
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Neural Networks with Memory

Bc. Ondřej Kužela

Supervisor: doc. RNDr. Ing. Marcel Jiřina, Ph.D.

8th May 2016

Acknowledgements

I would like to express gratitude to my supervisor doc. RNDr. Ing. Marcel
Jiřina, Ph.D. for all his help and time he invested into me and this thesis.
Without him this thesis wouldn’t be in the state it is right now if I even were
able to finish it without him. I would like to also thank my advisors Martin
Bálek and Peter Hroššo for all their advices and help, including introducing
me to the first neural networks with memory and actually coming up with the
topic of this thesis. Another person that deserves my thanks is my roommate
Jan Duchač, because without him constantly motivating me into writing I
would never be able to finish this thesis on time. At least but not last I would
like to thank my family for all the support they gave me during my whole
studies and writing of this thesis, without their help none of this would be
possible.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 8th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Ondřej Kužela. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kužela, Ondřej. Neural Networks with Memory. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Neuronové sítě s pamětí jsou rodinou neuronových sítí, které kromě klasické
paměti ve formě vah, sloužících pro dlouhodobé závislosti, obsahují také jinou
formu paměti. Ta slouží pro uchovávání střednědobých, občas také nazývaných
dlouho-krátkodobých, závislostí. Taková paměť může být buď interní nebo ex-
terní. V rámci této práce poskytuji souhrnný náhled na rodinu neuronových
sítí s pamětí. Na základě analýzy existujících modelů také navrhuji nový
model, který nazývám Recurrent Neural Modules with External Memory.
Tento model nabízí nový a inovativní přístup k použití externí paměti v rámci
neuronových sítí, jelikož nasazuje externí paměť na úrovni částí sítě a tudíž ob-
sahuje několik externích pamětí v rámci jedné sítě. Výkonnost nově navrženého
modelu byla testována na Air Travel Information System (ATIS) datasetu.

Klíčová slova neuronové sítě, rekurentní neuronové sítě, neuronové sítě
s pamětí, externí paměť, moduly, střednědobé závislosti, dlouho-krátkodobé
závislosti

ix

Abstract

Neural networks with memory are the family of the neural networks that
except the classic memory for the long-term dependencies, in a form of the
weights, also contain another form of a memory. Such a memory serves to
retain the mid-term, sometimes also called long-short-term, dependencies and
can be of two different types, either internal or external. Within this thesis
I offer a summarizing overview of the family of the neural networks with
memory. Based on the analysis of the existing models I also propose a new
model of the Recurrent Neural Modules with External Memory. This model
offers a new and innovative approach to the usage of the external memory
within the neural networks, since it deploys the external memory on the scope
of parts of the network and thus deploys multiple external memories within
one network. The performance of the newly proposed model was evaluated
on the Air Travel Information System (ATIS) dataset.

Keywords neural networks, recurrent neural networks, neural networks with
memory, external memory, modules, mid-term dependencies, long-short-term
dependencies

xi

Contents

Introduction 1

Motivation and Objectives . 1
Problem Statement . 1
Goals of the thesis . 2
Structure of the thesis . 2

1 Introduction to Neural Networks 5

1.1 Recurrent Neural Networks . 8

2 State-of-the-art 11

2.1 Adding memory to RNN . 11
2.2 Detailed analysis of selected networks 18

3 Research of improvement 37

3.1 Recurrent Neural Modules with External Memory 38

4 Implementation 45

4.1 Selection of the platform . 45
4.2 Theano . 46
4.3 RNN-EM . 47
4.4 RNM-EM . 50

5 Testing and Evaluation 55

5.1 ATIS dataset . 55
5.2 Tests of RNN-EM modifications 57
5.3 Tests of RNM-EM modifications and settings 59
5.4 Comparison testing . 62

Conclusion 67

Summary of the thesis . 67

xiii

Contribution of the thesis . 68
Future work . 69

Bibliography 71

A Acronyms 75

B Contents of enclosed CD 77

xiv

List of Figures

1.1 Communication between neurons 5
1.2 Artificial neuron model . 6
1.3 Neural network models . 8

2.1 NNPDA model . 13
2.2 Memory block in LSTM . 14
2.3 Liquid State Machine visualization 15
2.4 Neural Stack model . 18
2.5 Computational step visualization in LSTM 20
2.6 Liquid State Machine model . 24
2.7 Clockwork RNN model . 26
2.8 Clockwork RNN – hidden layer activation 27
2.9 MemN2N model . 29
2.10 Stack and List RNN models . 31
2.11 RNN-EM model . 34

3.1 RNM-EM network model . 39
3.2 RNM-EM module model . 40

4.1 RNM-EM module computation order 49
4.2 Training phase termination . 53

5.1 RNM-EM trainable variables counter 56
5.2 ATIS dataset example . 57

xv

List of Tables

4.1 Input parameters of the RNM-EM network 51
4.2 Trainable variables of the RNM-EM modules 52
4.3 Trainable variables of the RNM-EM network 53

5.1 RNN-EM modifications (test results) 58
5.2 RNN-EM models (test results) . 58
5.3 RNM-EM models (test results) . 59
5.4 RNM-EM – number of memory slots (test results) 60
5.5 RNM-EM – ratio between hidden layer and memory slots sizes

(model settings) . 61
5.6 RNM-EM – ratio between hidden layer and memory slots sizes (test

results) . 61
5.7 RNM-EM – number of modules (model settings) 62
5.8 RNM-EM – number of modules (test results) 62
5.9 Comparison testing (networks settings) 63
5.10 Comparison testing (test results) 64

xvii

Introduction

Motivation and Objectives

One of the biggest dreams of the mankind is the idea of machines being able
to replace humans in their duties. But currently we are not much closer to
fulfilment of this dream than we were years ago. The reason is not that there
were not enough people trying, but that no one has so far found the way how
to do so. Human brain is a very complicated device we don’t fully understand
at this moment, but this can’t stop us from trying.

It is a well known fact that the human brain consists of many cells called
neurons. These cells are connected together in a way so they can communicate.
There are actually billions of neurons within the brain[1] and they can all work
parallely. That is something we can’t simply recreate using today’s computers,
for example common NVIDIA graphic cards with CUDA architecture can
manage “only” up to tens of thousands of concurrent threads1.

Another limitation that we are usually encountering while working with the
neural networks is the fact that most of the current neural network models are
struggling on problems that require keeping track of a context that is longer
than the network models allows to. Through the history there have been
several attempts to overcome these limitations of artificial neural networks.
This thesis focusses on the ones I am calling the Neural networks with memory.

Problem Statement

The Neural networks with memory are those models of the neural networks
that except the long term memory in the form of the weights, also propose
some sort of a memory for managing the mid-term, sometimes also called

1http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_

calculator.xls

1

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Introduction

long-short-term, dependencies. The memory for managing the mid-term de-
pendencies can be of two types, internal or external.

Probably the simplest example of a neural network, that uses an internal
memory for managing the mid-term context, are the recurrent neural net-
works. A basic example of such a network might be the Elman network, even
though the length of the dependencies it can retain is quite limited.[2] An-
other well known example of such a network is the current state-of-the-art the
Long Short Term Memory[3], which is probably the best performing universal
neural network as of now. Other examples of such networks are for example
the Liquid State Machine[4] or the Clockwork RNN[5].

The neural networks with external memory are something, at least for me,
more interesting. Over the last few decades there have been several attempts
in supplementing the neural network with an additional external memory that
would allow the network to retain longer dependencies. This trend was es-
pecially very popular among the researchers within the last few years. Some
examples of such models are the Neural Turing Machine[6], the Stack RNN[7]
or the Recurrent Neural Network with External Memory[8]. Even though
these models might be perceived as something not natural (nature inspired),
I believe in their great potential.

Goals of the thesis

The primary goals of this thesis can be summarized as follows:

• Study and summarize the family of the neural networks with memory,
both internal and external.

• Analyze selected neural networks with memory in order to find the pos-
sibilities for an improvement.

• Design a modification, possible improvement, of one of the selected
neural networks.

• Compare the performance of the proposed modification against the ori-
ginal model and other neural network models on a selected problem.

Structure of the thesis

The rest of this thesis will be organized into 6 chapters as follows. In the
Chapter 1 I will give a brief introduction into the topic of neural networks in
general. Since there is no paper that would summarize the whole family of the
neural networks with memory, the Chapter 2 will be devoted to this summary.
In the same chapter some of the selected networks will be further described
in detail. The Chapter 3 will focus on the analysis of a modification of one

2

Structure of the thesis

of the selected networks and also on a design of such a modification. In the
Chapter 4 I will focus on a further description of the proposed modification
and also on the implementation of its prototype and all the other network
models necessary for the testing phase. The Chapter 5 will be devoted to the
testing of the proposed model and the comparison of its performance to other
network models. The last part of this thesis will be the summary of the results
and the contribution of this thesis.

3

Chapter 1

Introduction to Neural Networks

Before I will be able to introduce the concept of neural networks with
memory, few basic concepts needs to be defined. First of them is the concept
of basic artificial neural networks (ANN). The inventor of one of the first
neurocomputers, Dr. Robert Hecht-Nielsen, defines a neural network as “...a
computing system made up of a number of simple, highly interconnected pro-
cessing elements, which process information by their dynamic state response to
external inputs.”[9]. But how do the artificial neural networks actually work?
To be able to answer this we have to go back to the source system we are
trying to simulate here, neural network inside the human brain.

Figure 1.1: A visualization of the communication between neurons2

On the above picture you can see the basics of communication between
neurons. Every neuron has multiple processes called dendrites, which create a

2
Source: http://biomedicalengineering.yolasite.com/resources/neuron_

structure.jpg

5

http://biomedicalengineering.yolasite.com/resources/neuron_structure.jpg
http://biomedicalengineering.yolasite.com/resources/neuron_structure.jpg

1. Introduction to Neural Networks

branch-like structure. Those serve as receivers of the information from other
cells, like other neurons, sensory receptors or muscle cells. From there the re-
ceived information is transferred as an electrical signal through the cell body
to an axon. Axon is the part of the neuron cells which has the function to carry
the information to other cells. On the end of an axon there is a branch-like
structures called the axon terminals. Those are the points of transfer of the
information to other cells. The transfer site is called synapse and the trans-
fer itself is handled using chemical processes between axon terminals of the
presynaptic neuron and receptors on the end of dendrites of the postsynaptic
neuron. After the exchange the postsynaptic neuron handles the transfer of
the information.[1]

So now we stated basics of how the communication in real neural network
works, but how do we simulate this concept using artificial neural networks?
Artificial neural network in general can be viewed as a graph, where nodes
are the neurons and edges are the synapses (plus dendrites and axons). Every
node contains three basic components, which are shown on Figure 1.2:

1. Weight vector, vector of synapses, assignment of weights to edges of
the graph

2. Transfer (summation) function, which computes the sum of signals
multiplied by concrete weights

3. Activation function, which maps the result of the net input to the
output of the neuron

Figure 1.2: Artificial neuron model3

3
Source: http://andrewjamesturner.co.uk/images/ArtificialNeuronModel.png

6

http://andrewjamesturner.co.uk/images/ArtificialNeuronModel.png

On the Figure 1.2 you can also see threshold by the activation function,
which means that if the signal is too weak (weaker than the set threshold), it
is not propagated further and is stopped in the neuron.

In general the network can have one or more layers. If there are more
layers, the first one is usually called the input layer and the last one the
output layer. Input layer is the part of the network, where the external input
enters the network in means of signals. Neurons of this layer serve to process
the external input and transfer it further. After the input layer there might
be one or more hidden layers, whose neuron acts exactly like stated on the
Figure 1.2. The neurons of the output layer acts the same as the ones from
the hidden layer, but their output is propagated into the final output of the
whole network. If we allow the feedback edges, edges that go within the same
layer or to one of the previous layers, it means that there can appear cycles.
Neural networks with cycles are called recurrent and they will be in detail
described in further chapters.

The last thing that needs to be explained before we move to more advanced
topics is how do the artificial neural networks learn. I will only explain this
for one subtype of learning, which is the supervised learning. There are also
other types of learning like unsupervised or reinforcement learning, but those
are beyond the scope of our needs right now. You can imagine the newly
created artificial neural network as a brain of a newly born child. The newly
born child also doesn’t know how to classify items based on their color and
has to learn it first. It learns the way that it tries to assign an item to the
category he thinks it fits the most, for example green. After that his mother
tells him that he either assigned it correctly or it should have belonged to
another color, for example red. On the next attempt of the same or similar
color item it will be more likely that he will assign the item correctly. And
this is almost the same way as how the supervised learning works.

The commonly used supervised learning algorithm is the Backpropagation
algorithm. For every input in the learning set there is also given a model
output. The Backpropagation algorithm has two major phases:

1. Forward phase – computation of outputs of all the neurons in the
network, at the end error is computed based on the model and real
output,

2. Backward phase – error is propagated back through the network, the
weights are being changed in order for the error rate to be minimized.

The Backpropagation leads to minimization of the error function to min-
imum, which doesn’t necessary have to be the global one. The speed of the
training can be changed in order to prevent the overlearning with every single
incorrectly recognized input.[10][11]

7

1. Introduction to Neural Networks

1.1 Recurrent Neural Networks

Even in our lives we barely decide any piece of information without a con-
text. For an artificial neural networks to be able to recognize the context we
need to allow the existence of cycles. The architecture which doesn’t allow
cycles inside of the networks is called Feed-forward networks (the left picture
in Figure 1.3). Since memorization in general inclines to some context-based
decision making I will put this architecture aside. Even though in the later
chapters I will talk about a way how to use Feed-forward networks together
with preprocessing using a recurrent component for a context-based decision
making.

Figure 1.3: Neural network models[12], Left: Feed-forward network model,
Middle: Recurrent neural network model, Right: Fully connected recurrent
neural network model

Recurrent Neural Networks (RNN) are Feed-forward networks supplemen-
ted by additional feedback edges, which provide back the context. In general
this context might be viewed as the state of the network in the previous time
step. Using this context RNN gain the ability to learn time/context depend-
ent problems including sequence prediction, handwriting recognition or speech
recognition. We can call this ability to remember the context a memory. But
how powerful this memory actually is? How long back in time is it able to
remember the context? To be able to understand this we have to take a look
back in the history of recurrent neural networks.

