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Segmentacia medicinskych dat je déleZitou sucastou medicinskej praxe. Specialne
pokial sa jedna o pracu radiolégov, segmenticia znacne zjednodusuje ich kazdodenné
ulohy a zefektiviiuje vyuzivanie ich ¢asu, €o je prinosné najma z dévodu, Ze vo vacSine
pripadov maju radiolégovia iba urcité mnozstvo ¢asu, ktory moZu venovat vySetreniu
jedného pacienta. Pocitacova podpora diagnostiky je taktieZ mocnym nastrojom na
elimindciu mozného zlyhania 'udského faktoru.

V tejto praci navrhujeme novy pristup k segmentovaniu I'udskych organov. Primarne
sa pritom zameriavame na segmentaciu l'udského mozgu z MR dat. Nasa metoda je
zaloZenda na presegmentovani 3D dat do tzv. supervoxelov za pouzitia algoritmu SLIC.
Jednotlivé supervoxely su opisané mnoZinou priznakov zaloZenou na distribucii
intenzit obsiahnutych voxelov a na pozicii v ramci samotného mozgu. Supervoxely st
klasifikované neurénovymi sietami, ktoré trénujeme, aby rozhodli, ¢i supervoxely
patria k danému organu ¢i tkanivu. Pre d’alSie spresnenie nasSej metédy vyuzivame
informaciu o tvare a vnutornej Struktdre organu. V kone¢nom désledku zavadzame 6-
krokovi segmentacni metdédu zaloZzenti na pouZiti klasifikacie. NaSu metédu
porovnavame s ostatnymi metédami, ktoré momentalne tvoria vrchol poznania v tejto
oblasti.

Okrem globalneho ciela tejto prace sa zameriavame na aplikovanie inZinierskych
zrucnosti a najlepsich praktik, aby implementované rieSenie bolo I'ahko rozsiritelné
a udrZovatel'né v buducnosti.
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Medical image segmentation is an important part of medical practice. Primarily as far
as radiologists are concerned it simplifies their everyday tasks and allows them to use
their time more effective, because in most cases radiologists only have a certain
amount of time they can spend examining patient’s data. Computer aided diagnosis is
also a powerful instrument to eliminate possible human failure.

In this work, we propose a novel approach to human organs segmentation. We
primarily concentrate on segmentation of human brain from MR volume. Our method
is based on oversegmenting 3D volume to supervoxels using SLIC algorithm. Individual
supervoxels are described by features based on intensity distribution of contained
voxels and on position within the brain. Supervoxels are classified by neural networks
which are trained to classify supervoxels to individual tissues. In order to give our
method additional precision, we use information about the shape and inner structure
of the organ. In general we propose a 6-step segmentation method based on
classification. We compare our method with other state-of-the-art methods.

Apart from the global focus of this thesis, our goal is to apply engineering skills and
best practices to implement proposed method and necessary tools in way that they can
be easily extended and maintained in the future.
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1 Introduction

In this part, we briefly describe domain and introduce the main parts of problem we
face in this master’s thesis, especially emphasizing main challenges and possible
problems. We also guide reader through the structure of this document.

In this work, we propose a method for segmentation of specific organ from medical 3D
data that requires minimal user interaction. Although our method is tested and
evaluated on one specific organ - human brain, we believe it would be easy to use it to
segment other organs as well.

In general, medical imaging grows in importance not only as far as treatment is
concerned. There was also recorded importance of screening as a mean of lethal-
diseases prevention. According to [1] it is more likely to cure a lethal disease if it is
detected in early stage of its progression. Unfortunately, there are not enough
experienced radiologists which would be able to perform screening of whole
population. Authors in [2] claim that radiologist needs approximately 6.83 minutes for
reading single MRI. If we wanted to examine every person in Slovakia once in two years
we would need 107 radiologists working 8 hours a day every single day in a year only
on screening. This is where medical imaging comes to aid. In some countries
radiologists are already assisted by computers - computer either preprocesses medical
data and makes them easier to read for radiologist or highlights some possible regions
of interest. There is also a rule that a single examination should be performed by two
radiologists. Such reading is called “Double reading”. Although double reading
improves sensitivity, it also increases requirements for radiological stuffing [3]. This
fact would multiply required number of radiologists by two which would result in 214
radiologists needed in Slovakia.

Our work consists of three parts. In the first part, we provide theoretical background
and description of proposed method. We describe how this method contributes to
current state of medical images segmentation. We also mention its possible drawbacks,
weak points and challenges.

In the second part, we implement proposed method using standard software tools such
as programming languages and libraries. We put emphasis on robustness,
effectiveness, validity and precision of our software implementation. The main
challenges of software implementation are big amount of data (millions to hundred
millions of voxels per dataset), noise and size and shape variance of organs [4].

In the last part, we evaluate our method through comparison with state-of-the-art
brain segmentation techniques.

Document is divided into eight sections. In second chapter, we introduce user to the
domain of radiology and medical imaging and explain why it is important to use
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segmentation in medical data. Next, we analyse medical modalities, especially
emphasising MR, which we chose to evaluate our method. In this chapter we also
explain theoretical background and methods of computer vision that are used in or
related to proposed method. In the last part, we describe some state-of-the-art
segmentation techniques and methods used in medical domain.

Proposed method is thoroughly described in section three. Here we describe used
datasets and all phases of the method.

During our research we tried various approaches to segmentation of medical organs.
These approaches that are not yet used in the main method are described in section
four.

Considered approaches that we have tried in earlier stages of this project are described
in section five. These provided the basis for the finally proposed method.

The sixth section addresses implementation of proposed method. Usage of software
engineering techniques, architecture and design of software solution are described in
detail. In the first part we describe our first results reached during DP1.

In the seventh section, we evaluate results of our method and compare them with state-
of-the-art medical segmentation methods. Proposed method is compared in terms of
precision, effectiveness and performance.

The eight section, conclusion, gives an overview of proposed method and reached
results. Limits of current approach and future work are also described here.



2 Analysis

2.1 Domain

For some kinds of treatment in medical practice it is necessary to get an image of
patient’s viscera. Whenever possible, such image is obtained in non-invasive way. Only
in necessary cases chirurgic operation is performed only to get information about
patient’s viscera.

Medical data is obtained by different modalities. The most commonly used are CT, MR,
PET, RTG and ultrasound. Each of these modalities has its own attributes, which makes
every one of them more suitable for specific kind of tasks. In the next part, we focus on
MRI and CT.

CT stands for Computed tomography. CT uses X-rays to obtain information about
patient’s body, using fact that every tissue absorbs different amount of energy of rays.
From our point of view CT provides more stable results when comparing multiple
scans of one patient. This is caused by significantly lower time required to perform a
CT scan in comparison with MRI. Similar to MRI, CT suffers from following artifacts:
Partial volume, Streak, Motion, Beam hardening, Ring and Bloom. It is also
disadvantageous that patient is exposed to radiation during CT scanning and soft
tissues do not provide as much contrast as in MRI. In [5] authors state that their method
allows to cope with high level of noise present in the CT scan. On the other hand,
modern CT scanners provide high resolution, much shorter scan time, higher
sensitivity for sub-arachnoids haemorrhage and higher sensitivity to calcification.

MRI stands for Magnetic resonance imaging. It is the most widely used technique in
medical imaging [6]. It allows to focus on different tissues by adjusting MRI settings.
MRI is suitable for diagnosing brain diseases in their early stage, for example brain
tumours. Infarctions or infections can be successfully discovered using MRI, too [6].
Similarly to other modalities, MRI suffers from specific kinds of artifacts [6]: Partial
volume, RF noise, Intensity inhomogeneity, Gradient, Motion, Wrap Around, Gibbs
Ringing and Susceptibility. In our method we decided to use MR data to segment
brain.

Data is obtained as a raw, dense set of 3D points, each of them having own intensity.
Depending on used modality, its characteristics and examined area, such a set consists
of millions of voxels. For example, authors in [4] characterize dataset containing over
eight million points as medium-sized. Our own datasets obtained using MRI consists of
over 8 380 000 points (more than 128 slices with resolution 256 x 256). Mostly, it is
not possible to work directly with all the points from dataset, so image pre-processing
techniques are used. Multiple techniques are described in the later parts. Such a huge
amount of data is not only complicated from the machine-processing point of view.



Even for experienced radiologists it is complicated to abstract from tissues
surrounding his or her current region of interest.

For radiologists it is important to quickly orient in such medical data and concentrate
only on regions he or she is interested in. For this reason, it is extremely helpful to have
a tool that extracts and renders only regions that are interesting in terms of current
task. This is where segmentation comes to aid. If successfully applied, segmentation
techniques extract only tissues or organs radiologist needs to work with.

Radiologists cooperate with other medical specialists, giving them information about
specific patient’s characteristics. For example, when there’s a suspicion that there
could be a tumour located in patient’s liver, oncologist needs to know it for sure before
he or she prescribes a chemical or radiation therapy.

Because of big responsibility that lies on radiologists, segmentation methods used in
practice have to be reliable and precise. It is not acceptable that such a segmentation
method hides a tumour or any other important information from region of interest
(ROI). Radiologists wouldn’t even trust such method [7] and wouldn’t use it. Therefore,
we believe, that some minimal human interaction will be needed to obtain optimal
results as far as segmentation of medical data is concerned.

2.2 Theoretical background

2.2.1 Segmentation

According to [6], segmentation is a process of dividing digital image into regions (called
segments), that share common or similar properties. Therefore, segment is a grouping
of pixels (in 2D) or voxels (in 3D) that are in some way similar to each other. Due to
simplicity, only term pixel will be used next in this section, as all the statements are
analogous for voxels in 3D space, too.

It is important to add that pixels in one region often represent a part of the same real-
world object (although it is not always true).

2.2.1.1 Similarity criterions

One of the most common and basic properties defining similarity among pixels is their
intensity or grey level. Intensity of pixel is in the centre of one of the most basic and
segmentation techniques - thresholding.

Similar to intensity of pixel are its brightness and colour, which can be defined in many
different colour spaces. Choice of colour space can have dramatic impact on
segmentation performance. SLIC [8], one of the most widely used oversegmentation
algorithms, uses CIELAB colour space, as this closer to how human perceives
differences between colours than RGB colour space [9].



More complex characteristics of pixels that can be used to determine which segment
the pixel belongs to are based on neighbouring pixels. In [10] authors use average
intensity of neighbouring pixels, differences of maximum brightness values and
differences of minimum brightness values. In [11], Achanta et al. segmented
mitochondria in electron microscopy image stacks. The authors first oversegmented
3D data obtained by electron microscope, and then merged these groupings
(supervoxels) according to their similarity. Intensity histogram of voxels in supervoxel
was chosen by authors as one of similarity criterions. Histogram of intensities of
neighbouring supervoxel was chosen as the next criterion.

Not only criterions based on intensity of pixel or its neighbours can be used. In some
cases, mutual distance of pixels in the digital image is important. An extreme example
is a standard K-Means algorithm that ignores spatial information. If there were two
disjunct green objects in the image, these would be clustered into the same cluster,
although they are not connected to each other. On the other hand, slightly modified K-
Means algorithm used in [8] oversegments image into superpixels. In the Figure 1 there
are two versions of K-Means algorithm applied to the same image. The traditional
version clusters image pixels into two classes, because it is only based on intensity
information. The modified K-Means takes spatial information (distance of pixels) into
consideration, so in result it produces oversegmented image, where every single
segment has its own label.
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Figure 1- Standard K-Means algorithm and modified K-Means used in SLIC.

2.2.1.2 Segmentation techniques

Segmentation as a complex and difficult task can be performed on multiple levels.
There are situations when only some objects on the scene are to be segmented, e.g.
radiologist is only interested in some specific organ. Such segmentation is called
partial. In [12], authors segment only brain tumours. On the other hand, complete
segmentation splits digital image into multiple segments sharing some common
qualities. An example of complete segmentation can be found in [13]. Wang et al.
segment brain MR image into white matter (WM), grey matter (GM) and cerebral spinal
fluid (CSF). In result whole image is segmented and every pixel except background (in
MRI typically air) belongs to one of these three classes. Comparison of partial and
complete segmentation can be seen in Figure 2.



Figure 2- Partial segmentation of brain tumour [12] and complete segmentation of brain [13].

Image segmentation techniques can be classified from multiple viewpoints. Authors in
[14] classify segmentation techniques into three basic classes: threshold-based, edge-
based and region-based. Edge-based techniques can be further classified into gradient-
based and laplacien-based. Region-based techniques can be classified into region-
growing and classifier/clustering-based. Complete classification proposed by [14] can
be seen in Figure 3. There are also segmentation techniques that are not mentioned:
Split/merge, morphological methods, template based methods and statistical methods.
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Figure 3- Segmentation techniques classification [14].

Thresholding is a segmentation technique based on idea that regions consisting of
pixels belonging to the same real-world object share similar intensity, brightness or
colour. In other words, these regions are homogeneous. In its very basic form,
thresholding divides digital image into two classes - foreground and background.
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Every pixel having intensity above chosen threshold is considered to be foreground,
and every pixel having intensity below chosen threshold is considered to be
background. Such kind of thresholding is also known as binarization. It is also possible
to classify individual pixels to more than two classes. The whole range of possible
intensities can be divided into intervals, which can (but do not have to) be of the same
size, and every pixel is classified according to its intensity value to the class
represented by concrete interval of intensity range. Many variations of thresholding
can be found in [15]. An example of image segmented using thresholding technique in
CIELAB colour space can be seen in Figure 4. Thresholding works well when pixels
representing the same real-world object have similar intensity and pixels representing
different real-world objects have distinct intensity [4].
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Figure 4- Bulls segmented using thresholding technique in CIELAB colour space. Before (left) and after (right).

Edge-based techniques use information about edges detected by some kind of edge-
detector. In [12], Canny detector is used to detect outer edges of brain tumour. Edge-
based techniques are often used for finer detection of object edges after this object was
coarsely segmented using some other technique. Edge-based techniques do not
perform well when unclear or unclosed edges are present in the image.

Region-based methods construct regions by grouping spatially near pixels that are
homogeneous in some criterion. Region-growing as a basic region-based technique
requires initial seed as a base of region. Seed can be a single pixel or a cluster of pixels
[4]. From the initial seed, region grows in every direction until a stop criterion is
reached - either a boundary is found or a maximal region size is reached. If there is no
a priori knowledge about the region being segmented, general-purpose region-
growing technique is used. Performance of region-growing technique can be enhanced
by using some additional knowledge, e.g. maximal intensity of pixels in region (no pixel
with intensity higher than the maximal one will be added to region), statistical shape
information (e.g. shape of organ segmented in MR image stack) etc.

Classification-based techniques have found a big use in segmentation tasks.
Classification-based techniques are based on machine-learning, where some classifier,
such as SVMV, is trained to classify data into two or more classes. If there are only two
classes, such classification is called binary. In [16], authors use SVM classifier to extract

7



abnormalities in breast MR images. In [17], authors first remove nonbrain tissue from
MR images using a combination of anisotropic diffusion filtering, edge detection and
morphological operations and then classify brain tissues into six classes using
maximum a posteriori classifier. Achanta et al. in [11] trained SVM to classify
supervoxels to three classes — boundary, background and mitochondria, whereby SVM
does not return class for each supervoxel, but the probability of supervoxel belonging
to each class. It is always necessary to specify a set of features characterizing individual
classes. In [10] authors use average brightness of the block surrounding pixel,
differences of maximum brightness and difference of minimum brightness.

Clustering-based techniques are often used as a preprocessing step in image
segmentation. They are used to reach unsupervised classification. Clustering
algorithms, compared to classification, do not in general require knowledge of the
number of classes before clustering (although some implementations do). Clustering
algorithms cluster pixels into clusters based on their similarity rate. Similarity rate is
usually defined by the authors of clustering algorithm. Mostly, it is based on intensity
homogeneity, brightness and colour, but spatial information can be used, too. Most
common clustering algorithms are K-Means, Mean Shift, Fuzzy C-means and Gaussian
Mixture Model. Achanta et al. successfully used SLIC to oversegment electron
microscope data to supervoxels, decreasing number of elements to be processed by
several orders of magnitude (original data consisted of 1079 voxels, after reduction
thousands of supervoxels) [11]. Currently, there are many clustering algorithms, each
having its pros and cons. SLIC uses slightly modified K-Means algorithm.

2.2.2 Oversegmentation and supervoxels
Pointin 3D space is called voxel. When defining supervoxel, we proceed from Achanta'’s
et al. definition of superpixel qualities. Superpixel is a group of related pixels, that [8]:
e Adhere image boundaries.
e When used in preprocessing, they are fast to compute, memory efficient and
simple to use.
¢ When used in segmentation, they improve speed and quality.
It is needed to add, that pixels belonging to the same superpixel are similar in some
quality, mostly in intensity. Supervoxel is a group of related voxels with the same
qualities. In our method, there is one more important quality of supervoxels - they
should be as homogeneous as possible. In other words, intra-supervoxel variance
should be low.

In Figure 5 there are examples of six state-of-the-art oversegmentation algorithms.
Deeper comparison can be found in [5].

The most basic categorization of superpixel and supervoxel methods is:
e Graph based algorithms.
e Gradient-ascent based algorithms.



Every patient’s scan consists of ca. millions of points in 3D space, each having its
intensity. These points are called voxels. Usual scan consists of millions of voxels. In
[11] authors process data obtained by electron microscope and segment mitochondria.
Interesting is that the authors do not use voxels, but supervoxels, decreasing
computational complexity by several orders of magnitude. Dividing volume into
supervoxels is equivalent to oversegmenting this volume. Supposing supervoxels
adhere to natural boundaries contained in volume, number of supervoxels (and
therefore segments) is in general really bigger than the number of real objects in the
volume.

(e) (H) »
Figure 5 - Examples of different superpixel algorithms [5]. (a) - [18], (b) - [19], (c) - [20], (d) - [21], (e) -[22], (f) - [5]-

Usually, the next step after oversegmenting the volume into supervoxels is to merge
supervoxels into bigger unions, trying to reconstruct concrete objects (e.g. organs).
This technique uses merging of supervoxels in order to reconstruct organ. Other
approach is to classify supervoxels into desired classes.

In proposed method, we do not work directly with voxels, but first we oversegment
volume into supervoxels. Because of its qualities, possibility to define number and size
of supervoxels, we decided to use SLIC, which is thoroughly described in section 2.2.2.1.

2.2.2.1 SLIC Superpixels
Paper: SLIC Superpixels Compared to State-of-the-art Superpixel Methods [8]

Achanta et al. proposed a novel approach to oversegmentation of 2D images and 3D
data volumes into superpixels and supervoxels.



SLIC, which stands for Simple linear iterative clustering, is a superpixel and supervoxel
algorithm, that divides given volume (image) into supervoxels (superpixels). The main
idea of SLIC is to use slightly modified K-Means clustering algorithm to divide image
into homogeneous regions (superpixels). As stated in part 2.2.2, authors claim that
good superpixels should:
e Adhere to image boundaries.
e When used as a preprocessing step, they should be fast to compute, memory
efficient and simple to use.
e When used in segmentation tasks, they should increase both efficiency and
performance.

This by nature simple algorithm based on adapted K-Means clustering allows user to
define number (or inversely size) of desired superpixels. SLIC is fast compared to other
similar algorithms, because for single cluster centre not all points in the volume are
examined, but only those that lie in the region around the cluster centre. This
dramatically reduces computational complexity of SLIC. In the Figure 6 it is explained,
how the adaptation of k-means algorithm helps to create more regular superpixels and
decrease computational time.

25
{a) standard &-means searches fh) SLIC searches
the entire 1mage a limited region

Figure 6 - Comparison of standard k-means algorithm and adapted version used in SLIC [8].

Compared to some other supervoxel and superpixel algorithms, SLIC takes spatial and
intensity information into account when clustering voxels. It is possible to prefer
superpixel homogeneity (higher weight has intensity) or compactness (higher weight
has spatial distance from cluster centre).

