
MASTER THESIS

Tomáš Hlaváček

Routing policies and real paths in the
Internet

Department of Software Engineering

Supervisor of the master thesis: RNDr. Ing. Jǐŕı Peterka

Study programme: Computer Science

Study branch: Software Systems

Prague 2016



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague 20. 7. 2016 signature of the author

i



Title: Routing policies and real paths in the Internet

Author: Tomáš Hlaváček

Department: Department of Software Engineering

Supervisor: RNDr. Ing. Jǐŕı Peterka, Department of Software Engineering

Abstract: Routing policies are now represented by RPSL and by its evolutionary
extension called RPSLng. These languages can be used for describing unique
routing policy of each autonomous system. Experience shows that even though
there are translation tools from RPSL and RPSLng to configuration formats of
commonly used routers, the actual network configuration is rarely generated from
RPSL sources and routing policy is then perceived as marginal paperwork, which
often does not reflect the real network settings. There will be most likely a need
for RPSL format change in order to remedy the discrepancies. To support this I
present long-term measurements of inaccuracies in routing policies compared to
real paths in the Internet. I also present a list of the most frequent problems, and
I offer suggestions, how to reform RPSL to improve situation in the long term.

Keywords: Internet routing BGP RPSL IRR DFZ

ii



My sincere gratitude goes to my supervisor RNDr. Ing. Jǐŕı Peterka and external
counselor Mgr. Ondřej Filip, MBA for valuable advice and to companies CZ.NIC,
z.s.p.o., Ignum, s.r.o. and Trenka Informatik AG for providing data feeds and
substantial computing resources.

iii



Contents

Introduction 5
0.1 Thesis topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.3 Extended hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.4 Thesis application . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Internet routing 7
1.1 Internet resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Coordinators . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Consensus based rules . . . . . . . . . . . . . . . . . . . . 8

1.2 Hierarchy of coordinators . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Coordination bodies . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Communities and their members . . . . . . . . . . . . . . 9

1.3 Network operation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Internet resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Internet standards . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Records and public databases . . . . . . . . . . . . . . . . . . . . 11

1.6.1 Top level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2 RIR level . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.3 LIR level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Routing registry databases . . . . . . . . . . . . . . . . . . . . . . 12
1.7.1 Resource assignment records . . . . . . . . . . . . . . . . . 12
1.7.2 Routing databases . . . . . . . . . . . . . . . . . . . . . . 12
1.7.3 Public routing databases . . . . . . . . . . . . . . . . . . . 13
1.7.4 Content of routing databases . . . . . . . . . . . . . . . . . 13
1.7.5 Relations among public routing databases . . . . . . . . . 13

1.8 Network operation process . . . . . . . . . . . . . . . . . . . . . . 13
1.8.1 Resource setup . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8.2 Role of a LIR . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8.3 Resources managed by the end users . . . . . . . . . . . . 14
1.8.4 Resource registration . . . . . . . . . . . . . . . . . . . . . 14

2 Routing and routing policies 16
2.1 BGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 BGP overview . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Path vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Best path selection . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.7 Communities . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.8 Transit AS . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.9 Prefix origination . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.10 Instrumentation and data . . . . . . . . . . . . . . . . . . 19

2.2 Routing Policy Specification Language . . . . . . . . . . . . . . . 20

1



2.2.1 History of the standard . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Current standard . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 RPSL elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 RPSL object types . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 route object . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 aut-num object . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 inet-rtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 -set objects . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 References in RPSL . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Filters in RPSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Filter attributes . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Example aut-num object . . . . . . . . . . . . . . . . . . . 25
2.6.3 Peering definitions . . . . . . . . . . . . . . . . . . . . . . 26
2.6.4 Filter section . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Related work on routing management 32
3.1 Internet routing research . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Routing description languages . . . . . . . . . . . . . . . . 33
3.1.3 Theoretical approach . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Trends and current research . . . . . . . . . . . . . . . . . 34

3.2 RPSL development . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Tools development . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Standard amendments and development . . . . . . . . . . 38

3.3 Other relevant resources . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 RPSL-related reports . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Supporting technical standards . . . . . . . . . . . . . . . 40

4 Evaluation of routing policies in the Internet 41
4.1 Use cases for routing policies . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Usage of RPSL in RIPE region . . . . . . . . . . . . . . . 41
4.1.2 Prefix leakage . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Scale and accuracy hypothesis . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Hypothesis statement . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Failure set indicator functions . . . . . . . . . . . . . . . . 46
4.2.4 DFZ subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Evidence for the hypotheses . . . . . . . . . . . . . . . . . 48

5 RPSL 55
5.1 RPSL decomposition and semantization . . . . . . . . . . . . . . 55

5.1.1 RPSL language categorization . . . . . . . . . . . . . . . . 55
5.1.2 IRR components . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 RPSL data sources . . . . . . . . . . . . . . . . . . . . . . 55
5.1.4 Parsing RPSL objects . . . . . . . . . . . . . . . . . . . . 57
5.1.5 Semantic analysis and translation . . . . . . . . . . . . . . 58

5.2 RPSL production . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Object creation . . . . . . . . . . . . . . . . . . . . . . . . 60

2



5.2.2 IRR update mechanisms . . . . . . . . . . . . . . . . . . . 60
5.3 Extended hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Possible benefits of RPSL deployment . . . . . . . . . . . . 61
5.3.2 Increased workload . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Conclusion on the extended hypothesis . . . . . . . . . . . 64

5.4 RPSL parsing issues . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Number of elements . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Expressive power of RPSL . . . . . . . . . . . . . . . . . . 73

6 Current IRR system 74
6.1 Current IRR system accuracy . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Measurement method . . . . . . . . . . . . . . . . . . . . . 74
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 Accuracy hypotheses . . . . . . . . . . . . . . . . . . . . . 75

6.2 RPSL processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Complexity of RPSL . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Missing orthogonality of the language . . . . . . . . . . . . 76

6.3 Reasons for low data quality in IRR . . . . . . . . . . . . . . . . . 77
6.3.1 Technical freedom in the Internet . . . . . . . . . . . . . . 77
6.3.2 High demands on AS operators . . . . . . . . . . . . . . . 78
6.3.3 RIPE DB update mechanisms . . . . . . . . . . . . . . . . 79

7 IRR system reform 82
7.1 Reform of IRR standards . . . . . . . . . . . . . . . . . . . . . . . 82

7.1.1 Requirements for the IRR system . . . . . . . . . . . . . . 82
7.1.2 Differences from RPSL . . . . . . . . . . . . . . . . . . . . 83

7.2 New IRR outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.2 Database and lookup system . . . . . . . . . . . . . . . . . 87
7.2.3 New IRR operation . . . . . . . . . . . . . . . . . . . . . . 88

8 Impact of the results and future work 91
8.1 Presentations of the results . . . . . . . . . . . . . . . . . . . . . . 91

8.1.1 RIPE 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.2 NIX WG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.3 CEE Peering Days . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2.1 Future presentations and education effort . . . . . . . . . . 92
8.2.2 Creating a RPSL looking-glass . . . . . . . . . . . . . . . . 92
8.2.3 NLNet Labs RDL effort . . . . . . . . . . . . . . . . . . . 93
8.2.4 Internet community role . . . . . . . . . . . . . . . . . . . 93

Conclusion 95

Bibliography 96

List of Tables 103

3



List of Figures 104

List of Abbreviations 106

Attachments

A RPSL and BGP data analysis 111
A.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1 Outline of the experiment . . . . . . . . . . . . . . . . . . 111
A.1.2 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.1.3 Data size . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2.1 Software requirements . . . . . . . . . . . . . . . . . . . . 114
A.2.2 Software architecture . . . . . . . . . . . . . . . . . . . . . 114
A.2.3 Running time . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.4 Data and product size . . . . . . . . . . . . . . . . . . . . 116
A.2.5 Syntax errors . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Long-term changes and trends . . . . . . . . . . . . . . . . . . . . 117
A.3.1 Global changes . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3.2 IPv4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3.3 IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3.4 Changes near the observation point . . . . . . . . . . . . . 122
A.3.5 RIR service region differences . . . . . . . . . . . . . . . . 131

A.4 Origin validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.5 Path validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.6 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B Contents of attached disc 158
B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
B.2 CD manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4



Introduction

0.1 Thesis topic

The topic of this thesis is based on my previous Bachelor’s thesis [1] and on my
experience that comes from operating several Autonomous Systems. My previous
work has been focused on one particular detail of Internet routing management -
Routing Policy Specification Language (RPSL).

It seems that efforts that have been put to many implementations of RPSL
tools are not yielding the desired outcome and there is an obvious question: Why?

The presented standards, software tools, technical and administrative mecha-
nisms that are subjects to subsequent analysis in this work are part of the Internet
in the broad sense. The Internet is not only the physical network but also the
standards and the community that maintains them.

There are many specifics of the Internet community and the most important
of all is the consensus driven decision process and the emphasis on freedom. It
needs to be stressed that the technical and administrative core of the Internet has
been created and is operated by the community that enjoys and protects freedom
of act to a level unprecedented in any other part of IT industry or any other
human endeavor.

Any prospective effort to change anything in the Internet community needs
a consensus. Reaching consensus depends on an ability to prove existence of a
need for change and on an ability to provide a technically superior proposal for
the change.

The topic of this thesis is to provide the proof of the need for change in the
Internet routing system and specifically in the high level routing control.

0.2 Hypothesis

The Internet is partitioned to entities called Autonomous Systems. The Au-
tonomous Systems are the entities that enjoy liberty and freedom of choice in
questions of technical and operational procedures with regard to interconnection
among each other. One of the procedures is utilization of RPSL for capturing
existence and certain technical details of the interconnections.

In order to prove the need for future change of RPSL and related standards
I am going to provide arguments supporting the following hypothesis: “The uti-
lization of RPSL in the current Internet is sub-optimal both in scale and accuracy
of the information. The situation is not improving and there is no perspective of
change in this trend.”

There is an apparent problem with the stated hypothesis - it could not be
directly tested by means of mathematical statistic. A value of the stated hypoth-
esis lies in a fact that proving enough evidence for this hypothesis is most likely
the only possible way to eventually reach consensus in the Internet community.

Formal approach is also provided for sake of explaining the problem in this
thesis and avoiding any confusion.

5



0.3 Extended hypothesis

An obvious extension of the stated hypothesis is this question: “What is the
cause of the sub-optimal utilization of existing mechanism?” or “What can be
done to improve the situation?”. An educated guess of the possible answer is:
“High added workload compared to relatively low benefit obtained from extensive
utilization of RPSL prevents the AS operators from wider deployment.“

Immediate problem in the extended hypothesis lies in the fact that it is ex-
trapolation of causality in an unique problem with apparently complex causes
and with no counter-examples. The arguments for the extended hypothesis are
therefore based on experience gained by implementing the related standards into
a software and on critical analysis of the relevant standards. The software, called
bgpcrunch, is attached to this work and will be referred to on many occasions.

0.4 Thesis application

The Internet community currently goes through difficult times caused by the IPv4
address pool exhaustion and it’s consequences: Struggle with IPv6 adoption and
rapid increase of fraudulent behavior that begins to infiltrate lower networking
layers.

These issues are remarkably connected with the Internet routing system and
its management or lack of high-level management. Scarcity of IPv4 addresses
causes many problems, most notably excessive de-aggregation of prefixes in BGP
table and fraudulent announcements of prefixes, which is known as IP space
hijacking. Both problems can be avoided by proper use of routing policies that
would filter out fraudulent prefixes and would provide more control on de-aggregations
and centralize data to a readable structure. IPv6 adoption might be easier with
well defined high-level description of existing IPv4 routing. IPv6 could benefit
from better control and secure way of the Internet routing management from
the beginning of the new protocol deployment. The infiltration of lower levels
by sophisticated attacks on lower levels of networking stack is a difficult issue to
analyze and prevent. There are certain situations that would benefit from uti-
lization of information in routing policies in order to construct filters or provide
way to define an automatic filtering mechanisms to stop these attacks.

The current framework with RPSL, BGP and all the parties that form the
Internet routing system are theoretically capable of doing all these things. How-
ever, only few Autonomous Systems use RPSL in real operation of their network
on daily basis and the public RPSL databases are both inaccurate and incom-
plete. These problems severely limit outlined potential and reduce interest in the
current system.

Objective of the research presented in this thesis is to provide necessary argu-
ments to the community for justifying a change in standards and in operational
procedures and for starting a discussion in this direction.

6



1. Internet routing

1.1 Internet resources

Internet routing is a massively distributed cooperative process that supports data
transmission by means of IP (Internet Protocol). The IP needs resources for
moving packets from one point to another using certain pre-computed paths.
Most notably it needs IP addresses, which are in fact integers combined with
rules for their utilization. It also needs Autonomous System numbers (ASN),
which are simple integers. Apart from these virtual resources the protocol needs
physical resources - processing power, memory for packet buffers, configuration
and the pre-computed routing tables that direct packets along their way towards
the destination.

1.1.1 Coordinators

There are organizations that coordinate use of the number resources in the Inter-
net, most notably IP addresses and ASNs. These resources that are being used
in Default Free Zone (DFZ), which is a synonym for the Internet, are subject of
policies. The policies for the Internet are created and subsequently maintained in
an open community which consist of smaller and more focused communities, like
RIPE community, organizations that perform certain technical or administrative
tasks and large network operators.

There is neither technical nor formal obstacle for anybody to configure any-
thing that is technically possible on any router or host in the network, regardless
of policies and resolutions of any organization. The only measure of adherence to
the rules created by the community is technical possibility of establishing network
interconnection.

When a host or a router connects to the Internet it is expected to follow rules
established by the Internet community that actually provide technical framework
for the host to be connected and start using certain addresses. Acceptance of
routing information and packets from or for the particular host in the Internet
depends on free will of any Autonomous System along the path.

The coordinating role performed by service organizations that follow policies
created by the community is possible only because all community members adhere
to core rules they created for themselves. The coordination bodies do not have
any direct authority over the resources in any enforcement sense. Since it is
not possible for any single organization or company to enforce even the most
fundamental policies, it is up to the community to self-regulate and self-policy.
Policies are expected to become reality automatically, because there has to be a
consensus on them in the policy development process prior to their acceptance.
Moreover, the policy development process involves the parties that are expected
to implement the resulting policies.

7



Figure 1.1: Internet coordination hierarchy

1.1.2 Consensus based rules

The self-enforcement of the rules depends on the fact that majority of the Inter-
net, or at least a majority of the local network environment implement a policy,
it becomes mandatory for everybody in their network-wise proximity. An alter-
native is to cease the interconnection and effectively stop the data flow for those
parties, which decided not to accept the policy.

It is technically possible to disobey community rules and ignore any authority
and coordination bodies to certain degree. Some people actually do that in order
to gain some extra profit and with limited damage to others, so nobody notices.
Even if somebody learns about the wrongdoing, they will not be most likely in a
position to do anything about it.

1.2 Hierarchy of coordinators

1.2.1 Coordination bodies

A huge network, like the today’s Internet, needs coordination to operate safely
and efficiently. The Internet community has established a hierarchy of coordi-
nation bodies that support the community in creating the policies for operating
the network and executing the policies. Figure 1.1 shows the simplified flow of
resources from the resource pool through the coordinators to the end user. Co-
ordinators and users should use RIR database and Internet Routing Registry for
registering their resources. The registration should be completed before setting
the resources to the BGP configuration.

The coordination of the most important resources - IP addresses and AS
numbers is being executed at the top level in IANA (Internet Assigned Numbers
Authority), which is a department of ICANN (Internet Corporation For Assigned
Names and Numbers), a non-profit private American corporation that oversees
not only IP address and AS number allocation but also different IP constants and
DNS resources. IANA operates according to policies that are created on the basis

8



of consensus among RIRs (Regional Internet Registry), the only direct recipients
of resources that IANA hands out.

There are five RIRs, each serves its own service region that is roughly equiv-
alent to a continent: AfriNIC for Africa, ARIN for North America, APNIC for
Asia and Pacific region, LACNIC for South America and RIPE NCC for Europe,
Middle East and parts of Central Asia. All RIRs operate according to policies
that are being developed and agreed upon by their communities and based on
consensus amongst the community members.

1.2.2 Communities and their members

In case of RIPE the community is open to everyone, regardless of network size
or status of LIR. The RIPE NCC is the executive body, based in Amsterdam,
Netherlands. The community meets twice a year on RIPE meetings and develop
policies in several working groups and mailing lists.

Please note that even though the names of the coordination organizations
have roots in acronyms, the names are now used as substantives and often serves
as an official name of the legal entity.

Although the community creating the policies is open to everyone, there are
on contrary formal requirements for a company to receive resources from RIR
- RIPE NCC for instance. The company needs a status of LIR (Local Internet
Registry) to use services of RIPE NCC. The LIR is able to obtain IP addresses
either for their own networks or their customers, which they directly manage.
Direct management means that the LIR physically transports packets for these
IP addresses. This type of address space is called PA (Provider Aggregatable)
resource. The LIR can also obtain PI (Provider Independent) resources for any
other network that fulfills corresponding assignment criteria. The PI addressing
resources are intended for the end network and the operator of the end network
is fully responsible for routing the traffic and the LIR’s role is usually limited
to dealing with RIPE NCC during the allocation process. The two types of
addressing resources, PA and PI, are not technically distinct, however there is a
substantial difference in their formal handling in policies.

There is another level of authority transfer allowed in case of PA alloca-
tions: LIR can make sub-allocation to another party and the recipient of the
sub-allocation does not need to have any formal relationship with RIPE NCC. In
this case the LIR is still responsible for the sub-allocated IP addressing resources
even though the right to make assignments for the end users has been transferred.

The same process is in effect for ASNs (Autonomous System numbers) with
the difference that an ASN can not be partitioned. IANA allocates ASN blocks
to RIRs and RIRs allocate a single ASNs to LIRs or their customers on request.
ASN allocation process closely resembles the PI allocation. It applies even in case
the final recipient of the resource is the requesting LIR.

Described basics of the resource administration process in RIPE NCC is al-
most the same in all RIRs. Even though there are differences among RIRs in the
particular rules, fees, requirements, time frames, in terminology and evaluation
procedures to certain extent, the basic ideas described in this chapter stay the
same.

9



1.3 Network operation

The most important resources for operating IP protocol are IP addresses and
ASNs. Each party that connects to an IP network needs IP addresses for ad-
dressing the devices and a way to transport traffic from and to the devices.

Apart from physical interconnection the connected parties require routing
protocol to generate routing tables in the network. Today’s standard protocol
for routing traffic in the Internet is BGP (Border Gateway Protocol). It is a
path-vector EGP (Exterior Gateway Protocol), that is being used for exchanging
routing information among autonomous systems. In terminology of BGP the
Internet is an interconnection of large amount of Autonomous Systems that use
common routing infrastructure called DFZ (Default Free Zone).

Despite of extra costs that bring operation of private networks isolated from
the Internet, there have been several large-scale deployments and these networks
might still persist. These networks usually operated IP with various routing pro-
tocols, including BGP and historically co-operated with the Internet coordinators
to a certain degree, mainly to avoid addressing collisions in case of eventual inter-
connection. Existence of these networks with large scale (nonetheless, it is still
incomparable with the Internet) shows that there is a complete freedom of act in
networking area. And there are legitimate reasons for ignoring Internet commu-
nity and its rules and operating own network in parallel or co-operate with the
Internet only partially. Following discussion is not going to take into considera-
tion these private or partially-cooperating networks and it will be focused solely
on the Internet.

1.4 Internet resources

Addressing resource has to be announced by an autonomous system to DFZ to
be actually usable in the Internet. BGP is employed for transmitting announce-
ments as well as forwarding announcements of other parties learned from BGP
neighbors. This process creates DFZ routing table cooperatively. The DFZ table
contains in theory all information needed to route traffic to any possible desti-
nation in the Internet. In fact there is a minority of addressing resources that
fluctuates in DFZ and some are even unreachable due to technical, political or
economic reasons.

There is no right of Internet connectivity and nobody could claim transporta-
tion of packets. Internet connectivity in its technical core depends on good will
and spirit of cooperation that precede formation of contractual relationships that
concerns accepting and forwarding BGP announcements and transportation of
packets.

1.5 Internet standards

Technical standards that concern protocols operated in the Internet as well as
operational requirements and procedures are described in several types of docu-
ments. Internet Engineering Task Force (IETF) and the Internet Society (ISOC),
are considered to be the principal technical development and standards-setting

10



bodies. Their outputs that take form of Request For Comments (RFC), Best Cur-
rent Practice (BCP) and Internet Standards (STD) play prominent role among
others. These documents are widely respected and considered as the main build-
ing block of the Internet.

The standards might be more or less successful. Since no standard is obliga-
tory by itself, the only way of making a standard obligatory for some party is to
put it as a requirement into a contract with that party.

I am not aware of any rigorous methodology that would define a procedure
for measuring success of a standard. But simple interpretation is that successful
standards are actively developed, have more implementations and have greater
user base than less successful standards.

1.6 Records and public databases

IANA, RIRs and LIRs allocate Internet addressing resources to the end users.
The whole allocation and assignment process is documented. There are publicly
available records about each step in the process. The records contain basic in-
formation that is needed to operate IP correctly and to troubleshoot the routing
system or services running above the network layer. Validity and accuracy of the
allocation and assignment records are subjects of shared and transferred respon-
sibility among the parties that allocate the resources and the parties that use
them.

1.6.1 Top level

IANA keeps lists of IP address blocks and ASN blocks that have been allocated to
RIRs or directly to end users before the RIR system was invented in 1996. Today’s
Internet coordination and registration system is described in RFC 2050/BCP 12
[2]. IANA lists are publicly available on the web in form of plain text file and CSV
[4]. It is actually a remarkably short list considering the fact that it describes
usage of 232 IPv4 addresses, up to 232 ASNs and certain portion of IPv6 addresses,
which may top 2125 of individual addresses under current policies.

1.6.2 RIR level

RIR actions and corresponding records are much more interesting compared to
IANA level. RIRs have to deal with substantially more information that capture
resource usage in much more detail and that are changing much faster than the
top-level allocations. Problem is that records of RIRs might contain personal
and confidential information. The RIR allocation data has to be structured and
indexed in order to allow searching for records, using certain criteria for them
and to support operation and troubleshooting of IP in large scale. The detail
level and volume of data as well as the way of storing records is based on policy
created by the particular RIR.

Remarkably, the unifying element of RIR databases is the access protocol
whois [3]. The protocol is simple and open to interpretation but it also imposes
some important requirements on the data. The most important requirement is
that the queries and answers have to be in human-readable text format.

11



Despite of the name database, RIR databases are only text files. Basic access
method for these files is publishing them on a FTP server or via whois protocol.
Updates were originally directed to a maintainer of the files via e-mail but today
there are e-mail robots and recently also web services for processing update re-
quests on the objects automatically and with more security. The text files contain
objects. The objects are text blocks that contain keys and values. These keys
are called attributes. There is a remote similarity with databases and objects in
their ordinary meaning but the Internet community and the following parts of
this thesis use these words in this particular meaning.

1.6.3 LIR level

Record keeping on the LIR level is mandatory because of rules imposed by the
community through the coordination bodies. These rules are being enforced as
a part of the contractual relationship among the RIRs and the LIRs. There are
two types of mandatory records that LIRs are obliged to keep: Public records
and mandatory private records that the LIRs have to keep internally and provide
upon request. Mandatory internal records apply mainly to IPv6 protocol family,
because prefix boundaries are too small compared to the allocated address space
to the LIRs. It would cause huge administrative burden and it would be techni-
cally challenging if the RIRs had to keep these records in the public databases
operated by the RIRs themselves to the level of detail that might reach vast
amount of subnet allocations for the end networks.

On the sub-allocation level there are generally no additional rules and the
overall responsibility for keeping records up to date stays with the LIR. Despite
that there are mechanisms that make it possible to transfer some authority and
some responsibilities towards the customer or downstream network in general.

1.7 Routing registry databases

1.7.1 Resource assignment records

Records describing resource assignments and linking them to their users have to
be kept up to date through a mandatory process in all RIR regions. However,
there are differences in policies of RIRs. The records might differ in level of
detail, format, access methods and in many minor constants. The obligation to
keep records up to date is based on contractual relationship among RIR and LIR
and among LIR and the end user.

1.7.2 Routing databases

On the contrary, records describing technical details of resource usage and most
importantly routing, are not mandatory but recommended. The resource usage
on the Internet can be represented in routing policies that network operators
might publish in routing registry databases. There are several routing registry
databases, some of them are accessible to the general public and some require
certain form of membership (both paid and formal) in order to publish policies,
but are freely accessible for reading.

