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Abstrakt 

Posláním Technology Transfer Programme Office je zvýšení prospěšnosti Evropské 
kosmické agentury pro obyvatelstvo, a to přenášením technologií vyvinutých pro vesmírný 
program. Method and Apparatus for compressing time series, volně přeloženo „Nástroj 
pro komprimaci časových řad“, je patentovaný kompresní algoritmus, jehož primárním 
cílem je komprimovat časové řady, které poskytují informace o stavu satelitů a kosmických 
sond. Je navržen tak, aby jeho výpočetní náročnost byla co nejnižší, protože výpočetní čas 
je na satelitech a sondách vzácnou komoditou. Patentovaný algoritmus je inspirován 
fraktály – metodami pro generování terénu. Konktrétně se jedná o metodu přesouvání 
středního bodu. Tato práce poskytuje základní přehled fraktálů, jejich aplikací a zabývá se 
modifikací patentovaného algoritmu. Cílem modifikace je dosažení vyšší komprese 
za cenu  vyšší náročnosti na provedení komprese. Modifikovaný algoritmus je schopen 
dosahovat až o 25 % vyšší kompresi. Toto číslo je horní, empiricky naměřenou hodnotou. 

V rozsáhlém testu na telemetrických datech ze sondy Rosetta dosahoval modifikovaný 
algoritmus zlepšení přibližně 5 %.  
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Abstract 

The mission of the Technology Transfer Programme Office is to increase impact 

on a society by transferring technologies developed by the European Space Agency. Method 

and Apparatus for compressing time series is a patented compression algorithm designed 

to be efficient as its purpose is to run on deep space probes or satellites. The algorithm is 

inspired by a method for fractal terrain generation, namely the midpoint displacement 

algorithm. This work introduces fractals, their application and modifying the patented 

algorithm, in order to achieve greater compression. The modification lies in modifying 

the displacement mechanism. The modified algorithm is capable of reducing data 

up to 25 %, compared to the patented algorithm. The modification made the algorithm less 

efficient. In large-scale test, performed on Rosetta spacecraft telemetry, the modified 

algorithm achieved around 5 % higher compression.  
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Preface 
The basis of the thesis is a patent Method and Apparatus for compressing time series 

with which I worked during my internship at the European Space Agency (ESA) 

in Technology Transfer Office. One of my duties during the internship was an exploitation 

of ESA’s software patents, mostly data compression. The invention is internally called 

Fractal Resampling and I will be using this designation as well. 

During a discussion about Fractal resampling, when I was asking about statistical qualities, 

I was told that the algorithm could achieve better compression if certain modifications were 

made. I asked about some materials that would support this claim, but there were not any. 

I was told that with a time pressure to publish the patent, there was not enough time to test 

it. This thesis is set to answer the question if the patented algorithm can achieve better 

compression. 

The thesis consists of three sections. The first section is dedicated to basic fractals and their 

most basic theory. The second chapter is devoted to application of fractals in the real world 

and how looking at things trough “fractal glasses” can improve traditional ways. The third 

is the last chapter and it is devoted to studying, testing and modifying the compression 

algorithm mentioned above. 
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1 Introduction to fractals 
In this section, I will introduce the basics of fractals, ways to create them, some of their 

properties and give examples of some basic fractals. Specifically the Cantor set, the Koch 

curve, Julia sets and the Mandelbrot set.  

A characteristic feature of fractals is a fine structure and self-similarity. It means that there 

are details at arbitrarily small scales and some fractals look the same at arbitrary scale. 

Complexity of fractals can be captured and described by a fractal dimension. It attempts 

to quantify complexity of fractals by measuring the rate at which increased detail becomes 

apparent. It indicates the complexity of the fractal and amount of space it occupies 

when viewed at high resolution. [1] 

Fractals are a relatively new branch of mathematics and set theory and they found application 

in areas where methods of classical geometry and calculus could not cope with irregularity 

[2]. It was recognized early in the 20th century that studying irregularity or fragmentation 

cannot be satisfied with defining dimensions as a number of coordinates. [3] 

1.1 Fractal definition 

“A fractal is by definition a set for which the Hausdorff-Besicovitch dimension 

strictly exceeds the topological dimension.” [3] 

This is how Bernoit Mandelbrot defined a fractal in his book The Fractal Geometry 

of Nature from 1982.  

Two types of dimensions were mentioned in the first quote. The Hausdorff-Besicovitch 

dimension, denoted as 𝐷, and the topological dimension, denoted as 𝐷𝑇. Both dimensions 

are in Euclidian space ℝ𝐸 . In span of ℝ𝐸 , 0 < 𝐷, 𝐷𝑇 < 𝐸. 𝐷𝑇 is always an integer, but 𝐷 

does not have to be an integer. For all of Euclidian objects 𝐷 = 𝐷𝑇. However most of the 

objects that were mentioned in the book that Mandelbrot wrote satisfied 𝐷 > 𝐷𝑇  1, but there 

was no term that would describe such objects. That led him to create the term fractal [3]. 

The topological dimension is the most common definition of a dimension. It is always 

expressed as a whole number. Points have 𝐷𝑇 = 0, curves 𝐷𝑇 = 1, surface of an object  𝐷𝑇 = 2 and 𝐷𝑇 = 3 is for spatial objects. 

                                                 

1 Hurewicz and Wallman proved that the topological dimension cannot be greater than the 

Hausdorff-Besicovitch dimension [28]. 
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The Cantor set (introduced in section 1.3.1) has 𝐷 = 0.631, which is a rather strange number 

that does not fit into traditional geometry and it cannot be explained by the topological 

dimension. As if the set or object was something less than a line, a 1-dimensional object. 

The Koch curve (introduced in section 1.3.2) has 𝐷 = 1.261, which would indicate 

that it is something more than a curve, but less than a plane. How the dimensions were 

calculated is explained in the relevant sections. 

1.1.1 Hausdorff-Besicovitch dimension 

The Hausdorff-Besicovitch dimension was defined by Felix Hausdorff and it was 

later extended by Abram S. Besicovitch. It is a mathematical way to express a dimension 

of an object. 

In order to calculate the Hausdorff-Besicovitch dimension, a knowledge of the Hausdorff 

measure is required. It is a measure that defines a covering set of an object. As the measure 

decreases, the set that is covering the object is getting smaller. With a smaller covering set, 

it is possible to cover the object more precisely. When the size of the covering set decreases, 

the resulting measure of the object increases. The measure is either zero or infinity, 

depending on the covering set. The Hausdorff-Besicovitch dimension is the critical value 

of the Hausdorff measure when it goes from 0 to ∞. 

A good example is in section 2.1, where this idea is described on measuring coastline length 

of Great Britain and how its length depends on size of a ruler. 

1.1.2 Calculating the dimension 

Self-similarity method 

The self-similarity method is probably the simplest method to calculate 

the dimension of a fractal. I will demonstrate the method on a simple square when dividing 

it into smaller squares. 
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Figure 1 Self-similarity method demonstration 

 

All sides of a square, staring from the left in Figure 1, are 

divided by one-half, which creates four smaller squares 

as can be seen in the second step. Dividing each side is 

then repeated, on the four squares that on in second step, 

creating 16 smaller squares. 

How the dividing procedure influences the number of squares, can be written as 

 (1𝑟)𝐷 = 𝑁;  𝐷 = log 𝑁log 1𝑟  (1) 

where D is the dimension, r is ratio and N is number of squares.  

For this particular case the result is 𝐷 = 2, which was expected, because a square is 

a Euclidean object. There are objects like the Hilbert curve, shown in Figure 2, which a space 

fitting curve with the same dimension as a square.  

 

Figure 2 Hilbert curve [4] 

Step Ratio Number 

1 1 1 

2 0.5 = ½ 4 

3 0.25 = ¼ 16 
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Box-counting method 

Another way to calculate the dimension is the Box-counting method.  

The Box-counting dimension is estimating how much space a fractal fills when examined 

at small scales and it is particularly useful when dealing with curves [1].  

 

Figure 3 Box-counting method example [5] 

In Figure 3 is an example of the Box-counting method, where N is a number of the boxes 

that are needed to cover the curve, 𝐿0 is a length of the whole grid and 𝑙0 is a length of a box.  

The grid that recovers the object is divided into 𝑛𝑘 = 𝐿0/𝛿𝑘 boxes of an equal side 𝛿𝑘. How 

many of these boxes recovering the object is counted [5]. The process would continue 

and in each step, the boxes would be smaller than in the previous step. 

The fractal dimension is then obtained through following formula: 

 𝐷 = − ln 𝑁ln (𝑙0𝐿0)  
(2) 

The dimension of the curve with a box size 𝛿2 = 110 𝐿0 is 𝐷 = − ln 19ln( 110) = 1.27. 
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1.1.3 Properties 

The properties are defined loosely and it is not necessary for a fractal to have, or follow, 

all of them. [6]. 

 The fractal has a fine structure, which means it has details on arbitrarily small scales. 

 The fractal is too irregular to be described in traditional geometrical language, both 

locally and globally. 

 The fractal has some form of self-similarity, approximate or statistical. 

 Usually, the fractal dimension of the fractal is greater than the topological dimension. 

 In most of the cases, the fractal is defined in a very simple way. 