Similarity of voxel to supervoxel centre is in SLIC defined by equation (1).

2

D= d62+(%) m? (1)

dc is colour distance of voxel and supervoxel centre in CIELAB colour space defined as

dc = \/(lj - li)z + (a] - ai)z + (b] - bi)z (2)
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ds is spatial distance of voxel and supervoxel centre defined as

do= {G5-x)+ Oy -9+ (5 -2)° ©
m is parameter that adjusts importance of spatial and intensity proximity of voxel and
supervoxel. With higher m the result are supervoxels with higher spatial consistency,
which are similar in shape. Effect of adjusting parameter m can be seen in Figure 7.
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Fzgure 7 - SLIC superpixels. Left: low value ofm nght hlgh value of m.

2.2.3 C(lassification and clustering

Both classification and clustering are widely used as far as image segmentation is
concerned. Classification is used when a specified set of classes is defined and pixels
(in 2D) or voxels (in 3D) are to be assigned to one of these classes, depending on class
and voxel characteristics. For example a brain MR image stack contains voxels that
represent real-world brain tissues: white matter (WM), grey matter (GM) and cerebral
spinal fluid (CSF). Basically, there are four classes: {WM, GM, CSF, BG}, where BG stands
for background, typically air or surrounding tissues and skull. Each of these classes has
its own typical characteristics. Typically, in MR images obtained via T1 scan intensity
of WM voxels is highest followed by GM. The least bright are those belonging to CSF
[10]. Intensity distribution of background has the highest standard deviation, as it
contains darkest voxels (air) and also the brightest (skull).

On the contrary, clustering algorithms in general do not need to know exact number of
classes. Typically, they only need some criterion (or more) that determines which
cluster does concrete voxel belong to. There are many possible criterions - intensity or
colour similarity, spatial distance (or their combination as shown in part 2.2.2.1), an
edge detected between cluster centre and voxel etc.

Classification and clustering perform well when boundaries between classes (or
clusters) are clear. In case of images with high level of noise or smooth gradient
classifiers and clustering algorithms may fail. Figure 8 illustrates situation when SLIC
(which uses slightly modified K-Means) was not able to find reasonable clusters due to
high gradient.
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Figure 8 - Modified K-Means clustering applied on image with high gradient.

2.2.3.1 K-Means

K-Means is a clustering algorithm. In its basic form, K-Means does not take spatial
information into account. Whole region is represented by its mean value (mean of
values of included pixels), centroid or medoid and each pixel is represented by its own
value of luminance.

K-Means is an iterative algorithm. Its steps are:

1. Randomly initialize cluster centres values (yet virtual mean values).

2. Calculate distance of every pixel in the image to every cluster centre. Distance
is mostly defined as in equation (4). Every pixel is then assigned to the cluster,
where this distance is minimal.

D= (x,—p) (4)

3. Recalculate mean values of cluster centre for every cluster.

4. Go back to step 2 if mean values are not stable (old and new mean values differ
too much).

Important to remember is that K-Means allows to set the number of clusters to be
created before it is performed. On the other hand it does not guarantee that created
clusters will form a connected graph. In Figure 1 pixels belonging to cluster 1 do not
form a connected graph whereas pixels from cluster 2 do.

To overcome this limitation, K-Means can be defined on multidimensional space,
allowing to separate clusters in way they form connected graphs. Achanta et al. use in
their work [8] modified K-Means algorithm, that works on 5-dimensional space {L, a,
b, X, Y} for 2D images and on 6-dimensional space {L, a, b, X, Y, Z} for 3D data, defining
distance between pixel/voxel and cluster centre as shown in equation (1).

2.2.3.2 SVM
SVM, which stands for Support Vector Machine, is a binary classifier which requires
supervised training. Single instances are represented as vectors of finite length. An
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example is a supervoxel that can be represented by a 6-dimensional vector
{mean_intensity, max_intensity, min_intensity, mean_x, mean_y, mean_z}.

SVM, in principle, tries to separate instances of one class from instances of other class
by finding an optimal hyperplane.

A simple example is a set of linearly separable 2-dimensional vectors. Such situations
illustrates Figure 9. In this case, no hyperplane is needed to separate instances of two
classes.
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Figure 9 - Linearly separable instances of two classes [23].

Every line in Figure 9 separates instances of one class from instances of the other class.
As already said, SVM tries to find an optimal hyperplane that would separate these
classes. An optimal hyperplane should have maximal distance to nearest vectors of
both classes being separated. Such separation should be least error and noise prone
than hyperplane that would be too near to any instance of any class. An illustration of
separating hyperplane can be seen in Figure 10.
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Figure 10 - Optimally separating hyperplanes and support vectors [23].

Vectors from both classes, that are nearest to the separating hyperplane, are called
support vectors. Formally, hyperplane is defined as [23]:

fO)= Bo+p"x (5)
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B is the weight vector, Bo is the bias and x are the training examples closest to the
hyperplane (support vectors). Every value f(x) can be expressed as an infinite number
of combinations of o and (. As the result the one representation is taken, where the
absolute value of equation (5) is equal to 1, as expressed in equation (6).

1Bo + BTx =1 (6)

Now, the distance of vector x and hyperplane (3, o) is equal to 1:

1Bo+ 87l ™)
D=8

From equations (6) and (7) arises fact that the distance of support vectors from
separating hyperplane is

1
D_support_vectors = —— (8)

1Bl

From the Figure 10 and equation (8) it is clear, that width of margin is equal to

2 9)
M =B

The problem of maximizing M in equation (9) is the fundamental principle SVM is
based on. It is solved using Lagrangian optimization [23].

Many modifications of SVM exist. Originally, SVM is a binary classifier and therefore it
is only able to classify into two classes. Currently there are a lot of variations of SVM,
allowing to classify to more than two classes or to perform fuzzy classification, allowing
each pixel to belong to more than one cluster. In case of fuzzy classification, every pixel
has a degree of membership to every cluster. Finally, pixel is assigned to that cluster its
membership degree is the highest. Various similarity (or inversely distance) metrics
can be used, too.

An example of use of SVM in segmentation tasks can be found in [24]. Authors use a
combination of knowledge-based techniques and multi-spectral analysis based on SVM
to detect brain tumours. In [16] authors use SVM to detect abnormalities in breast MRI.
Authors claim that SVM has 20% higher performance rate than other classifier,
decision tree, but on the other hand, the recall of SVM was 12% worse than that of
decision tree.
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2.2.3.3 Neural networks
Principle of neural networks is inspired by how the human brain works. The most
commonly used form of neural networks is a multi-layer perceptron (MLP). Whole
perceptron consists of nodes called neurons and their connections. Each neuron has
following structure (Figure 11):

e Neuron has multiple weighted inputs from neurons from previous layers

e Neuron has multiple outputs to neurons in the next layer

Figure 11 - Neuron structure [25].

The neurons are arranged in layers. The input and output layers are visible to the outer
world, while there are one or more hidden layers between these layers (Figure 12).
Each hidden layer consists of neurons linked to neurons in previous layer and to
neurons in the next layer. Networks in which every neuron is connected to all neurons
in previous layer and in next layer are called fully connected neural networks.

Figure 12 - Multi-layer perceptron [25].

Each neuron in neural network works as following:
1. Neuron sums all inputs (multiplied by weight of connections)
2. Neuron transforms this sum according to its activation function (which may be
identity, sigmoid, gaussian or other)
3. Neuron sends transformed value to its outputs
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Itimportant to note, that the number of neurons in input layer is equal to the dimension
of feature vector. For example, if afeature vector characterizing supervoxel is
{mean_intensity, max_intensity, min_intensity}, then there will be three neurons in the
input layer. The number of neurons in the output layer is equal to the number of classes
that the MLP is supposed to classify to.

To train MLP, itis necessary to have training set including enough input feature vectors
(characterizing classified objects) and corresponding output vectors. After MLP
classifies feature vector, it is compared to the ground-truth output vector and weights
of connections between neurons are adjusted through back-propagation. Different
algorithms for weights adjustment can be wused. In our method we use
Levenberg-Marquardt algorithm.

In the classification phase each output neuron becomes excited at some level. This
excitation depends on values of scalars in feature vector. The excitation rate is
proportional to probability of instance represented by input feature vector to belong
to class represented by output neuron.

2.2.4 Segmentation in medical imaging
As stated in 2.1, digital images used in medical practice can be obtained using wide
range of modalities. In this work, we concentrate on those obtained using MR.

Medical images have some specific characteristics:
e Higher dynamic range.
o Common images in greyscale have 8-bit representation, medical images
usually 12-bit.
e Specific kinds of noise.
o Noise alters voxel intensity and negatively influences classification.
e Partial volume averaging.

Especially at the boundaries, single voxel contains a mixture of tissue classes [6],
becoming difficult to classify correctly (such a voxel does not even have to belong to
some class). This effect is cause by fact that spatial resolution of a voxel is much higher
than the size of contained anatomical structures.
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3 State of the art medical segmentation methods and

techniques
In this part, we introduce some state-of-the-art segmentation techniques and methods.
Special attention is paid to brain segmentation techniques and methods similar to our
proposed one.

As every part describes one individual work, we only quote the described paper in the
very beginning. Otherwise every description would contain a lot of brackets which
would dramatically decrease its readability. Every equation and picture contained in
every description comes from the described paper.

3.1 Over-Segmentation based on Monogenic Cues
Paper: Over-Segmentation of 3D Medical Image Volumes based on Monogenic
Cues [5]

Similarly to SLIC, monoSLIC, method proposed by authors of this work, is based on
modified version of K-Means. MonoSLIC also allows to perform oversegmentation to
supervoxels on 3D volumes (it is possible to oversegment 2D image to supervoxels,
too). It also allows to choose number and size of supervoxels.

1
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Figure 13 - Recall of monoSLIC is higher than recall of SLIC when supervoxel size becomes smaller [5].

The main difference to SLIC is that monoSLIC transforms image to its monogenic signal
that represents the image. Authors claim that such representation is invariant to
contrast and brightness changes. If a proper kernel size is chosen, most dominant edges
are highlighted.

In result, authors claim that monoSLIC yields regular, robust to noise, homogeneous
and edge-preserving oversegmentation of an image or 3D volume. Specially, better
results were reached when size of supervoxels was smaller (Figure 13). As far as
performance is concerned, compared to other state-of-the-art methods monoSLIC
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becomes the fastest one. Authors also claim that monoSLIC is very suitable for work
with medical images, which makes it a possible candidate to be compared with SLIC in
terms of our method and future work.

3.2 Supervoxel-Based Segmentation of Mitochondria
Paper: Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks with
Learned Shape Feature [11]

In this work, Achanta et al. used SLIC in process of segmenting mitochondria from EM
image stack. 3D volume from this work contained approximately 10”9 voxels, namely
1000 images each having resolution 1024x1024.

Authors decided to use oversegmentation as a preprocessing step and use created
supervoxels instead of single voxels. This step decreased computational complexity by
several order of magnitude (authors claim that computation became 1000 times more
effective).

Authors trained SVM to classify supervoxels to three classed - mitochondria,
mitochondria boundary and background. Feature vector consists of two parts:
e Ray descriptors
o Distance: normalized distance to the boundary.
o Norm: normal of gradient in the boundary voxel (crossed by ray).
o Ori.
¢ Intensity histograms.
o Histogram of supervoxel itself.
o Histograms of neighbouring supervoxels.

Method also uses techniques of graph-cuts. Nodes are supervoxels and edges are
neighbourhoods between supervoxels.

From the point of view of our method, we find decrease of computational complexity
caused by using supervoxels instead of single voxels very interesting. In our opinion
this is proof that our decision to use similar approach is right. We also incorporate
intensity histograms in order to describe supervoxels as far as intensity distribution is
concerned.

3.3 Unsupervised Segmentation for MR Brain Images
Paper: Unsupervised Segmentation for MR Brain Images [10]

The main purpose of method proposed by authors is to segment brain tissues (CSF, GM,
WM) from MR images. Authors based their method on 1-D SOM (Self Organizing Maps)
and ART (Adaptive Resonance Theory), which is based only on brightness distribution
of MR images.
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In this method brightness difference of brain tissues is widely used. As authors
segmented T2-weighted MR images, CSF is the brightest followed by GM, then WM.
Surrounding tissues are darker than these three brain tissues. Due to these facts
authors claim that brightness of pixels is the most informative property. As a feature
vector, not the brightness of individual pixel is used, but characteristics of whole
neighbourhood of pixel, called block. Four features were proposed, whereby every one
of them serves another purpose:
e Brightness of pixel itself.
e Average brightness of pixels in block.
e Difference of maximum.
o Contributes to detection of boundary from the pixel to the tissue with
higher brightness.
e Difference of minimum.
o Contributes to detection of boundary from the pixel to the tissue with
lower brightness.

These features characterizing pixel and surrounding block are input to the overall
classification process proposed by authors. First step of this process is 1D-SOM. Output
from the first step is nonlinearly quantized resulting into vector of weights. Weights
are after next processing used in Fuzzy ART. Overall result is membership of pixel in
one of defined classes (brain tissues). The overall process can be seen in Figure 14.

One of the challenges authors had to face was fact that boundaries between tissues (e.g.
between GM and WM) are not always clear. Voxels near to boundaries between tissues
also suffer from partial volume effect.

Authors also performed experiment studying influence of block size taken into
consideration when extracting feature vectors. For image resolution 512x512, which
is currently the most used in MR and CT, authors recommend to use 5x5
neighbourhood of pixel as block.
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Figure 14 - Method process overview [10].

3.4 Brain MR Segmentation Using Local and Global Intensity Fitting
Paper: Brain MR Image Segmentation Using Local and Global Intensity Fitting
Active Contours/Surfaces [13]

This region-based brain segmentation method operates on MR images and uses
contour/surface model. It relies on image intensity information using both local
information about pixel / voxel neighbourhood and global information.

Authors compare their results with piecewise models (PC) models that are fast to
compute, but their most serious limitation lies in fact, that PC models assume that
segmented tissues have statistically homogeneous intensities. Therefore PC models are
inappropriate in situations when intensity inhomogeneity occurs. Similar to PC model
is the use of global intensity information. Inhomogeneity of different brain tissues and
intensity similarity at boundaries between them make PC not suitable for brain
segmentation.

To eliminate the problem with intensity inhomogeneity, authors use local intensity
information as well. Local intensity information is based on local binary fitting model
[26] (LBF) that utilizes two varying fitting functions (approximations of local
intensities at two sides of contour). Local intensity information helps to solve intensity
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inhomogeneity problem, but makes LBF models more sensitive to initialization than
PC.

Global and local intensity information is used in energy function with two terms: local
intensity fitting term that attracts contours and stops at image boundaries and global
intensity fitting term that drives contour from object boundaries and makes contour
initialization more flexible. Effect of global and local terms can be seen in Figure 15.

S~ o

LIF Force Initial contour

GIF Force Intermediate contour

Figure 15 - Effect of global and local terms [13]. LIF force is dominant near the object boundaries, while the GIF force
is dominant at locations far away from object boundaries.

Authors extended their local and global intensity fitting (LGIF) model to multi-phase
level set formulation, so that WM, GM and CSF could be segmented simultaneously.

Figure 16 - Comparison of PC (middle column) and proposed method (right column) [13].
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From point of view of our method we find interesting idea of combining global and local
intensity information. We share the same opinion that to exactly discover boundaries
between brain tissues we will need to combine the best of both approaches - global

and local.
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3.5 Discriminative Clustering and Feature Selection for Brain MRI
Segmentation

Paper: Discriminative Clustering and Feature Selection for Brain MRI

Segmentation [27]

In this work from May 2015 authors use supervoxels produced by SLIC to segment

brain into four classes - BG, CSF, GM and WM. Second property that make this work

similar to ours is that authors evaluate their method on the same dataset as we do -

IBSR18.

Authors propose two methods utilizing supervoxels - Information Theoretic
Discriminative Segmentation (ITDS) and Supervised Information Theoretic
Discriminative Segmentation (SITDS), where ITDS is fully unsupervised and SITDS is a
supervised variation.

Features that authors use to cluster / classify supervoxels into individual classes are
based on intensity, shape and texture. In result their feature vector consists of 228
values dimensions.

SLIC was the algorithm of choice in this work. Authors defined supervoxels of size of
about 2700 voxels. In our opinion such size has negative impact on segmentation
performance as it increases intra-supervoxel variance of voxels as far as ground truth
classes of individual voxels inside supervoxels is concerned.

Thorough description of algorithm with pseudo-code can be found in paper. Therefore
we do not show it here. What we find important to show are segmentation results of
ITDS and SITDS. These results can be seen in Figure 17. As authors compared their
method with other state-of-the-art algorithms for brain segmentation on standard
datasets and as they claim that their method outperformed other state-of-the-art
methods, we decided to compare our method with this one, using standard IBSR
dataset.

PERFORMANCE OF DIFFERENT SEGMENTATION METHODS ON IBSE AND BRAINWEB DATASETS

Datasets IBSE BrainWeh
Methods CSF GM WM time(s) CSF GM WM time(s)
EMeans 0514006 07540006 0.7840.04 8 (L86£003 084003 08240004 12
MI 0524008 0.7940.04 0804003 19 0874002 0862002 08540002 23
MREF 053006 076003 0874003 521 0.89002 0904001 0914001 636
ITDS 060005 081£003  0.86£0.02 26 0,92001 0924001 0934001 32
WPNN 0.6340.03 0834002 0.8740.03 92 0934002 09340001 0914002 151
SITDS 067003 ORAE001  0.89-+0.02 20 0.94+001 0954001 0944001 35

Figure 17 - Comparison of ITDS and SITDS with other state-of-the-art brain segmentation methods.
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3.6 Superpixels in Brain MR Image Analysis

Paper: Superpixels in Brain MR Image Analysis [28]

As far as computational complexity is concerned, medical image analysis usually relies
on algorithms that are highly computationally complex. Authors in this work proposed
a use of superpixels as an elementary entity instead of pixels (or voxels). Achanta et al.
in [11] proved that use of supervoxels instead of voxels decreased computational
complexity by several orders of magnitude.

In first step authors evaluated different superpixel techniques. Some of them were
considered too computationally expensive (N-cuts, Quick shift and Felzenszwalb’s
method). SLIC with its linear complexity O(N), ability to adhere to boundaries and
possibility to control desired number of superpixels was chosen as a reference method.

Authors observed multiple aspects of such (superpixel) representation of an MR
volume. In context of our work we found interesting these:

e Relation between under-segmentation error and reduction in complexity

e Relation between segmentation performance and reduction in complexity

To quantify segmentation accuracy (segmentation performance) authors used Jaccard
overlap metric between obtained tissue segmentation and ground truth segmentation,
given by equation (10).

B |A N B
" |JAUB| (10)

J(4,B)

Authors defined undersegmentation error as,

U=%Z > lsl)-w (11)

i=1 Sj|Sjﬂgi>B

where N is the number of supervoxels and M is number of MR volumes. s; N g; > B
denotes all supervoxels that overlaps with segmentation of tissue i in at least B percent
of voxels contained in supervoxel. In other words undersegmentation error increases
with every supervoxel that overlaps with more than one tissue.

In Figure 18 we can see relation between under-segmentation error and reduction in
complexity. It is clear that error increases as computational complexity decreases. It is
always necessary to find equilibrium between these two quantities, as for price of 10%
under-segmentation error comes benefit in form of 50-times lower complexity.

24



» 018

e

L=

Ll Q.14

c

S o1z

™

e 01F

@

£ L

o) 0.08

o +r|BSR-20 Supernvoxels
0.086 -

4 > 125R-18 Suparvoxels]

% 004 M -Q-IBSFMB Supepixels

= £ E5A-20 Supepivals

= noe - -

200

(=]

50 100 150
Reduction in Complexity (C)
Figure 18 - Relation between reduction in complexity and under-segmentation error.