12



Certainly some private databases exist. These databases are used for internal
processes inside network operators and for keeping records of customers in transit
networks.

1.7.3 Public routing databases

Public databases can be commonly referred to as IRR (Internet Routing Reg-
istry).

The reason for having one common name for all public routing databases is
that these databases were able to mirror each others’ data at a certain point. IRR
is still a sensible name for the whole system even though the mirroring of data
is rather complicated and incomplete. Reason for inconsistencies lies in the fact
that different databases keep data in slightly different formats and it is difficult
to create and maintain a general conversion algorithm.

Another problem is that even though network operators are strongly discour-
aged from registering their routing policies in more than one routing registry
database, it might still happen and in fact it happens. In that case the result,
when the same routing policy is registered in two different places, is not defined.
Document RFC 2650 [12] explicitly states that this situation may lead to con-
fusion of tools and therefore mislead anybody who tries to verify the routing
policy.

1.7.4 Content of routing databases

A common core of all routing databases is Routing policy Specification Language
(RPSL). It has been defined in documents RFC 2622 [5] and RFC 4012 [6]. The
document RFC 2650 was created in 1999 with intent to unify fragmented database
formats, however since then the differences among routing databases deepened.
Some databases even ceased to operate and new ones have been created.

1.7.5 Relations among public routing databases

Nowadays (May 2016) there are at least 34 known routing databases. Compre-
hensive but not authoritative list is published on the web by Merit Network, Inc.
[7]. Relations among the databases, methods of replication, rules and guidelines
for each database are generally unknown. The Merit’s website contains majority
of publicly known information on this topic.

The most important routing registries are the databases operated by RIRs,
and the most important for Europe is RIPE DB.

1.8 Network operation process

1.8.1 Resource setup

IP network operation depends on many resources discussed in previous sections.
The number resources play extremely important role. Some resources have to be
obtained prior to physical network setup and another can be added in increments
to meet the demand of the network’s users. The operator of the network is

13



responsible for obtaining the resources from RIR that serves his region either
through a LIR or directly. Operators generally need a contractual relationship
with the LIR or RIR for this reason. Purpose of the LIR is to provide help
to the network operator with requesting resources and with the administrative
part of network setup. The LIR have to keep track of PA resources and remains
responsible for keeping the records in public databases up to date. In case of
PI resources, the responsibility stays with the resource holder and therefore it is
responsibility of the network operator, rather than the LIR, which has provided
help only with the set up of the resource. The network operator may start
using the resources in DFZ after allocation. Using resources generally means
announcing the IP address blocks to DFZ or using the AS number as an originator
of the IP address announcements. The LIR in cooperation with the operator (or
the operator alone) is supposed to create the objects that describe assignment
and purpose of the resources and upload the objects into the RIR database.
Subsequently the operator is supposed to create and publish routing policy in
one of the public routing databases. In addition both the LIR and the operator
should keep the public information up to date.

1.8.2 Role of a LIR

Reason for having LIRs in the loop is that the LIR is supposed to be well equipped
with knowledge of RIR policies and certain experience that makes the RIR’s
processes more efficient. LIR should be able to help network operator to deal
with many different situations concerning number resources and act according to
current policies and best practices in the community. LIR is even supposed to
speak on behalf of the network operator in resource management procedures, and
most importantly, in resource allocation process.

1.8.3 Resources managed by the end users

In case of PI resources, a bond between the resource holder and the LIR is
deliberately loose. This option allows IP resource holders to remain technically
independent on the LIR. The LIR is nonetheless needed in the process of resource
set up.

In case of RIPE NCC service region, there is also a contractual relationship
requirement that demands PI resource holders to keep a contractual relationship
with any LIR of their choice and pay small annual fee to RIPE NCC. This require-
ment has been imposed in RIPE NCC region in early stage or IPv4 address pool
exhaustion. The main reason was a concern about abandoned PI space that had
been virtually irreclaimable. The contractual relationship serves as an assurance
of the continuing need for the PI space and as an instrument of keeping contact
with the PI space holder. Before that the contact information in the RIPE DB
sometimes proved to be invalid and there were neither formal nor practical means
of finding the real resource holder.

1.8.4 Resource registration

Network operator and the supporting LIR are obliged to keep records about the
resources. The records usually contain:

14



1. Resource specification,

2. holder of the resource,

3. reason for the assignment,

4. authentication keys for writing.

Network operators might publish much more information in routing registries.
Some of them are strongly recommended. List of the most important ones follows:

1. BGP routing origin for addressing resources,

2. list of connections to another Autonomous Systems (peerings),

3. routing filters,

4. routing metric details,

5. memberships in Internet Exchange Points (IXP) and routing details,

6. traffic filters.

These information are the most useful and best known examples of routing
policies.

15



2. Routing and routing policies

Routing policy in general is a set of high level instruments for describing config-
uration of an element in routing system. The element is usually a router or set
of routers that execute certain routing protocol.

The only existing standard for representing routing policies is Routing Policy
Specification Language (RPSL). Even though the concept of routing policies is
broader and can cover things like SDN controller description, RPSL takes into
account only BGP.

The relationship between BGP and RPSL is close because the RPSL speci-
fication documents RFC 2622 [5] and RFC 4012 [6] repeatedly refer to specific
BGP attributes, best-path selection algorithm and BGP specific mechanisms.

2.1 BGP

BGP stands for Border Gateway Protocol. It is a path-vector routing protocol,
that essentially executes distributed version of a shortest-path graph algorithm
with certain unique features that reach well beyond simple graph model.

2.1.1 BGP overview

The graph model of BGP routing consist of vertices, edges and the shortest path
algorithm.

A vertex in BGP protocol is the Autonomous System. The AS is identified by
an integer, called Autonomous System Number (ASN). The autonomous system
might consist of several routers that runs BGP with the same ASN. In that case
these routers cooperate with each other to form a single and consistent entity.

An edge in BGP is called a session. The BGP session is internally a TCP
connection that the router uses to exchange routing information with a neighbor.
There are two different modes of BGP sessions: Internal BGP session is a session
that links two routers with the same ASN and it is hidden inside the AS, which
externally acts as one vertex while the internal structure of the AS remains unex-
posed. On the contrary, external BGP session has to be set between two routers
with different ASNs. Only this type of BGP session is the edge in the graph
model.

2.1.2 Sessions

Each BGP router in the network needs its own specific configuration. BGP
configuration reflects point-to-point model of BGP relationships. Point-to-point
is also the most common physical topology in the Internet backbone - direct
physical links between two routers. The BGP session represents this adjacency
between two Autonomous Systems and it is informally called “peering”.

When the BGP session is set on both sides, the routers connect over TCP,
start-up procedure is executed and then routing information can be exchanged.
The most important BGP message in the routing information exchange phase

16



is update. It contains either a new routing information, update of any existing
information or routing information withdrawal.

2.1.3 Path vectors

A routing information in BGP is called a path vector, or more formally Net-
work Layer Reachability Information (NLRI). It contains mandatory elements
and might contain certain optional elements as well. The elements are called
BGP attributes. The most important attributes in the path vector are:

1. Prefix - a network subnet that is a subject of the update,

2. AS path - a list of all ASes that the path vector traversed from the originator,

3. Next Hop - IP address of the next hop for the prefix.

Originator is the first ASN in AS path of the source of the BGP announcement.
Routers utilize AS path as a loop prevention mechanism. Each path vector

entering the AS is checked for occurrence of the local ASN in AS path. Path
vectors that contains local ASN in AS path are discarded because these path
vectors already traversed local AS and therefore form a loop.

Length of AS path is also a default metric for BGP best-path selection algo-
rithm. Shorter AS path (the AS path with lower number of ASNs) is considered
to be better route than a path vector with longer path.

A router has to append its own ASN to the AS path in each path vector before
it can be transmitted over external BGP session to another AS.

2.1.4 Attributes

There are basically four types of BGP attributes:

1. Well-known, mandatory - have to be supported by all BGP implementations
and have to be contained in each update message,

2. well-known, discretionary - have to be supported, but usage in the update
messages is not mandatory,

3. optional, transitive - may not be supported and unrecognized attributes will
be passed on without changes,

4. optional, non-transitive - may not be supported and will not be passed on.

The attributes allow administrators to define complex rules that modify the
best path selection process either on the local routers or in remote Autonomous
Systems.

2.1.5 Best path selection

BGP has been defined in RFC 4271 [8] and in subsequent amendments. Despite
the fact that variants and non-standard features exist in certain implementations,
the basic operation principle is always the same - received path vectors are di-
rected through series of following actions: Path vectors that would close routing

17



loop and routes with unreachable next-hop are removed. Then user-defined in-
put filters are evaluated. After that the remaining path-vectors are passed to
user-defined rules for matching arbitrary path-vectors and modifying some of
the attributes. The resulting path-vectors are stored in input tables (known as
Adj-RIB-In).

All available path vectors in the input tables are processed by the best-path
selection algorithm. Main purpose of the best-path selection algorithm is to
decide on concurrent and distinct paths to the same destination. The algorithm
executes following steps from the beginning until some rule selects the best path
vector:

1. Path with the highest LOCAL PREF attribute is selected.

2. Path with the shortest AS path is preferred.

3. Path with the best ORIGIN attribute is selected. (internal is better than
external and external is better than incomplete).

4. Path with the lowest MED is preferred.

5. External BGP paths are preferred over internal BGP.

6. There are two last resort rules in the end of the paths selection algorithm
to get a resolution even in case of a tie among the paths up to this point.

The resulting path vectors are transformed to routes and added to Routing In-
formation Base (RIB). RIB is a source for construction of Forwarding Information
Base (FIB), which then directs actual packet flow in the router.

The best-path selection process can be altered by two major mechanisms:

1. Filtering out path vectors,

2. changing the metric attributes.

Apart from the AS path length, there are two major metrics: Local Preference
and Multi-Exit Discriminator (MED). These names are often used in parallel with
the BGP attribute names LOCAL PREF and MED.

2.1.6 Metrics

The traffic flows in the Internet according to the routes in routing tables. The
direction of the traffic flow is the opposite of the BGP path vector transmission,
because path vectors represent paths towards a destination.

Network operators can use additional metrics in path vectors to modify the
path selection results and therefore the route that the corresponding traffic takes.
Each metric fits specific direction and common requirements.

For instance Local Preference can be assigned to incoming path vectors. It
can change priority of incoming routes and therefore it may change direction of
the outgoing traffic.

MED can be assigned to the outgoing routes and therefore it can modify path
selection process in the neighboring AS. This metric can be utilized only for path
vectors transmitted to the same AS over multiple distinct routes. Having multiple
links to the same AS is in fact rather common situation.

18



2.1.7 Communities

Apart from these metrics BGP can carry community attributes. The community
attribute is an integer that can be added to a path vector. Meaning of the
particular number in the attribute can be defined by the user. The communities
are often used for signalization both inside the AS among internal BGP routers
or between Autonomous Systems that have direct or even indirect connection.

The community attributes can be added, removed and matched by filters. It
brings general signalization capability to BGP and network operators use it to
implement complex setups like Remote Triggered Blackholing (RTBH) or remote
path filtering or remote metric selection.

2.1.8 Transit AS

The process of sending out a path vector to the BGP neighbor consist of:

1. The path vector is picked from RIB.

2. It goes through series of user-defined rules and filters.

3. Local ASN has to be appended to AS path

4. Then it can be transmitted over the BGP session.

Ordinary BGP implementations in default configuration usually forward all
best paths to each neighbor.

2.1.9 Prefix origination

Besides forwarding existing path vectors, new path vectors can be injected (orig-
inated). Originating the path vector means that the AS injects a routing record
into DFZ, provided the route is not filtered out soon enough along its way.

The announcement summons traffic destined to a subnet that is a subject
of the new announcement. Any router can send out any prefix and it would
eventually spread out through all BGP inter-connected nodes to each router in
the network.

This basic operation mode of BGP is the reason why sending announcements
and originating new prefixes is considered to be a delicate operation. Erroneous
announcements might affect not only local traffic but also third parties, when
there is a routing conflict.

It is a common practice to set outgoing filters in order to manually restrict
or modify announcements. In general the level of control over the outgoing path
vectors is greater than control over the incoming ones.

2.1.10 Instrumentation and data

BGP has comprehensive instrumentation and debugging tools. The path vectors
carry a lot of interesting information. Data from BGP reflect current operational
status of the network and in case of DFZ the BGP data equals to the current
state of the Internet.

19



Each path vector contains ASN of its originator and a list of all Autonomous
Systems it traversed. It means that the path vector won in the best path selection
process.

Preliminary analysis of networking relationships is needed before any reason-
ing about the BGP data can be done. The reason for the preliminary analysis is
that each AS in the Internet has its own version of DFZ table - its own unique
view on the Internet.

Moreover, DFZ is a massive distributed list of path vectors that controls
routing of packets over the Internet. Even small changes in DFZ can be monetized
- either by respectable ways because optimization pays off, or because there is wide
range of possible malicious tampering with BGP. Unfortunately, the malicious
activity regularly happens in the Internet.

2.2 Routing Policy Specification Language

2.2.1 History of the standard

The first definition of a language for describing routing policies was the document
ripe-81 [10]. It was published in 1993 and it subsequently evolved to the current
RPSL. The definition in ripe-81 refers to the document ripe-60 [9] from 1992. This
document contains description of routing and associated issues. Both documents
reflects early phase of the Internet development in Europe. From today’s point of
view the documents are partially based on obsolete ideas and wrong assumptions
about the future requirements.

It is difficult to interpret the outdated standard from 1993, but it is obvious
that the basic view of the Internet was different in many aspects at that time.
The standard was focused on control of BGP routing in the Internet in open
and public manner. This objective was the primary reason for developing the
language.

The language that can capture routing policies in an unified format could
serve as a public statement of intentions, supplement to a documentation and
records in RIR databases and as a primary data source for configuration of the
Autonomous System Border Routers (ASBR). The document states that the main
requirements for the new RPSL are:

1. Clarity,

2. translatability,

3. checkability,

4. applicability,

5. generality.

The document defines these features in detail.
RPSL development continued and the result was the document ripe-181 [11]

from 1994. This document brought more features than ripe-81 and more closely
resembled today’s standard RFC 2622, except for several constructs that have
shifted its meaning, have been renamed or have been replaced since then. The

20



differences between ripe-81 and ripe-181 are too substantial to summarize them
here but the trend was: Complexity of the language increased to allow creating
compact descriptions of huge networks. Main tools for that are recursion and
-set objects. These two tools allow administrators to logically partition the
network and use chains of symbolic names to construct filters level by level.

2.2.2 Current standard

RFC 2622 [5] is the current standard for RPSL that has been amended by RFC
4012 [6]. New elements from RFC 4012 are sometimes called RPSLng (RPSL
new generation). RPSLng has brought support for IPv6 and generalized support
for future protocols or address families. However, the basic principle stays the
same in both of these documents and it still derives from ripe-181.

2.3 RPSL elements

According to the current standards RFC 2622 and RFC 4012, the basic unit of
RPSL information is called an object. The object is a text fragment that has:

• Object type,

• primary identifier that is often used for searching and referring to the object
in a whois database,

• optional secondary identifiers that might be also used as lookup keys,

• set of mandatory or optional attributes that carry additional information.

Objects are represented in text format that is supposed to be human-readable
as well as easy to parse for machines. The text format consists of:

• Inactive lines (comments),

• object separators - empty lines,

• lines that carry the text of the objects.

Object line contain either an attribute and a value or it might be a continu-
ation of a multi-line value. Objects has to be separated by one or more empty
lines.

Set of allowed attributes and mandatory attributes is determined by the object
type. Object type is the name of the first attribute. Its value is also the primary
identifier of the object. Exceptions from these rules exist only in objects derived
from RPSL format, but not conforming to the current RPSL itself.

For instance, a simple RPSL object is:

route: 217.31.48.0/20

descr: Network of Ignum s.r.o.

descr: Czech Republic

descr: http://www.ignum.cz/

origin: AS29134

21



mnt-by: IGNUM-MNT

created: 2003-06-12T11:37:52Z

last-modified: 2008-04-16T21:25:49Z

source: RIPE # Filtered

The example shows an object of type route. Its primary identifier is 217.31.48.0/20.
The second most important attribute in this object type is origin. The high-
level meaning of the object in our example is that the prefix 217.31.48.0/20 can
be announced to DFZ from AS29134.

The descr attributes is an unstructured human-readable description and the
attributes created, last-modified and source are service information created
or required by the RIPE database.

The objects that contain sensitive information, like personal data, might get
filtered by the database output front-end, which is usually a whois server or any
other RPC server. The purpose of this is to remove private data from the objects,
unless privileged access to the database is granted.

The mnt-by attribute contains the name of the mnter (from maintainer) ob-
ject, which declares the write access control rules for the object. The mnter

object determines also the write authentication mechanism and contains required
authentication data.

2.4 RPSL object types

The basic types of RPSL objects that form the core of routing policy expressions
are route objects and aut-num objects. Supplemental inet-rtr and -set objects
are utilized to group data and provide additional information.

2.4.1 route object

The route object contains information about the BGP announcement of a prefix
into the Internet routing system (into DFZ) and states which AS can originate
the announcement of the particular prefix.

Example of an route object is in the previous section.
There might be two or more route objects with different origin attributes

for one particular route. The interpretation of these objects is OR operator: Any
matching originator might occur.

2.4.2 aut-num object

The aut-num object serves three main purposes:

1. It is a record of an autonomous system number administrative assignment
to a specific organization.

2. It links the ASN with proper contact information.

3. It is a starting point for the definition of the autonomous system’s routing
policy.

22



The routing policy can be described in import, export and default at-
tributes. These attributes are sometimes called “peering expressions”. The rea-
son for using that summary name is that import and export attributes, when
combined together, might contain complete information that is sufficient to set
up the BGP sessions (peerings) for each BGP neighbor of the AS.

The data in these attributes contain filters, that can be translated to route-
maps for BGP. The route-maps are the low-level tool for altering various metrics
and attributes in path vectors. Therefore, the route-maps represent the prevalent
mechanism for modifying BGP operation.

2.4.3 inet-rtr

The inet-rtr object is a container for information about a BGP router in Inter-
net routing system. It could help describing external topology of an Autonomous
System and it might serve as a data source for automated router configuration.
There are three main data attributes:

1. local-as that contains ASN of the router,

2. ifaddr that contains interface address configuration,

3. peer that contains information about routing protocol, direction, neighbor-
ing ASN and optional information about the protocol configuration.

2.4.4 -set objects

The peering expressions in the aut-num object might contain either constants or
symbolic names that need to be resolved to objects carrying the referred infor-
mation. These symbolic names might be references -set objects.

A -set object might contain one or more constant or further references to
another -set objects of a compatible type. The -set objects could form a graph
that has to be traversed to collect required information from the nodes.

Possible loops in these object graphs are not addressed in the standard. How-
ever, even if the loop is not a syntax error, it is almost certainly a semantic error.
Despite that, there are several loops in the RIPE DB data and therefore parsing
software has to be able to deal with the loops.

The -set object types are:

• as-set that might contain a list of ASN and references to another as-set
objects,

• route-set that might contain a list of IP prefixes and references to another
route-set objects,

• filter-set that might contain a list of filter elements and references to
another filter-set objects,

• rtr-set that might contain a list of references to inet-rtr objects and
references to another rtr-set objects,

• peering-set that might contain multiple peering definitions.

23



2.5 References in RPSL

The -set objects might directly reference specific objects of proper type or an-
other -set object of the compatible type. These objects form a graph that has
to be resolved to gather the referenced information and create flat1 lists that are
usually needed to match the filters or to create a router configuration.

Another method of connecting objects into the -set object is a back-reference.
The attribute for specifying back-references is member-of and it might contain one
or more -set object identifiers. Following example demonstrates this concept:

route: 194.113.52.0/23

descr: BEUMER

descr: BEUMER

origin: AS702

member-of: AS702:RS-DE,

AS702:RS-DE-PI

mnt-by: WCOM-EMEA-RICE-MNT

The member-of attribute adds this route to the two following objects:

route-set: AS702:RS-DE

descr: AS702:RS-DE route-set

members: 192.109.206.0/24,

192.109.207.0/24,

192.44.36.0/24,

192.44.37.0/24,

193.101.167.0/24,

194.55.166.0/24,

198.36.86.0/24,

198.36.87.0/24

mbrs-by-ref: WCOM-EMEA-RICE-MNT

and

route-set: AS702:RS-DE-PI

descr: AS702:RS-DE-PI route-set

mbrs-by-ref: WCOM-EMEA-RICE-MNT

The back-references create a possible security problem which could allow any-
body to add a member to any -set objects. To prevent creation of an unautho-
rized back-reference the database requires that the maintainer of the new back-
referencing member object is listed in the mbrs-by-ref attribute of the -set

object. Because adding mnt-by attribute is a subject of authentication by the
database, it provides protection of the back-references.

The mbrs-by-ref attribute might contain keyword ANY that allows any object
to back-reference to this -set object. Missing mbrs-by-ref attribute in the -set
object causes that no object is allowed to create any back-reference to the object.

1Flat data structure is a set of unstructured elements. Flat list is usually contained in an
array or in a lookup table. The terminology is being used in the same meaning and context as
in PERL.

24



2.6 Filters in RPSL

2.6.1 Filter attributes

The routing policy of an Autonomous System is a set of peerings and correspond-
ing input and output filters for each of these peerings. The filters in RPSL are
captured in import and export multi-value attributes. Multi-value attribute is
also an attribute type that can occur in an object multiple times.

These attributes have to be part of aut-num object that corresponds with the
AS in question.

Both import and export attributes comprise of three basic parts: Peering
selector, action and filter. There can be multiple selectors and actions bound to
the same filter in a single attribute.

The peering selector is a name of source in import lines or name of destination
in case of export. This name can be a particular ASN, a reference to a -set

object or an expression that can be expanded to list of ASNs or keyword AS-ANY

that matches all ASNs.
The action is an optional part of the attribute and it can contain one or more

rules for modifying BGP path vector contents. Possible actions are:

• Setting of local preference (LOCAL PREF).

• Setting of Multi-Exit Discriminator (MED).

• Setting or modification of BGP communities.

• Prepending to AS path BGP attribute.

The filter is the most complex part of these RPSL attributes. It can comprise
of basic filter elements, logical operators and set operators. The basic filter ele-
ments are list of prefixes, ASNs or as-set, that both have to be resolved through
route objects to list of prefixes, or AS path filters. The set operators are refine

and except. These operators make it possible to apply different actions to a
subset of the filter on the left side of the operator. The refine is inclusive and
except is exclusive with respect to the right portion of the filter. Moreover, these
operators can be used recursively.

2.6.2 Example aut-num object

aut-num: AS29134

as-name: IGNUM-AS

descr: Czech Republic

...

export: to AS6939 announce AS-IGNUM-OUT

import: from AS6939 action pref=384; accept ANY AND

NOT fltr-bogons

export: to AS5580 announce AS-IGNUM-OUT

import: from AS5580 action pref=384; accept ANY AND

NOT fltr-bogons

25



The first line with aut-num attribute is the key of this object. The following
line with the as-name attribute is only a symbolic name. The descr attribute
contains unstructured text.

The purpose of the first export attribute is to define a BGP filter in the
outgoing direction from the AS29134 to the AS6939 (it is the selector part). It
states that the AS29134 announces or intends to announce prefixes that match
the filter defined by the reference to as-set object AS-IGNUM-OUT. This
object has to be further resolved in order to obtain list of the allowed prefixes.

The first import attribute says that AS29134 accepts or would accept routes
from AS6939 that match the filter ANY AND NOT fltr-bogons. There is
also an action that sets local preference to the value 384.

The filter expression comprises of keyword ANY, logical operators AND and NOT

and a reference to a filter-set object fltr-bogons that has to be resolved to
obtain the remaining part of the filter.

2.6.3 Peering definitions

Both import and export attributes in the aut-num object can contain informa-
tion about peering configuration. The following example shows extension of the
the previous example. In this example the ASBR of AS6939 is 216.66.80.24
and the local address of AS29134 is 216.66.80.242.

export: to AS6939 216.66.80.241 at 216.66.80.242 announce

AS-IGNUM-OUT

import: from AS6939 216.66.80.241 at 216.66.80.242 action

pref=384; accept ANY AND NOT fltr-bogons

Peerings might use logical operators in definitions. And more complex peer-
ings can be defined in a peering-set object that could be linked to the aut-num

object in place of peering selector. The peering-set objects might use recursive
references and logical operators as well.

Omission of the peering specification in import or export attribute means
that the attribute is valid for any peering between the corresponding AS of the
aut-num object and any Autonomous System that matches the peering selector.

