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Abstract
This work presents a system for semi-autonomous optical localization of distant moving
targets using multiple positionable cameras. The cameras were calibrated and stationed
using custom designed calibration targets and methodology with the objective to alleviate
the main sources of errors which were pinpointed in thorough precision analysis. The de-
tection of the target is performed manually, while the visual tracking is automatic and it
utilizes two state-of-the-art approaches. The estimation of the target location in 3-space is
based on multi-view triangulation working with noisy measurements. A basic setup consist-
ing of two camera units was tested against static targets and a moving terrestrial target, and
the precision of the location estimation was compared to the theoretical model. The mod-
ularity and portability of the system allows fast deployment in a wide range of scenarios
including perimeter monitoring or early threat detection in defense systems, as well as air
traffic control in public space.

Abstrakt
Tato práce představuje semiautonomní systém pro optickou lokalizaci velmi vzdálených
pohyblivých cílů za pomocí několika polohovatelných kamer. Kamery byly kalibrovány a
zastaničeny pomocí speciálně navržených kalibračních terčů a metodologie, jejímž účelem
je minimalizovat hlavní zdroje chyb, jež byly objeveny během důkladné analýzy přesnosti.
Detekce cíle probíhá manuálně, zatímco vizuální sledování je automatické a staví na dvou
state-of-the-art přístupech. Odhad 3D lokace cíle je založen na triangulaci z více pohledů
pracující s nepřesnými měřeními. Základní sestava o dvou kamerových jednotkách byla
otestována na statických cílech a pohybujícím se pozemním cíli, přičemž byla přesnost
odhadu lokace cíle porovnána s teoretickým modelem. Díky modularitě a přenosnosti je
možné systém použít v široké škále situací, jako je například monitoring vytyčeného území,
včasná detekce hrozby v bezpečnostních systémech nebo řízení vzdušeného provozu.
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Chapter 1

Introduction

An autonomous localization of arbitrary moving targets is an essential system component
used in multiple domains, such as air traffic control, robotic workspaces or surveillance and
defense systems. If the sensory data measured by the target are available it is straightfor-
ward to derive its location (by means of the GPS, radio multilateration, etc.). There are
scenarios, however, were the target is unable (malfunctioning aircraft) or reluctant (UAV
intruder) to expose its location. Then the localization estimation system is left with its own
observations. Among others, nowadays, the air traffic control (ATC) and national defense
systems are the most widely used applications of tracking and localizing the moving objects.

In case of the ATC, the airports mainly rely on the multilateration systems which
specialize on surveillance and control of air traffic during all flight phases [18]. The design
of such a system expects that the aircraft are equipped with a secondary surveillance radar
transponders which periodically emit the signals to the ground receiving stations. However,
primary radars are widely used as well [36].

In the military segment, the object localization mainly serves the purpose of early threat
detection where it is necessary to identify and track the intruder which might pose a threat
for a given area under protection. In this scenario only primary radars are used since
the objects of interest are not expected to cooperate.

Besides the ATC and the national defense, there are quite a lot other use cases where
the autonomous localization systems are or could be employed. The road traffic security
is one of such examples. The localization systems can be used by the police to measure
the speed of vehicles and prospectively to pinpoint the exact locations where the speeding
occurred. Autonomous traffic analysis is another well suited application for localization
systems as the main requirement is to estimate the tracks of the given vehicles with regards
to the underlying geographical map.

Even though being widely used, radar based localization systems suffer from several
drawbacks. Radar is a device based on the active emission of the radio signal [51]. In order
to localize distant objects, a huge amount of energy must be emitted to make sure it would
return from the target and a small amount of energy returned might be easily disrupted [36].
What is more, in defense applications it is not desirable that the tracked object would find
out that it is being tracked. That is the condition which actively radiating systems, such
as radars, cannot achieve. Last but not least, the professional class radars used by both
public segment and military are in general expensive, large and heavy devices not suitable
for mobile deployment.

This work presents a semi-autonomous passive multi-camera system for tracking and
localizing arbitrary objects — the Optical Localization System (OLS) — which is based
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merely on ordinary RGB cameras. Since the system does not rely on active emission of
a signal but rather captures the optical information from the environment, it can be used for
secret localization of moving targets. The system is designed to be suited for mobility and
temporary deployment since each camera station weighs no more than twenty kilograms
and the whole system is inexpensive by comparison to radars.

The principle of the optical localization of objects which is based on triangulation is well
known for quite a long time. The first devices which were designed to allow an operator
to estimate a distance to a given object using mechanical and optical principles — optical
range finders — emerged in the second half of the 18th century [7]. Ever since, the optical
range finders had been mostly used for military operations in order to estimate the position
of either naval, airborne or terrestrial targets until the World War II when radar was
invented.

The OLS aims to utilize the same principle as the old optical range finders. However,
instead of an optical device requiring the operator to aim on the target manually the OLS
takes advantage of the RGB cameras and the image processing techniques capable of track-
ing and localizing the target autonomously without the need for a human to interfere.
Furthermore, with the use of sensors capable of finding a geographical position of each
observing unit the OLS system estimates a global geographical position of the given tar-
get represented in standard coordinate system (UTM and/or WGS84). A simple schema
explaining the operation of the OLS is depicted in Figure 1.1.

This work is organized as follows: In Chapter 2 the existing approaches to visual track-
ing, multi-camera target localization and 3D environment reconstruction are summarized
and their suitability for the OLS is discussed. Chapter 3 provides thorough analysis of the
main sources of localization imprecisions in the OLS and proposes the methods to allevi-
ate the error. Chapter 4 describes the design of the OLS from the perspective of system
model, visual tracking, triangulation with noisy measurements and occlusion prediction.
Chapter 5 explains the technical details of the implementation and Chapter 6 presents
the results of conducted experiments. Finally, Chapter 7 concludes the work.

tracking triangulation localization

cam1

cam2

cam3

cam1

cam2

cam3

Figure 1.1: In the OLS a target is tracked by multiple cameras and triangulation is used in
order to estimate its global location.
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Chapter 2

Related Work

Being a complex and semi-autonomously working system the multi-camera optical localiza-
tion system comprises problematics ranging over several different areas. Most importantly,
robust visual tracking capable of long-term tracking of arbitrary target which might ex-
hibit time varying appearance and which might move in a cluttered environment must be
employed. Furthermore, a suitable approach for estimating the position of the target in
3-space given noisy measurements must be proposed. Finally, occlusion prediction using
3D environment reconstruction can be incorporated as a possible extension. The overview
of visual tracking approaches and the discussion of their suitability for the OLS are given in
Section 2.1, the most widely used methods for localizing targets in 3-space given projective
geometry are described in Section 2.2 and the problematics of 3D environment reconstruc-
tion is introduced in Section 2.3.

2.1 Object Tracking

This section discusses the various approaches to tracking of objects using computer vision
techniques. First, the importance of a suitable object representation is explained and
the properties of various object models as well as their advantages and disadvantages with
regards to the requirements of the OLS system are discussed. Different categories of tracking
algorithms are then described and two specific approaches which are most appropriate for
the OLS – the TLD tracker and the BGF tracker based on the particle filter framework –
are explained in more detail.

2.1.1 Object Model

The choice of how the targets are represented determines the domain of approaches used for
visual tracking due to the strong relationship between the algorithm and the object model.
Neither of the state-of-the-art approaches is universal enough to cope with all the difficulties
and disturbances, such as the illumination change, occlusion, cluttered background, motion
blurring or appearance change due to deformation and/or transformation of the object [30]
which might occur over the course of tracking. Therefore, the model should suit a priori
known tracking conditions (e.g. size, speed, rigidity and motion model of the target, number
of targets, camera motion, background model, etc.). Yilmaz et al. classified the model
representations in two categories in their review [57] – the shape and the appearance.
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shape representation A shape model encompasses points [50], contours [27, 23] or artic-
ulated models [11, 34] (see Figure 2.2). The point representation is not suitable for the OLS
since the distant objects appear relatively small in the image and might not provide enough
distinctive points (see Figure 2.1). Both contours and articulated models are mostly used
for tracking non-rigid deformable objects which is not the main concern of the OLS. Addi-
tionally, the accuracy of fitting a contour to a target strongly depends on the convergence
criteria of the energy minimization function, thus they might be computationally expensive.

22 px

7 px

22 px

7 px

13 px

32 px

Figure 2.1: Due to their high distance the tracked objects might appear small as projected
to the image plane. Therefore, a suitable object model must be chosen to avoid tracking
failures.

appearance representation An appearance model is represented either by a rectangu-
lar template [33, 21] or a weighted kernel [8, 13] (see Figure 2.2). The main advantage
of both representations is the fact they contain both the spatial and appearance informa-
tion, additionally they scale well to varying object size (approaching and receding object).
The appearance model seems to suit the requirements of the OLS, thus the tracking ap-
proaches based on variants of both template and kernel model will be used (see Section 2.1.3
and Section 2.1.4).

(a) (b) (c) (d) (e)

Figure 2.2: Various approaches to tracked object modeling. (a) Keypoints, (b) contour and
(c) articulated model fall into the shape representation category whereas (d) template and
(e) kernel belong to the appearance representation category. The intensity of red color in
case (e) denotes the weight of the given pixel in the given (ellipse shaped) kernel.

2.1.2 Tracking approaches

The main purpose of the tracker is to iteratively estimate the trajectory of the tracked object
from frame to frame. There is a wide range of approaches to visual tracking and since they
usually combine multiple various methods in order to reinforce the tracker robustness they
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cannot be really divided into distinct categories in a straightforward manner. However,
the approaches can be coarsely categorized by selection of the object representation.

To reinforce the tracker robustness, motion models are often used. Kalman filter and
particle filter are the most popular ones [9, 21].

Keypoint Tracking

Keypoint tracking represents one of the most common approaches [50, 37]. Keypoint is
understood to be a single point in image which represents a small image region – a point
descriptor – and which should be highly discriminative and invariant to various image trans-
formations. There are many widely used keypoint detectors/descriptors, e.g. SIFT, SURF,
ORB, FREAK, etc. [31, 3, 43, 41] and they differ mainly in the means of matching precision
and computation speed [45, 35]. What the tracker does is that it detects the keypoints and
their descriptors in each frame, selects those representing the object, finds the correspon-
dences and computes the transformation from the previous frame. Even though keypoint
tracking is a well established approach it cannot be used in the OLS due to the insufficient
size of the tracked objects as was explained in Section 2.1.1.

Kernel Tracking

Kernel approaches are based on the so-called kernel. Basically, the feature target represen-
tation is spatially masked with an isotropic kernel (for illustration see Figure 2.2 (e)) which
assigns the largest weights to the pixels in the middle while the weights decay in the direc-
tions towards the edges of the kernel. This enables a spatially-smooth similarity function
to be defined. Consequently, this function can be optimized in the means of target position
using traditional gradient based methods such as gradient descent [8]. To boost the ro-
bustness of the tracker multiple collaborative kernels might be used [13, 48]. The strategy
to distinguish which pixels in the kernel/template are more or less reliable is also utilized
in the BGFG tracker which the OLS is based on (see Section 2.1.4).

Tracking-by-Detection

This class of approaches heavily utilizes the detection principles in combination with motion
based approaches to localize the object [6, 26]. Depending on the object model the detec-
tion might be performed either by detecting keypoints and matching them against the pre-
trained model [42, 39] or by dividing the image into individual patches in which the object
is searched for. For each patch the template matching is performed [44, 21] (using SSD1,
SAD2 or NCC3 as a similarity measure) or feature set is extracted; consequently, the model
presence probability is evaluated using the generative or the discriminative classifier [54, 59].
Since exhaustive search within the whole image is computationally expensive, cascade clas-
sifiers might be applied [52, 5]. The TLD approach which is used in the OLS utilizes the
object detector in order to correct and/or reinitialize the tracker (see Section 2.1.3).

1Sum of Squared Differences.
2Sum of Absolute Differences.
3Normalized Cross Correlation.
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Motion Based Tracking

This category of approaches attempts to extract the motion occurring between the consecu-
tive images. The optical flow method which in general tries to find the motion of individual
pixels in the image can be used to track the keypoints [58] or to produce the binary fea-
ture images and consequently the blobs corresponding to moving objects [1]. Alternatively,
the moving object can be detected in the image regions yielding the highest response of
frame differencing (known also as background subtraction) [38, 29]. The BGFG tracker
which the OLS uses is based on the frame differencing to estimate the appearance model
and the most likely location of the tracked object (see Section 2.1.4).

Motion Modeling

Tracking can be approached through the model of a discrete-time dynamic system, where
the aim is to estimate the current state for each incoming frame [8]. The state can be
represented as a mere 2D position of the target (in pixel-coordinates) or other parameters
such as velocity or acceleration of the target can be modeled as well. Thanks to the motion
model the (computationally expensive) exhaustive search for the object can be reduced to
the vicinity of the current target position estimate.

Kalman filter Kalman filtering is one of the widely used techniques for recursively eval-
uating the current state of a target given the measurement corrupted by the measurement
noise and the prediction of the next state corrupted by the process noise [55, 9]. It is based
on the assumption that the state posterior density is Gaussian and thus it can be param-
eterized by means and covariances. However, this assumption might not hold. In case of
the OLS the camera used for tracking is often in motion and the sensory data about its
position which could be used to stabilize the motion might be imprecise or not available
at all (for illustration see Figure 2.3). Consequently, the position of the tracked object
can change rapidly from frame to frame and thus to defy the assumption of the Gaussian
distribution of the state posterior density. Furthermore the basic Kalman filter is based
on unimodal Gaussian distribution which prevents it from keeping multiple hypotheses for
a single target.

k = 1 k = 2 k = 3 k = 4

Figure 2.3: The evolution of measurement and prediction probability density of the tracked
target in the Kalman filter framework. The target apparently moves along a line with
constant velocity, however, in frame k = 4 it suddenly changes its position due to the rapid
camera movement which is something that Kalman filter cannot cope with.
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particle filter The particle filter represents the most general class of filters which can
cope with non-Gaussian state and measurement processes as well as with tracking multiple
hypotheses [4]. Current state of the system is represented as a particle (~xit, w

i
t) – a vector of

parameters ~xit describing the properties of the tracked object (e.g. position, velocity, accel-
eration, etc.) and assigned scalar weight wi

t. A suitable fitness function must be proposed
to evaluate how well a particle fits to the observed data. Using finite number of particles the
particle filter basically samples the fitness function (which might be arbitrarily complex and
non-differentiable) in an attempt to find the optimum. A bootstrap particle filter (BPF)
is a variant of the particle filter widely used for visual tracking [25]. It follows the sequen-
tial importance sampling principle – in each iteration the particles with higher weights are
duplicated while the particles with lower weights are discarded [12]. This enables higher
resolution sampling of the fitness function only in the parts which are likely to contain the
(local) optimum. The BPF iteratively performs four main steps – resampling, prediction,
update and weights normalization. The detailed breakdown of all steps is depicted in Algo-
rithm 1. Note that the function predict() in update step should correspond to the required
motion model of the tracked object (normal distribution N (µ, σ) is given as an example)
and it can be designed to allow for the rapid camera motion which suits the needs of the
OLS. Therefore, the tracker based on BPF is utilized (see Section 2.1.4).