Authors observed not only influence of use of superpixels on segmentation, but they
also used supervoxels in MR segmentation task. Relation between reduction in
complexity and performance of segmentation of different types is in Figure 19. Authors
observed the same fact as we do (in 5.3.3) - segmentation performance decreases as
complexity becomes reduced. We did not measure reduction in complexity directly, but
we measured influence of supervoxel size on segmentation success rate.
Computational complexity is directly connected with supervoxel size (higher size

means lower complexity).
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Figure 19 - Relation between reduction in complexity and segmentation performance.

Similarly to our results authors claim that with increasing supervoxel compactness
decreases the segmentation success rate.

In context of our work it is also important to say that authors used IBSR dataset.
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4 First approaches

4.1 Approach based on merging of supervoxels

4.1.1 Method overview

In this part we proposed a method for organ segmentation from medical images based
on oversegmentation of MR volume into supervoxels. As the second step we merged
neighbouring supervoxels if they were similar. In this approach we also proposed a
method of witnesses which will no longer be used in our final method.

Due to high complexity of calculations, we decided to work with supervoxels rather
than voxels, decreasing computational complexity by a few orders of magnitude. The
next benefit of working with supervoxels is decreasing of noise. Supervoxel itself is
represented by mean values (or other statistical values) calculated from individual
voxels belonging to this supervoxel, as there is a good chance that the influence of
outliers will be supressed or even eliminated.

To classify single supervoxels to classes representing different tissues, we train
classifier SVM. We also plan to train at least one more classifier, neural network, to
compare their results. Features representing supervoxels in training process are based
on intensities of voxels contained in supervoxel. We also consider using characteristics
of neighbouring supervoxels, too.

Next important (and novel) method is use of witnesses. Witnesses are thoroughly
described in part 4.1.2. Witnesses are used in combination with classifier in merge
procedure. They describe shape of organ in scale invariant way.

Figure 20 - Method overview. Oversegmentation - Classification - Merging supervoxels [11].12

4.1.2 Merging of supervoxels
To build organ from single supervoxels, we use the third step of our method - merging
supervoxels. In the beginning of merging, algorithm needs to know the initial

Lhttp://www.mblondel.org/images/svm_linear.png
2 http://www.danvil.de/images/science/dasv.jpg
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supervoxels that surely belongs to organ. We involve user that gives our method an
initial seed. Our method relies that the initial seed surely belongs to segmented organ.

Figure 21 - Initial seed. Our method relies on user that initial seed really belong to segmented organ.3

Given initial seed, in the next step method examines every neighbouring supervoxel. If
SVM classifies supervoxel as brain tissue, this supervoxel becomes a candidate that can
be added to already merged supervoxels. If more structures are classified as
candidates, witnesses come to aid.

Figure 22 - Neighbouring supervoxels classified as brain tissue. They become candidates3.

Let’s have yet merged supervoxels that were till now merged to builded organ. Such
structure is also a supervoxel and has its known centroid and boundaries. In this
situation, we imaginary cast rays from centroid to boundaries in regular way (we are
in 3D space, so these rays will be casted in a spherical angles). From centroid, two
parallel lines having centroid as common point are casted. Each of these two lines has
its own length from centroid to boundary. Ratio between these two lines is called

3 http://www.kidneystoners.org/wp-content/uploads/2012/02 /pediatric-kidney-stone-CT.jpg
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witness. Shape of single organ is described by set of witnesses, where their number
can be chosen by user. Illustration of witnesses in 2D space can be seen in Figure 23.
The ground-truth ratios (witnesses) is calculated from set of manually segmented
organs of different patients.

Figure 23 - Illustration of witnesses in 2D space?.

For every candidate, following is done:

1. Try to add candidate to already merged supervoxels.

2. Recalculate centroid.

3. Calculate witnesses.

4. Calculate RMSE of witnesses by ground-truth witnesses.
The candidate with lowest RMSE will be merged into.

Merging procedure ends after there is no other neighbouring supervoxel to be added,
or after more than 90% witnesses are close to ground truth witnesses, which means,
that the merged supervoxel has approximately shape of ground-truth segmented
organ.

In this prototype we implemented basic steps from method based on merging of
supervoxels (part 4.1). This prototype was not further used in DP2 and later parts of
this project. Nevertheless it gave us experience and knowledge that we used later.

First prototype was created in subject DP1. It is designed to easily load and process
medical images in different formats. To reach this, ITK library was used. To present
processed images OpenCV was used.

The first prototype was focused on creating basic infrastructure that will be later used

as base of entire application. This goal was completed in the early stage of DP1, so we
perform first experiments to examine structure and properties of medical data.
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In the first step, we loaded medical data. Currently we use NIFTI format. Loading was
easy thanks to ITK, which supports many formats used in medical imaging. Next, we
had to decide, how to present loaded data. Problem is, that medical images are mainly
12-bit images, but common displays (such as the one used by us) only support 8-bit
depth per channel. In this early phase we only shift value of each pixel (we are
displaying in 2D, so we use term pixel for this purpose) 4 bits left, getting 8-bit
representation. In the future, we consider using some more advanced approach, such
as power law transformation. An example of MR image can be seen in Figure 24.

The next step was transformation of 3D ITK volume to SLIC compatible format, which
is unsigned int**. To perform this, we created conversion module SLICBridge.

In the next step, we used SLIC to oversegment given 3D volume, creating supervoxels.
Each supervoxel has its own label, distinguishing it from other supervoxels. In the
Figure 25 (left) we can see oversegmented image from Figure 24. We prefer intensity
homogeneity before shape consistence of supervoxels.

It can be seen, that SLIC superpixels adhere image boundaries and adapt their shape so
they follow homogeneity of region rather than shape consistence. In the next step, we
merged supervoxels their average intensity was similar. We also took spatial
information into consideration, so we only merged neighbouring supervoxels. The
merging procedure was following:

1. Choose randomly one supervoxel SV.

2. Go through all its neighbours N.

3. Ifratio of SV.intensity and N.intensity >= 0.95, merge N into SV (not only points

are added to SV, but also neighbours of N become neighbours of SV).
4. Repeat given number of times or until convergence.

Although intensity similarity criterion is very simple, its results are quite good and in
the future will be possibly used to coarsely segment organs before applying more
precise and fine method proposed in chapter 0. In the Figure 25 (right) we can see
results of merge procedure.

30



Figure 24 - MR image of abdomen.
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Figure 25 - Left: Oversegmented MR image. Right: Result of merge proc

edure on supervoxels.

4.2 Approach based on use of multiple classifiers

One of the approaches that we considered is based on use of multiple classifiers. On
that account we defined three different classification approaches based on two
classifiers-SVM and MLP. Pipeline proposed in this section was not completely
implemented, as we decided to use only MLP in the finally proposed method.

4.2.1 SVM

In the first approach we only used SVM to classify supervoxels into BG, CSF, GM and
WM classes. As the output of SVM contains only class into which supervoxel was
classified, we only assign this class to given supervoxel.

4.2.2 MLP
MLP gives us a better image of level of certainty of classification. Its output neurons
become excited according to feature vector of supervoxel being classified. Supervoxel
is considered to be significantly excited if its level of excitation is greater than a given
threshold. We recognize two levels of excitation:

e Level 1: excitation of an output neuron is greater than 0.40.
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e Level 2 (significant excitation): excitation of an output neuron is greater than
0.70.

If the feature vector matches some class with high level of certainty, only one output
neuron becomes significantly excited (level 2) and no other neuron becomes excited.
Otherwise no neuron reaches excitation level 2 or more neurons reach some level of
excitation.

In the first case is the classification task trivial. We only assign supervoxel to the class
represented by output neuron with highest excitation rate.

In the second case, we find classification uncertain if either no neuron was significantly
excited or more than one neuron was excited at level 1 or level 2. If such situation
occurs we are not able to certainly classify given supervoxel and therefore such
supervoxel remains unclassified.

4.2.3 SVM and MLP

Sometimes it happens that MLP is not able to classify supervoxel with required level of
certainty (as described in 4.2.2). In such cases we use SVM to classify given supervoxel
to a concrete class. This procedure can be described by following pseudocode:

classes = ARRAY.CREATE

FOR each fv in supervoxels.features
response = MLP..classify(fv)

IF number of level 1 excitations in response <> 1
PUSH(classes, SVM.classify(fv))

ELSE IF number of level 2 excitations in response <> 1
PUSH(classes, SVM.classify(fv))

ELSE
PUSH(classes, get_class(response))

END IF

END

Pseudocode 1 - Classification using SVM and MLP.
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5 Method proposal

5.1 Inputdata
In clinical practice clinicians use various data formats. Most of them do not only contain
data from concrete examinations (e.g. voxel intensities in MR volume), but also
information about the patient such as his or her name, age, gender etc. According to
[29] there are four major file formats currently used in medical imaging: Analyze, Nifti,
Minc and DICOM. Authors in this work categorize these formats into two groups:

e Formats for standardization of images generated by modalities (DICOM).

e Formats for facilitation of postprocessing analysis (Analyze, Nifti, Minc).

Analyze file format is the oldest of these four formats. It used to be the standard for
medical imaging post-processing [29].

Minc is the mostlocally used from these four standards and therefore we do not further
discuss it, as we do not plan to support it.

DICOM is the most general and most robust of these formats. According to its
documentation, it is not only format for storing data, but also a protocol for network
communication [30]. DICOM has become the main part of infrastructure of most
medical imaging departments all around the globe [29]. Similarly to Nifti, Dicom allows
(and actually forces to) store metadata and patient’s data to be stored together with
the medical imaging data from concrete examination. The philosophy of DICOM is that
data without metadata that describe context is meaningless. Interesting is that DICOM
allows to use standard image formats to store data (such as JPEG-2000), just by
wrapping them into DICOM shell [29].

Nifti can be considered to be the next incarnation of Analyze. Nifti allows to store data
and metadata in two different ways: it is possible to store data and metadata in
separated files or to store both of them in one file. In most cases both types of data are
stored in one file [29]. As stated above the main purpose of Nifti data is to use them for
medical imaging post-processing. In comparison to Analyze, Nifti contains more
information about the context of examination - the most interesting for us is
orientation of patient and spacing between voxels in a slice and between slices. Data in
Nifti can be stored in integer of floating point format. Later in this work we use Nifti
as a medical imaging data format.

[tis important to note that data from a particular examination can be stored in different
orientations. Each specialist can use different orientation. For example, neurologists
use “RAS” convention for axes whereby radiologists use “LAS” [31]. Nifti allows to store
data in different orientations and also to contain related metadata. In IBSR different
types of volumes are stored in different orientations. Figure 26 explains the meaning
of different orientations.
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5.1.1 IBSR dataset

In order to evaluate our method we needed to find a standard annotated dataset of
brain MR volumes. We use IBSR [32][33]. This dataset was used in many other works
related to segmentation of brain tissues - for instance in [34], [28], [27]. There are two
versions of IBSR dataset. We use standard IBSR dataset which contains volumes from
18 different examinations. Each examination contains six volumes (NN means number
of examination). All data have the same resolution, 256x256x128.

Table 1 contains information about every volume contained in single examination
record. For every volume we also show an example picture (pictures were captured in

3D Slicer?).
Table 1 - Description of volumes contained in each examination of IBSR.

IBSR_NN_ana.nii e Data format: 16bit unsigned integer

(Figure 27 a) e Contains raw voxel intensities of whole
volume

IBSR_NN_ana_brainmask.nii e Data format: 16 bit unsigned integer

(Figure 27 b) e Contains mask for segmentation of whole
brain from raw data. Voxels have value 1 for
brain and 0 for background

IBSR_NN_ana_strip.nii e Data format: 16bit unsigned integer

(Figure 27 ¢) e Contains stripped brain data. Value of all
background voxels not belonging to WM, GM
or CSF was set to 0.

IBSR_NN_seg_ana.nii e Data format: 16bit unsigned integer

(Figure 27 d)

43D Slicer homepage: http://www.slicer.org/
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e C(Contains label for every voxel in
IBSR_NN_ana volume. It is the ground truth
segmentation of volume. This is a detailed
segmentation that segments brain tissues
into tens of different tissues.

IBSR_NN_segTRI_ana.nii e Data format: 16bit unsigned integer

(Figure 27 e) e Contains ground truth segmentation of

IBSR_NN_ana volume. This segmentation

segments volume more coarsely than

IBSR_NN_seg_ana, concretely to {GM, WM,

CSF, BG)
IBSR_NN_segTRI_fill_ana.nii e Data format: float
(Figure 27 f) e Contains ground truth segmentation of

IBSR_NN_ana volume. This segmentation
segments volume more coarsely than
IBSR_NN_seg_ana, concretely to {GM, WM,
CSF, BG}

@ @ - (0

Figure 27 - Volumes for one subject in IBSR18.

In our method we decided not to segment brain into tens of small structures. We
segment brain MR into four classes: {GM, WM, CSF, BG} and therefore we only use
IBSR_NN_ANA, IBSR_NN_ana_strip and IBSR_NN_segTRI_ana.

5.2 Method overview

In this work we propose a method for organ segmentation from medical images. We
focus on segmentation of brain tissue from MR image stack and its classification into
four classes: {WM, GM, CSF, BG}.
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Because our method mostly relies on classification, it is divided into two main phases
- Training phase and Classification phase. Both phases start with the same five steps:
Data loading and conversion, Preprocessing, Oversegmentation, Identification of
neighbourhoods and Features extraction. Then Training phase continues with Training
and Classification phase continues with Classification. Both phases and steps are
described in later parts of this work. Sequence of steps can be seen in Figure 28.

act Method overview

Load and convert data

-
Preprocess data
A A
s ™
Perform
oversegmentation
using supervoxels
A A
s ™
Identify
neighbourhoods
h. .f‘

Extract features

[Training phase] [Classification phase]

Train W ( Classify
)

Figure 28 - Proposed method overview (activity diagram).

5.3 Training phase
Because our method is based on classification, we had to split data into train and test
set. We did this in two different ways - first, we used volumes 3 to 15 for training the
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others for test. Second, we split data on the level of supervoxels, where we used 80
percent of supervoxels for training and the rest for test.

5.3.1 Step 1 - Data loading and conversion
In 5.1 we mentioned four data formats used in medical imaging. In this work we use

Nifti for its simplicity and ability to store valuable information about data. This format
stores data as raw voxels in a specific data type. As there are various tools and libraries
for loading Nifti data we did not implement our own.

Medical images can be stored in various orientations (as described in 5.1). IBSR
contains volumes in different orientations. In order to process all volumes in unified
way we need to transform all data to the same orientation. We chose RSA orientation
of axes, because in such case all voxels with the same third coordinate lie in the same
slice and were physically taken by MR in the same time.

We also find RSA orientation more intuitive. One of the most important characteristics
of MR device is its spatial resolution. To date, the most frequently used resolutions are
256x256, 512x512 and 1024x1024. If we use RSA then we can imagine first two
coordinates of every voxel as usual “spatial coordinates” of an image with certain
resolution (e.g. 256x256) and the third coordinate represents the number of an image
(or slice) in an image stack. Of course, it would be possible make the same assumption
with an image in another orientation (e.g. RAS). It is more a matter of taste and it does
not influence results of our method. On the other hand it is important to work with MR
images with the same orientation.

5.3.2 Step 2 - Preprocessing
There are two main purposes of preprocessing in our method - Intensity normalization
and Non-brain tissue removal.

5.3.2.1 Intensity normalization

Asvolumes in IBSR-18 vary in dynamic range, all data are normalized into interval [0,1]
using quantile normalization. In order to avoid the usage of noisy values in
normalization process, we consider all values above Qo.99999 equal 1.

5.3.2.2 Non-brain tissue removal
Second, it would be good to remove some non-brain tissue before the actual processing
starts. By removing non-brain tissue from volume we want to supress erroneous
classification of background supervoxels to brain tissue classes. There are two main
requirements that we lay on this step:

1. The method must remove significant number of non-brain voxels from

processed volume.
2. The method must not remove more than 0.25% of voxels belonging to brain.
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Under non-brain voxels we understand voxels that, according to ground truth
segmentation, do not belong to brain tissue. We do not remove non-brain voxels by
their physical deletion from volume, but by setting their value to zero (which is in MR
intensity mostly assigned to air voxels).

Requirement 1 states that as many non-brain-non-zero voxels as possible should be
removed. Success rate of this step is expressed by equation (12) which expresses how
many percent of non-brain voxels were preserved.

INONBRAIN — REMOVED|
INONBRAIN | (12)

success = 1 —

Theoretically if we removed every voxel from volume, we would maximize the
equation (12), which would obviously lead to volume consisting only from one segment
- every voxel would have value equal to 0. Therefore we set the second requirement,
which satisfaction guarantees that after this preprocessing step almost all brain voxels
stay in the preprocessed volume. This requirement is expressed by inequality (13).

|[REMOVED n BRAIN|

0.0075 <
= |BRAIN| (13)

Authors in [35] proposed a method for automatic segmentation of MR volumes into
brain and non-brain. This method, Brain extraction tool (BET) was used by authors in
[34] as a preprocessing step to strip skull from the volume. We also decided to use the
same method to remove as much non-brain voxel as possible.

(d)IT=05 (e) IT = 0.6 () IT=0.7
Figure 29 - BET applied on the same subject using different Intensity Threshold (IT) values.

38



From the number of implementations of BET we use a BET plugin® in Multi-image
Analysis GUI application (Mango)®. This implementation of BET allows to apply
segmentation, overlay brain surface, generate brain mask and generate skull image. In
this work use BET to remove as many non-brain voxels as possible from segmented
volumes. BET allows to set two main parameters - Intensity threshold and Threshold
gradient. Our main goal was to choose a combination of values of parameters that
would satisfy requirements expressed by equations (12) and (13). We did not change
the default value of Threshold gradient as we found this parameter too sensitive (based
on visual observation). On the other hand we applied BET with five different values of
Intensity threshold. The influence of Intensity threshold value was observer on all
volumes from IBSR dataset. In Table 2 we sum up our observations.

Table 2 - Influence of parameters on BET performance (observer on first five IBSR volumes).

Intensity Threshold gradient | Average remaining | Average missing

threshold non-brain voxels brain voxels (%)
(%)

0.3 0 2.4595 0.5254

0.4 0 1.4548 1.5555

0.5 0 0.5473 3.9954

0.6 0 0.2109 7.9358

Itis clear that with growing value of Intensity threshold also grows the number of brain
voxels removed from the volume, which lowers the success rate in context of equation
(13). This can be also seen in Figure 29. Our priority is to keep the number of removed
brain voxels as small as possible as the removed brain voxels will also be missed in the
final segmentation and therefore the overall success rate will be decreased. In Figure
30 we can see that value 0.3 for Intensity threshold satisfies requirement 2 for all five
volumes and about half of volumes satisfy this requirement for value 0.4. Figure 31
shows average values of missing brain voxels in volume after BET has been applied.

5 BET plugin Home page: http://rii.uthscsa.edu/mango/plugin_jbet.html
6 Mango Home page: http://rii.uthscsa.edu/mango/
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Figure 30 - Relation between Intensity threshold (BET parameter) and number of removed brain voxels in individual
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On the other hand with growing Intensity threshold falls the number of non-brain
voxels remaining in the volume after BET has been applied. We measured ratio
between remaining non-brain voxels and all non-brain voxels in volume for the first

five volumes in IBSR dataset (Figure 32). We also calculated the mean values among all
five volumes (Figure 33).
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Figure 32 - Relation between Intensity threshold (BET parameter) and number of remaining non-brain voxels in
individual subjects of IBSR dataset.
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Figure 33 - Relation between Intensity threshold and average number of remaining non- brain voxels.