Peering multiplicity

The selectors can be repeated multiple times in one attribute. The reason is to
share the rest of the attribute content among two or more peerings. This notation
is often used to visually group two peerings between different routers within the
same pair of neighboring Autonomous Systems. The following example shows
this notation:

export: to AS6939 216.66.80.241 at 216.66.80.242;

to AS6939 216.66.81.129 at 216.66.81.130;

announce AS-IGNUM-OUT

import: from AS6939 216.66.80.241 at 216.66.80.242 action pref=384;

from AS6939 216.66.81.129 at 216.66.81.130 action pref=256;

accept ANY AND NOT fltr-bogons

26



The peering selectors can be encapsulated into peering-set objects and ref-
erenced from the aut-num attribute. This object type brings a possibility of
aut-num object content simplification and grouping of many peering definitions.
The following example shows the same filter as in the previous example with
different notation using two objects:

aut-num: AS29134

...

export: to PRNG-IGNUM-UP announce AS-IGNUM-OUT

import: from PRNG-IGNUM-UP accept ANY AND NOT fltr-bogons

peering-set: PRNG-IGNUM-UP

peering: AS6939 216.66.80.241 at 216.66.80.242

peering: AS6939 216.66.81.129 at 216.66.81.130

Further peering abstraction

The IP address of the router in the peering statement or in the peering-set

object can be either a constant or a reference encapsulated in an inet-rtr object.
These objects can contain more detailed definition of a peering router.

There are rtr-set objects for listing multiple router references. These lists
might be used in previous constructions where router definition is expected. This
adds one more level of abstraction that has to be resolved in order to create the
filter and it brings a possibility of further multiplication of the simple records
expressed by this compound filter.

Examples of more complex peering constructs are in the RFC 2622, section
5.6. These notations are not the point of interest in this work, because we can
see the exact identity only of the direct neighbors in BGP and remote peerings
can not be tracked. It can be done in even more extensive experiment with
IP traceroute probes, but meaningfulness of that experiment is questionable in
light of the following findings that come from simpler and more fundamental
verification.

2.6.4 Filter section

There are four basic filtering mechanisms that can be used in filter statement:

1. Origin AS match,

2. IP prefix filter,

3. AS path regular expression match,

4. BGP community match.

These components can be directly used in the import, export and default

attributes or composed into compound expressions with logical and set operators.
The expressions can be further recursively encapsulated into filter-set objects.

Origin AS matches can be grouped into as-set objects and these -set objects
can be used in filters as one element that performs multiple matches internally.

27



Origin AS match

The following example illustrate the process of resolving origin AS match.

aut-num: AS29140

export: to AS6939 announce AS29134

route: 217.31.48.0/20

origin: AS29134

route: 62.109.128.0/19

origin: AS29134

route: 188.227.128.0/19

origin: AS29134

The filter “announce AS29134” on the export line in the aut-num object
has to be resolved to all prefixes that any route objects allow to originate from
the ASN in question. In our example the listed route objects have the origin

attribute AS29134 and thus the filter AS29134 is equivalent to the explicit IP
prefix filter {217.31.48.0/20, 62.109.128.0/19, 188.227.128.0/19}.

IP prefix filter

The constant IP prefix filter is a list of prefix expressions.
The prefix expression is either a prefix to match or a prefix and a specification

of allowed subnets. Details of the syntax are in the RFC 2622, section 5.4. The
idea is to allow announcements of more specific prefixes that are contained by
a less specific prefix in the filter. It is a desirable feature in certain practical
situations and it can save a lot of space that the explicit notation of the equivalent
filter would take.

The following example shows a simple prefix filter with both simple prefixes
and prefixes with subnet specifications:

{ 0.0.0.0/0, 10.0.0.0/8^+, 100.64.0.0/10^+, 127.0.0.0/8^+,

169.254.0.0/16^+, 172.16.0.0/12^+, 192.0.0.0/24^+,

192.0.2.0/24^+ , 192.168.0.0/16^+, 198.18.0.0/15^+,

198.51.100.0/24^+, 203.0.113.0/24^+, 224.0.0.0/3^+ }

The first prefix in the list is the default route and since it does not have any
prefix subnet specifier it is the exact match expression - only the prefix 0.0.0.0/0

would match this filter.
The following prefix 10.0.0.0/8^+ has the prefix specifier ^+ which means

that any subnet of the prefix is allowed. This filter would match 10.0.0.0/8

itself, then 10.0.0.0/9 and 10.128.0.0/9 and any other more specific subnet
up to any single IP addresses - /32 prefixes.

Another possibilities are the exclusive prefix specifier ^-, the exact-length
specifier ^n and the range specifier ^n-m. The exclusive specifier matches more
specific subnets but not the subnet in the specifier. In our example 10.0.0.0/8^-
would match the same prefixes as 10.0.0.0/8^+, except 10.0.0.0/8, which is

28



excluded. The exact match 10.0.0.0/8^16 would match any more specific subnet
of 10.0.0.0/8 that has prefix length 16. The range operator matches any more
specific subnet that has a prefix length that falls into the interval, including the
endpoints of the interval.

AS path regexp

The AS path regular expressions consist of extended regular expressions subset.
Basically, there are no back-references and named groups. Details are in RFC
2622 in section 5.4. The following example shows basic syntax:

<^AS1 .* AS2$>

It matches only the prefixes that come directly from AS1 and originate in AS2

and the ASNs that the matching prefix traversed between these two ASNs are
ignored. It also allows the list of ASNs between AS1 and AS2 to be empty.

Logical operators

There are three logical operators that might be used in the filters:

1. AND

2. OR

3. NOT

The meaning and precedence of these key words is the same as in most pro-
gramming languages. The only problem is that the operators can be omitted
when two filters with the same selectors are defined either in the different at-
tributes or within one attribute in different expressions delimited by semicolon.
In these cases the meaning is the same as OR operator.

Precedence of the operators can be modified by parentheses.

filter-set object

Following example shows compound filters that refers to a recursive filter-set

object:

aut-num: AS29134

...

export: to PRNG-IGNUM-UP announce AS-IGNUM-OUT

import: from PRNG-IGNUM-UP accept ANY AND NOT fltr-bogons

as-set: AS-IGNUM-OUT

members: AS29134

members: AS51278

...

filter-set: fltr-bogons

filter: fltr-unallocated OR fltr-martian

29



filter-set: fltr-unallocated

filter: {}

filter-set: fltr-martian

filter: { 0.0.0.0/8^+, 10.0.0.0/8^+, 100.64.0.0/10^+,

127.0.0.0/8^+, 169.254.0.0/16^+, 172.16.0.0/12^+,

192.0.0.0/24^+, 192.0.2.0/24^+ , 192.168.0.0/16^+,

198.18.0.0/15^+, 198.51.100.0/24^+, 203.0.113.0/24^+,

224.0.0.0/3^+ }

In this example the export attribute uses filter AS-IGNUM-OUT. This
filter is a reference to as-set object of the corresponding name. The as-set

object contains member attributes, which can be either ASNs or further references
to different as-set objects. In our example there are only two ASNs - AS29134
and AS51278. The parser has to find all route objects with origin attribute
that equals one of these two ASNs. Set of the prefixes specified by the matching
route object is the actual list of the prefixes allowed by this filter.

The second part of this example is the line import that contains compound
filter that utilizes two logical expressions AND and NOT. These logical expressions
connect the keyword ANY and the filter-set object fltr-bogons. The meaning
of the ANY keyword is self-explanatory. The filter-set object name has to
be resolved: The corresponding object contains an attribute filter with the
filter expression. The content of this particular filter in our example refers two
more filter-set objects that has to be further resolved in order to evaluate the
filter. The two final objects in the filter evaluation contain empty filter in case of
fltr-unallocated, which equals to constant negative result. The fltr-martian
contains a list of prefix expressions to match.

Set operators

There is also a possibility to define refinement and exception to the filters and
to nest these constructs. It is therefore possible to define refinements to refine-
ments, exceptions to exceptions, exceptions to refinements and so on. In principle,
refine statement means that both filters - left and right side of the refine key-
word have to match in order to execute action in the refinement. An example
from RFC 2622 shows simple use of refinement:

import: ... { from AS-ANY action pref = 1; accept community(3560:10);

from AS-ANY action pref = 2; accept community(3560:20);

} refine {

from AS1 accept AS1;

from AS2 accept AS2;

from AS3 accept AS3;

}

This is a brief version of the following equivalent filter:

import: ... {

30



from AS1 action pref = 1; accept community(3560:10) AND AS1;

from AS1 action pref = 2; accept community(3560:20) AND AS1;

from AS2 action pref = 1; accept community(3560:10) AND AS2;

from AS2 action pref = 2; accept community(3560:20) AND AS2;

from AS3 action pref = 1; accept community(3560:10) AND AS3;

from AS3 action pref = 2; accept community(3560:20) AND AS3;

}

Please note that the filters use yet not discussed filter element community(XX:YY),
which simply matches BGP community in the path vectors in question.

The function of except operator is to selectively change the result of more
general filter on the left of the keyword and add a finer filter that succeeds the
general one in evaluation order. In order to set relations among the filter expres-
sions there exist considerably complex rules that define how to apply multiple
levels of nested refine and except operators. General rule is that except state-
ment has the same precedence as AND, because it is semantic equivalent of AND

NOT expression.

Pre-defined keywords

The last important group of elements in filters are pre-defined words. The most
important filter is ANY. Another important and widely used keyword is PeerAS,
which matches only the same origin AS as the AS in peering selector. But there
are more additional actions and matches that are not essential for the language
itself. We are going to discuss some of them later, the rest is described in RFC
2622.

31



3. Related work on routing
management

3.1 Internet routing research

3.1.1 Data analysis

BGP routing characteristics

The Internet routing system contains a lot of data in the BGP tables and in
many supporting data sources as well. There are lots of Internet routing analyses
that refer to routing policies or work with available data. The most famous
long-term data analysis effort is the work by Geoff Huston of APNIC with his
series of papers, for instance [13], [14] and numerous presentations on networking
conferences. Most of his results are also available on the web site [15].

Moreover, there is a paper [16] that analyze the most fundamental question:
“Do routing policies have any effect on routing in the Internet?”. The asnswer is
“Yes.”.

One more summarizing paper on correlating BGP data is [17]. Even though
this paper’s purpose is to present a method for finding autonomous systems that
generate instability by repeatedly sending BGP updates, it is also interesting
because of the methods it devised and used. The most interesting part is the
inferring of AS topologies and correlation of different BGP update sources. This
work may serve as an inspiration for further work on routing policies validation:
More BGP update sources might be connected to the system in order to obtain
multi-lateral results that might be subsequently correlated.

Effects of routing policies

The paper [18] shows fundamental relation between routing policies and data flows
on data obtained from academic networks. The method is based on investigation,
how routing policies for both intra- and inter-domain routing can give rise to
violations of the triangle inequality with respect to RTT. Unfortunately, this
work is limited to studying of the implementation of routing policies only in
academic and research networks. These networks are known for clean design and
exceptionally good operation practices that are scarcely matched in the rest of
the commercial Internet. This fact leaves space for doubts about applicability of
the results to the ordinary networking environment.

Another related paper [19] published in 2000 captures the effects of routing
policies on convergence. The most interesting part of this paper is a formal
model of Internet route propagation that allows modeling of BGP convergence.
The model provides insight into the dynamics of route propagation which might
help with understanding the analysis of routing policies that will be presented
in this thesis. The paper concluded that the Internet convergence characteristics
are insufficient for deployment of real-time technologies and calls for better route
validation and authentication mechanisms. Interestingly, not much changed since
2000 in terms of route validation and authentication, yet the real-time services

32



like VoIP became a reality and convergence times in BGP have improved. The
reason is most likely deployment of faster CPUs in routers and greater density of
the Internet itself.

Inferring of routing policies

Another related work attempts to infer routing policies form BGP. The method
and results are described in paper [20] from 2003. It proves that routing policies
are widely deployed in the Internet and autonomous system operators use them
mainly to achieve load balancing or direct the traffic to the preferred path. The
presented method for inferring more information on routing policy of remote
AS relies on both BGP and RPSL in IRRs. The problem of this work is the
speculative nature of the method and small scale of the presented results.

Moreover, the paper [21] shows BGP configuration analysis compared to high-
level policy description. Even though the paper focuses on local misconfigura-
tions that might occur in an autonomous system and affects usually the directly-
connected neighbors, it also provides analysis of common BGP configuration pat-
terns and most frequent errors in BGP configuration. The conclusion of the
paper calls for more centralized and higher-level BGP management system based
on policy specification language that could be directly applied to the router.

Another method for detecting possible routing misconfigurations and attacks
on BGP is presented in paper [22]. The method is based on correlating known
data on distance between autonomous systems and validation of the geographical
location of the prefix originators from RIR databases. The method shows that
correlation among physical locations and span of the network exists and it can
be used to detect anomalies.

3.1.2 Routing description languages

Practical approach - RPSL

More general and higher-level research of routing and routing description exists
in greater extent. There are supporting papers that have been written prior to
the creation of the current set of standards or approximately at the same time.

Most notably, there is the paper [23] that was co-authored by the RFC 2622
authors. This paper provides a summary of the IRR system outline and reasoning
for some choices made.

Several papers [24], [25], [26] had been written in succession to endorse this
idea and to find new use cases for the RPSL or to analyze possible effects of
routing policies. The most representative example of this period is [27]. Authors
of this paper described the most common and widely used design patterns in the
Internet routing system and subjected them to critical analysis with respect to
common errors, failure modes, scalability issues and security concerns.

3.1.3 Theoretical approach

The paper [28] provides high-level view on routing policies and possible languages
and tools for capturing them. The most important contribution of this paper is
a creation of “Formal Definition of Path-Vector Systems”, which is an algebraic

33



description of the routing system. This served as the basis for the following
algebraic description of the routing policy and relation to the BGP routing in the
next chapter.

Another paper [29] shows different way of thinking about computer networking
from service oriented point of view and suggests employing more sophisticated
automation.

3.1.4 Trends and current research

S-BGP

The first related subgroup of current research that has certain overlaps with RPSL
comprises of Resource Public Key Infrastructure (RPKI) [31], [32] and Secure
BGP (S-BGP). These interconnected standards have been defined in RFC 6480
[30] and following series of RFCs 6481 - 6493. Even though the standards intend
to build an independent and cryptographically-secure delegation tree of resource
certificates that should coexist with both BGP and RPSL routing policies, it
might eventually supplement or replace the function of route objects in RPSL.

The papers [33] and [34] provide insight into the standard definition and into
intended operational practices and possible deployment procedures.

Implementation report [35] from 2014 describes current software and deploy-
ment status at the top levels of the resource delegation hierarchy. The paper [36]
shows that utilization of RPKI remains low.

BGP prefix hijacking analysis

The long history of malicious or accidental BGP hijacking has been described on
numerous occasions, namely in articles [37], [38], [39].

There is also a new (January 2016) research described in paper [40], which use
a method that is similar to this thesis - comparison of BGP data and a database
of routing policies constructed partially from RIPE DB. However, the intent and
focus of this work is different from mine.

Another direction to address this issue is a research of specialized automata
[43] that can model Internet routing system and could detect anomalies and
attacks on BGP.

Reactive languages

Rise of Software Defined Networking (SDN) has created an interest in reactive
languages1. Some projects use general purpose programming languages for defi-
nition of SDN controller functions and some have decided to research into special
purpose-oriented languages [41].

Example of such a language is Procera [42].
The most practically important and novel domain-specific languages for SDN

are Frenetic [44] and Pyretic [45].

1Reactive language is a programming language that facilitate functional reactive program-
ming - paradigm oriented toward data flows and the propagation of changes.

34



SDN management

NetIDE is one notable project that has set an objective to create an implemen-
tation of vendor-independent system with its own network description language
for SDN configuration. The project has created an outline of the new networking
management platform in papers [46] and [47]. Even though this project is not
focused on BGP management, it has great potential to extend in that direction
because of its emphasis on scalability and universality.

Route servers

Operation of route servers is a specialized task and the Internet Draft [48] sum-
marizes the main operational aspects that are related to multi-lateral peerings.
The document describes the special relationships among ASes that are difficult
to capture by the current RPSL.

NETCONF

Another notable effort that is related to management of networks is NETCONF.
It has been defined in RFC 6241 [67] and in a series of following documents.
The scope and focus of NETCONF is different than in RPSL. RPSL is a high-
level configuration of the Autonomous System and NETCONF is a management
protocol for configuring and operating the routers.

There is obviously a missing component that would interconnect both tech-
nologies and transform RPSL data to NETCONF and apply the results to the
routers. A new initiative [54] attempts to fill this gap. This project is going to
be described in more detail in later sections that analyze the existing software.

3.2 RPSL development

A brief history of the documents RFC 2622 [5] and RFC 4012 [6] has been de-
scribed in the section 2.2.1.

There is also a supplemental document RFC 2650 [12] called “Using RPSL
in Practice”. Nonetheless, many aspects of RPSL are established only by the
reference implementation. The current de-facto standard and reference imple-
mentation of RPSL-related tools is IRRToolset [49].

Multiple parties participated in RPSL standard development and in develop-
ment of related tools as well. Even though the technology exists for more than
20 years, the development is rather slow.

RPSL development efforts can be partitioned into three groups:

1. Tools development,

2. data analysis,

3. standard amendments and development.

Problem of the RPSL standard is that it is maintained solely by the com-
munity. There is only very limited involvement of networking hardware vendors,
researchers in the networking field and standardization consortia that are usually

35



formed from the two previous groups. These companies and consortia were the
most productive authors of the new networking standards in the last decade. It
seems that revision of RPSL has been left behind even during the peak of research
effort directed into reactive languages and network descriptions, which had been
motivated by SDN research.

The most active, though still relatively very limited development and research
effort, that concerns RPSL, takes place in RIPE community. This community is
the RPSL’s place of origin and it is active in many related topics. The community
uses specific form of communication that is based on mailing lists and rather
informal meetings on conferences that steer the formal community bodies called
working groups. The basic difference in delivering results to the community lies
in the specific point of view: The community members are usually interested in
raw data and simple data interpretation. However, the point of interest has to
be kept strictly practical for operation of the Internet and no space is left for
speculations. The basic and most respected documents are only RFCs.

Direct responsibility of the RIPE community is limited to RIPE database.
Development of the standards in form of RFC documents is off scope and should
be done within IETF, but few minor amendments to the existing documents have
been created and implemented within RIPE community.

The community is therefore the obvious starting point for research of the
RPSL-related topic.

3.2.1 Tools development

IRRToolset

The most important tool for RPSL is the reference implementation - IRRToolset
package [49]. It offers feature-complete and practically usable software tools that
can interpret RPSL objects, help configure and operate Autonomous System
border routers and check portions of RPSL code.

IRRToolset features

The IRRToolSet has been written in C++ and it consists of several tools and
common libraries shared among them. There is a basic low-level tool intended
for reuse in scripting and for debugging called peval. There is also syntax check-
ing tool rpslcheck. The most important tool in the suite is RtConfig that
translates routing policies into configuration formats for several router operating
systems, most notably Cisco IOS and Juniper JunOS. There are also tools that
can be used to compare routing paths in BGP with RPSL policies. Most notably
prtraceroute that validates actual routing in an IP network discovered by a
method derived from standard traceroute tool. Another tool is prpath, which
lists available paths that can be matched in BGP tables.

IRRToolset issues

The problem of IRRToolset lies in the maintenance. The project is Open Source,
however it does not have active community of users and developers. The main-
tenance responsibilities have been transferred from one maintainer to another

36



several times and there is not much progress in the project, according to the
presentation [62].

It has been originally created at the Information Sciences Institute at the
University of Southern California as part of the Routing Arbiter project [50].
Responsibility for the IRRToolSet project passed to the RIPE NCC in 2001 in
order to add multi-protocol support, which is basically the support for IPv6.
Then the Internet Systems Consortium, took over the project in 2004 in order to
provide long term support of the stable organization.

Libraries and other projects

Apart from IRRToolSet there is a PERL module called RPSL::Parser [51], which
is unfortunately only a RPSL syntax parser. It does not have a mechanism for
full interpretation of the filters or any mechanism for recursive resolutions of the
filter elements on its own.

Another attempt to create comprehensive library and tool set for parsing
and transforming RPSL into router configurations in PERL was my own project
called BGF [52]. The project is now abandoned despite the fact that it reached
fairly mature status at its time. It has almost complete parser, interpreter and a
communication engine. Therefore, it can resolve the RPSL objects and query for
missing parts autonomously.

There is also (presumably incomplete) support for RPSL build in NOC project
[53]. Moreover, there is a myriad of small tools, written for single purposes, put
to GitHub or kept without proper licensing somewhere on the web. These tools
can parse RPSL, reuse any mentioned general tools or do something else that
concerns RPSL.

There is low-traffic, nevertheless still existing discussion on RIPE mailing lists
about RPSL tools development. The prevailing attitude is that a redesign of the
tools and of the standard is needed, but no complete proposal has ever been
introduced. One example of the most recent (May 2016) discussion on this topic
is a thread about future of RIPE DB [56]. The interesting point in this discussion
is the fact that for the first time there is someone seriously calling for complete
abolition of the current tools and data models. The most important argument for
that seems to be the limitation of the current plain-text based data model as well
as obsolete software and operational procedures that are bound to the current
data model. The following quote from Denis Walker’s e-mail sent on May 23,
2016 provides a summary of the proposal:

What I am suggesting is a serious review of the data model and the
database design to identify areas that could be improved in an orga-
nized, backwards compatible, step by step process.

mantaBGP

The missing component between RPSL and NETCONF from the previous NET-
CONF section is currently under development. The project [54] has been recently
renamed from ENGRIT to mantaBGP. The purpose of the project is to create an
open-source, modern and comprehensive network management tool in Python.

It should use RPSL as one of the inputs and NETCONF as an output.

37



ENGRIT/mantaBGP component called LibRPSL should become a complete
Python RPSL library, parser and interpreter. The project is currently (May 2016)
developed by NLNet Labs - one of the most respected European not-for-profit
Internet technology research companies.

This project is particularly interesting because it re-uses parts of RPSL parser
from bgpcrunch software code that has been created for this thesis.

The source repository of the mantaBGP project is accessible on GitHub [55].

3.2.2 Data analysis

RIR data analysis efforts

In 2001, RIPE Routing Working Group asked RIPE NCC and any interested
party in general to participate in an effort outlined in the document ripe-201
[57]. This document calls for crosschecking European Internet routing against
data registered in the RIPE Routing Registry. Both motivation and the outlined
crosschecking process are thoroughly described and goals of the process are set
in the document.

Even though the timeline has been discussed in the last section of the ripe-201
document, no final date has been set and I am not aware of any formal paper
on results of this initiative. However, there is a web page [58] that refers to this
document, which summarizes particular additions to different software tools and
services of RIPE NCC.

Another comparable effort that intended to measure accuracy of IRRs in the
past has been represented by the tool called Nemecis. The paper [59] describes
this tool and brings preliminary results, however I was not able to find any other
data related to this project that I could study or compare with my own obser-
vations. The source code of the tool has not been made public to the paper
publication date and the authors have declined my recent request (May 2016) for
access to their old code.

3.2.3 Standard amendments and development

The documents RFC 2622 [5], RFC 4012 [6], RFC 2650 [12], the IRRToolset
software [49] and another libraries and documents that concern RPSL form an
impressive ecosystem. However, there are quite severe problems: The basic idea,
the standards and the software have been created in 1990’s with respect to the
Internet of that time. The only update of the RPSL since then was RFC 4012
that added support for IPv6, multicast and a new level of extensibility that was
actually never used. The fundamental approach, basic syntax and semantics of
RPSL stays almost the same as in the ripe-181 [11] that came out even before
RFC 2622. Nevertheless the Internet, routing and associated technologies have
evolved rapidly since then. Therefore operation principles and best practices as
well as business environment nowadays are completely different from the mid-
1990’s, when the RPSL was created.

38



Amendments reflecting operators needs

Most of the amendments to the standard are only small changes in the database
operational procedures, done by the proper working groups or IRR management
departments and the form of changes varies, from full RIPE document to simple
software changes.

Apart from major amendment of RFC 4012 that introduced multi-protocol
support in 2005, there has been only one known effort to amend RPSL standard
[60]. The purpose of the amendment is to provide an effective tool for defining
routing policies for paths that traverse route servers in Internet Exchange Points
(IXP).

A route server is a BGP hub in IXPs, it usually facilitates exchange of routes
but does not carry the traffic, which is routed directly over the L2 infrastructure
of the IXP. The basic challenge of route server operation lies in limiting or se-
lectively allowing routing in a certain direction while other directions remain in
the opposite state. The current solution to this problem is based on exploitation
of signaling based on BGP communities, which is unnecessarily complex and dif-
ficult to manage. In addition, the proposal can alleviate another problem with
length of the BGP communities that has been created by adoption of RFC 6793
[61].