Algorithm 1: Tracking using BPF

Input: A measurements M , a set of particles P = {( ~x1t , w
1
t ), (

~x2t , w
2
t ), ..., (

~x
np

t , w
np

t )}

Output: The particle (
~

xibestParticle
t , wibestParticle

t ) representing the state estimation
with best weight wi

t

/* Resampling (importance sampling) */
1 resampleParticles()

/* Prediction */

2 foreach (~xit, w
i
t) ∈ P do

3 foreach parameter kj of xit do
4 predict(kj) /* (e.g. kj = kj + x, x ∼ N (µj , σj)) */
5 end

6 end

/* Update */

7 foreach (~xit, w
i
t) ∈ P do

8 wi
t = fitnessFunction(M, (~xit, w

i
t))

9 end

/* Estimate final state e.g. using MAP */

10 (
~

xibestParticle
t , wibestParticle

t ) = (~xit, w
i
t) ∈ P :!∃ (

~
xjt , w

j
t ) ∈ P : wj

t > wi
t

/* Weights normalization */

11 foreach (~xit, w
i
t) ∈ P do

12 wi
t =

wi
t∑np

j=1 w
j
t

13 end
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2.1.3 Tracking-Learning-Detection

The Tracking Learning Detection (TLD) [26] is an algorithm designed for performing so
called long-term tracking – a robust tracking of an object which might change its appear-
ance, be temporarily occluded by closer objects or temporarily completely disappear from
the scene. TLD is based on the appearance representation of the target, specifically a set
of templates is stored and continuously updated. Additionally, TLD can be implemented
to run in real-time. Such properties meet the requirements of the OLS (see Section 1),
thus TLD is incorporated in OLS as one of the visual trackers and this section explains its
design in more detail.

Since long-term tracking cannot be easily achieved either by a mere tracker or by a
detector, the TLD aims to combine the strengths of the detection and tracking algorithms
by combining their results. Furthermore, the algorithm incorporates an online adaptation
subsystem capable of learning the new appearances of the tracked object over the course of
the tracking.

A conceptual diagram of the TLD algorithm is shown in Figure 2.4. The tracking
component tracks the object and for each frame it produces the new position. It expects
that object does not disappear (occlusion, out of FOV) from the scene and if it does, the
tracker fails. The detection component performs full scanning of the image for each frame.
It detects the object and if needed it reinitializes the tracker. The learning component
is capable of generating new appearances of the tracked object and thus improving the
performance of the detector.

The object itself is modeled as a set of patches, each patch being already learned appear-
ance represented by a rectangular bounding box around the object rescaled to a normalized
resolution of 15 x 15 pixels. The similarity of the patches is given by NCC.

Figure 2.4: A diagram of the
main TLD components. Image
is adopted from authors Kalal,
Mikolajczyk and Matas [26].

Figure 2.5: A diagram of the PN learning process. Image
is adopted from authors Kalal, Mikolajczyk and Matas
[26].

Detection The detector treats each frame as an independent one and scans the full image.
A scanning window is used and it is gradually scaled (in order for the detector to achieve
scale invariance) and iteratively shifted along a regular grid of candidate positions. Since
this task is computationally intensive, a cascade classifier is used so that the detector could
quickly decide whether a given subregion contains the object. In case of TLD the cascade
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classifier consists of three sequential stages specifically ordered so that the earlier the stage
is the more subregions it should reduce while being computationally less expensive. Should
the subregion be rejected by any stage, later stages ignore it completely.

Tracking The tracking subsystem is based on the algorithm called the Median-Flow
tracker. A 10× 10 grid is used to select the positions within the bounding box representing
the object. For each position a given point is tracked between the consecutive frames using
pyramidal Lucas-Kanade tracker and eventually the tracker only accepts 50 % of the most
reliable displacements to estimate the new position of the target.

Learning Since the classifier used in the detection phase is initially trained using only
one positive patch (the initial bounding box selected by user) it tends to make errors as
the video stream progresses since the moving object of interest changes its appearance
due to the transformation caused by its motion. Therefore, online component called P-N
learning is incorporated in the system and it gradually extends the training sets. Two
experts are used. P-expert identifies only false negatives while N-expert identifies only false
positives. Once a wrongly classified patch is found, the experts extend the training set and
the classifier is retrained (see Figure 2.5).

2.1.4 Tracking Using Background/Foreground Modeling and Particle Fil-
ter

Autonomous tracking uses an implementation of the visual tracker combining the back-
ground subtraction, motion model and object model in the particle filter framework pro-
posed in [21] (BGFG tracker). Thanks to both particle filter and inter-frame homography
computation, this approach can even cope with moving cameras. Partial occlusion is han-
dled using foreground modeling and the tracker is capable of running in real-time. There-
fore, this approach is suitable for the OLS as well and it is used as an alternative to TLD.
The operation of the tracker is described below.

The target is represented as a rectangular template (consisting of gray-scale intensity
values) which is normalized to the size 24 × 24 pixels. The template is created only once
during the initialization, thus the tracker could fail if the target changed its appearance
significantly during the course of tracking. However, in case of very distant targets, only a
slight change occurs.

The Bootstrap particle filter (BPF) [25] is used to generate and evaluate candidate
positions of the target. Each particle (i.e. the state of the system) is represented as ~xn =
(x, y, vx, vy, h, w), where (x, y) represents the 2D position of the target, (vx, vy) represents
the estimated speed of the target and (h,w) represents the bounding box size.

The perturbations in the observed position of the target caused by the moving camera
are alleviated using the motion model which is applied in the prediction step of the BPF:

posn+1 = posn + veln + γpos ∼ N (µ, σ), (2.1)

veln+1 = veln + γvel ∼ N (µ, σ), (2.2)

bbn+1 = bbn + γbb ∼ N (µ, σ), (2.3)

where scalar posn is the x or y position, scalar veln is the x or y velocity, scalar bbn is the w or
h size of the bounding box in time n, and γ is the noise drawn from the Gaussian distribution
N (µ, σ), where scalars µ and σ parameters are set empirically for each parameter.
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In the update step, each particle is assigned a new weight w using the objective function
reflecting the similarity of the template and the candidate patch. The function serves the
purpose of similarity measure and it is based on a SSD:

w =
∑

(x,y)∈I

emin(M
(x,y)
t ,M

(x,y)
c )(1− |I

(x,y)
t − I(x,y)c |)2, (2.4)

where Mt and Mc are the foreground masks (FM) of the template and the current candidate
respectively, I is the image, t, c subscripts denote template and candidate patch respectively,
and (x, y) superscript denotes indexing 2D array (image). The FMs are estimated by
subtraction of the two images where the bounding boxes denoting the position of the target
do not overlap (the FM Mt is estimated only once). The resulting estimate of the target
position is chosen using the Maximum a posteriori approach.

In order to allow the motion of the camera, the transformation between each pair of
adjacent frames is estimated by detecting and tracking the keypoints using KLT tracker
[50] and then estimating the homography using the RANSAC algorithm [19].

2.2 Multi-camera Target Localization

This section introduces the problematics of estimating the location of a target in 3-space
given the arbitrary number of corresponding image points in 2-space. First, the suitable
camera model is described, then the standard stereo setups are examined, next the notion
of triangulation with noisy measurements is presented and finally the existing approaches
to target location estimation as well as their suitability for OLS are discussed.

2.2.1 Camera Model

Localization of a target corresponds to the process of mapping image locations of a target
in 2-space from multiple cameras to a location in 3-space. Thus it is necessary to define a
model of the camera first. The finite pinhole camera based on the central projection is a
standard approach to model cameras with CCD like sensors [19] and it is used to model
hardware cameras in OLS as well. Finite pinhole cameras use projection matrix P which
maps a point ~X in 3-space to an image location ~x in 2-space (see Figure 2.6):

~x = P ~X, (2.5)

P = KR[I| − C], (2.6)

where I is the identity matrix, R and U are the rotation and translation matrices repre-
senting the orientation and position of the camera frame with respect to the world frame
and K is the intrinsics matrix (or camera calibration matrix) consisting of focal length f ,
coordinates of the principal point S = (x0, y0)

T and skew parameter s:

K =





αx s x0
0 αy y0
0 0 1



 . (2.7)
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Figure 2.6: Perspective projection of point T in 3-space to point t in 2-space located on the
image plane in the finite pinhole camera model.

2.2.2 Stereo Setups

With two calibrated cameras (i.e. K, R and U matrices are known) observing the same
portion of the environment it is possible to estimate the location of the given point/object
in 3-space. The canonical stereoscopic system is one of the widely used setups capable of
estimating the depth of points in the scene [10]. The optical axes of both cameras are
collinear and the notion of disparity is introduced. Disparity refers to the difference in the
image location of the same 3D point when projected under perspective to two different
cameras [47] and the coordinates of a point in 3-space can be derived using following
equations (see Figure 2.7):

z = fB/(xl − xr) = fB/d, (2.8)

x = xlz/f = B + xrz/f, (2.9)

y = ylz/f = yrz/f, (2.10)

where f is the focal length, B is the baseline, xl and xr are the horizontal distances between
the principal points S of the respective camera and the projection tl and tr respectively
(the same applies for yl and yr in vertical direction), d is the disparity and (x, y, z)T are the
3-space coordinates of the target. Nevertheless, the OLS cannot be modeled as canonical
stereoscopic system due to the fact that it is designed to work with an arbitrary number of
cameras and furthermore, the extrinsics of the cameras are not fixed (the cameras rotate
freely in space, see Section 4).

In general stereo setup the collinearity of the optical axes is not required. However,
location of a point in 3-space cannot be simply estimated through triangle similarity. For
each camera, a line in 3-space mapping to a point ~pi in 2-space has to be first computed
using back-projection (see Figure 2.7):

X(λ) = P+~x+ λC, (2.11)

where P+ is the pseudo-inverse of P (P+ = P T (PP T )−1). The location of the target in
3-space is then given as an intersection of all back-projected lines. Given its nature, the
OLS can be modeled as a general stereo setup extended to use an arbitrary number of
cameras (instead of only two cameras).
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Figure 2.7: In canonical stereo setup (left) the 3D coordinates of the given point can be
computed using the notion of disparity. On the other hand, in case of general stereo setup
(right) the intersection of lines in 3-space defined by the target projected to the image space
of each camera must be found.

2.2.3 Triangulation with Noisy Measurements

The process of finding the location of a target in 3-space as an intersection of back-projected
lines is called triangulation. In an ideal case the projection matrices Pi and calibration
parameters are known precisely for both cameras and the lines in 3-space intersect. However,
in real world the system is subject to both systematic and random error (see Chapter 3),
consequently the lines in 3-space might become skew (i.e. they are not guaranteed to
intersect anymore) since the stereo system does not satisfy the epipolar constraint [19] (the
more detailed explanation can be found in Section 2.3):

~x′
T
F~x 6= 0. (2.12)

In general, the same problem holds within each pair of cameras in N-view setup. Instead
of the intersection, the minimum distance between each pair of skew lines might be found as
a line segment perpendicular to both skew lines (see Figure 2.8) via the following equation
[16]:

zij~qi = ~Tij + zijRij ~qj + λij(~qi ×Rij ~qj),

∀i, j = 1, 2, ..., N ∧ i 6= j,
(2.13)

where ~qi is the direction of back-projected line in camera i, zij gives the scale of vector
qi so as to define a point Qij which is the closest to the line back-projected from camera
j, Tij and Rij are the translation and rotation of the coordinate frame of the camera j
with respect to the coordinate frame of the camera i and λij defines the length of the line
segment connecting both back-projected skew lines.

A similar approach to finding the closest distance between each pair of cameras is used
in the OLS (see Section 4.3).

2.2.4 Estimation of Target Location

Since the back-projected lines are skew, there is not the only correct solution to the lo-
calization problem. Contrarily, the position of the target must be estimated. Hartley and
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Figure 2.8: An example of a three-view setup and the target location estimation using
triangulation. Since all cameras are subject to systematic and random error the back-
projected lines are skew, thus there is no intersection. The closest distance between each
pair of lines is given by the line segment perpendicular to both lines.

Zisserman [19] propose a couple of methods where the approaches basically boil down either
to solving an overdetermined system of linear equations or to minimization of the geometric
error. Both approaches are briefly described below.

Direct Linear Transformation (DLT) The DLT algorithm is based on the assumption
that an overdetermined system of linear equations in the form A~x = ~0 (where A is the matrix
of coefficients, ~x is the vector of unknowns and ~0 is the zero vector) is available and that
given the noise there is no exact solution. In case of a stereo setup where the image points
~t1 and ~t2 in 2-space on each camera correspond to a target ~T in 3-space the overdetermined
system of linear equations can be defined with vector ~x = (tx1 , t

y
1, t

x
2 , t

y
2) and matrix A:

A =















tx1
~p31

T
− ~p11

T

ty1
~p31

T
− ~p21

T

tx2
~p32

T
− ~p12

T

ty2
~p32

T
− ~p22

T















, (2.14)

where ~prcam is the rth row of the projection matrix Pcam of the camera cam. The ultimate
solution is found using the SVD4 as the singular vector corresponding to the smallest
singular value of A.

Reprojection Error Minimization Similarly as DLT this method assumes that the
correspondence between image points ~t1 and ~t2 does not meet the epipolar constraint. The

4Singular Value Decomposition
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aim thus is to estimate the position of the target ~T in 3-space which projects to image
points ~t′1 and ~t′2 satisfying the epipolar constraint and which at the same time minimizes
the reprojection error function ref :

ref(~t1, ~t2) = d(~t1, ~t′1)
2 + d(~t2, ~t′2)

2, (2.15)

where d(~x, ~x′) is the Euclidean distance between the measurement ~x and reprojected image
point ~x′ (see Figure 2.9). The reprojection error function can be either minimized using any
optimization method or the minimum can even be found non-iteratively in a closed form.

e1 e2

t1

t1' t2

t2'
d1 d2

image 1 image 2

el1

el2

Figure 2.9: The demonstration of reprojection error in a stereo setup where ei is the epipole,
eli is current estimation of epipolar line and di is the Euclidean distance between the initial
noisy measurement ti and the reprojection of the target estimate t′i in the camera i.

Even though both DLT and reprojection error minimization could be extended so as to
support multiple-view setup, neither of these approaches is suitable for the OLS since they
do not consider any a priori known information about the reliability of the back-projected
line in each camera. It has been shown that in the OLS the precision of target location
estimation strongly depends on the mutual position of the target and the baseline of the
given camera pair (see Chapter 3). Furthermore, it is possible to obtain the confidence
from individual visual trackers (i.e. the confidence that the object is tracked correctly). In
order to exploit that prior information, a specific location estimation method was proposed
for the OLS (see Section 4.3).

2.3 3D Environment Reconstruction

One of the most challenging and still not fully solved problems of visual tracking algorithms
is the occlusion [60, 28], i.e. the case where the tracked object becomes partially or fully
overlapped by another object. Even though both visual trackers the OLS is based on (see
Sections 2.1.3 and 2.1.4) are robust against partial occlusion and to the limited extent
even against full occlusion, they detect the occlusion using visual clues which might not be
reliable.

However, if the 3D model of the surrounding scene is known and motion model in 3-space
of the tracked target is estimated, it is possible to predict both start and end of full occlusion
occurrence in advance and to consequently adjust the tracking algorithm temporarily so
that it would not fail. If the 3D model of the environment is not known beforehand it can
be reconstructed using a mere visual information obtained from cameras.

Therefore, this section introduces the problematics of 3D reconstruction using visual
cues in multi-camera system, namely the basics of epipolar geometry, the notion of bundle
adjustment and a popular tool for performing both sparse and dense reconstruction in
multiple-camera setup – VisualSFM. Proposed algorithm of occlusion prediction based on
the knowledge of sparse 3D model of the environment is presented in Section 4.4.
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2.3.1 Reconstruction Pipeline

Assuming the most general scenario where multiple images of the scene taken from multiple
uncalibrated cameras are available, a 3D reconstruction pipeline based on iterative bundle
adjustment can be utilized [46] (see Figure 2.10).

Figure 2.10: The 3D reconstruction pipeline taking multiple images obtained from un-
calibrated cameras and producing estimated camera parameters and locations of matched
points in 3-space.

The algorithm takes an arbitrary number of images on the input and performs SIFT
keypoint detection as the first step. Next, individual keypoints are matched across all images
creating the tracks. A fundamental matrix F is estimated for each pair of images (see
Section 2.3.2) and those matches which are outliers with regards to F are removed. Finally,
the iterative sparse bundle adjustment (see Section 2.3.3) which produces the estimates of
camera parameters (both intrinsics and extrinsics) and 3D locations of matched points is
run.