It is clear that with increasing Intensity threshold grows success rate of requirement 1
and falls success rate of requirement 2. Our goal is to balance these two and get an
optimal value for this parameter of BET. Equation (13) says that no more than 0.25%
of brain voxels may be removed. In Figure 30 and Table 2 we can see that the ideal
value lies between 0.3 and 0.4. As the relation between Intensity threshold and number
of removed brain voxels is not linear, we assumed that the ideal value closes to 0.30.
We evaluated the value 0.30 for all examinations from IBSR dataset. In Figure 34 we
can see that in major cases is the requirement 2 fulfilled. There are two subjects where
number of missing brain voxels was close to maximal desired value (0.75%).
Concretely in examination 7 was this value equal to 1.35%, in 8 it was 1.75% and in 12
it was 1.60%. In these cases we accept this value, because if we lowered value of
Intensity threshold even more, success rate of requirement 1 would dramatically
decrease (in examination 10 even the value 0.3 caused that number of remaining non-
brain voxels exceeded 10% as it can be seen in Figure 35). In order to balance
requirements 1 and 2 we accept 0.3 as a value of choice for Intensity threshold.
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Figure 34 - Number of missing brain voxels in all examinations for all subjects and different Intensity Thresholds.
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Figure 35 - Number of remaining non-brain voxels in all examinations for all subjects and different Intensity
Thresholds.

5.3.3 Step 3 - Oversegmentation using supervoxels

To oversegment image into supervoxels, we use SLIC algorithm proposed in [22] and
compared to other state-of-the-art superpixel and supervoxel algorithms in [8]. In
Berkley dataset, commonly used to compare effectiveness and efficiency of superpixel
algorithms, SLIC proved its qualities as the algorithm with best quality of results /
computation complexity ratio. Method proposed in [19] gave accurate and visually
pleasing supervoxels, but at cost of extremely high computational complexity and time.
Besides, [19] implementation does not allow to oversegment 3D volumes.

Decrease of computational complexity is not the only benefit provided by supervoxels.
Sometimes CT and MR images suffer from high level of noise. Supervoxels, represented
by statistical data of included voxels, in its nature resist to noise better than single
voxels. In [13] authors also use neighbouring pixels to describe single pixel, but they
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do it in 2-dimensional space. Our approach allows to model supervoxel in context of
3D neighbourhoods.

Ideally, a supervoxel should contain only voxels belonging to the same tissue. For many
reasons this is often not possible, because in special cases even a single voxel contains
information belonging to more tissues (partial volume effect). Success rate of
supervoxelization in terms of homogeneity of individual supervoxels can be expressed
by following equation:

1 Z major(s)
SUcCess =y size(s) (14)

SESupervoxels

Meaning of individual symbols in equation (14) is following:

N - Number of supervoxels

s - Single supervoxel

size(s) - Number of voxels in a supervoxel s

major(s) - Number of voxels that belong to the most occurring class in a supervoxel

We also evaluated equation (14) for individual classes, because the number of
supervoxels belonging to background was much higher than the number of
supervoxels belonging to other classes (WM, GM, CSF). SLIC allows to set desired size
and compactness of supervoxels. Figure 36 shows results of the evaluation as a
function of supervoxel compactness at fixed supervoxel size and Figure 37 shows
results as a function of supervoxel size at fixed supervoxel compactness.
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Figure 36 - Success rate of oversegmentation as a function of supervoxel compactness at fixed size.
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Figure 37 - Success rate of oversegmentation as a function of supervoxel size at fixed compactness.

In Figure 36 and Figure 37 we can see that increase of both compactness and
supervoxel size leads to decrease of oversegmentation success rate. For compactness
equal to 6 at fixed supervoxel size success rate defined in equation (14) reaches its
maximum. As we are not interested in supervoxel regularity compactness, we accepted
this value and used it in oversegmentation procedure.

More difficult was to define the right value of supervoxel size. We had to find an
equilibrium between success rate and the amount of statistical information contained
by supervoxel. We assume that the more voxels are contained in a supervoxel the more
information can be retrieved (such as histogram of intensities). Although very small
supervoxels maximize equation (14), we decided to use supervoxel size 120 in order
to balance oversegmentation success rate and amount of information in supervoxel.
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Figure 38 - Success rate of oversegmentation as a function of supervoxel compactness at fixed size among all classes.
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Among classes we observed big inter-class variance in context of influence of
compactness and supervoxels size on success rate (Figure 38 and Figure 39). We found
out that supervoxels with major class equal to GM and WM (classes 2 and 3) reacted
on change in compactness and supervoxel size similarly to average. On the other hand
BG reacted inversely and CSF was the most unpredictable. Values 6 for compactness
and 120 for supervoxel size are a compromise among all four classes.

5.3.4 Step 4 - Identification of neighbourhoods

As our supervoxels do not have regular shape, it is not possible to hold them in a regular
structure such as rectangular multidimensional field. Therefore it
straightforward to identify neighbours of every supervoxel.

is not

On the other hand individual voxels (if we abstract from supervoxels) form a
rectangular three-dimensional array. We use this structure in this phase to identify
neighbourhoods between supervoxels. Let’s call this structure voxel_array. Voxels with
the same third dimension are considered to form a single slice.

First of all we need to define “Supervoxel neighbourhood” between two supervoxels.
In our method supervoxel S1 and S2 is considered a neighbour of S2 if at least one
voxel from S1 is in 8-neighbourhood with at least one voxel from S2 in a single
slice of voxel_array. Although voxels in a single supervoxel are unordered, it is
possible to address corresponding voxel in voxel array, because every voxel in
supervoxel knows its three-dimensional coordinates.

5.3.5 Step 5 - Features extraction

Compared to individual voxels is information contained in supervoxel much more
descriptive. As supervoxel consists of many voxels (in our case more than hundred) the
information it contains is an aggregation of information caught by contained voxels.
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Apart from that supervoxel makes it possible to study its structure and relations
between individual voxels.

Although voxel can be characterized by its neighbouring voxels, the information
contained in its neighbours is rather limited. In case of supervoxel we can characterize
its neighbours in much more descriptive way. For example it neither makes sense to
describe single voxel with an intensity histogram nor is there a possibility to calculate
histogram for its nearest neighbours (it would be possible with sufficiently big kernel).

We describe supervoxel with following features:

¢ Normalized intensity histogram of voxels in supervoxel (24 bins).

¢ Normalized intensity histogram of all voxels in neighbouring supervoxels
(24 bins).

e Normalized Euclidean distance of supervoxel centroid from the centre of
the brain.

e Angle between supervoxel centroid and brain centre in XY, XZ and YZ
plane.

Authors in [27] used intensity histogram in combination with features that described
texture and shape of a supervoxel, creating a feature vector with length 228.

Normalized intensity histogram of voxels in supervoxel is the main characteristic
of supervoxel. Although intensity distribution in individual classes is not normal, there
are intensity values that are more characteristic for specific classes than for the others.
Intensity histogram in Figure 40 shows the distributions of individual classes. It is clear
that WM contains the voxels with the highest intensity, whereby background contains
the darkest voxels. This fact allows us to assume that it is possible to classify
supervoxels by their intensity distribution. For readability reasons we ignored voxels
with intensity equal to 0 as they form the majority of all voxels.
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Figure 40 - Intensity histograms of individual classes in supervoxel (volume from IBSR taken by T1 MR).
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Normalized intensity histogram of all voxels in neighbouring supervoxels should
help to classify supervoxels according to their neighbours. If a supervoxel is
surrounded by supervoxels with intensity histograms typical for some class (e.g. GM)
it is a good chance that the supervoxel will also belong to the same class. On the other
hand if intensity histogram of neighbours contains intensities from all classes it is clear
that the classified supervoxel lies between multiple classes, at the boundary of some
tissue.

The last feature, normalized Euclidean distance of supervoxel centroid from the
centre of the brain, is based on morphology of brain. Outer boundary of GM and CSF
is typically the most distant from the centre of brain. On the other hand some structures
belonging to CSF are closest to centre. It would not make sense to extract absolute
distance calculated from three-dimensional coordinates of brain centre and supervoxel
centroid as the resolution of MR image can change and also physical thickness of one
slice can differ. In IBSR dataset one slice has a thickness of 1.5mm. Therefore we
calculate normalized Euclidean distance of supervoxel centroid as following:

Vs — x3)% + (U5 — ¥b)? + (25 — 25)?

dist = p— (15)

norm denotes normalization factor and equals to:

mI)®, (D)), () (16)

norm = ( > > >

Xs, ysand Zzs are coordinates of supervoxel, xb, yb and z» are coordinates of brain centre,
norm is normalization term and max(x/y/z) is maximal coordinate in MR image in
particular direction.

Distribution of distances from brain centre for individual tissues can be seen in Figure
41. Many supervoxels belonging to different classes have similar distance from brain
centre. Therefore, we added three angles between the centroid of supervoxel and
brain centre (in XY, XZ and YZ plane). In combination with the distance from brain
centre, position of supervoxel is described much more precisely and uniquely.

Our method was meant to work with minimal user’s interaction. Therefore we had to
find some method to estimate the centre of the brain. We claimed that the centre of the
brain is the centroid calculated from all non-zero voxels that remained after application
of BET in preprocessing
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Figure 41 - Distribution of normalized distances from brain centre for individual tissues.

5.3.6 Step 6 - Training
Qualities of supervoxels allow to easily extract wide variety of features for all of them.
This gives us an opportunity to train a classifier to classify every voxel to specific tissue.

Multi-layer perceptron (MLP)

Each supervoxel is assigned to either BG, CSF, GM or WM. In training phase, we train
multilayer perceptron (MLP) with two hidden layers having 52 and 8 neurons,
sigmoidal activation function and Levenberg-Marquardt training function. A
significant number of supervoxels consists of voxels from even more than two different
classes. In training process, we do not include supervoxels having less than 87% voxels
from single class and in overall classification we do not include supervoxels having
mean intensity equal less than 2 (a priori background).

One of the advantages of MLP is that every voxel can excite multiple output neurons at
different level of excitation. This gives us an opportunity to specify threshold of
certainty. If the level of excitation is higher than given threshold we find classification
of specific supervoxel successful, otherwise we can try to apply some
post-classification technique to given supervoxels. In fact, this is proposed as the core
of our future work. As we can see in Figure 40 borders between intensities of different
tissues is not absolutely clear. This uncertainty is mainly caused by partial volume
effect. Especially in these unclear areas we expect noticeable excitation of multiple
output neurons.

5.4 Classification phase

5.4.1 Step1-Step5
These steps are equivalent to steps 1 to 5 performed in training phase.
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5.4.2 Step 6 - Classification

Classification of brain tissues is not a trivial task. Current state-of-the-art method claim
performance in terms of Dice similarity coefficient 0.69+0.03 for CSF, 0.86+0.01 for GM
and 0.89+0.02 for WM [27]. In our opinion this rather high variance in segmentation
performance is caused by heterogeneity of different brain tissues. Mostly intensities of
BG are spread almost all over the intensity spectrum and intersects with intensity
intervals of all other tissues (it can be seen in Figure 40). Our goal is to reach the highest
possible segmentation performance with lowest possible computational complexity.

The first step in classification is the use of prior knowledge - supervoxels having mean
intensity less or equal to 2 are considered background.

In the second step we classified individual supervoxels. Each supervoxel was classified
as either background (BG), cerebrospinal fluid (CSF), grey matter (GM) or white matter
(WM). Afterwards all the voxels in a particular supervoxels are assigned to the same
class. Here is where the oversegmentation error becomes obvious - if a supervoxel
contains voxels from more than one class, some voxels will be necessarily assigned to
incorrect class.
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6 Results
In this part we evaluate performance of our method in segmentation of human brain
tissues. We compare our results with current state-of-the-art method that uses similar
approach based on supervoxels and that claims to reach better results than other
methods [27].

We trained MLP with two hidden layers having 52 and 8 neurons. We used Levenberg-
Marquardt training function, sigmoidal activation function.

For training, classification and evaluation purposes, we took supervoxels from all
subjects in IBSR-18 and split them to training set and testing set (80:20). Proposed
method is compared with the current state-of-the-art method SITDS [27] using the
same evaluation metric - DSC, which stands for Dice similarity coefficient.

The authors compared SITDS using the IBSR-18 with other state-of-the-art methods
and reported the best results. We thoroughly evaluated performance of proposed
method for every tissue individually Table 3 and conclude that our results are clearly
comparable to those of current state-of-the-art methods.

Table 3 - Performance comparison of proposed method and current state-of-the-art method SITDS in terms of Dice
similarity coefficient (DSC).

Cerebrospinal fluid Grey matter White matter

Proposed method | 0.67 0.86 0.85
(DSC)
SITDS (DSC) 0.67 0.86 0.89

Performance of proposed method can be increased even more. In classification
evaluation we observed that misclassified supervoxels tend to have bigger standard
deviation, lower percentage of major class voxels and lower MLP excitation rate (Table
4). Therefore, we can identify missclassified supervoxels, split them and classify
individually. We assume that such supervoxels will be more homogeneous.

Table 4 - Correctly classified supervoxels have greater MLP excitation and major class percentage. Contrary, intensity
standard deviation is lower among them.

Intensity o Major class perc. = MLP excit. rate
Correctly classified 8.1692 92.67% 0.9883
Misclassified 10.0361 72.5% 0.8964

As far as computational complexity is concerned, the most demanding step is training.
However, does not degrade our method, as training is only performed once. Other
demanding steps are oversegmentation, creation of volume representation and
features extraction. Last two steps can be, however, optimized, as they are currently
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implemented in C# language, which can be outperformed by C++ implementation. We
did not evaluate segmentation run time thoroughly, but roughly measured complete
segmentation of one subject took less than 40 seconds.

We also trained second MLP using all supervoxels from subjects 4-15 of IBSR-18.
Subsequently, we segmented subject 3 from IBSR-18. Results can be seen in Figure 42.
As it can be seen, our segmentation was very similar to the ground truth. In the Figure
42 (c) there are highlighted supervoxels where MLP excitation rate did not exceed
value 0.9. In most cases these supervoxels were either completely misclassified or
contained significant amount of voxels from at least two tissues.

i

und truth

(a) Gro (b) Proposed method (c) Low MLP excitation

Figure 42 - Segmentation result. (c) highlights supervoxels that excited MLP in rate lower than 0.9.
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7 Technical realization

In this chapter, we describe implementation details of our application. In this project
our aim was to implement proposed method and all tools needed to verify its
performance, robustness, stability and compare it with other state-of-the-art
segmentation methods.

Our goal was not to create advanced GUI concentrated on user experience. In this way
we followed minimalistic approach. On the other hand, we paid attention in design
phase of main and support libraries, so they are easy to extend and maintain, using
software engineering skills and best practices including architectural and design
patterns.

7.1 Software means

As the main language to use C++/CLIL In the computer vision domain, C++ is together
with C the main language in which the algorithms and libraries are developed. The
reason why this is true is that many algorithms are computationally complex and in
order to be fast and efficient they need to be implemented in a low level language.
Besides we did not want to spend a lot of time maintaining memory allocations and
deallocations. Therefore we did not use vanilla C++, but C++/CLI, which supports work
both with native and managed resources.

The next reason why we used C++/CLI is that it allows to use the .NET framework and
library written in this language can be easily used in C#, which we used for creation of
GUI and some other specific tasks including classification.

As far as libraries are concerned, we mostly relied on ITK [36] (computer vision) and
Accord.NET [37] (machine learning and statistics).

As platform we use 64-bit version of Microsoft Windows 8.1.

Due to its debugging and other useful tools, we use Microsoft Visual Studio 2013
Ultimate.

Besides C++ and C# we used MATLAB in first stages for prototyping. We also used it
for evaluation, statistics, graph generation etc.

7.2 Hardware
Computations and experiments were performed on Asus G750-JZ. Important
parameters:

Processor Intel core i7 4710HQ, 2.5GHz (3.5GHz in Boost), 4 cores
Main memory  32GB DDR3
Graphic card NVIDIA GeForce GTX 880M, 1536 cores
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7.3 Design overview
During design phase of development cycle of our software project we proceeded from
requirements defined in Figure 52.

Conceptually, our project is composed of multiple modules. Our goals was to keep the
modules as independent of each other as possible. For this purpose we have rather
extensively used interfaces and abstract classes to that individual volumes do not
depend on a concrete implementation of a particular class or method. These modules
are Classification, Conversion, Loading, Processing, Serialization, Statistics, Visualization
and GUI. Besides them there are some auxiliary modules - Utils and Helpers. All the
modules can be seen in Figure 53.

Physically, we realised our project as a Visual Studio solution with multiple projects.
One of the biggest advantages of Visual Studio solution using .NET framework is that
individual modules can be easily spread over many projects. The solution consists of
following projects:
e DP_CLR
o C++/CLI.dll library project.
o The main part of the whole solution. Contains most of the algorithms
used by proposed method.
o Contains definitions of main data structures (Volume, Voxel,
Supervoxel).
o Responsible for data loading, conversion, serialization and processing.
Also contains classes responsible for statistics and features extraction.
o Extensively uses template methods and template classes.
o As it is possible to use native C++ in this project, it contains classes
responsible for usage of ITK and SLIC, which are written in native C++.
o Directly uses CLICSuperpixels.
e DP.CS
o C# .dll library project.
o Mainly responsible for features extraction, classification and statistics
extraction.
o Directly uses structures defined in DP_CLR.
e DP Visualization
o C# dlllibrary project.
o Contains implementation of Maximum intensity projection (MIP)
visualization of a Nifti volume.
o Directly uses DP_CLR and DP_CS.
e DP_WPF_prototype
o C# WPF project.
o Defines graphical user interface and is responsible for interaction with
user.
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o Through window controllers defines complete training and
classification flows which can be adjusted by setting various parameters
in GUI.

o Contains GUI for visualization of Nifti volumes.

o Directly uses CP_CLR, CP_CS, DP_visualization.

e SLICSuperpixels
o 3rdparty native C++ library.
o Contains implementation of SLIC algorithm.

Complete overview of the solution projects together with related modules (conceptual
level) can be found in Figure 53. The basic overview of dependencies between projects
can be seen in Figure 43.

@ SLICSuperpixels

/ Inherits From

@ DP_WPF_prototype @ DP_Visualization Externals Implements

0

_— 4 4
DP_CS

Function Pointer

/ Field Reference

Figure 43 - Basic overview of relations between projects in Visual Studio solution.

7.4 Dataloading and conversion

As stated in 5.1, in our method we work with medical data in Nifti format. Nifti format
is rich and rather complex (although simpler if compared with DICOM). Therefore we
use ITK library to load, process and export data in this format. ITK (like many others
C++ libraries) extensively uses concept of templates. For loading ITK requires to define
dimension of medical image and data type of individual voxels. We work directly with
3D volume where individual voxels are stored as floats. Because this data type is used
throughout whole project we defined it in one place using following code:

/// DIMENSIONS

const unsigned int Dimension3D = 3;

/// PIXEL TYPES

Typedef float ITKPixelType;

/// IMAGE TYPES

typedef itk::Image<ITKPixelType, Dimension3D> ITKImageType3D;

Our method is based on oversegmentation of medical volumes into supervoxels. To
best of our knowledge there is no library or other software mean which would allow
to store raw voxels, supervoxels and information about neighbourhoods between
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supervoxels and to extract some additional characteristics of that volume. Therefore
we designed and implemented own hierarchy of classes and structures with these
qualities. It can be seen together with classes responsible for data loading in Figure 57.

In general, data in Nifti format are loaded to a native structure of ITK library. Then,
these data are converted to an instance derived from IVolume interface using our
conversion module (Figure 44). It is also important to note that in this step all the
loaded data are transformed to the same orientation RSA.

FormatConverter<ITKImageTy Loader<ITKImageType3D::Poi

LoaderCs pe3D::Pointer, IVolume> nter=

Loadvolume3D(String filename)

< <reates»

“<ireates>

Y

®--- Also perform
. ) orientation unification
itkvolume : ITKImageType3D: :Painter
.-\ﬁ_‘ _____________________________
Convertf{itkVol
rif] oume)h /
|
volume: Tvolume
|

Figure 44 - Nifti volume loading and conversion to internal IVolume format.