Standard revision efforts

The community members have known for a long time that the data in Internet
Routing Registries are doubtful both in correctness and extent. Even though the
overall level of the data quality is difficult to measure, people devised a hypothesis
that the technology needs an update to have better chance of capturing real
internet routing and be more useful for operation of the Internet.

As a consequence of these opinions there has been the proposal [62], which
has been oriented towards the community and called for the start of discussion
about the future evolution of the Internet routing system.

There are even proposals for rebuilding the entire routing system including
both BGP and current network design patterns. One possible approach is based
on Locator/Identifier Separation Protocol (LISP) [63]. Work on integration of
LISP with current Internet is summarized in papers [64] and [65].

Another inter-AS routing management standard is now (May 2016) being
developed by NLnet Labs under name Routing Documentation Language (RDL).
The project is now in early draft [66] phase.

3.3 Other relevant resources

3.3.1 RPSL-related reports

The report [68] has been presented on RIPE 64 Toolset BoF2. It described the
utilization of RPSL and IRRToolSet in large scale at DeutscheTelecom. Interest-

2 Birds of Feather (BoF) is an informal meeting on RIPE conference that might have full
charter, but the topic is too broad or experimental to fit any existing working group, but too
focused to be presented on a plenary session.

39



ing point of this presentation is not only the scale of use but also the great depth
of intergration among RPSL and network operation and provisioning tools.

On the contrary, RPSL has been criticized shortly after publication of the
specification. In the discussion in mailing list thread [69] there are serious ques-
tions about the IRR system and RPSL. Many of them are still not answered
today.

3.3.2 Supporting technical standards

Process of creation and amending Internet standards is described in [70] and [71].
These standards are relevant for conclusion phase of this thesis and for setting
future work outline.

40



4. Evaluation of routing policies
in the Internet

4.1 Use cases for routing policies

4.1.1 Usage of RPSL in RIPE region

There are three basic use cases for routing policies captured in RPSL based on
the network type:

1. End (stub) network needs to announce its resources,

2. Transit network needs to validate announcements of its customers,

3. Route servers need to validate all passing announcements.

The publication part of the RPSL utilization process is usually a manual work.
Creation of RPSL requires proficiency in RPSL, understanding of the network
being described and a considerable effort.

The validation part might be automated to a certain extent and might use
IRR as the only data source or on the contrary it might completely ignore public
RPSL sources and use its own data in arbitrary format.

End network

The end network needs to describe the following facts:

• For each ASN there has to be exactly one aut-num object,

• For each IPv4 prefix there has to be at least one route object that captures
the binding between the resource and the originating AS that announces
the prefix.

• For each IPv6 prefix there has to be at least one route6 object that has the
same function as its IPv4 counterpart.

• Each eBGP connection has to be a part of a selector in at least one pair of
import and export records that captures filters for the eBGP connection.

In the ideal case, the configuration of AS border routers should exactly corre-
spond to the RPSL routing policies. In addition to it, the filters should exactly
correspond to the filters defined on the routers and describe all changes and
modifications that the routers apply on the prefixes in both directions.

The ideal case is however seldom achieved in reality. The difference is usually
in filters, because the level of detail that is needed to successfully announce an
IP prefix to the Internet is much lower than the common complexity of the cor-
responding BGP configuration. Many Autonomous System operators prefer to
arrange details of the eBGP connection and filters directly with the neighboring
AS operators without use of IRR and RPSL. In that case they may fill basic

41



filters that allow all prefixes in all directions to avoid any future conflict of the
restrictive filters and any announcement.

Too restrictive filters that conflict with certain announced prefix can be de-
tected by comparing the announcements and the filters. On the contrary, the case
of too permissive filters is very difficult to detect without detailed information
about the remote networks.

Transit networks

Transit networks usually announce their own prefixes and the process is the same
as in the end network. In addition the transit networks also accept and forward
prefixes of other parties. Since the default configuration of BGP propagates all
learned prefixes to all directions the transit AS actually need less restrictive filters
in certain directions to allow propagation of more prefixes.

Moreover the transit AS should filter input prefixes to prevent any malicious
or accidental prefix import and subsequent leakage.

Route servers

Operating a route server means interconnecting many autonomous systems and
interchanging routing information among them according to given rules. Even
though the route server does not carry traffic its role as decision-making party is
very important. Route servers has great potential for leaking unwanted routes.
However the operators are aware of that and in order to protect trustworthiness
of the route server and the company operating it, they usually introduce strict
and more comprehensive filters.

4.1.2 Prefix leakage

Prefix leakage or more formally path vector leakage is a condition when a router
announces certain path vectors that it is not supposed to announce even though
those path vectors are in its routing table.

The prefix leakage has a potential to cause three types of problems:

1. Injecting new prefixes into DFZ despite the fact that their originator is not
entitled to announce them.

2. Redirecting traffic to wrong destination.

3. Redirecting traffic via unexpected route.

The first possibility creates a potential for malicious actions that involve the
leaked prefix. The prefix might be used as a temporary source for spam or
different kinds of attacks.

The last two problems are the most common cause of traffic blackholing -
announcing routes but not delivering all packets to the destination of the route.
The blackholing condition might be caused by different sources of redirection:

• Designed malevolent announcement of a prefix.

• Accidental manual announcement of a prefix.

42



• Leakage of BGP routes.

• Leakage of internal routing protocol routes.

All these conditions could direct the traffic to local blackholing route - Null0
interface for instance, or it can route the traffic towards an unexpected path that
is not capable of carrying the packets to their destination - either because of
capacity or configuration problems along the path.

4.2 Scale and accuracy hypothesis

4.2.1 Hypothesis statement

Statement interpretation

The previously stated hypothesis “The utilization of RPSL in the current Internet
is sub-optimal both in scale and accuracy of the information. The situation is not
improving and there is no perspective of change in this trend.” is too general to
be directly proven.

The possible interpretation with respect to the problems described above is
that the consumers of routing policies, namely transit autonomous systems and
route servers, cannot verify the incoming prefixes from their neighbors solely on
RPSL evidence basis.

This statement is better, however it still concerns actions of many unknown
parties. We need to set a threshold from which the information in IRR is not
useful anymore. Then we can measure accuracy of the data in IRR with respect
to the data in DFZ and compare the results with the threshold.

Accuracy threshold

The threshold is obviously individual for each type of network and application.
Despite the differences among networks and users we can surmise that Pareto
principle, also known as “80-20” rule, applies to RPSL as to any other complex
software system. There is enough evidence in [72] for claiming relation of project
success and Pareto principle in software engineering. Pareto principle has been
studied in other fields in [73] and using it as an argument for distinguishing
majority seems reasonable. However, the more general question of measuring
success of an unique project remains open and falls out of scope of this thesis.

For declaring RPSL standard successful according to Pareto principle, it would
have to cover 80% of cases with the RPSL data. Thus at least 80% of prefixes in
the Internet routing system should pass validation. The rest 20% of cases might
be too complex to be accurately captured in IRR. Therefore minor validation
failures might happen in these 20% and that failures are deemed harmless for the
entire system.

Cause and effect

There are two possible outlooks on the validation failures:

43



1. The data in IRR are too unreliable. Because of that, an individual AS op-
erator decides not to use the data for BGP filtering. It causes discrepancies
between IRR and BGP.

2. The AS operators do not use IRR data for BGP filtering. Therefore an
individual AS operator does not care about accuracy and reliability of IRR
data that he is supposed to maintain. That causes discrepancies between
IRR and BGP.

The most important problem of the analysis is the fact that we can only
measure the number of differences in expected paths according to routing policies
and the actual path vector propagation in DFZ, but we can not decide on the root
cause. It has a practical implication in form of a speculative question: “Who is to
blame for the differences between IRR and BGP?” Unfortunately, this question
remains unanswered. However, related topic will be discussed in chapter 6.

4.2.2 Definitions

Regardless of the culprit and the root cause that we can only speculate on, we
can provide the formal definition of the planned measurements.

Path vector

Let ~ρ = (p,~γ,M) be the path vector that consist of prefix p, AS path ~γ and
metrics M . From ~γ = (a0, a1, ..., an), where aj are autonomous system numbers,
we can construct an expanded path:

~P ≡ ((a0, a1), (a1, a2), ..., (an−1, an))

It contains all the autonomous systems the prefix has traversed to get from its
source to the observation point. The path is captured in the usual order: On the
left side is the observation point a0 and on the right side there is the originator’s
AS an.

Hop

It proves useful to name the transition from one AS to another a hop. Let hj be
the hop from AS aj+1 to aj:

hj ≡ (aj, aj+1)

IRR data coverage

To express the fact that we have data for an Autonomous System a so we can look
up related route and aut-num object in IRR, we define the following function:

d(a) ≡
{

1 if we have authoritative data for the ASN a
0 otherwise

44



RIPE DB data coverage

In our case, this function is equivalent to the function R(a) that indicates the AS
a belongs to RIPE NCC service region:

d(a) = R(a) ≡
{

1 if ASN a operates withing RIPE NCC service region
0 otherwise

Route object validation

To check route object validity we define the function:

r(p, o) ≡
{

1 if d(o) = 1
∧

there is a route object with prefix p and origin o
0 otherwise

Hop validation

Let ehj be the export filter in AS aj+1 towards AS aj and let ihj be the import
filter in AS aj from AS aj+1.

For validating hops we define functions:

ve(p, j, (aj, aj+1, ..., an)) ≡


1 if d(aj+1) = 1

∧
there is aut-num object

for AS aj+1 with matching export line
that defines the filter ehj and
the filter matches the prefix p

0 otherwise

vi(p, j, (aj, aj+1, ..., an)) ≡


1 if d(aj) = 1

∧
there is aut-num object

for AS aj with matching import line
that defines the filter ihj and
the filter matches the prefix p

0 otherwise

Path decidability

The path decidability is defined by the following function:

D(p,~γ) =
∏
aj∈~γ

d(aj)

Path validation

A complete validation of j-th hop is described by the following function:

v(p, j, (aj, aj+1, ..., an)) = ve(p, j, (aj, aj+1, ..., an)) · vi(p, j, (aj, aj+1, ..., an))

Therefore path validity can be defined by this function:

V (p,~γ) ≡ r(p, a|~γ|) ·
|~γ|−1∏
j=0

v(p, j, (aj, aj+1, ..., a|~γ|)) · ve(p, |~γ|, (a|~γ|))

45



4.2.3 Failure set indicator functions

We can evaluate a “validity indicator” V for each prefix p and associated AS path

~γ in DFZ. Moreover, we can define indicator functions for any type of errors based
on recognition functions that can analyze each hop.

Route validation failure

For instance we can define a function:

r̄(p, o) = ¬r(p, o) ∧ d(p, o) = 1

This is an indicator of route validation failure. There are two major types of
errors concerning route objects: r̄1, r̄2. The semantics of the two error types will
be explained later.

Route validation completeness

Let ∆ be the set of all path vectors ~γ in DFZ, then following obvious equations
hold:

|{(p,~γ)|r̄(p, o) = 1, ~γ = (a1, a2, ..., an−1, o), (p,~γ) ∈ ∆}| =

= |{(p,~γ)|r̄1(p, o) = 1, ~γ = (a1, a2, ..., an−1, o), (p,~γ) ∈ ∆}|+

+|{(p,~γ)|r̄2(p, o) = 1, ~γ = (a1, a2, ..., an−1, o), (p,~γ) ∈ ∆}|

|∆| = |{(p, (a1, a2, ..., an−1, o))|r(p, o) = 1, (p, (a1, a2, ..., an−1, o)) ∈ ∆}|+

+|{(p, (a1, a2, ..., an−1, o))|r̄1(p, o) = 1, (p, (a1, a2, ..., an−1, o)) ∈ ∆}|+

+|{(p, (a1, a2, ..., an−1, o))|r̄2(p, o) = 1, (p, (a1, a2, ..., an−1, o)) ∈ ∆}|+

+|{(p, (a1, a2, ..., an−1, o))|d(o) = 0, (p, (a1, a2, ..., an−1, o)) ∈ ∆}|

Hop validation errors

The same inversion function V̄ for decidable path vectors can be defined for the
V function that validates paths and similar sub-types of V̄ : V̄1, V̄2, ..., V̄t can be
defined analogically. The analogous error indicators might be extended to hop
validation, where the definition of inversion function for j-th hop depends on
decidability of aj and aj+1 in AS path:

v̄(p, j, (aj, aj+1..., an)) = ¬v(p, j, (aj, aj+1..., an)) · d(aj) · d(aj+1)

The semantics of these error indicators will be described in greater detail later
in this thesis.

46



4.2.4 DFZ subsets

The data available in form of daily BGP dumps and RPSL data archive allows
us to evaluate the indicator functions for each path vector and construct subsets
of DFZ. The table 4.1 contains a brief list of fundamental subsets.

Indicator function Routing semantic
d(a) data are available for AS a
d̄(a) AS a can not be resolved in RIPE DB
r(p, o) prefix p can be originated by AS o
r̄(p, o) prefix p should not be originated by AS o
vi(p, j, ...) prefix p matches input filter in AS aj from AS aj+1

v̄i(p, j, ...) prefix p does not match input filter in AS aj from AS aj+1

ve(p, j, ...) prefix p matches export filter in AS aj+1 towards AS aj
v̄e(p, j, ...) prefix p does not match export filter in AS aj+1 towards AS aj
v(p, j, ...) prefix p passes filters on hop between AS aj and AS aj+1

v̄(p, j, ...) prefix p fails at least one filter on hop (aj, aj+1)
V (p,~γ) path vector with prefix p and AS path ~γ is valid
V̄ (p,~γ) prefix p with AS path ~γ fails at least one hop filters

Table 4.1: Subset indicator functions

The most interesting subgroups of sets derived from r̄(p, o) function are the
two route object failure types:

1. No matching route object exists for the prefix in question.

2. At least one matching route object for the prefix exists but none of the
objects has a matching origin attribute.

Obviously the first type of error is either a result of negligence or product of
wide-spread misconception about the validity of route objects: People tend to
think that a less specific route object covers all more specific announcements,
which is not true.

The second type of error represents a real conflict that might be either the
result of much more serious negligence or the indicator of IP prefix hijacking.

The failure types derived from v̄(p, j, ~γ) are the following:

• The aut-num object for AS aj in AS path does not exists, even though the
AS belongs to RIPE NCC service region, and therefore the object should
exist.

• The aut-num object for AS aj+1 in AS path does not exists, even though the
AS belongs to RIPE NCC service region, and therefore the object should
exist.

• Missing a matching import line in aut-num object for AS aj that allows
importing routes from aj+1 to aj.

• Missing a matching export line in aut-num object for AS aj+1 that allows
exporting routes from aj+1 to aj.

47



• The filter for exporting routes from aj+1 to aj exists but does not match
the prefix.

• The filter for importing routes to aj from aj+1 exists but does not match
the prefix.

4.2.5 Evidence for the hypotheses

To collect evidence supporting the hypothesis we need to measure the size of the
subsets of DFZ, especially the subsets that represent errors of various kinds and
show that it consistently falls outside of limits we set.

The analysis is the topic of the following sections as well as more detailed
analysis is added to the thesis as appendix A. However, high-level results show
that paths compared to filters in aut-num objects by far do not reach the limit
of 80% correct paths. Surprisingly even the trivial relation between originators
and route objects is showing unfavorable ratio of errors.

IPv4 route objects

The figure 4.1 shows that the percentage of origin validation failures in route

objects is consistently over 20% in the entire analysis period - starting 2012 and
spanning to the end of 2015. The chart in figure 4.2 shows absolute value time
series of the validation results in this period. The result for each day is equal to
the size of sets

{(p, o)|r(p, o) = 1, (p, (a0, ..., an−1, o)) ∈ ~γ, (p,~γ) ∈ ∆}

for line marked “OK” and

{(p, o)|r̄(p, o) = 1, (p, (a0, ..., an−1, o)) ∈ ~γ, (p,~γ) ∈ ∆}

for “validation failure” line. The ∆ is DFZ snapshot of a day within the obser-
vation period.

IPv6 route objects

The figure 4.3 shows the percentage of origin validation failures in route6 ob-
jects for IPv6. The result is slightly better than the IPv4 case, however there are
extended periods when error ratio exceeds 20%. The chart in figure 4.4 shows
comparison of absolute numbers of the validation results, which are naturally
lower for IPv6 than for IPv4.

Current deployment of IPv6 in the Internet concerns mainly technical leaders
in the industry. It is sensible to estimate that the quality of routing paths and
data in IRR are most likely going to deteriorate when less technically-capable
networks finally connects to IPv6 Internet. Despite the prediction the trend is
not yet visible. Perhaps it is too soon to determine the trend, because IPv6 is still
not an absolute necessity (in May 2016), so the less-capable network operators
might still be avoiding it.

48



 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure 4.1: IPv4 route origin validation percentage

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
ro

u
te

s

Date

OK

validation fail

Figure 4.2: IPv4 route origin validation results

49



 16

 17

 18

 19

 20

 21

 22

 23

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure 4.3: IPv6 route origin validation percentage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
ro

u
te

s

Date

OK

validation fail

Figure 4.4: IPv6 route origin validation results

50



IPv4 paths

The paths are more difficult to validate from the particular data that I have.
The main problem is that my observation point (AS29134) uses a network as
the primary upstream provider, which primarily operates outside of RIPE NCC
service region. The consequence is that RIPE DB does not contain authoritative
data for this AS, which is equivalent to d(a1) = 0. Thus D(p,~γ) = 0 for each
path that traverses this AS holds.

Even though the majority of paths are undecidable under the strict rules,
we can still decide on each hop in the path and count hops independently. The
idea is that we do not need to validate the entire path to measure the number
of detectable failures in hops along the path as well as to count the valid hops.
Formally, we count size of the set

{(p, j)|v(p, j, (aj, ..., a|~γ|)) = 1 ∧ r(p, a|~γ|) = 1, aj ∈ ~γ, (p,~γ) ∈ ∆}

for the positive (“OK”) set and

{(p, j)|v̄(p, j, (aj, ..., a|~γ|)) = 1, aj ∈ ~γ, (p,~γ) ∈ ∆}

for the negative (“failure”) set.
The figure 4.5 shows time series of valid and failed hops in absolute numbers

and the figure 4.6 shows percentage of errors. All types of hop filter failures are
summarized for better visibility.

The percentage time series shows that the minimum error ratio in the mea-
surement period is 26.7% and maximum is 67.4%.

The reason for this high variability is that the observation point has changed
the main upstream networks several times: The first change occurred gradually
from September to November 2012. Second change occurred in May 2014, third
in January 2015 and then in March 2015 and July 2015. The first upstream hop
has a great potential to change the statistics since average path length to all IPv4
prefixes in DFZ, from my observation point, is approximately 3.8.

IPv6 paths

The figure 4.7 shows the same type of results for IPv6: Time series of valid and
failed hops. And the figure 4.8 shows percentage of errors. The results for IPv6
are much worse than for IPv4: Minimum failure ratio in the observation period
is over 72% and maximum under 86%. Fluctuations are similar and the reason
for them is analogous as in IPv4 case.

Summary

It would be too early to conclude the analysis before gaining deeper understand-
ing of the relations among data and the RPSL. At this point we can say that
the evidence supporting the hypothesis concerning scale and accuracy of IRR is
strong enough not to reject it. Deeper analysis of the IRR and DFZ data will pro-
vide enough evidence for conclusion in favor of the hypothesis later in following
chapters.

Finally, the detailed analysis of the available data is provided in the appendix
A.

51



 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
h

o
p
s

Date

OK
validation fail

Figure 4.5: IPv4 hop validation results

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure 4.6: IPv4 hop validation percentage

52



 0

 5000

 10000

 15000

 20000

 25000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
h

o
p
s

Date

OK
validation fail

Figure 4.7: IPv6 hop validation results

 72

 74

 76

 78

 80

 82

 84

 86

 88

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure 4.8: IPv6 hop validation percentage

53



Operational experience shows that information in route and route6 objects
is considered more useful than import and export filters in aut-num objects.
This observation is in accordance with the error ratios: The percentage of errors
in route and route6 objects is closer to the suggested 20% limit than the hop
validation results that give little hope for end-to-end path validation.

Another argument in favor of the hypothesis is that if we marked the prefixes
that failed either origin filter or path verification as route leaks and decided to
filter them out, we would disconnect major portion of the networks and render
the filtered Internet connection most likely unusable.

54



5. RPSL

The previous chapter focused on analysis of BGP paths with respect to RPSL
data. This chapter is going to analyze RPSL itself. RPSL is a language and
therefore it is only a tool for describing BGP configuration. Instead of creating
a meta-language and attempting to analyze the language from theoretical point
of view, we will explore tools and steps needed for practical utilization of RPSL:
Creation of routing policies in RPSL, publishing them and using our own or
others’ routing policies for configuring routers.

5.1 RPSL decomposition and semantization

The theoretical analysis of the routing languages has been provided by [28]. The
reasoning about the language might occasionally refer to theory of automata and
theory of computational complexity.

5.1.1 RPSL language categorization

Even though I am not aware of any formal proof of RPSL language categorization
into Chomsky hierarchy, we can assume for this chapter that since we need context
sensitive parser to parse certain RPSL statements, it has to be context-sensitive
language (type-1 grammar). The common consensus, based on reasoning in [74],
is in agreement with this categorization.

5.1.2 IRR components

Apart from the language specification there are important software features that
affect use of RPSL in practice. The most important ones are the IRR databases1.
The reason for the tight bond with the IRR database software is that there are
three basic operation with RPSL:

1. Searching objects: This task is usually performed by the IRR database or
by third-party software, but always with IRR DB original data.

2. Parsing objects and collecting data: This is usually a responsibility of the
client that connects to IRR DB. The most important part of this phase is
recursive resolution of the referenced object elements.

3. Semantic analysis of the obtained RPSL data and their translation into
internal data representation: This phase is clearly application specific task.

5.1.3 RPSL data sources

The RPSL specification defines an object as a block of text. Objects are separated
by blank lines. The attribute is defined as a line or lines that contain attribute
name and data. Each object type has a primary identifier, which is an attribute
that has the same name as the object type in most cases.

1IRR database is a collection of text files that contains RPSL objects.

55



The identifiers and certain selected attributes are class keys. It means that
these attributes are designated to serve as lookup keys. The details of search-
ing the RPSL objects in the database are left for further specification as an
implementation-specific detail by the RPSL standards.

Nonetheless, utilization of RPSL data depends on the way of requesting and
obtaining the data and on ability to search them. The traditional way is based
on publishing the database over FTP in the form of text files and providing
interactive whois service. Unfortunately, these two access methods does not seem
to facilitate the common use cases well.

Whois protocol

In case of the whois access, the standardized protocol is only an envelope for
transmitting arbitrary data, and therefore the IRR database has to define and
implement its own data access protocol. In case of RIPE NCC, the protocol is
bound to RIPE Database software and is defined in the official documentation
[75]. Other RIRs have either their own database software and their own protocol
or use the open-source, the most popular and the most successful software RIPE
Database.

The most severe problems of this access method are:

• Fragmentation of the access protocol and lack of standardization,

• limited support for bulk queries,

• round trip times that slow down recursion,

• limitations of the whois protocol that impose restrictions on data content,

• lack of data authentication,

• lack of central registry,

• lack of transactions and susceptibility to race conditions when data are
modified by third-party.

There are certain methods for overcoming or alleviating some of the listed
problems. For instance RIPE DB supports “pipelining” method for issuing mul-
tiple requests in one session to reduce problems related with round trip time.

A new IETF committee was formed in 2003 in order to lift the limitations
on the content that results from whois protocol and to create a new standard for
looking up information on domain names and network numbers. Numerous RFC
documents were created to define a new protocol called Internet Registry Infor-
mation Service (IRIS). In 2013, the IETF acknowledged thet IRIS had not been
a successful replacement for whois and it rendered the new protocol irrelevant.
The primary technical reason for that appears to be the complexity of IRIS.

Text files

The supplemental method of publishing data in the form of text files is even more
difficult to use because it requires the client application to implement searching in
the IRR data. Searching in the IRR data is a complex task because the application

56



needs to partially parse the files and objects in files and to build index tables to
search in the IRR data. The data in files are usually provided in random order
and back-references in objects require complete indexes and creation of complex
meta-data.

The problem is not only the added complexity of searching that is a prereq-
uisite for any simple task that needs to issue bulk queries to any IRR. Another
problem lies in the scale: IRR is a data source that may contain information about
any possible route in the Internet. Describing not only the existing routes but
any potential routing path is much more space consuming. In fact, the current
(May 2016) unpacked RIPE DB text dump is approximately 5 gigabytes.