The foundations of RNN research took place in the 1980s and early 1990s.
With Hopfield networks in 1982, the first introduced recurrent network, the
main progress can be dated between 1986 and 1990 with Jordan and Elman
networks. Both of these networks introduced the concept of so called context
units. Context unit was a special unit which had the purpose to save the state
of a given unit (neuron) in the hidden (for Jordan network output) layer in

8

1.1. Recurrent Neural Networks

time t and feed the same state into a the same (for Jordan given) unit in the
hidden layer. Even though these networks had achieved success in learning
short-range dependencies, they haven’t been showing any worth mentioning
achievement with learning mid-range dependencies. This was mainly caused
by the problems of vanishing and exploding gradients.[2]

When backpropagating the error across many time steps, using standard
learning algorithms like Backpropagation through time, which is the gener-
alization of classic Backpropagation algorithm for RNN, both vanishing or
exploding gradient problems can occur. As detailed in Bengio et al.[13] both
caused the limited ability of RNN to learn the mid-range dependencies. The
exploding gradient problem appears when the long-term components grow
exponentially more than the short term ones, which leads to their explosion.
The vanishing gradient problem is the opposite behaviour, which appears when
long-term components grow exponentially fast to zero. That results into be-
ing impossible for the model to find any links between distant events. Various
researchers have been trying ever since to overcome this limitation and find a
way to allow RNN to learn the mid-term dependencies. The overview of sub-
set of those attempts is the theme of the next chapter. Please note that from
now on the phrase “neural network” will for simplification mean an artificial
neural network if not stated otherwise.

9

Chapter 2

State-of-the-art

2.1 Adding memory to RNN

The goal of this thesis is to study the neural networks with memory, but
so far I haven’t stated in detail what exactly is meant by that. Now having
explained all the necessary basics I can move right onto it. The neural networks
that we commonly simulate in computer are by far more simple than those
complex neural systems created by the nature. We are trying to simulate
all we do understand, but apparently it is not enough. So to be able to
overcome all the limitations for learning mid-range context like the problems
of vanishing and exploding gradients, we have to apply some upgrades to the
neural network. The resulting model doesn’t necessary have to actually be
inspired by the biological neural networks.

One of the families of upgrades that appear over the last 30 years, is the
upgrade in form of an additional memory added to the neural network. This
memory can be either internal for neurons, which happens for example in
Long Short Term Memory[3] or Liquid State Machine[4], or external memory
shared by the whole network, which is being used in some of the latest attempts
including Neural Turing Machine[6], Memory Networks[14] or Stack RNN[7].
These attempts appear to have strong impact on the latest discoveries in the
field of artificial intelligence and thus I would like to further orientate strictly
on them, even though there have been other worth-mentioning attempts in
the learning of mid-range dependencies.

I have been trying to find any paper containing a summary of such neural
networks. Probably the best ones I have found have been the ones by Josefow-
icz et al.[15] and Lipton et al.[2]. Even though both of them summarize the
family of recurrent neural networks, they do not mainly focus on the neural
networks with memory and thus I would I like to write this summarization
myself. In the rest of this section I will cover the development in the family
of the neural networks with memory.

11

2. State-of-the-art

2.1.1 DISCERN

The beginnings of attempts in adding a memory to neural networks can
be dated back into the early 1990s, when first ones have been tested. One
of the first attempts have been the DISCERN system introduced by Miikku-
lainen in his PhD thesis in 1990. DISCERN was a large-scale natural language
processing system, which was able to process stories written in natural lan-
guage and later answer questions about them. The system consists out of two
basic types of components: processing and memory modules. Processing mod-
ules, consisting out of 3-layer Elman networks, are serving mainly for parsing,
generating and questions answering. Memory modules consist out of sets of
feature maps, where words are stored in forms of vectors and which serve as
auxiliary modules for processing units. With the system combinating power
of neural networks together with R/W memory, DISCERN can be considered
one of the first neural network with memory.[16]

2.1.2 NNPDA

In 1992 the model of the Recurrent Neural Network Pushdown Automaton
(NNPDA) was introduced by Das et al.[17]. The NNPDA consists out of
recurrent neural network which is connected to an external stack memory. It
has been proven that the NNPDA is not only able to learn the state transitions
of the underlying finite state automaton, but also how to control the connected
stack. Using these features the NNPDA is able to learn simple deterministic
context-free grammars. The RNN is communicating with the stack through an
error function. Interesting fact is that the use of an error function according to
the authors allows the network to avoid using the stack when it’s not necessary
for a successful learning of the language.

To be able to understand how this model works and what is its contribution
to later research, we need to show the basics of its inner functionality. As you
can see on the Figure 2.1 the model consists out of more different types of
neurons with each serving a different purpose. The core part of the network
are the fully recurrent State neurons. Those are the part that keeps the track
of the network state and allows the network to learn. They take input from
three different sources: their own recurrent edges, the Input neurons and the
Read neurons.

The Input neurons serve for processing the external input to the system,
while the Read neurons process the input from the top of the stack. The
Read neurons handle the output of the stack, but do not control the operations
performed on the stack. That is a job of the Action neuron. The Action neuron
is a non-recurrent neuron, which based on its continued valued activation
indicates the action which is to be performed on the stack (push, pop or no-
op). This model served as a source of some ideas for another stack related

12

2.1. Adding memory to RNN

Figure 2.1: Model of the Recurrent Neural Network Pushdown Automaton
(NNPDA)[17]

research from 2010s called Stack RNN, which will be mentioned later in this
chapter.

2.1.3 NARX

Another research which set a ground for later researches was the Nonlin-
ear AutoRegressive model with eXogenous (NARX) which was proposed as
a model for learning mid-term dependencies in 1996 by Lin et al.[18]. Even
though it doesn’t contain any external memory, some of its parts serve as
memory persistent units for few steps. This gives NARX the ability to re-
member context over more steps. I call this type of a memory an internal
memory.

The NARX network model introduces units called output delays. Those
output delay nodes are organized by cascading together. The number of time
steps, the network can remember the old context, depends on the depth of
the cascade structure. But the problem with the NARX model is that for it
to remember a longer context the structure it needs to grow. This means that
the NARX model may be better in retaining context information than simple
RNN, but at the same time might be more complex and still vulnerable in
sense of the vanishing gradient problem and thus not ideal for handling mid-
term dependencies. But still this model set some interesting basics which were
used in the later discoveries.

13

2. State-of-the-art

2.1.4 LSTM

Probably the most progressive and universal model in the whole recurrent
networks family is the Long Short-Term Memory (LSTM) network firstly pro-
posed by Hochreiter and Schmidhuber[3] in 1997. This network was primarily
designed to fight the vanishing gradients problem, that hasn’t been sufficiently
solved before. The LSTM model proposes a new type of computational units
for the hidden layer named memory blocks. Each memory block contains one
or more memory cells. Every memory cell has at its core a unit called Con-
stant Error Carousel (CEC). This CEC unit has a self recurrent edge and
serves to enforce a constant error flow and thus prevent it from vanishing or
exploding.

Figure 2.2: Model of a single memory block in the Long Short-Term Memory
model4

Besides the memory cells every memory block also contains three, originally
only two, adaptive gating units: input, output and forget gate. The input and
output gates control the input and output into the memory cells and the forget
gate learns to reset the inner state of the memory cell once its context is out
of date. No one since has been able to propose any model which would be
in general stronger than the LSTM and wasn’t based on it. That is also the
reason why newly proposed architectures are usually first compared to the

4
Source: http://blog.otoro.net/2015/05/14/long-short-term-memory/

14

http://blog.otoro.net/2015/05/14/long-short-term-memory/

2.1. Adding memory to RNN

LSTM to see whether they even have at least comparable performance on the
particular problem.

2.1.5 LSM

In the early 2000s two similar models were proposed independently and
simultaneously: Liquid State Machine (LSM), published by Maass et al. [4],
and Echo State Network (ESN), published by Jaeger et al. [19]. Both of
those models share the main ideas, thus I will focus only on the Liquid State
Machine. The LSM is a spiking neural network which consists out of leaky
integrate-and-fire neurons. It doesn’t connect to any external memory, but
every neuron contains its own internal memory which can be imagined as
a self recurrent edge with weight 1. This means that the neuron can save
context from the last step. In general the network maintains its internal state
based on all the input that came since it was in the calm state. This can be
understood as that the network remembers context of any length, but it also
has some limitations.

Figure 2.3: Visualization of the Liquid State Machine model5

Neither the LSM nor the ESN are classic neural networks that I have been
talking about so far. Both of those models introduce something called reservoir
computing. The network itself is called the reservoir which you can imagine
as a space filled with a liquid. Any action that interferes the calm state of the
liquid can be taken as an external input. After the action is performed the
molecules of the liquid start to influence each other until the liquid reaches
the calm state again. Through the whole process between the calm states,

5
Source: http://hananel.hazan.org.il/the-liquid-state-machine-lsm/

15

http://hananel.hazan.org.il/the-liquid-state-machine-lsm/

2. State-of-the-art

the network reaches different internal states that can be observed. This is
for example how the Liquid State Machine works and thus there is the word
“liquid” in its name. The LSM is usually used as a part of some bigger model,
for example to allow the classic Feed-forward network to process problems
based on mid-term dependencies.

2.1.6 NTM

After 2000s which were not very productive in terms of new major discov-
eries concerning neural networks with memory, during the 2010s a new boom
arrived. Especially in the last few years a lot of new researches have been
published. One of the major ones was the model of Neural Turing Machine
published in 2014 by Graves et al.[6] from Google Deepmind. The Neural
Turing Machine model is capable of learning simple algorithms as copying or
sorting. NTM contains two basic components: controller and memory matrix.
Controller is a neural network that normally communicates with the external
world using its input and output, but at the same time is also able to commu-
nicate with the memory matrix using read and write operations. Interesting
fact is that as the controller it is possible to use the LSTM network, which
has its own internal memory that can complement the larger memory in the
matrix.

2.1.7 ClockWork RNN

Clockwork RNN was also published in 2014 by Koutník et al.[5]. This model
is not a typical example of the area I focus on studying, but some of its features
suggest that it deserves to be mentioned in this chapter. Its concept is similar
to some researches from 1990s like the previously mentioned NARX model. It
presents simple, but worth-mentioning, modifications to a simple RNN which
allows this model to retain longer-term dependencies than the simple RNN,
or for some problems even LSTM, can.

The Clockwork RNN works on a principle of dividing the hidden layer of
the RNN into multiple parts, called modules. Each of these modules runs
on a different clock speed, which is the key difference from all other previ-
ously mentioned models. Each module is assigned the time period Ti and the
communication between the modules is allowed only from the slower ones,
with bigger Ti, to the faster ones. This feature allows the Clockwork RNN
to retain the context information for a longer time which leads into a better
performance on learning mid-term dependencies. Another positive outcome
of this feature is that the amount of neurons, which are active at a certain
time step, is smaller than for simple RNN of the same size and thus it allows
the Clockwork RNN to work faster in means of the real time.

16

2.1. Adding memory to RNN

2.1.8 MemNN

Another concept that was published in the 2014 is the concept of Memory
Networks, which was published by Weston et al.[14] from Facebook AI Re-
search. Memory Network model follows some of the researches from the 1990s
including the DISCERN system. Memory networks are primarily proposed for
the context of question answering (QA), where the long-term memory acts as a
dynamic knowledge base. The model consist of a memory, an array of objects
(for example vectors or strings), and four inference components: input feature
map, generalization (updating stored memories based on the new input), out-
put feature map and response (converting output into desired response). The
response component is designed as an recurrent neural network that is con-
ditioned on the output of the output feature map, which works based on the
k-most relevant stored memories. The proposed model appears to perform in
the context of QA better than standard recurrent neural networks, including
LSTM.

2.1.9 Stack RNN

One of the latest researches in the field of the neural networks with memory
is the Stack RNN proposed by Joulin and Mikolov[7] from Facebook AI Re-
search. From the name you can already see that this model proposes nothing
completely new, but follows the researches from early 1990s by Pollack and
Das et al.. Stack RNN is proposed for the problem of recognition of algorith-
mically generated sequences, that are beyond the scope of learnability for basic
recurrent networks. The proposed model consists of recurrent neural network
that has increased learning capability being allowed to control an external
infinite structured memory. For the memory authors propose two basic topo-
logies suitable for the given problem, which are a pushdown stack and a list,
with the stack having better performance for the given problem.

2.1.10 RNN-EM

Another research that was published in 2015 is the RNN-EM model pro-
posed by Peng and Yao[8]. The model proposes the use of a RNN with an
additional external memory, which stores the past hidden layer activities in
order to increase the potential in learning the mid-term dependencies. The
memory consists of n slots with each slot being a vector and allows read and
update operations. Instead of feeding the past hidden layer activity directly
back using a recurrent edge, the content of the external memory is used as
one of the inputs of the hidden layer. The content of the memory is retrieved
using a weight vector, which is created based on the similarity of the current
hidden activity to the content of the external memory. After the new hidden
layer activity is calculated, the memory is updated based on the outputs of
the forget and update gates. The forget and update gates together create the
update vector that is afterwards applied on the memory.

17

2. State-of-the-art

2.1.11 Neural Stack, Queue and DeQue

The latest research I would like to mention here are the Neural Stack, Queue
and DeQue models proposed by Grefenstette et al.[20]. Over the last 25
years many neural networks that can control a stack have been proposed, but
majority of them acted with the stack as a structure of discrete operations
push and pop. But in the model of Neural Stack these discrete operations are
rendered as continuous and thus are a real values in the interval (0,1). This
can be interpreted as the degree of certainty with which the controller (RNN)
wants to push/pop a vector onto/of the stack. As the controller the authors
in the paper are using the LSTM network. A visualization how the controller
uses the stack is shown on the Figure 2.4.

Figure 2.4: Model of the RNN controlling the Neural Stack[20]

But more importantly almost on the same base as the Neural Stack, two
other structure are being proposed: Neural Queue and Neural DeQue. The
Neural Queue operates almost the same way as the Stack with one exception
that the pop operation reads the bottom of the structure instead of the top.
The Neural DeQue means that instead of a stack a double ended queue is
used. This allows to perform the push and pop operation on both ends of the
memory. According to the paper both the structures show on some tasks like
Bigram Flipping or Gender Conjugation better performance than both the
LSTM and the Neural Stack.

2.2 Detailed analysis of selected networks

In the last section I presented many network architectures that have been
proposed over the last 25 years. Some of them may be similar to another

18

2.2. Detailed analysis of selected networks

ones which also is one of the reasons why is it not worth to study further all
of them, but just some. After a discussion with my supervisor I have come
to a conclusion to put the following five networks through a more detailed
observation:

1. Liquid State Machine,

2. Clockwork RNN,

3. Memory Networks,

4. Stack RNN,

5. RNN-EM.

In the incoming subsections I will explain the basics of all these networks
and in the end one of them will be selected for a further analysis and improve-
ment. Another network, I won’t be focusing on improving, but deserves to be
described in detail, is the universal Long Short Term Memory network and
thus I will also dedicate it one of the following subsections.

2.2.1 Long Short-Term Memory

The Long Short-Term Memory (LSTM) model can be as of today considered
the universal state of the art as there so far hasn’t been proposed any other
model that would be in general more powerful than the LSTM. That is also
the reason why this network is usually used as a baseline while proposing
a new model. As long as the newly proposed model doesn’t achieve better
performance in at least one problem area than the LSTM it is probably not
even worth the attention. Even though the LSTM model has already been
proposed about 19 years ago, no one has been so far able to propose a better
model not strongly based on the LSTM. That is one of the reasons why the
LSTM deserves to be mentioned is this section even though I don’t plan to
focus on upgrading it.