1.2 The Feedback Machine 

Feedback machines have the ability to transform something very simple 

into something complex. That is achieved through iterations. A good example is the Koch 

curve that is described in section 1.3.2. It starts as a simple line and within a few iterations 

a snowflake-like shape emerges. I am going to use an example from a book, Chaos 

and Fractals – New Frontiers of Science, where it is called The Feedback Machine [2]. 

 

Diagram 1 The Feedback Machine 

A feedback machine can be something simple as pointing two mirrors against each other and 

observing seemingly infinite tunnel. In this case, there is not much control over the result.  

Pointing a camera on a screen that is displaying an output from the camera is a better example 

that is aligned with Diagram 1. The camera is the input and the screen is the output. 

The processing unit is electronics inside the camera and screen. All that can be controlled 

on both ends. On the input side, there are parameters like focal length, apertures, focus 

or position of the camera. On the output side, there are parameters like brightness, contrast 

or refresh rate.  

Processing unit 

Control unit 

Input Output 

Feedback line 
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Basic feedback process 

One-Step Machines 

One-Step Machines are characterized by a formula 𝑥𝑛+1 = 𝑓(𝑥𝑛), where 𝑓(𝑥) is any 

function of 𝑥 [2]. In one-step machines the output depends only on the input. 

 

Diagram 2 One-step feedback machine 

It is a powerful mathematical tool and it can be traced back to the Babylonian civilization 

[7], where it was used for calculating, or to be more precise, approximating a square root 

of a number by the method of mean. The idea is quite simple and to find the square root 

of a number and can be written as the following formula 

 𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑥𝑛2  
(3) 

where 𝑎 is a number of which the square root is going to be calculated. 

For 𝑎 = 5, the sequence would look like this 

 𝑥1 = 𝑥0 + 5𝑥02 = 5 + 552 = 3 ; 𝑥2 = 𝑥1 + 5𝑥12 = 3 + 532 = 2.33̅ 
(4) 

With each step, the approximation is approaching √𝑎. The third step would yield 2.2360, 

which can be considered as a sufficient approximation. 

Other feedback machines 

There are other variations of feedback machines. The Two-Step Feedback machine 

which could be written as 𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1). Fibonacci numbers are good example 

of Two-Step Feedback machine. A Fibonacci number can be generated 

by a function 𝑓(𝑥𝑛, 𝑥𝑛−1) = 𝑥𝑛 + 𝑥𝑛−1 .  

There can be the One-Step Feedback Machine with more variables, the function can yield 

a random result or a memory can be added to the feedback machines. The feedback machine 

with memory is a typical computer or a smartphone. 

𝑥𝑛+1 = 𝑓(𝑥𝑛) 𝑥𝑛 𝑥𝑛+1 
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1.3 Basic fractals 

1.3.1 Cantor set 

 The Cantor set was introduced by a German mathematician Georg Cantor in 1883. 

The Basic Cantor set, displayed in Figure 4, is a set of an infinite number of points in a unit 

interval [0, 1].  

It starts with the interval 𝐸0 = [0,1]. The set is split into thirds and the middle2 third is 

removed. This will create two intervals 𝐸1,𝐿 = [0, 13 ] and 𝐸1,𝑅 = [23 , 1], where 𝐸1,𝐿 denotes 

the left segment of the first step and 𝐸1,𝑅 denotes the right segment of the first step. The next 

step is to remove the middle third from segments 𝐸1,𝐿 and 𝐸1,𝑅 and again, from each segment, 

two new segments are created. The segment [0, 13 ] is split into [0, 19 ] and [29 , 13 ]. The segment [13 , 1 ] is split into [23 , 79 ] and [89 , 1 ]. 
 

 

Figure 4 Cantor Set 

The most upper set 𝐸0, in this case depicted as a line, is the zero order step and continues all 

the way to the 𝐸𝑛. The whole set is 𝐹 =  ⋂ 𝐸𝑛, where F is the fractal and 𝐸𝑛 is nth step. Each 

step has 2𝑛 segments. F is the set of points that is infinitely often. It means that a certain 

points, for example 13, will remain in the set. No matter how many times the removal process 

is repeated. 

It is possible to show properties listed in section 0 on the Cantor set [6]: 

 F is self-similar. It is clear that the part of F in the interval [0, 13 ] and the part of F 

in [23 , 1] are both geometrically similar to F, scaled by a factor 13. Again, the parts 

of F in each of the four intervals of 𝐸2 are similar to F but scaled by a factor 19, and so 

on. The Cantor set contains copies of itself at many different scales. 

                                                 

2 This set is sometimes referred as the middle-third Cantor set 
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 The set F has a fine structure; that is, it contains detail at arbitrarily small scales. 

The more enlarged the picture of the Cantor set is, the more gaps become apparent 

to the eye. 

 Although F has an intricate detailed structure, the actual definition of F is very 

straightforward. 

 F is obtained by a recursive procedure. The construction is consisted of repeated 

removing of the middle thirds segment.  

 The geometry of F is not easily described in classical terms: it is not the locus of 

the points that satisfy some simple geometric condition, nor is it the set of solutions 

of any simple equation. 

 It is difficult to describe the local geometry of F – near each of its points are a large 

number of other points, separated by gaps of varying lengths. 

Dimension 

The dimension of the Cantor set is easily calculated through the Self-similarity method. 

In each iteration, the set is split into three segments, hence ratio, or factor, 𝑟 = 13 and two 

new segments are created. Then the dimension is 𝐷 = log 𝑁log1𝑟 = log 2log 3 =  0.6309. 
1.3.2 Koch curve 

A Swedish mathematician Helge von Koch introduced the Koch curve in 1904. 

It begins as a line, which is split into three segments. Just like in the Cantor set, the middle 

segment is removed. The next step is a construction of an equilateral triangle as shown 

in Figure 5. 
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Figure 5 Koch curve 

Koch Snowflake 

The Koch snowflake is a variation of the Koch curve, where the starting point are 

three Koch curves forming an equilateral triangle. In Figure 6 is the process of creating Koch 

snowflake. In six steps, the object gets more and more dense. If I were to add a seventh or 

eighth step, the sides of what once was a triangle would get so dense that, it would appear 

as solid lines. The structure is self-similar therefore, it does not matter at which step we 

would zoom in, because the resulting image or given segment would be same all the time.  

It has a few interesting properties. It has an infinite perimeter, but the area is a finite number. 

Each line is growing by 

 𝐴 ∗ ((3 ∗ 13) − 13 + 23) = 43 𝐴 (5) 

where A is the length of the initial curve. One segment is removed and two segments are 

added.  For the second step, the length is 42 ∗ 𝐴 ∗ 132 and finally for the kth step, the length 

is 4𝑘3𝑘 ∗ 𝐴. 

If I were to draw a circumscribed circle to the triangle in Figure 6. The number of iterations 

is irrelevant, because the snowflake would not reach the circumscribed circle. It suggests 

that the area is finite. Area 𝑆 of Koch snowflake is given by a formula  
 𝑆 = 3√25 ∗ 𝐴2 (6) 

where A is the length of the triangle’s side [8]. 
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Figure 6 Koch snowflake3 

Dimension 

The dimension of the Koch curve can easily be calculated through the Self-similarity 

method. During each iteration, the curve is split into three segments, hence ratio 𝑟 = 13. One 

segment is removed and two are added, therefore the new length of the segment is 𝑁 = 4.  

Then the dimension is 𝐷 = log 𝑁log1𝑟 = log 4log 3 =  1.261. 
  

                                                 

3 Created on https://scratch.mit.edu/projects/3102566/  

https://scratch.mit.edu/projects/3102566/
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1.3.3 Mandelbrot set 

The Mandelbrot was discovered in 1979 by Benoit Mandelbrot, a Polish-born, 

French and American scientist. The Mandelbrot set can be referred to as M-set. 

 

Figure 7 The Mandelbrot set [source: math.utah.edu] 

Introduction 

This is perhaps the most interesting fractal. It is difficult to describe, because it looks 

like many things that are very common in nature, but it is something unique, complex and 

yet created from one, very simple, formula (7).  

where c is a magnitude or absolute value of a complex number that is defined as  

 |𝑐| = √𝑎2 + 𝑏2  (8) 

A complex number is in format 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers and 𝑖 is the imaginary 

unit; a and b are coordinates on the complex plane. Real numbers are on horizontal axis and 

imaginary units are on the vertical axis. 

 𝑓(𝑧) = 𝑧2 + 𝑐 (7) 
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The formula 𝑓(𝑧) = 𝑧2 + 𝑐 is creating something which is difficult to interpret. From a 

mathematical point of view, it is well defined and there are no unknowns. However, there 

are unknowns from a semantical point of view. It is a relatively young discovery that came 

with computer age and it has been rising more questions than it is able to answer. One of 

the hardest questions could be “Why is this part of product of the formula resembling a bug, 

neural network or anything that comes to mind?” Certain areas were even given names, 

shown in Figure 8 and Figure 9.  

 

 

Figure 8 Sea Horse valley – centred on -0.75+0.1i [9] 

 

 

Figure 9 Elephant Valley – centred on 0.3+0i with size approximately 0.1+0.1i [9] 

Construction 

The Mandelbrot set exist in the realm of complex numbers. It is a visual 

representation of an iterated function depicted on the complex plane. Function  
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10 shows a span of the Mandelbrot set across the complex plane.  