RESTful API

Even though the standardization effort that created a successor for whois failed,
RIPE NCC and ARIN started to provide the IRR data through RESTful web
services. A new effort to standardize this type of service started in 2012 and
several RFC documents [76], [77], [78], [79], [80] have been produced. This new
type of service lifts many limitation of whois, the downside however is that it
adds more complex and demanding HTTP and HTTPS transport protocols.

5.1.4 Parsing RPSL objects

There are two known general approaches that can be applied to parsing RPSL
objects:

1. Using Extended Backus–Naur Form metasyntax to describe the context-free
envelope of the object and then decompose the contextual part.

2. Create a data model in a particular programming language and use lazy de-
composition approach, which is straight-forward in programming languages
that support lazy evaluation.

EBNF parsers

Both approaches have advantages and disadvantages: The Extended Backus–Naur
Form (EBNF) description is relatively simple, the EBNF descriptions for RPSL
objects exist and existing EBNF parser libraries can be used.

The disadvantage is an addition of an unnecessary step between the RPSL
and internal representation, addition of an overhead of the EBNF parser and
addition of certain restrictions that depend on the parser implementation. The
most important restriction is that the parser have to parse the entire object at
once. This does not make sense in case of bulk operations when we need to
extract only small portion of the objects.

In this case it proves to be faster and simpler to parse the textual represen-
tations of the objects by regular expressions or to filter the objects before using
general-purpose parser. This combined approach might be the best way when
we need complete coverage of RPSL and reliable syntax checking, it is however
potentially both complex and slow because it might have to duplicate work.

57



Lazy data model

Creation of lazy data model is more a work-flow management method and it would
need some parser or parsing engine in any case. The difference is that we can
resort to simpler parsers like regular expressions and we can capture the context in
the object model that hold links to both processed data and unprocessed textual
fragments that wait for the explicit requirement to parse them due to the lazy
evaluation principle.

I decided to use this model in my RPSL library bgpcrunch after evaluating
the previous approach and after making a conclusion that it would take too much
overhead to completely parse all the objects in the daily database dumps in order
to be able to search in them.

The lazy data model provides more insight into the parsing process and allows
to skip unnecessary information and parsing steps to speed up the process. An-
other advantage is that this process can directly construct the resulting flat data
structures on demand, because it is able to immediately lookup any identifier and
replace it with the resolved information.

An obvious disadvantage of this approach is greater complexity that is directly
dependent on complexity of RPSL and on the need for deep understanding of both
the programming language and the RPSL and their overlaps and differences.

5.1.5 Semantic analysis and translation

Known applications that use RPSL falls into following categories:

• Syntax checkers

• Router or route server configurators

• Path resolution tools

• Statistic collection tools

• General purpose libraries

Apart from syntax checker, all other types of software need semantic engine
that is able to interpret information in RPSL.

Issues of RPSL semantics

The objects described above carry different types of data. By connecting the
data together it is theoretically possible to construct configuration of routers in
the chosen AS. It means that RPSL might contain information like IP addresses
or routers, configuration of BGP peers and BGP filters. The problem of RPSL is
that the information is stored in an unusual format and in different linked objects.

There are major issues of the RPSL parsing:

• RPSL objects can contain comments and unstructured fields that can be
ignored.

• RPSL objects can repeat themselves with minor differences. Repetition
rules are different for each object type.

58



• RPSL objects can be searched either by the identifier or by any key at-
tribute.

• -set objects might refer to another -set objects.

• -set object members might be appended by back-references from the ob-
jects of the compatible type.

• Selectors on import or export lines in aut-num object can be sets.

• Selectors on import or export lines in aut-num object might be repeated
or overlap with previous selectors.

• Overlapping or repeating selectors in aut-num object might use different
filters. In this case the connecting operation is OR.

• Filters can be compound expressions that contain both logical and set op-
erators and might be recursively nested via -set objects.

These problems are a direct result of the existing RPSL standards that are
unusually permissive in matters of formatting the RPSL data in databases and are
broad in the syntax specification. The meanings of particular RPSL constructs
are minimally described and the descriptions often depend on examples in the
RFC standards.

Translating RPSL

One of the use cases for RPSL is creating router configurations out of RPSL pre-
scriptions. This task requires a capability of translating certain RPSL constructs
into the configuration language of the particular router. It is easy for basic ele-
ments like IP addresses, BGP peers and basic lists. The potential problem lies in
two aspects of RPSL:

1. Potentially unlimited scale2.

2. Use of advanced elements in RPSL: Regular expressions or complicated
filters for instance.

It is interesting that these two aspects are interconnected to a certain degree.
The first problem is derived from the fact that routers usually have strictly limited
resources in terms of memory and CPU power in comparison with the scale of
RPSL data.

The second problem lies in the fact that routers usually have limited config-
uration language and certain RPSL constructs might be too complex for direct
translation. Possible solutions are either dropping part of the RPSL informa-
tion or expanding the RPSL elements to simpler ones. Expanding the RPSL
elements might therefore cause creation of many filtering rules that would cause
the previous type of problem.

2Scale of the RPSL information is much greater than the practical limits on filter length in
majority of, if not all, current routers. Even though general purpose computes can store and
recursively resolve RPSL data, the results can be too long for direct use in routers.

59



The translation is theoretically a less complex task because the work is split
between the translator and the router that has to interpret the resulting rules.
This balance is of course fragile and depends on compatibility of RPSL and
the filtering mechanisms in router operating systems. Luckily, RPSL has been
specified with respect to existing routers and the regular expressions allowed in
RPSL matches capabilities of common routers.

5.2 RPSL production

5.2.1 Object creation

The RPSL standards do not explicitly specify any preferred method for creating
RPSL statements. The obvious method of choice is manual data entry. It was
also the first and perhaps one of the most widely used methods.

It is obviously possible to manage Autonomous Systems of moderate size
manually. This approach has an advantage in the fact that there is a possibility
of double-checking router configuration and manually created RPSL data against
each other.

Larger deployments often use automation for generation and maintenance
of RPSL descriptions. In this case, the RPSL is usually considered to be low-
level language that has to be handled by specialized back-end of the network
management application. This is the case of the previously mentioned NOC
project [53].

5.2.2 IRR update mechanisms

The traditional update mechanism for IRR databases was an e-mail. Initially, it
was simply a matter of sending the changes to the designated hostmaster who
manually verified the changes, committed them into the database files and sent
the response to the requester.

Later, an automation took over these tasks on both sides: The IRR databases
use e-mail bots3 to process the incoming e-mails. And a communication protocol,
processing rules and authentication method have been created for the communi-
cation between the client and the IRR e-mail bot.

On the client side, people wrote a lot of scripts to help format RPSL and the
resulting e-mail to avoid sending improperly formatted message.

Another problem with this method is that it originally used plain text pass-
words for authentication over the untrusted channel like e-mail. More to it e-mail
can be misdirected or bounced to third-party by accident, disclosing the password
to random people.

Later updates to this mechanisms introduced web services that allow sending
updates over a web form and via simple machine-to-machine interface over HTTP
or HTTPS protocols. In case of RIPE Database software, the mechanisms are
called Webupdates and Syncupdates. The advantage of using web forms for users
lies in the possibility of instant error checking. And HTTP or HTTPS is obviously

3This terminology comes from Internet Relay Chat. The IRC bot is a set of scripts or a
program that connects to Internet Relay Chat as a client and appears to other IRC users as
another user.

60



much better for scripting than e-mails because it is much more difficult to interact
over e-mail than over HTTP from a scripting language.

The latest development in European IRR brought a new RIPE DB API, which
is a RESTful API that conveys RIPE DB objects in XML or JSON formats.
Details of the API are described in the documentation on GitHub [83].

5.3 Extended hypothesis

The previously stated second hypothesis was an answer to the question: “What
is the cause of the sub-optimal utilization of existing mechanism?” or “What
can be done to improve the situation?”. The possible answer is: “High added
workload compared to relatively low benefit obtained from extensive utilization of
RPSL prevents the AS operators from wider deployment.“

The fact that the RPSL routing policies and IRR system are sub-optimally
used is the consequence of data accuracy problems which was the subject of the
previous chapter. That hypothesis can be considered as a valid fact because of
measurement results presented in the previous chapter and because of the analysis
protocol in the appendix A.

The answer to the question “What can be done to improve the situation?” is
going to be the topic of the last two chapters.

Therefore, the remaining part of this chapter has to provide evidence for
the “workload-benefit disbalance” hypothesis, more specifically it has to describe
possible benefit of RPSL deployment and the extra workload it would add.

5.3.1 Possible benefits of RPSL deployment

Automated configuration

The idea of documents mentioned above that serve as RPSL standards is to use
RPSL as a primary configuration source of all external relations in an AS. AS
operators are supposed to create their routing policies by filling in their aut-num
objects and creating proper connected -set objects that might reference -set

objects of other parties. Then they should create records for the routes to be
originated in their AS to route and route6 objects. The final step should be
checking of the RPSL configuration and publication of the complete data in IRR
database.

With this data in place the AS can generate configuration files for their ASBRs
using IRR as a data source.

Issues in this use case are connected with the complexity of stating the routing
policies in RPSL, because it is unique and rare skill. Complexity of learning RPSL
is, in my opinion, comparable to learning a new programming language.

Another problem with this scenario is confidentiality of configuration data
that describes the AS internals and general low trust in the data held by third-
party. These security concerns may prevent the AS operator from publishing
the complete data externally. This would add even more workload for the AS
operator to keep data internally and filter the outputs that can be published.

Even though it is complex task, there are Autonomous System operators
that are doing this. The best known, and perhaps the only publicly known AS

61



that operates internal RPSL-based management system, is Deutsche Telecom.
Deutsche Telecom provided the report on their operational experience with RPSL
in [68].

Automated peering in IXPs

Another use case for RPSL is configuration of route server in internet exchange
points. The configuration is usually too extensive to be managed by hand since

it should accommodate to needs of n parties that might form (n−1)2
2

connections,
and therefore the route server might need special routing policy for each inter-
connected pair. The methods for configuring the route server vary from using
web-based tools, complex BGP communities, to RPSL-based configuration with
extensive scriping.

The latest development in RPSL that intends to make use of RPSL for con-
figuring either route servers in IXPs or for border routers of transit ISPs is the
draft [60]. The draft attempts to solve a more general issue of routing policy con-
figuration in an adjacent AS in the case that the adjacent AS has to act on behalf
of its customer. In this scenario the adjacent AS should apply the routing policy
according to wishes of the customer. This clearly generates a need for a method
that would express the routing policy in the unique, clear and machine-readable
format.

This is particularly interesting for route servers in IXPs. Customers or route
servers have lost their ability to filter outgoing routes and differentiate among
peering partners by sending their complete announcement to the route server.
The route server is expected to apply filtering rules according to needs of the
client to send out the learned path vectors only to the proper peering partners.
Nowadays this filtering is usually configured by complex BGP communities. The
communities encode what to send and what to filter out in certain directions.
Downside of that is that there is no standard for the encoding and therefore each
IXP may come up with their own BGP community assignment and evaluation
rules.

Moreover, there is a problem with BGP community length, which has origi-
nally been 32 bits. The BGP community signalization works only for 16 bits long
ASN because RS operators and customers are able to use the high 16 bits for
destination ASN and low 16 bits for encoding an action or any other additional
information. The solution is specified in documents [81] and [82] that adds longer
BGP communities. However, there are still (mid-2016) important Autonomous
Systems in the Internet that operate software, which is not fully implementing
this standard.

Routing anomalies prevention

Data from IRR can be possibly used to validate the BGP announcements at
virtually any router. The problem is that the validation comes with inherent cost
in terms of CPU time, power and manual work needed to generate consistent
results.

The current situation, when more than 20% of validations fail with RIPE DB
data, does not allow to use the validation result to automatically prevent BGP
routes to be propagated in all directions. There are well known exceptions that

62



may afford blocking prefixes that do not pass the IRR filters: The route servers in
the Internet exchange points, namely the European neutral IXPs. The reason for
doing that is the emphasis on security, the Internet stewardship and acceptance
of these values by the local community and ultimately by the parties connected
to these IXPs. Another reason is that IXP is usually in position of short-cut for
Internet traffic. When a path to certain destination gets blocked in the IXP the
data can still flow through upstream providers, though the path would be slower
and it would generate extra transportation cost.

Routing anomalies detection

The current data can be used for detecting anomalies. This thesis is evaluating
routing anomalies with respect to IRR data. Or on the contrary, it evaluates
anomalies in IRR data with respect to the Internet routing system. This reasoning
might lead to the question what data source is more authoritative and which
source should we trust. Even though this question is complicated and we will not
try to answer it, there is an important lead: The Internet transports data very
successfully according to the Internet routing system despite the discrepancies
between IRRs and DFZ.

The IRR data are being used as a supplemental data source for certain services
to detect anomalies in the Internet with varying success. One example of an
extensive utilization of IRR data to detect anomalies is RIPE NCC Routing
Information Service (RIS).

5.3.2 Increased workload

IRR side

It is difficult to estimate the cumulative workload that the IRR system generates
now. In RIPE NCC service region there are two RIPE-sponsored working groups
that take care of RIPE DB standard and operational procedures connected with
the IRR. The RIPE Database software itself has been created and is maintained
by the RIPE NCC staff.

In addition, there is the IRR mirroring service that requires considerable effort
unevenly spread over all IRR operators.

Client side

From the client side, the most work in relation with RPSL databases is mastering
of RPSL and related procedures in the first place. The subsequent maintenance
of the records should not cause problems and add much work load. The problem
is that when the AS do not use the RPSL-based configuration and when there is
not any formal requirement for the AS that would mandate the RPSL usage, the
obvious question arises: “Is it really necessary?”

The same question has been repeatedly asked by the involved individuals on
numerous occasions: Nick Hilliard presented his opinion [62] on RPSL usefulness
and expressed his wish to start a discussion about a possible reform of RPSL on
RIPE 61 in 2010.

63



Almost the same concerns about usefulness of RPSL and IRR system have
arisen a long time ago. In 2000, there was a discussion that took place in NANOG
mailing list [69]. It started with a simple questions “Who should use Routing
Registries? Why?” and “Is it worth the time?”.

The responses to these questions came directly from people involved in Rout-
ing Registry operation. They were correct, extensive and could serve as a source
of education, though they also acknowledged that IRRs do not have enough data
and from the practical point of view the accuracy is low. The replies were stated
in such a manner that gives hope for the future when the data would be complete
and accurate enough to control the Internet routing. Unfortunately, this hope
has not been fulfilled so far.

Software support

The software is an integral part of the AS operational procedures and RPSL would
bring little benefits without the compatible software. Unfortunately, the existing
software is either old and difficult to use or incomplete and not well tested.

The oldest, most complete and most complex software is the IRRToolset.
The main problem of this software is that it has been designed as a compact
package. The design work began in 1990’s and it is written in C++. Nowadays the
members of the networking community generally prefer using scripting languages
like Python and need easy-to-use libraries more than compact packages. From my
experience it seems much easier to pre-process text inputs and post-process text
outputs for programs that belong to IRRToolset than attempting to modify or
extend the parts of IRRToolset itself when additional functionality is needed.
This programming pattern is obviously wrong. Calls for creating a new and
modern RPSL library occasionally appears over time [62], [1] and few libraries
have been created [52], [54]. However, none of these projects have overcome the
prototyping stage so far.

Even if there were a modern and easy to use RPSL library, it would still be
difficult to integrate it into many network management software packages. The
IRR system has been designed as the primary and authoritative data source.
The network management software usually made the same and thus conflicting
assumption about their data models. This is even more complex problem be-
cause RPSL imposes unusual restrictions in certain directions4 while allowing
unrestricted nesting of references.

These problems can be solved with stable funding of the RPSL library develop-
ment. The current situation however shows that the RPSL software development
is based on immediate needs of certain autonomous system operators. And the
custom-made advanced software, that some autonomous systems use, has not
been made public.

5.3.3 Conclusion on the extended hypothesis

The two previous sections provided context for the observation related to the
extended hypothesis. The detailed observations collected in the process of bg-

4The unusual restrictions are the requirement of ASCII characters in data types and
contextual-based format definition in attributes.

64



pcrunch software creation and during several years of experience with operating
various Autonomous Systems in different countries are going to be presented in
the following section. Though the severity of the observed problems is a subject
of individual perception, their existence is unquestionable.

We can only speculate on the reasons that caused low quality of IRR data:
My personal opinion is that complexity of RPSL is one of the substantial causes,
if not the most substantial one.

The following section contains a brief list of issues related to RPSL parsing.
It shows inherent complexity of the language and the related tools. At the same
time it brings forward many arguments supporting the extended hypothesis.

5.4 RPSL parsing issues

The above mentioned problems are rooted either in RPSL format specification or
in operational procedures and old software engineering decisions. The issues that
originate in the RPSL format are more interesting for this thesis. The extended
hypothesis mentioned work load and I have described several issues that need
either extensive manual work or considerable amount of CPU power with relation
to RPSL.

Two fundamental reasons that imposes requirements of either human or ma-
chine work are:

1. Number of elements,

2. complexity of elements.

5.4.1 Number of elements

Absolute number of elements

Absolute number of relevant elements in the reference IRR for this thesis, which
is RIPE DB, on June 21, 2015 is summarized in the table 5.1.

Object type count
as-set 14, 665
aut-num 28, 935
filter-set 127
inet-rtr 104
peering-set 214
route 261, 187
route6 12, 208
route-set 1, 394
Summary 318, 834

Table 5.1: RIPE DB object count on June 21, 2015

The RIPE DB dump to this date was 4.7 gigabytes and consisted of 131, 602, 120
lines. We have to interpret these numbers is context of complex RPSL parsing

65



and possible recursive references. Generally speaking it takes considerable time
to read and pre-process IRR data of this scale at the current state of the art
computers.

Recursive nesting

The RPSL objects that allow recursive nesting are -set objects, namely the
following types:

• as-set,

• filter-set,

• route-set,

• rtr-set,

• peering-set.

The most frequently used object type within this group is as-set and this
object type also happens to contain most of the recursion chains. Table 5.2 shows
the characterization of recursion withing group of as-set objects.

Characteristic value
Average recursion depth 5.232
Maximum recursion depth 29

Table 5.2: RIPE DB recursion depth in aut-num objects on June 21, 2015

The maximum recursion depth of 29 is low number from the perspective of
machine processing, but it is high for manual resolution.

Another interesting characterization is the number of elements in recursive
subtrees shown in the table 5.3. The numbers prove that collecting the informa-
tion manually from recursive sets in IRR is nearly impossible even in an average
case. This makes the job of AS operators much more difficult and it creates a
room for errors.

Characteristic value
Average subtree size 233.940
Maximum subtree size 7, 138

Table 5.3: RIPE DB recursion subtree size in aut-num objects on June 21, 2015

5.4.2 Complexity

The complexity issue connected with RPSL is divided into several aspects:

• Choosing the right IRR or combining data from several IRRs might get
complicated.

66



• Obtaining data from the IRR is either a time consuming series of network
transactions or it requires considerable resources for processing the raw text
IRR contents.

• Basic text format is non-standard and therefore requires a specialized parser.

• Objects might contain context-sensitive data that need contextual parser.

• Multiplicity in selectors is possible in aut-num objects.

• Complex filtering expressions and recursive references might occur in aut-num

objects.

Choosing the right IRR

Event though there are widely known IRRs that corresponds approximately to
RIR service regions, the right IRR is not always an obvious choice. For the RIPE
NCC service region, the preferred IRR is naturally RIPE DB, and luckily there
is not any other major IRR in the service region. Moreover, RIPE DB is con-
sidered to be the most accurate, the most consolidated and the most extensively
populated IRR among all other IRRs, that are serving other regions.

This relatively clear situation in RIPE NCC service region allowed us to choose
the RIPE DB and European BGP data feeds as the reference for the data accuracy
assessment.

It might be possible to combine data of several IRRs together and get global
routing data. Unfortunately, there is not any standard way of doing that and
there is a major unresolved problem: How to cope with conflicts in data of dif-
ferent IRRs. These conflicts are highly likely to occur with several distinct types:
Semantic or naming conflicts, object duplication and divergence of duplicate ob-
jects.

Obtaining IRR data

The issues connected with obtaining data from RIPE DB have been studied in
the previous sections.

Other IRRs might have different rules. Most of the public IRRs offer the whois
service and some of them have deployed the RESTful API. However, not all other
IRRs offer the raw database content in the form of text files, either because of
disclosure concerns or without any given reason.

Parsing text format

The basic text format unfortunately does not conform to any modern and widely-
accepted data markup standard. Even though the RPSL format looks simple,
there are many different ways of writing the semantically same object. Moreover,
there is no specified canonical format.

The language is case insensitive and only ASCII characters are allowed. White
spaces might be freely used to format and indent the text with exception of the
first character on the line. White space or “+” character on the first position on
line marks a continuation of the previous attribute.

67



Many attributes might be either multi-valued or repeated several times and
both possibilities might be combined. For instance, the following object contains
multiple multi-valued attributes:

as-set: AS-WISPERICM

members: AS6889, AS6765, AS5600

members: AS6889, AS6765, AS5611

This object is semantically equivalent to the following examples:

as-set: AS-WISPERICM

members: AS6889, AS6765, AS5600, AS6889, AS6765, AS5611

as-set: AS-WISPERICM

members: AS6889, AS6765, AS5600

AS6889, AS6765, AS5611

as-set: AS-WISPERICM

members: AS6889, AS6765, AS5600

+ AS6889, AS6765, AS5611

Keywords

There are reserved words and reserved identifiers that must not be used as iden-
tifiers:

1. Reserved identifiers ANY and PeerAS for use in filters.

2. Reserved words AND, OR, NOT, REFINE and EXCEPT for filter expression.

3. Names starting with as- are reserved for as-set object names.

4. Names starting with rs- are reserved for route-set object names.

5. Names starting with rtrs- are reserved for rtr-set object names.

6. Names starting with fltr- are reserved for filter-set object names.

7. Names starting with prng- are reserved for peering-set object names.

Unfortunately, these keywords are reserved only in the context of the identifier
that has the same type. Thus a keyword might be used as a part of other
identifiers. The example is the referenced identifier “AS6774:AS-PEERS:PeerAS”
in RIPE DB (captured on June 21, 2015) that contains reserved word PeerAS.

68



Selector multiplicity

Selectors on import or export lines in aut-num object might contain compound
expressions that could require recursion to resolve the flat list of actual selectors.

In addition, the same semantic meaning might be achieved by multiple import
attributes with different selectors. For instance, the following rules

import: from (AS42 or AS3856) accept AS-PCH

are equivalent to:

import: from AS42 accept AS-PCH

import: from AS3856 accept AS-PCH

and the same can be achieved with an as-set object:

as-set: AS-PCH-SELECT

members: AS42, AS3856

aut-num: AS29134

import: from AS-PCH-SELECT accept AS-PCH

The example shows that we can use algebraic expression with parentheses and
OR operator, or we can use equivalently repetition of the import line. We can
also use expansion of the selector from the as-set object that use comma as the
membership multiplicity operator.

Moreover, all the possible combinations of operators, parentheses and filters
are allowed.

Filter expression variants

Filters in the aut-num objects have to be resolved before the filters might be
evaluated or translated as per the application requirements.

The resolved filter consists of an algebraic expression or a list of algebraic
expressions connected by set operators. The expressions have to be decomposed
and evaluated or translated and the results have to be processed through the set
operators.

The basic filters are the four described types of matches:

1. ASN that represents list of possible originated prefixes,

2. IP prefix list,

3. regular expression for matching AS path BGP attribute,

4. BGP community match.

The ASNs that represent prefix origins might either explicitly occur in the
filter or it might be a part of an as-set object that can be recursively referenced
from the filter.

The IP prefix list and regular expression might be either explicit or might
occur in a recursively referenced filter-set object.

The filter-set object might also contain explicit ASN representing origi-
nated prefixes and another filter fragments, including operators and parentheses.

The following three filters are equivalent:

69



import: from AS29134 accept AS29134

With respect to 3 existing route objects:

route: 217.31.48.0/20

origin: AS29134

route: 62.109.128.0/19

origin: AS29134

route: 188.227.128.0/19

origin: AS29134

is equivalent to:

import: from AS29134 accept {217.31.48.0/20,

62.109.128.0/19, 188.227.128.0/19}

or to:

import: from AS29134 accept ({217.31.48.0/20} or

{62.109.128.0/19} or {188.227.128.0/19})

Parentheses in filter expressions

The parentheses might be used to enclose algebraic expressions and delimit com-
munity list. These occurrences require contextual parser to distinguish between
them. An example of both usage cases in the same rule follows:

import: from AS20965 accept (community.contains(20965:155,

20965:21320) and not fltr-bogons)

AFI specification in RPSLng

Address Family Identifier (AFI) specification in RPSLng (according to RFC 4012)
is clearly a retro-fitted feature to the existing RPSL (RFC 2622) and these two
types of RPSL expressions blend together. Fortunately, the RPSLng lines are
easy to distinguish because they use “mp-” prefix in attribute names. However
the RPSLng adds yet another way of expressing IPv4 unicast policy that was
previously the domain of RFC 2622 based RPSL.