As already previously mentioned the LSTM was originally proposed in order
to deal with the vanishing and exploding gradient problem, which was achieved
by introducing some innovative approaches. The key component of the of the
hidden layer of the LSTM model is the memory block. The memory block
is a unit that consists out of one or more memory cells and three gating
units, input, output and forget gate. Each of these components has a special
function that in total create the core of the innovate approach of the LSTM
model. In the original model proposed by Hochreiter and Schmidhuber[3] in
the 1997 there were only two gating units, the input and output ones. The
forget gating unit was introduced in the early 2000s by Gers et al.[12], which
is the version I will from now focus on. An example of a memory block with
a single memory cell can be seen in the Figure 2.5.

19

2. State-of-the-art

Figure 2.5: Visualization of one computational step in the memory block of
LSTM[12]

As can be seen on the picture at time t the memory cell j on the beginning
receives the network input netc which is the weighted sum of the outputs of
all the neighbour cells from time t − 1. After the summation is performed the
input is then being squashed by a sigmoid activation function g(netc) with
range [−2, 2]. It doesn’t necessary have be the sigmoid function, but can also
be another activation function like for example the tanh function. So the
whole input part is calculated and stored in a variable g as follows

netcv
j
(t) =

∑

m

wcv
j
m · ym(t − 1), (2.1)

g(x) =
4

1 + e−x
− 2, (2.2)

g = g(netcv
j
(t)). (2.3)

20

2.2. Detailed analysis of selected networks

After the input is processed it is then to be multiplied by the input gate
yinj . The input gate is a sigmoidal unit that controls the flow of input into
memory cells of the given memory block. If its value is equal to 0 then the
flow is completely cut off, otherwise if its value is equal to 1 then the whole
flow is passed through. The gate computes its value as follows

netinj
(t) =

∑

m

winjm · ym(t − 1), (2.4)

yinj (t) = finj
(netinj

(t)), (2.5)

which means that likely as the cell input it takes as its activation the weighted
output from the state of the network in the previous time step. The fin

function is a standard logistic sigmoid activation function on the interval [0, 1].

The core of each memory cell is a node sc which is the internal state of the
cell. The internal state has a self connected recurrent edge called the constant
error carousel (CEC). This edge serves in order so the error can flow across
the time without vanishing or exploding. But the addition proposed by Gers
et al.[12] is that this flow is controlled by a unit called the forget gate and
thus the inner state is calculated as follows

scv
j
(t) = yϕj (t) · scv

j
(t − 1) + yinj (t) · g, (2.6)

where yϕ is the forget gate. The forget gate is a unit that provides the network
the ability to learn to flush the content stored in the internal state. This is
especially useful in continuously running networks, where the inputs doesn’t
have marked starts and ends. The activation of the forget gate is calculated,
almost the same as for the other gates, according to the equations stated below

netϕj
(t) =

∑

m

wϕjm · ym(t − 1), (2.7)

yϕj (t) = fϕj
(netϕj

(t)). (2.8)

The last part that needs to be described here is how the output of the
network yc is calculated from the inner state sc. The whole process is similar
to the input one. First the output is being squashed by the activation function
h(x) and afterwards multiplied by the value of the output gate yout. The
output gate is a unit that controls whether the output is let out of the cell or
not. Its activation is computed as follows

netoutj
(t) =

∑

m

woutjm · ym(t − 1), (2.9)

youtj (t) = foutj
(netoutj

(t)). (2.10)

21

2. State-of-the-art

The final output of the cell can be then calculated as follows

y
cv

j (t) = youtj (t) · h(scv
j
(t)), (2.11)

h(x) =
2

1 + e−x
− 1, (2.12)

where the function h(x) is the central sigmoid activation function with range
[−1, 1].

In the previous few paragraphs I tried to give a short summary how the
forward pass of the LSTM network works. The forward pass but serves only
for the calculation of the value, not the training itself. For the training of
the network Gers et al.[12] proposed a backward pass training algorithm for
the proposed LSTM model. This training algorithm is a combination of the
back propagation, which is used for training the output units, the truncated
backpropagation through time (BPTT, Williams & Peng 1990), which is used
for the training of the output gates, and the truncated version of the real
time recurrent learning (RTRL, Robinson & Fallside 1987), which is used for
training the weights to cells, input gates and forget gates. Even though the
backward pass is a really important part of the LSTM model, its complexity
puts it out of the scope of this thesis, especially because the LSTM and its
learning is not the main focus. If you are interested in the process behind the
learning of the LSTM I would like to refer you to the work published by Gers
et al.[12].

Even though many papers have been published on the LSTM model since
it was first proposed in 1997, not much have been published about the true
source of its performance or its limitations. Probably the first deeper study
of how LSTM model works internally and why, was published in 2015 by
Karpathy et al.[21]. The authors of the study focus on studying how different
parts of the network act while being exposed to real world data. Based on the
cell activation statistics they were able to reveal that the different neurons of
the LSTM serve different function after being read. For example if they are
presented a text input they might act as some of the following:

• cell sensitive to position in line,

• cell that turns on inside quotes,

• cell that activates inside if statement or

• cell that acts like a line length counter.

Even though this sounds really interesting there is still a big amount of cells
that are not easily interpretable and we can’t easily guess their relevance. But
deep understanding of the LSTM network might lead to a great progress in
the field of neural networks.

22

2.2. Detailed analysis of selected networks

2.2.2 Liquid State Machine

The Liquid State Machine (LSM) was the first neural network with memory
I got into a contact with. I previously already performed a research[22], avail-
able in English on GitHub, of this model. Since I came across some interesting
thoughts published by several authors about this network, I think it is worth
to be mentioned in this section. The LSM is not a typical model of a recurrent
neural network as for example the LSTM and contains some characteristics
that no other network does. But before I will be able to explain how the
LSM actually works, its key component needs to be described first: the leaky
integrate-and-fire neurons.

The leaky integrate-and-fire neurons are the basic unit of the LSM and
define many of its characteristics. The integrate-and-fire comes from the fact
that the neurons keep integrating the incoming spikes until the firing limit is
reached. After that they fire a spike to all connected neurons. This is also why
the LSM is called a spiking network, because its neurons communicate using
spikes. The word leaky comes from a fact that through the time, if no input
comes, the inner state (potential) of the neurons is slowly decreased until it
reaches the state of calm. The inner state of neuron n through the time is
computed as follows

ISa(t) = ISa(t − 1) + EIa(t) +
∑

i ∈ neighbours of n

IOi(t − 1), (2.13)

where ISn(t) is the inner state of the neuron n in time t, EIn(t) is the external
(outside of the LSM) input for the neuron n in time t and IOi(t) is the internal
output of neuron i in time t, which equals to the internal input of all its
neighbours in time t + 1.

Before I will proceed further in the explanation of the LSM, let’s see the
natural process which is the source of the main idea of how the LSM works.
Have you ever thrown a stone into the water and watch how it changes its
surface? All those small waves floating on the water surface? This is probably
the closest real life example of how the Liquid State Machine works. With
any external stimuli the water changes its inner (liquid) state until it reaches
the calm state again. And this is the process after which the Liquid State
Machine was named. The LSM network works actually similar to how does
the water do.

On the Figure 2.6 you can see the visualization of how the LSM works. At
every time step t the network receives the input u(.). The neurons of the
network based on their inner state, external input and internal input compute
a new inner state and fire a spike if necessary. Based on the inner state of the
neurons, a new inner state of the network at time t xM (t) is computed as a set

23

2. State-of-the-art

Figure 2.6: The Liquid State Machine[4]

of all non-external input neurons. After that the inner state is processed by a
detector fM and an output y(t) is given. The reason why we use a detector is
that the LSM itself doesn’t usually learn during the process, it only encodes
the incoming input based on its current inner state, and thus the detector of
the network can be any classifier system that is able to be trained to recognize
a pattern. Those could for example be:

• 3 layer Feed-Forward network,

• Support Vector Machine (SVM),

• Perceptron or Multi Layer Perceptron (MLP),

• Adaline (Widrow & Hoff, 1960),

• Tempotron (Gutig & Sompolinsky, 2006),

• etc.

The LSM is sometimes called a random network. What does this means is
that the network consist out of just one layer of neurons that are not fully-
interconnected and the input neurons are selected randomly among them.
Based on the given connectivity (normally about 5 – 20%) each neuron is
selected pseudorandomly, usually with some additional restriction, a given
amount of neighbours. The restriction on the selection of neighbours defines
the topology of the network. The originally proposed topology by prof. Maass
was based on the close neighbours, having neurons places into 3D rectangular
structure, this topology prefers connections between neurons that are closer
to each other.

24

2.2. Detailed analysis of selected networks

It has been proven by Hazan and Manevitz[23] in 2011 that the topology
proposed by prof. Maass is not robust enough in the means of vulnerability
to failures in the parts (neurons) of the network. This was proven using the
dead (never firing) and noisy (firing as often as the refractory period allows it)
neurons inside of the network. Even though the topology based on the close
neurons haven’t proven to be robust enough, some other topologies proposed
by the authors have shown a much bigger robustness in the means of the
damaged neurons. Those have been for example the small world topologies
based on the power law.

So it has been proven that the LSM can be robust in the means of damaged
neurons or noise in the input data, which has been proven by prof. Maass
himself. Together with the Echo State Network, which is a similar network
proposed by Jaeger et al.[19], they create the family of networks called the
reservoir computing. Currently their field of expertise is the temporal patterns
recognition. Temporal patterns are the patterns that come over time and need
to be recognized as one pattern. The speech recognition is for example one
of the fields where LSM is being successfully deployed. According to my
opinion, with the LSM being a strongly biologically inspired network, with
some breakthrough it can become a really strong model for even wider (maybe
universal) field of use.

2.2.3 Clockwork RNN

Even though the concept of the Clockwork RNN[5] doesn’t add any addi-
tional memory to the neural network, it organizes the hidden layer in a way
that some of its parts serve as a memory for another ones. This feature makes
this model perspective in a way that it may be combined with another model
to create a new powerful architecture without putting any serious limitations
on it. This is probably the main reason why I selected this model for a further
study. In the upcoming paragraphs I will try to summarize how the Clockwork
RNN network actually works.

I have already previously mentioned that the Clockwork RNN is based on
the Simple Recurrent Neural Network (SRN). Just as the classic RNN it con-
sists out of three basic layers: input, hidden and output layer. The input
and output layer are the same as for the SRN, all the changes appear in the
hidden layer. Unlike in the SRN in the Clockwork RNN the hidden layer
is divided into g modules, each of them consisting out of k neurons. Each
module is assigned a clock period Ti ∈ T1, . . . , Tg. This clock period says how
often the module processes a new input and thus different modules work at
different time steps. This is the key features which makes the Clockwork RNN
stronger than the simple RNN.

25

2. State-of-the-art

Figure 2.7: The Clockwork RNN model[5]

All neurons within one module are fully-interconnected. As of connections
between neurons it depends on their clock periods. The recurrent connections
from module i to module j exist if and only if the clock period Ti is bigger than
Tj , i.e. if module i is slower than module j. If we would sort the modules by
increasing period than we would get a similar as the one shown on the Figure
2.7 where all the connections that propagate the inner state lead from right to
left. The reason why we allow only connections from slower to faster modules
and not the other way around is obvious. If we think about the fact that those
edges propagate the state of a hidden layer from the past and the other way
around they would propagate a state from the future.

The SRN uses the following equations, without the omitted neuron biases,
to calculate output at a time step t:

yh(t) = fH(WH · y(t − 1) + Wi · x(t)), (2.14)

yO(t) = fO(WO · yH(t)). (2.15)

The main difference between the equations of the SRN and the Clockwork
RNN is that for the Clockwork RNN only a subset of modules is active at a
time step t. Specifically those are the modules that satisfy the equation (t
mod Ti) == 0. This is satisfied by editing the weights WH and WI matrices
into partition of g block as you can see in the following equations:

WH =

WH1

...
WHg

WI =

WI1

...
WIg

(2.16)

26

2.2. Detailed analysis of selected networks

where WH is an upper-triangular matrix where all the rows are organized as
{01, . . . , 0i−1, WHi,i, . . . , WHi,g}, where i is the number of the row and WHi

is
a vector assigned to module i. WI has rows organized as vectors WIi

of length
equal to the length of the input vector. Both WH and WI change through the
time according to which modules are active at the given time step as stated
in the following equations:

WHi
=

{

WHi
if (t mod Ti) = 0

0 otherwise,
(2.17)

this again shows that the only active modules are the ones that are supposed
to run at the given time step. An example of this calculation can be seen on
the Figure 2.8. As for the backward pass it is again similar with the SRN.
The only difference is that the error propagates only from the modules that
were active at the given time step. For the others the error gets copied back
in time.

Figure 2.8: Calculation of the hidden layer activation at the time step t=6.
The numbers on the left side are the clock periods and thus only the first two
modules are active.[5]

According to the authors of the model and the results published in the pa-
per, the Clockwork RNN shows better performance than the SRN on some
tasks requiring mid-term context like sequence generation or spoken word clas-
sification. For spoken word classification it even shows a better performance
than the LSTM network, which shows a potential hidden behind this model.
Another big potential of this model lies behind the fact that the Clockwork
RNN performs for the same amount of neurons fewer actions per time step
than the SRN. This gives us the possibility to use a bigger network without
needing additional runtime. Since the human brain consist out of billions of
neurons, this might actually be one of the concepts that will allows us to get
closer to its simulation.

27

2. State-of-the-art

2.2.4 Memory Networks

The Memory Networks were actually the reason why I started working on
the topic of neural networks with memory. After reading its research paper
I thought that it has to be something unique and revolutionary. But after
reading few other research papers from the area I found out there is more to
that and that it actually might be worth to study the whole family of models
and not just only one. And that was probably the moment when the main
idea of this thesis topic was born. After a deeper study I realized that the
basic Memory Networks published by Weston et al.[14] are first of all not as
revolutionary as I thought, but also has some downs that are seriously limiting
it.

As about the fact that the network is nothing completely new, we can just
simply look back on the DISCERN model published by Miikkulainen in 1990.
The DISCERN was, same as the Memory Networks, a multi component system
that was proposed for processing of natural language in means of QA systems.
But what troubles me more than the revolutionary character of the model,
is the fact how it is trained. The basic Memory Networks are not able to be
trained end-to-end and thus require supervision at each layer of the network.
This means that the model can’t easily be trained using backpropagation and
thus there are limitations about its general applicability. But only few months
after the publication of the basic Memory Networks, their end-to-end variant
was proposed by Sukhbaatar et al.[24] and thus I would like to focus on this
variant instead of the basic one.

The End-To-End Memory Networks (MemN2N) are a form of Memory Net-
works, which is able to be trained end-to-end and thus requires less supervi-
sion during the training phase. Before producing any output the network first
performs multiple reads from the long-term memory, which appears to be im-
portant for a good performance. In short the network works in the way that
the MemN2N model takes a set of inputs x1, . . . , xn and stores them in the
memory. Once it processes a query q, it creates a continuous representation
of both the input x and the query q. Based on the continuous representation
it can afterwards create the output a. All the symbols contained in the input
x, query q and answer a must be stored in a predefined dictionary of words.