 

Figure 10 Span of the Mandelbrot set in the complex plane 

 

It concerns about the value produced by 𝑓(𝑧) = 𝑧2 + 𝑐 . A complex number 𝑐 is presented 

to the function and the iteration starts with 𝑧 = 0. There are two possible outcomes of these 

iterations: 

 The size of the number is limited by a circle with radius 2 with center at [0, 0]. 
 The number grows to infinity. 

The Mandelbrot set is a set of complex numbers that are abiding the first outcome.  

Colours are arbitrary, but a general unwritten rule is to use black colour for bounded points. 

Other colours are assigned according to the number of iterations it needs to reach a certain 

distance. 
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Figure 11 First four iterations of Mandelbrot set 

The Iteration starts with a circle with radius 2. All points within this circle are part of a 𝑠𝑒𝑡 𝐴. 

All points whose first iteration through function 𝑓(𝑧) = 𝑧2 + 𝑐 fall outside of 𝑠𝑒𝑡 𝐴, when 𝑓(𝑧) > 2, are added to a 𝑠𝑒𝑡 𝐵. For the next iteration 𝑠𝑒𝑡 𝐴 = 𝐴 − 𝐵. This process is 

repeated and as the number of iteration grows, the M-set will start showing more and more 

details. The first four iterations of the Mandelbrot set are shown in Figure 11. 

In Table 1 are some handpicked values and their iterations. For demonstration purposes, 

I used only the real numbers, with their imaginary part set to 0𝑖. The real numbers in an 

interval (−2, 1) will not grow to infinity. This interval can be spilt furthermore into  𝑥 = (−2, 0] and 𝑦 = [0, 1). If a number from the interval y is iterated through 𝑓(𝑧) = 𝑧2 + 𝑐, the result will converge to a constant. This is different for numbers that 

in the interval x, because the resulting number can wander between the starting and ending 

point of the interval x.  
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Iteration Absolute value of a complex number 

0 -2 -1,75 -1 0,2 0,3 1 2 

1 2 1,3125 0 0,24 0,39 2 6 

2 2 -0,02734 -1 0,2576 0,4521 5 38 

3 2 -1,74925 0 0,26635776 0,50439441 26 1446 

4 2 1,309884 -1 0,270946456 0,554413721 677 2090918 

5 2 -0,0342 0 0,273411982 0,607374574 458330 4,37194E+12 

6 2 -1,74883 -1 0,274754112 0,668903873 2,10066E+11 1,91138E+25 

7 2 1,308406 0 0,275489822 0,747432391 4,41279E+22 3,65339E+50 

8 2 -0,03807 -1 0,275894642 0,85865518 1,94727E+45 1,3347E+101 

9 2 -1,74855 0 0,276117854 1,037288717 3,79186E+90 1,7815E+202 

Table 1 Sample of values from generating the Mandelbrot set 

Dimension 

It was shown that the boundary of the Mandelbrot set has the Hausdorff-Besicovitch 

dimension of two. The proof is based on a study of bifurcation of parabolic periodic points. 

[10] 

This was the Mandelbrot set and as it was with previously mentioned fractals, there is much 

more to cover. There are whole books dedicated to Mandelbrot set and there is a lot to learn 

about this fractal.  

The next section is about Julia sets, which were actually predicted before the Mandelbrot set 

was discovered. In a chronological order, it would make sense to put Julia sets before the 

Mandelbrot set, but Julia sets are closely related to the Mandelbrot set and it is easier 

to explain it after the Mandelbrot set was introduced. 

1.3.4 Julia sets 

Julia sets are named after a French mathematician Gaston Julia who published4 them 

in 1918. This topic was brought back to the light with discovery of the Mandelbrot set and 

advances in information technology.  

Just like the Mandelbrot set, Julia sets lies on the complex plane and are generated by 

iterating a polynomial function 𝑓(𝑧) = 𝑧2 + 𝑐, where c is a magnitude or absolute value of a 

complex number that is defined as |𝑐| = √𝑎2 + 𝑏2. The complex number is in a format 

                                                 

4 G. Julia, Mémoire sur l’iteration des fonctions rationnelles, Journal de Math. Pure et Appl. 

8(1918) 47–245 
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coordinates on the complex plane.  

Construction 

The simplest Julia set has a function 𝑓(𝑧) = 𝑧2, which is a circle with a radius |𝑧| = 1. The function 𝑓(𝑧) = 𝑧2 + 𝑐 is actually describing a way or path, on the complex 

plane. In other words 𝑓0 is a set of coordinates for the next point on the complex plane. 

The path is shown in Figure 12. The coordinates of 𝑓0  are passed to 𝑓1 which is again a set 

of coordinates and so forth. It can also be written as a sequence: 

 𝑧 → 𝑧2 + 𝑐 → (𝑥2 + 𝑐)2 + 𝑐 → ((𝑥2 + 𝑐)2 + 𝑐)2 + 𝑐 → ⋯ (9) 

 

Figure 12 Traversing across complex plane [1] 

 

The sequence has one of the following properties [2]: 

● The sequence becomes unbounded, which means that the elements of the sequence 

leave any circle around the origin 

● Alternatively, the sequence remains bounded, which means there is a circle around the 

origin, which is never left by the sequence. 

The Mandelbrot set is constructed by iterating numbers from the zero (𝑧 = 0), but Julia sets 

are iterated from an arbitrary number.  
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Figure 13 Boundary line of Julia sets [6] 

The collection of points that leads to the first kind of behaviour is called the unbounded set 

for 𝑐. The collection of points that leads to the second kind of behaviour is called the bounded 

set for c; illustrated in Figure 13. 

Connected vs disconnected 

There are two types of Julia sets, connected Julia sets and disconnected Julia sets. 

This is the part, where the Mandelbrot set comes into the play. If a point is in the Mandelbrot 

set, then it is the connected Julia set. It is very easy to distinguish between those two 

categories.  The disconnected sets are composed of islands. While the connected Julia sets 

are simply one continuous object. Examples are shown in Figure 14. 

Connected set Disconnected set 

 

 

Figure 14 Connected vs disconnected set [1] 
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The Mandelbrot set can be used as a guide map of Julia sets. The complex numbers 

from various locations of the Mandelbrot set are producing Julia sets with certain attributes 

and shapes, shown in Figure 15.  

 

Figure 15: Relationship of Mandelbrot set and Julia sets [1] 

Dimension 

It was shown that the dimension of Julia sets is the same as the Mandelbrot set. 

The Hausdorff-Besicovitch dimension of Julia sets is two and it is based on the same study 

as the dimension of the Mandelbrot set [10]. 
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2 Fractals in real world 
In the previous chapter, I introduced fractals more from a theoretical point of view. 

This chapter envelops fractals, fractal-like structures and their applications.  

2.1 Coastlines and landscapes 

Lewis Richardson was the first one who presented, in a quantitative form, 

an observation that a length of a coastline depends on a scale at which it is measured. It is 

known as the Coastline Paradox or Richardson effect. This paradox says that a length of 

a coastline depends on a ruler length [11]. This idea was furthermore developed 

by Mandelbrot, who published a paper How Long is the Coast of Britain?, where he pointed 

out that Richardson’s calculations essentially said that the coastline had a dimension  

D = 1.25 and it was valid over a wide range of scales. The article demonstrated that the 

fractional dimension was appropriate for describing a natural feature. It played a key role 

in convincing scientists that such notions could be used to study real phenomena of an 

irregular nature. [1] [12] 

In Figure 16 is an example of measuring the length of the Britain’s coastline. It is apparent 

that the area of Great Britain is a finite number. It is only going to get more and more precise 

as the ruler length decreases.  

 

 

Figure 16: Measuring the length of the coastline of Great Britain [13] 

Fractals are also being used to generate landscapes, mountains or even whole planets. There 

are several methods to generate such objects. One of the simplest method is the midpoint 

displacement algorithm, which is able to generate landscape silhouettes in 2D. Other 

methods are based on the Poisson faulting, Fourier filtering, Successive random additions, 

or summing band-limited noises [3] [14]. To keep things simple I will not go into detail here, 

as these methods form a whole separate topic [15]. 
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Midpoint displacement algorithm 

I will introduce the midpoint displacement algorithm, because it is used in chapter 3 

for time series compression.  

The process starts with a line. Let us denote the line as 𝐴𝐵̅̅ ̅̅ . The first step is adding a point 

to the middle of the line, hence a midpoint. I will denote the point as 𝑋. The midpoint travels, 

or is displaced, by a predefined distance. Randomly up or down from its original location. 

That creates two lines, 𝐴𝑋̅̅ ̅̅  and 𝑋𝐵̅̅ ̅̅ . The process is repeated on both segments and 

by repeating this process, a terrain is generated, in this case a 2-dimensional landscape. 

The process is shown in Figure 17. 

 

Figure 17 Midpoint displacement [16] 

2.2 Turbulent fluids 

A turbulent liquid or gas is one that behaves in a non-smooth swirling fashion. Often 

when a tap is first turned on, water emerges in a smooth stream, but then it breaks up into a 

gushing, irregular and turbulent flow. Turbulent fluids can be difficult to control, predict and 

often have a violent association. Despite having been studied intensively by scientists 

for hundreds of years, turbulence is far from understood. [1] 
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When results of turbulence simulations are plotted, they appear like a space-fitting curve. 

In Figure 18 is such a simulation and it is apparent that it is not filling up the whole image 

evenly and that can be exploited. 