With RPSLng we can use either the import and export attributes or the
newly added mp-import and mp-export attributes.

The two following filters are equivalent:

export: to AS6939 announce AS-IGNUM-OUT

import: from AS6939 accept ANY

mp-export: afi ipv4.unicast to AS6939 announce AS-IGNUM-OUT

mp-import: afi ipv4.unicast from AS6939 accept ANY

70



Set operations

The following example is more complex and combines several techniques. It came
from RIPE DB aut-num object AS20535 (captured on June 21, 2015):

import: { from AS-ANY accept NOT { 0.0.0.0/0 }

AND NOT { 0.0.0.0/0^25-32 };

} refine {

from AS-ANY action pref=40; accept community(20535:60);

from AS-ANY action pref=30; accept community(20535:70);

from AS-ANY action pref=0; accept ANY;

} refine {

from AS13099 accept AS-AET and <AS-AET$>;

from AS28910 accept AS-INTAL AND <AS-INTAL$>;

from AS34639 accept AS-TOTEL and <AS-TOTEL$>;

from AS39214 accept as-comintech and <as-comintech$>;

from AS-INSAT accept PeerAS and <PeerAS$>;

}

The filter consists of three parts that are connected by the refine set operator.
In this case the refine operators generate cartesian product of the three groups
of rules. The first group limits both default route and too much specific prefixes
with net mask range 25 to 32. The second group sets LOCAL PREF BGP attribute
based on the incoming communities. The third group filters incoming routes from
each direction according to the selector and the adjacent filter.

The last line in the last sub-filter uses special keyword PeerAS both as a AS
origin filter and as a part of regular expression. The actual value of this keyword
has to be resolved from the selector, which is a group defined by the as-set

object in this case.

Uncommon filter elements

The previous example contains two additional points of interest:

1. Curly brackets that serve as the filter delimiters, even though the same type
of brackets is used for delimiting explicit IP filters.

2. The <> block contains the regular expressions that needs to be resolved to
become a valid regular expression or a set of regular expressions with OR
operator connecting them.

Another unusual feature of filters in the example is application of prefix length
modifiers on abstract filters that have to be resolved beforehand. A representative
example is:

import: from AS29134 accept AS-IGNUM-OUT^+

This filter has to be resolved to members of the as-set object AS-IGNUM-
OUT. After that these origin AS filters have to be resolved in order to get the list
of prefixes containing {217.31.48.0/20, 62.109.128.0/19, 188.227.128.0/19,

195.226.217.0/24} and then this prefix list has to be modified to the resulting
equivalent filter:

71



import: from AS29134 accept { 217.31.48.0/20^+,

62.109.128.0/19^+, 188.227.128.0/19^+,

195.226.217.0/24^+ }

Readability issues and grouping

The following example taken from the RIPE DB (captured on June 21, 2015)
shows that styling of filter severely affects readability. Moreover, the filter in
the next example uses semicolons to put many logically distinct filter expressions
that would normally belong to different import lines to one expression enclosed
in curly brackets. The reason for connecting more expressions to a single filter is
the use of refine operator on it.

import: { from AS8395 accept AS-EAST; from AS8592

accept AS8592; from AS8752 accept AS8752; from

AS15672 accept AS15672; from AS16231 accept

AS16231 OR AS28736; from AS21085 accept AS21085;

from AS21225 accept AS-AMTKOM; from AS25032

accept AS25032; from AS25251 accept AS-ARTCON;

from AS25308 accept AS25308; from AS29124 accept

AS29124; from AS29182 accept AS-ISPSYSTEM; from

AS31494 accept AS-INFOSETI; from AS31720 accept

AS31720; from AS33842 accept AS33842; from

AS33902 accept AS33902; from AS34121 accept

AS34121; from AS34211 accept AS34211; from

AS34352 accept AS34352; from AS34682 accept

AS34682; from AS34687 accept AS34687; from

AS34690 accept AS34690; from AS35178 accept

AS-TELART; from AS35374 accept AS35374; from

AS35750 accept AS35750; from AS35755 accept

AS35755; from AS38922 accept AS-Wiland-TP;

from AS38964 accept AS-ADTEL; from AS39034

accept AS39034; from AS39150 accept AS39150;

from AS39165 accept AS39165; from AS41667

accept AS41667; from AS41917 accept AS41917;

from AS41947 accept AS41947; from AS42533 accept

AS42533; from AS42569 accept AS42569; from

AS43327 accept AS-REDLINE-NEW; from AS24758

accept AS24758; from AS48552 accept AS48552;

from AS43666 accept AS-CTS; from AS47711 accept

AS47711; from AS48050 accept AS48050; from AS48946

accept AS48946; from AS43816 accept AS43816; from

AS16300 accept AS16300; from AS43993 accept AS43993;

from AS43414 accept AS43414; from AS39596 accept

AS39596; from AS47839 accept AS47839; from AS34249

accept AS34249; from AS43221 accept AS43221; from

AS33902 accept AS33902; from AS34123 accept AS34123;

from AS5531 accept AS-TEZTOUR; from AS48535 accept

AS48535; from AS49060 accept AS-UNIONLINE; from

72



AS49400 accept AS49400; from AS49371 accept AS49371;

from AS49779 accept AS49779; from AS50212 accept

AS50212; from AS50265 accept AS-GT; from AS51410

accept AS51410; from AS51464 accept AS51464; from

AS51814 accept AS-KZNET; from AS48147 accept

AS48147; from AS39272 accept AS39272; from AS42293

accept AS42293; from AS52112 accept AS52112;} refine

{ from AS-ANY action pref=700; accept ANY; }

5.4.3 Expressive power of RPSL

Despite the unquestionable complexity of the RPSL language, there are still gaps
in its expressive power.

AS operators need to pass certain routing parameters to the peering partners
and potentially publish some of them to the broader audience. Some of these
parameters have to be passed in secret. The selection of the parameters that could
be possibly passed in a machine-readable format, but RPSL does not facilitate
that, follows:

• MD5 password5 for the BGP session.

• Intent to use TTL security6 for BGP.

• Maximum prefix count that will be accepted from the particular BGP ses-
sion.

• Intent to use BGP flap dampening mechanism for the particular BGP ses-
sion.

• Line MTU.

• Intent to use Jumbograms7.

• Intent to use Reverse Path Filtering8 and the details of the RPF settings.

Moreover, there are much more information that AS operators have to agree on
before the peering can be set up: MPLS parameters, interconnection of VLANs,
MPLS-TE settings and QoS settings and many other parameters that do not have
any standard notation and sometimes even the terminology varies according to
the vendor preference.

5Passwords for RFC 2385 based BGP session protection.
6The Generalized TTL Security Mechanism according to RFC 5082.
7Packet exceeding the standard maximum transmission unit (MTU).
8BCP38.

73



6. Current IRR system

6.1 Current IRR system accuracy

6.1.1 Measurement method

The implementation of bgpcrunch that required creation of the new RPSL
parser and interpreter and the subsequent large-scale IRR data analysis with
this software have brought two major findings:

• The accuracy of the data is low enough not to reject the previously discussed
hypotheses.

• Creating the software for interacting with RPSL is considerably difficult.

The conducted data analysis has been limited to RIPE DB data, and it there-
fore addresses resources utilized in the RIPE NCC service region. Extending the
analysis to another IRRs is a possible step for future work, but not many people
have shown interest in that measurements so far.

The findings about the data quality are based on RIPE DB data, however the
reasoning about the RPSL standard, the IRR system complexity and implemen-
tation issues concern all IRR operators and databases.

6.1.2 Results

Summary

The accuracy measurement described in chapter 4 and in greater detail in ap-
pendix A shows that:

• Over 1
5

of European path vectors in DFZ do not pass origin validation.

• At least 1
4
, but likely more than a half of European hops in AS path do not

pass filter validation.

• The AS path validation results exhibit great variance.

• These observations have come from reputable network based in Prague that
generally care about technical correctness.

Globality

The origin validation results have global outreach, which means that almost iden-
tical1 results would be computed form any BGP table dump in any AS in the
world.

On the contrary, the hop and path validation depends on the upstream net-
work and peers to great extent. Different results have to be expected with dif-
ferent BGP table dump. However, the fact that a large number of routing policy
discrepancies along paths exist is unquestionable.

1Certain differences are expected because different autonomous system can have different
DFZ views.

74



6.1.3 Accuracy hypotheses

The hypothesis concerning accuracy and extent of RPSL routing policies in RIPE
NCC service region, which has been stated in the beginning of the thesis and
analyzed in chapter 4, has not yet been concluded.

The evidence supporting the hypothesis presented in chapter 4 and in the
appendix A is convincing enough when we consider the raw numbers. However,
the threshold for the hypothesis has been set to 20% on the basis of analogies
with different fields and simple reasoning about perception of usefulness.

Operational experience from the Internet suggests that 20% of potentially
unreachable remote networks is completely unacceptable for virtually any Internet
user and transitionally to any network operator. We can safely assume that the
practical threshold is much lower, perhaps under 10% or maybe even under 5%.
Finding enough evidence for our 20% threshold proves that the original intuitively
stated hypothesis “The utilization of RPSL in the current Internet is sub-optimal
both in scale and accuracy of the information.” holds.

6.2 RPSL processing

The previous chapter shows that complexity of the IRR data in RIPE DB exceeds
any expectation. To read IRR data, we need to have a complete RPSL parser
that is capable of interpreting the complex filters and resolving large recursive
trees.

The RPSL specification is permissive and open to interpretation in many
cases. Luckily, we can resort to IRRToolSet that serves as the reference imple-
mentation and which has RPSL syntax checking tool.

Another problem is understanding the semantics of certain RPSL construc-
tions2 that are poorly documented and their meaning has to be established by
reverse-engineering the reference implementation.

6.2.1 Complexity of RPSL

Complexity of filter selectors

The most severe problem in RPSL data parsing is the impossibility of accelerating
neither positive nor negative lookups in aut-num objects. It is caused by the
selector expressions in import and export attributes. The selector expressions
make it impossible to stop the resolution unless the positive match is found or
the end of the object is reached.

This feature is troublesome in virtually any case, but namely in the following
ones:

• For repeated matching the filters (which is the case of bgpcrunch) it im-
poses a requirement of processing and resolving the entire object to obtain
the content of the object in a flat form. Only after that the filters can
be evaluated. It might be possible to pre-process the aut-num objects and
store the resulting flat data structure for future use. The obvious problem

2For instance filter repetitions with the overlapping selectors, loops in the -set objects and
many other issues

75



is the potential size of such data-structure: The recursive -set objects and
the repetition in the individual filters could increase the size of the flattened
objects by two or three orders of magnitude. And it can change literally
over night. In addition to that, the cache management would increase the
overall software complexity and spoil lazy evaluation approach. The cache
size is still only a potential problem, but it is serious one because a relatively
small change in IRR data could render any software, using this technique,
unusable.

• For routing policy translation, the entire aut-num object has to be trans-
lated anyway. The potential problem lies in connecting the two or more
filters on different lines that have some overlapping selectors.

• Moreover, it is difficult to orientate in objects that use expressions in filter
selectors. These objects are prone for errors during manual data entry and
subsequent manual maintenance.

Complexity of filter expressions

Another problem that concerns a lot of objects in RIPE DB lies in complex
filters that use multiple refine and except operators. It is extremely difficult
to understand the meaning of these filters. Another problem for both human
maintainers and software parsers is the combination of the selector expressions
and the set operators.

This kind of constructions are mainly utilized to inherit certain parameters
from the super-filter to the sub-filters that match parts of the selector expressions.

These constructions are supposed to decrease the filter size by limiting repe-
tition of the statements. It would be better not to use overly complicated state-
ments in IRR at the cost of greater repetition in many cases. The reason is that
parsing and understanding the complex statements is too expensive in terms of
CPU power or human effort, while data storage is relatively cheap and it would
be easy to generate the repeated statements by simple scripts.

6.2.2 Missing orthogonality of the language

One of the most confusing feature in RPSL is the fact that there are often many
different ways of expressing one thing. The examples are the above mentioned
complex selectors that can be replaced by multiple import or export lines.

The filters in general offer more ways of expressing the same idea. The vari-
ability reach beyond ordinary algebra variations.

Moreover, the combinations of multiple different techniques and expression
patterns in a routing policy of a single AS, or even in a single object, is often
confusing for human interpretation. It further complicates maintenance of the
routing policy in RPSL.

76



6.3 Reasons for low data quality in IRR

6.3.1 Technical freedom in the Internet

Reasons for specifying a routing policy

We have described technical and organizational roots of the Internet in the be-
ginning of this thesis: The most important values that prevail in both aspects
are decentralization of decision-making and freedom of act. Both principles are
used in resource allocation policies, operation of BGP and use of IRRs.

At the moment, I am not aware of any document that would mandate using
IRR system globally or set a requirement to specify a routing policy for the AS.

However, many transit providers require their customers to create route ob-
jects and filter customers’ BGP announcements based on the registry contents.

Route servers in the internet exchange points often use route objects to fil-
ter the passing announcements. The RS operators occasionally use also certain
information from proper aut-num objects for filtering and for automating config-
uration.

Consequences of not using IRRs

The consequences of avoiding IRR system are not emphasized enough by common
networking courses and certifications. We can assume that not all members of
the networking community are fully aware of the IRR system use cases, issues
and dangers of ignoring it. Many transit providers do not even require the route

object registration. They do not check the customer’s routing policy and would
not remind the customers that without these objects the announcements are likely
to get filtered out in IXPs, which might cause suboptimal routing.

The rules that the transit providers and route servers apply, regarding the IRR
data related to their customers and passing prefixes, are fragmented. Moreover,
there is no unique and machine-readable way for describing the rules.

As a consequence, it is not immediately obvious to many people why they
should register their announcements and specify the routing policy. The known
consequences of not doing that are:

• Announcement without proper registration in IRR might get filtered out
by the immediate transit provider.

• Announcement might get filtered out by another upstream provider along
its path. The result might be a partial invisibility3 of the prefix in question
or suboptimal routing.

• Announcement might get filtered out by route servers in important inter-
net exchange points. The immediate consequence is usually partial prefix
invisibility or suboptimal routing.

• Announcements might get filtered out by any other party along its path.
The consequences are the same as in the previous cases.

3Prefix invisibility means that the prefix in DFZ is not propagated to certain portion of the
Internet.

77



In addition, the consequences might change over time, depending either on
technical or policy changes in the neighboring networks.

A partial invisibility of the announcements or suboptimal routing is notori-
ously difficult to detect. Network operators that do not actively and repeatedly
assess their prefix visibility usually learn about routing issues too late. In most
cases, these operators find out that only after they hear from their customers who
can not reach the network in question or suffer from degraded performance.

6.3.2 High demands on AS operators

Language complexity

Previous chapters described the RPSL standard and its relation to the described
networks, technologies and involved parties. Chapter 4 and appendix A show
that the quality of the IRR data in RIPE DB is low enough to raise concern
about IRR data practical usefulness.

Finally, chapter 5 elaborated on the RPSL parsing techniques and provided
arguments in favor of the hypothesis that the RPSL complexity might be into
blame for the low data quality.

Learning resources

The cited RFC documents that serve as the RPSL standard contain a limited
set of examples. Finding additional RPSL tutorials and more complex examples
with proper explanations proves to be difficult.

Currently the best resources for learning RPSL are perhaps the training
courses provided by RIPE NCC4. Two of the current (2016) courses cover relevant
topics:

1. BGP Operations and Security Training Course,

2. RIPE Database Training Course Outline

In the past there was a specialized course focused directly on RPSL: Routing
Registry Training Course. Unfortunately this course has been replaced by the
BGP Operations and Security Training Course and the part covering RPSL has
been reduced.

Another RIRs that operate IRR for their region usually offer comparable
courses related to their specific IRR.

Debugging of RPSL

Testing and debugging routing policies in RPSL is an undocumented task. It
seems that that many people use RPSL in write-only manner. The opinions
presented in [62] and the overall error rate we measured support this assumption.

Basic debugging of the routing policy is possible with prtraceroute tool
from IRRToolSet, but it requires access to as many remote autonomous sys-
tems as possible. Unfortunately, this particular tool has been removed without
replacement in the latest development version of IRRToolSet.

4 https://www.ripe.net/support/training/courses

78

https://www.ripe.net/support/training/courses


Another remaining possibility is to use RtConfig from IRRToolSet to gen-
erate filters and manually analyze results.

The bgpcrunch software could be easily transformed into BGP debugging
tool: It is possible to create a self-contained tool for remote routing policy check-
ing. The functionality would be similar to BGP looking-glass5, with the difference
that it would acquire and display not only the BGP table contents, but also rout-
ing policy validation report.

This idea seems to be worth including into future-work short-term plans.

IRR record maintenance

Maintenance of IRR records is not much different from the first registration of the
resources. The problem lies in the complexity of parsing and reading the existing
policies. There are three methods of maintaining the IRR records:

1. Creating automation for re-generating all the objects related to the AS in
question.

2. Keeping local documentation in a format different from RPSL and creating
the objects manually from the documentation when something changes.

3. Updating the relevant objects directly in the database.

Obviously the methods are sorted from the most difficult one to set up to the
easiest one and in the reverse order from the easiest to use to the most difficult.
The difficulty of the last method is derived from the fact that often a lot of
complex RPSL objects have to be read and understood before updating them.

Another problem with the latest method is that inaccuracies and errors in the
objects make it more difficult to perform maintenance tasks.

6.3.3 RIPE DB update mechanisms

LIRs operating within RIPE NCC service region are obliged to enter and maintain
resource registration data in the RIPE DB. The obligation comes from the service
contract between RIPE NCC and the LIR. IRR data share the same database
and it is recommended to register routing policy at the same time with the IRR
data.

Using RIPE DB update mechanisms is not always an easy task. The reasons
for that are:

• Authentication model is based on mntner objects. The objects might refer-
ence three different authentication mechanisms. The mechanisms are bound
to specific communication channels.

• Different channels with slightly different behavior can be used.

• Only the Webupdates method provides help with creating the objects and
execute certain semantic checks before submitting the object to the RIPE
DB.

5Looking-glass is a web site, or in this specific meaning a web application, that provides
access to certain basic BGP show commands on a specific BGP router. Network administrators
use remote looking-glasses for debugging BGP routing issues outside of their network.

79



Authentication

The supported authentication mechanisms and current (June 2016) compatibility
with the update channels are summarized in the table 6.1.

SSO PGP MD5
Web interface Yes No Yes

Email No Yes Yes
API No No Yes

Table 6.1: RIPE DB Access authentication

MD5 is the weakest method and achieving even basic security with MD5
method is complicated: The mnter object has to be populated with the MD5
hash of the password. An update message has to contain a line with the clear-
text password. In case of Syncupdates, the message can be encrypted by HTTPS
protocol in transit. However, complex security measures have to be done to
protect the software that contains the plain-text passwords and to protect the
HTTPS session from protocol downgrade attacks and man-in-the-middle attack.

SSO (Single Sign-On) is a new method that is also based on password authen-
tication, but it supports supplemental TOTP (Time-Based One-Time Password
Algorithm) authentication method according to RFC 6238 [86]. It is easy to use
with the RIPE DB web interface, but it is currently unavailable with the rest of
the access methods.

PGP is the most secure method for signing the requests, but the supported
channels are limited to e-mail, which is difficult to use with scripting.

Data formats

The diverse channels require different formats:

• The older channels, namely whois, Syncupdates and e-mail require raw
RPSL objects in textual representation.

• The Webupdates requires user interaction with the web form where either
individual attributes can be modified or the complete object can be passed
to the RIPE DB software through bulk data entry form.

• RIPE DB API uses XML or JSON form of the objects.

The problems of the old text format have been described in the previous
chapters and sections. Newer API that uses XML and JSON format is, in my
opinion, a step in the right direction. The obvious benefits of the standard data
markup format and the simple REST API promise easier integration with the
client software.

Unfortunately, the issues related to complexity of parsing the filters remain
in the returned objects from the REST API. The reason is that the pre-parsing
is only on the object level.

The following example shows the import attribute from the aut-num object
AS20535. The same object has been used in the previous chapters in various
examples and this particular filter has been discussed in detail:

80



import: { from AS-ANY accept NOT { 0.0.0.0/0 }

AND NOT { 0.0.0.0/0^25-32 };

} refine {

from AS-ANY action pref=40; accept community(20535:60);

from AS-ANY action pref=30; accept community(20535:70);

from AS-ANY action pref=0; accept ANY;

} refine {

from AS13099 accept AS-AET and <AS-AET$>;

from AS28910 accept AS-INTAL AND <AS-INTAL$>;

from AS34639 accept AS-TOTEL and <AS-TOTEL$>;

from AS39214 accept as-comintech and <as-comintech$>;

from AS-INSAT accept PeerAS and <PeerAS$>;

}

This particular filter is transformed to the following equivalent XML format:

<attribute name="import" value="{ from AS-ANY

accept NOT { 0.0.0.0/0 } AND NOT { 0.0.0.0/0^25-32 }; }

refine { from AS-ANY action pref=40;

accept community(20535:60); from AS-ANY action pref=30;

accept community(20535:70); from AS-ANY action pref=0;

accept ANY; }

refine { from AS13099 accept AS-AET and <AS-AET$>;

from AS28910 accept AS-INTAL AND <AS-INTAL$>;

from AS34639 accept AS-TOTEL and <AS-TOTEL$>;

from AS39214 accept as-comintech and <as-comintech$>;

from AS-INSAT accept PeerAS and <PeerAS$>; }"/>

Thus the REST API helps only with the simplest portion of the RPSL parsing
issues. However, the most important problem lies in the fact that this modern
API is only a RIPE DB proprietary extension, and standardization effort that
could unify the access to the IRR databases on the RPSL object level is missing.

81



7. IRR system reform

The current state of IRR system is deemed unsatisfactory. This section discusses
the possible amendments and changes in the system that might, in my opinion,
increase the chance that the IRR system would cover Internet routes more ac-
curately, would be easier to maintain and would be more of use for the network
operators.

Possible high-level steps that might help the IRR system include:

• Creating IRR automation software both for producing routing policies and
for parsing them,

• writing documentation, creating larger examples,

• amending or reworking the standards.

The most interesting part of this list is the last point: Reform of the standards.
To fulfill one of the thesis objectives we have to provide recommendation for

future development of standards related to routing policies. I decided to use this
opportunity for creating a high-level specification of the new IRR system that
might serve as a starting point for development of a new standard to supplement
and subsequently replace the existing RPSL standards.

7.1 Reform of IRR standards

7.1.1 Requirements for the IRR system

The requirements for any new Internet standard have to be collected from the
community members, elaborated in detail and meticulously considered, taking
into account all known benefits and disadvantages.

The following list contains the requirements we know at this point. It can
be used as an input for future requirement collection phase of the possible IRR
system reforming effort.

There are two principal groups of requirements:

1. Feature requirements

2. Design requirements

Feature requirements

The required features include:

• The IRR system should allow describing existence of an autonomous system
and link the ASN to the responsible AS operator.

• It should provide facility for publishing contacts and legal information about
the AS operators in machine-readable from.

• The AS representation in IRR should be able to keep information relevant
to the routing, QoS and peering with the AS in question.

82



• The AS representation should be able to keep arbitrary human-readable
information.

• The IRR system should have means for describing peerings. Level of detail
can be variable, depending on the operator’s need.

• The peering representation in IRR should be able to keep all information
needed to set up the peering.

• There should be data unit for grouping the peerings, that would allow
parameter inheritance.

• The peering representation should be able to contain the filters and BGP
attribute manipulation rules for the peering.

• The peering should be able to hold any supplemental information in human-
readable form.

Design requirements

Many design requirements are obvious and adhere to common design patterns
that almost any modern data model follows. The brief list of the design features
include:

• The IRR system should be publicly available and potentially free to use.

• There must not be a central authority or designated database by design.

• The contacts and personal information in the IRR should be protected from
possible data harvesting and abuse.

• The IRR system should support cryptographical signing of the information.
Though the signature might be an optional field in the information units.

• The IRR system should allow delegation of name space partitions to differ-
ent providers and cross-connecting name space partitions with hyperlinks.