7.5 Preprocessing

Except for brain extraction, every other preprocessing is performed in our application.
Individual preprocessing procedures can be considered to be filters. We do use this
term as it is usual in ITK (e.g. OrientImageFilter). We put emphasis on consistence of
filters. Therefore every single filter used in our application must implement interface
[Filter. This interface guarantees that every filter can be applied and reverted in the
same way. The hierarchy can be seen in Figure 45. It is important to add that some
filters, for example NormalizationFilter, cannot be reverted algorithmically. Therefore
it is necessary to save original intensities of voxels in the filter so it can be reverted.
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class Filtraticn /J

winterfaces
IFilter

+ Apply{Velume'): NVelome"
+ Revert{lVelume"): Molume"

wreferences
Filter

+  ApplyVolume®): Wolume®
+  ReverVolume®): Volume®

wreferencen wreferences
NormalizationFilter BrightnessFilter
_intensities: List=float=" - _brightnessChange: float
+  Apply{Volume): Volume® +  Apply{lVolume"): WVolume®
+ Revert{Volume"): VMolume" + BrightnessFiltes{float)
+ Revert{lVolume"): Volume®

Figure 45 - Hierarchy of interfaces and classes responsible for data filtration (processing).

Source code of Apply and Revert methods of NormalizationFilter can be seen in section
A5.

7.6 Oversegmentation and supervoxel neighbourhoods

Segmentation together with filtration belongs to the same module - Processing. The
main class, which is responsible for oversegmentation of a volume into supervoxels, is
SlicSegmenter. SlicSegmenter is one of a few classes that are partially native C++. In
constructor, SlicSegmenter requires two parameters to be set - supervoxel size and
compactness. It provides one public method - Apply, which requires an instance of
IVolume as an input. Class diagram of SlicSegmenter can is in Figure 46.

SlicSegmenter uses SLICSuperpixels native C++ library to get supervoxel label for each

voxel in volume. Afterwards instances of class Supervoxel are created and calculated
label values are assigned to individual Voxels. Next, created supervoxels are assigned
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to IVolume instance and neighbourhoods between supervoxels are identified. The
overall process can be seen in sequence diagram in Figure 47.

class Segmentation
«interfaces
ISegmenter
+  Apply(IWolumet): Volume?
____________ el s e e e e e s e e e e
I T il
| | |
| | |
areferences areferences areferences
SlicSegmenter GroundTruth SupervoxelliajorSegmenter GroundTruth Segmenter
- _compaciness: double - _classNameLabelMapping: Dicticnary<String®, int>* - _groundTruthMask: [Volume®
- sizerint _class) t<String>* :
uthiMask: IVolumer +  ApplylVelume): Volume
Apply] E + GroundTruth: Volume}

d int™3, inth, int&, inté. int™&, int. inié. doubled) void
- Fi umen

y=<Dictionarysint, bool>*, 1>

: oxel srray<Dictionary<int, bosk>*, 134, int, int, int): void
- Findh n an . 3%, amay<Dictionarysint, bool>*, 124, int, int, int): void|

lume: void
enter{Volume®, List<String>")

- SetSupervoxelintensitiesiSupervaxel®, |Statistic'): void

- Prepa
+ Slicsegments

-_groundTruthMask

w—_,gmund TruthMask

ainterfaces
Formats::IVolume

Depth{): int
Height{): int

i ies(): Volume3D per
Save(System: String"}: void

o iProperties’): void
SetSupervoxels|List<Supervoxel">A): void

P k : void
SetVoxels(amay<voxel®, 3>1): void
Supervoxels(): List<Supernvoxel=h
Supervoxelshap(): Dicticnary<int, Superaxalis*
Voxels{): smay<Voxeln, 31

VoxelsList(): List<Voxel#st

Width(): int

ok ok kb

Figure 46 - Hierarchy of interfaces and classes responsible for data segmentation.

Besides oversegmentation into supervoxels, there are two other segmentation classes:

GroundTruthSegmenter
Sets ground truth label of every voxel in a volume according to ground truth mask and

returns the volume itself.

IVolume”~ GroundTruthSegmenter::Apply(IVolume”® volume)

{
auto voxelslList = volume->VoxelsList();
auto labelslList = _groundTruthMask->VoxelsList();
for (int i = @, numVoxels = voxelsList->Count; i < numVoxels; i++)
voxelsList[i]->groundTruthLabel = labelsList[i]->value;
return volume;
¥

GroundTruthSupervoxelMajorSegmenter

Sets value of every voxel in every supervoxel equal to the most occurring label.
Important is that it only makes sense to use this segmenter after supervoxelization,
otherwise there were no supervoxels at all in the volume. In fact, it is the main purpose
of this segmenter - set all voxels in a supervoxel to the same value and therefore create

a segmentation mask.
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sd Segmentation /

wreferences Volume
SlicSegmenter
Caller

]
|
| | {from Formats)
|
h

ApplyVolume): Welume® | |

Woxels(): aray=\oxel", 3=

areferencen

|
———————————————————— -f—————————————————————){ FormatConverter<IVolume, SlicRawType>

Convert{IVolumet): SlicRawType T

SLIC

loop

[For every voxel in volufne]

Create new Supenvoxel if NOT

Sup Jsh. tainsKey(Voxellabel)
Push Voxel into Supervoxel where
Supervoxellabel == Voxellabel

SetSupervoxels(List<Supervoxel =)

SetSupervoxelsMap{Dictionany<int, Supsrvoxel=")

.
FindMNeighbourhoods{IVolume*): IVolume®
*Velume !
E——————————————q |
|
|

==

Figure 47 - Procedure of oversegmentation of volume into supervoxels - sequence diagram.

7.7 Features extraction

In terms of implementation, features extraction together with statistics extraction
belongs to the most complex parts of the solution. Both are heavily templated and
incorporate template method and template class patterns. Thanks to template method,
it is possible to use the same features extractor to extract features from different
classes - volumes, supervoxels and various combinations of them (e.g. from all
supervoxels in a particular volume).

There are two base interfaces in the hierarchy of features and feature extractors -
IFeature and I[FeaturesExtractor. Besides other concrete features, there is one more
important class - CompositeFeature. This feature contains a list of instances of classes
realising interface  [Feature. —Because CompositeFeature itself realises
ICompositeFeature interface (which is derived from IFeature), it is possible to compose
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features. An overview of hierarchy can be seen in Figure 48. There are only a few
examples of features and feature extractors in this figure.

class Simple

| T:class |

V : class = void!
cintefaces | | m===gos
W winterfaces

+ AsFloatAnay(): smay=fiost=h TH s acioatinay) ny e
+ Features(): List<IFeaturat=A +  Extrac{TA}; IFeature®

| |
|
' ‘
H LTET =
| |
|

|
|
I
|
|
1
|
I
|
|
|
!

+ Extract{T*): Feature®

|
V: class = void| ereferences
" ouElE.vtEr::E»m - m;ls_;s;ust: ——————— CentroidFeatures ExtractorC SFacade
ompositeFeature entroidFeature
festures: List<IFeaturen=n - _centroid: Voxel® wrgferences  fem - _bglntensity: float
7 i oo + CentoidFesturesExtractorCSFacade(flost)

{ ompositeFesturet
+ ExtractForEachSV{IVolume?): ICompositeFeature?

FeaturesExtractor FeaturesExtractor
areferences

CentreidFeaturesExtractor< Supervoxel>

areferences areferences

CentreidFeaturesExtractor<IVolume>

areferences

FeafureeEleactw‘

CentroidFeaturesExtractor<iVolume,
Supervoxel>

CentreidFeatures Extractor<List< Supervoxelf=>

FeaturesExtractor

+ CentroidFesturesExtractor{float) |

+ CentroidFesturesExtractor(float) + CentroidFeaturesExtractor(float)
+ Extract{Supervoxel"): IFeature®

+ ExhactVolume"): IFeature” +  ExtractList<Supervoxel"="]: [CompositeFeature”

uresExtractodfioat)
{IVolume): ICompositeFeature®

Figure 48 - Interfaces and classes representing features, composite features and features extractors. These classes are
further used to extract features from volumes, supervoxels and their combinations in training and classification
process.

[Feature guarantees that every derived class is able to export contained features as a
float array. These arrays are used in training and classification process as an input for
classifiers.

Because features and features extractors are heavily templated, they cannot be directly
used in C# as common .NET structures. Therefore we had to implement Fagades, which
provide public methods for features extraction that can be directly used in C#. These
Fagades internally use templated extractors. An example of such Facade is a
CentroidFeaturesExtractorCSFacade.

There is one more important class - FeaturesEqualizer. For MLP it is inappropriate if a
set of training samples of one class is much bigger than training set of another class. In
our case, the CSF has significantly smaller training set than other classes. Therefore, it
is necessary to equalize the number of training samples of individual classes. This is
where FeaturesEqualizer is used. Algorithm it uses is described by sequence diagram
in Figure 49.
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sd FeaturesEqualizer

FeaturesEqualizer
|

. Execute|List<double[]> inputs, List=int> outputs) |
-

CalculateMumClasses(List<int=): int

CalculateClassOccurences|List<int=, int): int

CalculateClassindices{List<int=, int): Dictionary<int, List<int=>
|

Inputs = new List zdouble[] = (maxOcourence * numClasses):
Outputs = new List<int=(maxOcourence * numClasses):

- 4

T
|
T
|
[for{int i=0; i < maxOcourence; i++)] :
|
I
|

£ 4

[for{int clas=0; clas < numCIsssEJr' clas++]]

var index = classindices[clas][i % classOcourences[clas]]:
Inputs. Add(inputs[index]):
Owtputs. Add (outputs[index]]:

Figure 49 - Procedure features equalization. When training MLP, it is important to have equally large training sets
among all classes.

7.8 Training

Compared to features extraction, training and classification are fully implemented in a
C# library. For classification we use implementation of multilayer perceptron provided
by Accord.NET library [37].

The main class that represents perceptron is MLP. This class provides public methods
for training, classification and serialization (so that perceptron can be saved after
training).

If we include features extraction, equalization and other activities needed for training,
we get a complex sequence of method calls. In Annexes we show a simplified sequence
diagram (Figure 59).

Training sequence is implemented in TrainingWindowController class which also

serves as an interface between GUI and application logic. It also gathers data from
training window that were set by user.
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7.9 Classification

Overall classification process is very similar to training. The biggest difference is that
after classification rather complex statistics about results are extracted (Annexes,
Figure 60).

7.10 Visualization

For visualization, we mainly used 3rd party tool Slicer3D. Nevertheless, we
implemented our own Maximum intensity projection (MIP) visualizer. Implementation
is based on OpenTK?, which is a low level wrapper of a popular library OpenGL8. We
incorporate two visualization windows - overview and detail. The MIP visualization is
shown in Overview window (which is also the interaction window - Figure 50 left) and
highlighted voxels are shown in a Detail window (Figure 50 right).

[ Overview = 1= . Detail = =

Figure 50 - MIP Overview window and Detail window.

As it is in case of Training and Classification windows, Visualization window has also
its controller. Controller serves as a mid-layer between low-level visualization and
Visualization window (Figure 51). For example, it is possible to highlight certain
intensities both in Visualization window and in Overview window. Through two way
data binding provided by WPF, controller keeps parameters influencing visualization
synchronized between windows.

7 OpenTK - http://www.opentk.com/
8 https://www.opengl.org/
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VisualizationWindow

Data pickup

[ Pick NIFTI_| | C:\Users\Martin\Documents\Visual Studio 2013\Projects\DP_WPF64\Releaselvolumes

Pick mask |

Visualization params

Intensity range: Scale: I:I Rotati: 0
Show every nth voxe Voxel size: I:I Rotation ¥: 0 T

Highlight threshold intens ade z T
Controls Info
Rotation speed: |:| Rendered voxels: 0
0.5
Trans! speed: |:| Volume dimensions:

0.05 Mask dimensions: Mask classes:

Label to show: l:l

[] Show mask

Figure 51 - MIP Visualization window.
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8 Conclusion and future work

In the first term we analysed and described domain of clinical practice in context of
medical imaging. We concentrated on radiologists and consulted our assumptions
about their needs with experts from clinical practice. In this term we also looked for
technical means that would help us in later phases of this project.

In the second term we proposed first method for tissue segmentation. In this term we
did not fully concentrate on one concrete tissue. We tried to apply oversegmentation
using SLIC algorithm on many different volumes and observed its performance
(visually). As mentioned we proposed and partially implemented method for tissue
segmentation based on merging neighbouring supervoxels with similar qualities. This
approach was found to be promising if we wanted to use coarse-to-fine technique, as
the merge process produced visually pleasing regions (Figure 25 right).

In the third term we proposed a final method for segmenting brain tissues from MR
volumes. We thoroughly evaluated performance of SLIC algorithm as far as
supervoxelization is concerned. After supervoxelization we applied extracted features
from every supervoxel and trained two different classifiers - MLP with 6 hidden layers
and SVM using quadratic kernel. We evaluated classification performance and
proposed ways how to improve it (these will be applied in the next term). Based on
evaluation of SLIC and classification performance, we estimated overall segmentation
performance that we were able to reach at this moment.

Finally, we proposed, implemented and evaluated a fully automatic method for
segmentation of brain from MR images. Our method is based on oversegmentation
using supervoxels and classification using MLP. Method differs from most other state-
of-the-art brain segmentation methods as it uses supervoxels instead of voxels as
elementary unit. Supervoxels are classified into four classes {BG, CSF, GM, WM} and
they are described by set of features fsv = {Normalised intensity histogram,
Normalised intensity histogram of voxels in neighbouring supervoxels, Normalized
Euclidean distance from brain centre, Angles between supervoxel centroid and brain
centre}. Supervoxels resist to noise better than individual voxels as they can be directly
described by statistical features based on contained voxels. As shown in Figure 41,
position of supervoxel is characteristic for every class.

We have successfully implemented and evaluated proposed method using combination
of C++, C++/CLI and C#. As shown in Table 3, our results are highly promising in
context of current state-of-the-art methods and proposed method (as is) will be subject
of further research.

Problems we face are mainly caused by noise in MR data, oversegmentation error and
misclassification. In the future work, we are going to handle all these opened issues in
order to increase segmentation success rate. First of all we are going to thoroughly
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evaluate different techniques for noise reduction. Many subjects in IBSR-18 contain
rather obvious periodic noise. Supervoxels with higher oversegmentation error (which
tend to be misclassified, too) have usually bigger standard deviation and lower MLP
excitation rate. We are going to use this information to identify potentially
oversegmented and/or misclassified supervoxels and either split them into smaller
supervoxels (which will be classified individually) or use some other segmentation
technique, e.g. majority voting using non-rigidly registered atlases. Next option is to
use and evaluate performance of another oversegmentation algorithm. MonoSLIC [5]
reports promising results in medical imaging oversegmentation. In preprocessing we
are going to investigate other options for brain extraction and compare it with BET.
Last, we are going to include shape into features describing supervoxel.
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Annexes






A. Technical documentation

In technical documentation we present technical details and engineering
documentation of selected parts of this project. In most cases we use UML v. 2.0 as a
modelling standard and technique. We also show snippets of code where appropriate.

A1l. Requirements specification

There were various requirements as far as proposed method is concerned. These
requirements are shown on Use case diagram in Figure 52.

In context of our method we identified one main role as far as users are concerned. In
most cases MR images are used by radiologists. When we defined requirements for our
method we based them on radiologists’ needs.

In practice radiologists work with medical data in standard format. As we mentioned
in 5.1, to date the most used formats are DICOM and Nifti. For simplicity we decided to
use Nifti. Nevertheless we designed our solution to be modular and able to simply add
support for other formats (for this modularity is mostly responsible use of template
classes FormatConverter<TInput, TOutput>). Although radiologists use mostly one tool
provided by their hosptital, sometimes it is necessary to exchange data between
radiologists from different hospitals or even countries. Beside this sometimes it is
required to anonymise exchanged data (DICOM contains information about the
patient).

Single MR volume can be visualized in different forms, based on current radiologist’s
needs. Radiologist needs to be able to filter and process such volume. An example of
such filtration is increase or decrease of brightness, power law transform, Gaussian
filtering and many others. For this reason we defined volume filtration as one of
requirements.

All these requirements would be useless if it were not possible to visualize processed
data. Therefore we require some way of data visualization.

The last requirement comes out of the assignment of this work. We require from our
method to segment desired tissues (in our case CSF, GM and WM) with minimal or no
user interaction.



Figure 52 - Method requirements from radiologist's point of view. Use case diagram.

A2. Application modules and solution organisation

Application was designed as a Visual studio solution that physically contains multiple
projects. On the conceptual level, application consists of multiple modules. Except
Statistics and Classification, all modules are implemented in single project. Overview of

projects and modules are shown in Figure 53.
emp Class Model ALL )

«Module»
Visualization

eModules eModules
ing Conversion

aModules eModule»

Loading Serialization

Figure 53 - Design of application in terms of modules and Visual studio projects.




In the later stages of software development lifecycle we decided to implement as many
parts of final product as possible in C# language. This decision was supported by fact
that prototyping in C# is much more rapid than in C++. This is where DP_CS was
introduced. Nevertheless, before this decision many modules were developed either in
pure C++ or in managed C++/CLI in DP_CLR project (in fact, before DP_CLR project
there was DP_Native that did not support managed code at all). DP_CS is strongly
dependent on original DP_CLR library.

A3. User interaction and graphical user interface

The entry point to the application is shown in Figure 54. It is a simple WPF° window.
The only purpose of this window is to navigate user to either Training, Classification or
Visualization windows. SVM training and classification windows are also active, but
currently they are only experimental.

MIP Visuaization
Training SVM Bxt Classification SVM

L. p 2. .n'.g ‘,'
Figure 54 - Application entry point (Main window).10
Two most important windows - Training and Classification (Figure 55) are also
designed as WPF windows. The main focus was on simplicity so that all the most
important settings are always visible.

9 WPF: https://msdn.microsoft.com/en-us/library/aa970268(v=vs.100).aspx
10 Brain image taken from
http://www.mixscoop.com/wp-content/uploads/2015/06/web-brain-getty-c-DONTUSEAGAIN1.png
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Figure 55 - Training and Classification windows.

WPF windows themselves handle only interaction events, but the application logic
(training and classification) are delegated to window controllers. Every window has its
own controller. If a user changes some setting in the graphical interface, the change is
immediately reflected in controller and vice versa through two way data binding
provided by WPF. Besides data binding and complete flows of training and
classification, controllers are also responsible for data loading, processing and
serialization and feedback. Feedback is given to the user in text form. The complete
hierarchy of window controllers is in Figure 56.
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Figure 56 - Hierarchy of window controllers.

The main method of TrainingWindowController is Train. For classification, it is Classify
in ClassificationWindowController. Source codes of both methods are shown in section
A7.



A4. Internal formats and loading
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Figure 57 - Internal data structures (formats) designed to work with volumes, supervoxels and voxles and structures
responsible for data loading.



A5. Filtration

Every filter used in our application implements [Filter interface. This guarantees that
filters can be applied and also reverted. Obviously, some filters cannot be reverted
algorithmically, as after they are applied, the original information gets lost. Therefore
these filters must store original values so they can be restored. An example of such
filter is NormalizationFilter class. Source codes of its Apply and Revert methods are
shown below.

