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terakce. Algoritmus je založený na myšlence genetického algoritmu, jeho výpočet
je ř́ızen kombinatorickým grafem a operátory jsou inspirovány sociálńımi śıtěmi
a lidským chováńım. Algoritmus přináš́ı některé originálńı myšlenky a má svá
vlastńı specifika (jako nepoužit́ı žádné selekce nebo možnost mı́t v populaci jed-
ince r̊uzných typ̊u) a je otevřen pro daľśı rozš́ı̌reńı. V některých př́ıpadech je
efektivněǰśı než ostatńı algoritmy podobného typu, zejména ve finálńıch fáźıch
běhu. V této práci představ́ıme vlastnosti algorimu sociálńı interakce a demon-
strujeme jeho výkon pomoćı experiment̊u.
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Chapter 1

Introduction

In computer science, optimization search is currently a widely researched area
that has many applications in other disciplines like biology, medicine, chemistry,
economics, or combinatorics. One of the related topics that has broken through in
the past few decades is nature inspired optimization algorithms. There are plenty
of optimization algorithms that take inspiration in concrete biological processes.
We use such inspirations to develop algorithms which are then able to solve
general optimization problems. There are also algorithms that take inspiration
in real animals and mimic their natural behaviour in order to achieve success
in solving an optimization problem. For example, there exists the ant-colony
algorithm, the bee-colony algorithm, the firefly algorithm, the bat algorithm, the
cuckoo search and more [1]. The majority of these algorithms has been found
successful and have earned their place in the field of optimization search.

Our motivation is to go one step further and take inspiration in an animal
species that currently leads in most of the world: the human beings. We believe
that since humans have had a big evolutionary success, they have to be char-
acterized by some significant structural behaviour that plays a key role in their
success. We also believe that if we find that special kind of behaviour, we can
transform it into a new optimization search algorithm that might be as successful
as humans in the real world. In past decades a research of social networks arose
which is supported by the fact that internet social networks spread all over the
world and are being used rapidly [2]. In other words, we have access to more in-
formation and data about social networks than ever before. So, we have decided
to focus on social networks, and to take them as our inspiration to develop a new
optimization algorithm.

The main goal of this thesis is to develop a new optimization algorithm: the
social interaction algorithm that is based on social network structures and studies.
Since the social interaction algorithm is very complex, contains a high number of
parameters, and is open to introducing many new features, we focus more on its
general properties and parameter tuning for general cases rather than developing
a very specialized version to solve a concrete problem. Another goal is to compare
the performance and convergence properties to other existing models. Because
the social interaction algorithm is designed to solve binary optimization problems,
we compare the algorithm to other models that are designed to solve binary
optimization problems as well, like genetic algorithms for example.

In the rest of this chapter, let us give a brief introduction about the structure
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of the thesis and the content of single chapters.
In chapter 2 we give an introduction into optimization search and important

factors of its analysis as a determination of a solution quality, complexity analysis,
and exploration versus exploitation. Then, we present already existing optimiza-
tion algorithms, and we pay a special attention to nature-inspired optimization
algorithms. We present especially algorithms that are somehow related to the
social interaction algorithm like genetic algorithms and their variants. At the
end of the chapter we introduce few concrete binary optimization problems that
we use in experiments in chapter 5.

In chapter 3 we give an introduction to social network structure and analy-
sis. Because it is related to the graph theory, we introduce some graph theory
definitions as well. We describe structural properties of social networks and pay
attention to connections between individuals and to the strength of those con-
nections. Then, we give a look at the information flow through the network and
at social epidemics from a view of important kinds of individuals that play a key
role in its arise [3]. Again, we focus especially on aspects of social networks that
are related to the social interaction algorithm. We present other aspects as well
but we omit them in more detailed description.

Chapter 4 is the main chapter of this thesis. We join the knowledge from
both chapter 2 and chapter 3 to develop the social interaction algorithm. We
take inspiration in social networks, especially in their structures, as well as in
knowledge from other optimization algorithms. We describe all components of
the social interaction algorithm together with all operators and parameters it con-
tains. Then, we analyze the algorithm theoretically, discuss parameter choices,
and pay a special attention to graph choices because the graph defines a com-
putational structure of the algorithm. Then, we summarize the main properties
which differentiate the social interaction algorithm from other models. One of
these properties is a possibility of individuality, and we outline several options
of how to use it. We summarize the relation of the social interaction algorithm
to other models and we formally prove that we can mimic Hill climbing method
by the social interaction algorithm. At the end we look at opportunities of par-
allelism and we prove that we can run the social interaction algorithm using
O(
√

m
∆

) threads efficiently, where m is the number of edges in a graph and ∆ is
the maximum degree in a graph.

In chapter 5 we investigate the performance and convergence properties of
the social interaction algorithm by running experiments. It would be tedious to
deeply test all properties and features of the social interaction algorithm intro-
duced in chapter 4 so we focus more on basic parameters tuning, graph choice
and on general convergence properties. Some algorithm properties will still stay
open for more detailed future research. We also compare the social interaction
algorithm to other models. We compare especially the convergence properties
and population variability. For all experiments we use the one-max problem and
the SAT problem instances.
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Chapter 2

Optimization Search Algorithms

One of the common goals of mathematics and computer science is to solve
optimization problems. The optimization is a widely studied topic which is in-
volved in many particular areas of current research, and has applications in many
different fields like physics, economics, medicine, chemistry, artificial intelligence,
et cetera. Therefore, we are motivated to develop methods that solve optimiza-
tion problems. There exist a lot of methods with different approaches, and they
are being widely researched recently. In this thesis we concentrate on one specific
group of such methods which is called the optimization search algorithms and we
will look at that area later in this chapter. First let us give a brief introduction
into the optimization in general.

When we solve an optimization problem P , we have a set of feasible solutions
F and an objective function f(x) that maps solutions from F to real values. Our
goal is either to maximize the value of an objective function, then we talk about
a maximization problem, or to minimize the value of an objective function and
then we talk about a minimization problem [4].

Since we can easily turn every minimization problem to a maximization one
and vice versa by replacing the objective function f(x) by f ∗(x) = −f(x) or by
f∆(x) = 1/f(x). Both substitutions work in both directions.

Optimization problems can be divided into two major categories depending
on whether the variables are continuous or discrete. Optimization problems with
discrete variables are known as combinatorial optimization problems and those
with continuous variables are known as continuous optimization problems. In a
combinatorial optimization problem, we are looking for an object like an integer,
a graph or a permutation from a finite set of feasible solutions F . In a continuous
optimization problem we usually work with real variables and the set of feasible
solutions F is infinite [4].

The standard form of an (continuous) optimization problem is the following
[4]

Definition 1. The optimization problem is

min
x
f(x)

subject to

gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
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where

• f(x) : Rn → R is the objective function to be minimized over the vari-
able x,

• gi(x) ≤ 0 are called inequality constraints, and

• hi(x) = 0 are called equality constraints.

Since we do not need the inequality and equality constraints and we will do
maximization in most of the cases, we use a more simple definition which, in
addition, fits to discrete problems as well.

Definition 2. The maximization optimization problem is

max
x∈F

f(x)

where f : F → R

where the domain F of a target objective function f is called a search space.

Let us note that the definition 2 covers the definition 1 since we can take into
account all inequality constraints and equality constraints and cover them in a
shape of the domain F .

Our general goal when solving an optimization problem is to search for the
global maximum (or minimum) of an objective function f . If we are given a
function f by the simple exact formula, then we can use the mathematical analysis
to get all local optima, and simply choose the best [5]. But unfortunately, we
often work with more complicated functions and in conditions that we are not
given an exact description, and we are just able to compute the result value for
a given feasible solution. Hence we are motivated to develop more sophisticated
optimization methods. As we mentioned before, one category of such methods is
the optimization search algorithms.

Optimization search algorithms usually try to evaluate an objective function
in some points in a specific order. In sections 2.3, 2.4, 2.6, and 2.7 we describe
concrete examples of such algorithms.

Since the essential topic of our research is a new algorithm for solving binary
optimization problems, we describe all methods as they solve a binary problem
even if they are originally designed to solve a more general one.

Definition 3. A binary optimization problem is an optimization problem P
in a form

max
x∈{0,1}d

f(x)

where f : {0, 1}d → R is an objective function of a problem P .

2.1 Optimization Algorithms Analysis

When we develop optimization algorithms we need a way to compare and to
analyze them. We do it by several criteria. The crucial one is the quality of the
solution that our algorithm produces. We can define the quality as the following.
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Definition 4. Let us have an optimization problem P which has an optimum
solution of value f(x∗) and let us have a solution x of a value f(x). Then we say

that the quality of the solution x is q(x) = f(x)
f(x∗)

when we solve a maximization

problem, and q(x) = f(x∗)
f(x)

when we solve a minimization problem.

Obviously, the best possible quality is always 1. Let us note that the definition
4 works best for objective functions that are always positive or always negative
because then the quality always fits into the interval [0, 1]. Since we always work
with positive objective functions, this definition is sufficient for us.

Another criterion we pay attention to, during optimization algorithm analysis,
is the number of evaluations of an objective function, that the algorithm has
done during its computation. The reason is that an objective function evaluation
is often the most demanding and the most time consuming part of the whole
algorithm [1].

Definition 5. Let us have a run R of an optimization algorithm A that produces
a solution x. Then a value eval(R, x) is a number of evaluations of an objective
function that an algorithm has done before it outputs the solution x.

So, our goal is to develop such algorithm that outputs a solution of as good
quality as possible, and do as few evaluations of an objective function as possi-
ble. But we still cannot omit other complexities of the algorithm like the time
complexity and the memory complexity. For example, let us have an algorithm
that evaluates an objective function just once, output the optimum solution but
has an exponential time complexity. Such algorithm might be still useless since it
might run for years. So we have to take care of standard algorithm complexities
as well.

2.2 Exploration and Exploitation

Optimization algorithms can be also analyzed from the way they explore the
search space. In essence, all optimization algorithms should have two key com-
ponents: exploration and exploitation which are also referred to as intensification
and diversification [6].

Exploitation uses any information obtained from the solved problem to help
generate new and better solutions. This process as well as information is typically
local. Therefore, it is considered to be a local search. For example, Hill climbing
method from section 2.3 is a typical example of exploitation. It is always climbing
up from a current point. Its advantage is the fast convergence but its disadvantage
is that it often gets stuck in some local optimum because the final solution largely
depends on a starting point [1].

On the other hand, exploration covers exploring new information on the global
level. It can generate solutions with enough diversity and far from the current
solutions. Therefore, the search is typically on a global scale. The advantage of
exploration is that it is less likely to get stuck in a local mode, and the global
optimality can be more accessible. However, its disadvantages are slow conver-
gence and the waste of computational efforts because many new solutions can be
far from the global optimality [1].
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Our goal is to find a good balance of exploration and exploitation so that an
algorithm can achieve good performance. Too much exploitation and too little
exploration mean that the algorithm may converge more quickly but the proba-
bility of finding a true global optimum may be low. On the other hand, too little
exploitation and too much exploration can cause the algorithm to wander around
with very slow convergence. The optimal balance should mean the right amount
of exploration and exploitation, which may lead to the optimal performance of
an algorithm. Therefore, the good balance of these two components is crucially
important [1].

However, finding such balance is still an open problem. In essence, the bal-
ance itself is a hyperoptimization problem because it is the optimization of an
optimization algorithm. In addition, such balance may depend on many factors,
such as the working mechanism of an algorithm, its setting of parameters, tuning
and control of these parameters, and even the problem to be considered. Fur-
thermore, such balance may not universally exist, and it may vary from problem
to problem [1].

2.3 Hill Climbing with Random Restarts

The most basic and the most typical representative of all optimization search
algorithms is the Hill climbing method. The idea comes from a real hill climbing.
When we imagine a search space as a landscape we are walking on, then we always
do a step that increase our altitude in order to reach the top. And that is exactly
what the Hill climbing method does [7].

Mathematically said, let us have a d-dimensional real function f which we
want to find a global maximum of. At the beginning we generate an arbitrary
initial point x from a search space and then we iteratively do the following. We
generate a new point x′ = x+ ε where ε is a vector that contains a small random
change in its every dimension. A vector ε represents a small step in the landscape.
Then if f(x′) ≥ f(x), we replace x for x′, and we keep x otherwise. Finally, we
continue with the next step.

The algorithm ends after the given number of iterations N or when the end
criteria is reached, usually when the solution is close enough to the true global
optimum. From the description above we may simply write an algorithm in
pseudo code as in figure 2.1.

By the view of exploration and exploitation, Hill Climbing Method is a pure
exploitation because we only use the last local point to obtain the next one and the
final destination point strongly depends on the initial one. But we can extend it
by some degree of exploration by executing the algorithm repeatedly several times
with different initial points. Then, we take the best result from all executions
and thereby increase the probability of reaching the true global optimum [1].

The described version of an algorithm is developed for d-dimensional real
space. Now we modify it to get a version that works in d-dimensional binary
space. Generating the initial solution can stay the same, again we just pick some
initial point at random. But we have to change the way we pursue the small
step. We cannot perform a random change in every dimension because then it is
equivalent to generating a new random point. But we can, for example, flip one
single bit at random instead, or rather to flip b random bits instead.
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Algorithm 1: Hill Climbing Method

1 choose an initial point x from the search space at random;
2 t = 0;
3 while the end criteria is not reached do
4 ε = random change;
5 x′ = x+ ε;
6 if f(x′) ≥ f(x) then
7 x = x′;
8 end
9 t = t+ 1;

10 end

Figure 2.1: The pseudo code of a hill climbing method

2.4 Simulated Annealing

One of the earliest and yet most popular optimization algorithms is simulated
annealing, which is a trajectory-based, random search technique for global op-
timization [8]. It mimics the annealing process in materials processing when a
metal cools and freezes into crystalline state. The annealing process involves the
careful control of the temperature and its cooling rate. Simulated annealing has
been successfully applied in many areas [1].

Again, as in section 2.3, we want to find a global maximum of a d-dimensional
real function f . The idea of simulated annealing is very similar to Hill climbing
method. At the beginning it picks a random point x and starts doing small steps
around to point x′ as well as the Hill climbing method does. But unlike the Hill
climbing method, there is a chance to keep a new point x′ even when it is worse
than a point x. The probability of keeping a worse point is given by the current
value of the temperature T and the size of a difference ∆f = f(x)− f(x′).

In particular, the new point x′ is preferred over x when either f(x′) ≥ f(x)
or f(x′) < f(x) and

p =
∆f

T
> r

where r is a random number, used as a threshold, which can be drawn from a
uniform distribution [0, 1] [9].

The temperature T we can take as a function of iteration number t which is
called the cooling schedule. Two commonly used cooling schedules are linear and
geometric. For a linear cooling schedule we have

T = T0 − βt

where T0 is the initial temperature and β is the cooling rate. It should be chosen
in a way that T → 0 when t→ N (the maximum number of iterations). It gives
β = T/N [1].

On the other hand, geometric cooling schedule decrease the temperature by
a cooling factor 0 < α < 1 so that T is replaced by αT which means T (t) = T0α

t

[9].
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Algorithm 2: Simulated Annealing Algorithm

1 choose an initial point x from the search space at random;
2 t = 0;
3 T = T0;
4 while the end criteria is not reached do
5 ε = random change;
6 x′ = x+ ε;
7 accept = false;
8 if f(x′) ≥ f(x) then
9 accept = true;

10 end
11 else
12 generate a random number r;
13 ∆f = f(x)− f(x′);
14 if exp(−∆f/T ) > r then
15 accept = true;
16 end

17 end
18 if accept then
19 x = x′;
20 end
21 t = t+ 1;
22 T = αT ;

23 end

Figure 2.2: The pseudo code of a simulated annealing algorithm.

Altogether we can write down the pseudo code of the algorithm as in figure 2.2.
The algorithm ends after a given number of iterations or when a final temperature
Tf is reached.

The advantage of simulated annealing against Hill climbing method is that it
is able to overcome local optima. That is effective especially for functions with a
ragged surface [1].

We may turn simulated annealing to solve binary problems instead of real
problems in the same way like we did it for hill climbing method in section 2.3.

2.4.1 Parameters Control

Now we look more closely at how parameters influence the behaviour of an
algorithm. Let us look at the temperature first. When T is too high (T → ∞)
then p → 1 and the new point is “always” preferred over the old one and the
algorithm becomes to be a simple random walk. On the other hand when T is too
low (T → 0) then p→ 0 and the algorithm is “equal” to Hill climbing method [1].

So, the initial temperature is crucially important and has to be carefully
chosen due to the shape of function f . It is because the probability also depends
on the value ∆f .

As we have already mentioned, the parameter β is good to set β = T0/N in

12



linear cooling schedule. In the case of geometric cooling schedule, we must be
careful that the temperature is not decreasing too quickly. The cooling process
should be slow enough to allow the system to stabilize easily. Hence the good,
commonly used, choice is α = 0.7 ∼ 0.99 [1].

The advantage of the geometric cooling schedule is that T → 0 when t→∞,
thus we do not need to specify the maximum number of iterations [1].

2.5 Nature-Inspired Optimization Algorithms

An optimization is a hard discipline, and we do not know the perfect solution
yet. At the same time we can watch the behaviour of the nature. There are plenty
of biological processes which are developed by billions of years of evolution, and
which just works and fulfil its nature. So, there was a following question at the
table: “Is it possible to simulate these biological processes and force them to help
us to reach our goals in optimization problem solving?”