 

Figure 18 Simulating turbulence [spaceweather.com] 

 

Simulating turbulences in rocket engine 

GPU5 to Mars was presented in 2015 on GTC (GPU Technology Conference) 

by SpaceX. They presented an interesting way to simulate Mars rocket engines that SpaceX 

developed. By using a GPU for calculations and using some of the fractals’ properties 

to compress data in CFD (Computational Fluid Dynamics) simulations. 

A challenging task is to capture a complete system on a uniform grid of the simulation. 

The CFD models are three-dimensional and the number of points can reach up to 1018. If 

one point on the grid held 1kB of information, the grid would consist of yottabytes of data. 

There are ways to address this issue. The model can be simplified or a part of the simulation 

can be excluded completely. It reduces the complexity, but that will not simulate the 

whole system. Another possibility is lowering resolution. 

The fractal features are allowing focusing computational resources to interesting parts 

of the grid. Similarly, like compressing images, but in this case turbulences are compressed. 

                                                 

5 Graphics Processing Unit 
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The key in this scenario is to do all the computing on compressed data without 

decompressing them.  

Fractal grid 

Fractals have structure on all scales and that can be used to create adaptive grids and 

focus the resources on certain areas. In Figure 19 is a grid from the CFD simulation. It is 

actually just the grid, without any objects in it. The dark lines are vortexes, turbulences and 

shockwaves that formed around a capsule during a re-entry simulation. The darker areas are 

actually dense grid boxes. The grid boxes are adaptive and they get denser in areas 

where the turbulences emerge. This way it is possible to have a coarser grid in empty and 

uninteresting areas. 

 

Figure 19 Shockwave forming around capsule during re-entry 

 

2.3 Fractals in finance 

A random walk in Euclidian space is a process where an object moves randomly one 

unit, either backwards or forwards with a same probability (𝑝 = 0.5) every second or any 
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other uniform unit. With equal chances traveling either backwards or forwards, the object 

will not get too far from its origin. Mathematically, the random walk can be written as: 

 𝑋𝑡 = 𝑋𝑡−1 + 𝑎𝑡 (10) 

where 𝑎𝑡 is the irregular component or noise that bears characteristics of white noise [17]. 

With more frequent traveling, for example, one step would have a length  18  and occurred 

every 164 of a second. A plotted random walk would keep same appearance on a larger scale, 

but on a smaller scale, an additional irregularity becomes present in the plot. By taking very 

rapid and small steps, the plot of the random walk takes on a fractal form, called the 

Brownian or Wiener process. [1] 

 

Plot 1 Comparison of Random walk and Brownian process 

Many real world phenomena depend on frequent random events. Time series like stock 

prices or exchange rates are probably the closest to the Brownian process. It was proposed 

by Louis Bachelier to study financial data as the Brownian process. It makes sense to view 

financial data as the Brownian processes, because, for example, the share price is generated 

in a similar way. The price of a share results from many individual investors estimating 

future value of an assets using information available to them at the time. Such information 

arrives randomly and involves numerous factors such as news or rumours of the behaviour 



2  Fractals in real world 37 

of governments, companies, banks, etc. With virtually instantaneous trading, the share prices 

are determined by a combination of a large number of small, seemingly random, upwards or 

downward steps in a very short time intervals. A consequence of that is a plot of the share 

prices looks in many ways very similar to the Brownian process.  

The thought of looking at financial data as a fractal led to development of models 

like FRAMA. It is an acronym for Fractal Adaptive Moving Average. As the second half 

of the name suggests, FRAMA is a moving average. It identifies the fractal dimension 

in financial data and uses the dimension to adapt the smoothing period of an exponential 

moving average (EMA). 

To determine the fractal dimension of a generalized pattern, the pattern is covered with 𝑁 

number of small objects of several various sizes 𝑠 [18].  

 𝑁2𝑁1 = (𝑠1𝑠2)𝐷 ; 𝐷 = log 𝑁2𝑁1log 𝑠1𝑠2  

 

(11) 

The dimension is then used to modify the exponent of the exponential moving average. It 

rapidly follows significant changes in prices, but becomes very flat in congestion zones. 

A comparison of FRAMA and SMA is in Plot 2. 

 

Plot 2 FRAMA compared to the Simple Moving Average [19] 
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2.4 Fractals of the human body 

There are several fractal-like structures in or on our bodies. For example, 

the respiratory system, nervous system, blood supply system, neural system or even the skin 

and the way the skin cells are arranged. 

Lungs are an excellent example of a natural fractal organ. They are like a tree that is hanging 

upside down and sharing same branching pattern as a tree. Not just the pattern, but also 

the purpose is similar – respiration [13]. 

 

Figure 20 Human lungs [source: cargocollective.com/mattrobinsonuk] 

In the respiratory system, the windpipe splits into two bronchial tubes leading into the two 

lungs. These tubes split into narrower tubes, which continue to split repeatedly until, after 

about 11 levels of branching, they reach numerous very fine tubes called bronchioles. These 

end in microscopic thin-walled sacs called alveoli. A lung contains around 400 million very 

closely spaced alveoli. The amount of gas that can be exchanged through the lungs 

in a mammal is directly proportional to their total surface area. Although the volume of a 

pair of human lungs is only about 4 - 6 litres, the surface area of the same pair of lungs is 

between 50 and 100 square meters. [1] [13] 

2.5 Data compression 

Data compression can be divided into two categories. The first category is lossless 

compression and the second one is lossy compression. Lossless compression involves 

algorithms that are reducing data needed to describe information, but without removing or 
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degrading the information itself. A common application of this type of the compression is a 

document compression. The compressed file is then reconstructed to the original form 

without losing any information. 

On the other hand, lossy compression can achieve much higher compression ratios, but 

the reconstructed data are only an approximation of the original data. The most common 

application of lossy compression is a part of our daily lives when we are watching videos, 

listening music or browsing pictures. Imagine a picture of a landscape with blue sky. A 24-

bit palette, also known as True colour, has 224 = 16 777 216 colour variations. Lossy 

compression algorithms takes an advantage in an inability of a human eye to distinguish 

subtle changes in the colour variations and replaces, for example, five different gradients of 

blue with one that does not dramatically change the reconstructed image. 

The fractal self-similarity can be used for lossy data compression. The first research in this 

area was done by Michael Barnsley in late 1980s [1]. The idea behind these techniques is 

to find simple patterns and describe complex objects with it.  

2.5.1 Image compression 

Compressing images as fractals offer not only a theoretically high compression ratio, 

but also it preserve more information in the images. The fractal image compression is 

looking for parts in the image that are similar to other parts of the same image.  

The fractal image compression has a following workflow. The image is divided into small 

and large blocks. The large blocks are called domain blocks and the small blocks are called 

range blocks. The domain blocks are then used, as a description of the range blocks. Each 

range block is matched with the domain block. That would not work without 

transformations, thus transformations like rotating, scaling, brightness and contrast 

adjustments are used on the domain blocks in other to get the best possible match with the 

range block [20].  

Information is stored in so-called fractal codes that contain following [21]: 

● The translation done on the domain blocks to match the position of their associated 

range blocks 

● The transformations done on the domain blocks 

● The colour, brightness, contrast or any other adjustments 

No pixels from the original image are stored. Only the mathematical functions, that were 

used to produce the fractal code, are stored. The downside of this process is the matching 

procedure that can be very demanding process. 

The decompressing of images from the fractal code is much easier, because the fractal code 

is like a cookbook full of recipes. In this case, it is full of the functions that will produce 
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the approximated image. Compared to the traditional image compression algorithms like 

JPEG, the image that have been compressed with the fractal compression algorithm, can be 

decompressed into larger a resolution than the original image without getting too pixelated. 

The compression process, which is effectively creation of a fractal, is also known as the 

Iterated Function System (IFS). This is based on the same principle as The Feedback 

Machine, which is described in the first chapter. The decompression of the image is then 

enveloped by the Collage Theorem that says:  

If the image you want to get is called 𝐿, then you need to find functions 𝑓 such 

that 𝐹(𝐿)  =  𝐿. Then no matter what initial image you start with, if you iterate F, you will 

“eventually” get L, where “eventually” means you will get closer and closer to it and after a 

while your image will be indistinguishable from L. [22] [23] 

2.5.2 Wavelet compression 

This algorithm is a follow up to section 2.2. I will describe a one-dimensional version, 

but in CFD (Computational Fluid Dynamics), it is used in a three-dimensional space. It is 

also worth mentioning that the 1D version does not look like a fractal, but the 3D adaptation 

does, shown in Figure 21. The grid in Figure 19 is compressed by this algorithm. 

 

Figure 21 Local fractal basis [24] 
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The steps of 1D wavelet compression are following: 

a) Data are regularly sampled and every other sample is thrown out, but not 

discarded. What remains is a 𝑠𝑒𝑡 𝐴 and the rest is a 𝑠𝑒𝑡 𝐵. 

b) A linear interpolation is assumed between neighbouring samples of the 𝑠𝑒𝑡 𝐴. 

In-between those two samples used to be another sample, which is now 

in the 𝑠𝑒𝑡 𝐵. The shortest distance from the interpolated line to the sample 

from 𝑠𝑒𝑡 𝐵 is calculated. This is depicted in Figure 22. If the distance between 

the line and the sample is too great sample is returned to the 𝑠𝑒𝑡 𝐴.  