• There should exist analyzable metasyntax and detailed specification of the
syntax.

• There should exist a detailed data model for the IRR information units with
extensive descriptions of semantics.

• The language, data model and the procedures related to the IRR should be
simple.

7.1.2 Differences from RPSL

There are several immediate differences between the current RPSL-based IRR
system and the new suggested IRR sytem:

1. RPSL does not have any tool for interconnecting IRR databases and linking
data in foreign name space.

83



2. RPSL databases are inherently centralized. De-centralization of the system
adds considerable complexity with database mirroring and finding author-
itative data.

3. RPSL derives data security from the database access control mechanisms.

4. Peering information are limited to the pre-defined values and the data model
is rigidly standardized which complicate any effort to amend it.

The differences depends on the selected implementation details. The most
important difference might be the simplicity of the model and reuse of the existing
technologies that would keep the overall standard complexity low and would
simplify implementation both in software and in policies.

7.2 New IRR outline

This section describes an implementation outline for the suggested new IRR sys-
tem. The most important design decisions are described from high-level stand-
point. Selected subset of them are elaborated into more detail.

The new IRR system outline took certain ideas from NETCONF protocol.
Moreover, we suggest to re-use NETCONF data modeling language YANG and
incorporate parts of certain data models that are already specified for use with
NETCONF.

7.2.1 Data

Language and syntax

The worst problems with the RPSL are related with parsing and understanding
the language. The issue concerns both the syntax of the format as well as the
semantics and data model. The syntax of RPSL is too permissive and complex
at the same time. It proved to be unnecessarily complicated even to parse the
RPSL objects and validate their syntactical correctness into detail.

The new format should avoid these problems. One possible way that would
rule out any possibility of these problems is not defining the language at all and
provide only a data model.

Another way of avoiding the parsing and syntax problems and providing a
practically usable standard is suggesting one or more existing and standardized
data markup languages. The best current candidates are obviously XML [87],
JSON [88] and YAML [89]. Selecting the finite list of suggested existing markup
formats might help with the initial implementation because the standard would
limit the implementation complexity. If it proves too limiting later, we can easily
lift the limits.

This would be an ideal compromise: We can re-use existing software tools
for generating, parsing and validating the selected format. We can also refer to
the existing format specification, which would reduce the size of the IRR system
specification length and therefore the overall complexity. In addition, there are
tools for transforming data among the above mentioned data markup formats,
and it is likely that any prospective standard data format will be compatible with
them.

84



The disadvantages might include greater overhead both in size and in process-
ing power needed for generating and parsing the data units. Further analysis of
this issue is needed to compare the size and processing power requirements with
the existing RPSL standard and the current software tools.

Data model

The most important questions are how to define the data model which compo-
nents have to be standardized, and how to prepare the data model for both future
standard extensions and proprietary extensions.

One tool that might give an answer to the question “How to define the data
model?” is the specialized language for data modeling: YANG [90]. It has been
created for modeling NETCONF messages. The advantages of YANG are:

• It is a format-agnostic language: The data exchange format might be XML,
JSON or any comparable markup language.

• It is general data modeling language that allows to express complex struc-
tures.

• It contains domain-specific features for networking and the Internet.

• It is supported by many software projects in several programming lan-
guages.

• It is a modern and maintained standard that has a great base of com-
mercially successful users. NETCONF is spreading among the networking
hardware vendors and NETCONF management tools are being actively de-
veloped and deployed in many important networks.

Further analysis of YANG features and IRR system requirements is needed
to verify the assumption that YANG can cover the IRR system domain.

Regardless of the data modeling language or method we can specify the com-
ponents that should be part of the new IRR standards. The brief list of features
that need their data model component and semantic specification include:

• Data units: The new counterpart of RPSL object.

• Namespace and identification of the data units.

• Data unit referencing, namespace partitioning and delegation.

• Data unit grouping and searching in the groups.

• Data unit signing and signature verification.

• Basic unit types: We propose to have only the counterpart of RPSL aut-num

object and a few supplementary data units to for grouping and intercon-
necting the objects.

• Filter expressions: The proposal calls for radically simplified filtering ex-
pressions. The RPSL set operators should be dropped and the filter struc-
ture should be flattened. However, either references in the filtering expres-
sions or recursive templates in the filters will be likely required to limit the
filter length and repetitions.

85



• Peering information: On the contrary the peering descriptions should con-
tain much more information than the RPSL counterparts. We propose to
add fields for MTU, QoS, TTL security, dampening and many other details
of BGP sessions.

• Human readable information: The machine-readable parts should be sup-
plemented by human readable information for each element in the active
part of the data unit. Additional inactive comments should be also allowed.

The extensibility of the language can be achieved by adding special multi-
valued attribute to each data unit that could contain an identifier of the standard
or proprietary implementation that can parse the data unit. Optionally, the com-
plex data unit that requires specialized software might contain also an identifier
of less specialized data unit that is compatible with subset of the data in the unit.
The highest possible level of detail would be used, depending on abilities of the
software that attempts to read the data unit.

Data units

RPSL uses different types of objects and it proves difficult to remember them. The
new IRR system should be simpler to use and the ultimate goal in this aspect
would be to create an intuitive and clear syntax that could be used without
constant searching in specification. The usage pattern should resemble writing a
document in a markup language and using validator along the way rather than
struggling with unknown “programming/description” language without strong
types and without the compiler and validator.

The suggested data units in the new IRR include:

• Delegation of a group or a range of Autonomous System Numbers

• Autonomous System representation

The most important feature of this simple data model should be the possibil-
ity of self-hosting the data units on arbitrary HTTP server and linking remote
resources and referring to the parts of either local or remotely referenced data
units.

The peerings, peer-groups and filters should be expressed within the Au-
tonomous System data unit. Links among different parts of the data units play
crucial role in expressing the information in compact and efficient way. The pur-
pose for keeping the information concerning a particular AS in a single document
is to support consistency of the information and reduce repeated queries to the
IRR system. The IRR system should allow the files to be static, so the cur-
rent IRR whois databases that perform the searches and process data could be
replaced by simple web servers serving static documents.

However, the IRR system is hierarchic and the data units at the top level might
contain a lot of records that would be irrelevant for vast majority of queries.
Due to this fact we should leave space for server-side response optimization.
Inspiration for this might be taken from DNS recursive resolution procedure:
The clients should be able to ask for specific part of the requested object and the
server could reply with either the full object or the requested part, based on the
server abilities.

86



Filters

The filters in the new IRR system have to be radically simplified. Unlike the
RPSL filters we suggest to:

• Use unique filters: The filters for a particular peering can be either inherited
from the peer-group or explicitly specified. The peering can be part of a
single peer-group. The explicit filter can be specified only once for each
direction in the peer-group and in the peering context. The peering filter
has precedence over the peer-group filter. Effectively only one filter can be
active for a single peering in a particular direction and it is simple to decide
which filter is active and download its contents form the IRR.

• Use flattened filters: The filter expressions have to be explicitly stated and
no further links are allowed with only two exceptions:

1. References to flat lists of prefixes either in own or remote data units.

2. References to flat lists of regular expressions for matching AS path

BGP attributes

• The default filters have to be consistent with default BGP operation.

• The filters should be treated as a sequence of rules rather than arbitrary
algebraic expressions. This conforms to the common BGP configuration
elements.

The outlined filters are simpler than the RPSL counterparts but the overall
size of the objects might grow. Further analysis is needed to address questions
regarding size and expressive power. Nonetheless, the possible size growth can
be alleviated by recommending AS operators to self-host the objects.

7.2.2 Database and lookup system

Hierarchy

The basic principles of the new IRR system are technical decentralization on
one side and consensus-based unification on the other side. There should be no
obstacle for anybody to run a parallel IRR system for testing and development
purposes or due to the desire to have an alternate system for any technical or
political reason.

The Internet coordination bodies should run the consensus-based official IRR
servers that would be consistent with and linked to the RIR registry data.

The figure 7.1 shows the hierarchy of the proposed new IRR system. The
important difference in the system is represented by the delegations and data
self-hosting. The figure also shows that the data hierarchy is derived from the
Internet coordination hierarchy. In addition, the system is more transparent than
the current RPSL hierarchy that has been displayed in the figure 1.1.

87



Figure 7.1: The proposed New IRR hierarchy

Query protocol

In the first stage, the suggested query protocols are HTTP or HTTPS. The pos-
sible REST interface for obtaining the relevant parts of the data units can be
also specified in the standard or it can be left to discretion of the implementation
authors.

We strongly suggest to re-use existing protocols, such as HTTP or HTTPS
and existing standards and programming patterns like REST. This could poten-
tially reduce size and complexity of the IRR system specification and make it
considerably easier to implement the standard.

Update protocol

We suggest to specify an update protocol based on HTTPS, using HTTP authen-
tication methods and using REST interface to create, update and delete objects
in the public databases, especially in future IRR databases operated by RIRs.

Using HTTPS for sending the updates is easy and the required HTTP methods
are implemented in most HTTPS libraries that are available in most languages.
However, using HTTPS for updating files is unnecessary for self-hosted IRR site
that may publish only a few IRR data units.

The update protocol should therefore be optional for the IRR servers and the
simple static files without any explicit IRR update mechanism could be used on
self-hosted IRR sites.

7.2.3 New IRR operation

The outlined IRR system offers not only the technical change. We also sug-
gest changing operational principle and dependent standards. The modifications
should affect following aspects of the Internet:

1. Resource registration process: We believe that the resource registration
process should be more closely linked with the IRR.

88



2. The routing policies in certain autonomous systems, especially in autonomous
systems that represent IXPs, should explicitly state that the AS validates
routing policies for IRR and the failed prefixes will get filtered out.

3. The implementation should be easy for all parties. The standard should be
clear and the data model should be formally defined in machine-readable
way. The reference implementation should provide an Open Source, com-
plete and easy to use IRR library for integration with arbitrary network
management software.

4. The IRR system should provide framework for on-line validation of the IRR
data. This system should help with debugging the IRR data and the BGP
configuration as well.

5. The IRR system should allow autoconfiguration in both directions: It
should be possible and reasonably simple to transform IRR data to a router
configuration or, in the opposite direction, transform router configuration
to a IRR data unit fragment.

Resource registration

The question of linking resource allocation to the resource registration and sub-
sequent IRR descriptions and routing requirements is clearly a responsibility of
the RIR policy developers. In case of RIPE it is the responsibility of the RIPE
community and the designated working groups within RIPE.

We believe that certain portion of the operators would prefer to have simple
written rules that would make IRR system obligatory. On the contrary, the
Internet community is known for being sensitive to any new directives or rules.
The new technology would have to prove that it is useful for the community in
the first place. Once it is deployed and widely accepted, then the community
might possibly consider making the IRR system mandatory.

With regard to the known community attitude we do not recommend linking
the new IRR system to the resource registration from the beginning. We rather
suggest preparing the data model for possible subsequent integration.

Validation

We believe that the validation and debugging tools are important for any software
system. The new IRR system should have built-in validation and analysis tools
from the outset.

The experience with bgpcrunch software and reactions from the community
members show that the missing validation and analysis tools in the RPSL based
IRR system probably caused a lot of current issues. Lack of IRR validation tools
delayed deployment. Moreover, lack of global and recent analysis results also com-
plicated discussion about development of the standards. It also prevented many
parties from using autoconfiguration because the results were unpredictable. Fi-
nally, it leaves many AS operators in doubt when it comes to correctness of their
RPSL routing policies.

89



Autoconfiguration

We suggest putting less emphasis on autoconfiguration in the new IRR system in
comparison with RPSL. On the contrary, we believe in integration with the cur-
rent and prospective network management tools and with NETCONF protocol.

The purpose of the IRR based software should range from creating small
custom scripts that network operators often use to perform repetitive tasks up
to the large network management and orchestration tools. However, the IRR
system should mainly provide the data model and library to access it. The
autoconfiguration functionality should be separated from the standards and from
the library in order to keep generality of the standard and the software.

An important new feature is also the reverse autoconfiguration: The IRR sys-
tem should have support for generating IRR data units from router configurations
or arbitrary internal representation. This feature might help populating the IRR
system with accurate data and make it easy to deploy the new IRR system.

90



8. Impact of the results and
future work

8.1 Presentations of the results

I have presented the analysis results on three major events:

1. RIPE 71, DB-WG (November 2015, Bucharest)

2. NIX WG (November 2015, Prague)

3. CEE Peering Days (March 2016, Budapest).

Moreover I have presented the thesis results on the following networking
events:

• CZ.NIC Labs seminar (January 2016, Prague).

• Peering workshop, MIXP & University of Montenegro (June 2016, Podgor-
ica).

8.1.1 RIPE 71

Event details

A RIPE Meeting is a five-day event where Internet Service Providers, network
operators and other interested parties from all over the world gather. The presen-
tation topics cover range from research into new networking technologies, traffic
analysis and routing techniques to resource assignment policing and IRR opera-
tion.

The thesis results have been presented on Database Working Group (DB-
WG). The recording of the presentation and the slides can be downloaded from the
conference web site for further reference: https://ripe71.ripe.net/programme/
meeting-plan/db-wg/.

Ideas from Q&A

Questions in the subsequent Q&A session inspired several new ways of possible
future work: Ruediger Volk from Deutsche Telecom asked for deeper analysis of
route objects and noted that people often misinterpret net mask range of the
route objects. He also asked for possible correlation of DFZ data, IRR data and
S-BGP/RPKI validation results.

8.1.2 NIX WG

Event details

NIX WG (Neutral Internet Exchange Working Group) is a one-day event for
network operators in the Czech Republic and in Central Europe.

91

https://ripe71.ripe.net/programme/meeting-plan/db-wg/
https://ripe71.ripe.net/programme/meeting-plan/db-wg/


Ideas from Q&A

Numerous questions in the Q&A session dealt with two major topics:

1. Requests for the fine-grained regional statistics and focus on the Czech
Republic and Central Europe.

2. Questions regarding route server operation and the impact of the IRR data
on peering relations conveyed by the route servers.

The apparent and deep concern about the route servers in relation to IRRs
and routing policies is the reason why this thesis repeatedly discuss many details
of route server operation.

8.1.3 CEE Peering Days

Event details

The Central and Eastern European Peering Days is a two-day technical event for
network operators in Central and Eastern European countries. The topics are
more technical and operation-oriented than the topics on RIPE meeting.

Ideas from Q&A

The most important question during the Q&A session came from Martin Levy,
the Network Strategist at CloudFlare and an important figure of Internet history
and protocol standardization. He called for creating an initiative for mending
IRR data that would try to reach the operators, confront them with the error
reports that concern their network and suggest possible steps for correction.

This idea goes far beyond my ambition, however it is worth noting that any
future IRR system reform should allow this task to be carried out eventually.

8.2 Future work

8.2.1 Future presentations and education effort

Before any RPSL reform effort can be initiated, the need for the reform has to
be established within the Internet community. To help spread awareness of the
analysis I have conducted, its results and arguments supporting future RPSL
reform I will continue presenting the results on relevant networking events and
possibly publish the results.

8.2.2 Creating a RPSL looking-glass

The previous chapter described RPSL debugging issues and the lack of modern
RPSL debugging software.

Consequently, the idea of turning bgpcrunch into BGP debugging tool has
been outlined. The resulting RPSL looking-glass software might help with up-
dating the RPSL data and finding currently unknown errors.

The most important requirements are:

92



• Self-contained package: The Python standard means of distribution can be
used and the web interface could be provided by Flask framework.

• Easy installation: The only unresolved problem is connecting the BGP
routers. The best option would be using an OpenSource BGP implementa-
tion directly on the same server. However, that would most likely increase
configuration complexity. Another possibility is to use either NETCONF
or pexpect-based console scripts to interact directly with the routers.

• Low memory and data foot-print: This requirement dictates that online
IRR access have to be utilized for data acquisition. Nonetheless, this access
method should fit the needs well in this case.

OpenSource software that fulfills these requirements could perhaps achieve
wider deployment in many different autonomous systems. After that it could fill
the current gap in RPSL tools.

8.2.3 NLNet Labs RDL effort

NLNet Labs has created a draft document [66] and there is an ongoing effort to
finish and standardize the new language. A workshop on RDL is going to be held
in the summer 2016. I am going to attend the workshop and present my notes
on the existing syntax outline. The most important note I am going to present
is a concern about low machine-readability of the new format.

8.2.4 Internet community role

Potentially involved parties

The research into RPSL and its deficiencies has been a process that I was able
to do generally on my own. Discussions about the available tools, procedures
and results on mailing lists and on relevant events brought a few novel ideas.
It still provided only a limited help in comparison with the required community
involvement in a possible RPSL reform.

Unfortunately, this topic diverges form expertise of most networking profes-
sionals and researchers. Therefore the community that appreciate the work in
the early phase is fairly small. The academia seems to take Internet standards as
granted and prefer research into completely new ideas and technologies, rather
then amending the old ones.

Networking industry representatives, and networking equipment vendors espe-
cially, are busy with different challenges related to IPv6 transition, cloud services
and SDN.

On the contrary, the IRR operation and related issues are the subject of RIPE
Database Working Group charter. Therefore the Database Working Group seems
to be the best place to discuss the future of IRR and possible RPSL reform at
the preparation stage.

Specification of a RPSL successor

The ultimate ambition in this field is to specify a succeeding standard to RPSL
and achieve better coverage, data accuracy and general usefulness of the standard.

93



The first step in this effort is to prove the need for the change and attract people
to involvement in the effort. This thesis provided enough evidence and thorough
analysis of the current state and brought many arguments in favor of the change.

The subsequent steps should be:

1. Discussing the existing standard and the existing proposals within Internet
community,

2. collecting requirements for the new IRR system and reviewing them in
cooperation with the Internet community,

3. devising arguments for the change and proving that the existing standards
or the existing proposals does not meet the requirements,

4. creating a draft of the new standard and discussing the standard on the
Internet community events,

5. creating a reference software according to the proposed standard,

6. then proceeding to the standardization phase: Bringing the proposed stan-
dard to IETF and to proper RIR working groups.

Turning ideas into Internet standard

IETF is most likely the proper place for the possible standardization effort.
The Standard Development Process (SDP) in IETF is described in the RFC

2026 (BCP 9) [70].
Creation of a new Internet Standard comprises of many stages, and the pro-

cess is time consuming and exceptionally difficult. Estimates of the expected
complexity and length of the process can be given only in terms of lower bound.
The educated guess of the minimum required effort varies between one and two
man-years.

Fortunately, the Internet standards are developed with the help of the com-
munity. Involvement of the experienced and capable community members helps
to alleviate the amount of work, that would be otherwise prohibitive.

94



Conclusion

The objectives, set in the thesis abstract, have been fulfilled in the following
aspects:

• I have thoroughly studied the RPSL standard and many other resources
that are related to the topic of this thesis.

• I have examined the data in RIPE DB and studied the policies in its IRR
part. On that basis, I created a software that analyzed RIPE DB and BGP
data and computed many quantitative parameters that concern Internet
routing, IRRs and their mutual relations.

• The analysis software has been published under OSS license and parts of it
have already been re-used by renowned Internet researchers.

• The results obtained from the analysis provide evidence supporting both
previously stated hypotheses:

1. The first hypothesis “The utilization of RPSL in the current Internet
is sub-optimal both in scale and accuracy of the information. The
situation is not improving and there is no perspective of change in this
trend.” has been discussed and concluded in favor of the hypothesis
because of the poor match between IRR and BGP. The matching errors
affect both origin validation and AS path hop matches for IPv4 and
IPv6 as well.

2. The second hypothesis “High added workload compared to relatively
low benefit obtained from extensive utilization of RPSL prevents the
AS operators from wider deployment.“ has been elaborated on and
many supporting arguments for the hypothesis have been collected,
though the hypothesis is too broad to be decided on exact scientific
bases.

• I have striven for describing relations of the data analysis results with the
known problems of the standard.

• The thesis gave me the opportunity to investigate a problem that stands
aside from the main stream of networking research, even though the routing
management is exceptionally important for the entire Internet operation. I
used the opportunity to outline a completely new IRR system that avoids
the described problems and known shortcomings of the current system.
Specification and implementation of the new IRR system is one of the future
work goals set in the last chapter.

Accurate and up-to-date routing policies represent a fundamental mechanism
that divide well operated and maintained network from chaos and disorder. Now
(in June 2016) the most threatening Internet issue - the IPv4 address space
exhaustion has its solution and nobody seriously challenge the need for transition
to IPv6 anymore. It is perhaps the right time to help consolidate the Internet
and make it better, safer and more robust by mending the IRR system.

95



Bibliography

[1] Hlaváček, T., Routing policies Bachelor’s thesis, 2011, Prague

[2] Hubbard, K., Kosters, M., Conrad, D., Karrenberg, D., Postel, J.
Internet Registry IP Allocation Guidelines, RFC 2050, November 1996
http://www.ietf.org/rfc/rfc2050.txt

[3] Daigle, L. WHOIS Protocol Specification, RFC 3912, September 2004
http://www.ietf.org/rfc/rfc3912.txt

[4] Number Resources Website of Internet Assigned Numbers Authority
http://www.iana.org/numbers

[5] Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer,
D., Bates, T., Karrenberg, D., Terpstra, M. Routing Policy Specifica-
tion Language (RPSL), RFC 2622, June 1999
http://www.ietf.org/rfc/rfc2622.txt

[6] Blunk, L., Damas, J., Parent, F., Robachevsky, A. Routing Policy
Specification Language next generation (RPSLng), RFC 4012, March 2005
http://www.ietf.org/rfc/rfc4012.txt

[7] List of Routing Registries by Merit Network, Inc.
http://www.irr.net/docs/list.html

[8] Rekhter, Y., Ed., Li, T., Ed., Hares, S., Ed. ”A Border Gateway Protocol
4 (BGP-4), RFC 4271, January 2006
http://www.ietf.org/rfc/rfc4271.txt

[9] Jouanigot, J., Bonito, A., Dupont, F., Fassbender, S., Hillbo, A.
Hommes. F., Klein, L., Porten, W., Stikvoort, D., Terpstra, M.,
Volk, R. Policy based routing within RIPE, ripe-60, May 1992
ftp://ftp.ripe.net/ripe/docs/ripe-060.txt

[10] Bates, T., Jouanigot, J., Karrenberg, D., Lothberg, P., Terpstra,
M. Representation of IP Routing Policies in the RIPE Database, ripe-81,
February 1993
ftp://ftp.ripe.net/ripe/docs/ripe-081.txt

[11] Bates, T., Gerich, E., Joncheray, L., Jouanigot, J., Karrenberg,
D. Terpstra, M., Yu, J. Representation of IP Routing Policies in a Routing
Registry, ripe-181, October 1994
ftp://ftp.ripe.net/ripe/docs/ripe-181.txt

[12] Meyer, D., Schmitz, J., Orange, C., Prior, M., Alaettinoglu, C.
Using RPSL in Practice, RFC 2650, August 1999
http://www.ietf.org/rfc/rfc2650.txt

[13] Huston, G. Analyzing the Internet’s BGP Routing Table, July 2003
http://impossible.rand.apnic.net/papers/ipj/2001-v4-n1-

bgp/bgp.pdf

96

http://www.ietf.org/rfc/rfc2050.txt
http://www.ietf.org/rfc/rfc3912.txt
http://www.iana.org/numbers
http://www.ietf.org/rfc/rfc2622.txt
http://www.ietf.org/rfc/rfc4012.txt
http://www.irr.net/docs/list.html
http://www.ietf.org/rfc/rfc4271.txt
ftp://ftp.ripe.net/ripe/docs/ripe-060.txt
ftp://ftp.ripe.net/ripe/docs/ripe-081.txt
ftp://ftp.ripe.net/ripe/docs/ripe-181.txt
http://www.ietf.org/rfc/rfc2650.txt
http://impossible.rand.apnic.net/papers/ipj/2001-v4-n1-bgp/bgp.pdf
http://impossible.rand.apnic.net/papers/ipj/2001-v4-n1-bgp/bgp.pdf


[14] Huston, G., Armitage, G. Projecting Future IPv4 Router Requirements
from Trends in Dynamic BGP Behaviour Proc. ATNAC, Australia, Decem-
ber 2006
http://caia.swin.edu.au/pubs/ATNAC06/Huston_1m.pdf

[15] Houston, G. BGP Routing Table Analysis Reports
http://bgp.potaroo.net/

[16] Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D. T he
impact of routing policy on Internet paths Proc. INFOCOM 2001, Pages
736-742 vol.2 ISBN 0-7803-7016-3

[17] Feldmann, A., Maennel, O., Mao, Z. M., Berger, A., Maggs, B.
Locating internet routing instabilities Proc. SIGCOMM 2004, Pages 205-218
ISBN 1-58113-862-8

