepage: http://starlink.eao.hawaii.edu/starlink/AST

47

http://starlink.eao.hawaii.edu/starlink/AST

SpecDataFactory creates and clones instances of SpecData. The type of the spectrum sup-
plied is determined either by heuristics (based on the specification in Props instance) or by a given,
known, type (SpecDataFactory also contains constants and enumerations of supported data

formats and sources). For a complete class diagram, please refer to appendix E.

Process of Loading Spectra to SPLAT-VO A central point to add a spectrum or spectra
to Global list of spectra is its owner, that is SplatBrowser instance (see section 4.5.1). This class
contains several overriden methods called addSpectrum() and tryAddSpectrum(). The basic

difference between them is only in the way they react on exception:

e addSpectrum() shows an error dialog (extension of javax.swing.JDialog)

e tryAddSpectrum() throws an exception (extension of java.lang.Extension)

They are called mainly from Ul (SplatBrowser and its displaySpectrum() methods), SpectrumIO,
SpecList and Splat SOAP server. Their arguments are also various: from spectrum URL and
suggested type ID through Props instance containing spectrum metadata to entire SpecData
instance.

The particular algorithm used for loading depends on provided parameters (a concrete over-
riden method), but the general idea is same in all cases as demonstrates the simplified UML

sequence diagram (see Fig. 22) for method tryAddSpectrum(SpectrumI0.Props props):

1. The user initiates the loading of spectra via UI etc.

2. SpectrumIO handles the loading in separate thread (instance of SpectrumI0.Loader class)

by calling tryAddSpectrum() method of SplatBrowser.

3. Based on the provided type, SplatBrowser decides whether to expand spectra (via
SpecDataFactory.expandXMLSED () method) or parse it. The spectrum is located on pro-
vided URL.

4. SplatBrowser then loops over all found spectra on the provided URL and checks whether
it contains other embedded spectra. Then, for all found spectra, it calls GLobalSpecPlot-
List and its .add () method to add each spectrum to Global list of spectra.

The entire process of spectra loading is thread-safe.

4.6 Build Example

SPLAT-VO can of course be downloaded and installed from its homepage, but for some use
cases, it might be useful to build the current snapshot. This HOWTO basically follows steps
described in README file of Starjava package. The build is tested on GNU/Linux.

48

==actor=x fSpectrumld /SplatBrowser
Mser

load{splatBrowser, props)

/SpecDataFactory /GlobalSpecPlotList

tryddSpectrumiprops

'
Perform a load in separate B,
thread {SpectrumlC.Loader) ALT

[type == SpeclhataFactory. SED OR type == SpecDataFactory.[TABLE]

expandXMLSED {spectrumURL)

spectra

[else]

getlspectrumURL, type)

spectra

LOOF
[spectra.hiashgst

add(spegtrym)

containg other embedded spectra. In this case, spectrum is expanded via
SpecDataFactory. reprocessTolD().

I
For each spectrum {SpecData instance), there is also a check whether it B‘

Figure 22: Simplified spectra loading sequence diagram.

4.6.1 Prerequisites

e Java Development Kit >=1.6 (we are officially supporting JDK 7, but for now, SPLAT-VO
is still compiled to be compatible with JDK 6 using target argument)

e Java Advanced Imaging API?®

e Set STAR_JAVA system variable to location of java binary. For example, if the JDK
is installed in /opt/java/jdk-1.6, then the location should be
/opt/java/jdk-1.6/jre/bin/java:

$ export STAR_JAVA=/opt/java/jdk-1.6/jre/bin/java

4.6.2 Build Steps

If all prerequisites are set, SPLAT-VO can be built by the following procedure:

1. Clone Git repository (splat-gavo branch)

$ git clone -b splat-gavo https://github.com/Starlink/starjava.git

2. Build the customized ant:

(a) Enter the cloned directory starjava containing source files:

38JAT binaries and installation HOWTO: http://download.java.net/media/jai/builds/release/1_1_3/
INSTALL.html

49

http://download.java.net/media/jai/builds/release/1_1_3/INSTALL.html
http://download.java.net/media/jai/builds/release/1_1_3/INSTALL.html

$ cd starjava

(b) Enter ant subdirectory with the customized ant source files

$ cd ant

(¢) Adjust the PATH system variable to contain ant binaries required for ant build (over-

rides possibly existing ant installation)

$ export PATH=‘pwd‘/bin:$PATH

(d) Check that the customized ant is on the first place in the PATH system variable

$ whereis ant

(e) Back to starjava directory, set ANT_BUILD system variable to point to ant build

directory and enter back the ant subdirectory:

$ cd .. # back to starjava directory
$ export ANT_BUILD=‘pwd‘/bin

$ cd ant # back to starjava/ant subdirectory

(f) Build ant:

ant -Dstar.dir=‘echo $ANT_BUILD‘ clean
rm -R -f ‘echo $ANT_BUILD®/*

ant -Dstar.dir=‘echo $ANT BUILD‘ install
ant -Dstar.dir=‘echo $ANT_BUILD® clean

®H B N B

(g) Ajdust PATH system variable to point to newly built ant:

$ export PATH=$ANT_BUILD/bin:$PATH

3. Build Starjava

(a) Get back to starjava directory

$ cd ..

(b) Clean ...

$ ant clean

(c) Treat a bug - in splat/build.xml under target="build" add javac compilerarg
(SPLAT uses some internal java.sun.* classes and javac compiler complains about

ContentType - ignore it):

50

<compilerarg value="-XDignore.symbol.file" />

(d) Treat some bugs in missing XSLT templates for docs by entering (still in starjava

directory):

mkdir -p bin/etc/xdoc

mkdir -p topcat/src/bin/etc/xdoc

mkdir -p ttools/src/bin/etc/xdoc

cp -v -R xdoc/* bin/etc/xdoc/

cp -v -R xdoc/* topcat/src/bin/etc/xdoc/
cp -v -R xdoc/* ttools/src/bin/etc/xdoc/

®B B L BH HL SR

(e) Build (with proper encoding)

$ ant -Dfile.encoding=iso-8859-1 build

(f) The build should be ready in bin/bin/splat/ subdirectory - check by running:

$./bin/bin/splat/splat

4.7 Building Using Build Script

There is also a build script®® that can be used to automate the build process. To use it, just

download it to starjava directory and run:

$./ _builder.sh

It checks the environment, detects JDK and can be used for full Starjava build or param-
eterized build with different JDK. Once when built, it also provides capabilities to skip ant
build or to build only splat subpackage of Starjava, which makes the build much faster. To see
the full list of capabilities, run:

$./_builder.sh --help

4.8 Creating Installation Package

SPLAT-VO can be tested and moved between systems without creating an installation package,

but for production use, an installer is a necessity.

39Buildscript URL: https://drive.google.com/file/d/0B_Kr8xwkCpBQamV6X050Z1ZfVWM/view?usp=sharing

o1

https://drive.google.com/file/d/0B_Kr8xwkCpBQamV6X05OZlZfVWM/view?usp=sharing

4.8.1 Prerequisities

To create an installation package, one need to meet with the following prerequisites:

1. Have SPLAT-VO already built (see sections 4.6 and 4.7).

2. Have IzPack® tool for packaging applications and creating installers for Java application
installed. Please note, that SPLAT-VO scripts are compatible with IzPack v4.x, version

5.x is not currently supported.

3. Have C shell installed (csh or tcsh*!)

4.8.2 Installer Creation Steps

e Add IzPack binaries to PATH system variable:

$ export PATH=${IZPACK_BIN_PATH}:$PATH # e.g. /opt/IzPack/bin

e Download and extract extra files*? (containing icons, scripts etc.) to build directory (parent

of starjava directory):

$ cp -Rv ${EXTRA_FILES_DIRECTORY}/* ${BUILD_DIRECTORY}/

e Prepare the environment - prefer customized Apache Ant binary and set STAR_JAVA system

variable:

$ PATH=‘pwd‘/ant/bin:$PATH
$ export STAR_JAVA=$JDK_PATH

e Install binaries:

$./scripts/targetdeps splat install

e Remove unnecessary files:

$ cd ..

$./removed_files.lis

e Build installer JAR file

$./doit.csh

40TzPack homepage: http://izpack.org/

4ltcsh homepage: http://www.tcsh.org/Home

42Extra files tarball URL: https://drive.google.com/file/d/0B_Kr8xwkCpBQdWOyWm54djJ1T28/view?usp=
sharing

92

http://izpack.org/
http://www.tcsh.org/Home
https://drive.google.com/file/d/0B_Kr8xwkCpBQdW0yWm54djJ1T28/view?usp=sharing
https://drive.google.com/file/d/0B_Kr8xwkCpBQdW0yWm54djJ1T28/view?usp=sharing

The final installer is a standard JAR file, that can be executed by:

$ java -jar splat-vo.jar

Since the entire build and installation package creation is fully deterministic and can be au-

tomatized, a Jenkins CI job was created (see sections 3.2.2 and 7.3).

93

5 Realized Improvements of SPLAT-VO

This section is focused on improvements so far realized to SPLAT-VO. It describes new features
in SAMP communication, work with FITS files, spectrum CSV export, some visual tweaks
and demonstrational support of time series, that is currently being standardized and imple-

mented (see section 6.1).

5.1 More Efficient Work with SAMP Protocol

SAMP protocol (described in section 2.1.2) is a powerful mean of interactive cooperativity.
SPLAT-VO now extends its current support for it to allow sending also original spectral data that
has not been processed by SPLAT-VO. This is important because SPLAT-VO does not always
keep all metadata and/or data. Sending is possible in VOTable (see section 3.1.4) and FITS
(see section 3.1.3) format.

In order to send a SAMP message via SAMP hub to other connected SAMP client, the sender
needs to obtain from hub a list of clients that supports the message type of the message.

For VOTable and FITS, the corresponding message type is:

e VOTable: table.load.votable

e FITS: table.load.fits

Beside the message type, in order to send the message as table, the message needs to have
also set the send type parameter to table.

Last important parameter in SAMP message metadata is the spectrum URL identified
by Access.Reference keyword. This is a little bit tricky in case of in-memory spectra, that
are results of some SPLAT-VO operation on opened spectra and has no URL. These files
are therefore stored to system temporary directory and their URL in this storage is sent
in SAMP message.

The implementation (shown on Fig. 23) uses UniformCallActionManager from the original
Starjava project. This class has embedded classes BroadcastAction and SendAction that ex-
tends standard Java Swing AbstractAction class and are initiated by UniformCallActionMana-
ger on request from SPLAT-VO action managers initiated by SampCommunicator class and pro-
vides UI menus and event handlers for SAMP communication.

Unfortunately, UniformCallActionManager does not provide a required level of customiza-
tion via its API (especially modifying the message and send type) and since it is not a di-
rect part of SPLAT-VO, it is now forked and modified (including classes BroadcastAction
and SendAction) in SPLAT-VO as SplatUniformCallActionManager. This action manager
is extended by SpectraAsTablesSendActionManager (see appendix F.3) that also implements
a new interface EventEnabledTransmitter extending the original SAMP Transmitter inter-

face and standard Java AWT MouseListener, so it provides a standard SAMP functionality

o4

org.astrogrid.samp.gui

AbstractCalfictioniManager javax swing java. awt event javax swing. event
getSendaction{client : org.astrogrid. samp.Client) : Action AbstractAction <<interface=> <<interfaces=
1 Mouselistener ListSelectionListener
UniformCallactionManager 0.*
" SendAction I
createBroadcastaction() ; Action
createMessage(client : org astrogrid. samp.Client) : Map
1
Broadcastiction
0%
uk.ac.starlink, splat, util
SplatniformCalidctionianager SendAction
1 0.%

createBroadcastiction(] : BroadcastAction

getSendaction(client : org.astrogrid.samp. Client} : Sendaction
createMessage{client ; org astrogrid. samp.Client) : Map

==interface>>
Transmitter

t Broadcastiction
0.

getBroadeastiction(] : Action
createSendMenul} : JMenu

SpectradsTablesSendictionManacger

T il

==interface=»

==realize==

EventEnabledTransmitter

BinFITSTableSendActionManager

WOTableSendActionManager

|

SampCommunicator

createBinFITSTableTransmitter{specList : JList) : EventEnabledTransmitter
createBinFITSTableTransmitter{ssaQueryBrowser : SSAQueryBrowser] : EventEnabledTransmitter
createVOTableTransmitter(speclist ; List] : EventEnabledTransmitter
createvOTableTransmitter(ssaQueryBrowser : SSAQueryBrowser) : EventEnabledTransmitter

<=enumeration==
SOURCE_EMUM

JLIST : SOURCE_EMUM

SSAP_BROWSER : SOURCE_ENUM

Figure 23: Simplified class diagram of spectra as table SAMP sender.

95

Starlink SPLAT-VO: A Spectral Analysis Tool

le Edit View Options Operations -ﬂatp

a @ 35F e e @ saMP control o g
slobal list of spectra: Pre Y
oL H
olLvr
e
Lo
2
&' Broadcast table
Send spectrum as FITS table to ¥ e
i)
A’-- Broadcast table v

Send spectrum as VOTable to... il topcat

Same window for SAMP spectra
Composite: | LUU%

Figure 24: Sending spectrum as table via SAMP from Main Window.

and mouse event handler. It also imbeds a SOURCE_ENUM that identifies the source type that re-
quests a communication via SAMP and affects the way how SplatUniformCallActionManager
handles creating of the SAMP message.

SpectraAsTablesSendActionManager provides a common functionality for its descendants:
BinFITSTableSendActionManager and VOTableSendActionManager (see appendix F.4). These
classes are responsible for creating a SAMP message with approprite message and send types,
MIME type and spectrum URL. They are instantiated by SampCommunicator that is called
directly from Main Window or Query VO for spectra.

5.1.1 Sending Spectra Content from Main Window as Table

As described earlier, SPLAT-VO is now capable of sending the original spectra as table via SAMP.
One of the way how to achieve this is Main Window, as shown on Fig. 24.