These two steps are repeated until there are only two samples left in the 𝑠𝑒𝑡 𝐴.  

 

Figure 22 Wavelet compression 
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3  Fractal Resampling  
The Fractal Resampling was developed at the European Space Operation Centre 

(ESOC) and it has been patented6 as Method and Apparatus for compressing time series 

in 2013.  

3.1 Introduction 

As the name of the patent suggests, it addresses time series compression. 

The invention is inspired by methods for fractal terrain generation that are used in computer 

games and scientific simulations. It uses the midpoint displacement algorithm to compress 

time series. The midpoint displacement algorithm is described in section 2.1. 

The term resampling refers to the fact that the invention selects certain samples from 

the original time series to achieve data compression. It allows transmitting a reduced data 

set, i.e., the selected data points, in the same format as the original time series as a contrast 

to compression methods that have to encode the underlying data samples [25]. Furthermore, 

it enables to perform calculations on the data without decompressing it. 

The primary purpose of the invention is compression of housekeeping telemetry of remote 

systems. A remote system can be a satellite or deep space probe. The invention can remove 

background noise from the telemetry, but unlike other resampling methods, it preserves 

peaks, spikes and any extreme values. 

If a remote system has large number parameters, it is usually not possible to achieve high 

sampling rates on all of them due to a downlink capacity. Limited downlink capacity requires 

compromises. For example Rosetta spacecraft, on whose telemetry I will be conducting my 

tests, has around 16 000 parameters that are being recorded. 

The sampling rate can be modified and trade-offs can be made. Lowering the sampling rate 

of some parameters can be traded for a higher sampling rate of others, in order to match the 

bandwidth capacity. It is not an ideal scenario, because there might be short-lived events, 

which could occur outside of the sampling intervals. The lower sampling rate is increasing 

a risk of completely missing out these events or capturing only a part of it. The fractal 

resampling addresses this issue by eliminating samples with only background noise and 

keeping samples only around areas where waveforms are present. 

                                                 

6 Patent public number: US 2013/0212142 A1 
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3.2 Algorithm 

First, I will introduce two terms that are being used here. 

 Sample – A sample is a pair of two figures, in format [time, value]. 

 Maximum allowed error – A maximum allowed error, denoted as ε, is a way 
to control quality of the compressed data. As it decreases, the amount of information 

kept in the data increases. It must be defined before the compression process begins. 

I refer to it as predetermined maximum error or maximum error, for short. There is a 

whole section devoted to this term later on. 

The algorithm has following steps [26]: 

 The first and last samples of the original time series are included in the list of displaced 

points. 

 Linear interpolation is assumed between the start and end samples determined in first 

step. 

 For every point in the original time series that corresponds to the current segment, the 

absolute error between its actual value and the corresponding linearly interpolated 

one is determined. 

a) If this error is equal or above the maximum allowed error (ε) this segment need 

to be displaced. The displacement consists of adding the middle point to the list 

of displaced points and applying step 2 to both the left and right side of the 

displacement (e.g. left = (start, displaced point), right = (displaced point, end)) 

b) If the error is lower than the maximum allowed error (ε) no displacement is 

needed 

It is important to understand how the compression is achieved. The compressed time series 

is actually a list of the displacement points. The algorithm does not remove any samples 

from the original time series, but it leaves out certain samples during the compression 

process. The compression process is actually a reconstruction of the original time series. It 

starts as a line, from the first and last samples of the original time series, which is being 

aligned by adding midpoints into it. 

The algorithm was designed in a way that it uses as little resources as possible. Once the first 

absolute error, between the actual value and the corresponding linearly interpolated line, is 

greater or equal to ε, the segment will be split into two. For example, in a segment with 1000 

samples, if the 10th sample will not be close enough to the interpolated line, the loop stops 

at the 10th observation. What is the in the rest of the segment is irrelevant, because the 

segment will be split into two segments.  
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Example of a sample elimination 

I will demonstrate how the algorithm achieves the compression on a simple time 

series with 8 samples labelled from A to H. The whole process is depicted in Figure 23. 

1. The samples A and H are added to the list of displacement points. 

2. The samples A and H are linearly interpolated. 

3. For the samples from B to F are calculated the shortest distances from the 

interpolated line |AH|. The red dashed line in Figure 23 is marking out a limit, which 

has been introduced as the maximum predetermined error.  

a) The first sample, B, is too far from the interpolated line. After checking the 

distance of the B, there is no need to check the other samples and the line |AH| will be displaced. If a length of a segment is an odd number, then the 

length is modified by adding or subtracting 1, only for the midpoint search, 

the segment is not modified in any way [25]. There are only two possible 

outcomes for a segment, it is left alone or it is displaced. 

b) The sample E is selected as the displacement point and it is added to the list 

of displacement points. The list is now 3 samples long. 

In Figure 23, in the step 2, the process is repeated, but this time with lines |AE| and |EH|. 
No samples are eliminated in the step 2, because either of the segments did not have all the 

samples within the boundaries of maximum error. The samples C and G are added to the list 

of displacement points. The list is now 5 samples long. 

In Figure 23, in the step 3, the process is repeated, but this time with lines |AC|, |CE|, |EG| 
and |GH|. From these four segments, only in the segment |CE| are all samples, in this case 

only one sample, within the boundaries. It is the sample D and it is the only point that is 

omitted from the original time series. Samples B and G are added to the list of displacement 

points. The list is now 7 samples long. 

The list of displacement points is 7 samples long and it is the compressed time series. 
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Step 1 Step 2 

Step 3 Step 4 

Figure 23 Point elimination process 

 

3.2.1 Displacement point modification 

The mission of the Technology Transfer Office Programme is to bring technologies, 

developed for space programs, to terrestrial applications. One of the areas is software 

inventions. It was already mentioned that the algorithm has to run efficiently and that it uses 

as little resources as possible. Resources, such as computational power or electric power, are 

not a limiting factor for the most devices that are being used in everyday life.  

To distinguish these two algorithms I refer to them as the original algorithm and the modified 

algorithm. 

The question I set to answer in this thesis is what the original algorithm can do, when it is 

slightly modified. The modification lies in changing the displacement point mechanism. 

In the original algorithm, it is always the middle point of a segment. With the modification, 

any point in the segment could be used as the displacement point.  
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There are two expected outcomes of this: 

1. Increased load on a system that is compressing the data 

2. Higher compression 

I will quickly return to Figure 23 and the example of the sample elimination. In step 3a, the 

modified algorithm will not stop after checking the distance of the point B. It will record 

the distance and its index and continue checking other samples. When it is finished with all 

the samples from B to F, the sample with the greatest distance from the interpolated line is 

chosen as the displacement point. In the first step, it is the point G. The following steps are 

the same, but of course with different segments. 

The modified algorithm could be used for archiving already existing time series repositories. 

3.2.2 Demonstration of the patented algorithm 

To demonstrate how the original algorithm compresses data, I will use a telemetry7 

of a tank pressure measured in bar8. Raw data consists 43 623 samples, which is shown 

in Plot 3.  

 

Plot 3 Uncompressed data 

                                                 

7 Parameter NAAD0331 from May 2014 

8 Bar is metric, but not SI unit of pressure. 1 bar is about equal to the atmospheric pressure 

on Earth at sea level [8]. 1 bar = 100 000 Pa [7] 
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When the time series is compressed with maximum error 𝜀 = 0.0054 [bar], which is equal 

to 0.5% of the time series’ range. The compressed time series, shown in Plot 4, consists 

of 6636 samples. Comparing it to the raw data, it is evident that there was a reduction in 

samples. To be precise, 36 987 samples were omitted which translates into 84.8% of the 

original data and the compression ratio 6.573. The mean squared error of the compressed 

time series, using 15.2% of original data, is 4.61 × 10−6. A quick glance at the plotted data 

reveals that the compression is not good enough. There is still quite a lot of noise, which is 

not giving any useful information. 

 

Plot 4 Compressed data with 0.5% relative error 

With 𝜀 = 0.0109 [bar], which is 1% of the time series’ range, the compressed time series 

now consists of only 77 samples. The compressed time series, in Plot 5, is now much cleaner 

after omitting 43 546 samples, which is 99.82% of the original data and the compression 

ratio 566.5. The most, if not all, important information is still in the data.  The mean squared 

error of the compressed time series, using only 0.18% of the original data, is 8.77 × 10−6. 



3  Fractal Resampling 48 

 

Plot 5 Compressed data with 1% relative error 

To provide a better perspective, in Plot 6 is a detail with three of previously mentioned time 

series overlapped in one plot. It also show which samples have been omitted. The plot is 

composed of three layers.  