In case of the OLS, both extrinsics and intrinsics are known. However, they are correct
only up to a systematic and random error caused by imprecise stationing and rectification
(see Chapter 3) and a noise which the P&T5 unit orientation measurements are subject
to. Therefore, in order to achieve a 3D reconstruction of the surrounding environment
it is still reasonable to employ the bundle adjustment technique. In order to exploit the
a priori known information the bundle adjustment could be for instance initialized with
known camera calibration and pose parameters so as to make the optimization algorithm
more likely to find the global optimum.

2.3.2 Epipolar Geometry

Epipolar geometry represents the relation between two projective pinhole cameras observing
the same point (points) in 3-space [10] (see Figure 2.11). The line between both camera
centers ~Ci is called the baseline and it delimits the epipole ~ei in each projective plane Imi.
The projection of target ~T to both image planes defines image points ~ti which in return
back-project to lines in 3-space. The line eli lying in image plane Imi connecting ~ei and ~ti
is called the epipolar line.

What the epipolar geometry relation says is that the observed target ~T must lie only
in the plane Ep defined by the baseline and both back-projected lines (from the camera
center ~Ci through the image point ~ti). Alternatively, the epipolar line eli is the projection
of back-projected line ~Cj~tj to the projection plane Imi.

5pan and tilt
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Figure 2.11: The epipolar geometry.

Ultimately, the epipolar constraint is defined as follows: Each image point ~ti of a space
point ~T lies in the image plane only on the corresponding epipolar line. This can be stated
numerically using the fundamental matrix F :

~t1
T
F ~t2 = 0 (2.16)

Fundamental matrix F can be estimated from mere image correspondences for instance
using normalized 8-point algorithm within RANSAC framework [19, 10].

2.3.3 Bundle Adjustment

Bundle adjustment is the approach which aims to simultaneously refine the parameters
of all involved cameras (intrinsics and extrinsics) and to minimize the reprojection error
between the initially measured image point and reprojected target. The non-linear least
squares error function E can be defined as [16]:

E =
1

mn

∑

i,j

[

(xij −
~pi1 ~Tj

~pi3 ~Tj
)2 + (yij −

~pi2 ~Tj

~pi3 ~Tj
)2

]

, (2.17)

where m is the number of cameras, n is the number of target points in 3-space, (xij , yij)
is the initially measured location of the projection of target Tj to the projective plane of
camera i and ~pir is the rth row of projection matrix Pi. As for the minimization, Levenberg-
Marquardt algorithm [32] is mostly used.

In case of reconstruction approach proposed by Snavely, Seitz and Szeliski [46] (see
Section 2.3.1) the iterative version of bundle adjustment is used. In this case the most
suitable image pair which has enough matches and large baseline is selected and the camera
parameters as well as the 3D locations of matched points are estimated. In each next
iteration a new camera is added to the optimization algorithm.

2.3.4 VisualSFM

VisualSFM6 is a well established application for end-to-end scene reconstruction using mul-
tiple cameras which follows the standard pipeline described in Section 2.10 and adds another
method for dense reconstruction. For sparse reconstruction, the application uses parallel
implementation of bundle adjustment [56] and for dense reconstruction the Patch-based
Multi-view Stereo Software (PMVS) approach is utilized [17]. The demonstration of dense

6Official website of VisualSFM: http://ccwu.me/vsfm/index.html

18

http://ccwu.me/vsfm/index.html


reconstruction is depicted in Figure 2.12. Upon successful reconstruction the VisualSFM
enables the 3D point cloud to be exported in standard PLY format which could be imported
to the OLS for instance with the use of Point Cloud Library (see Section 4.4).

Figure 2.12: 3D reconstruction performed by VisualSFM from only two photographs taken
by the same camera in district Štýřice (Brno, Czech Republic). Note that even mere two
views suffice to reconstruct the church tower, however, the output data include a lot of
noise.
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Chapter 3

Precision of Localization in
Multi-camera System

The whole chapter is devoted to exploring the problematics of error analysis which must
be performed prior to the system design. The objective is to find prospectively the most
severe sources of error already in the early stages of the system development and to take
appropriate measures in order to eliminate them. First, the topology of the OLS system
minimizing the geometrical limitations is proposed and described in Section 3.1. Section 3.2
then discusses the main sources of error in the system, categorizes them and provides a
detailed analysis of impact each error poses on the OLS. Finally, Sections 3.3 and 3.4
explain the processes of stationing and rectification which aim on eliminating certain types
of errors.

3.1 System Topology

The main building block of the OLS is a camera unit (CU) – an independent collection of
hardware modules including positionable camera and various sensors used for estimating
the geographical coordinates of the CU itself (see Figure 3.1). Detailed description of the
CU will be given in Section 4.1, however, for the purpose of precision analysis it suffices to
remark that a camera which each CU is equipped with is free to rotate around azimuthal
and elevation axes and it is used for the visual tracking of a target.

As was explained in Section 2.2.3 a system consisting of at least two cameras is capable
of estimating the position of the target in 3-space using triangulation. The main strength
of the OLS is the fact it is designed to work with an arbitrary number of CUs, therefore
the estimated position of the target can be refined by incorporating multiple hypotheses.
As will be explained in Section 3.2 the geometric limitations of the stereo-view systems
significantly affect the localization precision. Therefore, the CUs should be positioned so
that their positions projected to the horizontal plane would form approximately regular
polygon. A sample setup of the OLS is depicted in Figure 3.1.
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Figure 3.1: The photograph of the CU (left) and a use case scenario (right) showing four
CUs (red dots) positioned so as to protect a real world area (castle Špilberk in Brno, Czech
Republic). Note that in general each camera might have different FOV depicted as an
angle ω.

3.2 Precision Analysis

The precision of the system can be defined in the means of the frame-by-frame Euclidean
distance E between the estimated location ~Test and the real (ground truth) location ~TGT

of the tracked target:

E = ‖ ~TGT − ~Test‖. (3.1)

Since the precision can be affected severely by multiple independent factors it is essential
to perform the error analysis in order to discover and prospectively alleviate the most
prominent contributors of the overall error.

3.2.1 Sources of Error

The precision of estimating the target position is subject to various types of errors which
have different impact on the overall deflection. Basically, two main categories of errors can
be distinguished, the systematic error and the random error [49].

Systematic error The main property of the systematic error is the fact that it cannot
be revealed by repeating the measurement. I.e. this error is intrinsically integrated in the
system itself and it always distorts the measurements by the same way. In case of the OLS
the sources of the systematic error are the discrepancy between the physical CU and its
model (imprecise mechanical construction) and imprecise stationing (i.e. finding the global
orientation and geographical coordinates of each CU). In order to eliminate the systematic
error in the OLS the process of stationing (see Section 3.3) and rectification (see Section 3.4)
were designed.

Random error This type of error can be usually described by a probability distribution,
i.e. it behaves in a random manner. As for the OLS the main source of the random error is
the visual tracker which typically outputs the measurements oscillating around the correct
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target position. This phenomenon is caused jointly by non-maturity of the tracking algo-
rithms and by the clutter present in the environment such as the atmospheric turbulences
or refractive index fluctuations. Another source of the random error are the measurements
of the current azimuth and elevation of the P&T unit and time synchronization among the
cameras. The random error can be alleviated by making the visual tracker more robust
(see Section 4.2).

Whether being systematic or random, in the OLS the error eventually reflects in unde-
sirable rotation and/or translation of the CU model with regards to its real physical coun-
terpart and consequently, when computing the triangulation the rays are back-projected
in the wrong direction and/or from the wrong position. Note that given the nature of
triangulation (see Section 4.3.1) the OLS is extremely sensitive to error angles (caused e.g.
by wrong estimation of heading). Contrarily, the error translations (caused e.g. by faulty
GPS measurement) are not of major concern (see Figure 3.2).
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Figure 3.2: The impact of undesirable error translation tε (left) and error rotation angle
rε (right) of the CU model which causes the back-projection of incorrect ray r′ instead of
correct r. Note that in case of tε the localization error Ei is invariant to the distance Di

of the target Ti. Contrarily, in case of rε the more distant the target Ti is the higher value
the localization error Ei reaches.

3.2.2 Error in Two-View System

Stereoscopic systems are affected by a phenomenon of diminishing accuracy of depth mea-
surement with increasing distance of the target from the cameras [10]. The depth measure-
ment resolution for canonical stereo setup is:

R =
cd2

fB − cD
, (3.2)

where f is the focal length, B is the baseline length, c is the horizontal size of one pixel and
D is the target distance. By substituting c by pc, where p is the random error represented
by integer number of pixels we obtain the position estimation error function:

E =
pcD2

fB − pcD
. (3.3)

The OLS does not conform to the canonical stereo setup (all cameras can rotate freely)
so the dependence of the error on the target distance is no longer quadratic (considering
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the setup of two cameras where only one of them makes error):

E = B tan(arctan(
D

B
) + arctan(

c

f
))−D. (3.4)

The cameras setup as well as the error shown as the function of the baseline length and
target distance are depicted in Figure 3.3. Note that the higher the distance of the target
and at the same time the lower the baseline length the higher the precision error.
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Figure 3.3: Left figure depicts the setup of two cameras CU1 and CU2 where only CU2

makes an error worth p pixels. T represents the ground truth position of the target
whereas T ′ is the wrongly estimated position. Right figure shows the position estima-
tion error as the function of baseline length and the target distance (given the random
error p = 10 px and following constants corresponding to the hardware used in the OLS:
r = 3.75e−6 m, f = 50e−3 m).

3.2.3 Error in Multiple-View System

A more realistic scenario where each camera makes a random error p is depicted in Fig-
ure 3.5. A significant advantage of using multiple cameras is demonstrated — the geo-
metrical limitations of the two-camera setup make it impossible to precisely evaluate the
position of the target placed close to the line collinear with the baseline (see Figure 3.4). In
the multi-camera setup, on the other hand, the subset of two cameras forming the baseline
Bi is used for each position of the target, following the rule:

i = argmax
i

~ti ~ni, (3.5)

where ~ti is the direction of the line segment linking the center of the baseline CUc and
the target and ~ni is the normal vector of the baseline Bi. Put in other way, the baseline
Bi yielding the highest absolute value of angle γ is chosen to compute the position of the
target.

The Figure 3.5 depicts the position estimation error as the function of the target’s
position with regards to the CUs for both two-camera and three-camera setups. In this
scenario only horizontal position of the target is considered (i.e. its altitude is disregarded)
and it is assumed that each tracker makes the random error worth p = 10 px. For each
position of the target the worst possible location estimation is considered (see Figure 3.4).
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Figure 3.4: The left figure demonstrates the basic geometrical limitation of the two-view
system which causes the position estimation error E to increase rapidly as the angle γ
between the baseline and the target decrease up to the point where γ is zero and E becomes
infinitely large. Note that both CUs make the same random error depicted as error angle
ε. The right figure shows four possible intersections of the rays back-projected from both
CUs making the random error given as the angle ε. When analyzing the precision the worst
error Ei is always chosen.
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Figure 3.5: The position estimation error as the function of the horizontal position of the
target. Two-camera (left) and three-camera (right) setup with B = 20 m are confronted
where utilization of more cameras always yields lower errors. The first two cameras (blue
and green dots) are placed on the X axis with the coordinate frame center in the middle of
their baseline. The third camera (red dot) is placed on the Y axis, so that all the cameras
form a regular triangle.

3.3 Stationing

The main purpose of the stationing process is to find the positions and orientations of
all CUs with regards to the global (world) coordinate system. The stationing consists
of four subtasks: finding the global position (using DGPS sensor), ensuring horizontality,
finding absolute heading1 and finding relative heading. Great care should be taken when

1Heading is the term used to describe the angle between the torso of the human body and the geographical
north [20].
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performing stationing since imprecise estimates of the position and orientation are the main
source of the systematic error which significantly impacts the overall localization precision
of the system.

3.3.1 Horizontality

Since the CU is expected to be placed in an unknown outdoor terrain it will never stand on
an ideally horizontal surface. Therefore, it is necessary to either ensure that the unevenness
of the surface is compensated by the suitable setting of the CU’s stand or both the side
tilt and front tilt angles of the stand must be estimated and integrated to the CU model.
For these purposes the inclinometer attached to the base plane of the camera unit (see
Section 4.1) is used.

3.3.2 Absolute Heading

Though it is a common practice to estimate the heading using a magnetometer, this device
is unsuitable for the OLS since the accuracy of the current professional class magnetometers
starts at ca 10 mrad [22] which is insufficient.

In order to find the orientation of each camera unit placed in the outdoor environment,
distinctive landmarks with known geographical positions are used. For each such landmark
the P&T unit is rotated so that the optical axis of the camera would intersect that landmark
and the azimuth value is registered. Using triangulation the geographical position of the
camera unit is derived.

A different possible approach takes advantage of the celestial objects such as the moon,
sun or stars for which the current geographical position is known as well. Nevertheless, this
approach can only be used between the sunset and the dawn.

3.3.3 Relative Heading

To further reduce the impact of both the random error produced by the GPS sensor and the
systematic error given by the imprecision of absolute heading estimation it is reasonable to
find the relative heading of each camera unit with regards to the rest of the camera units.
Furthermore, relative heading estimation is inevitable in case the absolute heading cannot
be measured at all. In case of the OLS, the absolute heading was not measured during
testing (see Section 6.3) and the system relied only on the relative heading estimation.

The process of relative heading estimation is run separately for each pair of CUs. First,
the azimuth and elevation of both P&T units are set so that the optical axis of the camera
would intersect the expected location of the LED target of the other CU. Then the position
is refined so that the camera would aim directly at the center of the LED target (see
Figure 3.6). Current azimuth and elevation values of both CUs are saved and the whole
model of the system is updated accordingly.

3.4 Rectification

The rectification process serves the purpose of reducing the systematic error caused by the
imprecise attachment of the camera to the P&T unit. The objective is to fix the camera in
such a position that the image sensor becomes parallel with both azimuthal and elevation
axis. At the same time the rows of the image sensor must remain parallel with the elevation
axis (i.e. the camera is not rotated around the optical axis). If it is not possible to fix the
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Figure 3.6: Schema of the stationing process where two CUs attempt to align the optical
axes of their cameras.

camera precisely in the required position (mechanical limitations of the camera mount) the
error angles must be measured and integrated to the CU model. The rectification process
consists of three parts: eliminating rotation along the optical axis, measuring rotation along
the azimuthal axis and finding the default elevation angle.

3.4.1 Eliminating Rotation Along the Optical Axis

The camera is attached to a custom made metal mount. The mount itself is then attached
to the P&T unit using two opposing round tenons enabling for the rotation around the axis
parallel with the optical axis of the camera (see Figure 3.7).

axis 

of rotation

Yc

Zc

Figure 3.7: Front view of the top part of the CU. The red arrow denotes the possible rotation
of the camera along the axis parallel to the optical axis. Image courtesy of company Oprox,
a.s.

In this part the rectification target with three parallel horizontal black lines is used.
As the first step a surveying automatic level is used to rotate the target so that the black
lines become horizontal. The camera is then positioned so as to aim approximately at the
center of the target. The camera image stream is blended with the same stream mirrored
across the vertical axis. Finally, the objective is to manually rotate the camera so that the
black lines in blended image stream appear visually aligned (see Figure 3.8). Once set, the
mount with the camera is fixed to the P&T using two set screws.

3.4.2 Measuring Rotation Along the Azimuthal Axis

The mount can still rotate around the axis parallel with the azimuthal axis (see Figure 3.9).
It is necessary to ensure that the optical axis of the camera is perpendicular to the elevation
axis. The same target from the first part of the rectification is used but two black crosses are
added to the selected horizontal black line. The distance dao between two crosses equals to
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Figure 3.8: A blended image stream from the camera before (left) and after (right) rotating
the camera along the optical axis to the correct position.

the distance between the azimuthal and optical axis (which is known from the engineering
design, see Figure 3.11).