Technically, it as achieved by calling above noted SampCommunicator and its overriden
methods createBinFITSTableTransmitter (specList:JList) for FITS SAMP interoperabil-
ity and createV0TableTransmitter(specList:JList) for VOTable SAMP interoperability.

5.1.2 Sending Spectra Content from SSA Query Browser as Table

SSA query browser (also known as Query VO for spectra) is another part of SPLAT-VO UI
from where the user can send a spectrum (or spectra) via SAMP as table (see Fig. 25). This place
is for sending even more important than the Main Window since it allows to send directly selected
results from SSAP query which highly improves the efficiency of work.

Technically, it as achieved by calling above noted SampCommunicator and its overriden meth-
ods createBinFITSTableTransmitter (ssaQueryBrowser:SSAQueryBrowser) for FITS SAMP
interoperability and createV0TableTransmitter (ssaQueryBrowser:SSAQueryBrowser) for VO-
Table SAMP interoperability.

o6

Starlink SPLAT-VO: Query VO for Spectra x

stions Resolver -ﬂetp
e selection op &P}I Broadcast Result Table
Source Optional Parameters
Send Result Table to ... >
oserved data _ookup Clear U... Name Value ucp
‘Bind 5{5}9 Broadcast table | APERTURE [__NULL__ [instr.fov
= S Ll |SNR __NULL. tat.
idio =l Send result spectra as FITS tableto.. > | REDSHIFT NULL Z’_: r:{:;hlft
otical bl o) | TARGETCLASS |__NULL_. src.class
m- Broadcast table | PUBDID __NULL. i
Tay = i ILE == 1
Send result spectra as VOTable to.., > & CREATDROID UL meke,[d
| MTIME A
Time: i | WILDTARGET |__NULL__
» | WILDTARGETC.., |__NULL__
Servers Query Format: None w: O ToP B3
YRS ENTRTEY
~ | title Wavelength calibration: None L2
b [FERUS..
N Fricalibretion: None v Select all | Deselectall | | Update
Far ULt...
Galax <SERVER>PREQUES T=queryData&P05=279.23473333333334,38.78368888888889&51ZE=0.16666
£ Yoo Query: SEND QUERY
FE |GIRAF... 666666666666
Query results:
[|
HEROS OND | HEROS OND CUTOUT
l... |ssa_score ssa_targname | ssa_location ssa_specstart ssa_specend ssa_aperture | mime '
1 | Position ICRS 279.2349179...] 3.700601E-7 | 5.70001E-7 | 0.0008167 |applica
E 2. 8, alplyr Position ICRS 279.2349179.,, 3.76001E-7 5.76001E-7 ©.000167 applicd
PAHIG-S... 3 B alplLyr Position ICRS 279,2349179... 3.70001E-7 5.70001E-7 0.000167 applicd
Wiscon... 4 8 alplyr Position ICRS 279.2349179,,, 3.70001E-7 5.70001E-7 0.000167 applic
.. |Hubble... 5 0 | alpLyr | Position ICRS 279.2349179...| 3.70001E-7 | 5.70601E-7 | ©.000167 |applica

Hubble. ..

Figure 25: Sending spectrum as table via SAMP from Query VO for spectra window.

5.2 Access to All FITS Extensions

First version of this feature was already presented in [4] and is being continuously improved
since then.

In the historic versions, SPLAT-VO was (simply put) reading only the first HDU found
in the FITS file. But FITS can contain many HDUs in a form of an extension as described
in 3.1.3. These extensions were basically inaccessible in SPLAT-VO [4].

Current versions of SPLAT-VO are able to load all HDUs located in the input FITS file.
Each HDU produces a spectrum (a SpecData instance) in the Global list of spectra referencing
the corresponding FITS header. This implicates that features like showing the FITS headers
or ordering by its metadata (contained in FITS headers) are automatically working with this new
feature, allowing SPLAT to become a general-purpose, feature-rich FITS viewer and editor
as well and even more importantly, with ability to access all FITS headers (or more precisely
its metadata) also improvement of its spectral analysis capabilities [4].

This is possible thanks to a gentle refactoring of SPLAT-VO architecture, that so far ex-
pected (generally speaking) that one source (file etc.) provides one spectrum. Newly, SPLAT-
VO expects the multiplicity 71:M so when there will be a need in the future to add a similar
functionality (to load more spectra from one source file), SPLAT-VO will be ready for it [4].

Currently, there is one drawback that remains unresolved: in FITS world, it is common
to have a primary HDU with no spectral data, yet with common observational parameters.
Since this HDU is skipped, these metadata are inaccessible. After a long internal discussion,
handling multi-HDU FITS files will be left to user with a dialog with some possible actions

(including this one) and with option to perform the chosen action to all loaded spectra.

o7

Starlink SPLAT-VO: <plot5>
Eile Analysis Edit Options Graphics Help
= o +
BametBEXA~YAER™I AN

Displaying: .. 483227139353721 ¥ || Re.. | Y limits (#): automatic “ V-hair
Medified Julian Date: |56645,05 ilog Magni.. |15.2691 :log iTrack free
X scale: 1.0 hal - ¥ sca.., 1.0 bl 7 =

2-d compound coordinate system

Magnitude (mag)
155 1545 154 1535 153 1525 152

56640 56660 56680 56700 56720 56740 56760
Modified Julian Date

Figure 26: Time series demonstrational support example.

5.3 Time Series Demonstrational Support

This feature was also already presented at IVOA Interoperability Meeting in October 2015. In
order to support the need for light curves (and time series in general) standard, that is crucial
for handling data from several large scientific projects (including LSST*3, LIGO* and more), a
demonstrational support of time series was implemented to SPLAT-VO. With support on server
side in Astronomical Institute of the Czech Academy of Sciences, SPLAT-VO is capable of:

e Showing correct units on time axis (Julian Date and Modified Julian Date)

e Inverting y-axis in case of magnitudes (where the lower number indicates more brighter
object)

e Customized visualization in Plot window, where the time series are plotted as larger crosses

instead a polynom

See Fig. 26 for an example.

For data discovery, a standard SSAP protocol is used and the detection of time series is done
by looking for Spectral Data Model (see section 2.1.2) parameter ssa_producttype (see ap-
pendix F.1 for code sample) in VOTable of:

e SSAP query results

e locally opened VOTable file

43The Large Synoptic Survey Telescope: http://www.lsst.org/
“Laser Interferometer Gravitational-Wave Observatory: https://www.ligo.caltech.edu/

o8

http://www.lsst.org/
https://www.ligo.caltech.edu/

Query results;
f |
HERGS GND CUTOUT | HEROS OND

l... |ssa_score ssa_targname | ssa_location ssa_specstart ssa_specend ssa_aperture | mime
31 0. | alplLyr | Position ICRS 279.2349179...| 5.85001E-7 | 8.30001E-7 | 0.060167
3 Position ICH 5.85G01E-7 8.30001E-7 0.000167

| applicz
applica |

33] 0. alpLyr Position ICF Download .| 5.85001E-7 | B8.300G1E-7 | ©.00@167 |applical
34| 0. alplyr Position ICF |nfg .| 5.85001E-7 | B8.36001E-7 | ©.000167 |applica
35 O alpLyr Pasition ICF | 5.85001E-7 | 8.30001E-7 | 0.000167 |applic
= = Display
Display Display [) Copy current cell to clipboard Deselect
selected all selected Copy current selection to clipboard all

Copy all table data to clipboard
E Save query results | &3 Reswuis yumy issuns | | gy o

Figure 27: SSA Query Results window enhancements

Technical implementation consisted of new ObjectTypeEnum enumeration with TIMESERIES
and SPECTRUM values. Creating this enumeration was the fastest way to achieve a suitable demo
for time series, yet in future standardized implementation, this logic will move to inheritance-
based architecture. SpecData and TableSpecDataImpl (VOTable format implementation of
SpecDatalImpl) classes were modified to contain support for ObjectTypeEnum and (since they
are smart beans) to act accordingly based on these values. These classes are instantiated by
SpectrumI0 which was with SpecDataFactory also extended to accept this parameter and
SplatBrowser now recognizes the ObjectTypeEnum in the core tryAddSpectrum() methods,
which allows it to pre-set time series visual preferences and flip the Y-axis (see appendix F.2 for
code sample) described above.

As the reader can see, this solution is only temporary, so it is not a part of standard SPLAT-

VO distribution yet and there is a working progress on its standardization described in 6.1.

5.4 SSA Query Results Enhancements

One of drawbacks of SSAP query results in Query VO for spectra window was the inability
to directly copy selected query results. When the user wanted (for example) copy a spectrum
URL, he needed either to know a keyboard shortcut and copy the entire line (that can contain
dozens of columns) or rewrite the URL manually. Therefore we added a new feature (shown on
Fig. 27) that allows to:

e Copy current cell to clipboard
e Copy current selection to clipboard

e Copy all table data to clipboard

This feature has a form of context menu shown to user by clicking by right mouse button
to query results table.

The implementation is centered around new SSAQueryResultsTableSelectionMenu class,
that extends standard javax.swing.JMenu (see appendix F.6 for source code). This menu

is added to a context menu in SSAP query results JTable and uses a new set of JTable utilities

99

Starlink SPLAT-VO: View/modify a spectrum x

-Edit Operations Help
&l save to csv file

[save to text file Save all data to CSV file |°
. Cluza 1.cas.cz/getproduct/heros/NORM/BLUE/NORMbxn0728 fits

Cri+W
+ Readonly
Values:
Wavelength Data count ‘1
3700.01 0.1770355 ’
3700.11 0.2118739
370021 0.1672275
3700.31 0.1769474
3700.41 0.1881687
3700.51 0.1878401
370061 0.1934874
370071 0.175791
3700.81 0.1929294
3700.91 0.1777248
3701.01 0.1645911
370111 0.1844939
3701.21 0.1602184
3701.31 0.185276
3701.41 0.1996986
370151 0.1569176
3701.61 0.1623437
3701.71 0.1775438
3701.81 0.1622589
370191 0.1428102
3702.01 0.1461338
370211 0.1420052

0 Close

Figure 28: Export to CSV and text file feature.

in JTableUtilities class (see appendix F.5 for source code) to select the required content

from SSAP query results JTable.

5.5 Spectral Data CSV Export

SPLAT-VO allows to view and edit spectral data in a form of a simple table. This feature
is available from Main Window under View - View/modify spectra values menu. But it does
not provide a direct functionality to export these values to an external file (exporting the result
in-memory spectrum to FITS, VOTable etc. is not always a suitable option).

As shown on Fig. 28, SPLAT-VO can now export the spectral data to CSV (columns
are delimited by a semicolon) and to a simple text file (columns are delimited by tabulator),
that can both be used in other processing (including big data or manual). This feature is available
under File menu.

As in case of copying results from Query VO for spectra window described in 5.4, implemen-
taion uses a new JTableUtilities helper class (see appendix F.5 for source code) to select
the required content from JTable containing the spectral data. This JTable is contained
in SpecViewerFrame instance, that newly contains embedded classes initiating file chooser
and handling the export itslef (extensions of standard javax.swing.AbstractAction called

SaveAsCSVAction and SaveAsTextAction - see appendix F.7).

60

Data count versus Wavelength

Remove the spectrum

/\ Do you really want to remove the spectrum 'ftmp/SPLAT2050237471410506853 fits'?
&

A4

¥ Remove from global List as well

@0 @ ves

3800 4000 4200 4400 4600 4800 5000 5200 5400 5600
Wavelength (Angstrom)

Figure 29: Visual delete of spectrum in action.

5.6 More Effective Spectra Deletion by Means of Visual Selection

This feature was also already previewed in [34]. When working with multiple spectra, it might
be useful to select e.g. a noisy one and conveniently remove it from Working space [34].

The current version of SPLAT-VO allows a visual selection of a spectrum in Plot window.
It highlights it and pre-selects in the local drop-down menu and Global list of spectra [34].

SPLAT-VO newly contains a delete feature, where after pressing a Delete key or clicking
on an appropriate button, the user is asked to confirm the removal of the currently selected
spectrum with the pre-checked option to remove it from the Global list of spectra as well (see
Fig. 29).

The implementation consisted of creating a new PlotControlKeyListener (see appendix
F.8) that detects a Delete key pressed and calls a new method removeCurrentSpectrumFromPlot
(see appendix F.9) in PlotControl class that handles plotting the spectra. This method
is also called from a new Remowve button located at the right side of the drop-down menu
with plotted spectra. Removing from Main Windows (SplatBrowser instance) is accompa-
nied with visual pre-selection in Global list of spectra. This is ensured by a new interface
SpecListModelSelectionListener that is implemented as an anonymous class in SplatBrowser.
This listener listens for a new SpecListModelSelectionEvent fired by SpecList when new

spectrum or spectra are set as selected.

61

6 Improvements Being Prepared for SPLAT-VO

Features described in this section are currently in a phase of development or pre-development
(based on agreement with developers community and previous analysis acceptance). Part
of these features were already previewed in [34]. Implementation of these features has been
suspended because of change of priorities during the development (especially in favor of time
series), but will continue as soon as more prioritized features will be implemented.

By implementing the following features, SPLAT-VO should allow the user to store all the data
(including in-memory data) in a local storage and in an universal format, readable by other
software tools. It will also read this stored data on startup, so it will allow the user to re-
sume the previous work. It should also allow better organization of incoming data by grouping
the data to user-defined groups. And it should improve the performance by lowering the memory
consumption using the lazy loading of the spectra. These features are covered in sections 6.2,
6.3 and 6.4.

Currently most crucial feature in development is however a standardized support for time
series, described in section 6.1 and presented in experimental phase on the upcoming IVOA

Interoperability Meeting.

6.1 Time Series and Data Cubes Support via New Protocol

As mentioned in section 5.3, realized implementation of time series support was only demonstra-
tional. It uses SSAP for data discovery, which is a bad practice since this protocol is intended
for spectra only. Another bad practices can be found in implementation, that was only demon-
strational.