 The first layer (blue) is the original time series  

 The second layer (green) is the original time series compressed with 0.5% 

predetermined relative error  

 The third layer (red) is the original time series compressed with 1% predetermined 

relative error 

A layer with higher number is covering up the previous layer. The second layer covers 

an area that it used and effectively showing removed samples. From a perspective of the 

second layer, everything that is coloured in blue was omitted. 
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Plot 6 Direct comparisons. Blue line: original data, Green line: 0.5% compression, Red 

line: 1% compression  

 

3.2.3 Predetermined error settings 

 

The predetermined error should be a typical error threshold for the observed system, 

wherein fluctuations within the error threshold correspond to background noise and/or 

fluctuations that do not indicate a particular event or abnormality, and, thus, are not required 

for further analysis. [25] 

 “By Way of example, if the second predetermined error value is set to Zero, then all the data 

points of the time series sequence determined by the selection value are outputted.“ [25] 

The idea behind the quote is to run the algorithm with two predetermined error values. The 

first one is higher in order to return a “thumbnail” of the time series. The thumbnail is a very 

coarse approximation of the original time series and if it shows something unusual, 

or something worth investigating, then the second predetermined error is used. The second 

one is the predetermined error that is used for the compression of the time series that would 

be actually examined. If it is set to zero, all samples are retrieved without any compression. 
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The predetermined error has to be set for each parameter. This is probably the biggest 

drawback of the original algorithm, because it requires a certain knowledge of a system and 

it could be a very time consuming procedure. 

I am using two types of a predetermined error. The first type is an absolute maximum 

predetermined error when it is a matter of one certain parameter. The second type is a relative 

maximum predetermined error, which I am using during comparison of both algorithms, 

globally for all parameters. The relative error is calculated from the time series’ range. 

3.2.4 Statistical measurements 

Both algorithms have the same upper bound for their statistical quantities like the 

minimum, maximum, range, average, variance, standard deviation, and mean squared error. 

Statistical quantity Upper bound with predefined error ε 

Any sample 𝜀 

Maximum 𝜀 

Minimum 𝜀 

Range 2 ∗ 𝜀 

Geometric average 𝜀 

Geometric variance 6 ∗ 𝜀 

Geometric standard deviation 6 ∗ 𝑅 ∗ 𝜀 

Mean square error 𝜀2 

where ε is the maximum absolute error and R is the range of the time series. 

The average, variance and standard deviation need to be geometric, because it is necessary 

to adjust for the irregular sampling rate. 

The way these bounds are calculated and mathematical proofs can be found in document9 

[27]. 

                                                 

9 https://www.slideshare.net/secret/fIf4NgaDLru2qQ  

https://www.slideshare.net/secret/fIf4NgaDLru2qQ
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3.3 Test method 

I have two months of telemetry data from Rosetta spacecraft. The complete set has 

about 16 000 parameters, from which I have available about 10 000 for testing. After further 

selection, excluding some of the parameters that did not have any samples or not enough 

samples, I used about 2 100 parameters. I did not include parameters which had less 

than 1000 samples and for the measurements I used first 10 000 samples of each parameter. 

I picked March 2010 and May 2014 for testing. March 2010, because it was a relatively 

uneventful month while Rosetta was traveling through the Solar System and May 2014, 

because this was a relatively eventful month as the spacecraft started approaching the comet 

67P/Churyumov–Gerasimenko. In May 2014, Rosetta performed a series of complex 

manoeuvres to reduce the distance between itself and the comet from around 20 million km 

to 100 km [28]. 

I will be processing each telemetry parameter as if it was sampled with an irregular sampling 

rate, because some of the parameters were showing small sampling irregularity  

(1-2 milliseconds). 

The telemetry data are confidential and they will not be available for repeating the 

experiment. When I mention a specific parameter, I will refer to it, for example, 

as NAAD0331 – tank pressure (bar).  

3.3.1 Comparing original and modified algorithm 

Comparing the algorithms requires working with the original time series, denoted 

as 𝑋, from which is the compressed time series, denoted as 𝑋′, created. In order to compare 

the compressed and original time series, changes to the compressed time series are necessary, 

because 𝑋′ ⊆ 𝑋. It is expected that 𝑋′ will have fewer samples than 𝑋. For any 

measurements, it is necessary to create another time series, denoted as 𝑋′′, which will 

represent the compressed time series 𝑋′.  𝑋′′ will have same length as 𝑋. All three time series 

are in Figure 24. 
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Figure 24 Time series that are used during comparison 

  

The series 𝑋′′ starts as the series 𝑋′and additional points are added to 𝑋′′ in order to match 

the length of 𝑋. From samples 𝑋’𝑡 and 𝑋’𝑡+1 is taken the time component. A range from these 

time components is created. 𝑋’𝑡 is the starting point of the range, denoted as 𝑡1. 𝑋’𝑡+1 is the 

ending point of the range, denoted as 𝑡2. In 𝑋’, 𝑡1 and 𝑡2 are neighbouring points, but in X, 

there might be samples in that range which were omitted during the compression.  

A set of time components, which I denote as 𝑇 = (𝑋(𝑡1), 𝑋(𝑡2)) is created. T is the set 

of timestamps, because the value (the recorded value) component is irrelevant. 𝑋’𝑡 and 𝑋’𝑡+1 

are linearly interpolated and for each point of T is calculated a value, that lies on the 

interpolated line. The calculated value will be later compared to the actual value that was 

recorded by a telemetric recording device. 
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3.3.2 Implementation 

The algorithms were implemented in Python 3.4 and subsequent data analysis was 

performed in R. 

It was much more intuitive to implement the algorithms in a recursive way. I was aware 

of possible complications, especially the recursion depth and indeed some of the parameters 

reached recursion depth and eventually I ended up using an iterative way. 

In a real deployment scenario, it would come down to specifics of a given system, but it 

would be possible to run the recursive algorithm. I was testing it on time series with lengths 

up to 300 000 samples, therefore it did not come as a surprise that the recursive way did not 

work. Figure 25 shows that the compression is significant after obtaining only 20 samples. 

It is not necessary to compress the whole time series at once, however compressing the whole 

time series leads to the best results. 

 

 

Figure 25 Buffer size and compression capabilities [29] 
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3.3.3 Metrics 

This section describes metrics that I used for evaluating the algorithms. 

Compression ratio 

The compression ratio, or the data compression ratio, is commonly used to quantify 

the reduction in the data. It is defined as: 

 

 𝐶𝑅 = 𝑆𝑈𝑆𝐶  (12) 

where 𝑆𝐶 is the compressed size and 𝑆𝑈 is the uncompressed size. I will be using lengths 

of the compressed and uncompressed time series to determine the compression ratio. A time 

series with 100 samples that was compressed to 20 samples has the compression ratio 5:1. 

In tables, I will not use the “5:1” notation and if there is a number 5 in the compression ratio 
column, it means the ratio 5:1. 

Savings 

Savings, or space savings, is a relative measure. As the name suggests, it indicates 

how much space was saved with the compression. It is defined as: 

 𝑆𝑣 = 1 − 𝑆𝐶𝑆𝑈 (13) 

where 𝑆𝐶 is the compressed size and 𝑆𝑈 is the uncompressed size. I will be using lengths 

of the compressed and uncompressed time series to determine the space savings. The result 

is in an interval (0,1). When the result is multiplied by 100, it can be presented as percentage.  

Mean Squared Error (MSE) 

To measure a quality of the approximation of the original time series, the Mean 

Squared Error was calculated. The mean squared error is defined as: 

 𝑀𝑆𝐸 = 1𝑛 ∑(𝑋𝑖 − 𝑋𝑖′′)2𝑛
𝑖=1  

 

(14) 

where n is the length of the vector of the values, 𝑋 is the vector of the actual (recorded) 

values and 𝑋′′ is the vector of the approximated values. 
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Relative Absolute Error and Root Relative Squared Error 

In order to have another measure, similar to the mean squared error – Relative 

Absolute Error (RAE) and Root Relative Squared Error (RRSE) [30] has been calculated.  

 𝑅𝐴𝐸 = ∑ |𝑋𝑖′′ − 𝑋𝑖|𝑛𝑖=1∑ |𝑋̅ − 𝑋𝑖|𝑛𝑖=1  (15) 

 

 𝑅𝑅𝑆𝐸 = ∑ (𝑋𝑖′′ − 𝑋𝑖)2𝑛𝑖=1∑ (𝑋̅ − 𝑋𝑖)2𝑛𝑖=1  (16) 

where 𝑋𝑖′′ is the value from the compressed time series, 𝑋𝑖 is the actual (recorded) value and 𝑋̅ is the average of actual values. 

After reviewing the results, I started questioning their validity, because these metrics can be 

sensitive to outliers. Something I did not notice nor foreseen before running the 

computations on a larger scale. The problem is the average in the denominators. I modified 

these metrics and computed RAE and RRSE with a median, instead of the average. Revised 

metrics are be following 

 𝑅𝐴𝐸𝑚𝑒𝑑 = ∑ |𝑋𝑖′′ − 𝑋𝑖|𝑛𝑖=1∑ |𝑋̃ − 𝑋𝑖|𝑛𝑖=1  (17) 

 

 𝑅𝑅𝑆𝐸𝑚𝑒𝑑 = ∑ (𝑋𝑖′′ − 𝑋𝑖)2𝑛𝑖=1∑ (𝑋̃ − 𝑋𝑖)2𝑛𝑖=1  (18) 

where 𝑋̃ is the median of actual values. 

Operation Count 

Let us look back at section 3.2 and the algorithm steps, specifically step 3 – the step 

where the distance of a sample from the interpolated line is calculated. When the distance is 

calculated, the operation count is incremented by 1. 

I will continue with the example that is on Figure 23.  

 In case of the original algorithm, after the first step, the counter c have value 𝑐 = 1, 

because only one sample, B, was checked.  

 In case of the modified algorithm, after the first step, the counter c have value 𝑐 = 6. 