IVolume”~ NormalizationFilter::Apply(IVolume” input)
{

auto voxelslList = input->VoxelsList();
_intensities = gcnew List<float>(voxelsList->Count);

for each(auto voxel in voxelslList)
_intensities->Add(voxel->value);

List<float> sortedIntensities(_intensities);
sortedIntensities.Sort();

int quantileIndex = Math::Min(sortedIntensities.Count - 1,
(int)(sortedIntensities.Count * ©.99999));

for each(auto voxel in voxelslList)
{
voxel->value =
Math::Min(1.0f, voxel-
>value / sortedIntensities[quantileIndex]);

}
return input;
}
IVolume”~ NormalizationFilter::Revert(IVolume” input)
{
auto voxelsList = input->VoxelsList();
for (int i = @, numVoxels = voxelsList->Count; i < numVoxels; i++)
voxelsList[i]->value = _intensities[i];
return input;
¥

A6. Format conversion

One of the main requirements was to enable user to convert medical data from any
standard medical format to another. As we wanted to provide a modular solution that
would be able to simply add another format, we decided to use C++ templates. The use
of templates is convenient as it allows to use class with the same name to convert
between various kinds of formats. All converters implement following interface:

template<class TInput, class TOutput>
public interface class IFormatConverter

{




.
)

TOutput” Convert(TInput input)
In our application we needed to convert between various formats which gave rise to

converters shown in Figure 58.
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Figure 58 - Concrete implementations of converters that convert data between various formats.



A7. Training and classification

Both training and classification use wide variety of classes and methods from both
DP_CS and DP_CLR libraries.

Complete training flow is defined in TrainingWindowController in method Train, which
also uses other private methods of this class. The source of Train method is in shown
below:

protected virtual void Train(double bgIntensThreshold, int numInputs, int inputsOffset, int slicSize, double slicComp, int histBinCount,
int neighbHistBinCount, int[] mlpArchitecture, deuble mlpError, string mlpTrainFunc, double minMajorClassPercentage, int startIteration,

string volumesDir, string masksDir, List<IVolume> wvolumes, ActivationNetwork network = null)
{
if (volumes == null || volumes.Count == @) { UpdateWindow("Volumes were not leaded"); return; }

var featuresEqualizer = new Featurestqualizer();

ist<Supervoxel gersupervoxels;

eature» aggrfeatures;

stic» aggrMajorlabels;

[1> inputs;

L nt> outputs;

ExtractFeatures(volumes, (fleat)bgIntensThreshold, histBinCount, neighbHistBinCount, _ClassNames.Values.Telist(), minMajorClassPercentage, 5,
out aggrSupervoxels, out aggrFeatures, out aggrMajorLabels, out inputs, ocut outputs);

ouble

featuresEqualizer.Execute(inputs, ocutputs);

LP classifier = network == null ? new MLP(inputs[@].Length, outputs.Distinct().Count(), mlpArchitecture, mlpError) : new MLP(network, mlpError);
classifier.OnEpochComplete += UpdateWindow;

UW("Start training”);

classifier.Train(featuresEqualizer.Inputs, featuresEqualizer.Outputs, mlpTrainFunc, startIteration);

In the first step the method checks whether volumes are loaded. In the next step, it
prepares an instance of FeaturesEqualizer class and instances of collections of
supervoxels, features and other statistics. These instances are assigned in
ExtractFeatures method, which is responsible for extraction of particular features from
both supervoxels and volumes. There are two extra variables - inputs and outputs.
These lists of primitive types are used as inputs and outputs for neural network in
training. After these features are extracted, they must be equalized so that every class
has the same amount of training samples. In the last step, classifier is instantiated and
trained. The instantiation depends on input arguments of Train method - either new
classifier is created, or an existing classifier is loaded. Simplified sequence diagram of
training flow is in Figure 59.

Classification, on the other hand, is defined in ClassificationWindowController in
method Classify. Source code of Classify method is below:



protected virtual void Classify(double bgIntensThreshold, string masksDir, int histBinCount,
int neighbHistBinCount, List<IVolume> wolumes, string networkPath)
i
if (volumes == null || volumes.Count == @)
{
UpdateWindow("Volumes were not loaded™);
return;

/* Features extraction */

t<Supervoxels aggrsupervoxels;

t<Supervoxel> aggrDefaultBgSupervoxels;

t<ICompositeFeaturer aggrFeatures;

t<Istatistic> aggrMajorLabels;

t<Istatistic» aggrMajorLabelsPerc;

t<IStatistic» aggrStandDeviations;

List<double[]>» inputs;

List<int> outputs;

ExtractFeatures(volumes, (float)bgIntensThreshold, histBinCount, neighbHistBinCount, _ClassNames.Values.Tolist(),

out inputs, out outputs, out aggrDefaultBgSupervoxels);

/* Classification */

ActivationNetwork network = (ActivationNetwerk)}ActivaticonNetwork.Load(networkPath);

MLP classifier = new MLP(network, le-8);

J/("start classification™);

var classifResult = classifier.Classify(inputs).Select(res =» res »= @ ? res : 8).Tolist();
J/M("End classification™);

var trueResult = (from label in aggrMajorlabels select (int)label.Values()[@]).Tolist();

/* After classification statistics and outputs */
AfterClassifActions(classifResult, trueResult, classifier, volumes, aggrSupervoxels, aggrDefaultBgSupervoxels,
aggrMajorLabelsPerc, aggrStandDeviations, masksDir);

/* Clear volumes so they must be reloaded */
volumes.Clear();

5, out aggrSupervexels, ocut aggrFeatures, out aggrMajorLabels, cut aggrMajorLabelsPerc, out aggrStandDeviations,

Classification flow is very similar to training. It starts with the same steps as training.
The main difference is that in case of classification a neural network is always loaded
from disc, because it would not make sense to classify supervoxels using a newly
created (and therefore not trained) network. The result of classification is a list of true
labels. These can be afterwards compared with ground truth results. Multiple statistics
are calculated after classification. This happens in AfterClassifActions method. Finally,
collection containing volumes is cleared so that these volumes can be garbage
collected. Simplified sequence diagram of classification flow is in Figure 60.
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Figure 59 - Simplified training procedure. Only calls in depth 1 are directly shown.
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Figure 60 - Simplified classification procedure. Only calls in depth 1 are directly shown.






B. Content of attached media

Attached media contains:

Directory

Content

/Sources/0ld

/Sources/0Old/Tested approaches

/Sources/Final
/Sources/MATLAB

/Setup

/Documents/User guide
/Documents/Masters thesis
/Documents/Annotations
/Samples/Volumes
/Samples/FiitMedical

C++ code of first prototype, which is no
longer used.

Prototype that is no longer fully used.
Some parts may be used in current
version, though.

Source codes of final product

MATLAB implementation of selected parts
of method. Mostly data analysis and
classification.

Installation files of product.

User guide for product.

PDF version of this work.

EN and SK versions of annotation.
Sample Nifti volumes.

Sample text data in FiitMedical format.







C. User guide

Installation
To install our product, follow these steps:
1. Open attached CD
2. Open Setup directory
3. Run Setup.exe
4. Follow instructions during installation

Main application window
Main application window (Figure 61) contains six buttons.

1 - Opens training
window (Figure 62)

2 - Opens training
window with SVM
(experimental)

3 - Opens visualization
window

4 - Opens classification
window (Figure 63)

5 - Opens classification
window with SVM
(experimental)

Exit - Terminates
application

MIP Visualization
Training SVM 1 Classification SVM

Training window

Training window contains multiple fields and controls. Their meaning is described in
Table 5 and Table 6. User is notified during training process. Messages are shown in
the big text area at the bottom of training window.



Table 5 - Training window fields.

Field name Description

# hist bins Number of histogram bins describing single
supervoxel (integer)

# neighb bins Number of histogram bins calculated from voxels
belonging to neighbouring supervoxels (integer)

# inputs Number of volumes to be loaded from specified
directory (integer)

inputs offset Skips specified number of volumes when loading all
volumes from specified directory (integer)

SLIC comp Compactness of supervoxel used in SLIC algorithm in
oversegmentation process (float)

SLIC size Size of supervoxel used in SLIC algorithm in
oversegmentation process (integer)

Architecture Architecture of created neural network - numbers
separated by whitespace. Individual numbers
represent number of neurons in hidden layers
(integers separated by whitespace)

Save each X epoch Saves neural network every time it reaches multiple of
this number (ongoing serialization) (integer)

Error When MLP reaches this value, training ends (float)

Save prefix Prefixes this string to network name when it is being
saved

Save directory Directory where the trained MLP will be saved

Train func Accepts two strings:

rbp - resilient backpropagation
Im - Levenberg-Marquardt

Min major class % Specifies minimal percentage of majority class voxels.
If a supervoxel does not have enough majority class
voxels, it will not be included into training process
(float number lower than 1)

Bg intens thres Supervoxels with average intensity lower than this
value will not be used in training process (integer)

Table 6 - Training window controls.

Control name Description

Input Choose directory with input volumes (they will be
loaded in alphabetical order)!

11 ]t is important that inputs and masks are in corresponding alphabetical order, as the first volume is
mapped to first mask, second volume to second mask etc.



Masks

Choose directory with input masks (they will be
loaded in alphabetical order)

Load volumes Loads volumes and masks
Clear volumes Removes volumes and masks from memory
Start Starts training process
Stop Stops training process (irreversible)
Pause Pauses training process. It can be resumed with start
Change Changes directory where trained MLP will be saved
] Training = B
# hist bins 16 SLIC comp 7 CA\Users\Martin\Dacurnents\Visual Studio 2013
\Projects\DP_WPFx64\Releaseiwolumes
#neighb bins |16 SLIC size 50
CAUsers\Martin\DocumentshVisual Studic 2013
Zinputs inputs offset 12 \Projects\DP_WPF\x64\Release\masks

Load volumes | | Clear volumes

Mew network | Existing netwark | Statistics

Architecture

Error

Save directory

Train func

33 10

Save each X epoch

1E-06 Save prefix net

CAUsers\Martin\Documents\Visual Studio 2013\Projects\DP_WPFux64\Release\networks

rbp Min major class % 0 Bg intens thres |2

Start

Pause | | Stop

Figure 62 - Training window.



Classification window

Training window contains multiple fields and controls. Their meaning is described in
Table 7 and Table 8. User is notified during training process. Messages are shown in
the big text area at the bottom of training window.

Table 7 - Classification window fields.

Field name

Description

SKip inputs
Num inputs
Compactness
Size

Bg intens thres

Num hist bins
Num neighb hist bins

Min major class perc

Min voxel probability

Control name

Choose directory with input volumes (they will be
loaded in alphabetical order)

Choose directory with input masks (they will be
loaded in alphabetical order)

Compactness of supervoxel used in SLIC algorithm in
oversegmentation process (float)

Size of supervoxel used in SLIC algorithm in
oversegmentation process (integer)

Supervoxels with average intensity lower than this
value will be automatically classified as background
(integer)

Number of histogram bins describing single
supervoxel (integer)

Number of histogram bins calculated from voxels
belonging to neighbouring supervoxels (integer)
Specifies minimal percentage of majority class voxels.
If a supervoxel does not have enough majority class
voxels, it will not be included into training process
(float number lower than 1)

Not yet used

Table 8 - Classification window controls.

Description

Input dir
Mask dir

Load volumes
Mlp path
Atlasses path
Start

Stop

Choose directory with input volumes (they will be
loaded in alphabetical order)12

Choose directory with input masks (they will be
loaded in alphabetical order)

Loads volumes and masks

Select trained MLP from disc

Not yet used

Starts classification process

Stops classification process (irreversible)

12 Tt is important that inputs and masks are in corresponding alphabetical order, as the first volume is
mapped to first mask, second volume to second mask etc.
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Figure 63 - Classification window.

Visualization window

In visualization window the user can load Nifti volume and visualize it using Maximum
intensity projection method. User can also load segmentation mask for this volume and
use it to visualize only certain tissues.

User can interact with application either in Overview window (Figure 65 left) using
mouse or by setting concrete values in Visualization window (Figure 64). Interaction
in Overview window is described in Table 9. Fields and controls in Visualization
window are described in Table 10 and Table 11.



Table 9 - Interaction in Overview window.

Interaction Description

Zoom Rotate with mouse wheel

Rotation in Xand Y axes | Hold left mouse key and move with mouse

Rotation in Z axis Hold right mouse key and move with mouse

Data highlighting Hold left ALT key and click on some voxel. If left CTRL

is pressed, max value is chosen, otherwise min

Table 10 - Visualization window fields.

Field name Description

Intensity range Only voxels having intensity in this range will be
shown (integer)

Show every nth voxel Only every nth voxel will be shown (can boost
performance) (integer)

Highlight threshold Voxels having intensity in this range will be
highlighted in Overview window and shown in Detail
window (integer)

Scale Zooms volume (float)

Voxel size Size of single voxel (float)

Intens. add This value will be added to intensity of every rendered
voxel (integer)

Rotation X/Y/Z Rotation in axes X, Y and Z (float)

Translation X/Y/Z Translation in axes X, Y and Z (float)

Label to show If “Show mask” checkbox is checked and volume mask

is loaded, only voxels belonging to this class will be
rendered (integer)

Show mask If checked, only voxels belonging to particular class
will be rendered

Rotation speed Sensitivity of rotation in Overview window

Translation speed Sensitivity of translation in Overview window

Table 11 - Visualization window controls.

Control name Description

Pick NIFTI Loads Nifti volume

Pick mask Loads mask for volume that was loaded before
Visualize Starts visualization

Information about loaded volume (and segmentation mask) is shown in Info group.
The most important information is number of rendered voxels, dimensions of volume
and segmentation mask and classes contained in segmentation mask.
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Abstract. In most cases medical experts, such as radiologists, only have a certain amount of
time they can spend examining patient’s data. Computer aided diagnosis is a powerful
instrument to accelerate this process and eliminate possible human failure. In this paper, we
propose a novel approach to human organs segmentation. We focus on segmentation of grey
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) from brain MR volume. Our
method consists of six steps and is based on oversegmentation of 3D volume to supervoxels
using SLIC algorithm [1]. Next, we train MLP and SVM classifiers to classify supervoxels.
Classification makes use of various features including intensity distribution, texture, shape and
spatial arrangement.

Introduction

In general medical imaging grows in importance. It is more likely to cure a lethal disease if it is detected in early
stage of its progression. Unfortunately there are not enough experienced radiologists which would be able to
perform screening of whole population. Authors in [2] claim that radiologist needs approximately 6.83 minutes
for reading single MRI. If we wanted to examine every person in Slovakia once in two years we would need 107
radiologists working 8 hours a day every single day in a year only on screening. In some countries radiologists are
already assisted by computers — computer either pre-processes medical data and makes them easier to read for
radiologist or highlights some possible regions of interest.

In this paper, we propose a method for segmentation of specific organ from medical 3D
data that requires minimal user interaction. Although our method is going to be tested
and evaluated on one specific organ - human brain, we believe it will be easy to use it to
segment other organs as well.

Segmentation

According to [5], segmentation is a process of dividing digital image into regions (called segments), that share
similar properties. Therefore, segment is a grouping of pixels (in 2D) or voxels (in 3D).

One of the most common and basic properties defining similarity among pixels is their
intensity or grey level. Similar to intensity of pixel are its brightness and colour. More
complex characteristics are based on neighbouring pixels. In order to describe texture,
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some authors use intensity histogram. In some cases, mutual distance of pixels in the
digital image is important.

Oversegmentation and supervoxels
The most basic categorization of superpixel and supervoxel methods is:
— Graph based algorithms

— Gradient-ascend based algorithms

Point in 3D space is called voxel. When defining supervoxel, we proceed from Achanta et al. definition of
superpixel qualities. Superpixel is a group of related pixels, that [3]:

— Adhere image boundaries
— When used in preprocessing, they are fast to compute, memory efficient and simple to use

— When used in segmentation, they improve speed and quality

In medical imaging, every patient’s scan consists of ca. millions of points in 3D space, each having its intensity.
In [4] authors process data obtained by electron microscope and segment mitochondria. Interesting is that the
authors do not use voxels, but supervoxels, decreasing computational complexity by several orders of magnitude.

Segmentation in medical imaging

Segmentation in medical imaging has its particularities. As stated before, data obtained during single examination
consists of millions to billions voxels which results in high computational complexity. Medical images (or
volumes) have also some specific characteristics in comparison with usual images:

— Higher dynamic range
o Common images in greyscale have 8-bit representation, medical images usually 12-bit

— Specific kinds of noise
o E.g. partial volume effect

Especially at the boundaries, single voxel contains a mixture of tissue classes [5], becoming difficult to classify
correctly (such a voxel does not even have to belong to single class).

State-of-the-art medical segmentation methods

In medical imaging, segmentation has several functions - extraction of tissues of interest, preprocessing step and
removal of non-interesting information.

In [4] Achanta et al. used oversegmentation to segment mitochondria from EM image
stack. The main contribution of oversegmentation of volume into supervoxels was rapid
decrease of computational complexity.

Our reference method [6] also makes use of supervoxels in task of segmentation of brain
into WM, GM and CSF. Authors describe individual supervoxels using information about
intensity, shape and texture, creating 228-dimensional vector. As authors evaluate their
methods (ITDS and SITDS) using the same dataset as we do, it is possible to compare our
results directly. Moreover, authors also provide comparison of their method with other
state-of-the-art methods, concluding their approach reaches the best results (Table 12).

Table 12 - Comparison of ITDS and SITDS with other state-of-the-art brain segmentation methods [6]

Datasets IBSR BrainWeb
Methods CSF GM WM time(s) CSF GM WM time(s)
kMeans 0.51+0.06 0.75+0.06 | 0.78+0.04 8 0.86+0.03 0.84+0.03 | 0.82+0.04 12
MI 0.52+0.08 0.79+0.04 | 0.80+0.03 19 0.87+0.02 0.86+0.02 | 0.85+0.02 23
MRF 0.53+0.06 0.76+0.03 [ 0.87+£0.03 | 521 0.89+0.02 0.90+0.010.91+£0.01| 636




ITDS 0.60+0.05 0.81+0.03 | 0.86+0.02 26 0.92+0.01 0.92+0.01 | 0.93+0.01 32

WPNN 0.63+0.03 0.83+0.02 1 0.87+0.03 92 0.93+0.02 0.93+0.01 ] 0.91+0.02 151
SITDS 0.67+0.03 0.86+0.01 | 0.89+0.02 29 0.94+0.01 0.95+0.01 | 0.94+0.01 35
Proposed method

In this paper we propose a method for organ segmentation from medical images. We focus on segmentation of
brain tissue from MR image stack and its classification into four classes: { WM, GM, CSF, BG}.

Because our method mostly relies on classification, it is divided into two main phases -
Training phase and Classification phase. Both phases start with the same five steps: Data
loading and conversion, Preprocessing, Oversegmentation, Identification of
neighbourhoods and Features extraction. Then Training phase continues with Training of
multiple classifiers and Classification phase continues with Classification.

Preprocessing

There are two main motivations for preprocessing — accentuation of differences between tissues and removal of
non-brain tissue.

As far as accentuation of differences between tissues we propose to use power law
transformation and brightness adjustment. In our experiments we discovered that
intensity distributions of voxels of individual tissues provide us with non-overlapping
regions. As it can be seen in Figure 68, intensities of WM voxels are in general higher than
those of GM.
Next preprocessing technique is removal of non-brain tissue. We decided to use Brain
extraction tool (BET) [7]. There are two main requirements that we lied on this step:

1. Method must remove significant number of non-brain voxels from processed volume ( eq. (1))

2. Method must not remove more than 0.25% of voxels belonging to brain ( eq. (2))
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Based on results in Table 13, we decided to use BET with intensity threshold equal to 0.3. Result of applying BET
on brain MR volume can be seen in Figure 66.

Table 13 - Influence of parameters on BET
performance (observer on first five IBSR

volumes)
Intensity | Equation (1) (%) | Equation (2)
threshold (%)
0.3 2.1154 0.1344
0.4 1.3971 0.4118
0.5 0.6730 1.0494 Figure 66 — Application of BET on brain MR
0.6 0.4160 2.4955

Oversegmentation using supervoxels

To oversegment image into supervoxels, we decided to use SLIC algorithm proposed in [1]. Supervoxels,
represented by statistical data of included voxels, in its nature resist to noise better than single voxels. Our approach
allows to model supervoxel in context of 3D neighbourhoods.