This has changed lately thanks to Jiti Nadvornik’s new data model using data cubes realized
in VOTable. SPLAT-VO was given a support for this data model. It can open it and operate

with it in the same way as described in section 5.3:

e Data discovery is performed via ObsCore protocol (see section 2.1.2).

e It looks for <PARAM> element in VOTable with name="cube_dataset_producttype"
and value="timeseries" attributes. A corresponding (yet not final) UType is supposed

to be obscore:0bsDataset.dataProductType.

e It will identify time axis (UType spec:Cube.Data.TimeAxis.Value - Modified Julian date
in our example) and observable axis (UType spec:Cube.Data.0ObservableAxis.Value -
magnitude) and find corresponding data columns within VOTable (<TABLEDATA> element,

- see section 3.1.4).
o [t will load and apply visualization properties for time series:

— Render data by points (instead of a polynomial line as in case of spectra)

62

— Larger size for each point

— Render points as crosses

— Invert Y-axis

Visualization was refactored since demonstrational support. It is now driven by individual

rendering properties for spectra and time series. When the object (spectrum or time series)
is about to be rendered, SPLAT-VO will call a factory method (see Fig. 30) for creating
the proper rendering properties. In case that object type could not be detected, the spectrum

rendering properties are used as fallback.

DefaultRendenngProperties

gettlpha(l : double
getlineStyle() : double
getErrorColour{} : int
getErrorFrequency() : int
getErrorScalel) : int
getlineColour{} : int
getLineThickness() : int
getPlotstylel) : int
getFomtType(] @ int
getPointSizer) : double

DefaultRenderingPropertiesFactory

SpectrurnCefaultRenderingProperties

spectrumPropertiesinstance : SpectrumDefaultRenderingProperties - -——-—--—— 3
timeseriesPropertiesinstance : TimeseriesDefaultRenderingProperties

==creates=

create(data : SpecData) : DefaultRenderingProperties

getPlotstyle) : int
getPointType(]) : int
getPaintSizel) : double

==create=>

TimeseriesDefaultRenderingProperties

getPletStylel] : int
getPaintTypel() : int
getPointSize{) : double

Figure 30: Default rendering properties factory.

This implementation of time series and data cubes support will be presented by Petr Skoda

on the upcoming IVOA Interoperability Meeting in May 2016 in Cape Town. Based on the re-

sults, other refactoring is prepared:

e Inheritance-based architecture of SpecData. Currently, the object type (spectrum or time

serie) is identified by ObjectTypeEnum enumeration tied to SpecData entity. This is suf-

ficient for demonstrational purposes, but for a real use, it is unmaintainable. Therefore,

a new abstract class called ObservedData with all common properties will be created.

The current class SpecData will extend it, as well as a new class TimeSeriesData. The rea-

son of waiting with the refactoring for results of IVOA Interoperability Meeting presenta-

tion is the fact that almost all current usages of SpecData class would have to be replaced

by the new ObservedData, which is difficult to manage and priorities and implementation

details may change after that.

63

e Larger support for data cubes: allow basic operations described in section 3.2.7. Basically,
this will require switching between current and several more drop down boxes in visual-
ization settings in Main Window, based on the object type. But the refactored rendering

properties are now ready for this.

Aim of these iterative modifications is to continue on standardization of time series within
IVOA (protocol and data model using data cubes), which is currently a pressing issue, as de-
scribed in 5.3.

6.2 Working Space

Simply put: this feature will save all spectra loaded in SPLAT-VO at the moment to a user-
defined folder [34].

In current implementation, SPLAT-VO downloads all remote spectra to a system temporary
directory, spectra from local files and spectra that are results of some operations are not saved
anywhere. This limits the user-experience because the user has no direct access to all loaded
spectra in order to use it with other tools (manual saving of the spectra or sending it via SAMP

is not sufficiently general and comfortable) [34]. By implementing this feature:

e The user will be able to restore the previous work in SPLAT-VO just by starting it (SPLAT-
VO will ask the user to automatically load the content of the Working space if any).

e The user will be able to immediately work with all loaded spectra in other tools (the Work-
ing space directory will be editable and accessible, so the user can use other tools and ac-
cess the stored spectra - the access for other tools is read-only, only SPLAT-VO will

be able to write to a Working space)

There are also several issues that needs to be considered and solved during the implementa-

tion:

e Working space content must be synchronized with the global list of spectra (SpecList).
This will be achieved by:
— creating an interface WorkingSpaceTransactionalProcedure with proceed () method

— creating a singleton class SpecWorkingSpace with getInstance ()

and update(SpecList, WorkingSpaceTransactionalProcedure) methods
— adding Working space calls to add and remove methods of SpecList and:

— making SpecList’s add and remove methods transactional by rewriting the original
code to a form of anonymous WorkingSpaceTransactionalProcedure class imple-
mentation (the original code will be the body of its proceed () operation). The trans-

actions themselves can be implemented in two ways:

64

% using 3rd party library (XADisk® or Apache Commons Transaction®6) (pre-
ferred)

* writing the proprietary transactional system - probably using a lock file mecha-
nism - at the beginning of a transaction, a lock file with metadata about trans-
action progress would be created and at the end of a transaction, this lock file

would be deleted (means a commit of the transaction).

— by attaching a new SpecDataWorkingSpaceListener (implementing already existing
SpecListener - see Fig. 32) to a GlobalSpecPlotList and implement transactional
event handlers for spectrum MODIFIED and CHANGED events (ADDED and REMOVED events
are already covered and needs to be covered outside these event handlers because

of the need to have add/remove methods completely transactional).

— locking each file in the Working space while SPLAT-VO runs (using java.nio.channel)
- this will ensure that Working space content will not be modified by any user
or any other tool (in other words: no external action will compromise the integrity

of the Working space)

e At least in the first release, the user should have an option to turn off this feature - this will
be achieved by adding a new option under Options menu located at the top of the main
window. This option will be called Working space settings and will open a simple window

containing;:

— checkbox FEnable Working space (checked by default) . Disabling it will cause
the deletion of the working space content (integrity precaution). An event

will be fired when the state of the working space was changed.

— directory selection tool to point to the Working space directory (label: Working space
directory) - this field will be disabled if the Working space is not enabled

— these settings will be stored in the system using the standard Java Preferences API

(java.util.prefs.Preferences) as in case of other SPLAT-VO settings

e SPLAT-VO will have to be able to load all stored data during startup (if the Working space
is enabled) to global list. This will be ensured by new method loadFromWorkingSpace ()
in SpecList and loadWorkingSpaceContent () in SpecWorkingSpace (throws
WorkingSpaceException if anything goes wrong). Since the Working space content will
be editable by external tools when the SPLAT-VO is not running (when running, the Work-
ing space content is locked and read-only), the loading will have to use general mechanism
for opening a local file (same as in case of the File -> Open feature in the main window).

In case of any error during loading the files, an WorkingSpaceException will be thrown,

“https://xadisk. java.net/
4http://commons . apache . org/proper/commons-transaction/

65

https://xadisk.java.net/
http://commons.apache.org/proper/commons-transaction/

reported to the user via alert box and the Working space loading process will be aborted

as one.

e SPLAT-VO deals with many sources and formats of spectra, but the SpecList contains
only the SpecData instances. The Working space mechanism will therefore store these
SpecData instances in a form of FITS with BINTABLE exetnsion (required by Spectra
groups feature described in 6.3 - VOTable representing the spectra group can reference
only a FITS BINTABLE, this also means that the original incoming spectra must be held

in the system temporary directory as until now) with as many metadata as possible.

6.2.1 Use-case view

A list of Working space use-cases is shown at UML use-case diagram at Fig. 31.

Restore the previus work on startup

Edit working space directory
User
Enablesdisable working space

Use spectra stored in working space with other tools

Figure 31: Working space - use case diagram. Source: [34].

6.2.2 Logical view

Logical view of Working space is represented by UML class diagram at Fig. 32. A complete
description of individual classes is available at the beginning of this section.

6.2.3 Implementation view

Implementation view of Working space is represented by UML component diagram at Fig. 33.
It shows a current SPLAT-VO using the standard Global list of spectra, that will be directly
using the new Working space component.

6.2.4 Process view

There are two crucial processes that for better understanding requires a visualization using UML

activity diagram:

e Instantiation process shown on Fig. 34 describes all neccassities required for successful

instantiation of Working space.

66

e Event handling process shown on Fig. 35 describes all major events fired and handled

by Working space and current SPLAT-VO components.

6.2.5 User interface impacts

Wireframes that visualizes user impacts of Working space described at the beginning of this
section are shown on Fig. 36 (integration to Main Window menu) and Fig. 37 (a simple dialog

with Working space settings).

6.3 Spectra Groups

This feature will allow the user to organize incoming spectra to groups and therefore to work
with only a subset of all loaded spectra relevant to current work. When the lazy loading feature
(described more closely in 6.4) is implemented, this feature will also allow to significantly reduce
memory consumption of SPLAT-VO because only the spectra of the currently selected group
will be fully initialized [34].

SpREWArk FGeRacR

updatals)
lnadorki
qatinszan:

pECLIst procadurs ; g
CRCORtEnt]] : Lst=Spaciatass
PRCCACE

B
actinnal® predure

workingSpac

pracerdl

BRRETrRang

pareFucaphan Ay
i
'
'
|

global spectrs list,
workingspace) s the ooy nee
ed,

¢ ests In SPLAT-E T <armalonss

SRRELAtANDIRINGSRACE 15 RART

addListanar]istenar: Speclstanar]

Figure 32: Working space - class diagram.

Represents the entire SPLATAO
feature-set of SPLATAVO F--
Ca

=eUEEs

=UsesE Local spectra working space

Global list of spectra

Figure 33: Working space - component diagram.

67

Implementation of this feature will require implementation of Working space as well (see
6.2), because it requires all the spectra to be locally available (references in group VOTable)
and in the required format (FITS with WAVE/FLUX columns) [34].

In points:

e Each spectra group will be represented by VOTable stored in Working space. Each spec-
trum in the VOTable will be represented by an individual reference under corresponding
TABLE element. All spectra will be grouped under a single RESOURCE element. Please refer
to appendix G to an example of such a VOTable

e Since the current VOTable generators and writers works with a StarTable instance, a new
(simplified) VOTable generator called SpecGroupV0TableWriter will need to be written.
This new generator will have a write() method taking a SpecData instance as an argu-

ment, finding its reference in working space and generating the appropriate VOTable.

e The name of the VOTable in working space will be in this format:
splatvo_{unique UUID}.sg.vot

e The user-editable name and description of the spectra group will be stored in VOTable
NAME and DESCRIPTION elements.

obalspecHatList Spactist Spaciarkingspacs Apachatafadary
P W
[Instantiate speciist
. .)
Nfi\
[nstantiate workngspace |
. S
Iwerking spaee anabled]
¢ "
(Ettach SpecwnrgSoscelisterer
) 1o Globalf pacFlatt st)

{ T workina space directory”)
| path tram sattings)

I ~
(" chveck warking space contert)
.

W Mwerking space i nat smpty]

-
[Lok each fin nwarking spacs
.

thee grwen Ty

Thwmwes an eeception it
s not & wadid FITS fla.

@ cortant]

[/l eta] mathod to estract =l FTS matersions |
i

-

Figure 34: Working space - instantiation.

68

alabalSpacPiatList

Handle spextra speration

|add of rameu eert|

e

Imeedfy or change ment]

Fre ments

i SpecList addire moved) methods
ared firg s s W

Spactit

Begin working space transaction

SpecWorkingSpi

by calling updatad) math

Pt it the
WorkigEpaTransactionaFrocs e
rstarce with the handler

Gt

Begin transaction

the changed ! modfied
spactnm f

e thie grenn st

[eegn traneschion

Call proceech) method of the gren
workingipaaTransationaFrocsde

® the warking space conterk
wih the cumant stata of the Spelist

Femme specira fies from working space
Ehat are not listed in Spaclist amymone

5tore every new spectrum In Speclist
o werking spaca as FITS with BINARY axtarmion
ks i

Commit trarsaction.

Figure 35: Working space - handling events.

Starlink SPLAT=VO: A Spectral Analysis Tool

| File Edit Eiew-Operations Interop Help

&3 @ ' Look and feel b s JE = HO§ T
Global list of ¢ Colour theme > ra
Example data »
+ ™ Auto-colour
! Re-auto-colour all Ctri+u
v Show short names Data Errors
Il |
Simple short names
Purge 2/3D data
g Reset
Vertical split
v Find spectral coordinates
| Working space settings v |
Line width: |1 v !Style:;{ine v |
Point type: dot v \Size:1.0 v |

Error bars: [

"i-fl

| Views of current spectra:

1

I _|le

i'Disn_lL;gg‘(_!

Figure 36: Working space options menu - wireframe.

69

e The spectra group will serve as a source of spectra loaded to the current Global list of spec-
tra (in other words: the current Global list of spectra will contain only the spectra of the cur-

rently selected spectra group)

e Each spectrum added to Global list of spectra will therefore be added to the currently

selected group (it can be later regrouped to one or n groups).
e Fach spectrum will need to be assigned to at least one group
e There will be default group called (default).

e A new panel with a selectbox, Create, Edit and Delete button will be added to a Main
Window. It will be positioned left from global spectra list. A multiselectbox with a list
of all assignable spectra groups will be added to the spectra details panel located right
from Global list of spectra.

e This feature must take in count, that Working space may be disabled during the runtime.
The Working space will fire an event about this and spectra groups will handle it by showing
an alert window to the user. After closing it, all corresponding panels in the Main Window
will be hidden and all models will be reset (that means also cleared, since the Working

space content is deleted when the feature is turned off).

e In case of implementing the lazy loading feature, only the spectra of the currently selected

group can be fully initialized - for more details, please refer to 6.4.

e Creating, editing and deleting of groups, as well as assigning the spectra to them, will

need to be fully transactional - for possible ways of ensuring this, please refer to 6.2.

6.4 Spectral Data Lazy Loading

As shown on Fig. 38 (where figures 1 and 2 shows minimal and maximal memory usage based

on JVM garbage collection status when no spectra are loaded and figures 3 and 4 shows minimal

Working space settings

¥/ Enable working space

Working space directory:
Select

Figure 37: Working space settings - wireframe.