Yc

Xc

axis 

of rotation

Figure 3.9: Top view of the top part of the CU. The red arrow shows the possible rotation
of the camera along the axis parallel to the azimuthal axis. Image courtesy of company
Oprox, a.s.

A military monocular telescope (see Figure 3.10) is mounted on top of the P&T unit.
The optical axis of the telescope intersects the azimuthal axis, it is perpendicular to it and
it intersects the left cross of a given pair on the rectification target. The camera is rotated
so that its optical axis intersects the right cross and then it is fixed using set screws. As
the screws are tightened the camera is unintentionally rotated a bit again which causes the
visual offset between the crosshair and the cross on the target. The offset dh expressed in
pixels is transformed to the default rotation angle β (see Figure 3.12) of the joint camera
in the CU model:

β = arctan
dhc

f
, (3.6)

where f is the focal length and c is the physical size of one pixel.

3.4.3 Finding the Default Elevation Angle

Considering the limited elevation range of the P&T unit Flir PTU D46-70 (see Section 4.1)
the camera must be mounted pre-rotated around the elevation axis by approximately −60∘.
However, after fixing the camera it is necessary to find this default angle precisely.
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Figure 3.10: A telescope mounted
on top of the P&T unit. A person
looking through a telescope sees
the black crosshair.

doa

dh

Figure 3.11: Rectification target with the pairs of
black crosses. The two crosses in a pair are dao meters
apart. A digital crosshair is displayed in order to find
the horizontal offset dh.
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Figure 3.12: The top view schema of a rectification target being projected to the image
sensor of the camera.

For this purpose a pair of rectification targets which consist of horizontal black and
white lines representing the marks of a ruler are used. The targets are positioned in a row
with the distance of a few meters so that the front target would overlap approximately
half of the rare target when observed from the camera. The operator manually adjusts
the elevation of the P&T unit until the digital crosshair intersects the same mark on both
targets where the two marks form a straight line (see figure 3.13). Once such an elevation
is found the angle is recorded and integrated to the model of the camera unit as an angle
of rotation around the Y-axis of the joint camera (see Section 4.1).
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Figure 3.13: Front target of a pair of the rectification targets used to find a default elevation
angle (left). A screenshot from the image stream of the camera with the crosshair focused
on a row where the marks of the rulers align (right).
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Chapter 4

Design of the Optical Localization
System

This chapter describes the overall design of the OLS from both hardware and software
perspective. First, the main physical component of the system – the camera unit – is
presented. The hardware components which the camera unit consists of are described
and the suitable model based on the kinematic chain is proposed in Section 4.1. The
next Section 4.2 delves into the specific requirements and proposed solutions for the visual
tracking. Section 4.3 explains the proposed approach to localizing the target in multi-view
scenario given the noisy measurements and Section 4.4 describes the proposed approach
to utilize the 3D model of the environment in order to predict the occlusion. Finally,
Section 4.5 presents both hardware and software architecture of the system.

4.1 Camera Unit

As stated in Section 3.1 the main component of the OLS is a camera unit (CU). Basically,
the CU consists of hardware devices necessary for capturing the images, for manipulating
the pose of the camera, for estimating absolute geographical position and orientation of the
station as well as relative position and orientation with regards to the rest of the stations
and for running the OLS software.

There are two types of CUs. The overview unit is designed to be controlled manually
by the human operator and it is equipped with the zooming lens which allows achieving
both a wider scanning range and a more detailed view of the farther objects. The tracking
unit uses fixed lens and takes part in the autonomous tracking of the moving objects and
continuous reporting of the estimated directions towards the target.

The hardware components used for tracking stations are described in greater detail in
Section 4.1.1. In order to triangulate the target, the 3D location of the camera as well as
the direction of the optical axis must be known for each captured frame, thus a suitable
model corresponding to the real hardware must be designed. Proposed model based on the
kinematic chain is introduced in Section 4.1.2.

4.1.1 Devices and Components

The CU (see Figure 4.1) consists of a surveying tripod providing a solid base on which a
P&T unit, a camera and all of the devices used for stationing (LED target, GPS sensor
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and inclinometer) are mounted. Each CU is equipped with its own desktop computer for
processing the image data and calculating the 3D position estimates.

Figure 4.1: A photograph (left) of the upper part of the camera unit consisting of a P&T
unit Flir PTU-D46-70 with the aluminum mount carrying a camera Prosilica GT 1290C and
a corresponding 3D model (right) created for rviz and Gazebo simulator (see Section 5.3.1).

Manipulator Flir PTU-D46-70 A P&T unit PTU D46-701 produced by manufacturer
Flir is used (see Figure 4.2). As compared to the other professional P&T units this is a
lower middle class device consisting of two stepper motors (pan and tilt axes). The device is
capable of maximal angular speed of 60∘/s with the resolution of 0.003∘ while the payload
must not exceed 4.08 kg [14]. The operational range is limited to [−180∘, 180∘] in azimuth
and [−47∘, 80∘] in elevation. The P&T unit incorporates no position feedback, the position
is inferred from the number of steps and the current resolution, thus it is necessary not to
overload the P&T unit, otherwise it could lose synchrony and report wrong position.

Camera Prosilica GT 1290C Prosilica GT 1290C2 is an industrial camera manufac-
tured by the company Allied Vision (see Figure 4.2). It is an RGB camera equipped with
CCD sensor (type 1/3”) with the resolution of 1280×960 px and support for 33.3 FPS and
it communicates through gigabit Ethernet [53]. What is important, the camera natively
supports the Precision Time Protocol (PTP) for precise time synchronization which is a
crucial feature in each application relying on stereo vision and it is capable of time syn-
chronization among devices within the range of nanoseconds [24]. The manufacturer claims
that Prosilica GT 1290C achieves the synchronization precision of 1 µs.

Lens Computar M5018-MP2 Each camera mounted on a tracking unit is equipped
with a fixed-focus lens Computar M5018-MP23 (see Figure 4.2). The focal length 50 mm
was chosen as the most suitable trade-off between the wide field of view and capability of
imaging distant targets. Given the camera sensor type 1/3” the effective horizontal field of
view fovh is approximately 5.5∘.

1Website of the product Flir PTU-D46-70: http://www.flir.com/mcs/view/?id=53712
2Website of the product Prosilica GT 1290C: https://www.alliedvision.com/en/products/cameras/

detail/1290-1.html
3Website of the product Computar M5018-MP2: http://computar.com/product/556/M5018-MP2
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Figure 4.2: Product pictures of P&T unit Flir PTU D46-70 (left), camera Prosilica GT
1290C (middle) and lens Computar M5018-MP2 (right).

4.1.2 Model

The model of the camera unit is based on a kinematic chain consisting of six joints and
five links corresponding to the distances between separate parts of the surveying tripod
and separate parts of the P&T unit (see Figure 4.4). The starting joint ground itself
is dependent on the reference location (origin) which represents the origin of the global
coordinate frame. The transformation between origin and ground reflects the position
and orientation of the given P&T unit within the environment (which is estimated during
the stationing process, see Section 3.3).

The kinematic chain is designed as the composition of transformation matrices where
a single joint can be located as a solution to the forward kinematics problem. For instance
the transformation matrix Mcam of the joint camera can be derived as:

Mcam =MeleTcamRZcamRXcamRYcam , (4.1)

where Mele is the transformation matrix of the joint ele which the joint camera is de-
pendent on, and Tcam and RAXIScam are transformation and rotation matrices describing
transformation from the joint ele to the joint camera.

Note that from the implementation point of view, the OLS is built on the ROS frame-
work (see Chapter 5) which presents certain conventions, most importantly the orientation
of the coordinate frame which is used throughout the document (see Figure 4.3).

x

z

y

optical

axis

Figure 4.3: Frame orientation convention which is used throughout the work — a right
handed coordinate system with X axis aiming forward, Y axis aiming left and Z axis aiming
up.

4.2 Visual Tracking

The visual tracking subsystem of the OLS is based on the TLD tracker (see Section 2.1.3)
and the BGFG tracker (see Section 2.1.4). As explained in Section 3, the system is subject
to multiple different sources of error which influence the precision of localization. As far as
the visual tracking is concerned, the random error caused mostly by the common difficulties
such as the background clutter, varying illumination, target appearance change, etc. (see
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Figure 4.4: Schematic view of the kinematic chain of a camera unit with the joints depicted
by the yellow circles. The sizes of all components necessary to specify the translation
matrices between consecutive joints are shown as well. Note that this is the rear view, i.e.
the camera is seen from behind. Thus the joints camera and focus overlap as they both
lie on the optical axis (the joint focus has a lower value of the Z coordinate).

Section 2.1.1) is of the most significance. Furthermore, in the worst case scenario the tracker
might fail completely and never recover unless the human operator interferes.

Therefore, the BGFG tracker was adjusted so as to assign a confidence to each mea-
surement which then enables the localization subsystem to combine the measurements in
the weighted manner (see Section 4.2.1). Furthermore, the bootstrap particle filter (BPF)
algorithm of the BGFG tracker was adjusted so as to alleviate the failures caused by the
harsh camera motion (see Section 4.2.2). Finally, the most suitable strategy for regulating
the motion of the P&T unit based on predicting the 2D motion of the target is proposed
(see Section 4.2.3).

4.2.1 Measurement Confidence

Since the OLS is designed as multi-camera system, the random error or failure of a single
tracker might be compensated by the rest of the units; consequently the total impact on the
localization precision is alleviated. In order to denote the certainty of the measurements
coming from individual trackers the notion of confidence is introduced for the BGFG tracker
(the operation of the BGFG tracker is described in Section 2.1.4).

The confidence is calculated for each frame and it is based on the distance function (2.4)
which BGFG tracker uses to evaluate the candidate states represented by the particles.
Basically, the distance function corresponds to the visual similarity of two image patches –
the target template and current candidate weighted by its foreground mask. Therefore, the
particle weight is normalized by the maximum possible similarity so as to obtain a percent
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value confidence representing the similarity (i.e. confidence ∈ [0, 1]):

confidence =

∑

(x,y)∈I e
min(M

(x,y)
t ,M

(x,y)
c )(1− |I

(x,y)
t − I

(x,y)
c |)2

∑

(x,y)∈I e
min(M

(x,y)
t ,M

(x,y)
c )

, (4.2)

Therefore, the noisy measurements or a complete failure of the tracker can be detected
and propagated to the rest of the system (see Figure 4.5).

confidence = 0.83

confidence = 0.38

template

cand-1 mask

cand-2 mask

Figure 4.5: The demonstration of the confidence computed for two different candidates
(top, bottom) given the input target template (left).

4.2.2 Adjusting Prediction Step Using Frame Differencing

One of the most common reasons for failure of the BGFG tracker is sudden and harsh motion
of the camera mounted to the P&T unit. In such a case, the tracked target represented
as a 2D location on the image plane of the camera abruptly changes its 2D position. The
BGFG tracker continuously computes the homography [21] in order to detect the camera
motion and incorporates it to the motion model of the target. However, the homography
computation often fails mostly when the background is too uniform (e.g. a monotone field,
a sky, etc.).

To deal with such cases, the BGFG tracker was adjusted so that in the prediction step
of the BPF, a subset of particles would be forced to take the image positions yielding the
highest response of the frame differencing computed for subsequent frames. Such locations
are expected to contain the moving target of interest. As compared to the original prediction
step (2.2), the parameters posidimn

representing 2D position of the particle i in the dimension
dim (i.e. x or y) in time n take the following form:

posidimn+1
=

{

fddimn
+ x, x ∼ N (µpos, σpos), if FDmaxn > T ∧ i < M

posin + x, x ∼ N (µpos, σpos), otherwise,
(4.3)

where fddimn
is the coordinate of maximal intensity Fmaxn of the frame differencing in

dimension dim in time n, T is the threshold which alleviates the ubiquitous non-zero frame
differencing response caused by noise and M is the number of particles which are allowed
to change their position. Note that the particles are sorted according to their current
weights in the ascending order, i.e. the index i and constant M denote whether the particle
is allowed to change its position. The impact of adjusted prediction step is depicted in
Figure 4.6.

34



512 particles - no prediction adjustment 512 particles - prediction adjustment (M = 256)

time time

f1 f2 f3 f4 f1 f2 f3 f4

Figure 4.6: Four frames from two tracking sequences of the BGFG tracker are shown
where the original (left) and adjusted (right) prediction step implementation is used. The
distribution of the particles (green dots) is manifested in the top row, the response of the
frame differencing is shown in the bottom row. In both cases the tilt of the camera changes
abruptly between frames f2 and f3 which causes the target (denoted by black arrow) to
appear in the significantly different position. In the first scenario, the particles fail to follow
the target whereas in the second scenario, the subset of particles are forced to the position
of the highest frame differencing response and consequently the target is found again.

4.2.3 2D Motion Prediction and Regulation

In order not to lose the moving target from the field of view the P&T unit has to rotate the
camera around both azimuthal and elevation axis appropriately. The most straightforward
approach would be to simply measure the angular distance between the current measure-
ment (i.e. the projection of the target to the image plane) and the center of the image and
instruct the P&T unit to move so as to minimize this distance as fast as possible. However,
this approach is not sufficient.

Contrarily, there are two main reasons why it is necessary to predict the future 2D
position of the target. First, it is desirable to keep the target as close to the center of the
image as possible so that there would be enough time to react in case of a sudden and
rapid movement of the target. Second, the measurements are delayed (due to the tracking
algorithm computation and communication delay) and the P&T unit manifests considerable
latency.

Given the time stamped (t) states of the P&T unit ~m = [φ, ψ] where φ and ψ are the
angular positions (given in radians) and tracker measurements ~p = [x, y], where x and y
are the positions of the target (given in pixels), the 2D angular speed of the target ~ωt can
be estimated as the moving average over N last measurements i as well as the angular
difference ~d = (φdiff , ψdiff ) between current and future 2D position in T seconds:

~ωt =

∑N−2
i=0 α( ~pi+1 − ~pi) + ( ~mi+1 − ~mi)

∑N−2
i=0 ti+1 − ti

, (4.4)

~d = ~ωtT, (4.5)

where α = arctan ( c
f
) is the angular difference given by one pixel which can be computed

with the knowledge of the physical size of one pixel c and focal length f .
Then the P&T unit can be instructed to move so as to reach the given angular distance

~d. It is necessary that the angular speed ~ωm of the P&T unit decreases gradually and
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smoothly as the target position is approached since the harsh motion of the camera might
causes the failure of the tracker (see Section 4.2.2).

Due to the fact the tracker measurements and consequently the motion commands sent
to the P&T unit are delayed, the regulation function must define a deadzone, i.e. the
minimal angular distance dmin to the target from which the P&T unit is instructed to stop,
otherwise it would oscillate in the vicinity of the static target indefinitely. The angular
distance dmax then defines the maximal desired cutoff angular speed ωmmax of the P&T
unit. The regulation function is then given as follows:

ωm =











0, if d < dmin

freg, if dmin ≤ d < dmax

ωmax, otherwise,

(4.6)

where freg is either linear (flin = ax+ b) or power (fpow = axk + b) function. The example
of a linear and power regulation function is depicted in figure 4.7.
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Figure 4.7: The linear and power regulation function used for controlling the angular speed
of the P&T unit in the given dimension (azimuth or elevation).

4.3 Target Localization Using Triangulation

This section describes the proposed triangulation method in two-view scenario (see Sec-
tion 4.3.1), the incorporation of the a priori known relationship between the target-baseline
orientation and the localization precision (see Section 4.3.2) and the strategy for estimating
the speed and future locations of the target (see Section 4.3.3).

4.3.1 Triangulation

As explained in Section 2.2, the position of the target in 3-space as seen by the stereoscopic
system with known cameras’ parameters can be calculated using triangulation. In case of
the OLS the intrinsics were estimated for each camera during calibration and extrinsics are
known at each time thanks to the sensory data streamed from the P&T units. However,
due to the random and systematic error the rays back-projected from each camera might
not intersect in the 3D space (see Figure 4.8). Therefore, the common plane for both
back-projected rays must first be found.