It is possible to predetermine the value of 𝑐, because by the definition, the whole 

segment is checked, then 𝑐 = 𝑙 − 2, where 𝑙 is the length of the segment. 
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This is a crucial metric, because it will tell how much more operations, or checks, the 

modified algorithm needed to compressed the data. 

3.4 Results 

I can confirm that removing the stopping mechanism from the original algorithm 

leads to a greater compression ratios, but it comes with a greater demand on resources. Tests 

were conducted relative predetermined errors 0.5%, 1%, 2%, 5%, 10%, 20%, 25%, 50% and 

90%.  

In this section, I will present the comparison of the original and modified algorithm. 

I decided to use a median over average as aggregation function. Plot 7 shows reduction in 

the data relative to uncompressed size with the relative error 𝜀 = 0.5%. The distribution 

would shift to the right with increased relative error. 

 

Plot 7 Reduction in the data relative to uncompressed size 
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3.4.1 Compression and costs 

The algorithms, on a large-scale test, are closest at the relative error 𝜀 = 0.5%. 

The gap widens until 𝜀 = 50% and from that point, both algorithms’ compression ratios 
begin to close again, shown in Plot 8. 

 

 

Plot 8 Compression ratio 

 

Intuitively, with the increasing relative error, the number of sample in the compressed 

time series is converging to two. Two is the minimal number of samples of a 

compressed time series. The last point in the Plot 8, 90% relative error, is very close to that 

limit and that is the reason why all four lines are coming together. 

In Table 2 are numerical results of the whole test. The designation v1 and v2 comes from 

my implementation, where I used number 1 to run the original algorithm and number 2 to 

run the modified algorithm.  The relative difference is obtained as 𝑣2−𝑣1𝑣1  and absolute 

difference as 𝑣2 − 𝑣1. 
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ε 

Compression ratio Relative difference 

March 2010 May 2014 March May 

v1 v2 v1 v2   

0,5 1528,9 1585,5 1520,2 1582,7 3,70% 4,11% 

1 1538,3 1599,1 1528,6 1594,5 3,95% 4,31% 

2 1552,9 1620,2 1545,0 1616,8 4,33% 4,65% 

5 1612,4 1686,4 1596,9 1686,5 4,59% 5,61% 

10 1733,5 1825,3 1642,9 1754,5 5,29% 6,79% 

20 1830,8 1953,7 1716,9 1862,9 6,72% 8,51% 

25 1884,6 2009,8 1749,5 1903,4 6,64% 8,79% 

50 2216,4 2312,4 2186,4 2306,5 4,33% 5,50% 

90 3419,0 3417,3 3708,9 3728,9 -0,05% 0,54% 

Table 2 Compression ratios on full set 

The compression ratios are aggregated through average, which is the reason for such high 

values. I used an average, because I wanted to have a different perspective, opposed to the 

median, which I used in the charts above. Such high numbers are given by the amount of “flat 

lines” in the set of tested parameters. Each parameter is limited to 10 000 samples, which 

capped the compression ratio to 5 000. When a compressed time series is only few samples 

long, one sample can make a huge difference in the compression ratio, but in a compressed 

time series with 5 000 samples, one sample will have much smaller impact on the 

compression ratio. 

 

ε 

Total savings Absolute difference 

March 2010 May 2014 March May 

v1 v2 v1 v2   

0,5 0,77 0,81 0,77 0,81 4,02% 4,19% 

1 0,78 0,82 0,79 0,83 3,80% 3,93% 

2 0,81 0,84 0,82 0,85 3,48% 3,41% 

5 0,84 0,87 0,85 0,88 2,96% 2,98% 

10 0,87 0,90 0,87 0,90 2,57% 2,59% 

20 0,90 0,92 0,91 0,93 1,95% 1,70% 

25 0,92 0,93 0,92 0,94 1,46% 1,31% 

50 0,98 0,98 0,98 0,98 -0,06% -0,02% 

90 0,99 0,99 0,99 0,99 -0,39% -0,30% 

Table 3 Savings on the full set 

Savings values are more representative than compression ratios. The results are somewhat 

consistent with the compression ratios in Table 2. On average, the modified algorithm 

achieves about 4% higher data compression. An interesting situation occurred at 50% and 

90% relative error, because the original algorithm outperformed the modified algorithm.  
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The difference in the compression ratios between March and May is there due to the different 

flight phase of the spacecraft.  

 

Plot 9 Number of operations 

Plot 9 is giving out information about the increased demand of the resources. The original 

algorithm is running, efficiently, with almost a constant intricacy. On the other hand, the 

modified algorithm has a rather exponential progress. 

 

3.4.2 Quality of compressed data 

This section is about the quality of the approximation that is the compressed time 

series providing. I removed values for 50% and 90% relative error, because those values are 

not that relevant to the outcome. 

MSE 

The mean squared error is defined in section 3.3.3. From the definition, it is obvious 

that if 𝑀𝑆𝐸 = 0, then the compressed time series will provide the same information as the 

original time series, but using less samples – this the ideal scenario.  
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Plot 10 Media of MSE over maximum relative error 

Plot 10 is showing rather interesting values up to 10%. The reason is the median, which I 

used and the majority of MSEs were zeros. The vast majority of MSEs ended up in a range (0, 1) and a very little number of MSEs reached up to 7 × 1013.  

After the first batch of tests, I realized that I have to measure it differently and eliminate 

absolute values. 

Relative absolute error 

The relative measures are defined in section 3.3.3. Both results are very similar to the 

mean squared error until 10%. The information loss is minimal and the modified algorithm 

is showing slightly better results. To explain the mysterious range (0.5%, 10%) I created 

histograms, shown in Plot 13, which will explain the zero values in this range. 
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Plot 11 Relative absolute error 

 

 

Plot 12 Relative root squared error 
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The columns of both histograms are 5% wide and the y-axis is limited to 10 samples, 

otherwise the number of samples in the first column would scale down the remaining 

columns. The first column in the first histogram has around 2080 samples and the 

remaining 30 are distributed in range (0.05, 1). The situation is similar in the second 

histogram where the first column has about the same number of samples, but a different 

distribution of the remaining samples.  

 

Plot 13 Distribution of RAE 

3.4.3 Additional evaluation  

I decided to reanalyse the results after testing the algorithms as a lossless 

compression, in section 3.5, where I used three categories to divide the parameters. The 

categories were low, medium and high. The reason for creating those categories was to help 

with an interpretation of the results and better insight into them. 

The low category contains parameters, which were not that compressible, mostly because 

of their volatility and their compression ratio very close to 1:1. On the opposite side are 

the parameters from the high category. A large number of them had the range close to 0, 

which means that the whole time series was represented by only two samples. That pushed 

the compression ratio extremely high, because as the length of the time series grows, 
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the compression ratio is growing with it, because the time series was still represented by 

only two samples – the first and last sample from the original data. 

It was a battle between the low and high category. The results were skewed to one of 

the categories, depending which one had more members and the answer was somewhere 

in the middle. Therefore, I decided to revise the results on a different set of parameters. 

I looked at the data from the lossless compression, which I have obtained for the original 

algorithm, selected parameters with the range higher than 0, thus eliminating some of the 

“flat lines”, and parameters with the compression ratio at least 1.1:1. I refer to this subset as 

the medium subset. The relative difference of compression ratios is obtained as 𝑣2−𝑣1𝑣1  and 

absolute difference of savings as 𝑣2 − 𝑣1. 

 

 Compression ratio Relative difference 

March 2010 May 2014 
March 2010 May 2014 ε v1 v2 v1 v2 

0,5 110,7 216,0 109,7 231,3 95,1% 110,9% 

1 124,8 235,9 121,2 250,1 89,0% 106,3% 

2 148,4 268,4 136,7 278,8 80,8% 104,0% 

5 249,3 379,2 217,9 382,0 52,1% 75,3% 

10 464,9 623,2 294,8 494,4 34,0% 67,7% 

20 619,5 831,1 413,9 668,0 34,2% 61,4% 

25 707,8 919,5 467,6 730,9 29,9% 56,3% 

50 1200,0 1369,6 1204,0 1419,0 14,1% 17,9% 

90 2784,0 2766,2 3225,9 3269,2 -0,6% 1,3% 

Table 4 Compression ratio of medium subset, aggregated by an average 

 Total savings Absolute difference 

March 2010 May 2014 
March 2010 May 2014 ε v1 v2 v1 v2 

0,5 0,730 0,791 0,754 0,818 6,1% 6,5% 

1 0,745 0,802 0,770 0,830 5,7% 6,0% 

2 0,770 0,821 0,793 0,845 5,0% 5,2% 

5 0,812 0,852 0,824 0,866 4,0% 4,2% 

10 0,839 0,874 0,844 0,880 3,5% 3,6% 

20 0,867 0,896 0,872 0,900 2,9% 2,8% 

25 0,883 0,906 0,888 0,911 2,3% 2,3% 

50 0,964 0,966 0,965 0,968 0,2% 0,3% 

90 0,987 0,980 0,987 0,982 -0,7% -0,5% 

Table 5 Total savings of medium subset, aggregated by an average 

I will start with Table 5. The results are similar to the results in Table 3, but around 2% 

higher. The modified algorithm achieving around 6% higher compression and this advantage 

is disappearing as the relative error grows. Six percent is not a number that would persuade 
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me to use the modified algorithm. Table 4 is telling a rather interesting story of those two 

extra percent that were achieved on the medium subset. The numbers are much smaller 

compared to the numbers in Table 2, but that is not the relevant information here. It is the 

difference between the algorithms. On the full set, the two tables were telling almost the 

same story, but not in this case. In the medium subset, there are parameters that were 

compressed much more by the modified algorithm. In addition, the numbers were aggregated 

by mean, which most likely pushed the compression ratios of modified algorithm so high. A 

time series with 10 000 samples that compressed to 40 samples, will have 𝐶𝑅 = 250. However, a time series that compressed to 5000 samples will have 𝐶𝑅 = 2. 