To be easier to understand how the networks work I will first describe just
as a single layer as viewed on the Figure 2.9a. Given the input set {xi} we
create memory vectors {mi} and an output vector {ci}, both by embedding
the x into a continuous space using matrices A and C. We also embed the
query q into an internal state u and create the match pi between u and each
memory mi as follows

pi = Softmax(uT · mi), where Softmax(zi) =
ezi

∑

j ezj
. (2.18)

28

2.2. Detailed analysis of selected networks

The vector p created using these operations is a probability vector over the
inputs. Using this probability vector p we can create the response vector o as
follows

o =
∑

i

pi · ci (2.19)

The whole transformation function from the input to the output is smooth
and thus we are able to easily compute gradients and backpropagate through
it. Based on the response vector o and the internal state u we can finally
create the predicted label â as follows

â = Softmax(W · (o + u)), (2.20)

where W is the final weight matrix. During the training of the network all
matrices A, B, C and W are learned by minimizing the standard cross-entropy
loss between the predicted label â and the true label a.

Figure 2.9: Visualization of the MemN2N model with A: one/B: multiple
layers[24]

One layer means one search based on the current internal state. We can
extend the model by connecting multiple layers. Let’s assume we have K

layers connected together, then the input for the next layer is calculated as a
sum of the output ok of the current layer and the inner state uk of the current
layer as follows

uk+1 = ok + uk, (2.21)

29

2. State-of-the-art

where the k means the current layer. Every layer has its own embedding
matrices Ak and Ck and they are modified during the training process. The
predicted label â is then computed as follows

â = Softmax(W · uK+1) = Softmax(W · (oK + uK)). (2.22)

In the paper the authors are also exploring two types of weight tying between
matrices Ak and Ck in order to ease the training and reduce the number of
parameters. Those two types of weight tying are:

1. Adjacent: The input embedding matrix of each layer is the same as
the output embedding matrix of the layer before and thus Ak = Ck−1.
In the same way the query embedding matrix B and final weight matrix
W are also limited and thus B = C0 = A1 and W = AK+1 = CK .

2. Layer-wise: The input and output embedding matrices are the same
across all the layers and thus A1 = . . . = AK and C1 = . . . = CK .
The authors also propose the use of a linear mapping H alongside the
layer-wise tying, which is used for updating the inner state u between
the layers hops as uk+1 = H · uk + ok and is among the parameters that
are learned during the training phase.

According to the result published in the paper the proposed MemN2N model
not only significantly makes the network easier to use, but at the same time
also shows better performance for some of the Question and Answering prob-
lems. Even though there are some interesting thoughts that were proposed in
both the Memory Networks related papers[14][24], the network model on its
own has a really restricted field of use, being built specifically as a QA system.
I am currently not sure how the proposed model could be applied to a more
universal use and thus I will not continue to work with this model in the rest
of my thesis.

2.2.5 Stack RNN

There have been attempts to let the neural networks work with a stack
structure since the early 1990s. Mostly they have been focusing on letting
the neural networks to learn how to act as some sort of universal automatons
which would be able to accept all sorts of grammars based on the data they
were presented during the training stage. One of the latest researches in this
field is the Stack RNN model presented by Joulin and Mikolov[7]. As you
can see on the Figure 2.10, the authors proposed a recurrent neural networks
working with a stack or a double linked list in order to be able to learn the
regularities in sequences of symbols generated by simple algorithms like anbn

and so on. In this section I would like to mainly focus on the RNN with stack
as it shows a longer history of research and according to the authors also a
better performance.
30

2.2. Detailed analysis of selected networks

Figure 2.10: Left: Visualization of the Stack RNN model, Right: Visualization
of the List RNN model, where a double linked list is used instead of the stack

But not to be mistaken I don’t want to focus in the section on the perform-
ance of the Stack RNN in the proposed field of expertise, but mainly on its
contribution in the field of neural networks with memory. Because the pro-
posed network is not only learning to recognize the presented patterns, but
also learns its own way to control the stack. This gives the network more
freedom and at the same time makes the network more powerful. The used
external memory in an infinite stack structure with three typical control op-
erations. The POP operation which removes the top element of the stack,
the PUSH operation which adds a new element to the top of the stack and
the NO-OP operation which does nothing and thus allows the stack to simply
keep the same state into the next iteration.

The decision which operation is going to be performed is made based on
the 3-dimensional variable at which is computed from the current hidden layer
activity ht as follows

at = f(A · ht), (2.23)

where A is a 3 × n transformation matrix (n is the number of neurons of the
hidden layer) and f is a softmax function. We set at[POP] as the probability
for the POP action, at[PUSH] as the probability for the PUSH action and
at[NO-OP] as the probability for no action. The stack is at time t stored in
a vector st, where the size of the vector can be increased if needed. At every
time step we need to perform the operation on the stack using the following
equations

st[0] = at[PUSH] · σ(D · ht) + at[POP] · st−1[1] + at[NO-OP] · st−1[0], (2.24)

31

2. State-of-the-art

st[i] = at[PUSH] · st−1[i − 1] + at[POP] · st−1[i + 1] for i > 0, (2.25)

where D is a 1 × m transformation matrix and σ(x) = 1

1+e−x is a sigmoid
activation function. These equations mean that if at[PUSH] equals 1 then the
whole stack is shifted one down and a new value is added to the top of the
stack. On the other way around if at[POP] equals 1 then the whole stack is
shifted by one up and thus the top element of the stack is removed. If the
at[NO-OP] equals 1 then the top element stays the same and no shifting is
performed. When the stack is empty then st is set to −1.

Using the information stored in the stack the hidden layer activity ht is
updated as follows

ht = σ(U · xt + R · ht−1 + P · sk
t−1), (2.26)

where U is token embedding matrix, xt is the input at the time t, R is a
matrix of recurrent weights,P is a m×k recurrent matrix and sk

t−1 are the top
k elements of the stack at time t − 1. The choice of k is one of the parameters
of the network. Using one stack has some limitation especially if we take into
consideration that only 1 action can be performed at a time. The authors
thus propose a model that can use multiple stacks in parallel. That allows the
model to be able to learn how to process more complex patterns.

One of the limitations of this model is that the stack can be only accessed
through its top most element and thus the network can’t work with an earlier
stored context without processing the newer ones first. This doesn’t limit
the network while processing the sequences of symbols generated by simple
algorithms like anbn, but might be a problem if we were trying to deploy this
structure to solve some other problems. Another limitation of this model is
that it deploys the external memory on the scope of the whole network. This
may increase the ability to learn context of the network as the whole, but
doesn’t help to increase the ability of individual neurons or groups of neurons
to learn mid-term context. This might be useful, because different parts of
the neural network might be thanks to that learning contexts of different term
lengths. These limitations might not be a problem for some types of tasks,
but if we would try to focus on an universal use of the network then they
might limit this model too much to be able to use it.

2.2.6 RNN-EM

The idea to allow the hidden layer of the neural network to retain the
information about its past states longer is not nothing new. Similar concepts
have already been proposed in the early 1990s, for example as in NARX model
by Lin et al., where hidden layer contained few delay units that have been

32

2.2. Detailed analysis of selected networks

feeding the past states of the hidden layer. But models like this have been
limited in the matter of number of the past inner states they could retain.
The RNN-EM model offers an upgrade in this matter since it doesn’t limit the
number of past inner states that can be retained. In the following paragraphs
I will try to give a detailed view into how the RNN-EM actually works. But
before we will be able to move onto that, the background needs to be explained.

In 1997 the Long short-term memory (LSTM) have introduced the gating
functions inside of its memory blocks in order to prevent the back-propagated
errors to vanish or explode. The memory block of the LSTM contains 3
different gating functions, input, output and forget, which have already been
in deep introduced in the section about LSTM (2.2.1). But already in the
past, some of the researchers have been asking questions whether it is really
necessary to have all three gates. This question has been answered in 2014
by Cho et al.[25] proposing a new hidden unit, usually by others cited as the
gated recurrent unit (GRU), that contains only two gates.

Each gated recurrent unit has its own separate two gates, which are named
reset and update gate. The reset gate decides whether the previous hidden
state is ignored or used. The update gate is used to control whether the hidden
state will be updated with a new hidden state. Together these two gates act
similar to the ones used in memory cells of the LSTM and help the network
to remember the mid-term dependencies. But thanks to the fact that every
unit has its own gates, every unit can learn to capture different dependencies.
Units capturing short-term dependencies will tend to have reset gates being
active more frequently, while the ones capturing mid-term dependencies will
have their update gates mostly active.

With having the main part of the background covered we can start the
exploring of the Recurrent Neural Network with External Memory (RNN-
EM). Like LSTM and GRU models, the RNN-EM also proposes a model with
gating units, but in this case they serve for controlling the external memory
that is connected to the hidden layer. This allows the network to keep a
longer context tracking, with the context being fed from the external memory
content and not directly from the past hidden layer activities as for the classic
RNN. The weight of the fed external memory content is calculated based on
how relevant it is to the current hidden layer activity.

On Figure 2.11 you can see a model of the RNN-EM which is actually classic
RNN model supplemented by the external memory Mt, forget gate ft, update
gate ut and their supporting vectors and operations. On the top line you can
see the standard components as input xt, hidden layer activity ht and output
yt. If we would put the context ct equal to ht−1 and would omit the rest of the
components, than we would get a model of simple recurrent neural network
(SRN). But the more interesting parts are the ones where there are performed

33

2. State-of-the-art

Figure 2.11: The RNN-EM model. The Z−1 denotes a time delay operator.[8]

any operations on the content of the external memory. We could divide those
into two basic parts: read and update.

The external memory Mt of the RNN-EM is an memory matrix of n slots
where each slot contains a vector of m elements. If we want to select the most
relevant context from the external memory we do so based on the current
hidden layer activity and the content of the external memory. First of all we
need to create relevant weight vector wt. This is done using the key vector
kt = Wk · ht, which is nothing else than the current hidden layer activity ht

transferred using a linear transformation matrix Wk into a vector of desired
length. Once we have the key vector kt we can compare it to the context
vectors stored in the memory using the cosine distance K(u, v) = u·v

‖u‖·‖v‖ and
get the weight for each context vector ŵt(c) as follows

ŵt(c) =
exp(βt · K(kt, Mt(:, c)))

∑

q exp(βt · K(kt, Mt(:, q)))
, (2.27)

where βt is a scalar calculated as follows

βt = log(1 + exp(Wβ · ht)) (2.28)

and either sharpens the weight vector when it’s bigger than 1.0 or smooths/dampens
the vector when it’s between 0.0 and 1.0. The temporal weight vector ŵt(c)
can be then used to compute the final weight vector wt as follows

wt = (1 − gt) · wt−1 + gt · ŵt(c), (2.29)

where gt is a scalar coefficient used to interpolate the temporal weight vector
with the past weight vector. The relevant context ct can be retrieved from the

34

2.2. Detailed analysis of selected networks

external memory using the weight vector as follows

ct = Mt−1 · wt−1. (2.30)

As for the update of the external memory the most two important compon-
ents are the forget and update gate. The forget gate ft acts as follows

ft = 1 − wt ⊙ et, (2.31)

where et is an erase vector generated by linear transformation from the hidden
layer activity ht. From the equation can be observed that the c-th element of
the forget gate is 0 if and only when both c-th elements of the read weight wt

and the erase et vectors are set to one. This means that a memory can only
be forgotten if it is to be read. The update gate just uses the read weight
vector wt as follows

ut = wt (2.32)

and thus a memory can be updated only if it is to be read. With the given
forget and update gates the external memory is updated as follows

Mt = Mt−1 · diag(ft) + vT
t · ut, (2.33)

where diag(·) is a transformation, which takes a vector and creates a diagonal
matrix with the diagonal elements taken from the vector.

According to the original paper the RNN-EM is proposed mainly for the
problem of language understanding where its performance according to the
test results presented by the authors is better than for some of the previously
presented models including the SRN, the LSTM or the network of gated re-
current units (GRNN). But to my opinion its biggest idea lies in the usage of
external memory together with the gating units. This feature allows the net-
work to retain a context that would normally have to be retained by a bigger
network. This similarly like the Clockwork RNN allows us to simulate a bigger
network using a smaller one and might be the right path in progressing in the
matter of simulation huge neural networks on today’s personal computers.

35

Chapter 3

Research of improvement

In the last chapter I have introduced many models of neural networks with
memory that have been proposed over the past 25 years. Some of them had
bigger impact than others, for some of them their time can even still come.
But before I will move forward I would like to talk a little bit about why do I
think that adding external memory to the networks or making the networks
act that they provide context to themselves might be the way to push the
research in the field of the neural network forward.

Most of the above presented models are not build in the way how it works
in the biological world. But to be honest we still don’t know how it actually
works in the real biological world and we probably do not have the computing
resources to build something so complex and big as the nature does. Some
can say that it is not natural to add additional external memory to the neural
networks. I don’t want to argue about this here, but I am going to say
that adding memory has its place until we prove there is another way to
get around. Because in my opinion adding external memory to the neural
networks is currently the best way how to simulate those complex systems we
do not understand.

The external memory provides a lot to the neural networks especially in the
means that it allows us to simulate bigger networks using a smaller ones. And
how does this work? In general the external memory allows the neural network
to maintain a longer context which normally have to be retained using a bigger
network. Thus using the external memory allows us, if used wisely, to reduce
the size of the neural network in some way. The main goal in the neural
networks field is to be able to simulate the human brain using an artificial
neural network. This is currently impossible because of the limitations in
means of computing resource. But what if we were able to reduce the size of
the network or at least its computing load?

37

3. Research of improvement

While reading the particular research papers I came across an interesting
fact that most of the neural networks, deploying an external memory, deploy
it on the scope of the whole network. This fact lead for me to a lot of questions
whether there could be a model that would be deploying the external memory
on the scope of individual neurons or groups of neurons. An advantage of
such a model could be that different groups of neurons might be used to track
contexts of different lengths. Similar ideas to this one were introduced in
models like the Long Short-Term Memory, where the neurons were organized
into the memory blocks, or the Clockwork RNN, where the neurons were
organized into the modules. Within those groups the neurons share more
context than outside of them and thus this context could be replaced by some
external memory. But probably not all the models with the external memory
could be modified to work this way.

A model that caught my attention was the RNN-EM model by Peng and
Yao[8]. This model is being strongly inspired by the gating units proposed in
the Long Short-Term Memory or the Gated Recurrent Unit models. Both of
those models deploy the gating units on the scope of the individual neurons or
groups of them. This inspired me to consider this model for the above men-
tioned modification. Big advantage of the RNN-EM model is that the external
memory has predefined size and thus can’t grow during the computation like
for example in many of the stack based models. The limited memory size
might allow us to deploy the memory into the network not only once but mul-
tiple times. Thus in the rest of this thesis I would like to focus mainly on just
one model and that would be the newly proposed model of the Recurrent

Neural Modules with External Memory.