The estimation of the 3D position of the target consists of the following steps. First,
back-projection is used to find the vectors ~u and ~v which form the planes C1C2U and
C1C2V with the angle α between them. Both vectors are then rotated around the axis ~m
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so that they lie in the same plane C1C2W : ~u′ = R(β1)~u, ~v′ = R(β2)~v. The rotation angles
β1 and β2 correspond to the confidences conf1 and conf2 obtained from both trackers:
|β1| = |α| conf2

conf1+conf2
, |β2| = |α| − β1. Finally, the intersection W of the vectors ~u′ and ~v′ is

found.
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Figure 4.8: A schematic view of a problem of 3D position estimation using triangulation in
two-camera scenario. The camera units C1 and C2 observe the target T in the directions
~u and ~v. The plane C1C2W is used as a common plane where the projected vectors ~u′ and
~v′ intersect.

4.3.2 Incorporating Target-Base Geometry

If multiple CUs are used, the location of the target in 3-space can be estimated as the
weighted centroid of the estimates Ti computed by each pair of the camera units forming
the baseline Bi. The weights correspond to the angle γ between the direction vector bi of
the baseline Bi and the line intersecting the initially estimated position of the target T ′ and
the baseline center bci since this angle significantly affects the localization precision (see
Section 3).

Basically, the location of the target in 3-space is estimated twice. The first estimation T ′

corresponds to the standard centroid of the individual estimates Ti. The second estimation
refines the position T ′ by using the weights corresponding to the target-baseline geometry
(see Algorithm 2). The demonstration of the three-view scenario is shown in Figure 4.9.

4.3.3 3D Motion Prediction

The final estimates of the position of the target in 3-space are noisy and thus, they do not
represent the motion of the tracked target well. In order to estimate current speed of the
target and to predict its future locations (which can be used for occlusion prediction), the
individual estimates must be smoothed. For this purpose a suitable model of the target
motion must be proposed.

The OLS is designed to localize arbitrary moving targets, therefore it is not possible to
utilize one universal motion model. Nevertheless, it is assumed that the complex trajectory
of a target can be locally approximated by a simple linear motion model with constant
velocity and zero acceleration, i.e. the trajectory is modeled as a line in 3-space.
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Figure 4.9: Left figure depicts the initial estimation of the target-baseline angles γi in
three-view localization scenario with the target TGT . The right figure demonstrates the
final estimation of the target location using the weights wi ∼ γi.

Algorithm 2: Estimation of the 3D position from n-views

Input: Set of baselines direction vectors B = ~b1, ~b2, ..., ~bN .
Output: 3D position estimate T .

/* 3D location estimate disregarding weights */
1 foreach ~bi ∈ B do

2
~Ti = Estimate3DPosFrom2V iews(~bi)

3 end

4
~T ′ = 1

N

∑N
i=1

~Ti

/* Weighted estimation of the 3D location. ~bci represents center of the baseline bi */
5 foreach ~bi ∈ B do

6 γi = |~bi( ~T ′ − ~bci)|

7 wi =
eκγi∑N

j=1 e
κγj

8 end

9
~T =

∑N
i=1wi

~Ti

The method RANSAC is used in order to fit the line model to the observed time stamped
measurements since it is fast and it can cope well with a large proportion of outliers [19].
First, the parameters of a line fitting to last N observations ~oi with the tolerance range d are
estimated. The inliers are then projected to the line and the speed ~v of a target is computed
as the average weighted by the time durations ti between consecutive observations ~oi and
~oi−1:

~v =

N−1
∑

i=1

~oi − ~oi−1

ti − ti−1
(4.7)

The future position ~ot of the target can be then simply estimated as ~o = ~o0 + ~vt given
current position ~o0. The tolerance d was empirically set to 2 m and RANSAC is computed
for N = 30 last observations (see Figure 4.10).
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Figure 4.10: The RANSAC algorithm is capable of estimating the model parameters given
the noisy data and it is robust even in the presence of outliers which are effectively disre-
garded (left). This method is used in the OLS in order to estimate the direction and speed
of the target with the assumption of linear motion model (right). The three-view scenario
where the 3D line (yellow) is fitted to the noisy measurements (white spheres) and where
the speed is estimated (red arrow) is demonstrated in rviz environment.

4.4 Occlusion Prediction

As was explained in Section 2.3, if the 3D model corresponding to the environment is
available and if the motion of the target can be predicted (see Section 4.3.3), it is possible
to predict that the target will be occluded by another object. Since the OLS is composed
of multiple cameras it is possible to reconstruct the environment using standard multi-view
approaches such as the bundle adjustment. The problematics of obtaining the 3D model
represented as a point cloud is described in Section 4.4.1 and the proposed approach to
occlusion prediction is given in Section 4.4.2.

4.4.1 Obtaining the 3D Model of the Environment

Since the software tool VisualSFM (see Section 2.3.4) integrates the state-of-the-art ap-
proaches to 3D reconstruction its suitability for the OLS was tested. Even though it pro-
duces high-quality results in the scenarios where large amount of images with overlapping
FOVs are provided (tens or hundreds of photographs), with just a few views (two to four) —
which is the case of the OLS — the visual reconstruction performs rather unsatisfactorily.

The VisualSFM was tested with the task to reconstruct a couple of artificial environ-
ments created within the simulator Gazebo (see Section 5.3.1). The Figure 4.11 demon-
strates the comparison of reconstruction output based on two and four views. It can be
seen that using mere two views results in imprecise estimates with severe noise while four
views provide more reasonable results. Nevertheless, in both cases the relative positions
and orientations of the cameras were not estimated correctly, hence the resulting model was
wrongly positioned with regards to the ground truth position.

Unfortunately, the VisualSFM does not provide the option to set a priori known infor-
mation about the intrinsics and extrinsics of each camera which are known in the OLS and
which could help initialize the reprojection error optimization algorithm used by the bundle
adjustment (see Section 2.3.3) so as to start near the (possibly) global minimum.

Therefore, VisualSFM does not suite the requirements of the OLS and different solution
should be found in order to use the system to perform the 3D environment reconstruction
on its own. The problematics of autonomous 3D reconstruction is out of scope of this
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work which rather focuses on how to exploit the 3D model to predict the occlusion (see
Section 4.4.2).

CU1 CU2

CU1

CU2 CU3

CU4

Figure 4.11: The 3D reconstruction of the rigid object given two (left) and four (right) views
captured by artificial cameras plugged in the simulator Gazebo. Reconstruction based on
four views produces far less noise, however, the position of the model is still estimated
incorrectly with regards to the cameras.

4.4.2 Occlusion Prediction Algorithm and Application

A sample scenario where the full occlusion occurs for both cameras in a basic two-view
setup is depicted in Figure 4.12 (a). The 3D model of the environment is represented as
a point cloud P = {~p1, ~p2, ..., ~pN} where ~pi is the i-th point ~p = [x, y, z]T . The function
occ(~p, ~T ′) then determines for each part of the model (represented by the given point ~pi)
whether it occludes the target T at the position T ′ predicted for time ti +∆t (where ∆t is
the time difference for which the future position is predicted):

occ(~p, ~T ′) =







1, if ~p ~T ′

|~p|| ~T ′|
≤ η

2 ∧ ‖~p− ~CU‖ ≤ ‖ ~T ′ − ~CU‖

0, otherwise,
(4.8)

where ~CU is the central point of the camera and eta is the required angle specifying how big
surrounding of the target T ′ is considered (see Figure 4.12 (b)). Put in other words, only
those points ~pi that lie within the cone given by angle η back-projected from the camera
center ~CU towards the predicted location of the target T ′ and which are closer to ~CU than
the target T ′ itself.

If the occlusion is spotted, the output confidence conf of the tacker (see Section 4.2.1)
can be set to 0 in order to disregard this measurement completely:

conf =

{

0, if
∑N

i=1 occ(~pi,
~T ′) > Tocc

conforig, otherwise,
(4.9)

where Tocc is an empirically set threshold used to disregard the small amount of points
representing the reconstruction noise and conforig is the originally computed confidence as
shown in (4.2). A different, softer solution is to use nonlinear function to scale the conforig
to be inversely proportional to the number of points possibly causing the occlusion:

conf = e−κ
∑N

i=1 occ(~pi,
~T ′)conforig, (4.10)

where κ is the empirically set constant. Note that these concepts are only proposed as the
possible approaches to predict the occlusion and were not implemented.
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Figure 4.12: A sample schema demonstrating the occurrence of the occlusion caused by the
obstacle (a). The demonstration of the 3D environment model represented by a pointcloud
where a certain amount of points (depicted in red color) possibly cause the occlusion for
target T ′

t2+∆t (b).

4.5 Hardware and Software Architecture

In order to support scalability and to meet the computational demands, the OLS is designed
as a distributed system where each camera unit is equipped with its own desktop computer.
Sections 4.5.1 and 4.5.2 describe the hardware architecture of the system and internals of
the camera unit. Section 4.5.3 then presents the main software pipeline from the input of
the operator to the estimated position of the target in 3-space.

4.5.1 Hardware Topology

Considering the big picture of the system, OLS is designed as a star topology, where each
node is represented as either the tracking unit or the overview unit (TU/OU) – a standalone
independent device continuously capturing the camera image stream, performing visual
tracking and regulating the motion of the P&T unit. All TU/OUs are interconnected via
the Gigabit Ethernet switch.

One of the TU/OUs is selected as the master – a central node of the topology which
is continuously receiving the tracking estimates from all the TU/OUs and estimating the
3D location of the target (see Figure 4.13). Additionally, the master serves the purpose
of the interface between the OLS and the human operators and enables them to manually
initialize the system and control each TU/OU (using keyboard and/or joystick) during
runtime if necessary. All the TU/OUs are synchronized using PTP which is ensured by the
hardware support provided by Prosilica cameras.

4.5.2 Components of the Camera Unit

As described in Section 4.1.1, a camera unit itself consists of a P&T unit, a camera, sensors
used for stationing and a desktop computer running the OLS software. The P&T unit
and all the sensors communicate through the RS-232 bus with the controller (based on
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Figure 4.13: The hardware diagram of the OLS depicting the interconnection of the main
building blocks – the tracking and/or overview units (TU/OU).

µP STM32F4007) serving the purpose of the hub aggregating the communication with the
desktop PC. The controller was designed and produced by the Department of Measurement
at Faculty of Electrical Engineering, CTU in Prague. The camera is connected via GigE
bus and finally the desktop computer is linked to the Ethernet Switch via Ethernet bus
(see Figure 4.14).

Figure 4.14: The diagram of the hardware components of the camera unit depicting both
the hardware devices and the communication standards.

4.5.3 Software Pipeline

The data flow perspective of the operation of the OLS is depicted in Figure 4.15. The
OLS is initialized by the human operator who directs the CUs to the desired target and
starts the tracking process. All the selected tracking units then visually track the target,
continuously stream current measurements to the master and regulate the motion of the
P&T unit so that the target would not disappear from their fields of view.
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The localization component continuously estimates the location of the target in 3-space
given the observations from the single tracking units. Given the knowledge of the target
positions history and the suitable motion model the speed and future trajectory of the
target can be estimated and used in order to refine the tracking. The final estimate of
the current target location is continuously emitted and presented to the operator. Should
the operators decide to interfere, the peripherals (keyboard/mouse/joystick) can be used
to manually adjust the tracking and regulation.

Figure 4.15: The end-to-end pipeline of the OLS in the means of data sent among the
separate software components.
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Chapter 5

Implementation

The implementation of the OLS is built on the robotic framework Robot Operating System
and C++ is used as the main programming language. Furthermore, the physical simulator
Gazebo was used during both development and testing phase in order to prepare the system
for real world environment tests. Due to the platforms support limitations of the ROS, the
OLS can only be run within Linux distribution Ubuntu.

Section 5.1 provides the reasoning for why the ROS was chosen as the base framework,
Section 5.2 focuses on the architecture of the OLS, shows the user interface and summa-
rizes the external libraries integrated in the system. Finally, Section 5.3 demonstrates the
necessity of using the simulator Gazebo and gives the technical background of how the ROS
was used in order to obtain the real world environment datasets and to test the OLS.

5.1 Application of the ROS

The ROS1 is a collection of open source libraries, tools and conventions which serve the
purpose of a middleware running alongside a real operating system. Among other features
the ROS provides the programmer with hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing among processes, package
management, a wide range of visualization and debugging tools, time synchronization or
data capture and playback [40].

Utilization of ROS significantly simplified the development since it provides the tools
and means meeting the requirements posed by the design of the OLS (see Section 5.1.1).
Above that, the ROS encompasses multiple packages providing common algorithms and
support for hardware devices which the OLS relies on (see Section 5.1.2).

5.1.1 ROS Properties Used in the OLS

The OLS is designed to become a relatively complex system, thus it exhibits the non-trivial
implementation requirements — among others, the distribution of the running components
among multiple computers, the time synchronization or fast computation of transforma-
tions among coordinate frames. Table 5.1 lists all the main requirements of the OLS and
corresponding features of the ROS.

1Official website of the ROS: http://www.ros.org
2Modeling language URDF: http://wiki.ros.org/urdf
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Table 5.1: The table lists the most important requirements of the OLS and describes how
the ROS framework addresses them.

OLS requirements ROS features

support for camera Prosilica, P&T unit
Flir PTU D46-70, joystick, keyboard

packages avt_vimba_camera, keyboard,
joy

distribution of computation among multi-
ple computers

abstraction layer for distributing nodes
across devices

simple data exchange among subsystems the publisher/subscriber paradigm [40],
support for custom message formats

real-time performance C++ implementation, intrinsic OS level
parallelism (each node runs as a process)

modeling and simulating the CUs custom language URDF2 for robot modeling,
integration with Gazebo

modeling a kinematic chain, heavy 3D
transformations computation

native support for computing transforma-
tion between frames using package tf

3D visualizations tool rviz for visualizing transformations,
robot models, image streams, etc.

advanced debugging multiple introspection tools such as
rqt_graph, rqt_tf_tree, rosparam,
rostopic, rosmsg etc.

physical simulation integration with Gazebo

data streams synchronization message filters for approximate time syn-
chronization

data capturing and playback custom container format bag and related
tools (rosbag, rqt_bag, etc.)

support for popular math and vision li-
braries

conversion API for easy integration of li-
braries OpenCV, PCL and Eigen

5.1.2 Standard ROS Packages Used in the OLS

ROS provides a wide range of packages for interaction with commonly used hardware devices
and for performing various computations. Implementation of the OLS utilizes following
packages:

avt_vimba_camera3 This package wraps the Vimba GigE SDK provided by Allied
Vision Technologies, the manufacturer of the Prosilica series cameras, and allows the pro-
grammer to subscribe to the topic camera\image_raw to easily access the image stream.

keyboard4 The package processes the keyboard events and exposes them via keydown

and keyup topics.

3Package avt_vimba_camera: http://wiki.ros.org/avt_vimba_camera
4Package keyboard: http://wiki.ros.org/keyboard
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joy5 This package processes the events from a joystick and/or gamepad and exposes them
via joy topic.

tf6 The package manages the distribution of the poses of all kinematic chain joints (repre-
senting the CUs) among all nodes and it computes the transformations between requested
pair of frames [15].

5.2 System Architecture

The OLS is divided into multiple ROS nodes with the aim to loosely resemble the hardware
components. Predefined ROS messages as well as the custom ones are used to exchange the
data among nodes. During runtime the operator is presented with a set of windows serving
the purpose of visualizing the current state and providing the interaction capabilities. The
main output of the OLS is the continuous stream of the textual information representing
the estimated information about the tracked target, most importantly its global location
given in UTM coordinates.