70

and maximal memory usage after loading 60 spectra) and Fig. 39, spectral data consumes a con-
siderable amount of memory. Opening a large data set can cause java.lang.0Out0OfMemoryError:
Java heap space error or significantly limit the usability of the user’s system [34].

In order to avoid this, spectral data will be loaded "lazily". This means that only spectra
of one spectra group (see section 6.3) or only e.g. actually plotted spectra (depends on further
specification) will be "fully loaded" (including data itself, otherwise only metadata would be "fully
loaded/initialized") [34].

Lazy initializaton (loading of all spectral data) will be done on demand (calling the getter)
by loading the spectral data from Working space (see 6.2) [34]. The implementation of Working
space is mandatory here because of in-memory and remote spectra that could not be covered
by lazy initialization (will have to be fully initialized from the beginning or would have to im-
plement much more complex mechanism).

The uninitialization will be performed on (last remaining) Plot window close event. Other
features working with spectral data outside of Plot window will not cause spectrum uninitializa-
tion and the spectrum will remain initialized (these features are not used so commonly as Plot
window, so implementing the uninitialization will be an overhead at this moment - anyway,
the mechanism will exist in case of the need). Also, in case of implementing the spectra groups
feature (see section 6.3), the uninitialization will be performed during the switch of the spectra

groups (all spectra located in the old group would be uninitialized).

= s s o T 1 1w el SRR R AL 1ew Wi
3 . v o4

Figure 38: Memory usage of SPLAT-VO. Source: [34].

More technically

The SpecData will implement new SplatLazyInitialization interface with declared methods
initializelazyFields(level:FieldInitializationLevel) and its opposite called similarly
uninitializeLazyFields(level:FieldInitializationLevel) , where FieldInitializati-
onLevel is an enumeration with concrete levels of initialization (currently considered values:

ALL and FIRST, which will load all data with exception of collections and data arrays).

71

The concrete initialization of the spectra will be performed using the new singleton class

SpecLazyInitializer with initialize(spectrum : SpecData, level:FieldInitializati-
onLevel) and uninitialize(spectrum : SpecData, level:FieldInitializationLevel) meth-

ods. The getter in SpecData will then call the

SplatlazyInitialization.initializelazyFields(FieldInitializationLevel.ALL) that will
call the SpecLazyInitializer.initialize(this, level).

A new method called getStoredSpecData(spectrum:SpecData) : SpecData will be added
to SpecWorkingSpace class. This method will return last stored variant of the given spectrum,

so the SpecLazyInitializer can use it to initialize all required elements of the spectrum.

- s] e
SR ————
4 Datalimits

Sl B 1 bt St sa) L2LETL ¥

Oawve |4 | Kontor i Teasts =

1 : I
| Somon e B | Hemory Fous b | voud e <] | teee = hepsiee] 130808 @

naresa: 20 | Inabanze shme 260 | ol sk 5200 |

Tepe

v spactins

apy ey

%y Hearbupthizs
b Frotoe

& Gk HaalFupitize

i npet]]

#1922 T e

Figure 39: Memory usage of spectra. Please note the highlighted sections that shows how

much memory spectral data consumes. It is clear that the spectral data are the largest objects
of spectra instances.

72

7 SPLAT-VO Development Process Improvements

Among SPLAT-VO software modifications, there was also a need to improve and unify team
communication, project documentation and ensure that the repository is always compilable

in a sense of CI (see section 3.2.2).

7.1 Wiki Documentation

To make a central project documentation, a wiki page at Stellar Department of the AT CAS
wiki was created?” as shown on Fig. 40. This page contains basic information about SPLAT-
VO, its history, development team and contacts, code repository and build information, list

of published articles, issue tracking, continuous integration etc.

& Dl aihsi o 1o gl iy WLy et g oot

Wik drsrEson el heslary move walsh
The name SPLAT Is based on the wards SPectral. Analysls Tool and It Iz & appllcation for dispiaying, modlfying &nd analysng astronorical spectra.

Combants ||

1 Hamanaga(s)
2 History
1 Develooment =am

 Bezskovd sionk
» ThE
= FAQ

anmin)
= i
wiki
= Jak pouzhes wiki

6 Busld

g using buld script
=ating an InstEaTon facage
teequisites

6.4.2 hstaller Craation Slaps
7 Condnucus Imegration

[eit]

Homepage(s)

The afficial humepege is st e dur s k- perapedSplaUspla-va 5L Far nost p-lo-date infornation and latest ehases, plise visil offici

Figure 40: SPLAT-VO page at Stellar Department of the Al CAS wiki.

7.2 Issue Tracking

As described in section 4.2.3, current development process heavily relies on e-mail communica-

tions with all its disadvantages:

e Not all relevant participants are added to e-mail copies
e Many ideas are simply lost in tons of other ideas
e Many ideas are mixed with other in one e-mail conversation

e After several copies, it is hard to track even an authorship of individual parts of the con-

versation

47Stellar Department of the Astronomical Institute of the Czech Academy of Sciences wiki: https://stelweb.
asu.cas.cz/wiki/index.php/SPLAT-VO

73

https://stelweb.asu.cas.cz/wiki/index.php/SPLAT-VO
https://stelweb.asu.cas.cz/wiki/index.php/SPLAT-VO

e [t is very hard to manage and track the scope of each version

e [t is very hard to track the status of individual issues and requests

In order to solve this, a temporary and simple issue tracker was created. After some time,

it was unified with a new official issue tracker.

7.2.1 Simple Issue Tracker Using Google Docs

At first, a growing number of new issues emerged and required a centralized tracking place.
Therefore a simple issue tracker was created*® using Google Docs*®. It was using a simple Google
Spreadheet (see Fig. 41) filled by pre-prepared Google Forms form (see Fig. 42) that created

the individual issues.

SPLAT-VO ASLI CAS I5sue Tracker

IssuRs: 21 unclosad: 17

e e e
27.8.2015 11:26:20 Otevirani muti-exiension FITS 20.8.2005 Petr Sxoda Dervid Andresc Bug Hormal | Created H0.8.215 Zkapiravat kagika z ote

U baba Hmasenes @ ok
& pak reagover Indivicoy

= 0 5 Tam 58 hadl - abeacan

Wyrasit jednotky na casave ose 20.0.2015 Pelr S<oda David Andresic Imorovemant High Glasad 22.10.2015 & vykreslen [0
To by nam hadne porc
Mohia iy 10 it | nastaw

27.0.2015 12:01:07 ot menu} se pouzije p
29,2015 22:30:29 Vistsilni vjlbér spekls - rychiost 2.8.2015 22,3100 Petr Sacdda Dervitd Aniresic: Irgenenl High | Createt 2.9.2015 223800 P ririoha spesirech ©
7.10.2015 18:40:1 Migrate SPLAT VG from Java 1. 9,10 2016 162900 Prer Seoda [— Imormvement Nomal | Croared 7.20.2005 18:36:00 Drop Jawa 1.6 suppar =
F 02005 154337 Updata Wik site o0 ASU GAS W 71002015 19:43:00 Devid Andrasic Dawvid Andrasic Task Hormal .|!| Progress 6.2 2006 Lipdaie the cumant Wikl

| ledyz das spreacshest |

tak =3 Zobvaz| hoanoty

7.10.2015 13:47.35 Spresdsheet (specuuin viewsr] - 7,10 2015 19.47:00 Per Seda Pair Skods Imarvement High | etased 2.10.2015 expanicval jeks Exlovy
7.10,2015 18:51-15 Spreceshee (speciin vewsr) - 7.10.2015 19.53.00 Pet Skeda Dervitd Aniresic: Prevenent Mol | Created 7.10.2015 18:50.00 Jeste y se casen hod

9.10:2015 1:30:50 SSAP Window - Detelinic copy 5.10.2015 1:35:00 Petr Sxoda Dauid Andresic Imarovement High | Created
SEAP Wndow, cutpasia FOHMNS PRt Seoda Patr Skeda Imarvemant High ot
S5AP Window: Komplers Zaat 20,8, 2015 Petr Sanda Patr Skoda Imgrvemant Nomal | In Progess F08F01S MIt MOzt nejas TS
Warking space 20.8.2015 Dawld Ardrasic David Anores o Imgrvemant Nomal | Crearsd 20.8.2015 Vi mikroanaiyza
Specta graups 20.0.2015 Devld Andresic Dl Andresic Imarvement Nomal | Crearsd 20.8.2015 Viz mikwoansyza
Specta lazy loading 20.0.2015 Davld Andresic Dauld Andresic Imarovement Nomnel | Creared 20.8.2015 Vi mikroansiyza

tssue List | Hepori-soye Siales Bepenlolsser Tyges Beporl- liie Frowy Beon-fssodes Hepeel Heporiers

Figure 41: Deprecated SPLAT-VO issue tracker created in Google Spreadheet.

This simple spreadsheet allowed every basic issue tracking feature that was required at the

moment:

e Creating issues with name and description

e Adding comments to them

e Track changes (via comments and Google Docs versioning)
e Assign issues to concrete people

e Time tracking (creation date, last change date)

“8Simple issue tracker in Google Docs: https://docs.google.com/spreadsheets/d/
1NQkhiBf3t6Kk0ar1n3Q2hYM6X0dQ8g-qt3ZpDB94fyo/pubhtml ?widget=true&headers=false
“*Google Docs URL: https://docs.google. com/

74

https://docs.google.com/spreadsheets/d/1NQkhiBf3t6KkOar1n3Q2hYM6XOdQ8g-qt3ZpDB94fyo/pubhtml?widget=true&headers=false
https://docs.google.com/spreadsheets/d/1NQkhiBf3t6KkOar1n3Q2hYM6XOdQ8g-qt3ZpDB94fyo/pubhtml?widget=true&headers=false
https://docs.google.com/

e Status tracking (several states were supported)

This simple issue tracker was used only by Czech group of development team and is currently

deprecated and replaced by the official issue tracker (see section 7.2.2).

7.2.2 Unified Issue Tracker Using GitHub Issues

During last months, we initiated and unified the official central issue tracking system. From
several different possibilities described in section 3.2.4, we chose GitHub Issues. The main

reasons were the following:

e Our repository was already hosted on GitHub

It fully supports our basic ideas (each request or idea, its status, conversation, assignee,

history and target version is kept within an issue)
e Supports basic workflow (create - close - reopen)

e With support of multiple labels (basic and custom), we can set a fine grained workflow

and organize the work.

e With customizable milestones support we can set a target version for each issue and track

the scope of each release
e We can assign issues to concrete people
e Supports basic filtering (by assignee, author, label, milestone and state)

e Has simple WYSIWYG editor

SPLAT-VO ASU CAS Issue Tracker
Izsue Title *

Den 7| [Mésic 2016 -] Hod - Min I

Reported By *

Figure 42: Deprecated SPLAT-VO issue tracker created in Google Spreadsheet - filling form.

75

e Privacy: on public repositories, all issues are visible to a regular, unregistered visitors,

but the conversation can be locked and only team members can add comments.

MUl AU FITS fles B

Wisillst isem: pythen seripdng

Figure 43: Official SPLAT-VO issue tracker in GitHub Issues.

For GitHub Issues also spoke the fact that anything more complex can be achieved by a com-
bination of basic features and none of the other issue tracking systems is so easy to use (and de-
ploy). Currently, we have all opened issues migrated to this new central issue tracker®® (see
Fig. 43)

7.3 Automatized Build with Jenkins CI inside Docker

In order to have a possibility to build SPLAT-VO installation package from the current repos-
itory and to ensure that the source code in repository is buildable at any time, we deployed
Jenkins CI in a Docker container on server of Stellar Dept. AI CAS®!. The container runs
from custom Docker image derived from standard Jenkins CI Docker image®?.

As shown on Fig. 44, this instance of Jenkins CI contains at this moment one job (called
SPLAT-VO_Build-installer), that is parametrized by a single parameter Branch identifying
a Git branch from which the SPLAT-VO will be built (see Fig. 45).

Jenkins CI will pass these arguments to shell script that will build SPLAT-VO and create
its installer by the same process as described in section 4.6 and 4.8. The resulting installers

are versioned and accessible from the same Jenkins CI environment (see Fig. 46).

SOSPLAT-VO GitHub Issues: https://github.com/SPLAT-VO/starjava/issues
51 Jenkins CI instance for SPLAT-VO URL: http://antares.stel:50080/
2Gtandard Jenkins CI Docker image: https://hub.docker.com/_/jenkins/

76

https://github.com/SPLAT-VO/starjava/issues
http://antares.stel:50080/
https://hub.docker.com/_/jenkins/

@ Davld andreslc

SPLAT-VO +

L3 w Mame § Last Success Last Failure Last Duration

,J SpLAT-vT Auild-installar 1 7 18 rmiin - #5 * hr 22 mrin - £5 34 min <))
£ Gl s L

Wi lzon: S ML = & - >
Desete View legend EJRSSforal [RSS forfalures B 0SS For just latest build

Build Quaua

Fiz builds m the guewe,
il o T SEatu =
1 idle
2 idle

T Help s lacalze this page Page generated: Apr 6, 2016 22:02:34 AM BEST AP jerkins ver, 1,642.4

Figure 44: Jenkins CI for SPLAT-VO - main job.

& Jenkins

Project SPLAT-VO_Build-installer

Project SPLAT-VO_Build-installer

Figure 46: Jenkins CI for SPLAT-VO - build artifacts history.

7

8 Suggestions for Further Refactoring

Some parts of SPLAT-VO contain certain bad practices that works well at this moment, but makes

future enhancements very difficult and tricky. Among those most obvious are:

Logic on presentation layer A typical example of this bad practice is Query VO for spec-
tra, but basically every Ul class is affected by this. The presentation layer is responsible
for drawing the UI and it should not contain any other logic. SPLAT-VO heavily uses
a non-UI code in UI classes which causes too many copy/pastes and makes further en-

hancements very difficult and unmaintainable.