The answer seems to be “Yes.” During the last thirty years there were devel-
oped many successful nature-inspired optimization algorithms, and it is still an
area of an active research.

Nature-inspired optimization algorithms are often population based or swarm
intelligence based. In both cases, there are individuals which represent single
solutions of a problem. These individuals somehow interact with each other due to
concrete algorithm’s specifics. After many generation or many such interactions,
there is, hopefully, developed an individual which is much better.

The most famous population based algorithm is the genetic algorithm de-
scribed in section 2.6. It takes an inspiration in the evolution itself and it is good
for solving optimization problems in binary search space. Swarm intelligence
based algorithms as ant colony algorithm [10], bee colony algorithm [11] or fire-
fly algorithm [1] take an inspiration in real animals and their interaction within
colonies. Ant and bee algorithms are good to solve combinatorial problems and
firefly algorithm is great to solve an optimization in a real space.

There exists much more nature-inspired optimization algorithms like bat al-
gorithm, cuckoo search, flower pollination algorithm and many more. We work
mostly with a genetic algorithm and its modifications. Some of these algorithms
are described in a book Nature-Inspired Optimization Algorithms from Xin-She
Yang [1].

2.6 Genetic Algorithm

The genetic algorithm is a population based algorithm and was invented by
John Holland and his collaborators in the 1960s and 1970s [12]. It is a model of
biological evolution based on Charles Darwin’s theory of natural selection. Since
that time a vast majority of well-known optimization problems have been tried
by genetic algorithm. Many modern evolutionary algorithms are directly based
on genetic algorithms or have some strong similarities [1].

We describe the genetic algorithm in its basic version which is developed to
solve a binary optimization problem.
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Genetic algorithm is population based search. A population is a set of individ-
uals. An individual is represented as a binary string of genes that represents one
point from a binary search space. Every individual has its fitness value which is
computed by the fitness function F . The fitness function should be proportional
to the target objective function f . A fitness of an individual determines how
good is the solution represented in his or her genes. The better the individual’s
objective value f(x) is, the higher the fitness value F (x) should be. So, for the
maximization problem the choice F (x) = f(x) is good.

During a single iteration of an algorithm all individuals are gradually modified
by three genetic operators: selection, crossover and mutation. These operators
mimic the reproduction process in evolution, new individuals are created and the
old ones die. Then the algorithm continues with the set of new individuals in the
next iteration. Such one iteration of genetic algorithm is called generation [12].

Selection is an operator that selects individuals which will be involved in
reproduction to the next generation. It is done according to fitness of individuals.
We do not care whether we select one concrete individual more than once. When
it happens, we just create more copies of him. There exist various types of
selection, for example a roulette wheel selection or a tournament selection. In
tournament selection we take two (or possibly more) individuals at random and
we take the best to the next generation. We repeat that process until we select
a given amount of individuals.

The roulette wheel selection picks a random individual. The probability that
an individual is picked is directly proportional to his fitness value, concretely

pi =
F (xi)∑
j F (xj)

where xj is a genetic code of an individual j. It is necessary to have positive
fitness function in order to roulette wheel selection works correctly. Again we
repeat the process as many times as many individuals we need.

The crossover of two parent individuals happens with a probability pc. Then
genes of these two individuals are combined and two new are created from them.
There are also various kinds of crossovers. The most widely used are one-point
crossover and uniform crossover. One point crossover choose a random point
between bits and swap the second half of both individuals. For better imagination
see figure 2.3. It follows the idea that close genes are more related, so they
should not be split easily. On the other hand, a uniform crossover swap every bit
independently with probability 0.5. The crossover operator is considered to be
the main part of the genetic algorithm and usually has higher probability than
mutation.

The mutation operator represents small random changes that can occur during
evolution process, and happens with a probability pm. We can have for example
bit flip mutation, or bit string mutation. Bit flip mutation just flips one random
bit in an individual. Bit string mutation flips every bit with a probability pb. A
value pb is often set to 1

d
where d is the length of an individual, so the expected

number of flipped bits is one. Mutation usually has a smaller probability than
crossover, and it should mainly helps the algorithm to get out from local optima.

Unlike a real evolution, we would like to keep the best individuals alive in
order to the best fitness would not be decreasing. We realize it by the heuristic
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crossover point

1 0 1 0 1

1 1 0 1

1 0 1 1

1

1

1 1 0 0 1

parents offspring

Figure 2.3: Example of one-point crossover from the genetic algorithm. Two
parent individuals on the left side are combined and produce the offspring on the
right side.

Algorithm 3: Genetic Algorithm

1 define the fitness F ;
2 generate the initial population P and compute their fitness;
3 t = 0;
4 while end condition is not satisfied do
5 selection: choose individuals from P into new population Q;
6 for every pair of individuals in Q apply crossover with probability pc;
7 for every individual in Q apply mutation with probability pm;
8 compute fitness of individuals in Q;
9 add best E individuals from P into Q;

10 P = Q;
11 t = t+ 1;

12 end

Figure 2.4: The pseudo code of genetic algorithm

that keeps the best E individuals for the next generation. This property is called
an elitism. Elitism helps to a faster convergence of the algorithm because it can
never happen that the best individual is either not selected or is modified badly.
However, very strong elitism can cause premature convergence.

The algorithm starts with random generated individuals and ends after a
given number of iterations or when the best possible individual is evolved. After
joining everything together we can write down a pseudo code of an algorithm as
in figure 2.4. It is recommended to run the algorithm several times with different
initial data because different initial data can lead to different solutions of various
qualities.

2.6.1 Role of Genetic Operators

As we already introduced, genetic algorithms have three main genetic oper-
ators: crossover, mutation and selection. Their roles can be very different [1].
Regarding to individuals represent solutions of a solved problem we talk about
individuals as about solutions.
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• Crossover. Swapping parts of the solution with another. The main role is
to provide mixing of the solutions and convergence in a subspace. It uses
already existing information contained in individuals.

• Mutation. The change of parts of one solution randomly, which increases
the diversity of the population and provides a mechanism for escaping from
a local optimum. It explores new informations.

• Selection. The use of the solutions with high fitness to pass on to next gen-
erations. An elitism can be also considered as a part of selection. Selection
is the only operator which uses the fitness values of individuals.

Let us analyze the genetic algorithms by terms of exploration and exploitation.
Exploitation component of an algorithm is composed by crossover and selection.
They both work in local subspaces and together create new solutions from al-
ready existing ones. On the other hand, exploration component is composed by
mutation and initialization of an algorithm. Both of them freely explore new
informations that might be not known before [1].

All genetic operators together make the algorithm to be very complex. It is
crucial to balance all the parameters to the algorithm works well and it is strongly
dependent on concrete problem and fitness function realization [1].

It is worth pointing out that these genetic operators are fundamental. Other
operators may take different forms, and hybrid operators can also work. However,
these basic operators are important to understand the basic principles of genetic
algorithms so we focus on them.

2.6.2 Choice of Parameters

An important issue is the choice of an appropriate fitness function that de-
termines the selection criterion in a particular problem. For the minimization of
a function, one simple way of constructing a fitness function is to use the form
F (x) = A − f(x), where A is a appropriately large constant.1 Thus, the ob-
jective is to maximize the fitness function while minimize the objective function
f(x). Alternatively, for minimization problem, we can define a fitness function
F (x) = 1/f(x) but there may appear a problem when f(x)→ 0.2 However, there
are many different ways of defining a fitness function [1].

Choice of the fitness function should guarantee that that individuals with
higher fitness are selected efficiently. Bad choice of fitness function may cause
that incorrect or meaningless individuals are preferred.

Another important issue is the choice of various parameters. The crossover
probability pc is usually very high, typically in the range of [0.7, 1.0]. On the
other hand, the mutation probability pm is usually small, typically in the range
[0.001, 0.05]. If pc is too small then the crossover occurs sparsely, which is not
efficient for evolution. If the mutation probability is too high, the solution could
still “jump around,” even if the optimal solution is approaching [1].

1We set A = 0 if the positive fitness is not required
2Especially when we use roulette wheel selection. In case of tournament selection it is not a

problem while we do not reach zero.
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A proper criteria for selection the best solution is also important. How to
select individuals to pass to the next generation is a question that is still not
fully answered. Selection is often supplemented with elitism. The basic elitism
is to select the fittest individual (in each generation) which is passed to the new
generation unmodified by genetic operators. This ensures that the best solution
is achieved more quickly [1].

Other issue is to choose a proper population size. If the population is too
small then there is not enough of genetic information and there is not much evo-
lution going on. If the population size n → 1, the algorithm becomes to be just
simple random walk. In the real world, for species with a small population, eco-
logical theory suggests that there is a real danger of extinction for such species
[1]. In addition, in genetic algorithm with small population, when a significantly
fitter individual appears, there is a danger that its offspring overwhelm the whole
population soon. On the other hand, too large populations needs more evalua-
tions of fitness function which costs us additional computation time. Studies and
empirical observations suggest that the population size n = 40 to 200 works for
most problems [1].

2.7 Genetic Algorithm Variants

Because of the success of genetic algorithms, its new variants are still being
developed and many other algorithms are based on the idea of genetic algorithms.
In this section we focus on modifications that investigate a structural behaviour of
individuals within the population. That means that individuals are not allowed to
interact with everyone all the time, as it is done in a standard genetic algorithm,
but their interactions are directed or bounded by the, so called, population model.
We introduce two population models in this section: the island model and the
neighbourhood model.

2.7.1 Island model

The island model is a genetic algorithm modification where individuals are
divided to a separate “islands” lying in the circle and on each of them there is
an evolution process going on like in the genetic algorithm [13]. Once in a while
(after given number of iterations) the best individual from every island is taken
and sent to the right neighbouring island. Such moving of individuals is called
the migration.

Every island evolves its unique kind of solutions and carry different genetic
information. Migration, in essence, takes the best individuals from different runs
of the genetic algorithm and enrich them by genes from other population. There
were studies which showed that such migrations help to faster convergence, and
that it leads to performance improvement which will not be fully realized by
models that has all subpopulations (islands) independent [14].

An issue of the island model is to decide how often to do the migration (it
is called the migration rate). It was shown that an island model with relatively
small migration rate causes acceleration of the rate of development of the best
individual [15].
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Island or migration models described above are also referred as panmictic
genetic algorithms.

2.7.2 Neighbourhood model

The neighbourhood model supposes that each individual has its own geograph-
ical location. Then, every individual can move just in his bounded region. The
individual may interact only with those of other individuals that are living in
immediate locality which we call the neighbourhood. The neighbourhood is de-
termined by the topological structure of a manifold that individuals live at. We
may see the neighbourhood as the set of potential partners of a individual. We
call them friends [16].

Individuals are placed regularly on a manifold so the graph of friendship has
a “grid” structure. We can notice that since it is a connected graph, genes
informations can propagate through the whole graph when we let individuals to
interact long enough. In some literature it is referred as a diffusion process [16].

Let us see how the neighbourhood model with a graph G = (V,E) works
exactly.3 We have an individual sitting in every vertex of G. In a single iteration
every individual does the same: selects one of its friends, uses its copy for the
reproduction (crossover and mutation), then the offspring is created, the survival
strategy is applied, and eventually an individual is replaced.

Selection, crossover and mutation can be the same as in the standard genetic
algorithm (but selection uses just individuals from the neighbourhood). The
survival strategy specifies which offspring (if any) is passed to the next generation.
Five survival strategies differing in the strength of selective pressure have been
defined in [16]:

• A: accept all – each offspring is accepted

• B: 1% worse – accept only offsprings which are fitter than the local weakest
+ 1% (small degenerations are possible)

• C: local least – accept only offsprings which are fitter than the local weakest

• D: average – accept only offsprings which are fitter than the local average

• E: parent – accept only offsprings which are fitter than the local parent

The survival rule may be modified to be an elitist strategy :

If the local parent has the best quality within its deme, i.e. is the
local-best, than its offspring is accepted only if it is better than the
parent [16].

The elitist strategy preserves all local-best individuals and consequently also
the globalbest individual. By definition survival strategy E is always an elitist
strategy [16]. In experiments in chapter 5 we always use the survival strategy C

3Let us note that originally in [16] the neighbourhood model was invented, and tested only
for a toroid grid and a ladder. However, we can use any kind of a graph. Toroid grid and ladder
graphs are described in more details in section 4.3.
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Algorithm 4: Neighbourhood Genetic Algorithm

1 initialization of an algorithm and individuals;
2 t = 0;
3 while stop criteria is not satisfied do
4 for every individual independently or in parallel do
5 select a friend from neighbourhood by selection;
6 reproduce (crossover and mutation) and create offspring;
7 apply survival strategy and eventually replace the individual;

8 end
9 t = t+ 1;

10 end

Figure 2.5: Pseudo code of the neighbourhood genetic algorithm.

with a global elitism (the globally best individual always survives and the local
best not necessarily).

Let us show the pseudo code of an neighbourhood genetic algorithm in fig-
ure 2.5.

2.7.3 Analysis and Comparison of Models

Both island model and neighbourhood model can be treated by parallelism.
In island model every island can run independently in parallel until the next
migration time is achieved. The neighbourhood model can be even more parallel
because its every individual can run independently from others.4 They can send
information about themselves to their friends by “mail boxes” and that is where
their friends pick them up at the time they need. So, the neighbourhood model
can be treated in a massively parallel way [16].

Let us refer to the comparison of the performance of standard genetic algo-
rithms, panmictic genetic algorithms and genetic algorithms with diffusion pro-
cess. In [17], there was concluded that genetic algorithms with diffusion process
are more suitable for complicated functions than panmictic genetic algorithms.
A study [18] compared all mentioned kinds of genetic algorithms over several
benchmark problems. It was shown that panmictic genetic algorithm performs
better than standard genetic algorithms, and genetic algorithms with diffusion
process performs the best of all [16].

2.8 Concrete Optimization Problems

In chapter 5 we introduce several experiments and compare various algorithms
by solving concrete optimization problems. The aim of this section is to introduce
to all of these problems.

4In fact, it does not matter whether every individual is in the same generation or not.
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2.8.1 One-Max Problem

One of the simplest binary optimization problems is to evolve a vector of
ones [19]. The problem is mainly used to ensure that our algorithm is working
correctly, and is able to end up with a vector of ones from a random initial data
in a reasonable amount of time. The problem also can be used to obtain an initial
setting of various parameters when developing a new algorithm.

2.8.2 SAT Problem

In computer science, boolean satisfiability problem is the problem determining
if there exists an interpretation (evaluations of variables by true and false)
that satisfies a given Boolean formula. SAT problem is a special kind of boolean
satisfiability problem where the formula is in conjunctive normal form (CNF).

Definition 6. The Boolean formula ϕ is in a conjunctive normal form when
it is in a form ∧

i

∨
j

xi,j

i.e. it is a conjunction of disjunctions where disjunctions we call clauses.

For every Boolean formula ϕ it is possible to find an equal formula ψ in
CNF form with the same set of variables. Here equal means that they are equally
satisfiable. Thus, for every evaluation of variables by true and false the formula
ϕ is satisfied if and only if the formula ψ is satisfied.

The SAT problem was the first known NP-complete problem, (it was proven
by Stephen Cook in 1971 [20]). Because of the fact that the SAT problem is
NP-complete, it is possible to formulate any instance of any NP problem as an
instance of the SAT problem. The SAT problem is widely studied and many
heuristic algorithms are developed to solve it.

We look at the SAT problem as at a binary optimization problem. Our goal
is to satisfy as many clauses as possible. Let us note that a clause is satisfied if
and only if any of its literals acquire true value.
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Chapter 3

Social Networks and Epidemics

Humanity forms one huge social network with its very specific structure. Peo-
ple are connected to others by strong and weak connections, and are living as
a part of several different social groups. They are interacting with each other,
influencing themselves and in that way getting a life experience. In such networks
we are interested in: how the structure itself looks like, why it does look like that,
how it is formed and divided into small or big groups, what is the information flow
through the network, who are the important people, what roles a single person
plays, et cetera. We can apply such analysis in social media, marketing, or during
a political campaign. Other topics are related to epidemics (social epidemics and
diseases as well), and how they begin, spread, or what is the flow of informations.

During past five years social networks become extremely popular, with over
one billion of users on Facebook alone and billions more accounts accross thou-
sands of social networking sites online [2]. Since social networks are widely used
through the internet, they have become very popular and useful topic to research.

In this chapter, we mainly focus on the structure of networks and on social
epidemics that are spread mostly by individuals. Then, in chapter 4 we apply
the theory and observations to design an optimization algorithm.

We follow the notation and nomenclature from [2] in case of a social network
structure and we follow nomenclature from [3] in case of social epidemics. But
sometimes we slightly change it in order to obtain better understandability and
readability for computer scientists.

3.1 Basic Terms and Definitions

For us, a social network is a standard combinatorial graph composed by ver-
tices (nodes) that are connected by edges1. Vertices represent persons, and two
persons are connected by the edge when they know each other (or i.e. are friends
on Facebook). There might be an evaluation of an edge given by how well persons
know each other but we usually do not have such information, so we work just
with an unweighted graph structure containing no additional information about
vertices or edges. We consider only undirected graphs. There might exist also
directed edges in social relations but for simplicity we omit them as well as we
omit loops and multiedges.