5.2.1 Nodes Interaction Design

The overview of the system architecture from the perspective of the ROS namespaces, nodes,
messages and services is depicted in Figure 5.1. The distribution of the computation tasks
to the separate nodes loosely corresponds to the end-to-end data flow pipeline proposed in
Section 4.5.3 (see Figure 4.15). The nodes running within the master namespace serve
the purpose of the access point for the operator as well as the main controller of the whole
system while each of the namespaces CU-N controls a separate CU.
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user
interface

keyboard

joy

~/target-
state-
global

~/new-target

~/target-state-
global
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~/select-manipulator
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~/keyboard/keyup
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Figure 5.1: The diagram of the software components represented by the ROS nodes. The
communication among topics is implemented using ROS messages (standard arrows) and
ROS services (dashed arrows).

Required target is selected via the user interface node (using either of the peripherals
controlled by the joy and keyboard nodes) and the information is immediately propagated

5Package joy: http://wiki.ros.org/joy
6Package tf: http://wiki.ros.org/tf
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to the controls node which keeps the information about all tracked targets. The tracking
node of the given CU is informed about the new target and the visual tracking is initialized.
Furthermore, the tracking node continuously regulate the motion of the P&T unit — the
manipulator node — and it publishes its estimates of the target position in 2-space.

The position estimation node continuously receives the measurements from single track-
ers and it computes the final estimate of the target position in 3-space. Additionally, it
estimates the parameters of the target motion model. Finally, the output is presented to
the operator via the user interface node and the textual data information is published via
the target-state-global message.

5.2.2 User Interface

The OLS does not provide a single integrated graphical user interface. Contrarily, the user
interface is composed of multiple windows, each having a different purpose (see Figure 5.2).
The camera_stream window which is opened for each CU displays the image stream from
corresponding camera and allows the user to select the target of interest (by specifying a
bounding box). Furthermore, it displays the progress of tracking and estimated information
about the tracked target. The rviz window displays the 3D visualization of all CUs and
back-projected rays and the maps window displays the position and orientation of all CUs
and the localized target.

Figure 5.2: The graphical interface of the OLS containing the camera_stream windows
(top), rviz window (bottom left) and maps window (bottom right).

5.2.3 Third Party Software Used in the OLS

Besides the framework ROS a few other publicly available libraries are used within the
implementation:
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OpenCV Computer vision library7 providing algorithms for image processing, computer
vision and machine learning. Version 2.4.11 compiled with the support for CUDA is used.
In the OLS it is used by both visual trackers and by the user interface node.

Eigen Open source C++ template library8 implementing the data structures and meth-
ods for fast solving of linear algebra problems. The OLS uses Eigen mostly for computations
regarding the triangulation.

PCL An open-source library for 2D/3D image and point cloud processing9. Motion pre-
diction based on fitting the line to the scattered data using RANSAC algorithm utilizes the
PCL in the OLS.

TLD tracker The OpenTLD library10 represents an open source C++ implementation
the TLD tracking algorithm (see Section 2.1.3).

BGFG tracker The implementation of the BGFG tracker (see Section 2.1.4) which was
provided by the authors of the tracker [21].

Serial A cross-platform library11 implemented in C++ providing the API for interfacing
with RS-232 serial like ports. It is used to control the P&T unit Flir PTU D46-70.

LatLong-UTM An open-source library12 providing routines for coordinate conversion
between WGS84 and UTM coordinate systems.

5.3 Development and Testing

During both development and testing phase the physical simulator Gazebo was used. In
order to test how the random error of the visual tracker impacts the localization precision
the ground truth tracker was implemented. The real world environment datasets were
obtained with the help of bag file format provided by the ROS.

5.3.1 Application of Gazebo

Gazebo13 is a physical simulator providing the tools to model and simulate robots in both
indoor and outdoor environment. Since the Gazebo is distributed as one of the standard
packages of the ROS framework it is straightforward to integrate the simulation environ-
ment with the already implemented ROS nodes. Since the OLS is designed to track and
localize very distant targets it is not possible to test the system during development in the
laboratory. Therefore, the physical simulation is necessary for the development phase in
order to prepare the system for the real world operation. Gazebo was used for multiple
tasks:

7The official website of OpenCV: http://opencv.org
8The official website of Eigen: http://eigen.tuxfamily.org
9The official website of PCL: http://pointclouds.org/

10The official website of OpenTLD: http://www.gnebehay.com/tld
11The official website of Serial: https://github.com/wjwwood/serial
12The official website of LatLong-UTM: http://ereimer.net/programs/LatLong-UTM.htm
13The official website of Gazebo: http://gazebosim.org
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Testing the tracker Gazebo provides the ROS plugin simulating an RGB camera which
captures the virtual scene and publishes a stream of rendered images. Therefore, it can
be used to test an object tracking algorithm using arbitrarily complex environment and
moving objects (see Figure 5.3).

Figure 5.3: The screenshot of a Gazebo simulation (left) consisting of a virtual environment
(terrain with trees), a flying object (the UAV) and two CUs. Both virtual camera streams
are displayed in real-time using rviz tool (right).

Testing the P&T unit It is a good practice to include a real hardware in the simula-
tion during the development in the hardware-in-the-loop manner [2]. Both actuators and
sensors would be difficult to simulate properly, moreover a real P&T unit is constrained
in terms of the operational range (see Section 4.1), maximum acceleration and speed and
communication throughput so it is necessary to thoroughly test its performance. The sim-
ulation reveals whether the implementation of motion control is correct and whether the
possibilities of the P&T unit suffice to track arbitrarily fast (simulated) objects.

Testing the triangulation Thanks to the Gazebo it is possible to simulate a flying
object with a priori set trajectory (see Figure 5.3) and evaluate the precision of a position
estimation algorithm using comparison between the estimated target position and a ground-
truth. The visualization of the back-projected rays forming the skew-lines is done using
visualization tool rviz14 (see Figure 5.4).

5.3.2 Ground Truth Tracker

Both visual trackers employed in the OLS are expected to provide noisy and delayed mea-
surements. The noise might be caused by either of the typical tracking difficulties (see
Section 2.1) and the delay is inevitable due to the computational complexity of visual
tracking algorithms. What is more, both the noise and the delay will vary across different
environments and different devices running the OLS. As was explained in Section 3.2 the
random error of the visual tracker can have severe impact on the localization precision.

Therefore, in order to test the performance of the OLS utilizing the sub-optimal visual
tracking algorithm, the ground truth (GT) tracker simulating both the noise and the delay

14The ROS package rviz: http://wiki.ros.org/rviz
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Figure 5.4: Three CUs tracking the target and the back-projected rays are visualized by
the rviz tool.

was implemented. In time t the GT tracker outputs the estimated 2D position ~ot−td of the
target ~Ot−td :

~ot−td = Pt−td
~Ot−td + ~on, (5.1)

td ∼ N (µtd , σtd), (5.2)

~ondim
∼ N (µndim

, σndim
), (5.3)

where td is the time delay, Pt−td is the projection matrix at time t− td, ~on is the (2D) noise,
µtd and σtd are the parameters for the time delay normal distribution and µndim

and σtdim
are the parameters for the noise normal distribution for each dimension dim. By changing
the constants µtd , σtd , µndim

and σndim
it is possible to simulate various performance of the

visual tracker.

5.3.3 Handling the Datasets

When testing the OLS in the real world environment it is necessary to record all the sensory
data so that the experiments can be rerun later (with different implementations, different
settings, etc.). Since all the streams must be time synchronized, the time stamps must be
recorded as well and the resulting dataset should be easy to playback.

For these purposes the ROS provides the data format bag15 as well as the set of tools
for both recording, editing and playing back the data. The OLS was designed so as to only
record the sensory data coming from the P&T unit (the manipulator node) and the camera
(the camera node).

Therefore, once recorded, both these nodes constituting the sensory input (see Fig-
ure 5.1) can be easily replaced by the playback of the given bag representing the recorded
data. This approach makes the system operate as if it was running in the real world
environment, hence various tests can be rerun repeatedly.

15The bag format provided by the ROS: http://wiki.ros.org/Bags
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Chapter 6

Experimental Results

The OLS was tested both in simulated and real world environment. The simulation was
based on Gazebo (see Section 5.3.1) and utilized hardware-in-the-loop approach. Section 6.1
describes the first test which compares various regulation functions and finds the most
suitable parameters. Section 6.2 looks closely at the geometrical limitations of the OLS
and verifies the proposed approach to localize the target using geometry based weights.
Finally, Section 6.3 explains how the real world datasets were obtained and what precision
the OLS achieved.

6.1 Regulation of the P&T Unit Motion

As explained in Section 4.2.3 it is desirable to keep the tracked target as close to the image
center as possible by instructing the P&T unit to rotate the camera. Furthermore, the
motion should be smooth and as fast as possible, however, it should cope with the delays
imposed by the visual tracker computation, the communication latency and the latency
of the hardware (P&T unit). Hardware-in-the-loop approach was taken in order to test
the real P&T unit in the simulated environment and the GT tracker (see Section 5) was
utilized.

First, both proposed regulation functions (linear and power, see Section 4.2.3) with
various settings of parameters a and k were tested. In this scenario the objective was
to position the camera so as to aim directly on the static target. The constants µd =
0.120 s, σd = 0.010 s, µn = 0 px, σn = 0 px were selected for the GT tracker to simulate
the worst case delay scenario of the visual tracker performance.

As can be seen in Figure 6.1, the linear function cannot be too steep (high value of
derivative a), otherwise the P&T unit overshoots the target position and it must return
(the cases of linear functions where a = 1.0 and a = 5.0) which is an inadmissible behavior.
Contrarily, if set correctly the power functions do not cause the overshoot and converge
faster. As the result the power function with parameters a = 2.26, k = 1.5 is used in the
OLS.

In order to keep the moving targets close to the center of the image plane, the prediction
of future position of the target must be employed (see Section 4.2.3). A suitable value of
variable Tpred specifying the time in the future for which the position of the target is
predicted should be chosen. If Tpred is too small the P&T unit is not able to keep up with
the motion of the target and the center of the image screen always falls behind the target.
Contrarily, if Tpred is too high, the P&T unit overshoots to the cutoff region (see Figure 4.7)
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Figure 6.1: The figure depicts the Euclidean distance between the target and the center of
the image plane (given in pixels) as the function of time for both linear and power regulation
functions with various settings of parameters. The power function tends to converge more
quickly towards the minimal distance.

and anticipates the position of the target.
Therefore, in the second test a simple scenario consisting of one P&T unit and the

simulated target moving with a constant speed along a line between two boundaries was
created. Different values for prediction time Tpred were set and the horizontal distance
dh between the center of the image S and the projection t of the target T was measured
(see Figure 6.2). As was expected, with increasing value of Tpred the overall distance dh
decreases up to the point where the P&T unit starts to overshoot. Note that it is not
possible to select the best universal value since the performance depends on the distance,
speed and motion model of the target. Therefore, it is necessary to choose the right value
with regards to the given scenario.
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Figure 6.2: Left figure depicts the schema of the perpetual linear motion of the target
moving back and forth between two boundaries. Right figure shows dh as the function of
time for different settings of prediction time Tpred.

6.2 Multi-camera Scenario

As was shown in Chapter 3.2 the precision of localizing the target in 3-space significantly
depends on the angle γ between the baseline and the direction to the target. However,
this geometry limitation can be alleviated by using multiple CUs which are appropriately
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placed within the environment so that at least one baseline which is oriented conveniently
with regards to the target could always be chosen.

In order to test the proposed approach of incorporating the target-base geometry by
weighting the measurements from separate baselines (see Section 4.3.2) two scenarios com-
paring the localization precision of two and three CUs were created. In both cases the
goal was to localize the target moving with constant speed along the circle. In order
to simulate the random error of single visual trackers, the GT tracker with parameters
µd = 0.120 s, σd = 0.010 s, µn = 0 px, σn = 15 px was used.

In the first scenario only two CUs (CU1, CU2) are used and thus there are two critical
regions CR1 and CR2 along the baseline within which the localization error is expected
to be high. In the second scenario the third CU3 was added so that all three CUs would
form a regular triangle. It was expected that both critical regions would be covered by two
newly created baselines. As can be seen in Figure 6.3 the expectations were met.
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Figure 6.3: The figure to the left depicts the schematic view of two test scenarios where
either two or three CUs are used. The target T moves along the circle with constant speed
in the height of 2 m. The figure to the right depicts the localization error E as the function
of time for both scenarios. It can be seen that in the two-camera scenario the error E
increases rapidly once the target reaches either of the critical regions CR1 and CR2.

6.3 Real World Testing

In order to test the real world performance of the OLS two datasets were created using a
basic two-camera setup. The first dataset (meadow) was obtained on the meadow located
between districts Bystrc and Žebětín (Brno, Czech Republic). The CUs were precisely
positioned using differential GPS sensor so that the baseline would be 30 m long. To create
the second dataset (pitch) the athletics stadium VUT SAPPV located in district Královo
Pole (Brno, Czech Republic) was chosen since the DGPS sensor was no longer available and
thus the marks measuring the distance painted on the running pitch were used to station the
CUs which were placed 10 m apart (see Figure 6.4) and presumably in the same altitude.

In both datasets the local heading was estimated by aiming the units at each other
as explained in Section 3.3 and the global heading was computed as the rotation of the
baseline with regards to the UTM coordinate frame. Standalone digital inclinometer was
used to level both stations by manually adjusting the lengths of surveying tripod legs.
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Figure 6.4: The overview and close-up look on the environments within which the meadow
((a), (b)) and pitch ((c), (d)) datasets were created. The geographical positions of both
CUs are denoted by the blue pinpoints.

6.3.1 Setup and Methodology

The system was tested in two different real-world environments and a basic two-camera
setup was used in both cases. The first testing was performed on a meadow (meadow
dataset) and the second one on the running pitch (pitch dataset). Multiple static targets
corresponding to the visually significant landmarks were chosen so that it would be possible
to find their precise geographical coordinates using the cadastral map. In case of meadow
dataset, a moving target equipped with the handheld GPS sensor was tracked and local-
ized as well. During all measurements only horizontal position (i.e. northing and easting
parameters of the UTM coordinate frame) was considered.

For each target, the expected localization error Eest was computed based on the theory
presented in Chapter 3 and it was compared to the real measured error. Note that the
localization error Emeas is defined as the Euclidean distance between the estimated and
ground truth geographical location of the given target given in UTM coordinates:

Emeas =
√

(egt − ee)2 + (ngt − ne)2 (6.1)

where n and e are the northing and easting coordinates and subscripts gt and e denote the
ground truth and the estimate.

6.3.2 Static Targets

Nine landmarks in case of meadow dataset and three landmarks in case of pitch dataset
were selected to test the localization. Tables 6.1 and 6.2 summarize ground truth and
measured UTM coordinates of the targets as well as the position of the targets with regards
to the baseline (angle γ and distance d) which influences the total localization error (see
Section 3).

Note that due to the fact the angle γ (see Figure 4.9) does not vary much, the overall
estimated error Eest is mainly influenced by the distance of the target d which varies
significantly. Therefore the targets are sorted in ascending order with respect to the distance
d. The estimated error Eest was calculated with assumption of the random error worth
p = 4 px (see Section 3).