Listeners embedded on presentation layers Listeners are the most used parts of SPLAT-
VO affected by this bad practice, but in general: SPLAT-VO contains too many large
classes that should be separated to several smaller, more readable and maintainable classes
that makes a logical structure. A listener is a nice example of this, since it is tied to an event

and not a particular window or panel, where it is placed at this moment.

Too many copy/pastes This bad practice relates to the above ones. The same or very sim-
ilar code is copied and pasted elsewhere. A nice example of this is logic for loading
spectra, which is contained in SplatBrowser in almost ten methods and again in Query
VO for spectra and other parts of SPLAT-VO. This makes the code almost unmaintainable

and change or enhancement of spectra loading algorithm is very time-wasting and buggy.

Strong dependence on native Starlink libraries This limits some enhancements because
these native libraries are very little maintained in these days and very difficult and time-
wasting to change. The fact that they are written in languages such as Fortran or C/C++
limits the portability of SPLAT-VO, which is crucial especially in modern days.

Using throw/catch in a sense of conditions A nice example of this bad practice is Main
Window class SplatBrowser and its addSpectrum() method. Instead of determining
the conditions, the code simply attempts to treat the input in one way and switches
to another when exception is thrown. With not properly logging exceptions, this is very

dangerous and makes any diagnostics and maintenance very difficult.

Insufficient use of unit tests SPLAT-VO contains only a few unit tests and new code is not
covered at all. This produces very buggy releases since SPLAT-VO relies only on user
testing of limited functionalities performed by one or two persons. This testing also does
not cover regression testing, that ensures that the implementation of new features did not
break the old code.

78

Use of deprecated tools and libraries From the most obvious libraries and tools, we can
name Apache Ant (that has been replaced by Apache Maven®® and Gradle®*), jUnit (used
in very old version) and Java Runtime Environment, that has been recently upgraded
to 1.6, but even this is ten years old technology with deprecated memory management and

missing modern features.

%3 Apache Maven homepage: https://maven.apache.org/
*Gradle homepage: http://gradle.org/

79

https://maven.apache.org/
http://gradle.org/

9 Conclusion

Deep and documented analysis of SPLAT-VO architecture allowed to implement the support
for time series and data cubes, which is current pressing issue in astroinformatics. SPLAT-VO
is also ready for more exotic forms of FITS data format and enhanced collaboration via SAMP
protocol. With new data exports, SPLAT-VO significantly enhances collaboration with other
tools in general. SPLAT-VO is now also improved in a way of user experience and performing
a scientific research is now therefore more painless.

Development of SPLAT-VO is now more professional by using central issue tracking system,
continuous integration and project Wiki documentation.

For further enhancements, there is a set of analyzed and prepared features that highly
improves its work with large data sets and user experience that is designed for working on many
different large projects. There is also a set of refactoring suggestions that should move SPLAT-
VO more to modern ages as well.

During the work on this thesis, 17 improvements, 1 bug, and 3 general tasks have been
created. From this number of issues, 6 were tested and closed, 2 are currently being tested, 5
are in progress (at least with deep implementation analysis) and 8 minor-severity issues or tasks
are created and waiting for higher priorities to be resolved. These statistics (gathered in less
than 10 minutes) also shows described benefits of the new issue tracking system that I have
suggested and picked-up. For higher efficiency, I have suggested testing process enhancements
that also includes higher usage of unit testing (the Jenkins CI instance, that I have created,
is ready for this task). In dozens of new or modified classes (most of them core ones), several
thousands of new lines of code has been added. During merges with other branches and analysis
phase for large refactoring and improvements suggestions, considerably large part of code has
been reviewed, which resulted in suggestions described at the end of this thesis. The number
of issues that currently remains in progress and number of reviewed lines of code also shows
how frequently and rapidly priorities change in SPLAT-VO development. This remains to be
one of the greatest bottlenecks of SPLAT-VO development, yet benefits of the implementation
of my suggestions are currently showing up. A new technical and non-technical documentation,
that I have created helps to centralize the knowledge about SPLAT-VO and pass the know-how
to new members of the development team.

My adjustments were accepted by SPLAT-VO development community. Results were ac-
cepted for Nostradamus 2015 conference, as well as presented on IVOA Interoperability Meetings
in October 2015 and May 2016. I will submit current results to the SIMS2016 conference, where
the deadline is after finishing this thesis.

Beside the need of major refactoring and other (not only) technical adjustments, that have
been described in this thesis, SPLAT-VO is still a remarkable software tool of its time capable
of serving to its purpose in these days with benefits of being a reference implementation to newly

emerging VO standards.

80

References

1]

2]

PennState (2016) Astroinformatics in a Nutshell. Available at:
https://asaip.psu.edu/Articles/astroinformatics-in-a-nutshell. Cited on Mar 07, 2016

Petr Skoda. Optical Spectroscopy with the Technology of Virtual Observatory. Baltic
Astronomy. 2011, Vol. 20, p. 531-539. Cited on Mar 07, 2016. Available at:
http://adsabs.harvard.edu/abs/2011BaltA..20..531S [online].

International Virtual Observatory Alliance (2016) International Virtual Observatory Al-
liance. Available at: http://ivoa.net/. Cited on Mar 07, 2016

Petr Saloun, David Andresi¢, Petr Skoda and Ivan Zelinka. Visualization of Large Amount
of Spectra in Virtual Observatory Environment. International Journal of Automation and
Computing. 2014, 11(6), 613-620 [cit. 2016-03-08]. DOI: 10.1007/s11633-014-0845-y. ISSN
1476-8186. Available at: http://link.springer.com/10.1007/s11633-014-0845-y [online]

International Virtual Observatory Alliance (2010) IVOA Architecture. Available
at: http://ivoa.net/documents/Notes/IVOA Architecture/20101123 /ITVOA Architecture-
1.0-20101123.pdf. Cited on Mar 08, 2016

International Virtual Observatory Alliance (2012) SAMP - Simple Application Messaging
Protocol. Available at: http://www.ivoa.net/Documents/latest/SAMP.html. Cited on Mar
09, 2016

International Virtual Observatory Alliance (2012) Simple Spectral Access Protocol Available
at: http://www.ivoa.net/Documents/latest /SSA.html. Cited on Mar 09, 2016

Mireille Louys, Doug Tody, Patrick Dowler, Daniel Durand, Laurent Michel, Francois
Bonnarel, Alberto Micol and the IVOA DataModel working group (2016) Observation Data
Model Core Components and its Implementation in the Table Access Protocol Version 1.1
Available at: http://www.ivoa.net/documents/ObsCore/. Cited on Mar 10, 2016

Doug Tody, Ray Plante (2009) Simple Image Access Specification Version 1.0 Available at:
http://www.ivoa.net/documents/latest /SIA.html. Cited on Mar 11, 2016

Patrick Dowler, Guy Rixon, Doug Tody (2010) Table Access Protocol Version 1.0 Available
at: http://www.ivoa.net/documents/TAP /. Cited on Mar 11, 2016

Roy Williams, Robert Hanisch, Alex Szalay, Raymond Plante (2008) Simple Cone Search
Version 1.03 Available at: http://www.ivoa.net/documents/latest /ConeSearch.html. Cited
on Mar 11, 2016

81

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

Mark Taylor (2015) TOPCAT - Tool for OPerations on Catalogues And Tables Version
4.3-2 Available at: http://www.star.bris.ac.uk/ mbt/topcat/sun253/sun253.html. Cited on
Mar 12, 2016

Glenn Elert (2015) The Nature of Light Available at: http://physics.info/light/. Cited on
Mar 12, 2016

Australia Telescope National Facility (2016) Types of Astronomical Spectra Avail-
able at: http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_ as-
tro_ types.html. Cited on Mar 12, 2016

National Aeronautics and Space Administration (2013) Light Curves and What They Can
Tell Us Available at: http://imagine.gsfc.nasa.gov/science/toolbox/timingl.html. Cited on
Mar 12, 2016

Thomas A. McGlynn (2014) The FITS Support Office Available at:
http://fits.gsfc.nasa.gov/. Cited on Mar 16, 2016

M. Donahue, T. Kimball (1997) FITS File Format. In: HST Data Handbook. Available at:
http://www.stsci.edu/documents/dhb/web/c02 datafiles.fm2.html. Cited on Mar 16, 2016

William D. Pence (2012) FITS Extension Names. Available at:
http://fits.gsfc.nasa.gov/xtension.html. Cited on Mar 16, 2016

Francois Ochsenbein, Roy Williams, Clive Davenhall, Markus Demleitner, Daniel Du-
rand, Pierre Fernique, David Giaretta, Robert Hanisch, Tom McGlynn, Alex Szalay, Mark
Taylor, Andreas Wicenec (2013) VOTable Format Definition Version 1.3. Available at:
http://www.ivoa.net /documents/VOTable/. Cited on Mar 17, 2016

Ivo Vondrdk (2002) Uvod do softwarového inZengrstvi. [in Czech] Available at:
http://vondrak.cs.vsb.cz/download /Uvod__do__softwaroveho__inzenyrstvi.pdf. Cited
on Mar 20, 2016

Douglas Hughey. (2009) The Traditional Waterfall Approach Available at:
http://www.umsl.edu/ hugheyd/is6840/waterfall.html. Cited on Mar 20, 2016

Think Agile. (2016) Software Development Methodologies Available at:
http://agilerules.blogspot.cz/2014/07 /software-development-methodologies.html. Cited on
Mar 20, 2016

Martin Fowler. (2006) Continuous Integration Available at:
http://www.martinfowler.com/articles/continuousIntegration.html. Cited on Mar 20,
2016

82

[24]

[25]

Glen Stansberry. (2008) 7 Version Control Systems Reviewed Available at:
https://www.smashingmagazine.com/2008,/09/the-top-7-open-source-version-control-
systems/. Cited on Mar 20, 2016

Center for Knowledge Management, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague. (2011) Zdkladni informace — o co se jednd a k cemu to slouzi Available at:
http://czm.fel.cvut.cz/vyuka/A4M33CPM /Download /DatoveKostky.pdf. Cited on Mar 25,
2016

Howard Hamilton. (2012) Data Cubes Available at: http://www2.cs.uregina.ca/ db-
d/cs831/notes/dcubes/dcubes.html. Cited on Mar 25, 2016

tutorialspoint.com. (2016) Data Warehousing - OLAP Available at:
http://www.tutorialspoint.com/dwh/dwh_ olap.htm. Cited on Mar 25, 2016

Oracle Corporation. (2002) Data Warehousing Concepts Available at:
https://docs.oracle.com/cd/B10500__01/server.920/a96520/concept.htm. Cited on Mar 26,
2016

tutorialspoint.com. (2016) Data Warehousing - Schemas Available at:
http://www.tutorialspoint.com/dwh/dwh_ schemas.htm. Cited on Mar 26, 2016

Petr Skoda, Peter W. Draper, Margarida Castro Neves, David Andresi¢
and Tim Jenness. Spectroscopic analysis in the wirtual observatory environ-
ment with SPLAT-VO. Astronomy and Computing. 2014, 7-8, 108-120 |[cit.
2016-03-29]. DOI: 10.1016/j.ascom.2014.06.001. ISSN 22131337. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S2213133714000250 [online]

Peter W. Draper. (2015) Starlink SPLAT-VO. Available at: http://star-www.dur.ac.uk/
pdraper /splat/splat-vo/. Cited 29 May 2016.

Petr Saloun, David Andresi¢, Petr Skoda a Ivan Zelinka. Upcoming Features of SPLAT-VO
in Astroinformatics. s. 475 [cit. 2016-03-30]. DOI: 10.1007/978-3-319-00542-3_47. Available
at: http://link.springer.com/10.1007/978-3-319-00542-3 47 [online]

Starlink. (2015) Starlink. Available at: http://starlink.eao.hawaii.edu/starlink. Cited 29
May 2016.

Petr Saloun, David Andresi¢, Petr Skoda and Ivan Zelinka. Better Spectra Manipulation
in SPLAT-VO. p. 373 [cit. 2016-04-01]. DOI: 10.1007/978-3-319-29504-6_ 36. Available at:
http://link.springer.com/10.1007/978-3-319-29504-6_ 36 [online]

83

A SpecData Class Diagram

Figure 47: Complete SpecData and RemoteSpecData class diagram. Source: [34].

84

B SpecList Class Diagram

==Java Class>>
(®SpecList

uk.ac starlink splat data

< spectra: ArrayList
< sources: Map=SpecData,SourceType=
% serialVersionUID: long

& SpecList()

Osgetlnstance; 1.SpecList

@ specCourt()int

@ add{Spechata,SourceType):int

@ add{SpecData)int

@ add(int, SpecData, SourceType) int
@ add(int SpecData):int

@ remove(SpecData)int

@ remove(int):vaid

@ get{int):SpecData

@ indexOf{SpecData)int

@ indexOf(String):int

@ getSourceType(SpecData) SourceType
@ getFullMame(int) :String

@ getShortMame(int):String

@ setShortMame(int, String) void

@ setShortName(SpecData,String) void
@ known(String)int

@ writeStack{String) void

@ writeStack(FileFormat, String):void
@ readStack(String)int

@ readStack(String FileFormat, SplaBrowser)int

@ readStack(InputStream):int

85

==Java Enumeration=:>
(3FileFormat
uk.ac.starlink.splat . data

SF STK: FileFormat

S FITS: FileFormat

o fileExtension: String
o description: String
o listindex: int

& FileFormat(String, String,int)

@ getFileExtension():String

@ getDescription():String

@ getListindex()int

@ getByExtension(String) FileFormat

-instance

0.1

Figure 48: Complete SpecList class diagram. Source: [34].