1In social network analysis edges are often referred as ties.
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Figure 3.1: A clique K5 (left) and a circle C5 (right).

We say that a distance between vertices u, v ∈ G is the number of edges on
the shortest path between u and v. If there is no path between those two vertices
then we consider the distance to be infinity.

We will often use the following special types of graphs: clique Kn and circle
Cn. A clique is a graph with all possible edges and circle is a graph where vertices
are connected just to their neighbours “in a circle”, see figure 3.1. When we talk
about a subgraph of a graph, we always mean an induced subgraph.

To describe a connectivity of a single vertex v we use a vertex degree deg(v)
in its standard meaning (the number of edges incident to the vertex v. A vertex
degree is a good way to describe how much a single vertex is connected to others.
If we want to describe how the whole graph (or subgraph) is connected, we do it
by density [2].

Definition 7. Let G be a graph with n vertices and m edges then we say that a
density D of G is

D =
2m

n(n− 1)

where n(n−1)
2

is the number of possible edges.

When a density of a graph G is “high” (D → 1) then we say that a graph is
dense and when a density is “low” (D → 0) then we say that a graph is sparse.

Once we have defined density, we can talk about clusters. For us, a cluster is
a subgraph C of a graph G that is dense. It is not necessary for a cluster to be
a clique. The exact definition of a cluster is not absolutely clear as it is not clear
what clusters a given vertex belongs to. There can be a lot of clusters present in a
graph of various densities and sizes. A single vertex can belong to more different
clusters. In general, we want clusters to be as big as possible while they are still
dense enough. Dividing a graph to clusters is crucial while analyzing the social
network and ways how to do it are still being researched [21].

The last term we define is an egocentric network. Let us define it as follows

Definition 8. Let G be a graph and v one of its vertices. Then an egocentric
network of v in G is a subgraph Gv of G that contains a vertex v and all its
neighbours.
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An egocentric network is used to analyze a role of an individual within the
network and his or her belonging to different social groups [2].

3.2 Social Network Structure

We can characterize the most of social networks as sparse highly clustered
graphs with small average distance between vertices.

The whole network usually contains huge amount of people while single person
has only limited number of acquaintances. That is why the graph is sparse. On
the other hand, it contains many dense subgraphs (clusters) which match various
social groups like school classes, colleges at work, family, free time activity groups,
et cetera.

A common phenomenon in a social media is the so called six degree of separa-
tion. It is a hypothesis proposing that any two people in the world are separated
by short paths, on average about six steps. First it was demonstrated by Mil-
gram in 1967 [22]. He made an following experiment: he has given a package
to a random person in USA with instructions to deliver that package to another
random person in USA. In one step, it was possible either to deliver the package
to the target person directly or to pass it to someone who is more likely able to
deliver the package. The average number of steps of packages that reached the
destination was very close to six.

Within a Facebook network a phenomenon is even stronger and there is only
three and half degrees of separation, as Facebook published at the beginning of
2016 [23].

3.3 Tie Strength

As authors of [2] stated: “Social relationships are complicated. The type of
relationship people have will draw on many things like their history and similarity,
each persons personal background and preferences, environmental factors, and
more. Relationships are also multifaceted, and many relationship types can be
used in social network analysis. One of the most useful is the idea of tie strength.”

Tie strength is a measure of the strength of relationship between people [2].
The concept was introduced by Mark Granovetter 1973 [24], he stated: “the
strength of a tie is a . . . combination of the amount of time, the emotional inten-
sity, the intimacy (mutual confiding), and the reciprocal services which charac-
terize the tie.”

Later researchers investigated which other factors might also play a role in tie
strength. They concluded that except of time, emotional intensity, intimacy and
reciprocal services there play a role also structural features, social distance and
emotional support.

3.3.1 Structural Features

Since it is very hard to measure most of factors above, and they are dependent
on data that are often not publicly available, and since we focus on the network
structure, we only look at structural features closer and we try to estimate the tie
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strength just by this one factor. But as we will see, all the factors are somehow
binded and the structural features are often consequences of other factors.

We base the structural measurement on a simple idea. When two individuals
have many mutual friends then they likely know each other better. The more
mutual friends they have, the bigger is probability that they see each other on
regular basis, the more mutual social groups they are part of and hence the
socially closer they are.

So now we can estimate the tie strength by the number of mutual friends. We
formulate it in terms of graph theory.

Definition 9 (Tie strength). For a given graph G and an edge {u, v} = e ∈ G
we say that a tie strength of e (a weight of e) is given by the expression

|N(u) ∩N(v)|

where N(w) is a set of all neighbours of w and vertex w itself.

3.3.2 Strong and Weak Ties

When a tie strength is high, then we say that it is a strong tie, and when a tie
strength is low then we say that it is a weak tie. Strong ties are rare and indicate
usually family members or very close friends. On the other hand, weak ties are
much more common and include acquaintances and more casual friendships. Of
course, there is a more accurate spectrum of tie strength but for simpler analysis
we assume just these two major kinds [24, 2].

The tie strength is a very important factor to consider when analyzing social
networks and an information flow. Strong ties are usually more trusted and weak
ties usually has bigger chance to bring us new information since people on weak
ties often come from different social groups. For example in 1973 Granovetter in
his study “The Strength of Weak Ties” [24] researched how people are getting
their jobs and concluded that weak ties play a crucial role and significantly many
people get a job just by using a weak tie than doing anything else.

Similarly in replication of Milgram’s “six degrees” experiment, researchers
gave booklets to participants and instructed them to pass the booklets on until
they reached an unknown target person. At each step the participants recorded
to whom they gave the booklet and how they knew that person. Results showed
that chains where the booklet successfully reached the target made much heavier
use of weak ties [2].

Two experiments above shows the importance of weak ties. But it does not
mean that strong ties are unimportant. Strong ties are much more trustworthy
and reliable than weak ties.

3.4 Social Epidemics

Social epidemics spread in a network similarly like disease epidemic does but
they have their own specifics in addition. A social epidemic can be a fashion
trend, an emergence of best seller, smoking of teenagers, local criminality, et
cetera. It spreads in a social network without any central control or a master
plan.
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One possible point of view at social epidemics is by strong and weak ties which
we introduced in section 3.3.2. Now we look at another theory that comes from
a book Tipping Point by Malcolm Gladwell [3]. He proposes that the following
three factors are important for a social epidemic rise: the law of the few, the
stickiness factor and the power of context.

Let us look closer at the law of the few. Gladwell in [3] stated: “Contagious
expansion of ideas or systemic changes does not rely upon thousands or millions of
people all rising up of one accord to create the change. Instead, the rapid growth
is usually started by a handful of people who exhibit some kind of exceptional
behaviour. . . ” There are three important kinds of people for the social epidemic
rise: connectors, mavens and salesmans.

Connectors are people who “know everyone.” They know exceptional amount
of people from many different social groups. They are usually also very popular
and good in communication. Connector is likely one of the first who come in
contact with a new information and when the information engages his interest,
he or she distributes it to huge number of other individuals [3]. In other words,
we can characterize a connector as an individual with a big egocentric network
that connects many different clusters (or social groups).

Mavens are information specialists. They know everything there is to know
about a certain topic (like sales in hypermarkets, new technologies, et cetera) and
they love to share what they know with others. They are usually not connected
that much as connectors but they are eager to share what they know. Mavens are
important individuals. They are acquiring new informations that the others do
not know. In a network they are likely the first to know a potential system change.
If they are in touch with connectors, then the change can get communicated very
rapidly [3].

Salesmans are people who can easily persuade others and get people to make
decision and take action that they ordinary would not take. They can use their
emotions as contagious influences on other people. Their ability to persuade
makes them strong carriers of infectious ideas, concepts, trends and changes.

3.5 Chapter Conclusion

The purpose of this chapter is to provide inspirations from the social network
analysis that we use in chapter 4 for developing the social interaction algorithm,
and to understand the social network specifics because then we can get better
understanding of some features of the algorithm and vice versa. We use structural
properties when designing a graphs for the algorithm, we apply a tie-strength
in experiment 5.6. In section 4.5.3 we transform special kinds of individuals
described in section 3.4 into ideologically analogical individuals in the algorithm.
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Chapter 4

Social Interaction Algorithms

In this chapter we take humans as the source of inspiration and we apply
observations about their behaviour when solving optimization problems. We
want to examine whether it can be useful to be inspired by animals in such high
evolutionary stage.

We use the theory of optimization search introduced in chapter 2, knowledge
about social networks referred in chapter 3 and combine them both in order to
design a new algorithm. Then in chapter 5 we support the theory by results of
experiments and we compare the performance to other algorithms.

The classification of social interaction algorithm is somewhere between pop-
ulation based and swarm intelligence based algorithms. Ideologically, the closest
algorithm (known by us) is the neighbourhood model of genetic algorithm de-
scribed in section 2.7.2 because they both lead the computation by some graph
which defines what pair of individuals can interact to each other. Social inter-
action algorithm is based on the basic idea of the genetic algorithm itself. That
is why we consider it to be population based. But we consider it to be swarm
intelligence based as well because there is a group of humans in the environment
that interact to each other according to given specific rules and the whole group
tries to solve an optimization problem. So, the situation is similar like with a
group of bees, or a group of ants, et cetera.

We design the algorithm especially to solve binary optimization problems. We
test the performance on one-max problem and SAT problem instances. Our goal
is to be able to solve tough SAT problem instances successfully, so we designed few
modifications that fits SAT problem the best when it is not necessarily possible to
apply them to any binary optimization problem with the same success. However
the basic version of an algorithm and the most of its modifications should be
applicable to any kind of binary optimization problem.

4.1 Algorithm description

Social interaction algorithm is a genetic-like algorithm. As in genetic algo-
rithm we are given a binary function f : {0, 1}d → R to optimize (maximize or
minimize) which we turn to a positive fitness function F to maximize. In addi-
tion, we are given a graph G = (V,E) with n vertices and m edges that defines a
structure of population that we can understand as a social network. Every vertex
represents an individual, and there is an edge between two individuals if they
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are friends (they trust each other). In the algorithm we allow interactions only
between individuals that are in friendship (are connected by an edge).

Every individual i represents a binary vector xi and we imagine that values
of a vector mimic individual’s opinions on some fixed set of yes/no questions. As
in the real world, if two individuals meet then, since they are friends, they have
a discussion about several topics and there is a chance that one of them change a
part of his or her opinions according to the other one and vice versa. In addition,
there is also a chance that an individual change his or her opinion independently
just by himself (i.e. from newspapers, books, television, et cetera).

More formally, a social interaction algorithm runs in time steps. In every
single time step two operators can happen: meeting operator and mutation oper-
ator. Meeting operator happens during time step with higher probability pc on a
random edge e ∈ E(G) and a mutation operator happens with lower probability
pm on a random vertex v ∈ V (G). As a mutation operator we can use any kind of
mutation we know from genetic algorithms. We will mostly use the single bit flip
mutation. Meeting operator defines a way of discussion and changing opinions
of individuals. We describe it more precisely in a section 4.1.2. Let us point
out that there is no explicit selection in social interaction algorithm, and pairs
of individuals to interact are fully determined just by the structure of graph G.
The absence of selection is the underlying difference from genetic-like algorithms,
since the selection operator is their very important part.

Algorithm runs for a given number of steps or until the best individual is
achieved. We measure a running time by the number of fitness function evalu-
ations which is the most significant part of an algorithm from the perspective
of time consumption. We can write down the pseudo code of social interaction
algorithm as in figure 4.1.

4.1.1 Mutation operator

Mutation represents small random changes in individuals. The goal is the
same as in genetic algorithms: to discover new informations that have not oc-
curred in the population yet. It fully belongs to exploration component.

Mutation happens with a lower probability pm. Good choice usually is pm ∈
[0.001, 0.1]. We can use any mutation as in genetic algorithm since it is dependent
only on one single individual and nothing more. However mutation is not a
crucial part of our research so we mostly use simple single bit flip mutation with
probability pm = 0.1. Single bit flip mutation flips exactly one random bit of an
individual.

4.1.2 Meeting operator

The essence of a meeting operator is to share knowledge between individuals
and mix them together in order to get better combination of opinions. It forms
the exploitation component of an algorithm. The description reminds a classical
crossover from the genetic algorithm but it cannot be as simple as that. There is
no explicit selection in the social interaction algorithm and hence no warranty of
“good” individuals meeting. So individuals have to take care about themselves
and have changes of their opinions under control at least partially. Let us describe
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Algorithm 5: Social Interaction Algorithm

input : A graph G of n vertices, fitness function F , max iteration IT
output: Genes of the best individual seen

1 initialize individuals and count their fitness;
2 best = an individual with the highest fitness from individuals;
3 reset evalCounter ;
4 while evalCounter < IT and best.fitness < maxFitness do
5 if succeed with probability pc then
6 perform meeting operator on a random edge {u, v} ∈ E(G);
7 recompute fitness of individuals u and v;
8 update the best ;

9 end
10 if succeed with probability pm then
11 perform mutation operator on a random individual v ∈ V (G);
12 recount fitness of an individual v;
13 update the best ;

14 end

15 end
16 return best

Figure 4.1: The pseudo code of social interaction algorithm.

it precisely.

Meeting operator happens with a higher probability pc and uses individuals
a and b from endpoints of a random edge e ∈ E(G). Individuals a and b have a
discussion. They discuss every topic with a probability pf which we call a meeting
factor. In a single topic an individual a change his or her opinion according to
individual b with probability

F (b)

F (a) + F (b)

and an individual b change his or her opinion according to individual a other-
wise. By value F (x) we mean a fitness value of individual x before the discussion
started.

When the discussion is over, both individuals recount their fitness. For x ∈
{a, b} if a fitness value of individual x does not decrease then he or she keeps all
new opinions. If a fitness of individual x decreases then he or she goes back to
his or her original opinion with probability ps independently for every discussed
topic. Probability ps is given by the self confidence of an individual x. See the
pseudo code of meeting operator in figure for better imagination 4.2.

Meeting operator is the main drive of social interaction algorithm so we usually
choose probability pc ∈ [0.9, 1.0]. Let us notice that for the performance, the
important factor is the ratio of probabilities pm and pc rather than their concrete
values. The best is to have pm or pc equal one to prevent “empty” iterations.
But we usually use pc = 0.9 and pm = 0.1 to get more trustworthy comparison
to other algorithms running with the same parameters.
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Algorithm 6: Meeting operator

input: Individuals a and b

1 copy a = a.copy();
2 copy b = b.copy();
3 changes = empty list ;
4 for i ∈ {1, . . . , d} do
5 if succeed with probability pf then

6 if succeed with probability F (b)
F (a)+F (b)

then

7 a.genes[i] = b.genes[i];
8 end
9 else

10 b.genes[i] = a.genes[i];
11 end
12 changes.add(i);

13 end

14 end
15 for x ∈ {a, b} do
16 if F (x) < F (copy x) then
17 for c ∈ changes do
18 x.genes[c] = copy x.genes[c] with probability ps;
19 end

20 end

21 end

Figure 4.2: The pseudo code of meeting operator.

4.1.3 Role of Meeting Factor

The meeting factor influences the size of change of individuals during one
meeting. The bigger the meeting factor is, the more bits are changed. When we
use bigger meeting factor, the algorithm converges faster because individuals get
to be similar to their friends sooner. But on the other hand, slow changes give
to individuals more time for doing “good steps.”

Experiments 5.1 and 5.3 showed us that a good choice of meeting factor is
pf ∈ [0.1, 0.5] when pf ∼ 0.5, the algorithm is more efficient for simpler functions
as for example the one-max problem and when pf ∼ 1

8
, the algorithm converge

slower but for more complicated problems, as for example the SAT problem, it is
able to converge further.

4.1.4 Role of Self Confidence

The self confidence of an individual decides how often he or she returns back
to his or her original opinions when the change did not lead to a better solution.
The bigger the self confidence is, the more he or she returns back.

Let us look at the self confidence from a view of exploration and exploitation.
The big self confidence causes an individual to behave more reservedly and hence
to be more exploitative and less explorative. On the other hand, with low self
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confidence, the individual is more explorative by himself. From the population
point of view when all individuals have low self confidence then they are not
shame to become the same as the others so the population converge fast to a
state that there is not much of new information available.

So it seems that the big self confidence is advatageous and experiments 5.1
and 5.3 support this theory. Based on them we claim that the best choice of self
confidence is ps ∼ 0.9 or bigger. However it holds only for the case of population
with a common self confidence. Populations with various self confidence open
possibility of cooperation of different kinds of individuals and the whole situation
become more complicated. We discuss such options and other possibilities of
individuality in section 4.5.

4.2 Complexity analysis

Let us analyze the time complexity of an algorithm first. Let n be the number
of individuals, m number of edges, d the size of an individual, T the total number
of fitness evaluations and F the complexity of a single fitness function evalua-
tion. During initialization we construct a graph in time O(n + m) and initialize
individuals with their fitness values altogether in time O(nd + nF ). In the rest
of the algorithm we have bounded the number of fitness function evaluations by
T and we can bound the number of evaluations of both operators by T as well
since we always evaluate a fitness function after any operator call.

The mutation can be done in constant time (we just flip a single bit), and
the meeting operator touches every bit of both individuals constant times so its
complexity is O(d) if we exclude a fitness computing that can happen during the
meeting. So the complexity of the running part on the algorithm is O(TF +Td+
T ) = O(TF +Td). In addition, we can assume that F ∈ Ω(d) which is a sensible
assumption that says that every bit of individual matters for fitness function. So
we reduce the complexity to O(TF ).