3.1 Recurrent Neural Modules with External

Memory

The model of Recurrent Neural Modules with External Memory (RNM-EM)
is strongly influenced by the model of Recurrent Neural Network by Peng and
Yao[8] and thus also the almost same name. The whole network consists
out of multiple modules, where each module a slightly modified RNN-EM
network. But deploying only multiple modules without any recurrent edges
wouldn’t probably lead to any major improvement or even a big contribution
to the family of neural networks with memory, even though it would allow
the network to work significantly faster than the RNN-EM with the same
total number of hidden layer neurons if the modules would be implemented
in the way to work in parallel. Thus I also propose to implement a recurrent
propagation of the combined context R(t) as viewed on the Figure 3.1.

As already previously mentioned the RNM-EM model consists out of k mod-
ules, where each modules is a modified RNN-EM network. At each time step

38

3.1. Recurrent Neural Modules with External Memory

Figure 3.1: Model of the RNM-EM network with 3 modules.

t all the modules receive the input X(t) ∈ Rd×1 and the combined context
R(t − 1) which was generated by the modules in the previous time step. After
the modules process the input and the context, each of them produces its out-
put yi(t) and context ri(t). These partial outputs and contexts are afterwards
combined into the output of the network Y (t) and the combined context R(t)
as follows

Y (t) = g(
∑

i<k

yi(t) + by), (3.1)

R(t) =
∑

i<k

(Wi · ri(t)) + br, (3.2)

where g is a softmax function, Wi is a matrix assigned to the particular module
and by and br are biases for the equations. The dimensions of the combined
context R(t) and contexts ri(t) will be further described in the chapter Imple-
mentation (4). The dimensions of the outputs Y (t) and yi(t) depend on the
size of the desired output. The rest of the computation takes place inside of
the modules.

On the Figure 3.2 you can see how each module internally works. The
model of the module is really similar to the one published in the RNN-EM
paper. The two biggest differences in the visualization are the context rt and
the circles with the question marks next to the external memory Mt and the
memory weight wt. These circles represent a place that might contain a delay
node Z−1. Exactly one of these places needs to be assigned a delay node
in order to set the dependency between the memory Mt and the weight wt,
which is not explained in the RNN-EM research paper. This matter will be
later discussed in the chapter Implementation (4). Note that the visualization

39

3. Research of improvement

Figure 3.2: The RNM-EM module model. The Z−1 denotes a time delay
operator and the ’?’ denotes a place, where an additional time delay operator
might be placed.

doesn’t show how the outputted context rt is produced. This will be later
described in this and the next chapters.

Even though most of the equations are similar to the ones previously stated
in the section about the RNN-EM (2.2.6), I will summarize the computation
process once again. The reason for this is the fact that I will describe them in
ordered and more detailed way than they were previously mentioned. I would
also like to put all the changed equations into a proper context rather than
just pointing out the differences, especially because these equations should be
the main source of information if someone would be trying to reproduce the
proposed model.

Before I will move further I first need to explain few constants that will
appear in the following paragraphs. The RNM-EM model consist out of k

identical modules. Each of these modules contains p neurons in the hidden
layer and an external memory Mt that consists out of n memory slots with
each being a vector of m elements. The last constant, that will appear in the
following equations and will not be explained further, is the input vector’s
length d.

The computation itself could be divided into 3 major parts: the hidden layer
and output computation, memory read and the memory update. I will start
with the computation of the context ct ∈ Rm×1 and the hidden layer activity
ht ∈ Rp×1 that are computed as follows

ct = Mt−1 · wt−1, (3.3)

40

3.1. Recurrent Neural Modules with External Memory

ht = σ(Wx · xt + Wc · ct + Wr · rt−1 + bn), (3.4)

where σ is an activation function (tanh or sigmoid), Wx ∈ Rp×d is the input
weight matrix, Wc ∈ Rp×m is the context weight matrix, Wr is the combined
context weight and bn is a bias. From the hidden layer activity the output of
the module yt can be simply computed as follows

yt = W · ht, (3.5)

where W is the weight to the hidden layer activity.

In the memory read part the weight to the memory content wt needs to be
calculated. The module has an external memory Mt ∈ Rm×n. To read the
memory the weight wt ∈ Rn×1 is used. This weight wt is updated at every
time step using the memory Ma and ht, where a is either t or t − 1 based
on where we place the delay node. The value of a will be based on the tests
described and performed in the further chapters. First of all the key vector
kt ∈ Rm×1, which is used to search the content of the external memory, is
calculated as follows

kt = Wk · ht, (3.6)

where Wk ∈ Rm×p is the weight matrix to the hidden layer activity. We
compare this key vector using the cosine distance K(u, v) = u·v

‖u‖·‖v‖ . Based on
the cosine distance we create the weight estimate ŵt as follows

ŵt(c) =
exp(βt · K(kt, Ma(:, c)))

∑

q exp(βt · K(kt, Ma(:, q)))
, (3.7)

where the βt is a scalar which is used to sharpen or smooth the weight vector,
depends whether it is bigger or smaller than 1.0, and is computed as follows

βt = log(1 + exp(Wβ · ht)), (3.8)

where Wβ ∈ R1×p is a weight matrix that maps the hidden layer activity to
the scalar. The final weight vector wt is then computed as follows

wt = (1 − gt) · wt−1 + gt · ŵt, (3.9)

where gt is a scalar that is used to the interpolate the weight estimate ŵt with
the past weight and is computed as follows

gt = σ(Wg · xt + bg), (3.10)

where σ is a sigmoid function, Wg is weight to the input vector and bg is a
bias. This equation might be modified and will be a subject to testing in the
further chapters.

41

3. Research of improvement

The last part of the calculation is the external memory update. The update
of the memory is performed based on the two gating units: the forget and
update gates. The forget gate ft is computed as follows

ft = 1 − wb ⊙ et, (3.11)

where b is either t or t − 1, based on where we place the delay node. The
value of b will be based on the tests described and performed in the further
chapters. The et ∈ Rn×1 is an erase vector that is calculated as follows

et = We · ht + be, (3.12)

where We ∈ Rn×p is the weight to the hidden layer activity and be is a bias.
The update gate ut ∈ Rn×1 simply uses the weight vector wb as follows

ut = wb. (3.13)

The update of the external memory Mt itself can be then performed as
follows

Mt = Mt−1 · diag(ft) + vT
t · ut, (3.14)

where diag(·) transforms a vector into a diagonal matrix with diagonal ele-
ments from the vector, vT means transposition of the vector v and vt is a new
content vector that is calculated as follows

vt = Wv · ht + bv, (3.15)

where Wv ∈ Rm×p is a weight to the hidden layer activity and bv is a bias.

The last thing that needs to be described in this chapter is the context rt the
module returns, since it was in the previous paragraphs omitted on purpose.
Since this is something new and thus has no background in the RNN-EM
model I have decided to put this under testing before deciding what is the
best value to use as the returning context. The most obvious would be to use
the retrieved context c, but the question is from which time. Should it be the
context ct used to calculate the current step or should it be the context ct+1

that will be used for the next step? This matter will be deeper described in
the chapter Implementation (4).

Even though the proposed model might not seem to be something super
revolutionary, it sets an important background that is necessary for a further
research in the field of neural networks with memory. Thus even if the model
wouldn’t show a significant increase in performance in compare to the RNN-
EM model with similar number of parameters, it would still have a significant
contribution for the research of neural networks with memory, since it is unique
in a way that it deploys multiple external memories within a single neural
network.

42

3.1. Recurrent Neural Modules with External Memory

The last thing I would like to mention before I will move on to the imple-
mentation is the fact that the model described in this chapter is not final, but
will be evolving based on testing. In the above described equations there is
actually a lot of room for modification and also network setting. More on this
will be described in the upcoming chapters.

43

Chapter 4

Implementation

In the previous chapter I have proposed the model of the Recurrent Neural
Modules with External Memory. In the model there was a lot of place for
modifications, which is something that I will focus on in this and the following
chapter. But before I will move onto that, I first need to describe the platform
I will be implementing the prototype of the model on.

4.1 Selection of the platform

From the very first beginning I knew it will be better to implement the net-
work on some platform which is widely used for the neural networks. Currently
there are a lot of available platforms thanks to the big boom the artificial in-
telligence is experiencing in the last few year. After a brief research I came up
with 4 platforms I was deciding between: Brain Simulator, Theano, Tensor-
Flow and Torch. In the following paragraphs I will try to point out the pluses
and minuses of each platform.

4.1.1 Brain Simulator

Brain Simulator[26] is an artificial intelligence platform being developed by
GoodAI, company based in Prague, Czech Republic. Being build on C# plat-
form and NVIDIA Cuda technology, it provides a powerful and fast platform
for artificial intelligence tasks with a great graphical user interface. A big
advantage of the Brain Simulator is the fact that I am already familiar with
this platform thanks to the summer internship I had at GoodAI last summer,
where I performed the previously mentioned research[22] on the Liquid State
Machine. But the problem with the Brain Simulator platform would be that
it is a platform that only few people outside of the company uses and thus is
not well spread among the other researches.

45

4. Implementation

4.1.2 Theano

Theano[27] is a Python based library primarily developed by the people of
the Montreal Institute for Learning Algorithms at the Université de Montréal.
Theano offers an easy to use library for machine learning for artificial intel-
ligence with the support for the NVIDIA Cuda technology. But the biggest
power lies in its community, since Theano is probably the most spread ma-
chine learning platform among the researches. This not only offers many third
party additional libraries and functions, but also a lot of working examples
of networks, including most of the networks covered in the section Detailed
Analysis (2.2). For example the implementation of the RNN-EM model, that
was used for the testing in the main paper, was build on the Theano library.

4.1.3 TensorFlow

The newest from the platforms is the TensorFlow[28] platform developed
by the Google Brain team. The TensorFlow proposes an interesting concept
of data flow diagrams, where the whole network is viewed as a graph. The
nodes of the graph are the mathematical operations and the edges are tensors,
multidimensional data arrays. Even though the platform proposes APIs for
both Python and C++ and is supported by a big research team of the Google
Deepmind, it faces a similar problem as the Brain Simulator platform. Since
the platform was publicly released under an open source licence in November
2015, it still is not as widespread as for example the Theano platform.

4.1.4 Torch

Another platform that is widely used among the researchers is the Torch[29]
platform primarily developed by Collobert et al., researches from several com-
panies including Facebook AI or Google Deepmind. Even though this platform
is widely supported by researchers, even within companies like Facebook AI
or Google Deepmind, and using a third party software allows the usage of
NVIDIA Cuda technology, it shows two major disadvantages for me. First
of them is the fact that this framework is based on the Lua programming
language which I have never came across before. The second one is the fact
that this platform does not work on the Windows platform. This might not
be such a big obstacle, but it is something nice to have, even though I will
probably be developing mainly on the Linux platform anyway.

4.2 Theano

Even though I have a significant experience with the Brain Simulator plat-
form I have decided to use the Theano[30][31] platform instead. The main
reasons behind this decision is that the Theano platform is really widespread
among the AI research community and there are also many third party librar-
ies and networks build on it. This is especially seminal in the current phase

46

4.3. RNN-EM

of the research where I need to build the prototype of the RNM-EM model
and compare it to other networks. In the rest of this section I will mainly talk
about the third party libraries and network implementations I am going to be
reusing in my work.

4.2.1 Used third party libraries

Lasagne[32] is a neural network library build on Theano. It introduces
the functionality to build and train several neural networks. In the RNM-
EM prototype I am using this library for training purposes. Namely for the
updating phase of all the trainable variables (weights, biases, etc.) using
the Adadelta algorithm, which will be further described in the section about
RNM-EM implementation (4.4).

Another Python library I am using is the Pydot[33] library. Pydot is a
library for generating of graphs from the inner graph flow of the computation.
It is printing the graphs using the GraphViz tool. I am using the generated
graphs mainly for the debugging and testing purposes, but they are also great
for the visualization of the computational data flow. Unfortunately these
graphs tend to be large, especially when using multiple modules, and thus I
am not showing any of them in the text here.

4.2.2 Used implementations

For the testing purposes I am reusing few networks implementations. The
probably most important one is the Nissan Pow’s implementation[34] of the
RNN-EM network. Even though the original testing implementation in the
RNN-EM paper was implemented in Theano, the code hasn’t been publicly
posted. Thus I am using the Nissan Pow’s implementation as the starting
point for my prototypes of the RNN-EM and RNM-EM networks. I have
compared this implementation to the one implemented[35] on the CNN neural
network library by Kaisheng Yao, the author of the RNN-EM paper, and found
just a few minor differences I am going to describe in the later chapters.

For the Comparison testing I am using two other implementations except the
RNN-EM and RNM-EM ones and those are the Elman network and LSTM.
Even though both of the implementation I have build by modifying the Pow’s
RNN-EM code, I have been using another implementations as sources. For the
Elman network I have been using the Grégoire Mesnil’s code[36] and for the
LSTM the Charles Ollion’s code[37] and the LSTM Networks for Sentiment
Analysis online tutorial[38].

4.3 RNN-EM

As already previously mentioned, I am using the Nissan Pow’s RNN-EM[34]
implementation as the starting point for the prototyping in the current re-

47

4. Implementation

search phase. At this point it is for me more important to test the perform-
ance of the proposed model rather than implement my own version of the
code, that would anyway be almost the same. Comparing the implementation
to the original research paper[8] and the code[35] published by the authors of
the original paper, I have discovered two minor changes I considered worth
testing.

The first one was the fact that for some reason instead of the cosine distance
in the equation 3.7 as mentioned in the paper, the implementation uses “1 −
cosine distance”. The second and more important change is the activation
function in the equation 3.4 for computing the hidden layer activity. In the
Testing chapter (5) I will put these changes under a testing to see whether
they improve the performance of the network or not.

I am additionally also proposing few modifications that could have an im-
pact on the performance of the model. The first modification is in the com-
puting of the scalar gt from the equation 3.10. The equation 3.9, where the
scalar gt is used, is similar to the equation 7 from the GRU paper[25] that
looks as follows

ht = (1 − zt) · ht−1 + zt · ĥt, (4.1)

where zt is the update gate, a vector that is used to update the hidden layer
activity, and is computed as follows

zt = σ(Wxz · xt + Whz · ht−1). (4.2)

The equation for computing the gt hasn’t been proposed in the original
research paper, but has been written in both the Pow’s and Yao’s implement-
ation as follows

gt = σ(Wg · xt + bg). (4.3)

Being influenced by the equation for the update gate zt from the GRU
model, I would like to test how would the performance of the network change
if I would also base the scalar gt on the past memory weight wt−1. Thus the
equation, I will put under the testing, will look as follows

gt = σ(Wg · xt + Wi · wt−1 + bg). (4.4)

Probably the most important model modification, I would like to test, is
the relationship between the hidden layer activity ht, the memory weight wt

and the memory content Mt, mainly on the time scale. All of those three are
dependant on the rest of them, but the original paper doesn’t fully cover how
in the means of the time scale. I have previously already mentioned this when
I was talking about the need to put a delay node between the memory weight

48

4.3. RNN-EM

wt and the memory Mt. The rest of this section I will talk about this problem
and all the possible solutions I am proposing.