Figure 6.5 compares the estimated and measured localization error. Note that both Eest

and Emeas follow the same trend of increasing value with increasing distance of the target
from the baseline which is expected behavior caused by the phenomenon of diminishing
accuracy of depth measurement (see Section 3).
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Table 6.1: The results achieved for meadow dataset.

object
GT pos. estim. pos. d γ Eest Emeas

[UTM] [UTM] [m] [◦] [m] [m]

pillar1
x: 608696.2 x: 608695.05

91.92 68.40 0.20 4.41
y: 5452998 y: 5452993.74

pillar2
x: 608714.13 x: 608711.56

199.14 63.91 0.95 5.51
y: 5452890.03 y: 5452885.16

pillar3
x: 608728.93 x: 608731.78

285.01 62.62 1.93 11.73
y: 5452804.81 y: 5452793.43

pillar4
x: 608713.61 x: 608720.62

386.81 66.61 3.39 17.16
y: 5452702.31 y: 5452686.65

tree1
x: 608687.5 x: 608684.5

433.88 70.31 4.13 17.20
y: 5452655.72 y: 5452652.72

person
x: 608481.06 x: 608473.64

479.96 84.09 4.65 23.90
y: 5452666.47 y: 5452643.75

hide
x: 608226.71 x: 608216.86

526.86 45.63 7.57 22.77
y: 5452875.99 y: 5452880.58

tree2
x: 608283.11 x: 608287.11

634.46 69.77 8.56 28.33
y: 5452618.41 y: 5452622.41

mast
x: 607816.03 x: 607826.83

1379.67 70.88 41.24 34.21
y: 5452037 y: 5452069.46

Table 6.2: The results achieved for pitch dataset.

object
GT pos. estim. pos. d γ Eest Emeas

[UTM] [UTM] [m] [◦] [m] [m]

pillar
x: 614563.07 x: 614556.08

125.54 52.93 1.14 7.77
y: 5453706.81 y: 5453703.41

hall
x: 614554.47 x: 614547.67

128.91 85.96 1.01 9.41
y: 5453794.96 y: 5453788.45

fsi
x: 614840.64 x: 614752.41

425.53 44.38 15.80 89.46
y: 5453589.38 y: 5453604.15

As for the meadow dataset the achieved precision is approximately 4–5 times worse than
expected ranging from 4.41 to 34.21 m. Note that the targets were selected manually in the
images, hence the random error plays insignificantly small role in the total imprecision. The
main source of the deflections is the systematic error caused by both imprecise rectification
and stationing.

In case of pitch dataset the achieved precision is approximately 6–10 times worse than
expected ranging from 7.77 to 89.46 m. The impact of the systematic error is even greater.
One of the reasons is the fact the CUs were not stationed using GPS, contrarily their
geographical positions were estimated by finding the pitch marks (on which the CUs were
placed) on the ortophotomap. It has been noted that all the wrong estimations tended
to be placed in more or less correct direction, however too close to the baseline which is
another clue which points to the systematic error (i.e. the mounting of the cameras might
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Figure 6.5: The plot displays both measured Emeas and estimated Eest localization error
for all static targets, which are sorted in ascending order with respect to the distance (and
consequently estimated error Eest).

have moved slightly during the transportations).

Conclusion In order to achieve higher precision more thorough elimination of systematic
error must be performed. In case of rectification the human error as well as non-robust
construction of the camera mounting is the main limitation (see Section 3.4). In case of
stationing more robust approach to leveling the stations as well as estimating the heading
should be taken.

6.3.3 Dynamic Targets

In case of meadow dataset the system was tested against one dynamic terrestrial target
equipped with a mobile GPS sensor – a walking person (see Figure 6.6). The target was
tracked for 120 s and the estimated positions were captured and compared to the ground
truth path (see Figure 6.7). On average the system achieved the precision of 6.25 m. Note
that the position estimates oscillate around the ground truth trajectory, which is caused
by the random error made by both trackers; the error, however, keeps in the specific range
and reaches maximum of 13.35 m. The mean error is higher as compared to the estimated
error (see Section 3), which is again caused by the systematic error (imprecise rectification
and stationing).

An attempt was made to localize another moving target in pitch dataset as well,
however, it was not possible to evaluate the precision since the visual tracker was not
able to follow the target properly. The main reason for faulty operation was the cluttered
background of the target which prevented the tracking subsystem from providing correct
measurements.

Conclusion Precision of localization of the dynamic target is limited in the same way as
in case of static targets. Above that, the system greatly depends on the precision of the
visual tracker which should be investigated more in order to avoid incorrect measurements.
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Figure 6.6: The two-camera setup where the distant target is tracked by both CUs (left
and right). The estimated position of the target is displayed in the map (center).
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Figure 6.7: The comparison of the ground truth and estimated trajectory of a target moving
in the distance range of ca 50–200 m (left). The error as the function of the distance of the
target is also displayed (right). The system makes the average error of 6.25 m.
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Chapter 7

Conclusion

A novel system for semi-autonomous optical localization of arbitrary distant targets was
presented in this work. First, the existing state-of-the-art approaches to visual tracking
were summarized and two techniques, the TLD tracker and BGFG tracker, were selected
to be incorporated in the OLS. Then the problematics of multi-view triangulation was
discussed and the approaches used to reconstruct the 3D environment were examined.

Thorough precision analysis was performed so as to pinpoint the most severe sources
of the error. The geometrical limitations of the OLS were demonstrated and the merits of
multiple-view setup over the stereo setup in the means of localization precision were shown.
The stationing and rectification procedures aiming on eliminating the systematic error were
then proposed.

The kinematic chain based model of the camera was suggested and the BGFG tracker
was adjusted so as to minimize the impact of the random error. Suitable functions for
regulating the motion of the P&T unit were discussed and the approach to triangulate the
target position with the knowledge of trackers’ confidences and target-base geometry was
designed.

The OLS was implemented in C++ within the framework ROS and simulator Gazebo
was used to test the system in hardware-in-the-loop manner. Real world datasets were ob-
tained and the system was tested against both static and moving targets. It has been shown
that the localization precision is 4–10 times lower as compared to the expected precision
while the most likely culprit is the imprecisely performed stationing and rectification.

As for the further development the tracking algorithm should be investigated so that
it would perform well even in environments with cluttered background and more thorough
stationing and rectification should be accomplished. Furthermore, automatic detection and
possibly classification of moving targets could be implemented and the approach to handoff
the target among separate CUs should be proposed to make the OLS fully autonomous.

The work was conducted in collaboration with consortium of companies RCE systems
s.r.o1. and Oprox a.s.2 and with the Department of Measurement at Faculty of Electri-
cal Engineering, Czech Technical University in Prague3 as a real world application. The
development will continue so that a standalone solution could be produced to potential
customers.

1The official website of RCE systems s.r.o: http://www.rcesystems.cz/
2The official website of company Oprox a.s.: http://www.oprox.cz/
3The official website of Department of Measurement, FEL, ČVUT: http://measure.fel.cvut.cz
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List of Abbreviations

ATC air traffic control

BGF background/foreground tracker

BPF Bootstrap particle filter

CCD charge-coupled device

CU camera unit

DGPS Differential Global Positioning System

DLT direct linear transform

FM foreground mask

FOV field of view

LED light-emitting diode

NCC normalized cross-correlation

OLS Optical Localization System

P&T pan and tilt

PCL Point Cloud Library

PTP Precision Time Protocol

ROS Robot Operating System

SSD sum of square differences

TLD Tracking-Learning-Detection tracker

TU/OU tracking unit/overview unit

UTM Universal Transverse Mercator

WGS84 World Geodetic System 1984
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Appendix A

DVD Contents

Following files can be found on the attached DVD:

/text Source files of this work (.tex), the figures and the final document
(.pdf).

/poster The poster of this work presented at conference Excel@FIT 2016 (A1
format, .pdf).

/video The video overviewing this work presented at conference Excel@FIT
2016 (.mp4, h264).

/paper The paper published at conference Excel@FIT 2016 (.pdf).

/ols/src Source code of the OLS divided into separate ROS packages (.cpp,
.h, other auxiliary formats).

/ols/data Part of the meadow dataset (.bag).

/ols/doc The generated documentation of the source code (.html).

/misc/photos Various photographs of the OLS taken during development, rectifi-
cation and testing (.jpg).

/misc/videos Various videos documenting the development and testing of the OLS
(.mp4, h264).

/README.txt Text file including the description of the DVD contents, system re-
quirements, building and running instructions and the usage manual.
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Appendix B

Usage of the OLS

Table B.1 summarizes the controls used to interact with the OLS. It is expected that the
camera_stream window (see Section 5.2.2) is in focus.

Table B.1: OLS controls.

KEYBOARD

0-9 (alphanumeric) Switch among CUs.

left/right arrows Rotate the P&T unit around azimuthal axis.

down/up arrows Rotate the P&T unit around elevation axis.

4, 6 (numeric) Change the horizontal size of the bounding box.

2, 8 (numeric) Change the vertical size of the bounding box.

Y Select TLD tracker.

U Select BGFG tracker.

I select GT tracker.

Enter Start/stop tracking.

T Switch on/off regulation of the P&T motion.

S Switch stepper mode on (rotate P&T unit by steps).

C Switch continuous mode on (rotate P&T unit continusously).

Home Rotate the P&T unit so as to reach azimuth = 0 rad.

End Rotate the P&T unit so as to reach elevation = 0 rad.

MOUSE

left button Start tracking the selected image region.

JOYSTICK/GAMEPAD

axis-0 Rotate the P&T unit around azimuthal axis.

axis-1 Rotate the P&T unit around elevation axis.

axis-2 Change the horizontal size of the bounding box.

axis-3 Change the vertical size of the bounding box.

button-9 (start) Start/stop tracking.
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Optical Localization of Very Distant Targets in

Multi Camera System

Jan Bednařı́k*

Abstract

This paper presents a system for automatic optical localization of distant moving targets using

multiple pan-tilt cameras. The cameras were precisely calibrated and stationed using custom

designed calibration targets and methodology. The detection of the target is performed manually,

while the automatic visual tracker combines the background/foreground modeling and motion

model in the particle filer framework. The estimation of the 3D location is based on the N-view

triangulation. A basic setup consisting of two camera units was tested against static targets and

a moving terrestrial target, and the location estimation precision was compared to the theoretical

model. The modularity and portability of the system allows fast deployment in a wide range of

scenarios including perimeter monitoring or early threat detection in defense systems, as well as air

traffic control in public space.

Keywords: multi-camera localization — visual object tracking — 2D motion prediction — particle

filter based tracking — stationing and rectification — articulated model of PT unit — 3D localization

using triangulation — physical simulation using Gazebo — robotic system design using ROS

Supplementary Material: Demonstration Video

*jan.bednarik@hotmail.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

An autonomous localization of arbitrary moving tar-

gets is an essential system component in multiple do-

mains, such as air traffic control, robotic workspaces or

surveillance and defense systems. If the sensory data

measured by the target are available, it is straightfor-

ward to derive its location (by means of the GPS, radio

multilateration, etc.). There are scenarios, however,

were the target is unable (malfunctioning aircraft) or

reluctant (UAV intruder) to expose its location. Then

the localization estimation system is left with its own

observations.

Radars, the most widely used devices for localizing

distant targets, suffer from being unportable, energy-

intensive and expensive. Furthermore, it might be

desirable that the tracked object not find out that it

is being tracked, which is the condition an actively

radiating system cannot achieve.

This paper introduces a semi-autonomous passive

multi-camera system for tracking and localizing the

distant objects, which is based merely on ordinary

RGB cameras — Optical Localization System (OLS).

The system is designed to suit mobility and temporary

deployment because each camera station weighs no

more than twenty kilograms and the whole system is

inexpensive by comparison to radars as well.



2. Related Work

The choice of how the targets are represented deter-

mines the domain of approaches used for visual detec-

tion and/or tracking. In general, two main representa-

tions are used [1]: a shape model which encompasses

e.g. points [2], contours [3, 4] or articulated models

[5, 6], and an appearance model which is represented

by a template [7] or active appearance model [8].

Moving object detection Depending on the object

model, the detection might be performed either by

detecting keypoints and matching them against the pre-

trained model [9, 10, 11], or by dividing the image into

individual patches in which the object is searched for.

For each patch, the template matching is performed

[12, 7] or feature set is extracted; consequently, the

model presence probability is evaluated using the gen-

erative or the discriminative classifier [13, 14]. Since

the exhaustive search within the whole image is com-

putationally expensive, the cascade classifiers are ap-

plied [15, 16]. Alternatively, the moving object can

be detected in the image regions yielding the highest

response of frame differencing [17, 18].

Object tracking There are multiple approaches to

visual tracking. Keypoint tracking represents one of

the most common ones [2, 19]. Kernel approaches are

based on a weighted kernel used to derive smooth dis-

tance function which can be optimized in the means of

target position using traditional gradient based meth-

ods such as gradient descent [20], or even multiple

collaborative kernels might be used [21, 22]. Other ap-

proaches rely on tracking-by-detection concept which

heavily utilizes the detection principles in combination

with motion-aware approaches to localize the object

[23, 24]. To reinforce the tracker robustness, the mo-

tion models are often used, Kalman filter and particle

filter being the most popular ones [25, 7].

Multi-view optical localization Multi-camera local-

ization is mostly used in the domain of robotics, where

the intelligent space consisting of several cameras with

a priory known and fixed intrinsics and extrinsics is

utilized [26]. The centralized system uses either mere

visual information or enhances the localization with

the help of robots’ sensory data [27, 28, 29, 30]. Bound

to the predefined space and using fixed cameras, those

systems do not need to deal with the imprecise esti-

mates of a current camera pose.

3. System Overview

The main building block of the OLS is a camera station

(CS), a standalone unit consisting of hardware modules

Figure 1. Tracking camera station (left) and a use case

scenario (right) showing the positioning of four tracking

stations (red dots) and one observation station (green dot)

to protect a real world area.

necessary for capturing the images, manipulating the

pose of the camera and estimating its own geographical

coordinates. There are two type of CSs. The overview

station is designed to be controlled manually by the

human operator and is equipped with the zooming

lens that allows achieving both a wider scanning range

and a more detailed view of the farther objects. The

tracking station consists of the fixed lens and takes

part in the autonomous tracking of the moving objects.

The OLS is designed to work with an arbitrary

number of CSs. Due to the geometric limitations of

the multi-view systems, which affect the localization

precision, the tracking stations should be positioned so

as to form approximately regular polygon with long

enough bases (see Section 4, see Figure 1).

The camera station itself consists of a surveying

tripod, a P&T unit1 Flir PTU-D46-70, a camera Prosil-

ica GT 1290C (RGB, 1280× 960 px, 33.3 FPS), an

inclinometer and a GPS sensor. A camera unit is mod-

eled as a kinematic chain consisting of six joints and

five links corresponding to the distance between sep-

arate parts of the tripod and the manipulator (see Fig-

ure 2). The transformation between the GROUND and

ORIGIN reflects the positioning and heading of the

given manipulator within the local coordinate frame.

The kinematic chain is designed as composition

of transformation matrices where a single joint can be

located by applying the Euclidean transformation on

the position of the joint which it is depending on:

Mnext = MpreviousTnextRZnext
RXnext

RYnext
, (1)

where M is the transformation matrix of the given joint,

T is the translation between successive joints and Ra

is the rotation around axis a.

4. Localization Precision

The precision of estimating the target position is sub-

ject to systematic error (miscalibration of the instru-

1Pan and Tilt.
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Figure 2. The model of a camera unit represented by a

kinematic chain consisting of six joints (yellow dots) and 5

links (black arrows). The joints AZI and ELE share exactly

the same position, the joint CAMERA is further along the X

axis than the joint FOCUS.

ments) and random error (wrong measurements and

disturbances in the environment) [31]. Atmospheric

turbulence, refractive index fluctuations and uncer-

tainty of the visual tracker are the main causes of the

random error which is analysed in section 4.1. The sys-

tematic error was alleviated and/or measured using the

custom designed stationing and rectification process.

4.1 Random Error Analysis

Stereoscopic systems are affected by a phenomenon

of diminishing accuracy of depth measurement with

increasing distance of the target from the cameras [32].

The depth measurement resolution for canonical stereo

setup is R = rZ2

f b−rZ
, where f is the focal length, b is the

base length, r is the horizontal size of one pixel and Z

is the target distance. By substituting r by pr, where p

is the random error represented by integer number of

pixels we obtain the position estimation error function

E = prZ2

f b−prZ
.

The OLS does not conform to the canonical stereo

setup (all cameras can rotate freely), so the depen-

dence of the error on the target distance is no longer

quadratic (considering the setup of two cameras where

only one of them makes error): E = B tan(arctan(D
B
)+

arctan( r
f
))−D. The cameras setup as well as the error

shown as the function of the base length and target

distance is depicted in Figure 3.