The complexity of the whole algorithm is O(n + m + nd + nF + TF ). It is
sensible to have n ∈ o(T ) because then we expect every individual to be a part
of an interaction more than constant times, or even m ∈ o(T ) because then the
expected usage of a single edge by meeting operator is more than a constant. So
at the end we can estimate the whole complexity by O(TF ). Fitness function
complexity F is given by the problem to solve so the most crucial factor to pay
attention to is the total number of fitness function evaluations T .

4.3 Graph Choice

The crucially important issue in a social interaction algorithm is the appro-
priate choice of a graph. The graph structure decides what pairs of individuals
can interact with each other, and determines the distance of an individual from
all others. The graph choice fundamentally influence the convergence behaviour
as well as exploration and exploitation.

Two major extreme types of a graph to use are clique and circle. In a clique
every pair of individuals is allowed to interact. In such case the algorithm con-
verges very quickly. Clique is effective when solving “simple” problems as, for
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example, the one-max problem and it is less effective when solving more compli-
cated problems as, for example, the SAT problem. It converges fast but at the
same time it loses a variability of individuals, and hence it has lower chance to
evolve anything new.

On the other hand, circle is very sparse graph where every individual is con-
nected just to its two neighbours. Its convergence is noticeably slower than in
a case of clique. When solving simple problems like the one-max problem then
using a circle seems to be a wasting of time but when solving a more sophisti-
cated problems like the SAT problem then circle reaches much better results than
any dense graph. Its convergence is slow so it has much more time to combine
informations across its various population. Thanks to large average distance of
individuals, there is a good variability of information obtained in genes across the
population. So many parts of the search space are being discovered in parallel
and there is a bigger chance of achieving a good solution.

Promising results of a circle on the SAT problem motivate us to try various
types of circular graphs. During experiments we tried the following types:

• clique (figure 3.1)

• circle (figure 3.1)

• double-circle: the same as circle but every second vertex is connected as
well (figure 4.3)

• ladder: two layers of a circle. It is like a real ladder but a circular one
(figure 4.3) [16]

• grid: Standard grid on torus. Every vertex has exactly four neighbours
(figure 4.3)

• star: Single vertex connected to n− 1 leafs (figure 4.3)

• random: A random connected graph with n vertices and 3n edges.

4.3.1 Clusters

We would like to construct a graph which combines advantages from both
extreme graphs: the clique and the circle. That motivates us to pay attention to
cluster graphs. We design a simple version of cluster graphs where we have several
mutually disjoint cliques which are somehow connected by several edges. The way
of connecting cliques together and the ratio of the size of clusters to the amount
of clusters influences the convergence properties as we show in experiments 5.5
and 5.6.

A clique component in a cluster graph we call a cell. Every cell has strong
convergence properties (it converges fast to some “good” solution) and at the
same time memory cells exchange information between each other so altogether
the cluster graph works efficiently on a global scale as well. More of interactions
happen inside a cluster and less happen across two different clusters. Such be-
haviour might remind us an island model of genetic algorithms from section 2.7.1
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Figure 4.3: There is a double-circle on 10 vertices at the top left picture, circular
ladder at the top right picture, toroid grid at the bottom left picture and a star
at the bottom right picture.
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and the usage of strong and weak ties in a social networks as we discussed in
section 3.3.2.

We design and distinguish the following types of cluster graphs. Let us note
that in every of following types all cells have the same size.

• Cluster-circle: we label cells by a cell number and vertices of every cell
by vertex number. We make a circle on vertices of the same number in an
order given by cell number. See an example on figure 4.4.

• Cluster-clique: we label vertices of a cell by numbers and we make a
clique on every set of vertices with the same number. See example on figure
4.4.

• Cluster-double-circle: Every vertex of a cell independently create a new
connection to a random vertex of the next cell with probability 1

3
, to a

random vertex of the second next cell with probability 1
3

and to none vertex
with probability 1

3
. See an example on figure 4.4.

• Random-clusters: first we create random spanning tree on a graph of
cells and then we connect every other vertex independently to a random
vertex from a different cell with a probability 1

2
. See pseudo code on figure

4.5 for more details and an example of a graph on figure 4.4.

• Weak-cluster-circle: there is created just one circle on cells. Every cell
has two vertices chosen. One of them is connected to the previous cell and
one is connected to the next cell. A structure of this graph is the most
related to the island model of the genetic algorithm described in section
2.7.1. See an example on figure 4.4.

We can see that all cluster graphs described above except cluster-clique are
sparse and have a different structure of connections. In section 5.5 we compare
the performance of cluster algorithms which also shows us that all sparse cluster
graphs have better convergence properties than denser cluster-clique.

4.3.2 Usage of Tie Strength

Cluster graphs have a structure more like social networks, they combine ad-
vantages from both extreme graphs, the clique and the circle, and they have
promising results. But examples in section 4.3.1 still do not have all properties of
social networks. They are clustered, they are sparse random-clusters graph even
has a low average distance but none of them has more weak ties than strong ties
because then strong ties would not be used more than weak ties.

In order to have more weak ties in a graph and still use strong ties heavier
than weak ties, we have to modify a social interaction algorithm to respect a tie
strength when choosing an edge for the meeting operator. We follow a tie strength
as formulated in a definition 9 in section 3.3. We simulate the tie strength by
adding every edge to a graph repeatedly as many times as big is its tie strength.
Let us note that we can always afford it because a tie strength is always a positive
integer. Then the probability of an edge to be chosen is proportional to its tie
strength.
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cluster-circle cluster-clique

cluster-doublecircle random-clusters

weak cluster circle

Figure 4.4: Overview of cluster graphs.
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Algorithm 7: Random Clusters Generator

input: The number of clusters k and the cluster size l
output: The graph of type random-clusters

1 G = empty graph with vertices {0, 1, . . . , kl − 1};
2 for i ∈ {0, . . . , k − 1} do
3 create a clique on vertices {il, . . . , il + l − 1};
4 end
5 for i ∈ {0, . . . , k − 1} do
6 for j ∈ {0, . . . , l − 1} do
7 c = rand(k);
8 d = rand(l);
9 if with probability 0.5 and c 6= i then

10 add an edge {il + j, cl + d} to G if it is not already present;
11 end

12 end

13 end
14 return G;

Figure 4.5: The pseudo code of the random clusters generator.

Introducing a tie strength in a case of a social graph cause that the social
interaction algorithm behaves more like a real social network. The tie strength
plays an important role especially in a case of complicated cluster graphs where
clusters are not obvious. On the other hand, tie strength has no meaningful
usage in case of standard graphs like clique, circle, ladder or grid because in these
graphs all vertices play an equal role and a tie strength of every edge is the same.

4.4 Distinction of Social Interaction Algorithm

Recently, many new nature-inspired optimization algorithms have been de-
veloped. These algorithms are sometimes similar to each other at the end even
when they take an inspiration in totally different parts of the nature. So when
developing a new algorithm we must ensure that we really design something new
and not just algorithm that can be easily transformed to some another already
existing one. In this section we list properties which the social interaction algo-
rithm distinct in, and we try to vindicate that there is a good reason to continue
in a research of such algorithm.

• Allow various infrastructures: A graph structure influence the be-
haviour of the algorithm. A good graph structure can vary from problem to
problem and based on experiments from chapter 5 we can say that various
graph structures are advantageous when solving various problems.

• No explicit selection: There is no explicit selection in the social interac-
tion algorithm, and individuals interact just via the graph structure. This
property might seem disadvantageous for the convergence properties. On
the other hand, the algorithm does not converge fast to local optima. For
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example in the SAT problem there is usually no big difference in fitness
value across the population so even algorithms with selection often do not
have an advantage because of it.1

• Individuality: Since there is no selection, there is no need to treat every
individual with the same criteria. So we have an opportunity to let every
individual to behave differently and be more effective in a different part
of search space. As in the real world we can take an advantage of various
qualities of individuals and lead it to the success in a global scale. We
explore an individuality more in the following section.

4.5 Individuality

Social interaction algorithm has no explicit selection. There is no selection
which individuals can use to choose partners to interact with. They use their
partners “selfishly” just to get to be better. So then there is no reason to have
the same behaviour of all individuals and to treat every individual with the same
criteria. We can set a different goal to every single individual, and in such way
to force him or her to prefer a concrete subspace more. Or we can force some
individuals to behave more explorative and others to behave more exploatative.
If individuals have different goals then they can be advantageous for each other
because each of them could contain a different kind of knowledge which the other
one does not have. Specially, individuality can play an important role in cluster
graphs. If every member of a cluster behave somehow differently then the whole
cluster is more variable and has better chance to find a new good information.

In this section we introduce an individuality by unique self confidence, an
individuality by unique objectives and special kind of individuals. However, an
individuality theoretically has unlimited amount of options. It is just a question
of creativity and opportunities of a solving problem.

4.5.1 Unique Self Confidence

Individuals can have a unique self confidence. A self confidence is a parameter
that determines the size of change in case of disadvantageous meeting and hence
it influences whether an individual behaves more explorative or exploatative. We
designed the following two ways how to determine self confidences of individuals
in population.

• Uniform distribution: every individual picks his or her self confidence
from the interval [a, b] uniformly randomly.

• Better of two: every individual picks two values from interval [a, b] uni-
formly randomly and takes the bigger value as his or her self confidence.
Based on experiments 5.1 and 5.3 we know that high self confidence is
advantageous and leads to a better performance of the social interaction
algorithm. Therefore, we are motivated to prefer higher self confidences.

1Let us note that for example the genetic algorithm use different approaches when solving
complicated problems. It can use the tournament selection which is less dependent on the
fitness values or to use some fitness scaling, et cetera.
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Unique self confidence of individuals could cause better variability of an al-
gorithm since individuals have different explorative and exploatative properties.
However the experiment 5.7 did not provide any significant positive influence on
the performance.

4.5.2 Personal Fitness Function

Another way of individuality is to let every individual i to slightly modify a
target fitness function F and derive his or her new personal fitness function Fi

from it. Then an individual uses a fitness function Fi while the best individual
across the population is still chosen by the target fitness function F .

A personal fitness function opens wide range of opportunities. It can be
derived generally just by preferring some bits to have concrete values, or it can
targets some specifics of solved problem. It can be determined independently
for every individual as well as it can make personal fitness of neighbours to be
similar.

Personal fitness functions are very promising because they can bring much
higher variability into the population. But we have to be careful when we prefer
some parts of subspace too heavily, then we risk that an individual easily gets
stuck in his or her local optimum.

Personal fitness function should mimic interests and hobbies of an individual.
In the real world also not everyone wants the same and everybody has his or her
own measurements of success. But externally people usually behave according
to their own “fitness functions” so in the meeting operator we still use personal
fitness functions even when they could not be relevant for the other individual.

We introduce two concrete examples of possible personal fitness functions,
one general and one related to the SAT problem. However, there are many
possibilities how to design another ones.

• Bit value preference: Input parameters k ≥ l and w. A preference is
a pair of values (b, v). The preference (b, v) is satisfied if and only if a
bit b equals to the value v. At the beginning, every individual chooses k
personal preferences at random. Then every individual creates his or her
final preferences by adding l random preferences from personal preferences
of his or her every neighbour. Then every time a fitness function is evaluated
a bonus w is added for every satisfied preference of an individual’s final
preferences.

• SAT clause preference: The SAT problem has clauses and our goal
is to satisfy them all. Every individual can have his or her own weights
w1, . . . , wm for every clauses. Different preferences then cause that each
individual prefer a different subspace to converge to.

4.5.3 Special Types of Individuals

We can introduce some special kinds of individuals that have some extraordi-
nary properties or behaviour which other individuals does not have. An individual
can for example does some additional operation, or have a special structure or
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to behave differently during meeting operator. Again we have many options of
what to design.

As an example we try to introduce important individuals for the social epi-
demic arise that we described in section 3.4.

• Connector: An individual that has many connections. We can represent
connectors as vertex that is connected to significantly more individuals than
others. Optionally, we force the connector to be chosen by the meeting
operator more than others but because of many incident edges he or she is
chosen more often anyway.

• Maven: An information specialist in a given area. We choose several bits
and any time a maven is modified he search a local space given by those
chosen bits and takes the best solution from the subspace. Let us notice
that the amount of chosen bits should be low because the size of subspace
grow exponentially.

• Salesman: An individual who is able to influence others more than an
ordinary individual. We have more sensible options how to mimic this kind
of behaviour. For example, others can have a lower self confidence when
meeting a salesman or others can see that a salesman has bigger fitness
than he really has.

4.6 Relation to Other Models

As already mentioned, social interaction algorithm is based on genetic-like
algorithms. But it is not the true population based algorithm because all indi-
viduals survive all the time and nobody is replaced by someone better from the
next populations. It is close to swarm intelligence based algorithms as well but
it is also not the true swarm intelligence algorithm because individuals do not
explicitly work all together. We cannot say that all individuals work together to
achieve a common goal like it is typical for swarm intelligence algorithms. Like in
the real world individuals interact to each other and the fact that there appears
some fit individual is more a corollary of a group behaviour than a public goal.

Social interaction algorithm is very rich in the amount of parameters. So now
we go to discover whether it is possible to find such parameter settings that we
enforce the algorithm to behave like another well-known algorithm. We prove
that the social interaction algorithm can mimic the behaviour of Hill climbing
method from section 2.3.

Theorem 1. There exist parameter settings of social interaction algorithm such
that it mimics an evaluation of Hill climbing method.

Proof. Let us have the Hill climbing method that runs for T iterations, optimizes
a function f : {0, 1}d → R and changes exactly b random bits in a single step.

We use social interaction algorithm with a huge star graph where the number
of leaves tends to infinity so the probability that during an algorithm we use one
leaf twice for the interaction tends to zero. We can afford that, if we generate
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leaves lazily.2 We set pm = 0 and pc = 1 so there is no mutation happening and
there is only meeting operator taking place. We set the self confidence ps = 1.0
so only good steps are accepted, and bad steps are completely rejected.

The middle individual mimics the Hill climbing solution, and leafs mim-
ics the random changes. For the middle individual we set the fitness function
F (x) = f(x) in the case of maximization and F (x) = 1

1+f(x)−min{f(x)} in case of

minimization. For individuals in leaves we set F (x) =∞ in order to the middle
individual be always the one who is inspired by the other. Then we must measure
the algorithm performance only by the fitness of the middle individual.

The last parameter is the meeting factor. We set pf = 2b
d

because then the
expected number of bits to be changed is b. In a single iteration, the leaf individual
is new with a probability p → 1 so his or her every bit is zero with probability
0.5 and one with probability 0.5 as well. The expected number of topics to be
discussed is d2b

d
= 2b and by the linearity of expected value the expected number

of changed bits is b because the probability that the leaf individual equals to
middle individual on any single bit is exactly 0.5.

When we join everything together, we can say that a single evaluation of
the meeting operator in the social interaction algorithm mimics a single step of
the Hill climbing method and hence the social interaction algorithm with such
parameters mimics the Hill climbing method.

So, social interaction algorithm can mimic the Hill climbing method. But
what about the simulated annealing which is very similar? Can we mimic it as
well? The answer is: “not exactly.” Simulated annealing contains a tempera-
ture T parameter and by the temperature there is decided the probability p(T )
of accepting a worse solution. In social interaction algorithm we can control a
parameter of self confidence ps to be 1− p(T ) in every single iteration. Then we
obtain similar but different behaviour. The probability p in simulated annealing
is applied at the whole solution at once and on the other hand the self confidence
in the social interaction algorithm is applied on every single changed bit inde-
pendently. So, by the social interaction algorithm we can simulate an algorithm
that is very similar to simulated annealing but behave structurally differently in
a case of worse solution.

Similarly, a social interaction algorithm with a clique might seem to be similar
to the genetic algorithm. In both algorithms there is allowed an interaction of any
pair of individuals but selection and crossover both together work fundamentally
differently.

4.7 Parallelism

We can effectively run the social interaction algorithm in parallel in multiple
threads and reduce the running time. We provide a lock to every individual. If a
thread chooses an individual for mutation or meeting, it locks his or her and no
other thread can modify him or her until the current thread is finished. But we
have to be careful – in a case of the meeting operator we must lock two individuals
and when a situation as in figure 4.6 appears we end up in a deadlock. This issue

2By generating lazily we mean that we generate a concrete leaf at the time we first need to
access it and not before.
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Thread A

Thread B

Thread C

Locked by A

Locked by B

Locked by C

Figure 4.6: Deadlock situation. Thread A has locked the left vertex and it is
waiting for the top vertex, thread B has locked the right vertex and it is waiting
for the left vertex and thread C has locked the top vertex and it is waiting for
the right vertex.

we can simply solve by the rule that a thread always tries to pick an individual
with the lower identification number first.

Now, when we know how to parallelize the algorithm, the question is how
many threads we are able to use effectively. We do not want to have many
threads waiting for other threads to be done because then we are wasting the
computational time by an additional thread management. We prove that when
all threads together lock at most O(

√
n) individuals at the same time then the

expected number of individuals wanted by more than one thread is O(1). But
first we need to prove the following helping lemma.

Lemma 2. Let us have n empty queues and
√
n persons. When each person

choose randomly a queue to go in, then the expected number of persons waiting
in any queue is lower than 1

2
where by waiting we mean that a person is in the

queue at least in the second position.