Figure 4.1: Visualization of the four possible models of the computation order
inside of the RNM-EM module. The ∆ denotes a time delay operator.

On the Figure 4.1 you can see a visualization of the possible examples of
relationships in the computation order between the hidden layer activity H,
the memory weight W and the memory M . Even though there are 6 possible
places to put the delay node in the model and thus 26 total options, with
omitting equivalents and nonsenses I propose here these 4 models:

1. Models A and B – The first two models are actually equivalents, the
only difference is at which time step the memory weight W is com-
puted and thus the edges of node W from model A are the oppos-
ite as on the model B. The model A is the one proposed in both the
Pow’s and Yao’s implementations. If I would summarize this model
in the means of functions and the order of computation it would look
like this: Wt(Ht−1, Mt−1), Mt(Ht−1, Wt) and Ht(Wt, Mt−1). While for
the model B the memory weight is computed as the operation of the
previous time step and thus the order of computation would look like
this: Ht(Wt−1, Mt−1), Mt(Ht−1, Wt−1) and Wt(Ht, Mt). Even though
the model B might look unnecessary at this moment it will be further
used in the RNM-EM model.

2. Model C – Model C is a simple modification of the model B with making
the memory Mt dependant on the hidden layer activity Ht from the same
time step instead on the past one. This modification also allows me to
drop the hidden layer activity H from the recurrence input and output
since it is not needed anymore.

3. Model D – Even though it looks more natural to depend the memory
weight Wt on the same memory Mt as it will be later applied on to
get the context ct+1, I have decided also to test the option where the
memory weight Wt depends on the memory Mt − 1 from the last time
step and thus the memory Mt depends on the weight Wt from the same
time step.

49

4. Implementation

Performances of these models will be further tested in the Testing chapter (5)
and the models will be also extensively used in the RNM-EM model.

4.4 RNM-EM

Before I will move any further I would like to mention that this imple-
mentation is just a prototype created in order to test the proposed model
and evaluate whether it is worth a more detailed research. The probably two
biggest limitations of this prototype are the non-parallelism on the level of
modules and the partially static construction of the network. But none of
these limitations influences the testing of the performance of the model.

One of the big advantages of this model is the fact that if fully implemented
on a parallel scheme, it will for the same total amount of hidden layer neurons
have a smaller real time complexity than the RNN-EM model. This happens
thanks to the fact that the equations inside the modules are computationally
independent and thus can be computed at the same time, having a sufficient
number of computing resources. Since this is something that doesn’t need to
be tested I am not computing the modules in this prototype in parallel, but
one by one.

The second limitation is the static construction of the network in means of
the number of modules. This limitation is put on the network since I haven’t
been easily able to overcome the limitations inside of the Theano platform
that are set for assembling tensors together (the theano.tensor.stack function),
returning lists of tensors as the parameter of scan function or the learning of
the trainable variables. The static construction is made in a way that it allows
me to easily add more modules or delete some and thus doesn’t limit me for
the testing phase.

4.4.1 Description of the prototype

The prototype of the RNM-EM model is based on the implementation of
the RNN-EM model. The model implementation itself consists out of two
basic parts, the network and module models. The module model is a slightly
modified RNN-EM model and thus I will not give it a lot of attention in the
following text. The network model is something something completely new
and thus I would like to describe it a little bit further.

But before I will move onto the network model itself, I need to talk a little
bit about the input parameters of the network. This is an important part
because without it, it would be hard to understand all the variables in the
following network model pseudocode and the trainable variables in the next
chapter. In the Table 4.1 you can see all the input parameters of the network.
Note that some of them depend on the structure of the desired input and
output data and thus can’t be changed as freely as the other ones.

50

4.4. RNM-EM

Table 4.1: Table of the input parameters of the RNM-EM network.

name description

mc number of RNN-EM modules
ms number of neurons in each module
nc output size, number of classes of the dataset

ne
number of embeddings in the dataset vocabulary,
used for the embedding matrix

de
dimension of the word embeddings,
first part of the input size (de*cs)

cs
size of the word context window,
second part of the input size (de*cs)

m_size size of the memory vectors
m_slots number of the slots for memory vectors

As can be seen in the pseudocode in Algorithm 1, the one computational
step of the network consist out of few simple substeps. In the first part the
subresults from the modules needs to be generated, which can be seen on the
lines 3 – 4. In this version the subresults from the modules are calculated in a
sequential order, but in the future I would like to replace this with a parallel
processing. After the subresults are generated, they can be combined into the
recurrent context (line 5) and the output of the network (line 6). The rest of
the computation is performed on the scope of the modules.

Algorithm 1 Single computational step of the RNM-EM model
1: procedure step(input, recurrence, M [], w[])
2: rec[], y[]
3: for int i = 0; i < mc; i + + do

4: y[i], rec[i], M [i], w[i] = module.step(input, recurrence, M [i], w[i])

5: recurrence =
∑

i(Wi ∗ rec[i]) + br

6: y = softmax(
∑

i(y[i]) + b)
7: return y, recurrence, M [], w[]

4.4.2 Description of the trainable variables of the model

In the proposed model there are two basic types of the trainable variables
based on where they do appear, either on the network or the module level.
Note that the trainable variables, that appear on the module level, actually
appear on the network multiple times, based on the number of modules. In
the following table you can see the trainable variables on the module, Table
4.2, and the network, Table 4.3, levels.

51

4. Implementation

Table 4.2: Table of the trainable variables on the module level. The phase
column explains the phase in which the learnable variable is used: memory
read (MR), memory update (MU), hidden layer activity computation (HL) or
output generation (OG).

name dim phase description

Wk msize × ms MR
weight of the hidden layer activity for
the key vector

bk msize MR bias applied to the key vector

Wb 1 × ms MR
weight of the hidden layer activity for
the scalar beta

bb 1 MR bias applied to the scalar beta
Wg mslots × de · cs MR weight of the input for the scalar g

Wi mslots × mslots MR
weight of the memory weight for the
scalar g

bg mslots MR bias applied to the scalar g

Wv msize × ms MU
weight of the hidden layer activity
for the new content vector

bv msize MU bias applied to the new content vector

We mslots × ms MU
weight of the hidden layer activity
for the erase vector

be mslots MU bias applied to the erase vector

Wx ms × de · cs HL
weight of the input for the hidden
layer activity

Wh ms × msize HL
weight of the context for the hidden
layer activity

Wr ms × ms HL
weight of the recurrent context
for the hidden layer activity

bh ms HL
bias applied to the hidden layer
activity

W nc × ms OG
weight of the hidden layer activity
for the output

4.4.3 Training of the model

Same as for the original RNN-EM, I used for the training of the RNM-EM
model the AdaDelta[39] method. AdaDelta is a per-dimension learning rate
method for gradient descent introduced by Matthew Zeiler in 2012. Based only
on the first order information the AdaDelta method dynamically adapts over
time. Big advantage of this method is that it doesn’t require a manual tuning,
especially of the learning rate. In the results[40] posted by Andrej Karpathy
can be seen that the AdaDelta performs well comparing to the other methods,
especially the AdaGrad method it is similar to. Even though Karpathy states

52

4.4. RNM-EM

Table 4.3: Table of the trainable variables on the network level.

name dim description

emb (ne + 1) × de
the matrix used for embedding the input
into the recurrence

h1, . . . , hn ms
hidden layer activities of modules (learnable
only in model A from Figure 4.1)

W1, . . . , Wn ms × TBD

weight applied to the recurrent outputs of
modules (the second dimension will be
determined based on the tests performed
later)

br ms bias applied to the recurrent output

b nc
bias applied to the totaloutput of the
network

that the SGD+Momentum method performs better with well-tuned settings,
finding such a setting is not so easy and thus I will use the AdaDelta method.

Figure 4.2: Visualization of the average error over time. After the given
amount of training epochs the average error err is calculated. If the ∆err =
errb − erra, where the err are the average errors over the current b or last
a given amount of epochs, is smaller than 0, then the training is stopped,
otherwise it continues.

Another question that needs to be answered here is when does the training
phase stop? The current solution I implemented in the prototype depends of
the average error over a defined time period. As can be seen of the Figure
4.2 after every given time period, the default value is 5 training epochs, I
calculate the average error. If the average error is smaller than the one from
the previous time period, the training continues. Otherwise it stops and the
best trained model, evaluation is performed after every training epoch, with
the smallest error on the validation set is returned as the best one. This
method also solves the problem if the network tends to make small “waves”,

53

4. Implementation

continuous increasing and decreasing with small difference of the error over
time, on the error graph after a while, which was the behaviour I observed at
the RNN-EM model.

4.4.4 Different alternatives of the model

There is one issue I have been on purpose omitting so far but is really im-
portant to be clarified before moving any further. That would be the recurrent
context rt. So far I have stated how it is used for the calculation of the hidden
layer activities and how it is combined together on the network scale from the
partial recurrent contexts returned by the modules. But what is actually the
partial recurrent context?

Currently I am considering 3 different vectors that could serve as the recurrent
context:

1. the hidden layer activity from the current time step ht,

2. the memory context from the current time step ct, which is based on the
memory weight wt−1 and the memory content Mt−1 from the previous
time step or

3. the memory context for the next time step ct+1, which is based on the
memory weight wt and the memory content Mt from the current time
step.

Every one of these approaches has its own advantages and could thus influence
the network performance in a different way. But at the same time there are 3
different models as proposed on the Figure 4.1. This makes the total number
of 9 different model variations. I would like to test all these variations and
compare their performance in the upcoming chapter.

Another possibility of changing the performance of the model are the input
parameters. There are 4 of them that are independent on the selected dataset:
number of modules mc, number of hidden neurons within modules ms, size of
the memory vectors m_size and number of memory slots (vectors) m_slots.
Since these input parameters strongly influence the number of the trainable
variables, I will also further study the influence of their settings to the network
performance.

54

Chapter 5

Testing and Evaluation

In this chapter I will first focus on the test-driven upgrades of the model
and afterward I will compare the performance of the proposed model against
other selected ones. But before that I first need to describe in short where
and how the testing will be performed.

The first thing that needs to be stated are the machine and the platform on
which the test will be performed. Even though I won’t be measuring the time
performance of the model, it still is important to state this. All the test will
be performed on an Ubuntu 14.04 laptop with Intel Core i5 2410M and 4GB
DDR3 memory. It is also important to mention that the installed versions of
the most important libraries were Python 2.7.6, Numpy 1.8.2, Theano 0.8.1
and Lasagne 0.1. Note that with different versions of the libraries you may
achieve different results.

To be able to make any conclusions based on the test results I need to be
able to compare them. I have decided to compare the test results based on the
number of the trainable variables, basically all the weights and bias vectors,
of the tested model. I believe this is a reliable measure since the networks
with more trainable variables have the potential to learn more. Because all
the changes of the network’s structure and the input parameters influence the
number of the trainable variables, I have created a simple program in Java
that allows me to simply calculate the total number of the trainable variables
of the RNM-EM model based on the network’s setting. A screenshot from the
program can be found on the Figure 4.2. The program itself can be found as
an appendix of this thesis on the CD.

5.1 ATIS dataset

Since the main goal of this part of the thesis is to prove whether the newly
proposed model RNM-EM is able to achieve at least similar score as the RNN-
EM model, I have decided to perform the tests on the same dataset on which

55

5. Testing and Evaluation

Figure 5.1: Screenshot from the Java program for computing of the total
number of trainable variables in the RNM-EM model with given parameters.

the RNN-EM model was tested in the original paper. All the modifications
and setting tests will be performed in order to help the RNM-EM model to
achieve this goal and thus will be performed on the same dataset. The dataset
I am talking about is the Airline Travel Information System (ATIS) corpus.

The ATIS dataset, collected by the DARPA, is a commonly used language
understanding dataset. The goal of the language understanding is to verify
whether the network is able to learn how to correctly assign tags to the words
based on their role in the sentence. In the means of the ATIS dataset the tags
are for example the departure/arrival airport or date/time information.

All the tests in this chapter will be evaluated based on the F1 score result
that is computed as follows

F1 − Score =
2 × Recall × Precision

Recall + Precision
, (5.1)

where Recall and Precision are computed as follows

Recall =
correct slots found

true slots
, (5.2)

Precision =
correct slots found

found slots
. (5.3)

More information about the ATIS dataset can possible be found in the paper[41]
written by Tur et al.
56

5.2. Tests of RNN-EM modifications

Figure 5.2: An example of a sentence inside of the ATIS dataset. The assigned
tags’ names are shortened, with ’-’ meaning no tag assigned.

One ATIS dataset split contains 4978 training and 893 testing sentences.
An example of an sentence and the correct tags can be seen on the Figure 5.1.
I am dividing the training set into the training and validation ones, thus I am
using 3983 training, 995 validation and 893 testing sentences. I am using the
dataset splits available from the LISA laboratory webpage[42]. If not stated
otherwise I will be using the dataset split 4 for all the tests performed in the
later chapters.

For the work with the ATIS dataset I am, same as in the Pow’s implement-
ation, reusing the Grégoire Mesnil’s code[36] available on GitHub. This code
uses as the input not only the words of the sentences, but the words wrapped
up with their context words. The number of the context words depends on
the size of the context window, which is one of the input parameters, but if
not stated otherwise the context window of length 7 will be used. Another
important fact are the modified training epochs, where each epoch is extended
to contain the same set multiple times. This means that the evaluation of the
network is performed always after several appearances of the training set. For
more information about the using of the code follow the tutorial[43] posted
by the author of the code.

5.2 Tests of RNN-EM modifications

Before I will move onto the testing of the newly proposed RNM-EM model,
I first have few modifications I would like to test on the original RNN-EM
model. The Pow’s implementation results can be seen in the Table 5.1 as the
test number 1a. All the tests in this chapter will be performed on the para-
meter setting on which the tests in the original paper were performed. That
particular setting is a network consisting out of 100 hidden layer neurons with
an external memory of 8 slots with each of size 40. In all the upcoming test I
will be training the network on the training set and observing the performance
on the validation and testing sets.

There are two modifications in the Pow’s implementation in compare to
the original paper. The first modification is the use of “1 − cosine distance”
instead of cosine distance in the equation 3.7. I have tested the use the cosine
distance (test 1b) and it performs slightly better on the Validation set but at
the same time worse on the Testing set. But since the performance is almost

57

5. Testing and Evaluation

similar (1% of the Testing set are 10 sentences), I am going to be staying with
the, in the original paper proposed, cosine distance.

The second and probably more significant modification is the change of the
activation function of the hidden layer activity in the equation 3.4. In the
Pow’s implementation the originally proposed tanh function is replaced by
the sigmoid one. I have tested (test 2a) using the tanh function instead of
the sigmoid one and the upgrade in the performance is significant, 4% on the
Validation and 5% on the Testing set. Thus from now on I will be using only
the tanh activation function.