C GlobalSpecPlotList Class Diagram

==Java Class=>
(&GlobalSpecPlotist e e
uk.ac starlink splat.iface especusmndel
. platList: PlotControlList uk.ac starlink splat.iface
« specListeners: EvertListenerList < selectionhodel: ListSelectionModel
< sourceTypesLasiPlots: Map=SourceType PlotControl= o selectionChangeListeners: List<SpecListhlodelSelectionListensr=
© currentSpectrum: int showShorthlames: boolean
° pitig e DVt e & SpecListvodeliListSelectionldodel)
acGlobaJSpecP\anlst() @ finalize():void
05getlnstance; :GlobalSpecPlotList @ getSpectrumiint) SpecData
@ specCount{}int © setShowShorthames(boolean) void
@ getFullName(int):String @ setShowSimpleShorttlames(boolean):void
@ getShorthamefint) String @ getSize() int
@ setShorthame(int String):void @ getElementAt(int):Object
@ specKnown(String)int © spectrumAdded(SpecChangedEvert):void
@ getSpectrum(int):SpecData @ spectrumPemoved(SpecChangedEvent):void
@ getSpectrumindex(SpecData):int @ spectrumChanged(SpecChangedEvent) void
@ getSpectrumindexi String) int @ spectrumbodified(SpecChangedEvent) void
@ getSourceType(SpecData):SourceType © spectrumCurrent(SpecChangedEvent) void
@ add(SpecData)int @ addSelectionChangelistener(SpecListMode/SelectionListener) void
@ add{SpecData,SourceType)int @ removeSelectionChangeListener(SpecListModelSelectionListener) void

@ add(int, SpecData):int

@ add({int, SpecData,Source Typeyint
@ removeSpectrum{SpecData)int
@ remaoveSpectrum{intyint

@ setknowniumberProperty(SpecData,int, Number) void 0.1
@ setDrawErrorBars(SpecData,boolzan):void

foball st

@ setCurremSpectrum{int):void s=lava C\as_s.!:
@ natitySpeclListenersChange(SpecData) void uk.aceﬁgwl;:zb:}ma
@ natitySpecListenershodified{SpecData) void
@ addSpecListener(SpecListener):void *-epamia. Arrayllsl
@ removeSpecListener(SpecListener):void S“‘FSW’WS' Map=SpecData,SourceType=
o fireSpectrumAdded(int) void & serialVersionUD: long
«» fireSpectrumRemoved(int) void EICSDECL\Sl()
< fireSpectrumChangecd(int):void (bageﬁlnstance; :SpecList
< fireSpectrumiModified(int):void @ specCount(}int
» fireCurrentSpectrumChanged():void @ add{SpecData, SourceType)int
@ plotCount(yint @ add{SpecData):int
@ getPlothame(int):String List @ addiin SpecData,SourceType):int
@ getPlat(int) PlotCortrol 0.1 | @ addiint SpecData)int
@ getPlotindex(PlotControl):int @ remove(SpecData)int
@ getPlotindex(intyint @ remove(int):void
@ getLastPlotForSourceType(Source Type):PlotControl @ get(int):SpecData
@ setLastPlotForSourceType{Source Type PlotCortral):void @ indexOf(SpecData)int
@ add(PlotControly:int @ indexOf{String)int
® remove(PlotControlyint ® getSourceType(SpecData):SourceType
@ addSpectrum(int, SpecData):void @ getFullilame(int):String
@ addSpectraiint, SpecDataf])void @ getShortMNameiint):String
@ addSpectrum(PlotContral SpecData):void @ setShorthName(int,String):void
@ addSpectra(PlotControl, SpecDatal]) vaid @ setShorthame{SpecData,String):void
@ addSpectrum(PlotContralint):void @ known(Stringint
@ addSpectraiPlotControl int[]):void @ writeStack(String):vaid
@ addSpectrum(int,irt):void @ writeStack(FileFormat, String):void
@ addSpectragintint[]):void @ readStack(String):int
@ removeSpectrum{int, SpecData):void @ readStack(String FileFormat, SplatBrowser)int | nstance
@ removeSpectrum(PlotControl SpecData) void @ readStack(InputStream}int \jn 1
@ removeSpectrum(PlotControl int) void
@ removeSpectrum(int,imt):void
@ isDisplaying(int SpecData) boolean <<Java Enumerations=
@ isDisplaying(int int) boolean OFiIanrmal
@ addPlotListener(PlotListener) void uk.zc starlink splat.data
@ removePlotListener{PlotListener) void SF ST FileFormat
< firePlotCreated(int) void A FITS: FileFormat
< firePlotRemoved(int):void o fileExtension: String
o firePlotChanged(int) :void o description: String
-instance

«» noteLastPlotForSource Type(PlotContral SpecData) void o listindex: int

<> noteLastPlotFor Source Type(PlotControl SpecDatal]) void

0.1

& FileFarmat(String, String,int)

@ getFileExtension():String

@ getDescription() String

© getlistindes():int

@ getByExtension(String) FileFormat

Figure 49: Complete GlobalSpecPlotList class diagram. Source: [34].

86

D SpectrumlO

Class Diagram

wolaua Clasass
(B Spectrumin
sk s stmbne sl ilece
o gobal b GlobalSaecPial s
o e Wi

= progress-rame: FrogassFrame
= rowser: SpErmser

o daay: bockean

o gt i

= flesDow it

& SpecTunion

& ainrarce Spaenamia

& bk Sy B e, St gl bches
®
& b Sk Broeser, ockean Prepstllzeckd
< aeSneaiSiig]) vaid

= S mectai il il veid

< mteciral gl mL STl s
eEnseILmAreEa Ao

& keadSpeirgy s

5 ackiSpmual} veid

& smee Sl e S g v

4 setwache W] ki

O
AT, m“aio.'_

e

i vkl

e

/

n it Do

@ nriyvad

oS mlit A gVl

& weaDeayvo

anlaal e 4

Gt oader Watch \ '\"
i e apleciice e bk upt faca
er i sk & bt ue e Feps vl \ \
Dibalrgan iy & acF ikdProgsTheowak v Y
= farges: Srg 2 \
#Loacerty \\
@ A AdK hechean vaid

l
\

‘ dzowrcalyps A1
I

“eJmmCmmersans
Bsource
Wb ac srabob spbebce
SFUNDEF Rl Sorcelvg
4 P SprcaTyne
' E5AF: SaureeTyme
00k SeaoTie

o Soumeuper)

e dawn s
@Prom=
sz ata ik el e

= emomCounn. Srng
= srrorColamn: Srg
Ik i

- deteikPeguest: Sting

© dea ikl ormat Sinng
akfertType: Qs yoeEru
vl AL Srng
drrepsisrrg
dPrepssTRg)maTrg)
aPrepuiE

i

dPrepsisTogmarrg

aPrepaEing e Sving Swing Srng Svieg Siring)
i g, St 531 g S, Sing Srivg)
é"‘mﬂE'\9!rnJlr.,\?!ra.Sanl‘nMTu.lﬂl‘Wrn.EnJc!' ¥peSTIrg, Sng)

@ guspecTUn() Sring
@ mISpatErnSinng] e
@ getlype(in
@ sy ok
@ gastantian) Sring
@ mtShanar e Sinng] e
@ geibeslrizl SN
@ seDxalrksEgivod
@ gICamdUns) Sring
& sl Cosrduine Siring).void
@ geibmachm)ETrg
@ seiDaaCchma
& gt osedC slannf) Siog
@ wiCoxdCabamn(Srirg)od
@ geltrror chmnl):Sig
@ selErrers A mniSTRg e
@ gaScurceTypel SaweeTyae
@ S ren Typn(SaroeT ynd
@ getvals) g
4 selldebe ST o d
@ sabTa kP s S ng] vl
@ gDl ik Bapnii) Sriry
@ getterver, L STrg
@ setServer FLISmngl:vok]
@ gt Tyl ObjenTypeE
@ Ok Ty Ol ypErr)
@ copy i eps
@ appSoscDa]lvold
& smDra kkFamnaEr g utid
@ gDk Fommai) Sning.
@ selidsourosErng) vod

ol

e

B, 5Ting Sirna CofsatTypeEnum |

Figure 50:

SpectrumlO and its dependencies class diagram.

87

E SpecDataFactory Class Diagram

==Java Class=>>
(3 SpecDataFactory
uk.ac stalink splat. data

uslugger. Logger
NOT SUPPORTED:
W DEFAULT int
WEITS i

WHDS: im

WFIEX
BFHDX: i

S TABLE it

Yipsiin

FGUESS: it

FSED int

D ATALINK: int

%' shortiames: String

“Flgnghames: String

“F extensions: Strinalll]

o datal odeFactory: Datal odeF actory
“F datanodelcons: short

5 storageP aliev: StorageP olicy

o authenticator: SSAFAutherticator
FCoLLAPSE: int

WEXTRACT: int

P VECTORIZE i

EcSpecDataFactory(}

@Faetinstance():SpecDataF actory

@ get(String,int):List=SpecData=

@ get1{String,int):SpecData

@ getAl(String,int) List<SpecData>

@ get(String):SpecData

@ getAl(String) List=SpecData=

@ get(String,String) SpecData

@ getAll(String, String) List=SpecD ata>

<» makeLocalFilelmpl{String,String) :SpecDatalmp

<» makeLocalFilelmplList(String String) List=SpecD atalmpl:
<» makeNDF SpecDatalmpl(String):SpecDatalm

<> makeF|TSSpecDatalmpl(String):SpecD atalm

<» makeF|T SSpecDatalmplList(String) List<SpecDatalmp

<» makeTableSpecD atal mpl{ String) :SpecDatalmy

<> makeXMLSpecDatalmpl{String,boolean, URL):SpecDatalm
<» makeSpecDataFrom|mpl{SpecD atalmpl boolean URL):SpecDa
® throwR eport{String,boolean String):void

@ getClone(SpecD ata,String) SpecData

@ getClone(SpecD ata, String,int, String) SpecData

@ getTableClone(SpecData, String,String) SpecData

@ getknownTableFormats()List

@ createE ditable(String) EditableSpecD ata.

@ createEditable(String,SpecD ata) EditableSpecD ata

@ createE ditable(String,SpecD ata,boolean) EditableSpecData
@ get(StarTable):SpecData

@ get(StarTable, String,String):SpecData.

@ get{Mdx):SpecData

@ get{Mdx,String, String):SpecData

@ reOpen(SpecD ata) void

@ getTypes(SpecData)int[]

<> remoteToLocalFie(URL int):P athParse

@ reprocessTolD(SpecData,int Imeger Imeger, boolean):SpecD ata]
< purgeBadLimits(SpecData[]):SpecD ata]

| collapseSpecData(SpecD ata, SpecDims):SpecD atal

| extractSpecData(SpecD ata, SpecDims):SpecD atal

| extractEchelleSpecDatalSpecData SpecDims): SpecDatal
<» getEchelleProperty(SpecData,String,int) :String

@ expandXMLSED (String):SpecD ata[]

@ expandFI T SSED(String,int):SpecD atal

@ productTypeToObiectT ype(String) ObjectTypeEnun

@’ mimeToSPLAT Type(String):int

@ makeGuessedSpecData(String, URL) :SpecDati

@ makeGuessedSpecDatalist(String UR L) List=SpecD ata:
@ setAuthenticator{ SSAP Authenticator) void

-nstance
0.1

Figure 51: SpecDataFactory and its dependencies class diagram.

88

F Selected Diffs and Source Codes

This appendix section contains a few selected diffs with some interesting or crucial parts of
SPLAT-VO improvements.

F.1 SSAP: Time Series Product Type Detection

import nom.tam.fits Header;
import uk.ac.starlink.ast.FrameSet;
import uk.ac.starlink.splat.util.SEDSplatException;
import uk.ac.starlink.splat.util.SplatException;
import uk.ac.starlink.splat.util.UnitlUtilities;
@3 -558,15 +561,28 @@ public class TableSpecDataImpl
* a series of vector cells describing the spectrum,
*f
protected void readTable(long row)
throws SplatException
{

- // hccess table columns and look for which to assign to the various
// Detect timeserles

for (Object oParam : starTable getParameters()) {
if (oParam instanceof DescribedValue) {
DescribedValue param = (DescribedValue) oParam;
if (param.getInfo().getMame().equals("ssa_producttype")) {
if (param.getValue() != null && param.getValue() . equals("timeseries")) {

setObjectType (ObjectTypeEnum. TIMESERIES) ;
b

Figure 52: Time series product type detection in VOTable.

89

F.2 Plot Window: Y-axis Flipping for Time Series

import uk.ac.starlink.diva.FigureStore;

import uk.ac.starlink.splat.ast.ASTJ;

import uk.ac.starlink.splat.data.Datalimits;
+import uk.ac.starlink.splat.data.ObjectTypeEnum;

import uk.ac.starlink.splat.data.SpecData:

import uk.ac.starlink.splat.data.SpecDataComp;

import uk.ac.starlink.splat.data.SpecDataFactory;

import uk.ac.starlink.splat.util.SplatException;

@3 -734,10 +735,22 @3 public class DivaPlot

if (! datalimits.isYAutoscaled()) {
yMin = datalimits.getYlLower();
yMax = datalimits.getYUpper();

/4 1nverse Y axls for timeseries
if (getSpechataComp() != null) {
1f (getSpecDataComp().get() !'= null) {
for (SpecData specData : getSpecDataComp().get()) {
if (ObjectTypeEnum. TIMESERIES. equals (specData.getObjectType(l)) {
dataLimits.setYFlipped (true);
break;

+
[

Figure 53: Y-axis flipping for time series in Plot window.

F.3 SAMP: Spectra as Tables Action Manager

/*
+ Copyright (C) 2009 Science and Technology Facilities Council
*

* History :

* 06—MAR—2009 (Mark Taylor):

* Original version .

* 14— JUL—2009 (Peter Draper):

* Give up on 1D FITS and always transmit FITS tables .

* 16— OCT—2009 (Peter Draper):

* Send SSA meta—data as required by HIPE (paul. balm@sciops . esi . int)
5 More SSA 1.0 compatible .

* 16— FEB—2016 (David Andresic):

* Send spectrum as table .