Proof. Let W be a random variable that determines a number of waiting persons
and T random variable that determines number of non-empty queues. Then
W = k − T and hence

E[W ] = k − E[T ]

Let us have n queues and k persons. Then the probability of i-th queue to be

non-empty is 1−
(
n−1
n

)k
and by the linearity of expected value we have
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E[T ] = n

(
1−

(
n− 1

n

)k
)

so the expected number of waiting persons when we substitute k =
√
n is

E[W ] = f(n) =
√
n− n

(
1−

(
n− 1

n

)√n)

Our goal is to show that ∀n : f(n) < 1
2
. It is enough to show that

i) f(n) is increasing on interval [1,∞)

ii) limn→∞ f(n) = 1
2

Let us first prove that f(n) is increasing on interval [1,∞). We can numerically
check that f(1) < f(2) so it means that if f(n) is monotonous on [1,∞) then it
is increasing if it is continuous (it obviously is) and has no local extremes. We
check for local extremes by the first derivation.

f ′(n) =
1

2
√
n
− 1 +

(
n− 1

n

)√n
+ n

(
log

n− 1

n

)(
n− 1

n

)√n
1

2
√
n
< 0

on [1,∞) and hence there is no local extreme on that interval. The non-equations
holds because

(
log

n− 1

n

)(
n− 1

n

)√n
1

2
√
n
< 0

and it holds because log n−1
n

< 0 and other multipliers are positive since n ≥ 1.
The rest of the expression of f ′(n) is

1

2
√
n
− 1 +

(
n− 1

n

)√n
≤ 0

1 ≤ 2
√
n

(
1−

(
n− 1

n

)√n)

The last inequality holds because
(
n−1
n

)√n ∈ [0, 1) and hence the right side is at
least 1 since n ≥ 1. So we have proven that f(n) is increasing on [1,∞).

Now let us compute the limit. We do it mechanically.
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lim
n→∞

[
√
n− n

(
1−

(
n− 1

n

)√n)]
=

lim
m→∞

[
m−m2

(
1−

(
m2 − 1

m2

)m)]
=

lim
x→0

[
1

x
− 1

x2

(
1−

( 1
x2 − 1

1
x2

) 1
x

)]
=

lim
x→0

x− 1 + (1− x2)
1
x

x2
=

lim
x→0

1 + (1− x2)
1
x

(
−2

1−x2 − log(1−x2)
x2

)
2x

=

lim
x→0

1

2
[A+B + C +D]

where

A = (1− x2)
1
x

(
−2

1− x2
− log(1− x2)

x2

)
−2

1− x2

B = (1− x2)
1
x

4x

(1− x2)2

C = (1− x2)
1
x

(
−2

1− x2
− log(1− x2)

x2

)
log(1− x2)

x2

D = −(1− x2)
1
x

x2

1−x2 − 2x log(1− x2)

x4

In the first equation we use a substitution m =
√
n, in the second equation we use

a substitution x = 1
n

and in the fourth and the fifth equation we apply L’Hospital
rule. When we compute every addend and multiplier as separate limit, so we get

lim
n→∞

f(n) =
1

2
[1 · (−2 + 1) · (−2) + 1 · 0− 1 · (−2 + 1) · (−1)− 1 · 0 · 0] =

1

2

We promise that all assumptions in all L’Hospital rules are satisfied and we
afford to omit the detailed description and another exhausted mechanical com-
putations.

Let us note that if we would have
√
cn people in queues instead

√
n then the

result of the limit would be c
2
.

By the application of lemma 2 we obtain the following proposition.

Proposition 3. Let us assume a running of the social interaction algorithm using
a r-regular graph G with n vertices. If we run the algorithm in parallel with usage
of O(

√
n) threads then the expected number of waiting threads at any time of the

algorithm is O(1).
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Proof. A graph G is r-regular so it has exactly nr
2

edges. Let us consider the
social interaction algorithm with a graph G that is running in c

√
n threads for

some positive c. For simplicity we consider only usage of the meeting operator
because it consumes more resources than the mutation.

When a thread processes the meeting operator at a time, it blocks exactly
2r − 1 edges from being used by other threads which is at most 4

n
of all edges.

A thread is in waiting state if its random picked resources (means an edge) is
already blocked by another thread. At any time of the algorithm, every thread
has picked a random edge from a graph and we are interested in expected number
of edges that shares resources with other already processed edge. Since edges are
picked randomly with the equal probability we can apply lemma 2 for n

4
queues

and c
√
n persons. So, for c = 1

2
the expected number of waiting threads is 1

2
and

for any other positive c the expected number of waiting threads is (c−0.5)2

2
which

is still a constant.

The proposition 3 holds for regular graphs like circle, clique, grid, ladder and
regular clusters. We are going to extend it to the theorem 4 that holds for any
general graph.

Theorem 4. Let us assume a running of the social interaction algorithm with a
graph G with m edges and the maximum degree ∆. If we run the algorithm in
parallel with usage of O(

√
m
∆

) threads then the expected number of waiting threads
at any time of the algorithm is O(1).

Proof. In the worst case we have all vertices with a degree ∆ so we have n = m
2∆

vertices. Now we simply apply the proposition 3 and we obtain the result.
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Chapter 5

Experiments

In this chapter we present experiments exploring the performance and prop-
erties of the social interaction algorithm. Our main goals are to find a good
parameters setting, to examine an influence of its various features. We also com-
pare the social interaction algorithm to other existing models.

We use two optimization problems in the experiments: the one-max problem
and the SAT problem, both introduced in section 2.8. We use the one-max prob-
lem mostly for initial parameter tuning and to observe convergence properties,
and we use the SAT problem for initial parameter tuning as well but then we
focus on it more in other experiments.

We are interested in two resulting properties. Primarily we are interested in
the convergence properties which we measure by the best individual evolved since
the algorithm started and secondarily we are interested in genes variability [16].
We explain the purpose of genes variability in the following section.

5.0.1 Genes Variability

A genes variability means in how many bits individuals differ in average across
the population. The bigger the genes variability is, the higher is a chance that
the algorithm finds out something new. When a variability tends to zero then all
individuals are moreless the same and there cannot be explored anything new by
individual’s interactions.

We use two types of variabilities: local and global. In the local variability
we consider all pairs of individuals sharing an edge, and in global variability we
compute the variability for the whole population (the same as local variability
for a clique). The local variability tells us how likely the algorithm finds a new
solution in the near future and omits a variability of not directly connected pairs of
individuals. On the other hand, the global variability considers all the variability
in the population and tells us how likely the algorithm finds a new solution in
arbitrarily distant future.1

1The variability is contained somewhere in the graph but individuals with different genes
information could be far from each other. So, it might last longer before the variability meets,
if ever. For circular graphs it does not make a good sense to compute the global variability
because the average distance of individuals is high. On the other hand, the average distance
in clustered graphs, especially in random clusters, is small, so the global variability makes a
better sense.

45



Processor 8 x Intelr CoreTM i7-3700 CPU
Frequency 3.40GHz
Number of cores 8
Memory 15.5GiB of RAM

Table 5.1: Machine parameters

Algorithm algorithm we use in the experiment
Runs how many independent runs we execute (usually 25)

Iterations maximum fitness function evaluations during single run
Problem instance problem instance (or list) we run the experiment with

(includes the size of individuals)
Fitness function what fitness function we use

Population population size
Graph type list of graphs we use

Self confidence self confidence setting
Meeting factor meeting factor setting

Variability local / global / none
Additional notes additional notes if any

Running time Total running time of all parameter settings

Table 5.2: Sample experiment parameters specifications.

It is time consuming to compute a local variability for denser graphs, so we
use a global variability more often.

5.0.2 Machine Parameters

As we noticed in section 4.2, we are interested in complexity mostly by number
of fitness function evaluations until we reach a given precision. However, a real
running time is also important and we present it together with results as well.
We run all the experiments on computer with parameters described in table 5.1.

5.0.3 Experiment Parameters

For all experiments we set mutation probability pm = 0.1 and meeting prob-
ability pc = 0.9. We describe other parameters of the experiment by the table as
is the sample table 5.0.3 that contains an explanation of every paramater we use.

We may use a list of values for some parameters. Then it means that we run
the experiment for all combinations of parameter settings given by all lists.

5.0.4 Results Understanding

To demonstrate results we use graphs of convergence, graphs of variability
convergence, and summary tables of algorithm convergence. In graphs and tables,
we always visualise the distance from the maximum possible fitness value rather
than the fitness value itself. So, we can always read the data as we do the
minimization with the optimum value in zero.
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We repeat all experiments in 25 independent runs, and we log the worse
solution, first quartile, median, third quartile, and the best solution from those
25 runs regularly after some number of iterations. Then,we show the following in
the graphs: we plot the median progression by the dark line, around it we plot
a semi-dark strip between the first and third quartiles progressions, and a light
strip between the worse and the best solution progressions.

We plot the convergence and the variability convergence in the same way. Let
us note that in the case of convergence we want to have as fast progression as
possible while converging as far as possible (in ideal case into zero). In case of
variability convergence we would like to converge slower because while the genes
variability is high, the algorithm has a better chance to find something new.

In tables, we show convergence properties as well. In the leftmost column
there are fitness values. All other columns belong to median or best solution,
and contain the iteration number when we first reached a given fitness value for
a given column.

Besides convergence tables, we use also summary tables. We use summary
tables in experiments where we are interested only in final results. For every
parameter settings (given by the table) we provide median solution, the best
solution, and the variance of all solutions.

5.1 One-Max Problem Performance

5.1.1 Motivations and Goals

The goal of this first experiment is to examine convergence properties of the
social interaction algorithm for various parameter settings. We want to observe
how the self confidence ps, the meeting factor pf , and the graph choice influence
the algorithm behaviour when solving the one-max problem.

5.1.2 Experiment Description

We run the experiment with all combinations of parameters listed in table 5.3.
We use grid of size

√
n ×
√
n and random-clusters with

√
n clusters of size

√
n,

where n is the population as well as the graph size.

5.1.3 Results

First we look at how the self confidence and the meeting factor influence a
convergence properties. For all graphs, population sizes, individual sizes, and a
fixed meeting factor it holds that the bigger the self confidence is the faster the
convergence is and the better the final result is.

About the meeting factor, the situation is more curious. For big populations
there holds that the bigger the meeting factor is, the better the convergence is.
That is probably caused by better genes variability in the bigger initial popu-
lation. On the other hand, for small populations and low meeting factors, the
algorithm converges further than in a case of high meeting factors. That is caused
probably by slower variability convergence in case of low meeting factors.
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Algorithm social interaction algorithm
Runs 25

Iterations 500,000
Problem instance one-max problem with individual sizes 64, 1024, 2048,

4096
Fitness function a sum of bits

Population 49, 100, 400, 900
Graph type clique, circle, double-circle, ladder, grid, star, random,

random-clusters
Self confidence 0.3, 0.5, 0.7, 0.9
Meeting factor 1

2
, 1

4
, 1

8

Variability local for all graphs except clique, random, and random-
clusters for which we used global

Running time 132 hours, 13 minutes and 15 seconds

Table 5.3: Description of parameters of one-max problem performance experi-
ment.

See figures 5.1 and 5.2 to check the convergence properties with clique on
400 vertices and clique with 49 vertices. See figures 5.3 and 5.4 to check the
variability convergence on the same graphs. Based on these results we can say
that lower meeting factors help to smaller populations to use information in their
genes better for the price of slower convergence.

In tables 5.4 and 5.5 we can see a comparison of convergence properties of
various graphs on n = 100 vertices and meeting factors 1

2
, 1

8
. It is obvious that for

meeting factor 1
2

the circular graphs are able to converge further, and for lower
meeting factors like 1

8
this property disappears, and denser graphs converge faster.

But in both cases we can observe that lower meeting factors are significantly
better for the further convergence.

5.2 One-Max Problem – Model Comparison

5.2.1 Motivations and Goals

In the experiment 5.1 we have found out some good parameter settings to
solve the one-max problem by using the social interaction algorithm. Now we
want to compare its performance to other existing models. We compare both,
convergence properties and genes variability, to the genetic algorithm and the
neighbourhood model.

5.2.2 Experiment Description

We run the experiment with all combinations of parameters as described in the
table 5.2.2. In the case of the genetic algorithm we use no graph, self confidence,
or meeting factor, and in the case of the neighbourhood model we use no self
confidence, or meeting factor.
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Figure 5.1: Convergence properties of social interaction algorithm when solving
one-max problem with an individual size 4096 and a clique on 400 vertices. We
can see that the bigger the self confidence is the faster the convergence is, and
the bigger the meeting factor is, the faster the convergence is.
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Figure 5.2: Convergence properties of social interaction algorithm when solving
one-max problem with an individual size 4096 and a clique on 49 vertices. We
can see that the bigger the self confidence is the faster the convergence is, and
the lower the meeting factor is the slower the convergence is at the beginning but
more efficient altogether.

50



0

500

1000

1500

2000
conf=0.3, factor=1/2

0

500

1000

1500

2000
conf=0.3, factor=1/4

0

500

1000

1500

2000
conf=0.3, factor=1/8

0

500

1000

1500

2000
conf=0.5, factor=1/2

0

500

1000

1500

2000
conf=0.5, factor=1/4

0

500

1000

1500

2000
conf=0.5, factor=1/8

0

500

1000

1500

2000
conf=0.7, factor=1/2

0

500

1000

1500

2000
conf=0.7, factor=1/4

0

500

1000

1500

2000
conf=0.7, factor=1/8

0

500

1000

1500

2000
conf=0.9, factor=1/2

0

500

1000

1500

2000
conf=0.9, factor=1/4

0

500

1000

1500

2000
conf=0.9, factor=1/8

indSize4096 with clique400

Figure 5.3: Genes variability convergence of social interaction algorithm when
solving one-max problem with an individual size 4096 and a clique on 400 ver-
tices. Naturally the convergence increases directly proportional to both the self
confidence and the meeting factor.
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Figure 5.4: Genes variability convergence of social interaction algorithm when
solving one-max problem with an individual size 4096 and a clique on 49 ver-
tices. Naturally the convergence increases directly proportional to both the self
confidence and the meeting factor. See that the convergence on figure 5.2 rapidly
slows down when genes variability reaches zero.
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Clique Circle Double-circle Ladder
Fitness median best median best median best median best
1024 21401 20201 59301 56600 42800 41301 42601 40301
512 38901 37301 112701 110100 82000 79101 81401 79300
256 53100 51800 151101 147901 109201 106801 107801 106300
128 96900 82100 176601 174301 128300 124901 126600 123700
64 174500 154600 194800 189801 142401 137700 140401 138201
32 246600 220700 208001 202901 152901 146800 150700 147300
16 322400 282100 216500 210900 161200 154500 160500 153901
8 391300 318400 223900 216600 189900 159100 200400 162500
4 450100 372100 231100 224200 262300 197100 282900 192400
2 X 445300 238600 226200 339700 211700 342500 234000
1 X 463600 260500 228300 386000 223600 401000 246500
0 X 474000 324100 235100 472700 299500 451400 311500

Grid Random Random-clusters Star
Fitness median best median best median best median best
1024 27501 26401 22401 21301 28101 25000 18401 17101
512 49301 47601 41500 40501 50901 48101 96500 78901
256 64701 62700 62601 58500 68500 64801 219601 205300
128 77201 74301 154900 136300 83601 78900 322900 292600
64 106901 87101 241900 211100 145400 109301 407800 390900
32 184300 155800 320400 287100 222500 188101 481000 453900
16 255600 215500 395900 332200 280200 251200 X X
8 321000 264900 447500 410300 353100 302300 X X
4 384900 290800 X 463800 404200 341800 X X
2 457000 328700 X 477300 464400 349600 X X
1 495400 334100 X 497000 X 356800 X X
0 X 433000 X X X X X X

Table 5.4: Overview of convergence properties of various graphs for n = 100, the
self confidence ps = 0.9, and the meeting factor pf = 1

2
. We can see that more

connected graphs like clique, grid, or random graph are faster at the beginning,
and on the other hand, circular graphs like circle, double-circle, and ladder are
slower at the beginning but converge further.
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Clique Circle Double-circle Ladder
Fitness median best median best median best median best
1024 39701 37601 83601 78601 63501 61601 63401 61801
512 67901 66301 159401 155701 120000 114201 118801 116300
256 87201 85101 213000 209001 160001 157501 159000 152601
128 100200 98501 250901 246801 188100 184801 186000 179601
64 109501 107501 277300 270100 207200 203100 204901 196901
32 116100 113801 296500 288200 221700 217200 218701 210600
16 120901 118601 310200 302600 232200 227201 229400 221101
8 124700 121400 321801 312801 240300 235600 236800 231400
4 134500 123601 331100 323700 245300 239500 243100 235900
2 164200 125400 337200 328000 250000 243100 246500 237300
1 203100 125800 342300 334200 253400 247100 249100 239300
0 285000 127400 350500 338700 258000 252100 253800 245300

Grid Random Random-clusters Star
Fitness median best median best median best median best
1024 49100 46901 38901 35601 47901 44601 27900 24900
512 84700 82201 67501 65101 84300 81201 51501 49800
256 108600 106500 87801 84501 109900 104501 70601 67801
128 124901 122400 101800 97901 126801 122700 89001 84901
64 136301 133301 111300 108000 138801 134001 157700 129400
32 143501 140801 119001 114601 146800 142301 233500 207100
16 148801 147001 124601 120501 152301 147901 311200 263800
8 152900 150900 146000 125301 157100 151901 375200 314900
4 155600 153700 194300 131500 160600 154701 435900 366700
2 157700 154201 254500 134900 165700 157801 497400 416500
1 159900 156500 327500 136000 166901 161100 X 441600
0 230100 158700 359400 166100 217700 163300 X 465000

Table 5.5: Overview of convergence properties of various graphs for n = 100, the
self confidence ps = 0.9, and the meeting factor pf = 1

8
. We can see that for such

settings the convergence is more effective for more connected graphs like clique,
or grid than circular graphs like circle, double-circle, or ladder.
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Algorithm social interaction algorithm, genetic algorithm and
neighbourhood model

Runs 25
Iterations 500,000

Problem instance one-max problem with an individual sizes 64, 1024,
2048, 4096

Fitness function a sum of bits
Population 49, 100, 400, 900
Graph type clique, circle, ladder, grid, random-clusters

Self confidence 0.9
Meeting factor 1

2
, 1

8

Variability local for sparse graphs and global for dense graphs and
genetic algorithm

Running time 12 hours, 34 minutes and 7 seconds

Table 5.6: Description of parameters of one-max problem model comparison ex-
periment.