Table 5.1: Table of the results of testing the modifications of the RNN-EM
model. All the results are in a form of the F1 score. The particular tests are
described in the section 5.2.

Test number Validation set Testing set

1a 91.98 88.97
1b 92.18 88.07
2a 96.14 92.99
3a 96.28 93.48

The first modification I am proposing on my own is the dependance of the
scalar gt on the memory weight wt as described in the section 4.3 about the
RNN-EM implementation. The test results of this modification (test 3a) are
slightly better in both the Validation and Testing sets and thus I will stick
with the modification for the rest of the testing.

The last possible modifications that needed to be tested in this section are
the models proposed on the Figure 4.1. The test results can be found in the
Table 5.2. From the test results it can be seen that the models A and D
perform slightly better than the model C, but the upgrade in the performance
is not so significant. Thus in the following section about the testing of the
RNM-EM model I will still consider all these 3 models for testing. The model
B is not considered in this section since it is almost the same as the model A,
but will be part of the testing in the next section.

Table 5.2: Table of the results of testing the RNN-EM models from the Figure
4.1. All the results are in a form of the F1 score.

Test number Model Validation set Testing set

3a A 96.28 93.48
4b C 95.73 93.04
4a D 96.19 93.69

58

5.3. Tests of RNM-EM modifications and settings

5.3 Tests of RNM-EM modifications and settings

The tests I will be performing on the RNM-EM model can be divided into
two categories: the ones concerning the model’s structure and the ones con-
cerning the input parameter settings of the model. First I need to perform
the tests that will be determining the structure I will be using for all the
tests about the model’s setting. If not state otherwise all the tests in this
section will be performed on a RNM-EM network model with 3 modules, each
containing 35 neurons with an external memory with 8 slots of size 14 each.

As I was already testing in the previous section, there are three basic models
of the RNM-EM modules structure as stated in the Figure 4.1: A/B, C, D.
But on the scope of the whole network, as I have already previously stated
in the section 4.4, I have 3 options what to use as the recurrent context rt

that is propagated between the modules. Those 3 options are the hidden layer
activity ht, the memory context ct from the current time step t or the memory
context ct+1 from the next time step t + 1. Thus the 3 models together with
the 3 options about the recurrent context give a total of 9 possible network
structures worth testing.

Table 5.3: Table of the results of testing the RNM-EM models. All the results
are in a form of the F1 score.

Test number Model Validation set Testing set

5a A, ht 96.75 94.03
5b A, ct 95.90 93.41
5c B, ct+1 96.00 93.24
6a C, ht 96.36 93.67
6b C, ct 96.34 93.55
6c C, ct+1 96.48 93.87
7a D, ht 96.79 94.48
7b D, ct 96.35 93.93
7c D, ct+1 96.45 93.90

In the Table 5.3 there results of the tests for all the 9 possible network
structures. As can be observed the models with the recurrent context rt =
ct perform the worst and thus will not be considered anymore. The best
performing structures in each model section are the model A with rt = ht, the
model C with rt = ct+1 and the model D with rt = ht. Since the difference
in the performance of those 3 structures is not so significant, I have decided
to use for the rest of this section the model C with rt = ct+1, even though it
performs worse than the other two structures. The reason behind this decision
is that this structure upgrades the original RNN-EM model but at the same
time doesn’t propagate back the hidden layer activity, which would result

59

5. Testing and Evaluation

into some sort of a hybrid model between the RNN-EM and the classic RNN.
Another reason that influenced my decision in this matter is the fact that
according to my opinion the model C acts the most naturally from all the
models stated on the Figure 4.1. Note that this decision does mean that I will
be using the selected structure for the rest of this section, but I may return
to the other ones in the future.

After selecting the structure of the RNM-EM model I will be using, I can
move to the part of testing the setting of the input parameters. The setting
can be divided into the setting on the scope of the modules and on the scope
of the network. Starting with the settings on the scope of the modules, there
are two settings I would like to test within this section: the number of the
memory slots and the ratio between the size of the memory slots and the
number of the hidden layer neurons.

I will start with the number of the memory slots. In the original RNN-EM
paper[8] the authors show that the best performing number of memory slots
for the RNN-EM network are 8 slots and thus the capacity of the context the
memory does not simply depend just on the number of memory slots. But the
authors of the paper have been testing the values equal to the powers of 2 and
thus there is the region between 4 and 16 where the network could actually
perform better. I have thus decided to perform a test on the range between
2 and 14, focusing on the even number of slots. From the Table 5.4 it can be
observed that the number of slots with the best performance, for the setting
of the RNM-EM network I am using, lies somewhere around 12 memory slots.

Table 5.4: Table of the results of testing the influence of the number of memory
slots in the RNM-EM model. All the results are in a form of the F1 score.

Test number M_slots Validation set Testing set

8a 2 95.84 93.06
8b 4 96.41 93.45
8c 6 96.07 93.51
6c 8 96.48 93.87
8d 10 96.64 94.12
8e 12 96.65 94.13
8f 14 96.62 93.56

The ratio between the size of the memory slots (m_slots) and the size of
the hidden layer (ms) is something that is not even discussed in the original
RNN-EM paper. It is obvious that it is not worth to have the memory slots
bigger than the hidden layer, but what is the ideal ratio? The authors just
state that they are using the memory slots of size 40 and the hidden layer
of 100 neurons and thus a 1:2.5 ratio, which is the setting I have been so

60

5.3. Tests of RNM-EM modifications and settings

far following. For this test I have been selecting the ratios in the way so the
number of trainable variables stays the same. The selected settings can be
seen in the Table 5.5.

Table 5.5: Table of the settings for testing the influence of the ratio between
hidden layer and memory slots sizes in the RNM-EM model.

Ratio
Size of

memory vectors

Size of

hidden layers

Number of

trainable variables

1:1 33 33 1.7 · 105

1:2 17 34 1.7 · 105

1:2.5 14 35 1.7 · 105

1:3 12 36 1.7 · 105

1:4 9 36 1.7 · 105

From the Table 5.6 it can be observed that for the ratio 1:2.5 the RNN-
EM model performs the best and thus I will stick to that ratio. Another
modification I have performed in all these tests is the fact that the memory
weight wt is propagated between the steps of the network. Comparing the
results of the test 6c from the Table 5.4 and the test 9c from the Table 5.6, it
can be observed that with this modification the network performs better.

Table 5.6: Table of the results of testing the influence of the ratio between
hidden layer and memory slots sizes in the RNM-EM model. All the results
are in a form of the F1 score.

Test number Ratio Validation set Testing set

9a 1:1 95.72 93.64
9b 1:2 95.87 93.76
9c 1:2.5 96.61 94.03
9d 1:3 96.28 93.39
9e 1:4 96.16 93.58

One of the most important test of this section is how the performance of
the model reacts to a change in the number of modules. So far I have been
performing tests just on the 3 modules model, but splitting the hidden layer
into even more modules offers the ability of a better parallelism and also a
potential chance for the communication between the modules to make a bigger
impact on the performance of the model. In the Table 5.7 can be seen all the
settings of the network I have used for this testing. It is obvious that the sizes
of the hidden layers and the memory vectors have been selected in order to
keep the number of trainable variables approximately the same for all of the
settings.

61

5. Testing and Evaluation

Table 5.7: Table of the settings for testing the influence of the number of
modules in the RNM-EM model.

Number of

modules

Size of

hidden layers

Size of

memory vectors

Number of

trainable variables

2 55 22 1.7 · 105

3 35 14 1.7 · 105

4 25 10 1.7 · 105

5 20 8 1.7 · 105

Based on the settings from the Table 5.7 I have performed the testing,
whose results can be found in the Table 5.8. A pleasing result is the fact
that the network with multiple modules performs for the selected settings not
only similar, but in some cases even better. An illustrious example can be
the test results of the model with 4 modules, where the F1 score for both the
Validation and Testing sets was increased by approximately 0.5% in compare
to the ones for the model with 3 modules. The results of this test give hope
that the scaling on the scope of number of modules might be one of the ways
how to later improve this model.

Table 5.8: Table of the results of testing the influence of the number of modules
in the RNM-EM model. All the results are in a form of the F1 score.

Test number Modules Validation set Testing set

10a 2 96.2 93.90
9c 3 96.61 94.03

10b 4 97.15 94.52
10c 5 96.72 93.88

5.4 Comparison testing

In the previous section I have performed tests of the structure and settings
of the newly proposed RNM-EM model. In this section I would like to com-
pare this model to some of the other models. I have decided to compare the
performance of the following models:

1. simple RNN,

2. LSTM,

3. RNN-EM and

4. RNM-EM.

For the RNN-EM network I will be using the same model that was used for
the test 3a of the Table 5.1. As for the RNM-EM network I will be using the

62

5.4. Comparison testing

best performing model I have come over during all the previous tests and that
would be the model that was used for the test 10b of the Table 5.8. But since
there are multiple implementations of the simple RNN and LSTM networks, I
would like to describe their used models a little bit more in detail in the next
paragraphs.

The term simple RNN is usually used for two of the recurrent neural network
models and those are the Elman and Jordan networks. I have decided to use
the Elman network for the testing since it is more similar to the RNN-EM
model than the Jordan network. As already previously stated in the section
4.2.2, I have been using as the source for this implementation the Grégoire
Mesnil’s code[36]. Since I will need to compare networks with similar number
of trainable variables TV , I have been using for this network the following
equation:

TV = (ne + 1) · de + (de · cs) · nh + nh2 + nh · nc + 2nh + nc, (5.4)

where the explanation of the parameters can be found in the Table 4.1.

As for the LSTM network I am using the model containing the peephole
connections, which were proposed by Gers and Schmidhuber[44] in 2000. The
sources of the implementation, I am using, are described in the section 4.2.2.
Same as for the other networks, also for the LSTM I will need to be able to
compute the total number of trainable variables TV . In case of the LSTM I
am using the following equation:

TV = (ne + 1) · de + 4(de · cs) · nh + 7nh2 + nh · nc + 4nh + nc, (5.5)

where the explanation of the parameters can again be found in the Table 4.1.

Table 5.9: Table of the networks settings for the comparison testing.

Model Setting
Number of

trainable variables

RNN 120 neurons 1.7 · 105

LSTM 36 neurons 1.7 · 105

RNN-EM
110 neurons

44 memory size
8 memory slots

1.7 · 105

RNM-EM

4 modules
25 neurons

10 memory size
8 memory slot

1.7 · 105

63

5. Testing and Evaluation

In the Table 5.9 can be seen the setting of particular networks that was used
for the comparison testing. The setting for each network was chosen in order
so all the networks would approximately have the same number of trainable
variables. All the networks were trained using the Adadelta algorithm in order
for them to have the same conditions. In the Table 5.10 can be observed the
best F1 scores the networks were able to achieve within the first 25 training
epochs. The reason, why I am measuring the performance only in the first 25
training epochs, is because the area around the 25th epoch is the place where
majority of the tested networks start to overtrain themselves and thus their
training is terminated.

Table 5.10: Table of the results of the comparison testing. All the results are
in a form of the F1 score.

Model Validation set Testing set

RNN 96.89 94.04
LSTM 95.17 92.53

RNN-EM 96.58 93.54
RNM-EM 97.15 94.52

From the Table 5.10 it can be observed that the best performing model
for the given problem is the newly proposed RNM-EM model. But what is
actually a little bit surprising is the fact that the Elman network performed
slightly better than the advanced RNN-EM model. My assumption is that the
given problem doesn’t, because the input is always also provided together with
its context, require such a long-term dependencies and thus the simple Elman
network’s capabilities are enough to handle it. While the RNN-EM model
compresses the hidden layer activity into the memory vectors and thus might
loose some of the information. But since this matter is not so important for the
evaluation of this testing I will not pursue to prove its correctness. Note that
even though the RNM-EM model also compresses the hidden layer activity
into the memory vector, it works with two different contexts, the one on the
scope of the module ct and the one on the scope of the whole network rt, and
thus is able to provide a better overall context than the RNN-EM model.

As can be observed from the table the worst performing network for the
given problem is the LSTM network. Even though this might seem unexpected
and surprising, it actually has a simple explanation. If you look on the Table
5.9 you can observe that for the LSTM I have used a significantly smaller
number of hidden layer neurons than for the other networks. This is because
unlike the other networks the LSTM model contains 4 different weights, 1
for the cell state and 3 for the gates, for the input vector xt. Since in the
given problem the input xt is significantly bigger in compare to the other used
vectors, dimension of the word embedding de = 100 multiplied by the size of

64

5.4. Comparison testing

the context window cs = 7, most of the weights (trainable variables) in the
LSTM model are assigned to the input and this is also what probably limits
the model.

Even though the newly proposed model RNM-EM performed the best in
both the validation and testing sets, I am not able to make any strong conclu-
sions here since the tests were performed only on one specific problem. This
means that I can’t state here that the newly proposed model would be in gen-
eral better than the other ones, but the fact that it performed the best for the
given problem, makes me believe that this model has a potential to perform
well also for some other problems. Another fact that I feel I need to mention
here is that the RNM-EM model allows more different settings for the same
approximate number of trainable of variables, thus I believe there still might
exists a setting that would perform better than the best one I have been able
to find.

65

Conclusion

Within this chapter I would like to summarize this thesis and conclude its
results and contribution. In the end I would like to talk about the possible
direction the research, performed within this thesis, could take in the future.

Summary of the thesis

The first part of this thesis is devoted to the overview of the family of the
neural networks with memory. There are only few papers that cover more than
one model I consider a part of the neural network with memory. Unfortunately
there is no paper that would cover the topic in general and thus I decided to
devote a significant part of this thesis to this purpose. In the Chapter 2 I am
giving an overview of the most significant models, I consider as the advanced
representatives of the family of the neural networks with memory, that were
proposed over the last 25 years. Later in the chapter six of the selected models,
I consider the most interesting, are covered in detail.

Based on the detailed study I have performed an analysis of a modification
on one of the selected models (see Chapter 3). I have discovered that there is
one thing that all the neural networks deploying an external memory have in
common and that is that they deploy the external memory on the scope of the
whole network. But deploying the external memory on the scope of parts of the
network might be useful, because thanks to that different parts of the network
might be able to track contexts of different lengths. I have thus designed a
model of the Recurrent Neural Modules with External Memory (RNM-EM),
which is based on the RNN-EM model by Peng and Yao [8]. The new model
proposes a deployment of the external memory on the scope of the modules,
parts of the hidden layer, and thus deploys a multiple external memories
within one neural network. To the study of this new RNM-EM model I have
devoted most of the Chapters 3, 4 and 5. Note that this principle of deploying
the external memory on the scope of the parts of the neural network might
also be applied to other models containing the external memory. Thus I am

67

Conclusion

proposing not only a single new model, but a potentially new family of the
neural networks with external memory.