«/

package uk.ac.starlink.splat. util ;

import java.awt.event.MouseEvent;
import java.io.File;

import java.io.lOException;

import java.net.MalformedURLException;
import java.net.URL;

import java.util . Arrays;

import java. util . HashMap;

import java. util . LinkedList;

import java. util . List;

import java.util .Map;
import javax.swing.JList;
import javax.swing.event.ListSelectionEvent;

import javax.swing.event. ListSelectionListener ;

import org.astrogrid.samp.Message;

import org.astrogrid.samp.gui.GuiHubConnector;

90

import

import

import

import

import

import

import

Jxx

*
*
*
*
*
*

uk.ac.starlink .

uk.a

uk.ac.starlink .
uk.ac.starlink .
uk.ac.starlink .
uk.ac.starlink .

uk.ac.starlink

.starlink .

splat
splat

splat
splat

splat .
splat .

.data.SpecData;
.data.SpecDataFactory;

iface . GlobalSpecPlotList;
iface .SpectrumIO.Props;

.vo.DataLinkParams;
.vo.SSAQueryBrowser;
. util .URLUtils;

Provides GUI actions for sending spectra by SAMP.

@author Mark Taylor
@author David Andresic
@version Id

*/

public abstract class SpectraAsTablesSendActionManager

extends SplatUniformCallActionManager

implements EventEnabled Transmitter, ListSelectionListener

protected static enum SOURCE ENUM {
JLIST,
SSAP_BROWSER

private SOURCE__ENUM spectraSource;

Jk

* Message type

*/

private String mType;

/o

* Send type

*/

private String sendType;

ok

®

*/

Global list of spectra .

private JList specList;

Jxx

% SSA Query Browser instance

*/

private SSAQueryBrowser ssaBrowser;

/K

* Currently selected
*/
private int selectedIndex = —1;

/o

index in the global list of spectra .

* Map holding URL of each spectrum

*/

private Map<SpecData, String> spectraUrls = new HashMap<SpecData, String>();

ok
*

*

* @param specList

*/

Constructor .

global list
* @param hubConnector

controls

of spectra
connection with SAMP hub

public SpectraAsTablesSendActionManager(SSAQueryBrowser ssaBrowser,

GuiHubConnector hubConnector, String mtype, String sendtype)

super(ssaBrowser, hubConnector, mtype,

sendtype

)s

this .ssaBrowser = ssaBrowser;
this.spectraSource = SOURCE__ ENUM.SSAP_ BROWSER;
updateSpecState();

this . mType = mtype;

this.sendType = sendtype;

91

JHk
* Constructor .
*
% @param specList global list of spectra
* @param hubConnector controls connection with SAMP hub
*/
public SpectraAsTablesSendActionManager(JList specList,
GuiHubConnector hubConnector, String mtype, String sendtype)

super(specList, hubConnector, mtype,
sendtype);

this.specList = specList;

this .spectraSource = SOURCE__ENUM.JLIST;

specList.addListSelectionListener(this);

updateSpecState();

this . mType = mtype;

this.sendType = sendtype;

/o
* Implement ListSelectionListener interface to ensure that this object
* keeps track of the current selection state in the global spectrum list .
*/
public void valueChanged(ListSelectionEvent e) {
updateSpecState();

@Override

public void mouseClicked(MouseEvent arg0) {updateSpecState();}
@Override

public void mouseEntered(MouseEvent arg0) {}

@Override

public void mouseExited(MouseEvent arg0) {}

@Override

public void mousePressed(MouseEvent arg0) {}

@Override

public void mouseReleased(MouseEvent arg0) {}

Jxx

s Invoked when the selection state of the global spectrum list
* may have changed .

*/

protected void updateSpecState() {

switch (getSpectraSource()) {
case JLIST:
int [] indices = specList.getSelectedIndices () ;
selectedIndex = (indices == null || indices.length !=1)
? -1
indices[0];
setEnabled(selectedIndex >= 0);
break;
case SSAP. BROWSER:
List <Props> props = ssaBrowser.getSpectraAsList(true);
setEnabled(props != null && props.size() > 0);
break;
default :
throw new IllegalStateException("Unsupported source type.");

/K

* Returns the currently — selected spectrum, if any.
*/

protected List<SpecData> getSpecData()

{

if (getSpectraSource() == null) {
throw new IllegalStateException("There is no spectra source defined for SAMP send action manager.");

}

switch (getSpectraSource()) {
case JLIST:
return Arrays.asList(GlobalSpecPlotList.getInstance().getSpectrum(selectedIndex));

92

case SSAP__BROWSER:
return getSpectraFromSSAQueryBrowser();
default :
throw new IllegalStateException("Unsupported spectra source.");

/o
* Constructs and returns a message for transmitting load of the
s« currently selected spectrum.
*/
protected abstract List<Message> createMessages()

throws IOException, SplatException;
/Hk
* Returns a URL corresponding to an existing resource given by a
* location string , if possible . If <code>loc</code> is an
* existing file, a file —type URL is returned .
* Otherwise, if <code>loc</code> can be parsed as a URL,
% that is returned . Otherwise, <code>null</code> is returned .
*
*
*

@param loc string pointing to resource (URL or filename)
@return URL describing <code>loc</code>, or null
*/
protected static URL getUrl(String loc)
{
if (loc == null) {
return null;
}
File locFile = new File(loc);
if (locFile.exists ()) {
return URLUtils.makeFileURL(locFile);
}
else {

try {
return new URL(loc);
}

catch (MalformedURLException e) {
return null;

public SOURCE__ENUM getSpectraSource() {
return spectraSource;

/o

* Extracts the currently selected spectra from SSA Query Browser
*

* @return

*/

private List<SpecData> getSpectraFromSSAQueryBrowser() {
List <SpecData> spectra = new LinkedList<SpecData>();
List <Props> props = ssaBrowser.getSpectraAsList(true);
spectraUrls. clear () ;

// Inspired by SplatBrowser .tryAddSpectrum() and simplified

if (props != null) {
for (Props p : props) {
System.out.println("and146: props url: " 4 p.getDataLinkRequest() + " / " 4+ p.getidValue() + " / " + p.getShortName() + " /
" 4+ p.getSpectrum());
if (p.getType() == SpecDataFactory.SED || p.getType() == SpecDataFactory. TABLE) {
try {
List <SpecData> sp = Arrays.asList(SpecDataFactory.getInstance().expandXMLSED(p.getSpectrum()));
for (SpecData s : sp) {
spectra.add(s);
spectraUrls.put(s, p.getSpectrum());

// spectra . addAll (Arrays . asList (SpecDataFactory . getlnstance () .expandXMLSED(p.getSpectrum())));

} catch (SplatException e) {
throw new RuntimeException("Unable to extract spectra from SSA Query Browser.", e);

93

} else {

//

try {
if (p.getType() == SpecDataFactory. DATALINK) {
DataLinkParams dlparams = new DataLinkParams(p.getSpectrum());

p.setSpectrum(dlparams.getQueryAccessURL(0)); // get the accessURL for the first service read

String stype = null;

if (p.getDataLinkFormat() != null) { //see if user has changed the output format
stype = p.getDataLinkFormat();
p.setType(SpecDataFactory.mimeToSPLAT Type(stype));
//props . setObjectType (SpecDataFactory . mimeToObject Type(stype)) ;

else if (dlparams.getQueryContentType(0) == null || dlparams.getQueryContentType(0).isEmpty()) //if not,
use contenttype
p.setType(SpecDataFactory. GUESS);
else {
stype = dlparams.getQueryContentType(0);
p.setType(SpecDataFactory.mimeToSPLAT Type(stype));
//props . setObject Type (SpecDataFactory . mimeToObject Type(stype)) ;

¥
List <SpecData> sp = SpecDataFactory.getInstance().get(p.getSpectrum(), p.getType());
for (SpecData s : sp) {
spectra.add(s);
spectraUrls.put(s, p.getSpectrum());
}
spectra . addAll (SpecDataFactory . getlnstance () .get (p.getSpectrum (), p.getType())); ///M IF it’s a list 777
} catch (Exception e) {
throw new RuntimeException("Unable to extract spectra from SSA Query Browser.", e);

return spectra;

¥
/o

* Returns

®

URL of the given spectrum, if exists

* @param spec

* @return

*/

protected String getURLOfSpec(SpecData spec) {
return spectraUrls.get(spec);

}

F.4 SAMP: VOTable Send Action Manager

History :

Copyright (C) 2009 Science and Technology Facilities Council

06—MAR—2009 (Mark Taylor):
Original version .
14— JUL—2009 (Peter Draper):
Give up on 1D FITS and always transmit FITS tables .
16— OCT—2009 (Peter Draper):
Send SSA meta—data as required by HIPE (paul. balm@sciops . esi . int)
More SSA 1.0 compatible .
16— FEB—2016 (David Andresic):
Send spectrum as table .

package uk.ac.starlink.splat. util ;

import java.io.
import java.io.

File;
IOException;

import java.net.URL;

import java.util .HashMap;

import java.util . LinkedList;

import java. util . List;

import java. util . Map;

94

import javax.swing.JList;
import javax.swing.JMenu;
import javax.swing.event. ListSelectionListener ;

import org.astrogrid.samp.Message;
import org.astrogrid.samp.gui.GuiHubConnector;

import uk.ac.starlink .splat.data.SpecData;

import uk.ac.starlink .splat.data.SpecDataFactory;
import uk.ac.starlink .splat.vo.SSAQueryBrowser;
import uk.ac.starlink . util . URLUtils;

Jxx

* Provides GUI actions for sending spectra contained inside VOTable by SAMP.
*

* @author Mark Taylor

* @author David Andresic

* @version Id

*/
public class VOTableSendActionManager
extends SpectraAsTablesSendActionManager

private static final String MTYPE = "table.load.votable";
private static final String SENDTYPE = "table";

/o

* Constructor .

*

% @param ssaQueryBrowser SSA Query Browser instance

* @param hubConnector controls connection with SAMP hub

*/

public VOTableSendActionManager(SSAQueryBrowser ssaQueryBrowser,
GuiHubConnector hubConnector)

super(ssaQueryBrowser, hubConnector, MTYPE,
SENDTYPE);
updateSpecState();

ok

* Constructor .

*

* @param specList global list of spectra

* @param hubConnector controls connection with SAMP hub

*/

public VOTableSendActionManager(JList specList,
GuiHubConnector hubConnector)

super(specList, hubConnector, MTYPE,

SENDTYPE);
specList.addListSelectionListener(this);
updateSpecState();

/Hk
* Constructs and returns a message for transmitting load of the
* currently selected spectrum.
%
protected List<Message> createMessages()
throws IOException, SplatException

{

List <Message> messages = new LinkedList<Message>();

for (SpecData spec : getSpecData()) {
String fmt = spec.getDataFormat();
String mime = null;
URL locUrl = null;
File tmpFile = null;
System.out.println("and146: specdata url: ");

// See if we already have a VOTable spectrum ready to use.

if ("VOTable".equals(fmt) || "TABLE".equals(fmt)) {
if (new File(spec.getFullName()).exists()) {

95

//

mime = "application/x—votable+xml";

locUrl = getURLOfSpec(spec) == null ? getUrl(spec.getFullName()) : new URL(getURLOfSpec(spec));

else {
tmpFile = File.createTempFile("spec", ".vot");
tmpFile.deleteOnExit();
locUrl = URLUtils.makeFileURL(tmpFile);

locUrl = getURLOfSpec(spec) == null ? URLUtils.makeFileURL(tmpFile) :

mime = "application/x—votable4xml";
spec = SpecDataFactory.getInstance()
.getTableClone(spec, tmpFile.toString(),
"votable");
spec.save();
assert tmpFile.exists() : tmpFile;

}
} else {
throw new SplatException("Invalid data format of the spectrum.");
}
assert mime != null;
assert locUrl != null;

// Prepare a metadata map describing the spectrum.

// There should probably be more items in here.

Map meta = new HashMap();

meta.put("Access.Reference", locUrl.toString());

meta.put("Access.Format", mime);

String shortName = spec.getShortName();

if (shortName != null && shortName.trim().length() > 0) {
meta.put("vox:image_ title", shortName);
meta.put("Target.Name", shortName);

// Units.
String dataUnits = spec.getDataUnits();
String coordUnits = spec.getFrameSet().getUnit(1);
if (dataUnits != null && coordUnits != null) {
if (! coordUnits.equals("")) {
meta.put("vox:spectrum__units",
coordUnits 4+ " " 4+ dataUnits);
meta.put("Spectrum.Char.SpectralAxis.unit", coordUnits);
meta.put("Spectrum.Char.FluxAxis.unit", dataUnits);

// Columns.

String xColName = spec.getXDataColumnName();

String yColName = spec.getYDataColumnName();

if (xColName != null && yColName != null) {
meta.put("vox:spectrum_ axes", xColName + " " 4+ yColName);
meta.put("Spectrum.Char.SpectralAxis.Name", xColName);
meta.put("Spectrum.Char.FluxAxis.Name", yColName);

// Prepare and return the actual message.

Message msg = new Message(MTYPE);

msg.addParam("url", locUrl.toString());

msg.addParam("meta", meta);

if (shortName != null && shortName.trim().length() > 0) {
msg.addParam("name", shortName);

}

System.out.println("and146: check #3");

System.out.println("and146: URL: " 4 locUrl.toString());

messages.add(msg);

return messages;

}

@Override

public JMenu createSendMenu() {
switch (getSpectraSource()) {
case JLIST:

96

new URL(getURLOfSpec(spec));

return super.createSendMenu("Send spectrum as VOTable to...");
case SSAP_ BROWSER:

return super.createSendMenu("Send result spectra as VOTable to...");
default :

throw new IllegalStateException("Unsupported source.");

F.5 JTable Utilities

package uk.ac.starlink.splat. util ;
import java.util .logging.Logger;

import javax.swing.JOptionPane;
import javax.swing.JTable;
ok

Class of static members that provide utility functions for JTable.

@author Andresic
@version Id

¥ OX X X ¥ ¥

*/
public class JTableUtilities {

// Logger.
private static Logger logger = Logger.getLogger("uk.ac.starlink .splat. util . JTableUtilities ");

/o

% Class of static methods, so no construction .
*/
private JTableUtilities ()

// Do nothing .