Success rate of oversegmentation for single supervoxel was evaluated using equation (3):

1 |major(s)|
success = ﬁZsESupervoxels Is| (3)



N denotes number of supervoxels and major(s) denotes number of voxels from major class of voxels in supervoxel.
We measured success rate of oversegmentation for various combinations of compactness and size parameters of

SLIC algorithm. Based on measured results (Figure 67) we decided to set compactness equal to 4 and size equal
to 500.
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Figure 67 - Success rate of oversegmentation as a function of supervoxel compactness at fixed size (all classes)

Features extraction

Information in a supervoxel is an aggregation of information caught by contained voxels. In proposed method we
describe supervoxels with following features:

— Normalized intensity histogram of voxels in supervoxel
— Normalized intensity histogram of all voxels in neighbouring supervoxels

— Normalized Euclidean distance of supervoxel centroid from the centre of the brain

Histograms of intensities describe texture and intensity distribution of supervoxel and its neighbours. According
to Figure 68 it is possible to distinct between supervoxels using intensity distribution.

Location of supervoxels belonging to different tissues is typically invariant. Therefore we
decided to describe supervoxels by distance of their centroids from the centre of the brain.
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Figure 68 - Intensity distribution of WM, GM, CSF and BG in TI MRI

Training and classification

Classification of brain tissues is not a trivial task. Therefore we decided to combine two classifiers-MLP and SVM
in manner described by following pseudocode:



classes = ARRAY.CREATE
FOR each fv in supervoxels.features
response = MLP.classify(fv)
IF number of level 1 excitations in response <> 1
PUSH (classes, combine (response, SVM.classify(fv)))
ELSE IF number of level 2 excitations in response <> 1
PUSH (classes, combine (response, SVM.classify(fv)))
ELSE
PUSH (classes, get class(response))
END IF
END

In MLP, we recognize two levels of excitation:
— Level 1: excitation of an output neuron is greater than 0.40

— Level 2 (significant excitation): excitation of an output neuron is greater than 0.70
Success rate of MLP and SVM classification can be seen in Table 14.

Current results

Because we did not implement complete pipeline as it is defined in proposed method, we were not able to directly
measure success rate of overall segmentation. This will be done in the earliest future. On the other hand, we have
enough data to estimate the performance we would reach if we used MLP we trained. We also thoroughly evaluated
average percentage of voxels belonging to major class in individual supervoxels. Having this information, we can
combine it with success rate of classification of supervoxels of individual classes. Results can be seen in Table 14.
Estimated segmentation success rate is equal to product of MLP success rate (third column) and average percentage
of major class in supervoxel (second column).

Table 14 - Estimated success rates of overall segmentation for individual classes

Class Major class voxels | MLP success SVM success | Estim. segm. success
in superv. (%) (%) (%) (%)
Background 99.95 99.1 99.95 98.70
White matter 78.26 77.7 78.26 69.54
Grey matter 86.24 88.7 86.24 79.65
Cerebrospinal fluid 35.61 85.7 35.61 70.10

Conclusion and future work

To date we proposed complex and novel method for segmentation of brain tissues. We implemented most of its
steps, combining implementation in C++ and MATLAB.

We achieved promising results especially as far as segmentation of CSF is concerned. Our
estimated success rate is very close to our reference method. Of course we are going to
increase segmentation success rate in many different ways, including increased number
of volumes used in training, evaluating of different types of MLP, investigating new
features based on supervoxel shape, considering other oversegmentation algorithms.
After all partial steps are completed we are going to complete overall segmentation
process.

We are going to continue with evaluation. Because we find visualization at least as
important as mathematical evaluation of success rate of segmentation, we are going to
proceed with it, too.

Acknowledgement: This work was partially supported by the Scientific Grant Agency of the Slovak Republic,
under the contract No. VEGA 1/0625/14.
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Abstract—In this work, we present a fully automatic brain
segmentation method based on supervoxels (ABSOS). We
propose novel features used for classification, that are
based on distance and angle in different planes between
supervoxel and brain centre. These novel features are
combined with other prominent features.

The presented method is based on machine learning and
incorporates also a skull stripping (cranium removing) in
the preprocessing step. Neural network - multilayer
perceptron (MLP) was trained for the classification
process. In this paper we also present thorough analysis,
which supports choice of rather small supervoxels,
preferring homogeneity over compactness, and value of
intensity threshold parameter used in preprocessing for
skull stripping. In order to decrease computational
complexity and increase segmentation performance we
incorporate prior knowledge of typical background
intensities acquired in analysis of subjects.

Keywords—Supervoxel, brain mri segmentation, IBSR,
positional feature, supervoxel classification, WM, GM,
CSF.

INTRODUCTION

In radiology and neurology,
segmentation of brain tissues into
cerebrospinal fluid (CSF), grey matter
(GM) and white matter (WM) is an
important part of clinical diagnostics as it
allows to extract and examine only
tissues of interest. Brain segmentation is
often used as a preprocessing step in
medical image processing pipeline.

Input images acquired by magnetic
resonance (MR) devices suffer from
specific kinds of noise (e.g. periodical
noise or partial volume) or other
distortion. Moreover, inhomogeneity in
magnetic field produced by MR causes
intensity inhomogeneity where the
intensity level of a single tissue class

varies gradually over the extent of the
image [1].

In recent years, techniques based on
oversegmentation using superpixels or
supervoxels have grown in importance.
Supervoxels are segments in 3D space
which are expected to create
homogeneous regions of a given size and,
despite this, the supervoxel edges should
follow the natural intensity gradients in
data. Supervoxels can be characterized
by different kinds of statistic-based
features including those based on
intensity, texture, shape and position in
MR volume.

In this paper, we propose a method for
segmentation of brain tissue from MR
image stack and its classification into
four classes: {WM, GM, CSF, BG}. The
proposed method, ABSOS, is a fully
automatic and based on supervoxels.
Supervoxels are classified using the MPL
neural network and they are described
by set of features fsv = {Normalised
intensity histogram, Normalised intensity
histogram of voxels in neighbouring
supervoxels, Normalized Euclidean distance
from brain centre, Angles between
supervoxel centroid and brain centre}.

A. Segmentation in 3D medical
imaging



Segmentation of medical volumes can be
performed in two different ways: either
directly in three-dimensional space or
slice-by-slice, assigning a class label to
each pixel in a slice.

Used similarity metrics could be based on
intensity, brightness or colour and also
could be extended by more complex
metrics which are based on neighbouring
voxels. In [2] authors use average
intensity of neighbouring pixels,
differences of maximum brightness
values and differences of five minimum
brightness values. In some cases, mutual
distance of voxels is important, especially
if voxels from the same class are
positioned in some specific location (e.g.
location of thalamus relatively to the
centre of brain).

B. Oversegmentation and

supervoxels

In medical imaging, a common volume
consists of millions of voxels.
Oversegmentation using supervoxel
reduces the redundance in the data and
decreases the computational complexity
by several orders of magnitude. Another
benefit is that supervoxels can be easily
described by a set of statistical features
[3].

In addition to qualities of supervoxels
defined in [4] we also find homogeneity
of a supervoxel important. In other
words, intra-supervoxel variance should
be minimized.

RELATED WORK

Almost twenty years ago authors in [5]
proposed an adaptive algorithm using
knowledge of tissue intensities and EM
for MRI data segmentation. Since then, an

appreciable amount of brain
segmentation methods has been
proposed. Methods are based on
different segmentation techniques, such
as thresholding [6], region-growing [7],
edge based techniques, atlases [8] or
active contour [9]. With increase of
computational  performance  more
advanced and computationally expensive
techniques could be used, such as Markov
Random Field (MRF) or Self-Organizing
Map (SOM). From another perspective,
segmentation methods and techniques
can be based on statistics, prior
knowledge (e.g. intensity distribution) or
on their combination [10].

In [3], Lucchi et al. segmented
mitochondria in electron microscopy
image stacks. The authors first over-
segmented 3D data and then merge these
groupings (supervoxels) according to
their similarity. Intensity histograms of
voxels and neighbouring supervoxels
were chosen as similarity criteria.
Authors in [11] used intensity histogram
in combination with features that
described texture and shape of a
supervoxel, creating a feature vector with
length 228.

Combination of prior information of
relative overlap between tissue intensity
distributions in MRI, spatial information
and probabilistic atlas maps is the base of
[10]. Authors observed that the overlap
between tissue pairs is relatively stable
among MR volumes and that the overlap
extent differs among tissue pairs. This
prior knowledge in combination with
adaptive tissue priors initialized by
probabilistic atlases is used in Bayesian
decision theory framework. Authors in
[2] segmented T2 MR images into CSF,
GM, WM. Authors based their method on



1-D SOM and Adaptive Resonance Theory
(ART). In this method brightness
difference of brain tissues is widely used.
Authors claim that brightness of pixels is
the most informative property. As a
feature vector not the brightness of
individual pixel is used, but
characteristics of whole neighbourhood
of pixel, called block. Four features were
proposed: brightness, average brightness
in block, difference of maximum and
difference of minimum.

In [9] authors incorporate region-based
active contour/surface model for MR
brain segmentation. Method balances
between global and local intensity
information. If the segment contour is
close to boundary, local intensity term
grows in importance. When the contour
reaches boundary, it stops there. Method
is evaluated on standard Brain Web[12]
dataset. Authors claim promising results
- Jaccard similarity coefficients for CSF,
GM and WM are 0.77, 0.79 and 0.87.
Especially in last few years, many
segmentation methods using
oversegmentation to superpixels or
supervoxels have been presented [3],
[11], [13]. In May 2015 Kong et al. [11]
published "SITDS”, a supervised method
for brain segmentation from MRL
Supervoxels obtained using SLIC were
used as the unit of segmentation. "SITDS”
incorporates discriminative clustering,
which handles intra-class variability in
order to maximize the margin among
clusters and a set of initial labels. The goal
of the method is to assign a label to every
supervoxel. Algorithm is initialized by k-
means. Next, labels are iteratively re-
assigned,
information

maximizing mutual
between labels and

supervoxels.

METHOD OVERVIEW

In this paper we propose ABSOS, a
method for segmentation of brain tissue
from MR image stack and its
classification into four classes: {WM, GM,
CSF, BG}. The method is divided into two
main phases - Training phase and
Classification phase. Both phases start
with the same five steps: Data loading
and conversion, Preprocessing,
Oversegmentation, Identification of
neighbourhoods and Features extraction.
Then Training phase continues with
Training of MLP and Classification phase

with Classification.

TABLE I: Intensity threshold (IT) influence on BET.
IT Missing brain vox. (%) | Remaining non-brain
vox. (%)

0.3 0.5254 2.4595
0.4 1.5555 1.4548
0.5 3.9954 0.5473
0.6 7.9358 0.2109

A. Data description

There are two dataset that are commonly
used for this evaluation of performance
of brain segmentation methods, IBSR[14]
(real world examinations) and Brain Web
[12] (synthetized). In this paper we use
IBSR dataset for evaluation.

PREPROCESSING

As volumes in IBSR-18 vary in dynamic
range, all data are normalized into
interval [0,1] using quantile
normalization. In order to avoid the
usage of noisy values in normalization
process, we consider all values above
Qo.99999 equal 1.

Main goals of preprocessing in our
method are to increase success rate of
supervoxel classification and to decrease
computational complexity of training and
classification. We incorporate prior



knowledge that supervoxels that have
average intensity below 2 (before
normalization) belong to background.
Removal of skull, eyes and other non-
brain tissues can dramatically decrease
time needed for training and
classification, too. In [6] authors
proposed Brain extraction tool (BET) for
this purpose]. We use a BET plugini3 in
Multiimage Analysis GUI application
(Mango)14. This implementation has two
main parameters - Intensity threshold
and Threshold gradient. There are two
main requirements that we lay on this
step:

. Remove significant number of non-
brain voxels from processed volume
(maximize eq. (1))

. Must not remove more than 0.75% of
voxels belonging to brain (eq. (2))

If we remove every voxel from volume,
we will maximize the equation (1), which
would obviously lead to volume
consisting only of one segment.
Therefore, we set the second
requirement, which satisfaction
guarantees that after this preprocessing
step almost all brain voxels stay in the
preprocessed volume.

INONBRAIN — REMOV ED|

s=1
’ INONBRAIN| (1)
o075 < |REMOVED 0 BRAIN|

R |BRAIN)| (2)

We thoroughly evaluated influence of
Intensity threshold (Threshold gradient
is set to default value). Based on
evaluation results (Table [) we decided to
use BET with intensity threshold equal
0.3.

13 http://rii.uthscsa.edu/mango/plugin jbet.html
14 MangoHomepage:http://rii.uthscsa.edu/mango/

OVERSEGMENTATION
USING SUPERVOXELS

To oversegment image into supervoxels,
we decided to wuse SLIC algorithm
proposed in [15] and compared SLIC to
other state-of-the-art superpixel and
supervoxel algorithms in [4].
Supervoxels, represented by statistical
data of included voxels, in its nature
resist to noise better than single voxels.
In [9] authors also use neighbouring
pixels to describe single pixel, but they do
it in 2D space. Our approach models
supervoxel in  context of 3D
neighbourhoods.

In ideal case a supervoxel should contain
only voxels belonging to the same tissue.
Success rate of supervoxelization in
terms of homogeneity of supervoxels can
be expressed by following equation:

) 1 al major(s)

success = J\_v ; TP(‘?) (3)
where N is number of supervoxels, size(s)
is size of the supervoxel s, major(s) is
number of voxels that belong to the most
occurring class in a supervoxel s. We have
also evaluated eq. (3) corresponding to
the classes, because the number of
supervoxels belonging to background
was much higher than the number of
supervoxels belonging to other classes
{WM, GM, CSF}.

SLIC allows to set desired size and
compactness of supervoxels. The
outcomes of our analysis were used for
the parameters setting. For compactness
equal to 6 at fixed supervoxel size
reaches the success rate defined in eq. (3)
its maximum. We adopted this value and



used it in oversegmentation procedure.
Although very small
maximize 3, we decided to use

supervoxels

supervoxel size 120 in order to balance
oversegmentation success rate and
amount of information in supervoxel. In
our method supervoxel S1 and S2 is
considered a neighbour of S2 if at least
one voxel from S1 is in 8neighbourhood
with at least one voxel from S2 in a single
slice of volume.

FEATURES EXTRACTION

In case of supervoxel we can characterize
its neighbours much more descriptive
than in case of a voxel. We propose to
describe supervoxel with following
features:

. Normalized intensity histogram of
voxels in supervoxel (24 bins)

. Normalized intensity histogram of all
voxels in neighbouring supervoxels
(24 bins)

. Normalized Euclidean distance of
supervoxel centroid from the centre
of the brain

. Angle between supervoxel centroid
and brain centre in XY, XZ and YZ
plane

If a supervoxel is surrounded by
supervoxels with intensity histograms
typical to some class (e.g. GM) itis a good
chance that the supervoxel will also
belong to the same class. On the other
hand if,
neighbours contains intensities from all
classes it is clear that the classified

intensity  histogram  of

supervoxel lies on the boundary of some
tissue.

—BG
CSF.

—GM
WM

~ ® ©

> o
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Figure 1: Distribution of normalized Euclidean distances of
supervoxels of individual classes from brain centre.
Supervoxels having mean intensity equal to 0 are ignored.

Normalized Euclidean distance of
supervoxel centroid from the centre of
the brain, is based on morphology of
brain. Outer boundary of GM and CSF is
typically the most distant from the centre
of the brain. On the other hand, some
structures belonging to CSF are closer to
centre. Distributions of normalized
distances centroids  of
supervoxels and brain centre can be seen
in Fig. 1. Distance is calculated as:
dist = Y (@s =)+ (ys —9)* — (2 — 2)°
norm (4)
norm denotes normalization term equal
to:

norm = \/( m“;("y) )2 + (m”;(?}) )2+ (7”'“-;(2})2 (5)

Xs, ysand zsare coordinates of supervoxel,
xb, yp and zp are coordinates of brain

between

centre, norm is normalization term and
max(x/y/z) is maximal coordinate in MR
image in a particular direction.

Many supervoxels belonging to different
classes have similar distance from brain
centre. Therefore, we added three angles
between the centroid of supervoxel and
brain centre (in XY, XZ and YZ plane). In
combination with the distance from brain
centre, position of supervoxel is
described much more precisely and
uniquely.



CLASSIFICATION

Each supervoxel is assigned to either BG,
CSF, GM or WM. In training phase, we
train multilayer perceptron (MLP) with
two hidden layers, sigmoidal activation
function and Levenberg-Marquardt
training function. A significant number of
supervoxels consists of voxels from even
more than two different classes. In
training process, we do not include
supervoxels having less than 87% voxels
from single class and in overall
classification we do not include
supervoxels having mean intensity equal
less than 2 (a priori background).

VIII. ResuLTs
For training, classification and evaluation
purposes, we took supervoxels from all
subjects in IBSR-18 and split them to
training set and testing set (80:20).
Proposed method is compared with the
current state-of-the-art method SITDS
[11] using the same evaluation metrics -
DSC. The authors compared SITDS using
the IBSR-18 with other state-of-the-art

(a) Ground truth  (b) ABSOS segmentation (c) Low MLP
excitation

Figure 2: Segmentation result. (c) highlights supervoxels that
excited MLP in rate lower than 0.9.

methods and reported the best results.
We thoroughly evaluated performance
of proposed method for every tissue
individually (Table II) and conclude that
our results are clearly comparable to
those of current state-of-the-art

methods.

TABLE II: Performance comparison of ABSOS measured using
Dice similarity coefficient (DSC).

Tissue | CsF GM WM

psc | 0.67 0.86 0.85

Performance of proposed method can be
increased even more. In classification
evaluation we observed that
misclassified supervoxels tend to have
bigger standard deviation, lower
percentage of major class voxels and
lower MLP excitation rate (Table III).
Therefore, we can identify
missclassified supervoxels, split them
and classify individually. We assume
that such supervoxels will be more
homogeneous.

TABLE III: Correctly classified supervoxels have greater MLP

excitation and major class percentage. Contrary, intensity
standard deviation is lower among them.

Intens. stand. Major class MLP excit.

dev. perc. rate
Correct 8.1692 92.67% 0.9883
Missclass 10.0361 72.50% 0.8964

We also trained second MLP using all
supervoxels from subjects 3-15 of IBSR-
18. Subsequently, we segmented subject
3 from IBSR-18. Results can be seen in
Fig. 2.

CONCLUSION

In this paper we propose a fully
automatic method for segmentation of
brain from MR images, ABSOS.
Supervoxels are classified into four
classes {BG, CSF, GM, WM} and they are
described by set of features fsv =
{Normalised intensity histogram,
Normalised intensity histogram of voxels
in neighbouring supervoxels, Normalized
Euclidean distance from brain centre,
Angles between supervoxel centroid and
brain centre}. As shown in Table II, our
results are promising in context of
current state-of-the-art methods and
proposed method (as is) is going to be
subject of further research.



Supervoxels with higher
oversegmentation error (which tend to
be misclassified, too) have higher
standard deviation and lower MLP
excitation rate. We are going to use this
information to identify potentially
oversegmented and/or misclassified
supervoxels and either split them into
smaller supervoxels (which will be
classified individually) or use some
other segmentation technique, e.g.
majority nonrigidly
registered atlases. Next option is to use
and evaluate performance of another
oversegmentation algorithm.

voting  using
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F. Resume in Slovak language

Ciel prace

Cielom tejto prace je navrhnut, implementovat a overit metdédu na automaticka
segmentaciu anatomickych organov v medicinskych datach. My sme sa zamerali na
segmentaciu mozgu v MR datach do Styroch tried - pozadie (BG), mozgovomiechovy
mok (CSF), Seda hmota (GM) a biela hmota (WM).

Analyza problému a domény

Doména

Pri Specifickych druhoch medicinskych zakrokov je nutné vopred ziskat informaciu
o vnutornom stave pacienta. Idealne je pritom pouZitie neinvazivnych metdd, ako su
CT, MR, PET, RTG alebo ultrazvuk, pripadne ich kombinacii. V tejto praci sme sa
zamerali na data pochadzajice z magnetickej rezonancie (MR).