5.2.3 Results

First we look at the performance when all algorithms run in the most common
conditions. It means that we choose clique for both algorithms because it is the
most similar to the genetic algorithm, and we set the meeting factor pf = 1

2
. We

can see the results for population sizes 49 and 400 in figure 5.5. Then we use
better parameters for each of algorithms independently, and compare them on
population of a size n = 100 individuals. For the social interaction algorithm we
use random-clusters and a meeting factor pf = 1

8
, for neighbourhood algorithm

we use grid (it was originally developed with grid and ladder [16]), and in genetic
algorithm there are no additional parameters to set. See the results in figure 5.6
and in more details in table 5.7.

Based on figures and the table 5.7 we can conclude that the social interaction
algorithm has slower convergence at the beginning but it is more efficient in the
finishing phase. It is probably because of the slower genes variability convergence
and the difference between meeting operator and standard crossover operator.

5.3 SAT Problem Performance

5.3.1 Motivations and Goals

The goal of this experiment is to research convergence properties and genes
variability when solving the SAT problem, and to find the best parameters and
the best types of graphs to use. We also check whether the results correspond to
results of experiment 5.3 where we do the same with the one-max problem.

5.3.2 Experiment Description

We run the experiment with all combination of parameters described in table
5.8. We use two different SAT problem instances. The first is a randomly gen-
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Figure 5.5: Model comparison when we use a clique. We can see the convergence
progress in the left column and the genes variability convergence in the right
column. It seems that in case of clique the neighbourhood algorithm is the best
of all. The convergence of the genetic algorithm is fast at the beginning but it has
problems to converge completely. The social interaction algorithm’s convergence
is slower so is the convergence of genes variability.
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Figure 5.6: More specialized algorithms with population size 100. We can see
similar results as in figure 5.5. In the first row there is linear scaled visualization,
and in the second row there is a log scale of y-axis.(In this case all values are
increased by one because log(0) is not defined, and log(1) = 0.) In addition, in
table 5.7 we can see detailed convergence when the objective is approaching the
optimum. The result is that the social interaction algorithm is the most effective
in the finishing phase but it is slower at the beginning. It is probably caused by
the slow genes variability convergence.
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SI-clusters NM-grid Genetic
Fitness median best median best median best
1024 47901 44601 15800 15600 28000 24200
512 84300 81201 28000 27000 78400 73300
256 109900 104501 36800 36000 177700 146500
128 126801 122700 44400 43000 446200 352600
64 138801 134001 69600 60000 X X
32 146800 142301 102600 88200 X X
16 152301 147901 131000 114600 X X
8 157100 151901 156800 133400 X X
4 160600 154701 187800 151000 X X
2 165700 157801 216000 162600 X X
1 166901 161100 223200 165400 X X
0 217700 163300 245000 175200 X X

Table 5.7: More detailed description of convergence that we can see in figure
5.6. We can see that the social interaction algorithm is the most efficient in the
finishing phase but it is slower at the beginning. It is probably because of the
slow genes variability convergence.

erated 3-SAT with 125 variables and 500 clauses, since it is randomly generated
it probably has more different optimal solutions. The second one is the SAT
formula based on number factorization. It has 118 variables and 548 clauses and
it is more tough to solve.

5.3.3 Results

First let us look at results of random SAT instance with 125 variables and
500 clauses. In figures 5.7 and 5.8 we can see the convergence properties when
using clique with 400, or 49 vertices respectively. In figures 5.9, and 5.10 we can
see genes variability properties respectively.

An important issue, we can observe and was not noticeable in case of the one-
max problem, is the relation between meeting factor pf and the genes variability
convergence properties. The lower the meeting factor is the higher is the value
that the genes variability converges to. That is an advantageous property because
the algorithm has a bigger variability across the population, and hence it has a
better chance to find something new.

In tables 5.9 and 5.10 we can check results for various graphs with n = 100
vertices, and the meeting factors 1

2
and 1

8
respectively. We can see that the

meeting factor 1
8

is not obligatory when comparing to the meeting factor 1
2

as it
is in case of the one-max problem. The random SAT instance is not that tough
as other SAT formulas based on real problems. Such formulas typically have only
few optimal solutions. So, let us present the results of the SAT formula based on
factorization with 118 variables and 548 clauses in table 5.11. We can see there
bigger differences than in case of the random SAT instance.

We can conclude that lower meeting factors converge slower but are able to
converge further than higher meeting factors. We can also see that in case of fac-
torization problem our solution is often not perfect. It is caused primary because
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Algorithm social interaction algorithm
Runs 25

Iterations 500,000
Problem instance SAT problem with instances random125-500 and

factor118-548
Fitness function SAT fitness function

Population 49, 100, 400, 900
Graph type clique, circle, double-circle, ladder, grid, star, random,

random-clusters
Self confidence 0.3, 0.5, 0.7, 0.9
Meeting factor 1

2
, 1

4
, 1

8
, 1

16

Variability local for all graphs except clique, random and random-
clusters for which we used global

Running time 25 hours, 33 minutes and 20 seconds

Table 5.8: Description of parameters of the SAT problem performance experi-
ment.

the algorithm does not converge perfectly in 500,000 iterations, and secondary
because parameter settings is not perfect yet. Hence we are motivated to find
better graphs and algorithm features to achieve the better performance.

5.4 SAT Problem – Model Comparison

5.4.1 Motivations and Goals

In the experiment 5.3 we have found some good parameter settings to solve
the SAT problem by the social interaction algorithm. Now we want to compare its
performance to other existing models. We compare both, convergence properties
and genes variability, to the genetic algorithm and the neighbourhood model.

5.4.2 Experiment Description

We run the experiment with all combinations of parameters described in table
5.12. In case of the genetic algorithm we use no graph, self confidence, or meeting
factor, and in case of the neighbourhood model we use no self confidence, or meet-
ing factor. We use the same SAT problem instances as described in experiment
5.3.

5.4.3 Results

First we compare different models in similar conditions. It means we use a
clique in the social interaction algorithm and in the neighbourhood model be-
cause cause the most similar behaviour to the genetic algorithm. We set meeting
factor pf = 1

2
because then the meeting operator mimics the standard crossover

the most. We compare models on the random SAT problem instance with 125
variables and 500 clauses, and population sizes 49 and 400. There is no significant
difference in convergence. Check results in figure 5.11.
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Figure 5.7: Convergence properties of the social interaction algorithm when solv-
ing the SAT problem and using clique on 400 vertices. We use a random SAT
instance with 125 variables and 500 clauses. We can see that the bigger the self
confidence is the faster the convergence is, and the bigger the meeting factor is
the faster the convergence is.
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Figure 5.8: Convergence properties of the social interaction algorithm when solv-
ing the SAT problem and using clique on 49 vertices. We use a random SAT
instance with 125 variables and 500 clauses. We can see that the bigger the self
confidence is the faster the convergence is.
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Figure 5.9: Genes variability of the social interaction algorithm when solving the
SAT problem and using clique on 400 vertices. We use a random SAT instance
with 125 variables and 500 clauses. The result is not surprising and it is similar
to the result of the one-max problem. The only difference is that here it does not
converge to zero but stays at a value from 5 to 10. It is probably caused by the
fact that this SAT problem has more local optima.
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Figure 5.10: Genes variability of the social interaction algorithm when solving
the SAT problem and using clique on 49 vertices. We use a random SAT instance
with 125 variables and 500. We can conclude that the genes variability stays
higher when a meeting factor is lower. And it holds even after the optimum
solution is approaching. It is very advantageous property for solving complicated
SAT problem instances.
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Clique Circle Double-circle Ladder
Fitness median best median best median best median best

32 1801 501 2201 1101 1701 401 1901 701
16 8201 6701 9201 5101 8001 5801 7701 3701
8 12001 10101 18300 12400 14400 9801 15101 11401
4 15301 12701 31601 25201 23101 17500 24001 15201
2 18900 16101 50600 31200 38501 23701 39501 21301
1 218700 17501 96400 45101 76200 39000 70300 25501
0 X 296900 X 99700 X 84200 X 68700

Grid Random Random-clusters Star
Fitness median best median best median best median best

32 1901 500 1501 401 2001 701 901 100
16 8001 6401 7701 6001 7301 5201 4800 3501
8 14801 10801 12401 10701 13001 8801 7900 5101
4 20301 16701 16801 13101 25400 16501 9901 7001
2 24101 20801 23901 16601 53401 23101 15300 8801
1 29600 22401 268200 19900 122600 36000 450400 9300
0 X 39101 X 492200 X 138600 X X

Table 5.9: Overview of the social interaction algorithm performance using various
graphs with the self confidence ps = 0.9, and the meeting factor pf = 1

2
on the

random SAT instance with 125 variables and 500 clauses. We can see that a grid
has the best performance followed by circular graphs and random-clusters.

Clique Circle Double-circle Ladder
Fitness median best median best median best median best

32 3000 1201 3601 1701 3001 2101 2700 201
16 14801 8301 14800 12101 13301 9101 13001 9200
8 26200 21901 30800 20501 26100 19201 25101 16600
4 33900 29200 50300 31700 39000 24200 39800 24500
2 43100 36700 78000 47000 56000 31100 57300 24500
1 236400 38000 110300 61700 81201 50000 80500 57100
0 X 109200 X 73700 X 171100 X 113100

Grid Random Random-clusters Star
Fitness median best median best median best median best

32 3101 1100 2501 1000 2801 901 401 101
16 13701 9401 12101 8101 13200 10401 5701 3901
8 25201 22000 23200 15101 23500 16801 13501 7801
4 36101 32301 31400 26500 33100 28101 18901 13100
2 48301 36101 41001 29701 50600 38800 24000 19101
1 57501 47400 49100 36600 72101 43000 49300 22701
0 X 66901 X 117400 X 118800 X X

Table 5.10: Overview of the social interaction algorithm performance using var-
ious graphs with the self confidence ps = 0.9, and the meeting factor pf = 1

8
on

random SAT instance with 125 variables and 500 clauses. We can see that (sur-
prisingly) a random graph and a grid have the best results followed by random
clusters and circular graphs.
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Clique Circle Grid Random-clusters
Fitness median best median best median best median best

32 12401 7701 5801 3801 7001 3300 6201 3201
16 23001 17801 26301 18400 26601 19701 21401 13301
8 74100 24101 119301 74600 53401 40201 153201 41101
4 X 213500 X 156600 X 49701 X 180000
2 X X X 372401 X X X 395400
1 X X X 399000 X X X X
0 X X X 399000 X X X X

Clique Circle Grid Random-clusters
Fitness median best median best median best median best

32 12601 5601 8600 4001 9301 4201 10001 4301
16 57201 45901 41901 27600 50700 37501 38701 31101
8 90901 64401 126900 81400 106900 66101 97600 61400
4 X 86000 337900 169200 228000 121901 X 151701
2 X 305600 X 293301 X 171301 X 488600
1 X X X 451901 X 373900 X 488600
0 X X X X X X X X

Table 5.11: Performance of various graphs on SAT formula with 118 variables
and 548 clauses that is based on factorization. The self confidence ps = 0.9. In
the top table there are results for meeting factor pf = 1

2
, and in the bottom table

there are results for meeting factor pf = 1
8
. We can see that an algorithm with a

lower meeting factor is able to converge further.

Algorithm social interaction algorithm, genetic algorithm and
neighbourhood model

Runs 25
Iterations 500,000

Problem instance SAT problem with instances random125-500 and
factor118-548

Fitness function SAT fitness function
Population 49, 100, 400, 900
Graph type clique, circle, ladder, grid, random-clusters

Self confidence 0.9
Meeting factor 1

2
, 1

8

Variability local for all graphs except random and random-clusters
for which we used global

Running time 1 hour, 58 minutes and 41 seconds

Table 5.12: Description of parameters of sat problem model comparison experi-
ment.
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Figure 5.11: Model comparison when solving a random SAT with 125 variables
and 500 clauses, and using clique of size 49 and 400. We can see convergence
properties in the left graph and the variability convergence in the right graph.
There is no big difference visible except that the genetic algorithm keeps higher
variability at the end. This result does not give us any significant difference. See
figure 5.12
to check the results when solving the SAT formula based on factorization, and
more specialized parameter settings.

Now we use more specific parameter settings that is obligatory for each model,
and compare the performance on SAT formula with 118 variables and 548 clauses
that is based on factorization, and with population size n = 100. This SAT prob-
lem instance is more though so there is a better chance to differ those algorithms.
For the neighbourhood model we use a grid, and for the social interaction algo-
rithm we use a grid and random clusters. The result in figure 5.12 shows that the
social interaction algorithm is more effective to solve tough SAT problems than
both the genetic algorithm and the neighbourhood model.

Let us note that we test those models on more SAT problem instances, and for
more iterations. For all non-trivial SAT problem instances the social interaction
algorithm is significantly more successful than other models. We present just this
one particular result as a demonstration.
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Figure 5.12: Model comparison when solving SAT formula with 125 variables
and 500 clauses based on factorization, using population of 100 individuals. We
compare the social interaction algorithm with random clusters, the social interac-
tion algorithm with a grid, the neighbourhood model with a grid and the genetic
algorithm. There are convergence properties in the left graph and variability con-
vergence in the right graph. We can see that the best convergence properties has
the social interaction algorithm using a grid, following by the social interaction
algorithm using random clusters. The big difference between variabilities of both
social interaction algorithms is there because we use the local variability in case
of grid and the global variability in case of random clusters.

5.5 Clusters Types and Sizes on SAT problem

5.5.1 Motivation and Goals

As we introduced in section 4.3.1 we would like to design a graph which
combines advantages of the clique and the circle. Our goal is to compare the
performance of different types of cluster graphs, and different ratio of cluster
sizes to the number of clusters for given population sizes. Then, we want to
compare the performance to other graph types.

We are interested only in final results of every run, no matter how the con-
vergence itself looks like. By the experiments 5.3 and 5.4 we know that the
convergence is slower but it is able to end up close to the optimal value. For the
purpose of this experiment, only the final best value of every run matters.

5.5.2 Experiment Description

We run the experiment for all combinations of parameters described in table
5.13. We use the following four SAT problem instances

• factor118-548: the SAT formula with 118 variables and 548 clauses that is
based on factorization problem

• subsetsum194-837: the SAT formula with 194 variables and 837 clauses that
is based on subset sum problem instance
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Algorithm social interaction algorithm
Runs 25

Iterations 2,500,000
Problem instance SAT problem with instances factor118-548,

subsetsum194-837, random256-1000, random512-2000
Fitness function SAT fitness function

Population 105, 210
Graph type cluster-circle, cluster-clique, cluster-doublecircle,

random-clusters, weak-cluster-circle
Cluster-sizes 3, 7, 15, 21

Self confidence 0.9
Meeting factor [ 1

16
, 1

4
]2 then there is picked a random integer b from

interval [ 1
16

100, 1
4
100] and then b random bits takes a

part in a discussion of individuals.
Variability none

Running time unknown3

Table 5.13: Description of parameters of clusters types and sizes experiment.

• random256-1000: randomly generated satisfiable SAT formula with 256
variables and 1000 clauses

• random512-2000: randomly generated satisfiable SAT formula with 512
variables and 2000 clauses

5.5.3 Results

In table 5.14 we can see the results for cluster graphs, and in table 5.15 we
can see the results for other graph types. We provide an objective value of the
best solution, median solution from 25 runs, and the variance of all 25 runs. We
consider a solution A to be better than a solution B if its median is higher, the
best solution is higher, and at the same time the variance is lower. By other
words, we want a model that is able to consistently reach good solutions, and
occasionally reach the optimal one.

Based on table 5.14 we can say that cluster-clique and weak-cluster-circle are
in average less effective than other cluster types. For cluster-circle and weak-
cluster-circle the best cluster size is 3 which then forms nearly the circle. For
cluster-doublecircle and random-clusters the best cluster size seems to be 7 and
sometimes 15 is good as well. The best result for all problem instances is reached
by random-clusters, and in most cases with 30 clusters of size 7 which reaches
very good results the most consistently.