/o

* Gets the content of currently selected JTable cell as String
* or returns null, if the selection is invalid .

*

* @param table

* @return

*/

public static String getCurrentCellContent(JTable table) {
Utilities .checkObject(table, "Table must be set.");

int row = table.getSelectedRow();
int col = table.getSelectedColumn();

boolean validSelection = row > —1 && col > —1;

if (validSelection) {
Object value = table.getValueAt(row, col);
String strValue = value == null ? "" : value.toString();

return strValue;

} else {
logger.warning("Invalid selection.");
return null;

/

*
Gets all the content of the given JTable String
or returns null, if the selection is invalid .

@param table

@param lineBreak

%
*
*
*
*
*
* @param cellBreak
*

@return

97

*/

public static String getAllContent(JTable table, String lineBreak, String cellBreak) {
Utilities .checkObject(table, "Table must be set.");
Utilities .checkObject(lineBreak, "Line break must be set.");
Utilities .checkObject(cellBreak, "Cell break must be set.");

int numCols=table.getColumnCount();
int numRows=table.getRowCount();
int [] rowsSelected=Utilities.range(0,numRows);
int [] colsSelected = Utilities .range(0,numCols);

return getContent(table, lineBreak, cellBreak, numCols, numRows,
rowsSelected, colsSelected);

/Hk
* Gets all the content of the given JTable (including column names) as String

* or returns null, if the selection is invalid .
@param table

*
*
* @param lineBreak
* @param cellBreak
* Qreturn
-/
public static String getAllContentWithHeaders(JTable table, String lineBreak, String cellBreak) {
Utilities .checkObject(table, "Table must be set.");
Utilities .checkObject(lineBreak, "Line break must be set.");

Utilities .checkObject(cellBreak, "Cell break must be set.");

// get column names
String headerColumns = getColumnNames(table, lineBreak, cellBreak);

// get table data
String content = getAllContent(table, lineBreak, cellBreak);

return headerColumns + content;

>
*

Gets the content of current JTable selection as String
or returns null, if the selection is invalid .

*
*
*
*
* @param table
* @param lineBreak
* @param cellBreak
* @return
*/
public static String getCurrentSelectionContent(JTable table, String lineBreak, String cellBreak) {
int numCols=table.getSelected ColumnCount();

int numRows=table.getSelectedRowCount();

int [] rowsSelected=table.getSelectedRows();

int [] colsSelected =table.getSelectedColumns();

return getContent(table, lineBreak, cellBreak, numCols, numRows,
rowsSelected, colsSelected);

//

private static String getContent(JTable table, String lineBreak, String cellBreak,
int columnCount, int rowCount, int[] selectedRowsCount, int[] selectedColumsCount) {

if (columnCount > 0 && rowCount > 0) {
StringBuffer value = new StringBuffer();

for (int i=0; i<rowCount; i++) {
for (int j=0; j<columnCount; j++) {
value.append(escapeContentBreaks(table.getValueAt(selectedRowsCount[i], selectedColumsCount[j]), lineBreak,
cellBreak));
if (j<columnCount—1) {
value.append(cellBreak);
}
}

value.append(lineBreak);

98

return value.toString();
} else {

logger.warning("Invalid selection.");
return null;

}

private static String getColumnNames(JTable table, String lineBreak, String cellBreak) {
StringBuilder headerColumnsSB = new StringBuilder();
for (int i = 0; i < table.getTableHeader().getColumnModel().getColumnCount(); i++) {
Object headerColumn = table.getColumnName(i);
headerColumnsSB.append(headerColumn == null ? "' : headerColumn.toString());

if (i != table.getTableHeader().getColumnModel().getColumnCount() — 1) {
headerColumnsSB.append(cellBreak);

}

String headerColumns = headerColumnsSB.toString() + lineBreak;

return headerColumns;

private static String escapeContentBreaks(Object cell, String lineBreak, String cellBreak) {
return cell == null ? "" : cell .toString() .replace(lineBreak, " ").replace(cellBreak, " ");

99

F.6 SSA Query Results Selection Menu

package uk.ac.starlink.splat.vo;

import java.awt.Component;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JMenu;
import javax.swing.JMenultem;
import javax.swing.JOptionPane;

import javax.swing.JPopupMenu;

import uk.ac.starlink.splat. util . JTableUtilities ;
import uk.ac.starlink .splat. util . Utilities ;

import uk.ac.starlink .table.gui.StarJTable;

/k
* Popup menu for StarJTable wit SSA Query results .
*

* @author Andresic
*

*/
public class SSAQueryResultsTableSelectionMenu extends JMenu {

private static final long serialVersionUID = 1L;

private static final String CELL BREAK = "\t";
private static final String LINE__BREAK = System.getProperty("line.separator");

private static final String TITLE = "Selection";
// private StarJTable starJTable ;

public SSAQueryResultsTableSelectionMenu() {
super(TITLE);

addMenultems();

private void addMenultems() {
add(createCopyCurrentCellltem());
add(createCopyCurrentSelectionItem());
add(createCopyAllTableDataltem());

Jk
* Menu item for copying the currently selected cell content to clipboard .
*
* @return
*/
private JMenultem createCopyCurrentCellltem() {
JMenultem menultem = new JMenultem("Copy current cell to clipboard");

menultem.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent arg0) {

String content = JTableUtilities.getCurrentCellContent(getStarJTable(arg0));

if (content != null) {
Utilities .addStringToClipboard(content);

} else {

JOptionPane.showMessageDialog(getStarJTable(arg0), "Invalid selection. Please select some cell.");

bR

return menultem;

[k

* Menu item for copying the all current selection content to clipboard .

100

*

* @return

*/

private JMenultem createCopyCurrentSelectionltem() {

JMenultem menultem = new JMenultem("Copy current selection to clipboard");
menultem.addActionListener(new ActionListener() {

@Override
public void actionPerformed(ActionEvent arg0) {
String content = JTableUtilities.getCurrentSelectionContent(getStarJTable(arg0), LINE_ BREAK, CELL_BREAK);

if (content != null) {
Utilities .addStringToClipboard(content);
} else {

JOptionPane.showMessageDialog(getStarJTable(arg0), "Invalid selection. Please select some area.");

Hs

return menultem;

ok
* Menu item for copying the all current selection content to clipboard .
*

* @return
*/
private JMenultem createCopyAllTableDataltem() {
JMenultem menultem = new JMenultem("Copy all table data to clipboard");

menultem.addActionListener(new ActionListener() {

@Override
public void actionPerformed(ActionEvent arg0) {
String content = JTableUtilities.getAllContent(getStarJTable(arg0), LINE_ BREAK, CELL_BREAK);

if (content != null) {
Utilities .addStringToClipboard(content);

s

return menultem;

protected StarJTable getStarJTable(ActionEvent e) {
JMenultem jmi = (JMenultem) e.getSource();
JPopupMenu jpm = (JPopupMenu) jmi.getParent();
Component component = jpm.getInvoker();

return traverseToStarJTable(component);

private StarJTable traverseToStarJTable(Component component) {
System.out.println("and146: " 4+ component);
if (component == null) {
return null;

if (component instanceof StarJTable) {
return (StarJTable) component;

} else {
if (component instanceof JPopupMenu) {
return traverseToStarJTable(((JPopupMenu)component).getInvoker());
} else {

return traverseToStarJTable(component.getParent());

101

F.7 Spectrum Export to CSV and Text File

efining

for sawing the tah

+ protected class SaveAsCSvAction extends Abstractaction
& {
+ private static final long serialversionuIb = 1L;

+ public SaveAsCSw, . Icon icon, String

ction{ String na

+ super{ name, icon);

+ putvalue(SHORT_DESCRIFTION, ShortHelp);

+ » Respond to actions from the buttons
7 .

+ public void actienPerformed(ActionEvent ae)
& {

+ writeallTablepataTocsyFile();

£lass defining Action for

+ protected class SaveAsTextaction extends abstractaction
& t
+ private static final long serialversionUID = 1L;

+ public Sav

Textaction(String name, Icon icon, String shortHe.

+ super(nmame, icon),
+ putvalue(SHORT_DESCRIFTION, ShortHelp);

e aik
+ * Respond to actions from the buttons,

& .

+ public void actionPerformed(ActionEvent as)
+ fe

+ writeallTablepataToTxtFile();

Figure 54: Spectrum export to CSV and text file - actions.

102

3 wia ars e
o Llsbecanr
- R

v are
albze

- 0 PR T

th s ST UITIC RN LR T TR - Sty
i In - res a3ee-.ga antazbed 4100

AL L s s LIS R %,
Tk

- persed s
Lo,
z T

$F S ararata et vt the 5ron
firg niwnly = el e galaldier attaLlld s
i = AR A f e 12 R

Ll L2

PHIERTE PN

LR

Figure 55: Spectrum export to CSV and text file - file choosers and writing methods.

103

F.8 Plot Control Key Listener

ok
*/

package uk.ac.starlink.splat.plot;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

ok

* PlotControlKeyListener listens for PlotControl 's KeyEvents.
*

* @author David Andresic

% @version Id

*/

public class PlotControlKeyListener implements KeyListener {
private PlotControl plotControl;

public PlotControlKeyListener(PlotControl plotControl) {
this . plotControl = plotControl;

@Override
public void keyPressed(KeyEvent e) {
if (e != null) {
switch (e.getKeyCode()) {
case KeyEvent.VK_DELETE:
deleteSpectrum();
break;
default :

// noop
break;

@Override
public void keyReleased(KeyEvent e) {
// so far no operation

@Override
public void keyTyped(KeyEvent e) {

// so far no operation

/* Actual handlers s/

private void deleteSpectrum() {
plotControl.removeCurrentSpectrumFromPlot();

104

F.9 PlotControl: Remove Current Spectrum From Plot

Removes the currently

spectrum from the plot

public void removecurrentSpectrumFromPlot() {

+ global list checkbox

currentlyselectedspectrum, getshortName()
)i

Object[] params = {message, checkBox};

ask the

int n = JoptienPane.showConfirmbialeg{ this,

params,
"Remove the spectrum",
JoptionPane. YES_NO_OPTION);
raturn hout takimg action an 'N
if (n == JoptionPane.NO_OPTION) {
return;

fram plot

Specbatacomp spechatacomp = getSpecDatacomp();
specDatacomp.removeicurrentlyselectedSpectrum);
repaint();

remove t spe um fro
if (checkeBox.isSelected()) {
globallist, removesSpectrum({currentlyselectedSpectrum);

ERE S S S S S S S R S S S S S S S S S S SR S S S S S A S S S

Figure 56: PlotControl: Algorithm fot removing current spectrum from

105

JcheckBox checkBox = new JcheckBox("Remove from global list as well",

Spechbata currentlyselectedspectrum = (Spechata)lnamelist.getModel() . getSelectedItem();

String message = String. format({"Do you really want to remove the spectrum '#%s'?",

plot.

G Spectra Group VOTable example

The following VOTable contains a reference to 2 FITS files containing the actual spectra.

<?xml version="1.0"7>
<VOTABLE version="1.3" xmlns:xsi="http://www.w3.0org/2001/XMLSchema—instance"
xmlns="http://www.ivoa.net/xml/VOTable/v1.3"
xmlns:stc="http://www.ivoa.net/xml/STC/v1.30" >
<RESOURCE name="splatVoSpectraGroup">
<DESCRIPTION>SPLAT—VO (ver.) Spectra Group VO—Table</DESCRIPTION>
<TABLE name="NORMbxn0727.fits">
<FIELD name="WAVE" datatype="double" ucd="em.wl" unit="angstrom"/>
<FIELD name="FLUX" datatype="double" ucd="phot.flux.density" unit="erg/cm=*2/s/angstrom"/>
<DATA>
<FITS>
<STREAM href="file:///path/to/spectrum/NORMbxn0727.fits" />
</FITS>
</DATA>
</TABLE>
<TABLE name="NORMbxn0728.fits" >
<FIELD name="WAVE" datatype="double" ucd="em.wl" unit="angstrom"/>
<FIELD name="FLUX" datatype="double" ucd="phot.flux.density" unit="erg/cm=**2/s/angstrom"/>
<DATA>
<FITS>
<STREAM href="file:///path/to/spectrum/NORMbxn0728.fits" />
</FITS>
</DATA>
</TABLE>
</RESOURCE>
</VOTABLE>

106

	List of Symbols and Abbreviations
	List of Figures
	Introduction
	Astroinformatics and Virtual Observatory
	Virtual Observatory
	Tools

	Basic Terms and Concepts
	Astronomy and Astroinformatics
	Software Engineering

	SPLAT-VO
	History
	Team and Development Organization
	User Interface
	Most Typical Use Cases
	Technical Description
	Build Example
	Building Using Build Script
	Creating Installation Package

	Realized Improvements of SPLAT-VO
	More Efficient Work with SAMP Protocol
	Access to All FITS Extensions
	Time Series Demonstrational Support
	SSA Query Results Enhancements
	Spectral Data CSV Export
	More Effective Spectra Deletion by Means of Visual Selection

	Improvements Being Prepared for SPLAT-VO
	Time Series and Data Cubes Support via New Protocol
	Working Space
	Spectra Groups
	Spectral Data Lazy Loading

	SPLAT-VO Development Process Improvements
	Wiki Documentation
	Issue Tracking
	Automatized Build with Jenkins CI inside Docker

	Suggestions for Further Refactoring
	Conclusion
	References
	Appendix
	SpecData Class Diagram
	SpecList Class Diagram
	GlobalSpecPlotList Class Diagram
	SpectrumIO Class Diagram
	SpecDataFactory Class Diagram
	Selected Diffs and Source Codes
	SSAP: Time Series Product Type Detection
	Plot Window: Y-axis Flipping for Time Series
	SAMP: Spectra as Tables Action Manager
	SAMP: VOTable Send Action Manager
	JTable Utilities
	SSA Query Results Selection Menu
	Spectrum Export to CSV and Text File
	Plot Control Key Listener
	PlotControl: Remove Current Spectrum From Plot

	Spectra Group VOTable example