A more realistic scenario, where each camera makes

a random error p, is depicted in Figure 4. A significant

advantage of using multiple cameras is demonstrated —

geometrical limitations of the two-camera setup make

it impossible to precisely evaluate the position of the

target placed close to the line collinear with the base-

line. In the multi-camera setup, on the other hand,

the subset of two cameras forming the baseline Bi is

used for each position of the target, following the rule:
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Figure 3. Left figure depicts the setup of two cameras C1

and C2, where only C2 makes an error worth p pixels. T

represents the ground truth position of the target whereas

T ′ is the wrongly estimated position. Right figure shows

the position estimation error as the function of base size

and target distance (given the random error p = 10 px and

following constants: r = 3.75e−6 m, f = 50e−3 m).
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Figure 4. The position estimation error as a function of

the horizontal position of the target. Two-camera (left) and

three-camera (right) setup with b = 20 m are confronted,

where utilization of more cameras always yields lower er-

rors. The first two cameras are placed on the X axis with the

coordinate frame center in the middle of their baseline. The

third camera is placed on the Y axis, so that all the cameras

form a regular triangle.

i = argmax
i

~ti~ni, where~ti is the direction of the line seg-

ment linking the center of the baseline and the target

and ni is the normal vector of the baseline Bi.

4.2 Stationing and Rectification

The stationing procedure alleviates two types of sys-

tematic error: wrong heading estimation and undesir-

able tilt of the camera station. Since the accuracy of

the commercial magnetometers is too low (hundreds

to thousands of milliradians), the precise heading must

be estimated visually by observing the distinctive land-

marks. To achieve the horizontality of the station a

digital inclinometer can be used.

The imprecision of the camera-manipulator attach-

ment causes slight undesirable rotation of the camera

coordinate frame. Three horizontally leveled rectifi-

cation targets are used to alleviate and/or measure all

rotation angles (around X, Y and Z axis): 5):

Rotation around optical axis The target contains

parallel horizontal lines and the camera displays the

blend of the original and vertically mirrored streams.

The aim is to rotate the camera manually so that the



Figure 5. Three rectification targets (bottom) used to alle-

viate and/or measure the undesirable rotation angles of the

cameras (top).

lines would appear aligned.

Rotation around azimuthal axis The target con-

tains parallel horizontal lines and a pair of crosses

whose distance equals the distance between ELE and

CAMERA joint (see Figure 2). The aim is to measure

the distance between the right cross and the intersec-

tion of the optical axis with the target, which translates

to an error angle in the azimuth.

Default elevation angle Two targets which contain

black and white lines representing a ruler are posi-

tioned in a row. The aim is to adjust the tilt of the

camera so that the optical axis would intersect the

same mark on both targets and the resulting elevation

angle could be measured.

5. Object Tracking

The detection itself has been performed manually so

far in the man-in-the-loop manner, while the autonomous

tracking uses the implementation of the visual tracker

combining the background subtraction, motion model

and object model in the particle filter framework [7].

This approach can even cope with the moving cameras

and thus is suitable for the OLS. The operation of the

tracker is described below.

The target is represented as a rectangular template

(consisting of gray-scale intensity values), which is

normalized to the size 24×24 pixels. The advantage

of the template representation is that it contains both

spatial and appearance information. The template is

created only once during the initialization, and thus the

tracker could fail if the target changed its appearance

significantly during the course of tracking. However,

for very distant targets, no or merely small change is

expected.

The Bootstrap particle filter (BPF) — the variant

of a particle filter following the sequential importance

sampling approach [33] — is used to generate and

evaluate candidate positions of the target. Each par-

ticle (i.e. the state of the system) is represented as

~xn = (x,y,vx,vy,h,w), where (x,y) represents the 2D

position of the target, (vx,vy) represents the estimated

speed of the target and (h,w) represents the bounding

box size.

The perturbations in the observed position of the

target caused by the moving camera are alleviated us-

ing the motion model which is applied in the prediction

step of the BPF:

posn+1 = posn + veln + γpos ∼ N (µ,σ), (2)

veln+1 = veln + γvel ∼ N (µ,σ), (3)

bbn+1 = bbn + γbb ∼ N (µ,σ), (4)

where scalar posn is the x or y position, scalar veln is

the x or y velocity, scalar bbn is the w or h size of the

bounding box in time n, and γ is the noise drawn from

the Gaussian distribution N (µ,σ), where scalars µ

and σ parameters are set empirically for each parame-

ter.

In the update step, each particle is assigned a new

weight w using the objective function reflecting the

similarity of the template and the candidate patch:

w = ∑
(x,y)∈I

emin(M
(x,y)
t ,M

(x,y)
c )(1−|I

(x,y)
t − I

(x,y)
c |)2, (5)

where Mt and Mc are the foreground masks (FM) of

the template and the current candidate respectively, I

is the image, t,c subscripts denote template and candi-

date patch respectively, and (x,y) superscript denotes

indexing 2D array (an image). The FMs are estimated

by subtraction of the two images where the bound-

ing boxes denoting the position of the target do not

overlap (the FM Mt is estimated only once). The re-

sulting estimate of the target position is chosen using

the Maximum a posteriori approach.

In order to enable the motion of the camera, the

transformation between each pair of adjacent frames

is estimated by detecting and tracking the keypoints

using KLT tracker [2] and then estimating the homog-

raphy using the RANSAC algorithm [34].

The homography might not be found, which often

occurs if the airborne target with the uniform back-

ground of the sky is tracked or if the manipulator

moves the camera too harshly. To deal with such cases

in OLS, the tracker was adjusted so that in a prediction

step of the BPF a small subset of particles would be

forced to take the image positions yielding the high-

est response of adjacent frame differencing which is

expected to contain the moving target of interest.
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Figure 6. A schematic view of a problem of 3D position

estimation using triangulation in two-cameras scenario. The

camera units M1 and M2 observe the target T in the direc-

tions~u and~v. The plane M1M2W is used as a common plane

where the projected vectors ~u′ and ~v′ intersect.

6. Target Localization Using Triangula-
tion

The hardware cameras are modeled as finite pinhole

cameras based on the projection matrix P [34]:

P = KR[I|−C],

K =





αx s x0

0 αy y0

0 0 1



 ,

where K is the intrinsics matrix and R and C are the

rotation and translation matrices representing the ori-

entation and position of the camera frame. The 3D

point ~X projects to the 2D image point~x via~x = P~X . If

only the projection~x is observed, the 3D line mapping

to~x can be computed using back-projection:

X(λ ) = P+~x+λC,

where P+ is the pseudo-inverse of P (P+=PT (PPT )−1).

In OLS, the intrinsics were estimated for each cam-

era during calibration and extrinsics are known at each

time due to the sensory data streamed from the manip-

ulators. However, the rays backprojected from each

camera might not intersect in the 3D space due to both

systematic and random errors (see Figure 6).

The estimation of the 3D position of the target

consists of the following steps. First, back-projection

is used to find the vectors ~u and ~v which form the

planes M1M2U and M1M2V with the angle α between

them. Both vectors are then rotated around the axis

~m so that they lie in the same plane M1M2W : ~u′ =
R(β1)~u, ~v′ = R(β2)~v. The rotation angles might be of

the same value β1 = β2 = α/2; however, to achieve

higher precision the angles might be weighted by the

trackers’ beliefs b: β1 = α b2

b1+b2
, β2 = α −β1. Finally,

the intersection W of the vectors ~u′ and ~v′ is found.

If multiple camera units are used, 3D location can

be estimated as the weighted centroid of the estimates

computed by each pair of the camera units forming

the base bi (see Algorithm 1). The weights correspond

to the angle between the baseline and the line inter-

secting the (estimated) position of the target and the

baseline center, since this angle significantly affects

the precision (see Section 4).

Since the 3D position estimation might be com-

pletely wrong occasionally, the position estimates are

smoothed by the moving average computed over h

consecutive estimates (h was empirically set to 10).

Algorithm 1: Estimation of the 3D position

from n-views

Input: Set of bases B = b1,b2, ...,bN .

Output: 3D position estimate T .

/* 3D location estimate disregarding weights */

1 foreach bi ∈ B do

2 ~ti = Estimate3DPosFrom2Views(bi)
3 end

4 ~T ′ = 1
N ∑

N
i=1~pi

/* Weighted estimation of the 3D location. ~bci

represents center of the baseline bi */

5 foreach bi ∈ B do

6 wi =
e~ni(

~T ′− ~bci)

∑
N
j=1 e

~n j(
~T ′− ~bc j)

7 end

8 ~T = ∑
N
i=1 wi~ti

7. Implementation and Experimental Re-
sults

The implementation is built on a robotic framework

ROS2 and a physical simulator Gazebo3. ROS was

chosen for its wide support of hardware components

and a seamless way to implement multi-process dis-

tributed system. The whole system was modeled and

simulated in Gazebo (see Figure 7), which facilitated

hardware-in-a-loop testing of the manipulators [35].

The system was tested in the real-world environ-

ment in the basic two-camera setup. The CSs were

precisely positioned using the differential GPS sen-

sor (achieving accuracy of ca 0.01 m) so that the base

would be exactly 30 m long. The local heading was es-

timated by aiming the units on each other. The system

2Robot Operating System: http://www.ros.org
3Gazebo: http://gazebosim.org



Figure 7. A sample scene captured within the Gazebo sim-

ulator. The scenario consists of four CSs and one moving

object (red ball). The simulated image streams are displayed

on the right.

Figure 8. The two-camera setup, where a distant target is

tracked by both CSs (left and right). The estimated position

of the target is displayed in the map (center) in real time.

was tested against both static and dynamic targets, and

in both cases only horizontal position was considered.

As for the static targets, nine landmarks with a

priori known UTM coordinates (obtained from the

cadastral map) and one target carrying an ordinary

mobile GPS sensor were chosen (see Figure 8). The

localization error, given as the Euclidean distance be-

tween the ground truth and the estimated locations,

was compared with the estimated error (see Table 1).

Note that both measured and estimated error follow

the same trend (see Figure 9); however, the measured

error is higher mainly due to the insufficient precision

of calibration, stationing and rectification.

Table 1. The table shows the position as well as the lo-

calization error for each static target. The estimated error

est. ∆ is affected by the distance of the target and the angle

α between the target and the base, and it was computed for

the scenario where each CU makes random error p = 4 px

(see Section 4). See also Figure 9 for graphical comparison

of the estimated and the measured error.

object dist. [m] α [rad] est. ∆ [m] ∆ [m]

pillar1 91,92 0,38 0,20 4,41
pillar2 199,14 0,46 0,95 5,51
pillar3 285,01 0,48 1,93 11,73
pillar4 386,81 0,41 3,39 17,16
tree1 433,88 0,34 4,13 17,20

person 479,96 0,10 4,65 23,90
hide 526,86 0,77 7,57 22,77
tree2 634,46 0,35 8,56 28,33
mast 1379,67 0,33 41,24 34,21

The system was tested against one dynamic ter-

restrial target equipped with a mobile GPS sensor (a
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Figure 9. The plot displays both measured and estimated

localization error for all static targets, which are sorted in

ascending order with respect to the estimated error. The

measured error is higher due to imprecise calibration, recti-

fication and stationing.
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Figure 10. The comparison of the ground truth and esti-

mated trajectory of a target moving in the distance range of

ca 50–200 m (left). The error as the function of the distance

of the target is also displayed (right). The system makes the

average error of 6.25 m.

walking person). The target was tracked for 120 s and

the estimated positions were captured and compared

to the ground truth path (see Figure 10). On average

the system achieved the precision of 6.25 m. Note

that the position estimates oscillate around the ground

truth trajectory, which is caused by the random error

made by both trackers; the error, however, keeps in

the specific range and reaches maximum of 13.35 m.

The mean error is higher as compared to the estimated

error (see Section 4), which is again caused by the

systematic error (imprecise calibration, rectification

and stationing).

8. Conclusion

This paper introduced a novel system capable of au-

tonomous tracking and localization of distant moving

targets using multiple cameras. The paper proposes

precision analysis which aims on finding and alleviat-

ing the most prominent sources of error, as well as the

methodology to calibrate and station all camera units.

The system utilizes a visual tracker based on the

Bootstrap particle filter framework combining both

visual and motion model of the target and position-

able camera. The localization of the target uses the

principle of triangulation, where both the belief of the

tracker and the geometrical limitations given by the

angle between the base and the target are incorporated

into the final weighted estimate.

The system was tested in real world conditions

against static and dynamic targets whose position was



known either from the cadastral map or captured by

the GPS sensor. The localization precision follows the

trend of diminishing accuracy of depth measurement

and reaches slightly higher error then the theoretical

model, namely due to the insufficiently precise calibra-

tion, rectification and stationing. This, however, can

be improved by using more reliable hardware compo-

nents and by performing the rectification procedure

more thoroughly.

Though still in early development, the OLS system

has great potential for being widely used as a passive,

modular and highly portable substitute for the recently

widely used radars for the applications ranging from

automatic traffic control to national defense systems

protecting the sensitive perimeters.

In the near future, the OLS system will be ex-

tended by the 3D environment reconstruction subsys-

tem which should make the tracker predict occlusion

and estimate more accurately the motion of the tracked

target. Furthermore, more thorough tests will be car-

ried out in order to spot the sources of error and rein-

force the overall precision.
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Jan Bednařík

System Overview ExperimentsTarget Localization
This poster presents a semi-autonomous passive
multi-camera system for tracking and localizing
the distant objects, which is based merely on
ordinary RGB cameras. The main building block
is a camera station, a standalone unit consisting
of a surveying tripod, a camera, a Pan Tilt unit
and hardware components for estimating
geographical coordinates. The system is
designed to work with an arbitrary number of
stations which should be positioned so as to
form approximately regular polygon with long
enough bases.

Stereoscopic systems are affected by a
phenomenon of diminishing accuracy of depth
measurement (known from the domain of
stereoscopic systems) with increasing distance of
the target. However, the OLS does not conform
to the canonical stereo setup as all cameras can
rotate freely. Furthermore multiple cameras can
be utilized which alleviates the geometrical
limitations of the two-camera setup. In the multi-
camera setup the subset of two cameras yielding
the lowest geometrical error can be chosen or
weighted estimates of all cameras can be
utilized.

The autonomous tracking uses the
implementation of the visual tracker combining
the background subtraction, motion model and
object model in the particle filter framework. This
approach can even cope with the moving
cameras and thus is suitable for the OLS. The
target is represented as a rectangular template
(consisting of gray-scale intensity values) The
Bootstrap particle filter is used to generate and
evaluate candidate positions of the target.

In OLS, the intrinsics were estimated for each
camera during calibration and extrinsics are
known at each time due to the sensory data
streamed from the manipulators. The estimation
of the 3D position of the target uses back-
projection to find the 3D direction vectors
(aiming on the target). Due to the random error
the vectors do not intersect, thus they are
projected to a common plane and the
intersection is computed. If more then three
camera units are used, 3D location can be
estimated as the weighted centroid of the
estimates computed by each pair of the camera
units forming a unique base.

The system was tested in the real-world
environment in the basic two-camera setup. The
camera stations were precisely positioned using the
differential GPS sensor (achieving accuracy of ca
0.01 m) so that the base would be exactly 30 m
long. The local heading was estimated by aiming
the units on each other. The system was tested
against both static and dynamic targets, and in both
cases only horizontal position was considered.

As for the static targets, nine landmarks with a priori
known UTM coordinates (obtained from the
cadastral map) and one target carrying an ordinary
mobile GPS sensor were chosen. The system was
tested against one dynamic terrestrial target
equipped with a mobile GPS sensor (a walking
person) as well. The target was tracked for 120 s and
the estimated positions were captured and
compared to the ground truth path; on average the
system achieved the precision of 6.25 m.
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