In absolute numbers, the difference of 20 samples is negligible in the longer compressed 

time series. 

Plot 14 is providing extra context to Table 5 and Table 7. It is a histogram of differences 

between algorithms. The difference Df is calculated as: 

 𝐷𝑓 = 𝑙𝑐,𝑣1 − 𝑙𝑐,𝑣2𝑙𝑢  (19) 

where 𝑙𝑐,𝑣1 is the length of the compressed time series by the original algorithm, 𝑙𝑐,𝑣2is the 

length of the time series compressed by the modified algorithm and 𝑙𝑢 is the length of 

the uncompressed time series. 

 

Plot 14 Relative difference between algorithms 
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The histogram shows two “islands”. The left one has clearly more members and is closer 

to the 0. The right one is the cause for the high difference in the compression ratios. 

The situation is similar with different values of ε. I will not show another 9 similar 

histograms. 

3.4.4 Deployment scenario 

In this scenario, I tried to set the maximum allowed error for each parameter 

individually. In the real deployment scenario, technicians should do this. I have a metadata 

file, which tells me what the parameter is, but it does not give any clues to what a typical 

error of the given system is. I used trial and error method. I set the error value, plotted 

the compressed time series and reaped those two steps until I felt that I am not compressing 

the original time series too much. I used same categories as I used in section 3.5. The relative 

difference is obtained as 𝑣2−𝑣1𝑣1  

 

CR Parameter 

Compression ratio 

Difference 

 

Relative error v1 v2 

H
ig

h
 

NACW0G0W 625,0 2500,0 300,0% 0,7 

NACW0R07 1111,1 1111,1 0,0% 1 

NACG0009 5,4 8,7 60,4% 3 

NACW0F01 625,0 625,0 0,0% 50 

NACW152E 833,3 2500,0 200,0% 50 

M
ed

iu
m

 NAAD0432 42,4 25,1 -40,7% 0,7 

NAAD0431 42,0 34,2 -18,5% 1,6 

NCNAT101 38,2 56,2 47,2% 5 

NAAD0331 117,6 93,5 -20,6% 4 

NACW0K0G 113,6 44,2 -61,1% 8 

L
o
w

 

NPWD1274 28,6 16,9 -41,0% 55 

NAAD0503 2,0 2,4 21,3% 20 

NACW0G0J 8,6 5,8 -32,8% 30 

NPWD1434 67,6 17,5 -74,2% 30 

NAAD0603 41,5 25,4 -38,7% 40 

Table 6 Test with manual error setting 

Table 6 shows something I noticed before, but without realizing its true meaning. I do not 

want to generalize the results based on a set of 15 parameters. However, the modified 

algorithm, in some cases, yields the compressed time series with a lower compression ratio 

than the original algorithm. It means that the modified algorithm can use lower error setting, 

thus increasing quality of the compressed time series, while achieving the same compression 

as the original algorithm. 



3  Fractal Resampling 66 

This is a rather contrasting and baffling result, because all the tests I ran and evaluated were 

with the same error setting and yet the modified algorithm came out as the winner, by about 

6%. According to these results, it should lose.  

3.5 Lossless compression 

From the beginning, I was looking at these algorithms as lossy compression 

algorithms. The patent does not even mention lossless possibility. Unfortunately, the idea 

to test it as a lossless compression algorithm came very late and I did not have time 

to perform measurements on such a scale as I did for the other predetermined errors.  

In order to obtain at least some measurements, I handpicked a few parameters and compared 

only those. I looked at the compression ratios from the previous measurements,  

for  𝜀 = 0.5%, and picked 5 parameters, which had compression ratio above 500, around 20 

and below 1.5. Only the first 10 000 samples of each parameter were used. The relative 

difference of compressed lengths is obtained as 𝑣2−𝑣1𝑣1  and absolute difference 𝑣2 − 𝑣1. 

CR 

 Compressed 

length 

Difference Number of 

operations 

Parameter v1 v2 Absolute Relative Relative 

H
ig

h
 

NACW0G0W 17 4 13 76,47% -108,3% 

NACW0G0K 19 4 15 78,95% -108,2% 

NACG0009 4617 2394 2223 48,15% -1650,8% 

NACW0F01 16 16 0 0,00% -70,8% 

NACW152E 15 4 11 73,33% 21,0% 

M
ed

iu
m

 NAAD0432 7426 6546 880 11,85% -1483,1% 

NAAD0431 5650 4828 822 14,55% -1172,1% 

NCNAT101 318 193 125 39,31% -715,7% 

NACW1401 109 68 41 37,61% -166,3% 

NMDAT101 716 599 117 16,34% -230,3% 

L
o
w

 

NPWD1274 9992 9974 18 0,18% -1559,3% 

NAAD0503 9953 9877 76 0,76% -2281,8% 

NACW0G0J 10000 10000 0 0,00% -1660,8% 

NPWD1434 9848 9679 169 1,72% -1767,0% 

NAAD0603 9885 9838 47 0,48% -1530,5% 

Table 7 Lossless compression comparison 

The results in Table 7 are showing a strong dependency on the data that are being 

compressed. In some cases, in the low category, the modified algorithm achieved the same 

results as the original algorithm, but need much more operations to produce the compressed 

time series. The situation with demand on the resources is similar in the other two categories, 

where the modified algorithm needed much more operations to achieve compression. 
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The modified algorithm needed further adjustment in the step when checking the 

distances of samples from interpolated line. If all the distances were equal, it used the first 

sample as the displacement point. I borrowed an idea from the original algorithm and used 

the midpoint as the displacement point for cases like this.  

I hesitate to make a definitive conclusion. I encountered difficulties with the speed 

of the modified algorithm that I was not able to eliminate in time.  I started experimenting 

with CUDA10, but as I mentioned above, this was a late idea and I could not produce a 

working implementation in time.  

Nevertheless, the selection of parameter in Table 7 represents a fairer set. Fairer in a way 

that each category is equally represented and each parameter had 10 000 samples. 

On average, the lossless modified algorithm eliminates about 7 % more samples. In addition, 

the way I picked the parameters in Table 7 motivated me to produce an additional set of plots 

and results for the medium category, but on a larger scale. 

I tested the data from March 2010 and May 2014 with the original algorithm. The original 

algorithm had no issues with speed there. The algorithm is blisteringly fast even in the 

lossless setting. This was anticipated as, because Plot 9 has already showed that it is 

performing almost equally regardless of the setting of the maximum error. The data from 

March have compression ratio 3.03: 1 and the data from May 2014 2.97: 1. 

3.6 Future work 

I do not think that there are many improvement possibilities on the original algorithm. 

It is efficient and fast, but there are areas, which could ease up setting up the predetermined 

errors for larger number of parameters. 

The modified algorithm gave me much more things to think about, because it caused 

me much more troubles. These troubles came in scenarios when I was testing larger volumes 

of data. The biggest problem was the overall speed. Just to give an idea, the original 

algorithm needed about 4 minutes to compress a set of 18 539 737 samples. The modified 

algorithm needed 97 minutes and that number would rise as the predetermined error 

decreases. These numbers are for relative error 𝜀 = 10%.  

  

                                                 

10 Compute Unified Device Architecture – technology from NVidia enabling parallel 

computation by using GPUs 
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Here is the list of areas, which might lead to a higher compression speed: 

 Exploring options whether it would be possible to infer some information about a 

segment from the preceding segment, i.e. segments with low variance in data could 

be skipped without the necessity to check it. 

 Ranking the segments in a queue, by length or measuring some other statistical 

quantities.  Then, for example, processing shorter segments first. This could improve 

memory usage, but I donot think it would lead to the speed increase. 

 Exploring ways to traverse a (random) tree-like structure that is being created during 

the compression and thorough exploration of Cantor set theory in relation to binary 

trees 

3.7 Conclusion 

The expectations were that the modified algorithm will achieve a better compression, 

but it will take its toll on the performance. The question was. How much will it improve and 

what will be the marginal benefit? 

The modified algorithm can achieve up to 25 % higher compression. However, this number 

heavily depends on the data. In large sets of time series, of Rosetta’s telemetry, the modified 

algorithm achieved only 4 % to 6 % higher compression.  

The modified algorithm is achieving better results, compared to the original algorithm, as the 

predetermined maximum error decreases, reaching the peak when the algorithms turn 

into lossless algorithms. The heavy dependency on the data remains and the modified 

algorithm needs significantly more resources to compress a time series. 

There are several ways to interpret the results, either by looking at the whole set of parameter 

or dividing it into intervals. Both ways will show different numbers, but similar conclusions.   

I will close this work with three points: 

 The modified algorithm can achieve up to 25% higher compression than the original 

algorithm 

 The modified algorithm can achieve same compression as the original algorithm 

with lower setting of the maximum predetermined error 

 The modified algorithm needs significantly more resources to compress time series 
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