Data z magnetickej rezonancie maju formu trojdimenzionalneho hustého objemu, kde
kazdy bod ma okrem troch suradnic taktieZ intenzitu. Nakol'’ko sme chceli uspesnost
nasej metddy porovnat so suCasnymi modernymi rieSeniami prostrednictvom tych
istych dat, pouZili sme Standardni datovd mnozinu IBSR [33].

Ciel'ov metdd spracuvavajucich medicinske data je viacero. Prvym je zefektivnit pracu
Specialistov, ktori vd'aka tymto metédam potrebuji menej ¢asu na vySetrenie jedného
pacienta. Okrem toho existuju metddy, ktoré majua znizit' riziko, Ze expert prehliadne
nejaky dolezity aspekt pri vySetreni. Prikladom sd metddy z rodiny CAD (computer
aided diagnosis).

Teoreticky zaklad

Pod pojmom segmentacia sa rozumie rozdelenie digitdlneho obrazu (v tomto pripade
trojrozmerného objemu) na regidny, vramci ktorych voxely zdielaji podobné
vlastnosti.

Existuje viacero vlastnosti, na zadklade ktorych je mozné zadefinovat podobnost medzi
voxelmi. Prvou z nich je intenzita, ktora je zaroven zakladom jednej z najjednoduchsich
segmentacnych technik - prahovania. Podobnou vlastnostou je farba. Na rozdiel od
intenzity mo6ze byt farba voxelu definovana v réznych tzv. farebnych priestoroch. Nami
vyuZivany supervoxeliza¢ny algoritmus SLIC vyuZiva farebny priestor CIELAB, ktory je
povazovany za najblizsi 'udskému vnimaniu farebnych rozdielov.

KomplexnejSie charakteristiky su zaloZené na susediacich voxeloch. Tymito méze byt
priemernd intenzita susediacich voxelov, rozdiel medzi najsvetlejSim a najtmavs$im
voxelom ¢i histogram intenzit.



Podobnost voxelov nemusi byt urCovana len na zaklade ich intenzity alebo farby.
Mierne modifikovany zhlukovaci algoritmus K-Means pouzity v algoritme SLIC vyuZiva
na meranie podobnosti medzi voxelmi ich vzadjomnu euklidovskd vzdialenost.
Vzdialenost' je pritom mozné zadefinovat rozne, i uz ako kosinusovd, manhattansku
alebo int.

Posledna vel'ka skupina charakteristik je zaloZena na opise tvaru objektu.

Existuju viaceré segmentacné metddy. NajjednoduchSimi si prahovanie a metdda
rastucich regiéonov. Okrem toho existuji metddy zaloZené na hranach, klasifikacii alebo
apriornej vedomosti. Prahovanie je zaloZené na rozdeleni obrazku na popredie
a pozadie, pricom voxely majuice intenzitu (farbu) vacsiu ako stanoveny prah patria do
popredia azvySne do pozadia. SO mozZzné rozne modifikdcie prahovania. Metdoda
rastucich regiénov vyZaduje inicializaciu pociatocnym semiackom, od ktorého
v kaZdom smere region rastie az kym nie je splnena ukoncovacia podmienka. Tou méze
byt maximalna vel'kost regidonu, hrana alebo ina podmienka. Klasifika¢cné metdédy
opisuju voxel sadou priznakov, na zaklade ktorych je nasledne voxel priradeny do
niektorej z tried. Tieto priznaky su typicky odvodené na zaklade okolia voxelu.

Pod pojmom presegmentovanie sa rozumie rozdelenie obrazu do viacerych regiéonov
nez ako je vinom objektov realneho sveta. Vramci tejto prace vyuZivame
presegmentovanie obrazu vo forme supervoxelov, na ktoré je tento obraz rozdeleny.
Supervoxely by pritom mali spifiat' nasledovné charakteristiky [8]:

e Mali by priliehat k hranam.

e Ked st pouZité v ramci predspracovania, mali by byt jednoduché na vypocet,

pamat'ovo nendrocné a jednoduché na pouZzitie.

e Ked' st pouzité pri segmentdcii, mali by zvysit jej kvalitu a rychlost.
Podl'a nas je taktieZ dolezité, aby supervoxely boli ¢o najviac homogénne. Existuja
viaceré supervoxelizacné algoritmy. My sme sa rozhodli pouzit SLIC, kedZe sa
jednoducho pouZiva a okrem toho produkuje vel'mi dobré vysledky.

Nasa metdda je okrem presegmentovania zaloZena na Klasifikacii. Analyzovali sme
viacero klasifikatorov a rozhodli sme sa vyuZit doprednii neurdnovu siet. Neur6nova
siet pozostava zneurdnov, ktoré su usporiadané vo vrstvach. Neurony medzi
jednotlivymi  vrstvami si navzajom pospajané vahovanymi spojeniami.
Prostrednictvom tychto spojeni sa zo vstupnych neurdénov prenasSa excitacia na
vystupné.

Segmentacia medicinskych dat ma svoje Specifikd. Tymi hlavnymi sd wvyssi
dynamicky rozsah takychto dat (12 bitov) a Specifické druhy Sumu. Typickym Sumom
v MR datach je tzv. efekt Ciastocného objemu (angl. partial volume effect), kedy sa
v jednom voxeli agreguje informdcia z viacerych roéznych tkaniv. Efekt ciastocného



objemu sa vyskytuje najma na rozhraniach medzi tkanivami. Okrem toho sa aj v nami
pouzitych datach vyskytuje periodicky Sum, efekt rozvinenia (angl. ringing effect) a iné.

Sucasné rieSenia

Presegmentovanie velkoobjemovych dat bolo pouZité uZz vo viacerych vedeckych
pracach. V [11] Achanta vyuZil supervoxely pri segmentacii mitochondrii v datach
ziskanych elektronovym mikroskopom. Autori prace tvrdia, Ze sa im podarilo zniZzit
vypoCtové naroky segmentacie o niekol'ko radov. Zaroven je nutné podotknut, Ze
autori, podobne ako my, pouZili histogram intenzit supervoxelu na jeho opis.

Autori v [27] (naSej referentnej metdde) segmentovali mozog do tried pozadie,
mozgovomiechovy mok, Seda hmota a biela hmota. Pouzili pritom tie isté data ako my
a preto bolo mozné s touto metédou priamo porovnat uspesnost nasej metddy. V praci
su predstavené dve metddy zaloZené na presegmentovani za pouZitia supervoxelov,
pricom prva z nich (ITDS) nevyZaduje ucitel'a a druha (SITDS) ano. LepSie vysledky,
ktoré prekonali aj vysledky inych modernych met6d, dosiahla SITDS.

Okrem segmentacie zaloZenej na klasifikacii ¢i zhlukovani boli navrhnuté aj metody
vyuzivajuice aprioérnu znalost. Prikladom je distribucia intenzit jednotlivych tkaniv ¢i
tvar regionov ohranicujucich tieto tkaniva.

Navrh metody a opis rieSenia

Vstupné data

Existuje viacero Standardnych formatov na uchovavanie a spracovanie medicinskych
dat. NajpouZzivanejSim a zaroven najrobustnejSim je DICOM, ktory okrem samotného
formatu dat opisuje aj infrastruktiru a protokoly ich prenosu. Star$im formatom je
Analyze. Format Minc je pouzivany zvacsa lokalne.

Formatom, ktorému je prispésobend a s ktorou pracuje nasa metoda, je Nifti. Okrem
samotnych dat Nifti uchovava aj metadata opisujuce kontext v ktorom boli data ziskané
a tieZ orientaciu tychto dat. Vo vSeobecnosti sa v medicinskej praxi pouZiva viacero
orientacii tych istych dat, priCom odbornici zréznych oblasti pouZivaju rozne
orientdcie. VnaSom pripade pred samotnym spracovanim dat tieto najprv
transformujeme do orientacie RSA (right-superior-anterior). V zasade je jedno, v akej
orientacii sa budu spracovavané data nachadzat, doélezité je len to, aby boli vSetky
v rovnakej.

IBSR dataset obsahuje data z vySetrenia osemnadstich subjektov T1 MR zariadenim
srozliSenim 256x256x128. Kazdy subjekt obsahuje okrem samotného MR objemu
taktieZ trojrozmernd segmentacni masku mozgu a aj jednotlivych tkaniv. Tato maska
bola pouzita pri tréningu a taktieZ pri vyhodnoteni ako zlaty standard.



Prehl'ad metédy

NaSa metdda pozostava z dvoch faz - Tréning a Klasifikdcia. Obe zacinaju tymi istymi
piatimi krokmi: Nacitanie a konverzia ddt, Predspracovanie, Presegmentdcia
(supervoxelizacia), Identifikdcia susedstiev a Extrakcia priznakov. Nasledne tréning
pokracuje s Trénovanim klasifikdtora a klasifikacia s Klasifikdciou.

Tréning
V prvom kroku je nutné nacitat data. Ako uZ bolo spomenuté, pracujeme s Nifti
datami, ktoré pred spracovanim orientujeme do RSA orientacie.

Predspracovanie pozostava z dvoch krokov. R6zne subjekty mavaji rézny dynamicky
rozsah, kedZe boli zaznamenané na réznych MR zariadeniach. Z tohto dévodu je nutné
normalizovat intenzity jednotlivych voxelov do intervalu [0; 1]. Intenzity
normalizujeme kvantilovou normalizaciou, pricom hodnoty vacSie ako Qo.99999
kladieme rovné 1. Dal$im krokom je odstranenie voxelov, ktoré netvoria mozgové
tkanivo. Za tymto ucelom vyuzivame metdédu BET (Brain Extraction Tool). Cielom
v tomto kroku bolo pre nas odstranit' ¢o moZno najviac voxelov netvoriacich mozgové
tkanivo a zachovat viac ako 99.25% voxelov, ktoré ho tvoria. Parametrom metédy BET,
ktorého vplyv na uvedené dve podmienky sme skimali, bol prah intenzity (Intensity
Threshold). Po d6kladnej analyze sme hodnotu 0.3 vyhodnotili ako najvhodnejsSiu
a nasledne sme ju pouzili pri extrakcii mozgu. Plati pritom, Ze so stdpajicou hodnotou
prahu intenzity sa dari odstraniovat viac voxelov nepatriacich mozgu, no zaroven je
odstranovanych viac voxelov, ktoré mozgu patria.

Pri presegmentovani objemu do supervoxelov sme hned’ na zac¢iatku stanovili mieru
uspeSnosti takejto segmentacie, vzhI'adom na ktori sme sa snazili najst idealne
hodnoty parametrov velkost' akompaktnost’ algoritmu SLIC. Mieru uspeSnosti
definujeme ako

1 major(s)

success = — —_—
size(s)

SESupervoxels

Vyznam pouZitych symbolov je nasledovny:

N - Pocet supervoxelov

s-Jeden supervoxel

size(s) - PoCet voxelov obsiahnutych v konkrétnom supervoxeli

major(s) - Pocet voxelov triedy s najvacsim vyskytom v jednom supervoxeli

Okrem celkovej uspesnosti presegmentacie sme vyhodnotili aj dspesSnost pre
jednotlivé triedy, nakol'’ko pocetnost supervoxelov patriacich do jednotlivych tried sa
medzi triedami vyrazne odliSuje. Najmenej pocetnymi boli tie patriace do triedy
mozgovomiechovy mok, najpocetnejSimi tie patriace do pozadia. Vo vSeobecnosti bolo



mozné sledovat trend, Ze so stipajucou velkostou a kompaktnostou supervoxelu
miera uspesnosti presegmentacie klesala. Preto by sa mohlo zdat, Ze idealne by bolo
zvolit velmi malé a velmi nekompaktné supervoxely. Na tomto mieste vSak treba
vzhliadnut na fakt, Ze malé supervoxely poskytujd mensie mnoZstvo tidajov, ktoré by
ich umoznili opisat. Zaroven priliSna tvarova roéznorodost supervoxelov moZe
nepriaznivo vplyvat na kvalitu opisu lokalizacie supervoxelu vzhl'adom na centrum
mozgu. Z tohto dovodu sme sa rozhodli pouzit supervoxeli s vel'kostou pribliZne
120 voxelov akompaktnostou shodnotou 6. Vztah medzi velkostou,
kompaktnostou a UspesSnostou pri fixnej kompaktnosti a variabilnej vel’kosti je mozné
vidiet na Obrazok 1.
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Obrdzok 1 - Uspesnost’ presegmentdcie ako funkcia vel'kosti supervoxelu.

Po presegmentovani je nutné identifikovat susedstva medzi supervoxelmi. Dva
supervoxely S1 a S2 povazujeme za susediace vtedy a len vtedy, ked' S1 obsahuje voxel,
ktory je vo vzajomnej 8-susednosti saspoinl jednym voxelom zo supervoxelu S2
v niektorom reze objemu.

Pre ucely Klasifikacie je nutné opisat jednotlivé supervoxely sadou priznakov. Ako
uZ bolo spomenuté, vacsie supervoxely su viac samoopisné ako tie malé. V tejto praci
charakterizujeme supervoxely nasledujicou sadou priznakov:
e Normalizovany histogram intenzit vSetkych voxelov v supervoxeli (24
uniformnych intervalov).
e Normalizovany histogram intenzit vSetkych voxelov vSetkych susediacich
supervoxelov (24 uniformnych intervalov).
¢ Normalizovana euklidovskd vzdialenost centroidu supervoxelu od centra
mozgu.

e Uhol medzi centroidom supervoxelu a centrom mozgu v rovinach XY, XZ a YZ.



Predpoklad, Ze histogramy intenzit budu schopné aspon do urcitej miery rozlisit medzi
supervoxelmi roznych tried, vychadza zfaktu, Ze distribucie intenzit voxelov
jednotlivych tried sa navzajom odlisuju.

Opis supervoxelov prostrednictvom normalizovanej euklidovskej vzdialenosti ich
centier a centra mozgu vychadza z morfolégie mozgu. VonkajSie okraje Sedej hmoty
a bielej hmoty su typicky v najvacsej vzdialenosti od centra mozgu. Naopak, niektoré
Struktury mozgovomiechového mozgu su k centru mozgu najbliZsie. Nemalo by zmysel
extrahovat absoldtne vzdialenosti, nakol'ko rozliSenia jednotlivych MR zariadeni su
rézne. Preto tuto euklidovsku vzdialenost normalizujeme.

Viaceré supervoxely maju takmer rovnaku vzdialenost od centra mozgu. Preto sme
pridali opis polohy prostrednictvom uhlov medzi centrom mozgu a centroidom
supervoxelu v rovinach XY, XZ a YZ. Vd'aka tomu je ich poloha charakterizovana viac-
menej jednoznacne.

Supervoxely, charakterizované uvedenymi priznakmi, ndasledne slizia na
natrénovanie Klasifikatora. Vtejto praci vyuzivame dopredni neurdénovu siet
(viacvrstvovy perceptron) s dvomi skrytymi vrstvami, sigmoidalnou aktivacnou
funkciou a Levenberg-Marquardt trénovaciou funkciou. Do procesu trénovania
nezahfname dve skupiny supervoxelov:
1. Supervoxely, ktoré mali pred normalizaciou priemernd intenzitu mensiu ako 2.
Tieto st automaticky povaZované za pozadie.
2. Supervoxely, kde pocetnost voxelov majoritnej triedy je mensia ako 87%. Tieto
supervoxely zvacsa nie je mozné presne klasifikovat a preto nema zmysel ich
zahfnat do trénovacej mnoziny.

Takouto filtraciou trénovacich dat sme chceli dosiahnut' zrychlenie trénovania a tiez
zvySenie presnosti klasifikacie.

Vo faze Klasifikacie je prvych pat krokov zhodnych sfazou trénigu. Jednotlivé
supervoxely sud Kklasifikované na zaklade ich priznakov. VSetkym voxelom
v klasifikovanom supervoxeli je priradené navestie (angl. label) zhodné s vysledkom
klasifikacie supervoxelu. Na tomto mieste mozZu vzniknut dve chyby:
1. Cely supervoxel bude chybne klasifikovany, t.j. nebude priradeny do triedy,
z ktorej pochadza majoritna ¢ast obsiahnutych voxelov.
2. Supervoxel bude spravne klasifikovany, no obsahuje voxely z viacerych tried.
V takomto pripade bude niektorym voxelom nutne priradené nespravne
navestie.

Zaklad pre vznik druhej chyby bol pritom poloZeny uZ pri presegmentacii, kedy boli
voxely z viacerych tried zaradené do jedného supervoxelu.



Podobne ako pri tréningu, ani pri klasifikacii sa nezaoberame supervoxelmi, ktoré maju
pred normalizaciou priemernu intenzitu mensiu alebo rovnu 2. Tieto su automaticky
povaZované za pozadie.

Pri vyhodnocovani sme porovnali Standardnt odchylku, percentudlne zasttipenie
majoritnej triedy amieru excitdcie perceptronu pri spravne anespravne
klasifikovanych supervoxeloch. Je mozné vidiet' (Table 4), Ze spravne klasifikované
supervoxely majd vyrazne vysSiu mieru excitacie a percentudlne zastipenie majoritnej
triedy. Okrem toho maju spravne klasifikované supervoxely nizSiu Standardnu
odchylku.

Realizacia rieSenia

RieSenie sme realizovali vjazykoch C++ aC#, pricom cast prototypovania
a vyhodnocovania vysledkov sme vykonali v prostredi MATLAB. Celé rieSenie je
z fyzického hl'adiska rozdelené do viacerych projektov azkonceptualneho do
viacerych  modulov.  Projektmi st DP_CLR, DP_CS, DP_Visualization,
DP_WPF_prototype, SLICSuperpixels a modulmi Klasifikdcia, Konverzia, Nacitavanie,
Spracovanie, Serializdcia, Statistika, Vizualizdcia a GUI. Okrem nich sme vyclenili
samostatné pomocné moduly Pomocné programy a Pomocnici.

Dosiahnuté vysledky

Natrénovali sme viacvrstvovy perceptron s dvomi skrytymi vrstvami (52 a8
neurénov). Pri vyhodnocovani sme rozdelili datovd mnoZinu v pomere 80:20
(trénovacia:testovacia) na drovni supervoxelov, t.j. kazdy piaty supervoxel sme zaradili
do testovacej mnoZiny. Uspe$nost’ segmentacie sme merali Diceovym koeficientom
podobnosti. Dosiahli sme vysledky jasne porovnatelné so sdc¢asnou modernou
metodou SITDS. Konkrétne hodnoty: mozgovomiechovy mok 0.67, Seda hmota
0.86, biela hmota 0.85.

Okrem toho sme natrénovali klasifikator na subjektoch 4-15 z datovej mnoZiny IBSR-
18 a nasledne sme segmentovali subjekt 3. Vysledky je mozné vidiet na Obrazok 2.

(a) Zlaty Standard (b) Navrhovana metdda (c) Nizka excitacia MLP
Obrdzok 2 - Vysledok segmentdcie. Na (c) st vyznacené supervoxely, pri ktorych excitdcia v MLP nedosiahla hodnotu
0.9.
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Zhodnotenie a buduca praca

Podarilo sa ndm navrhnit, implementovat a overit metédu na automaticku
segmentaciu mozgu z MR dat za pouzitia supervoxelov. Dosiahli sme vysledky
porovnatel'né so si¢asnymi modernymi metéddami.

V buducnosti by sme sa chceli zamerat na zvySenie uspesSnosti segmentacie. Chceme
pri tom vyuzit' fakt, Ze neurénova siet dosahuje niZ$iu droven excitacie pri nespravne
klasifikovanych supervoxeloch, ataktieZz Ze supervoxely svysSou Standardnou
odchylkou v ramci intenzity su CastejSie nespravne klasifikované. Okrem toho chceme
vyskuasat aplikovat iny presegmentacny algoritmus, ¢im by sme chceli zniZit' chybu
v tomto kroku.