The last part of this thesis I devoted to the evaluation of the new proposed
model of the Recurrent Neural Modules with External Memory (RNM-EM)
on a real task. I have decided to test the performance of the model on the Air
Travel Information System (ATIS) dataset, which is a widely used language
understanding dataset. From the results, described in detail in the section 5.4,
it can be seen that the newly proposed RNM-EM model slightly outperformed
all the other models it was tested against, including the Elman Network,
LSTM or RNN-EM. Even though I am not able to make strong conclusions
based on a testing on one dataset, the model shows a significant potential and
thus I consider the thesis successful and its goals fulfilled.

Contribution of the thesis

The three major points of contribution of this thesis are the summarization
of the topic of neural networks with memory, the idea of application of the
external memory on the scope of parts of the network and the newly proposed
model of the Recurrent Neural Modules with External Memory.

While doing the background research for this thesis I was trying to find
any research paper that would cover the topic of what I call here the neural
networks with memory. Unfortunately there is no such paper and thus I
found only few papers that were focussing on the topic of the recurrent neural
networks. But all these papers were always explaining the topic either too
widely or strictly. Thus I have decided to devote a significant part of this
thesis as an overview of the significant models proposed over the last 25 years
in the field of the neural networks with memory. I believe this overview is
unique and hopefully will serve some other researches as a source for their
research.

While studying the different models of neural networks that are supple-
mented by additional external memory, I have come across an interesting fact
that all the models I studied deploy the external memory on the scope of the
whole network. Being surprised by this fact and feeling inspired by the models
like for example the Clockwork RNN, that divides the network into multiple
groups of neurons called modules, I proposed a completely new model of the
Recurrent Neural Modules with External Memory (RNM-EM), that deploys
the external memory on the scope of modules and thus the whole network
contains multiple external memories, one for each module of the network.

I feel confident about that the innovation, the new RNM-EM model pro-
poses, is something revolutionary and thus might be one of the possible ways
how to make a progress in the field of the neural networks. Even though I am

68

Future work

not able to make so strong conclusions based on the testing I have performed,
I believe that the newly proposed model sets important foundations for a fur-
ther research and thus will hopefully leave its mark in the field of the neural
networks.

Future work

This thesis is not just a standalone work, but it part of a long term research
in the field of neural networks I am performing. The results of the research
performed within this thesis sets important foundations for my further re-
search in this area and determine the direction the further research will take.
Based on the test results I have proven that it might be advantageous in some
cases to deploy the external memory multiple times within a single neural
network. This fact opens the door for similar modifications of several other
neural networks with external memory.

But this doesn’t mean that the research of the newly proposed model of
the Recurrent Neural Modules with External Memory (RNM-EM) would be
put aside. I consider the results of this thesis as the beginning of a long
lasting research of the proposed model. I already have several ideas on further
modifications of the proposed model. One of such possible modifications could
for example be deploying the principle of the Clockwork RNN model on the
RNM-EM model. The resulting model would consist out of multiple modules
with external memory, where each module would be running on a different
clock period. Determining, whether such a model could work, will actually be
the goal of the next research.

69

Bibliography

[1] Neurons, Brain Chemistry, and Neurotransmission. online. Avail-
able from: https://science.education.nih.gov/supplements/nih2/

addiction/guide/lesson2-1.html

[2] Lipton, Z. C. A Critical Review of Recurrent Neural Networks for Se-
quence Learning. CoRR, volume abs/1506.00019, 2015. Available from:
http://arxiv.org/abs/1506.00019

[3] Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Com-
put., volume 9, no. 8, Nov. 1997: pp. 1735–1780, ISSN 0899-7667,
doi:10.1162/neco.1997.9.8.1735. Available from: http://dx.doi.org/

10.1162/neco.1997.9.8.1735

[4] Maass, W.; Natschläger, T.; Markram, H. Real-time Computing Without
Stable States: A New Framework for Neural Computation Based on Per-
turbations. Neural Comput., volume 14, no. 11, Nov. 2002: pp. 2531–
2560, ISSN 0899-7667, doi:10.1162/089976602760407955. Available from:
http://dx.doi.org/10.1162/089976602760407955

[5] Koutník, J.; Greff, K.; Gomez, F. J.; et al. A Clockwork RNN. CoRR,
volume abs/1402.3511, 2014. Available from: http://arxiv.org/abs/

1402.3511

[6] Graves, A.; Wayne, G.; Danihelka, I. Neural Turing Machines. CoRR,
volume abs/1410.5401, 2014. Available from: http://arxiv.org/abs/

1410.5401

[7] Joulin, A.; Mikolov, T. Inferring Algorithmic Patterns with Stack-
Augmented Recurrent Nets. CoRR, volume abs/1503.01007, 2015. Avail-
able from: http://arxiv.org/abs/1503.01007

[8] Peng, B.; Yao, K. Recurrent Neural Networks with External Memory for
Language Understanding. CoRR, volume abs/1506.00195, 2015. Available
from: http://arxiv.org/abs/1506.00195

71

https://science.education.nih.gov/supplements/nih2/addiction/guide/lesson2-1.html
https://science.education.nih.gov/supplements/nih2/addiction/guide/lesson2-1.html
http://arxiv.org/abs/1506.00019
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/089976602760407955
http://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1506.00195

Bibliography

[9] Caudill, M. Neural Network Primer: Part I. AI Expert, volume 2, no. 12,
Feb 1989: pp. 46–52.

[10] Patel, N. Artificial Neural Networks. online. Available from:
http://ocw.mit.edu/courses/sloan-school-of-management/15-

062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf

[11] Burger, J. A Basic Introduction To Neural Networks. online. Available
from: http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html

[12] Gers, F. Long Short-Term Memory in Recurrent Neural Networks. Disser-
tation thesis, Department of Computer Science, Swiss Federal Institute
of Technology, Lausanne, EPFL, Switzerland, 2001.

[13] Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
volume 5, no. 2, Mar 1994: pp. 157–166, ISSN 1045-9227, doi:10.1109/
72.279181.

[14] Weston, J.; Chopra, S.; Bordes, A. Memory Networks. CoRR, volume
abs/1410.3916, 2014. Available from: http://arxiv.org/abs/1410.3916

[15] Jozefowicz, R.; Zaremba, W.; Sutskever, I. An Empirical Explora-
tion of Recurrent Network Architectures. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), edited by
D. Blei; F. Bach, JMLR Workshop and Conference Proceedings, 2015,
pp. 2342–2350. Available from: http://jmlr.org/proceedings/papers/

v37/jozefowicz15.pdf

[16] Miikkulainen, R. Text and Discourse Understanding: The DISCERN
System. New York, 2002, pp. 905–919. Available from: http://

nn.cs.utexas.edu/?miikkulainen:handbook00

[17] Das, S.; Giles, C. L.; Sun, G.-Z. Learning context-free grammars: Capab-
ilities and limitations of a recurrent neural network with an external stack
memory. Proceedings of The Fourteenth Annual Conference of Cognitive
Science Society, 1992: pp. 791–795.

[18] Lin, T.; Horne, B. G.; Tino, P.; et al. Learning long-term dependen-
cies in NARX recurrent neural networks. IEEE Transactions on Neural
Networks, volume 7, no. 6, Nov 1996: pp. 1329–1338, ISSN 1045-9227,
doi:10.1109/72.548162.

[19] Jaeger, H. The âĂĲecho stateâĂİ approach to analysing and training re-
current neural networks-with an erratum note. Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, volume 148, 2001.

72

http://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf
http://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
http://arxiv.org/abs/1410.3916
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
http://nn.cs.utexas.edu/?miikkulainen:handbook00
http://nn.cs.utexas.edu/?miikkulainen:handbook00

Bibliography

[20] Grefenstette, E.; Hermann, K. M.; Suleyman, M.; et al. Learning to
Transduce with Unbounded Memory. CoRR, volume abs/1506.02516,
2015. Available from: http://arxiv.org/abs/1506.02516

[21] Karpathy, A.; Johnson, J.; Li, F. Visualizing and Understanding Re-
current Networks. CoRR, volume abs/1506.02078, 2015. Available from:
http://arxiv.org/abs/1506.02078

[22] Kužela, O. Liquid State Machine module for Brain Simulator.
GitHub repository, https://github.com/GoodAI/SummerCamp/tree/

master/LSMModule, 2015.

[23] Hazan, H.; Manevitz, L. M. Topological constraints and robustness in li-
quid state machines. Expert Systems with Applications, volume 39, no. 2,
2012: pp. 1597 – 1606, ISSN 0957-4174, doi:http://dx.doi.org/10.1016/
j.eswa.2011.06.052. Available from: http://www.sciencedirect.com/

science/article/pii/S0957417411009523

[24] Sukhbaatar, S.; Szlam, A.; Weston, J.; et al. Weakly Supervised Memory
Networks. CoRR, volume abs/1503.08895, 2015. Available from: http:

//arxiv.org/abs/1503.08895

[25] Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; et al. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation. CoRR, volume abs/1406.1078, 2014. Available from: http:

//arxiv.org/abs/1406.1078

[26] GoodAI. Brain Simulator. Available from: http://www.goodai.com/

#!brain-simulator/c81c

[27] Laboratoire d’Informatique des Systèmes Adaptatifs. Theano. Available
from: http://deeplearning.net/software/theano/

[28] Google Brain Team. TensorFlow. Available from: https:

//www.tensorflow.org/

[29] Collobert, R.; Farabet, C.; Kavukcuoglu, K.; et al. Torch. Available from:
http://torch.ch/

[30] Bastien, F.; Lamblin, P.; Pascanu, R.; et al. Theano: new features and
speed improvements. Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop, 2012.

[31] Bergstra, J.; Breuleux, O.; Bastien, F.; et al. Theano: a CPU and GPU
Math Expression Compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010, oral Presentation.

73

http://arxiv.org/abs/1506.02516
http://arxiv.org/abs/1506.02078
https://github.com/GoodAI/SummerCamp/tree/master/LSMModule
https://github.com/GoodAI/SummerCamp/tree/master/LSMModule
http://www.sciencedirect.com/science/article/pii/S0957417411009523
http://www.sciencedirect.com/science/article/pii/S0957417411009523
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://www.goodai.com/#!brain-simulator/c81c
http://www.goodai.com/#!brain-simulator/c81c
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://torch.ch/

Bibliography

[32] Lasagne contributors. Lasagne, version 0.1. Available from: http://

lasagne.readthedocs.io/

[33] Carrera, E. Pydot. GitHub repository, https://github.com/

erocarrera/pydot, 2004-2012.

[34] Pow, N. Recurrent Neural Networks with External Memory implement-
ation. GitHub repository, https://github.com/npow/RNN-EM, 2015.

[35] Yao, K. Recurrent Neural Networks with External Memory implementa-
tion. GitHub repository, https://github.com/kaishengyao/cnn/blob/

master/cnn/rnnem.cc, 2015.

[36] Mesnil, G. RNN for Spoken Language Understanding. GitHub repository,
https://github.com/mesnilgr/is13, 2015.

[37] Ollion, C. LSTM implementation. GitHub repository, https://

github.com/deeplearningparis/dl-rnn/blob/master/lstm.py, 2015.

[38] Carrier, P. L.; Cho, K. LSTM Networks for Sentiment Analysis. Available
from: http://deeplearning.net/tutorial/lstm.html

[39] Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. CoRR,
volume abs/1212.5701, 2012. Available from: http://arxiv.org/abs/

1212.5701

[40] Karpathy, A. ConvNetJS Trainer demo on MNIST. Available
from: https://cs.stanford.edu/people/karpathy/convnetjs/demo/

trainers.html

[41] Tur, G.; Hakkani-TÃĳr, D.; Heck, L. What is left to be understood in
ATIS? In Spoken Language Technology Workshop (SLT), 2010 IEEE, Dec
2010, pp. 19–24, doi:10.1109/SLT.2010.5700816.

[42] Mesnil, G. ATIS Corpus dataset folds. Available from: http://

lisaweb.iro.umontreal.ca/transfert/lisa/users/mesnilgr/atis/

[43] Mesnil, G. Recurrent Neural Networks with Word Embeddings. Available
from: http://deeplearning.net/tutorial/rnnslu.html

[44] Gers, F. A.; Schmidhuber, J. Recurrent nets that time and count. In
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, volume 3, 2000, ISSN 1098-
7576, pp. 189–194 vol.3, doi:10.1109/IJCNN.2000.861302.

74

http://lasagne.readthedocs.io/
http://lasagne.readthedocs.io/
https://github.com/erocarrera/pydot
https://github.com/erocarrera/pydot
https://github.com/npow/RNN-EM
https://github.com/kaishengyao/cnn/blob/master/cnn/rnnem.cc
https://github.com/kaishengyao/cnn/blob/master/cnn/rnnem.cc
https://github.com/mesnilgr/is13
https://github.com/deeplearningparis/dl-rnn/blob/master/lstm.py
https://github.com/deeplearningparis/dl-rnn/blob/master/lstm.py
http://deeplearning.net/tutorial/lstm.html
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
http://lisaweb.iro.umontreal.ca/transfert/lisa/users/mesnilgr/atis/
http://lisaweb.iro.umontreal.ca/transfert/lisa/users/mesnilgr/atis/
http://deeplearning.net/tutorial/rnnslu.html

Appendix A

Acronyms

ANN Artificial neural network

ATIS Air Travel Information System

CEC Constant Error Carousel

ESN Echo State Network

GRU Gated Recurrent Unit

LSM Liquid State Machine

LSTM Long Short Term Memory

MemNN Memory Networks

MemN2N End-To-End Memory Networks

NARX Nonlinear AutoRegressive model with eXogenous

NNPDA Recurrent Neural Network Pushdown Automaton

NTM Neural Turing Machine

QA Question answering

RNN Recurrent neural network

RNM-EM Recurrent Neural Modules with External Memory

RNN-EM Recurrent Neural Networks with External Memory

SRN Simple Recurrent Neural Network

75

Appendix B

Contents of enclosed CD

readme.txt........................the file with CD contents description
src.......................................the directory of source codes

impl..implementation sources
rnmem.................................RNM-EM implementation
other other networks implementations
support supporting programs implementations

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory
test the directory of test-related files

atis..ATIS dataset splits
conlleval........................script for the evaluation of testing
modifications.........................modifications testing results
comparison comparison testing results

other .. other supplements
diagrams........................diagrams of the computational flow

77

	Introduction
	Motivation and Objectives
	Problem Statement
	Goals of the thesis
	Structure of the thesis

	Introduction to Neural Networks
	Recurrent Neural Networks

	State-of-the-art
	Adding memory to RNN
	Detailed analysis of selected networks

	Research of improvement
	Recurrent Neural Modules with External Memory

	Implementation
	Selection of the platform
	Theano
	RNN-EM
	RNM-EM

	Testing and Evaluation
	ATIS dataset
	Tests of RNN-EM modifications
	Tests of RNM-EM modifications and settings
	Comparison testing

	Conclusion
	Summary of the thesis
	Contribution of the thesis
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