When we look at results for other graph types in table 5.15, we can see that
circular graphs like circle and double-circle have the best performance, and that

2This experiment was executed in older version of an algorithm. The only relevant difference
is that the meeting factor was not given by probability pf but by range [pfa , pfb ] that defines
possible ratios of amount of changed bit during one meeting. For example when individual has
size 100 and we have meeting factor given by the range [ 1

16 ,
1
4 ]

3In this version of an algorithm we did not measure the running time.
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the results are comparable but slightly better than results for cluster graphs. In
next experiments we test other algorithm features that could help especially to
cluster graphs.

5.6 Tie-Strength Application

5.6.1 Motivations and Goals

The goal is to test whether an application of the tie-strength in the social
interaction algorithm in cluster graphs is advantageous or not. We want to de-
termine the tie-strength influence for random-cluster graphs of various sizes and
densities.

5.6.2 Experiment Description

We run the experiment with all combinations of parameters described in table
5.16. We use the same SAT problem instances as described in experiment 5.5.
In addition, we test the performance for random clusters of various densities.
Normally, when we generate random clusters, every node u with probability 0.5
choose another node v at random, and if u and v are from different clusters and
are not already connected, we add an edge (u, v). We increase the density when
we repeat this process several times for every node. Check the pseudo code in
figure 4.5 in section 4.3.1 for a better imagination.

We test all densities for two cases. For the case when the tie-strength is not
applied (standard version), and for the case when the tie-strength is applied. We
observe an influence of two factors in results: the density and the tie-strength.

5.6.3 Results

The results are summarized in table 5.17. As results we provide the final
result of median, the best of 25 runs, and the variance of 25 runs. We consider
a solution A to be better than a solution B if its median is closer to zero, the
best solution is closer to zero, and at the same time the variance is lower. By
other words, we want a model that is able to consistently reach good solutions,
and occasionally to reach the optimal one.

Let us first look at no tie-strength application, and the tie-strength application
separately in dependency of the density level. When we look at clusters of size 7,
we can see that when we use no tie-strength then the best performance is reached
by density level 1, and the performance is decreasing while the density level is
increasing. When we apply the tie-strength then the performance is increasing
while the density is increasing as well. On the other hand, for cluster size 15 when
we use no tie-strength then the performance is increasing up to density level 3
and then decreasing, and when we apply the tie-strength then the performance
is just increasing.

We think that the important factor is the ratio of strong and weak ties usage.
We can easily see that when strong ties are used too heavily then the performance
is bad, as we can see for example in case of a cluster size 15 with the tie-strength
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factor118-548 subsetsum194-837 random256-1000 random512-2000
Cluster type med best var med best var med best var med best var
circle-35-3 545 547 0.6496 835 836 0.7136 997 999 1.2544 1996 1999 1.6576
circle-15-7 545 548 1.7344 835 837 0.7584 997 999 1.4784 1996 1999 2.1824
circle-7-15 545 547 1.4944 835 837 0.7456 996 999 2.0544 1996 1999 1.6736
circle-70-3 546 548 1.36 835 837 0.48 997 999 1.3376 1995 1998 1.4816
circle-5-21 544 546 1.8784 835 836 0.3776 996 997 0.6336 1995 1997 0.9856
circle-30-7 545 547 0.9984 835 836 0.5376 996 999 0.8096 1995 1998 1.5616
circle-14-15 545 547 0.8224 835 836 0.64 996 999 1.2704 1995 1997 0.9856
circle-10-21 544 547 1.4016 835 836 0.5536 996 998 0.8896 1995 1997 1.5744

clique-35-3 544 547 2.2784 834 836 0.6336 996 999 2.72 1995 1997 2.3136
clique-15-7 543 546 2.3136 833 835 1.3344 994 998 2.48 1993 1997 3.3056
clique-7-15 543 546 3.7856 833 836 0.6496 995 999 3.12 1993 1996 2.5824
clique-5-21 544 548 2.5536 834 836 1.3216 995 997 1.1936 1995 1999 2.64
clique-70-3 544 545 1.4656 834 836 0.6336 995 998 1.92 1994 1996 2.0096
clique-30-7 545 547 2.1664 834 836 0.5344 995 997 0.7776 1994 1996 1.0816
clique-14-15 544 547 3.8176 834 834 0.7296 995 998 1.5616 1992 1994 1.9136
clique-10-21 543 547 3.4656 834 836 0.96 995 999 1.7344 1992 1995 2.3456

doublecircle-35-3 545 547 0.96 835 836 0.9504 996 999 1.68 1995 1998 1.7024
doublecircle-15-7 545 547 1.2224 835 836 0.5344 997 999 1.0624 1996 1998 1.84
doublecircle-7-15 545 547 1.0816 835 837 0.4736 996 999 1.4784 1995 2000 2.2816
doublecircle-5-21 544 547 1.0816 834 836 0.96 996 998 0.96 1995 1997 1.2544
doublecircle-70-3 545 547 1.2544 835 836 0.48 997 999 1.2896 1993 1996 2.8
doublecircle-30-7 545 547 0.72 835 836 0.6656 997 998 0.5536 1995 1997 0.8064
doublecircle-14-15 544 547 1.2704 834 836 0.5216 996 999 1.1936 1995 1998 1.6704
doublecircle-10-21 545 548 1.2704 834 836 0.7296 996 999 1.0944 1994 1996 1.8624

random-35-3 545 548 1.4144 835 836 1.1104 996 999 1.8144 1995 1998 1.6576
random-15-7 545 547 1.12 835 837 0.88 997 999 1.44 1997 1998 1.0976
random-7-15 544 546 1.2736 834 836 1.0624 996 999 1.44 1995 1996 1.8496
random-5-21 544 547 1.6416 834 836 1.3536 996 999 1.4624 1994 1997 2.5344
random-70-3 546 547 0.9024 835 837 0.7456 997 998 0.8096 1996 1998 1.0784
random-30-7 546 548 1.1456 836 837 0.4 998 999 1.5264 1996 1998 1.1584
random-14-15 544 547 1.6 835 836 1.04 996 997 0.72 1994 1997 1.9904
random-10-21 544 547 1.6256 834 835 0.48 995 998 1.2576 1993 1996 1.5904

weak-circle-35-3 546 548 1.1136 835 836 0.3904 996 999 1.1776 1995 1997 1.7024
weak-circle-15-7 544 547 1.4464 833 835 1.2 995 998 1.3504 1993 1995 1.8784
weak-circle-7-15 544 546 1.6224 832 834 0.88 995 997 1.1424 1991 1994 3.6736
weak-circle-5-21 543 548 2.9024 833 835 2.0864 995 997 1.4464 1991 1996 2
weak-circle-70-3 545 547 0.8896 835 836 0.3424 996 999 1.0016 1994 1997 1.12
weak-circle-30-7 544 546 1.28 832 834 1.0624 994 998 1.1104 1989 1994 4.1696
weak-circle-14-15 544 546 1.5616 831 834 1.68 994 995 0.5344 1989 1991 1.4944
weak-circle-10-21 544 546 1.3664 832 836 2.2976 995 997 0.96 1989 1995 4.1024

Table 5.14: Results for cluster graphs. For every type of graph and every problem,
we can see the median, the best run, and the variance of all runs. Bold values
label the cluster-size with the best, or nearly best result for every graph type and
a problem instance separately. Red values label the best, or nearly the best result
for every problem instance.

factor118-548 subsetsum194-837 random256-1000 random512-2000
Cluster type med best var med best var med best var med best var
cicle100 546 548 1.0016 836 837 0.3776 997 999 1.1584 1995 1998 2.4736
circle225 546 548 0.9184 836 836 0.3104 997 999 1.1456 1994 1997 1.5424
doublecircle100 546 548 1.2704 836 837 0.4064 997 999 0.8 1996 1998 1.76
doublecircle225 546 548 0.72 836 837 0.4096 997 999 0.6944 1994 1998 1.84
grid10-10 544 547 1.76 834 836 0.3744 996 999 2.16 1994 1997 1.9616
grid15-15 546 548 0.9056 835 836 0.5216 996 998 1.0464 1997 1999 1.4016
clique100 542 546 2.4416 834 836 2.08 994 999 2.8096 1993 1997 2.08
clique225 543 545 2.6496 834 834 1.12 995 998 2.6976 1992 1995 2.9856

Table 5.15: Results for other graph types. Bold values label results that are at
least nearly as good as the best results of cluster graphs.
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Algorithm social interaction algorithm
Runs 25

Iterations 2,500,000
Problem instance SAT problem of instances factor118-548, subsetsum194-

837, random256-1000, random512-2000
Fitness function SAT fitness function

Population 210, 315, 420
Graph type random-clusters of cluster sizes 7 and 15

Self confidence 0.9
Meeting factor 1

8

Variability none
Running time 123 hours, 20 minutes and 36 seconds

Table 5.16: Description of parameters of tie-strength application experiment.

application. And when we use weak ties too heavily then the performance is not
optimal either, as we can see for a cluster size 7 with no tie-strength.

When we compare the performance of using, and not using the tie-strength
then we can see that for cluster size 15 not using the tie-strength is always better.
It is because the tie-strength cause strong ties to be used too heavily. This factor
might disappear when we would use higher density level. In case of cluster size
7, for density levels 1 and 2 not using a tie-strength is usually better, and for
density levels 4 and 5 using the tie-strength is usually better (it is visible the best
in case of 30-7, bigger graphs might not converge perfectly).

5.7 Unique Self Confidence

5.7.1 Motivations and Goals

The motivation is to find out whether the usage of unique self confidence could
increase the performance of the social interaction algorithm on the SAT problem.
Based on experiment 5.3 we can say that high self confidence is advantageous
so we test uniform distribution of self confidence, and another where we prefer
higher self confidences to be used.

5.7.2 Experiment Description

We run the experiment with all combinations of parameters described in table
5.18 where we use the same SAT problem instances as in experiment 5.5. We use
three different settings of the self confidence. All of them are also described in
section 4.5.1.

0. Standard: every individual has the same self confidence ps = 0.9.

1. Uniform: every individual picks the self confidence ps uniformly randomly
from [0.05, 0.95].

2. Better of two: every individual picks two values uniformly randomly from
[0.05, 0.95], and then the bigger value is set as his or her self confidence ps.
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factor118-548 subsetsum194-837 random256-1000 random512-2000
Type Clusters med best var med best var med best var med best var
NO 1 30-7 2 0 1.03 1 0 0.21 3 1 1.12 5 1 2.15
YES 1 30-7 5 2 1.35 5 3 1.02 6 2 1.11 11 9 1.95
NO 1 45-7 2 1 0.84 1 1 0.33 3 1 1.19 6 4 0.88
YES 1 45-7 5 1 1.36 6 4 1.47 7 4 1.03 14 11 1.68
NO 1 60-7 2 1 0.76 2 1 0.46 3 2 0.65 7 5 1.72
YES 1 60-7 4 3 0.73 7 6 0.76 7 5 0.74 17 12 3.12

NO 2 30-7 2 1 0.69 2 0 0.60 3 2 1.01 4 2 0.76
YES 2 30-7 4 2 0.56 4 1 1.56 5 3 0.83 9 6 1.57
NO 2 45-7 2 0 0.88 2 1 0.39 3 2 0.67 3 2 1.00
YES 2 45-7 4 3 0.75 4 3 1.21 6 3 1.28 11 7 2.56
NO 2 60-7 1 1 0.39 2 1 0.35 3 1 0.74 4 2 1.52
YES 2 60-7 5 2 1.21 6 3 1.69 7 4 1.13 14 9 2.10

NO 3 30-7 3 1 1.44 3 2 0.27 4 3 0.89 6 3 1.44
YES 3 30-7 3 1 0.84 3 2 0.91 4 2 1.00 8 5 0.97
NO 3 45-7 3 0 1.60 3 1 0.38 4 3 0.44 5 3 1.40
YES 3 45-7 4 2 0.65 4 1 0.92 5 2 1.32 9 6 2.36
NO 3 60-7 2 0 0.93 3 1 0.33 4 2 0.83 6 2 2.42
YES 3 60-7 4 3 0.40 4 3 0.66 6 3 0.87 11 7 2.50

NO 4 30-7 3 1 1.74 3 1 0.79 5 2 1.55 7 4 1.85
YES 4 30-7 2 1 0.73 3 1 0.78 4 1 1.05 7 3 1.36
NO 4 45-7 3 1 1.62 3 2 0.28 4 2 1.28 7 5 1.92
YES 4 45-7 3 0 1.76 3 1 0.47 4 2 1.03 8 4 1.52
NO 4 60-7 3 1 1.19 3 2 0.16 4 1 1.04 6 2 3.36
YES 4 60-7 3 0 1.02 4 1 1.11 5 4 0.58 10 6 2.81

NO 5 30-7 4 1 2.40 3 2 0.45 5 1 1.74 7 4 2.63
YES 5 30-7 3 0 0.81 2 1 0.28 4 1 1.29 5 3 1.00
NO 5 45-7 4 2 1.41 3 2 0.28 5 3 0.92 7 4 3.08
YES 5 45-7 3 1 1.01 2 1 0.69 4 2 1.23 7 5 1.08
NO 5 60-7 4 1 2.36 3 1 0.23 4 2 1.97 7 4 2.47
YES 5 60-7 3 0 1.24 3 1 0.38 5 2 0.97 8 6 1.99

factor118-548 subsetsum194-837 random256-1000 random512-2000
Type Clusters med best var med best var med best var med best var
NO 1 14-15 3 1 1.27 3 1 0.50 4 2 1.44 7 4 1.96
YES 1 14-15 4 2 1.04 5 1 1.47 6 3 1.07 11 9 1.91
NO 1 21-15 4 0 1.60 3 2 0.52 4 2 1.78 8 4 2.25
YES 1 21-15 4 2 1.18 6 3 1.54 6 4 1.19 13 10 2.52
NO 1 28-15 4 2 0.67 3 2 0.50 5 3 0.82 8 5 1.69
YES 1 28-15 5 3 0.86 6 3 1.80 7 5 0.76 15 11 1.44

NO 2 14-15 3 0 1.40 2 1 0.48 3 2 0.84 5 3 0.86
YES 2 14-15 4 1 1.44 5 3 1.71 6 5 0.55 10 7 2.96
NO 2 21-15 3 0 1.33 2 1 0.51 4 2 0.86 6 4 0.80
YES 2 21-15 4 3 0.99 6 3 1.29 6 4 0.98 12 9 2.09
NO 2 28-15 3 1 1.28 2 1 0.43 4 2 0.92 6 4 0.75
YES 2 28-15 5 2 1.77 6 3 1.12 7 4 1.22 14 10 2.56

NO 3 14-15 2 1 1.08 2 1 0.75 3 2 0.74 4 2 1.01
YES 3 14-15 4 2 1.16 4 1 1.29 5 3 1.35 10 7 1.50
NO 3 21-15 2 1 0.84 1 1 0.49 3 1 0.68 4 3 0.45
YES 3 21-15 4 2 1.34 6 3 1.04 6 5 0.70 12 7 2.23
NO 3 28-15 2 0 1.32 2 1 0.36 3 2 0.52 5 3 1.60
YES 3 28-15 4 2 1.01 5 3 1.32 6 2 1.44 13 12 0.72

NO 4 14-15 2 0 1.24 3 1 0.63 4 1 1.22 4 2 1.23
YES 4 14-15 4 1 1.27 4 2 1.44 6 4 0.74 8 5 3.30
NO 4 21-15 2 0 1.17 3 1 0.48 3 1 1.06 4 2 0.91
YES 4 21-15 4 1 1.11 5 2 1.48 6 4 1.14 11 8 1.99
NO 4 28-15 2 1 0.83 2 1 0.63 3 2 0.47 4 2 0.91
YES 4 28-15 4 2 1.79 5 3 1.07 6 3 1.04 11 8 2.39

NO 5 14-15 3 1 1.15 3 1 0.36 4 3 0.49 6 3 1.67
YES 5 14-15 4 2 0.77 4 2 1.15 5 1 1.24 8 6 2.37
NO 5 21-15 2 1 1.23 3 1 0.34 4 1 0.91 6 2 2.25
YES 5 21-15 4 2 1.70 4 2 1.44 5 4 0.62 10 8 1.36
NO 5 28-15 2 0 1.03 3 1 0.40 4 2 0.71 6 3 1.29
YES 5 28-15 4 3 0.51 4 0 1.88 6 3 1.67 11 9 1.28

Table 5.17: Results of the tie-strength experiment for cluster sizes 7 and 15. In
type column “NO” indicate that no tie-strength is applied and “YES” that the
tie-strength is applied. The number determine the density level that is used.
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Algorithm social interaction algorithm
Runs 25

Iterations 2,500,000
Problem instance SAT problem of instances factor118-548, subsetsum194-

837, random256-1000, random512-2000
Fitness function SAT fitness function

Population 105, 210
Graph type clique, circle, ladder, grid, random-clusters of size 7

Self confidence [0.05, 0.95]
Meeting factor 1

8

Variability none
Running time 55 hours, 34 minutes and 51 seconds

Table 5.18: Description of parameters of unique self confidence experiment.

5.7.3 Results

Check table 5.19 with experiment results. We can see that the uniform ran-
dom distribution has consistently find worse solutions than when the same self
confidence is used. When higher self confidence values are preferred then results
are better but still slightly worse than in case of the same self confidence.

Conclusion of this experiment is that uniqueness of self confidence (used in this
way) probably does not have any positive significant influence on the performance
of the social interaction algorithm.

5.8 Personal Bit Fitness Performance

5.8.1 Motivation and Goals

An opportunity to use a personalized fitness function is an important feature
of the social interaction algorithm. The goal of this experiment is to examine the
behaviour of personal bit fitness function for its different parameter settings.

5.8.2 Experiment Description

We run the algorithm with all combinations of parameters described in table
5.20. We use the same SAT problem instances as in experiment 5.5.

5.8.3 Results

Let us first briefly remind that the parameters setting (k, l, w) means that
an individual has k his or her own random preferences, and takes l random
preferences from every of his or her neighbours. Then, he or she adds a bonus
w to his or her fitness value for every satisfied preference. A preference is a pair
(b, v) and it is satisfied if and only if a bit number b equals to the value v.

Let us first look at results for lower values of k, l, and w that we can check in
table 5.21. We can see that in cases where w = 3 (red, gray and brown rows), the
results are almost always worse compared to the standard SAT fitness function
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factor118-548 subsetsum194-837 random256-1000 random512-2000
Type Graph med best var med best var med best var med best var
0 clique105 5 1 5.53 3 2 1.72 5 1 1.50 7 3 4.92
1 clique105 7 2 4.95 5 3 1.92 6 2 3.73 10 7 3.52
2 clique105 6 3 1.99 5 3 1.29 6 3 2.24 8 5 2.92

0 clique210 6 2 2.57 3 1 0.95 5 4 1.44 7 5 2.72
1 clique210 7 3 3.45 5 3 2.17 6 2 2.61 9 5 5.09
2 clique210 6 2 2.41 3 2 0.73 6 2 2.93 8 5 3.77

0 circle105 1 0 0.65 1 1 0.20 3 1 0.89 3 1 1.53
1 circle105 3 1 1.13 2 1 1.11 4 1 2.15 5 3 1.24
2 circle105 2 0 1.30 2 1 0.52 3 1 1.40 4 3 0.87

0 circle210 2 0 0.92 1 0 0.31 3 1 0.72 5 3 0.68
1 circle210 4 1 1.43 3 1 0.72 4 2 0.72 7 4 2.76
2 circle210 3 1 0.80 3 1 0.81 4 2 1.19 5 3 1.21

0 ladder106 2 0 1.00 1 0 0.60 3 1 0.75 4 1 1.64
1 ladder106 3 0 1.68 3 1 0.73 4 2 1.39 4 1 1.79
2 ladder106 2 1 0.72 1 1 0.48 3 1 1.38 3 0 2.56

0 ladder210 2 0 0.64 1 1 0.23 2 1 1.05 5 2 2.41
1 ladder210 3 2 0.63 2 1 0.39 4 1 1.55 6 3 1.75
2 ladder210 3 1 0.60 2 0 0.91 3 1 1.57 4 2 1.72

0 grid10-10 4 1 2.09 3 1 0.47 4 2 1.19 6 4 1.16
1 grid10-10 4 1 3.11 4 2 2.14 5 3 2.08 8 5 3.82
2 grid10-10 4 2 3.21 4 2 1.20 5 3 1.83 7 3 4.24

0 grid14-14 2 0 1.11 1 0 0.71 4 1 0.81 3 1 1.37
1 grid14-14 3 1 2.41 3 2 0.54 5 2 2.59 6 3 3.15
2 grid14-14 4 0 2.07 3 1 0.71 4 1 2.55 5 3 2.00

0 random-clusters15-7 2 0 1.28 1 0 0.57 3 1 1.28 3 1 0.93
1 random-clusters15-7 5 1 3.48 4 2 1.72 6 2 3.22 8 3 7.03
2 random-clusters15-7 4 1 3.08 3 0 1.84 5 2 1.13 5 2 2.36

0 random-clusters30-7 2 1 1.01 1 1 0.25 3 1 1.23 5 2 1.06
1 random-clusters30-7 4 1 1.40 3 1 0.63 5 2 2.02 6 2 3.99
2 random-clusters30-7 2 1 1.21 2 0 0.94 4 2 0.92 5 3 1.34

Table 5.19: Results of unique self confidence experiment. White rows are results
when the same self confidence is used, in blue rows the uniform distribution is
used, and in red rows the higher self confidence is preferred.

Algorithm social interaction algorithm
Runs 25

Iterations 2,500,000
Problem instance SAT problem of instances factor118-548, subsetsum194-

837, random256-1000, random512-2000
Fitness function Personal bit SAT fitness function for parameters

(k,l,w) = [(0,0,0); (1,1,1), (1,1,3), (3,1,1), (3,1,3),
(6,3,1), (6,3,3), (20,0,1), (50,0,1)]

Population 210
Graph type circle, ladder, grid, cluster-circle with cluster size 3,

random-clusters of size 7
Self confidence 0.9
Meeting factor 1

8

Variability none
Running time 105 hours, 16 minutes and 24 seconds

Table 5.20: Description of parameters of personal bit fitness experiment.
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factor118-548 subsetsum194-837 random256-1000 random512-2000
Params. Graph med best var med best var med best var med best var
k=0,l=0,w=0 circle210 2 1 0.59 1 1 0.22 3 1 0.96 4 2 0.96
k=1,l=1,w=1 circle210 2 0 0.66 1 0 0.46 3 1 0.76 4 1 1.09
k=1,l=1,w=3 circle210 2 1 0.95 2 1 0.25 3 1 1.09 4 2 1.44
k=3,l=1,w=1 circle210 2 1 0.68 1 1 0.23 2 1 0.97 4 2 1.65
k=3,l=1,w=3 circle210 2 0 0.67 2 1 0.44 3 1 1.08 5 2 1.80
k=6,l=3,w=1 circle210 2 0 1.00 1 0 0.33 3 1 0.69 5 2 1.53
k=6,l=3,w=3 circle210 3 2 0.36 2 1 0.77 4 2 0.55 5 2 2.16

k=0,l=0,w=0 ladder210 2 0 0.71 1 0 0.28 3 1 1.22 4 3 0.89
k=1,l=1,w=1 ladder210 2 1 0.64 2 1 0.31 3 1 1.08 5 3 1.17
k=1,l=1,w=3 ladder210 3 0 1.03 2 1 0.72 3 1 1.12 5 1 2.31
k=3,l=1,w=1 ladder210 1 0 0.94 1 1 0.33 3 1 0.99 5 1 1.56
k=3,l=1,w=3 ladder210 2 0 0.77 1 0 0.71 3 2 0.72 5 2 1.05
k=6,l=3,w=1 ladder210 3 0 1.34 2 1 0.30 3 1 0.92 4 1 1.85
k=6,l=3,w=3 ladder210 3 1 1.00 3 0 0.89 3 2 0.95 5 2 1.31

k=0,l=0,w=0 grid14-14 2 1 0.95 2 1 0.83 4 2 0.73 4 1 1.59
k=1,l=1,w=1 grid14-14 2 1 1.08 2 1 0.50 3 1 1.19 4 1 1.53
k=1,l=1,w=3 grid14-14 2 0 0.98 2 1 0.71 3 1 1.16 4 1 2.12
k=3,l=1,w=1 grid14-14 1 0 0.96 2 1 0.63 3 1 1.16 4 3 0.48
k=3,l=1,w=3 grid14-14 2 0 1.17 2 1 0.64 3 1 1.42 4 2 1.55
k=6,l=3,w=1 grid14-14 2 0 0.84 2 0 1.07 3 1 1.65 4 3 1.20
k=6,l=3,w=3 grid14-14 2 1 0.96 2 1 0.79 3 1 1.27 4 1 1.66

k=0,l=0,w=0 cl-circ70-3 2 1 0.91 1 0 0.34 3 1 0.83 4 2 1.53
k=1,l=1,w=1 cl-circ70-3 2 0 0.88 2 1 0.40 3 1 1.40 5 2 1.52
k=1,l=1,w=3 cl-circ70-3 3 1 1.01 2 1 0.48 3 1 0.87 5 2 1.71
k=3,l=1,w=1 cl-circ70-3 2 0 0.92 1 0 0.57 3 2 0.62 4 3 1.10
k=3,l=1,w=3 cl-circ70-3 3 2 0.24 2 0 0.58 3 1 0.71 5 1 2.07
k=6,l=3,w=1 cl-circ70-3 2 1 0.71 2 1 0.39 3 1 1.40 5 2 1.49
k=6,l=3,w=3 cl-circ70-3 3 2 1.05 3 1 0.49 3 1 1.18 5 4 0.85

k=0,l=0,w=0 rand-cl30-7 2 0 1.67 1 0 0.38 3 1 0.96 4 3 0.79
k=1,l=1,w=1 rand-cl30-7 3 0 1.06 2 1 0.47 3 1 1.19 5 2 1.62
k=1,l=1,w=3 rand-cl30-7 3 2 0.73 3 1 0.65 4 1 0.87 6 4 1.79
k=3,l=1,w=1 rand-cl30-7 2 0 1.10 1 0 0.48 3 2 0.46 4 2 1.39
k=3,l=1,w=3 rand-cl30-7 3 1 1.15 2 0 0.68 4 2 0.84 5 3 1.79
k=6,l=3,w=1 rand-cl30-7 3 1 1.35 2 0 0.71 3 1 1.30 5 3 1.60
k=6,l=3,w=3 rand-cl30-7 6 4 1.24 6 4 1.03 5 3 1.69 8 5 1.21

Table 5.21: First part of personal bit fitness experiment. The table contains
only results for lower values of (k, l, w). For the parameters setting (0, 0, 0) is
the fitness function is equivalent to the standard SAT fitness function with no
personal preferences, and we use it mainly for the comparison.

(white rows). It is caused probably by the weight w = 3 because w = 3 is
probably big enough to get stuck in local optima more often. So let us focus on
cases where w ≤ 1. We cannot see any significant differences between results. All
the results are quite good and when we compare two different parameter settings
(white, blue, green, yellow rows), we are always in the situation that sometimes
one setting is better and other times the other setting is better.

In table 5.22 we can see the results where k ∈ {20, 50}, l = 0, w = 1. Un-
fortunately, again we cannot conclude anything because the results are just too
similar. But still, we can observe at least another result that we were not looking
for in this experiment. It is that random-clusters graph type is the most success-
ful of all when we compare results independently on bit fitness parameters (color
independently).
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factor118-548 subsetsum194-837 random256-1000 random512-2000
Params. Graph med best var med best var med best var med best var
k=0,l=0,w=0 circle210 2 1 0.59 1 1 0.22 3 1 0.96 4 2 0.96
k=20,l=0,w=1 circle210 2 1 0.51 1 0 0.31 3 1 0.96 4 2 1.60
k=50,l=0,w=1 circle210 2 1 0.67 2 1 0.50 3 1 0.64 5 2 1.19

k=0,l=0,w=0 ladder210 2 0 0.71 1 0 0.28 3 1 1.22 4 3 0.89
k=20,l=0,w=1 ladder210 2 0 0.76 2 1 0.32 3 1 1.00 5 2 1.75
k=50,l=0,w=1 ladder210 2 1 0.86 1 1 0.48 3 1 1.06 5 2 1.88

k=0,l=0,w=0 grid14-14 2 1 0.95 2 1 0.83 4 2 0.73 4 1 1.59
k=20,l=0,w=1 grid14-14 2 1 1.25 2 1 0.55 3 1 0.88 4 2 0.88
k=50,l=0,w=1 grid14-14 1 0 0.86 2 1 0.61 3 1 0.90 4 2 1.25

k=0,l=0,w=0 cl-circ70-3 2 1 0.91 1 0 0.34 3 1 0.83 4 2 1.53
k=20,l=0,w=1 cl-circ70-3 2 0 1.23 1 0 0.32 3 2 0.87 5 2 1.68
k=50,l=0,w=1 cl-circ70-3 2 1 0.64 2 1 0.46 3 2 0.64 5 3 1.20

k=0,l=0,w=0 rand-cl30-7 2 0 1.67 1 0 0.38 3 1 0.96 4 3 0.79
k=20,l=0,w=1 rand-cl30-7 2 0 0.94 2 0 0.49 3 1 0.91 4 2 1.18
k=50,l=0,w=1 rand-cl30-7 3 1 0.80 1 1 0.32 3 1 1.32 5 2 1.18

Table 5.22: Second part of personal bit fitness experiment. The table contains
only results for high values of k, l = 0 and w = 1. For the parameters setting
(0, 0, 0) the fitness function is equivalent to the standard SAT fitness function
with no personal preferences, and we use it mainly for the comparison.
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Chapter 6

Conclusion

6.1 Theoretical Results Summary

In this thesis we have introduced the social interaction algorithm together with
all its motivations and background. We have successfully joined knowledge of
optimization search, especially nature-inspired optimization algorithms, together
with social networks understanding, and developed the new algorithm that is
non-trivially inspired by both areas. We consider the theoretical basis to be the
main and the most important result of this thesis.

The main components of the algorithm are the graph structure that allows
interaction only to certain pairs of individuals and the meeting operator that de-
fines how the interactions look like and how individuals exchange information.
We have also analyzed its complexity, and concluded that the most significant
factor, which we can affect, is the total number of iterations that the algorithm
needs to reach a given precision.1 We have discussed its exploration and ex-
ploitation components as well as the influence of single parameters within them.
Then, we suggested how and why it differs from other existing models. The main
differences are the graph infrastructure that crucially influences the behaviour,
no explicit selection that opens possibilities for individuality expression, and an
opportunity of individuality itself that allows single individuals to be specialized
on some local subspaces.

We have shown that the social interaction algorithm can mimic the Hill climb-
ing method by theorem 1 and we have proven the theorem 4 which says that the
social interaction algorithm can run effectively in parallel using O(

√
m
∆

) threads
where m is the number of edges in a graph and ∆ is the maximum degree in a
graph. Especially regular graphs can use effectively O(

√
n) threads in parallel

where n is the number of vertices as well as the population size.

6.2 Experimental Results Summary

We did basic parameters tuning for the one-max problem and for the SAT
problem. We examined that it is good to keep the self confidence ps high (i.e.

1We have shown that in reasonable cases the number of iterations overwhelms other factors
of the time complexity with the exception of the fitness function complexity. But the fitness
function we have given together with the problem, so we cannot affect it.
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ps = 0.9) and that the self confidence is a crucially important factor for good
convergence properties. We also found out that when the meeting factor pf is
increasing, the convergence speed is decreasing so is the speed of the genes vari-
ability convergence. And even when the convergence was slower at the beginning,
the algorithm was able to converge further in the finishing phase and obtain bet-
ter results at the end. A further convergence is supported by the slow variability
convergence, and the further convergence means better results, so we usually set
the meeting factor to be lower (i. e. pf = 1

8
).

An important parameter is the choice of a graph. We concluded that, espe-
cially for more complicated and non-trivial problems, sparse graphs with circular
structure and clustered graphs lead to better performance. So we paid more
attention to those two classes. Circular graphs like circle, grid, or ladder have
consistently good results as well as clustered graphs. Clustered graphs are more
complex and more promising for the usage of other algorithm features, like for
example individuality, so we decided to explore them more.

The conclusion about clustered graphs is that the best type of clustered graphs
is random clusters which are the most similar to the real social network structure
from all the types we used. It turned out that higher number of smaller clusters is
advantageous, in our case 30 clusters of size 7 for middle-sized SAT problems. We
continued by tie-strength application in random clustered graph. The conclusion
is that the tie-strength is advantageous when it causes a good ratio between strong
and weak ties. It means that when we have low number of weak ties, then we
should not apply the tie-strength, and when we have high number of weak ties,
then we should use some tie-strength to balance the ratio. Again, such property
corresponds with knowledge from real social networks, they have huge number of
weak ties but strong ties are used more often.

Unfortunately, we have not shown any evidence of the importance of individ-
uality. We tried to use unique self confidence and personalised fitness functions
but the results were not significantly better or worse. We think that it is partially
because of the fact that our initial results, given by the basic version of the social
interaction algorithm, were too good to be beaten easily. We still believe that for
other, possibly bigger problems, the individuality can play an important role.

6.3 Future work

Many possibilities for future research are open, especially in the area of indi-
viduality. We did all experiments on a general basis, and we did all the graph
generation and settings of individuals randomly. It could be worth researching
the issue of non-random graphs and individuals more concretely. For example, to
design special kinds of individuals as we suggested in section 4.5.3, and to find
a good way of cooperation for these types of individuals. Or to examine which
individuals should be included in a cluster to reach the best results, or how the
different types of individuals should be connected together to cooperate the best,
et cetera.

It might be interesting to try to extend the social interaction algorithm to
solve continuous optimization problems. At this point it is not clear how to do
it. We believe that by a proper modification of the meeting operator, and maybe
by another inspiration in human interactions, it is possible to develop a version
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of the social interaction algorithm that works for continuous problems as well.
Another direction of the research is more detailed examination of clustered

graphs. Several times we concluded that a clustered graph works the best when
it fulfils the same property as social networks. So, when continuing the research,
we could end up with an optimization algorithm, that performs the best when
using a graph mimicking a real social network. This conclusion can be expressed
by the following optimistic hypothesis.

Hypothesis 5. There exists a social interaction-like algorithm and its setting,
such that the algorithm shows the best results when using a graph mimicking a
social network. When it does, its performance is significantly better than other
algorithms of a similar type.
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