[18] Zheng, H., Lua, E. K., Pias, M., Griffin, T. G. Internet Routing Policies
and Round-Trip-Times Proc. PAM 2005, Pages 236-250 ISBN 978-3-540-
31966-5

[19] Labovitz, C., Ahuja, A. The Impact of Internet Policy and Topology on
Delayed Routing Convergence Proc. INFOCOM 2001, Pages 537 - 546 vol.1
ISBN 0-7803-7016-3

[20] Wang, F., Gao, L. On Inferring and Characterizing Internet Routing Poli-
cies Proc. IMC 2003, SIGCOMM, Pages 15-26 ISBN 1-58113-773-7

[21] Feamster, N., Balakrishnan, H. Detecting BGP configuration faults with
static analysis Proc. NSDI 2005, Volume 2, May 2005, Pages 43-56

[22] Kruegel, C., Mutz, D., Robertson, W., Valeur, F. Topology-Based
Detection of Anomalous BGP Messages

[23] Govindan, R., Alaettinoglu, C., Eddy, G. Kessens, D., Kumar, S.,
Lee, W. An architecture for stable, analyzable Internet routing IEEE Net-
work Magazine, Volume 13 Issue 1, Jan-Feb 1999, Pages 29-35 ISSN 0890-
8044

[24] Griffin, T., Shepherd, B., Wilfong, G. Policy Disputes in Path-Vector
Protocols Proc. International Conference on Network Protocols, Oct-Nov
2003, Pages 21-30 ISSN 1092-1648

[25] Feamster, N., Winick, J., Rexford, J. A model of BGP routing for
network engineering Proc. ACM SIGMETRICS, Volume 32 Issue 1, June
2004, Pages 331-342 ISBN 1-58113-873-3

[26] Feamster, N., Jung, J., Balakrishnan, H. An empirical study of “Bo-
gon” route advertisements Proc. ACM SIGCOMM Computer Communica-
tions Review, Volume 35 Issue 1, January 2005, Pages 63-70

[27] Caesar, M., Rexford, J. BGP routing policies in ISP networks IEEE
Network Magazine, Volume 19 Issue 6, November 2005, Pages 5-11 ISSN
0890-8044

97

http://caia.swin.edu.au/pubs/ATNAC06/Huston_1m.pdf
http://bgp.potaroo.net/


[28] , Griffin, T., Jaggard, A., Ramachandran, V. Design Principles of
Policy Languages for Path Vector Protocols Proc. SIGCOMM 2003, Pages
61-72 ISBN 1-58113-735-4

[29] Stone, G., N., Lundy, B., Xie, G. G. Network policy languages: a survey
and a new approach IEEE Network Magazine, Volume 15 Issue 1, Jan-Feb
2001, Pages 10-21 ISSN 0890-8044

[30] Lepinski, M. Kent, S. An Infrastructure to Support Secure Internet Rout-
ing, RFC 6480, February 2012
http://www.ietf.org/rfc/rfc6480.txt

[31] Bush, R. Austein, R. The Resource Public Key Infrastructure (RPKI) to
Router Protocol, RFC 6810, January 2013
http://www.ietf.org/rfc/rfc6810.txt

[32] Mohapatra, P., Scudder, J., Ward, D., Bush, R., Austein, R. BGP
Prefix Origin Validation, RFC 6811, January 2013
http://www.ietf.org/rfc/rfc6811.txt

[33] Working Around BGP: An Incremental Approach to Improving Security and
Accuracy of Interdomain Routing Goodell, G., Aiello, W., Griffin, T.,
Ioannidis, J., McDaniel, P., Rubin, A. Internet Society, NDSS Sympo-
sium 2003

[34] Kent, S., Lynn, C., Mikkelson, J., Seo, K. Secure Border Gateway Pro-
tocol (S-BGP) — Real World Performance and Deployment Issues Internet
Society, NDSS Symposium 2000

[35] Bush, R., Austein, R., Patel, K., Gredler, H., Waehlisch, M. Re-
source Public Key Infrastructure (RPKI) Router Implementation Report,
RFC 7128, February 2014
http://www.ietf.org/rfc/rfc7128.txt

[36] Wahlisch, M., Schmidt, R., Schmidt, T., C., Maennel, O., Uhlig,
S., Tyson, G. RiPKI: The Tragic Story of RPKI Deployment in the Web
Ecosystem arXiv:1408.0391 [cs.NI], November 2015

[37] YouTube Hijacking: A RIPE NCC RIS case study RIPE NCC Publications,
web site, March 2008
https://www.ripe.net/publications/news/industry-developments/

youtube-hijacking-a-ripe-ncc-ris-case-study

[38] Litke, P., Stewart, J. BGP Hijacking for Cryptocurrency Profit Dell
SecureWorks CTU RESEARCH, web site, August 2014
https://www.secureworks.com/research/bgp-hijacking-for-

cryptocurrency-profit

[39] Cowie, J. The New Threat: Targeted Internet Traffic Misdirection Dyn
Research report, web site, November 2013
http://research.dyn.com/2013/11/mitm-internet-hijacking/

98

http://www.ietf.org/rfc/rfc6480.txt
http://www.ietf.org/rfc/rfc6810.txt
http://www.ietf.org/rfc/rfc6811.txt
http://www.ietf.org/rfc/rfc7128.txt
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
http://research.dyn.com/2013/11/mitm-internet-hijacking/


[40] Yun, J., Song, J. Policy-Based AS Path Verification with Enhanced Com-
parison Algorithm to Prevent 1-Hop AS Path Hijacking in Real Time In-
ternational Journal of Multimedia and Ubiquitous Engineering Volume 11
No.1, January 2016, Pages 11-22 ISSN 1942-2636

[41] Sloman, M., Lupu, E. Policy Specification for Programmable Networks Ac-
tive Networks, Springer Berlin Heidelberg, 1999, Pages 73-84 ISBN 978-3-
540-48507-0

[42] Voellmy, A., Kim, H., Feamster, N. Procera: a language for high-level
reactive network control Proc. HotSDN ’12, Pages 43-48 ISBN: 978-1-4503-
1477-0

[43] Schlamp, J., Wahlisch, M., Schmidt, T., Carle, G., Biersack, E.
CAIR: Using Formal Languages to Study Routing, Leaking, and Interception
in BGP arXiv:1605.00618 [cs.NI], May 2016

[44] Foster, N., Freedman, M., Guha, A., Harrison, R., Katta, N., Mon-
santo, C., Reich, J., Reitblatt, M., Rexford, J., Schlesinger, C.,
Story, A., Walker, D. Languages for software-defined networks IEEE
Communications Magazine, Volume 51 Issue 2, February 2013, Pages 128-
134

[45] Reich, J., Monsanto, C., Foster, N., Rexford, J., Walker, D. Mod-
ular SDN Programming with Pyretic USENIX ;login Magazine, Volume 38
No. 5, Pages 128-134, 2013

[46] Doriguzzi-Corin, R., Salvadori, E., Aranda Gutierrez A.,
Stritzke, C., Leckey, A., Phemius, K., Rojas, E., Guerrero, C.
NetIDE: removing vendor lock-in in SDN NetSoft 2015, London (UK)
http://www.netide.eu/sites/www.netide.eu/files/publications/

netsoft2015_demo.pdf

[47] Gutierrez, P., Karl, H., Rojas, E., Leckey, A. On Network Application
Representation and Controller Independence in SDN Proc. EuCNC 2015,
June-July 2015

[48] Jasinska, E., Hilliard, N., Raszuk, R., Bakker, N. Internet Exchange
Route Server Internet-Draft – work in progress 05, IETF, June 2014
https://tools.ietf.org/html/draft-ietf-idr-ix-bgp-route-

server-10

[49] IRRtoolset project Trac home
http://irrtoolset.isc.org/

[50] Estrin, D., Postel, J., Rekhter, Y. Routing Arbiter Architecture
ftp://ftp.isi.edu/pub/hpcc-papers/ra/ra-arch.ps

[51] PERL RPSL::Parser module in CPAN
http://search.cpan.org/~lmc/RPSL-Parser-0.04000/lib/RPSL/

Parser.pm

99

http://www.netide.eu/sites/www.netide.eu/files/publications/netsoft2015_demo.pdf
http://www.netide.eu/sites/www.netide.eu/files/publications/netsoft2015_demo.pdf
https://tools.ietf.org/html/draft-ietf-idr-ix-bgp-route-server-10
https://tools.ietf.org/html/draft-ietf-idr-ix-bgp-route-server-10
http://irrtoolset.isc.org/
ftp://ftp.isi.edu/pub/hpcc-papers/ra/ra-arch.ps
http://search.cpan.org/~lmc/RPSL-Parser-0.04000/lib/RPSL/Parser.pm
http://search.cpan.org/~lmc/RPSL-Parser-0.04000/lib/RPSL/Parser.pm


[52] BGF project page - SourceForge
http://sourceforge.net/projects/bgflib/

[53] NOC project webpage
https://kb.nocproject.org/display/DOC/Home

[54] Konstantaras, S. ENGRIT (Extensible Next Generation Routing Infor-
mation Toolkit) Routing WG at RIPE 72, May 2016
https://ripe72.ripe.net/presentations/143-RIPE72_ENGRIT_SK.pdf

[55] Repository of PolicyParser, mantaBGP project GitHub repository
https://github.com/stkonst/PolicyParser

[56] Walker, D. and others proposal for a review of the RIPE Database data
model Thread in RIPE DB-WG Mailing list
https://www.ripe.net/ripe/mail/archives/db-wg/2016-May/005239.

html

[57] Schmitz, J., Gunduz, E., Kerr, S., Robachevsky, A., Damas, J. Rout-
ing Registry Consistency Check, ripe-201, 2001
https://www.ripe.net/publications/docs/ripe-201

[58] RRCC RIPE NCC Archived Projects, web site, December 2010
https://www.ripe.net/analyse/archived-projects/rrcc/rrcc

[59] Siganos, G., Faloutsos, M. Analyzing BGP Policies: Methodology and
Tool Proc. INFOCOM 2004, Pages 1640 - 1651, vol.3 ISBN: 0-7803-8355-9

[60] Snijders, J., Hilliard, N. The ’via’ keyword in RPSL Policy Specifications
Internet-Draft, IEEE, Network Working Group, June 2013
https://tools.ietf.org/html/draft-snijders-rpsl-via-00

[61] Vohra, Q., Chen E. BGP Support for Four-Octet Autonomous System
(AS) Number Space, RFC 6793, December 2012
http://www.ietf.org/rfc/rfc6793.txt

[62] Hilliard N. Whither RPSL? Routing WG at RIPE 61, November 2010
http://ripe61.ripe.net/presentations/231-228-inex-ripe-rome-

routingwg-whitherrpsl-2010-11-17.pdf

[63] Farinacci, D. Meyer, D. Lewis, D. The Locator/ID Separation Protocol
(LISP), RFC 6830, January 2013
http://www.ietf.org/rfc/rfc6830.txt

[64] Jen, D., Meisel, M., Yan, H., Massey, D., Wang, L., Zhang, B.,
Zhang, L. Towards A New Internet Routing Architecture: Arguments for
Separating Edges from Transit Core Proc. HotNets-VII, October 2008
http://conferences.sigcomm.org/hotnets/2008/papers/18.pdf

[65] Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A., van der
Merwe, J. The case for separating routing from routers Proc. FDNA SIG-
COMM, 2004, Pages 5-12

100

http://sourceforge.net/projects/bgflib/
https://kb.nocproject.org/display/DOC/Home
https://ripe72.ripe.net/presentations/143-RIPE72_ENGRIT_SK.pdf
https://github.com/stkonst/PolicyParser
https://www.ripe.net/ripe/mail/archives/db-wg/2016-May/005239.html
https://www.ripe.net/ripe/mail/archives/db-wg/2016-May/005239.html
https://www.ripe.net/publications/docs/ripe-201
https://www.ripe.net/analyse/archived-projects/rrcc/rrcc
https://tools.ietf.org/html/draft-snijders-rpsl-via-00
http://www.ietf.org/rfc/rfc6793.txt
http://ripe61.ripe.net/presentations/231-228-inex-ripe-rome-routingwg-whitherrpsl-2010-11-17.pdf
http://ripe61.ripe.net/presentations/231-228-inex-ripe-rome-routingwg-whitherrpsl-2010-11-17.pdf
http://www.ietf.org/rfc/rfc6830.txt
http://conferences.sigcomm.org/hotnets/2008/papers/18.pdf


[66] Bilse, P. et al. Routing Documentation Language Internet Draft, April 2014
https://tools.ietf.org/html/draft-bilse-rdl-00

[67] Enns, R., Ed. NETCONF Configuration Protocol, RFC 4741, December
2006
http://www.ietf.org/rfc/rfc6241.txt

[68] IRRToolSet Use @ Deutsche Telekom ToolSet BOF at RIPE 64
https://ripe64.ripe.net/presentations/210-ToolSet-BOF.pdf

[69] Route Registry: who uses them? Thread in NANOG Mailing List
http://seclists.org/nanog/2000/Oct/271

[70] Bradner, S. The Internet Standards Process – Revision 3, BCP 9, RFC
2026, October 1996
http://www.ietf.org/rfc/rfc2026.txt

[71] Resnick, P. On Consensus and Humming in the IETF, RFC 7282, June
2014
http://www.ietf.org/rfc/rfc7282.txt

[72] Louridas, P., Spinellis, D., Vlachos, V. Power laws in software ACM
Transactions on Software Engineering and Methodology, Volume 18 Issue 1,
September 2008

[73] Newman, M. Power laws, Pareto distributions and Zipf ’s law
arXiv:cond-mat/0412004 [cond-mat.stat-mech], May 2006

[74] polling for ripe dbase software changes Thread in RIPE DB-WG Mailing
list
https://www.ripe.net/ripe/mail/archives/db-wg/1996-March/

000496.html

[75] RIPE Database Query Reference Manual RIPE Database Documents, RIPE
NCC web site
https://www.ripe.net/manage-ips-and-asns/db/support/

documentation/ripe-database-query-reference-manual

[76] Newton, A., Ellacott, B., Kong, N. HTTP Usage in the Registration
Data Access Protocol (RDAP), RFC 7480, March 2015
http://www.ietf.org/rfc/rfc7480.txt

[77] Hollenbeck, S., Kong, N. Security Services for the Registration Data
Access Protocol (RDAP), RFC 7481, March 2015
http://www.ietf.org/rfc/rfc7481.txt

[78] Newton, A., Hollenbeck, S., Registration Data Access Protocol (RDAP)
Query Format, RFC 7482, March 2015
http://www.ietf.org/rfc/rfc7482.txt

[79] Newton, A., Hollenbeck, S. JSON Responses for the Registration Data
Access Protocol (RDAP), RFC 7483, March 2015
http://www.ietf.org/rfc/rfc7483.txt

101

https://tools.ietf.org/html/draft-bilse-rdl-00
http://www.ietf.org/rfc/rfc6241.txt
https://ripe64.ripe.net/presentations/210-ToolSet-BOF.pdf
http://seclists.org/nanog/2000/Oct/271
http://www.ietf.org/rfc/rfc2026.txt
http://www.ietf.org/rfc/rfc7282.txt
https://www.ripe.net/ripe/mail/archives/db-wg/1996-March/000496.html
https://www.ripe.net/ripe/mail/archives/db-wg/1996-March/000496.html
https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-query-reference-manual
https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-query-reference-manual
http://www.ietf.org/rfc/rfc7480.txt
http://www.ietf.org/rfc/rfc7481.txt
http://www.ietf.org/rfc/rfc7482.txt
http://www.ietf.org/rfc/rfc7483.txt


[80] Blanchet, M. Finding the Authoritative Registration Data (RDAP) Ser-
vice, RFC 7484, March 2015
http://www.ietf.org/rfc/rfc7484.txt

[81] Vohra, Q., Chen, E. BGP Support for Four-octet AS Number Space RFC
4893, May 2007
http://www.ietf.org/rfc/rfc4893.txt

[82] Rekhter, Y., Sangli, S., Tappan, D. Four-octet AS Specific BGP
Extended Community IETF draft, May 2009
https://tools.ietf.org/html/draft-ietf-l3vpn-as4octet-ext-

community-02

[83] WHOIS REST API documentation GitHub Wiki page
https://github.com/RIPE-NCC/whois/wiki/WHOIS-REST-API

[84] IPv6 World Launch website
http://www.worldipv6launch.org/

[85] bgpcrunch GitHub repository
https://github.com/tmshlvck/bgpcrunch

[86] M’Raihi, D., Machani, S., Pei, M., Rydell, J. TOTP: Time-Based One-
Time Password Algorithm, RFC 6238, May 2011
http://www.ietf.org/rfc/rfc6238.txt

[87] Bray, T., Paoli, J., Sperberg-McQueen C., Maler, E., Yergeau, F.
Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommen-
dation, November 2008
https://www.w3.org/TR/2008/REC-xml-20081126/

[88] Bray, T. The JavaScript Object Notation (JSON) Data Interchange Format,
RFC 7159, March 2014
http://www.ietf.org/rfc/rfc7159.txt

[89] Ben-Kiki, O., Evans, C., Net, I. YAML Ain’t Markup Language
(YAMLTM) Version 1.2 YAML specification, October 2009
http://www.yaml.org/spec/1.2/spec.html

[90] Bjorklund, M. YANG - A Data Modeling Language for the Network Con-
figuration Protocol (NETCONF), RFC 6020, October 2010
http://www.ietf.org/rfc/rfc6020.txt

102

http://www.ietf.org/rfc/rfc7484.txt
http://www.ietf.org/rfc/rfc4893.txt
https://tools.ietf.org/html/draft-ietf-l3vpn-as4octet-ext-community-02
https://tools.ietf.org/html/draft-ietf-l3vpn-as4octet-ext-community-02
https://github.com/RIPE-NCC/whois/wiki/WHOIS-REST-API
http://www.worldipv6launch.org/
https://github.com/tmshlvck/bgpcrunch
http://www.ietf.org/rfc/rfc6238.txt
https://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ietf.org/rfc/rfc7159.txt
http://www.yaml.org/spec/1.2/spec.html
http://www.ietf.org/rfc/rfc6020.txt


List of Tables

4.1 Subset indicator functions . . . . . . . . . . . . . . . . . . . . . . 47

5.1 RIPE DB object count on June 21, 2015 . . . . . . . . . . . . . . 65
5.2 RIPE DB recursion depth in aut-num objects on June 21, 2015 . . 66
5.3 RIPE DB recursion subtree size in aut-num objects on June 21, 2015 66

6.1 RIPE DB Access authentication . . . . . . . . . . . . . . . . . . . 80

A.1 Analysis running time . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2 Size of data and products . . . . . . . . . . . . . . . . . . . . . . 117
A.3 IPv4 RIR regions size - 2015-06-21 . . . . . . . . . . . . . . . . . 132
A.4 IPv6 RIR regions size - 2015-06-21 . . . . . . . . . . . . . . . . . 134
A.5 Origin validation states . . . . . . . . . . . . . . . . . . . . . . . . 136
A.6 IPv4 Origin validation states . . . . . . . . . . . . . . . . . . . . . 139
A.7 IPv6 Origin validation states . . . . . . . . . . . . . . . . . . . . . 139
A.8 Path validation states . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.9 Hop validation states . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.10 IPv4 Path AS transition validation results . . . . . . . . . . . . . 150
A.11 IPv4 Path validation results . . . . . . . . . . . . . . . . . . . . . 151
A.12 IPv6 Path AS transition validation results . . . . . . . . . . . . . 155
A.13 IPv6 Path validation results . . . . . . . . . . . . . . . . . . . . . 156

103



List of Figures

1.1 Internet coordination hierarchy . . . . . . . . . . . . . . . . . . . 8

4.1 IPv4 route origin validation percentage . . . . . . . . . . . . . . . 49
4.2 IPv4 route origin validation results . . . . . . . . . . . . . . . . . 49
4.3 IPv6 route origin validation percentage . . . . . . . . . . . . . . . 50
4.4 IPv6 route origin validation results . . . . . . . . . . . . . . . . . 50
4.5 IPv4 hop validation results . . . . . . . . . . . . . . . . . . . . . . 52
4.6 IPv4 hop validation percentage . . . . . . . . . . . . . . . . . . . 52
4.7 IPv6 hop validation results . . . . . . . . . . . . . . . . . . . . . . 53
4.8 IPv6 hop validation percentage . . . . . . . . . . . . . . . . . . . 53

7.1 The proposed New IRR hierarchy . . . . . . . . . . . . . . . . . . 88

A.1 BGP crunch architecture . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 IPv4 prefixes in BGP . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3 IPv4 average prefix length in BGP . . . . . . . . . . . . . . . . . 119
A.4 Number of IPv4 /22 prefixes in BGP . . . . . . . . . . . . . . . . 120
A.5 Number of IPv4 /20 prefixes in BGP . . . . . . . . . . . . . . . . 120
A.6 Number of IPv4 /16 prefixes in BGP . . . . . . . . . . . . . . . . 121
A.7 IPv6 prefixes in BGP . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.8 Number of IPv6 /32 prefixes in BGP . . . . . . . . . . . . . . . . 122
A.9 Number of IPv6 /48 prefixes in BGP . . . . . . . . . . . . . . . . 123
A.10 Number of IPv6 /20 prefixes in BGP . . . . . . . . . . . . . . . . 123
A.11 IPv6 average prefix length in BGP . . . . . . . . . . . . . . . . . 124
A.12 IPv4 BGP average path length . . . . . . . . . . . . . . . . . . . 125
A.13 IPv6 BGP average path length . . . . . . . . . . . . . . . . . . . 126
A.14 IPv4 BGP path length per prefix length . . . . . . . . . . . . . . 126
A.15 IPv4 BGP path length time series for /16 . . . . . . . . . . . . . 127
A.16 IPv4 BGP path length time series for /24 . . . . . . . . . . . . . 128
A.17 2015-06-21 - IPv4 BGP path length per prefix length . . . . . . . 128
A.18 2012-03-22 - IPv4 BGP path length per prefix length . . . . . . . 129
A.19 IPv6 BGP path length per prefix length . . . . . . . . . . . . . . 130
A.20 IPv6 BGP path length time series for /28 . . . . . . . . . . . . . 130
A.21 IPv6 BGP path length time series for /32 . . . . . . . . . . . . . 131
A.22 IPv6 BGP path length time series for /48 . . . . . . . . . . . . . 132
A.23 IPv4 RIR DFZ share . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.24 IPv6 RIR DFZ share . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.25 IPv4 RIR average prefix length . . . . . . . . . . . . . . . . . . . 134
A.26 IPv6 RIR average prefix length . . . . . . . . . . . . . . . . . . . 135
A.27 IPv4 BGP origin validation time series . . . . . . . . . . . . . . . 138
A.28 IPv6 BGP origin validation time series . . . . . . . . . . . . . . . 138
A.29 IPv4 route origin validation results . . . . . . . . . . . . . . . . . 140
A.30 IPv6 route origin validation results . . . . . . . . . . . . . . . . . 140
A.31 IPv4 route origin validation percentage . . . . . . . . . . . . . . . 141
A.32 IPv6 route origin validation percentage . . . . . . . . . . . . . . . 141
A.33 IPv4 BGP path validation time series . . . . . . . . . . . . . . . . 146

104



A.34 IPv4 BGP path validation details . . . . . . . . . . . . . . . . . . 147
A.35 IPv4 BGP validation errors per path . . . . . . . . . . . . . . . . 148
A.36 IPv4 BGP filter matching along the paths . . . . . . . . . . . . . 150
A.37 IPv4 BGP filter matching results per prefix length . . . . . . . . . 151
A.38 IPv6 BGP path validation time series . . . . . . . . . . . . . . . . 152
A.39 IPv6 BGP path validation details . . . . . . . . . . . . . . . . . . 153
A.40 IPv6 BGP validation errors per path . . . . . . . . . . . . . . . . 153
A.41 IPv6 BGP filter matching along the paths . . . . . . . . . . . . . 155
A.42 IPv6 BGP filter matching results per prefix length . . . . . . . . . 156

105



List of Abbreviations

AFI Address Family Identifier

AFRINIC African Network Information Center

AMS-IX Amsterdam Internet Exchange

API Application Programming Interface

APNIC Asia Pacific Network Information Centre

ARIN American Registry for Internet Numbers

AS Autonomous System

ASBR Autonomous System Border Router

ASCII American Standard Code for Information Interchange

ASN Autonomous System Number

BCP Best Current Practices

BGF Border Gateway Filter

BGP Border Gateway Protocol

BoF Birds of a Feather

CEE Central and Eastern Europe

CPAN Comprehensive Perl Archive Network

CPE Customer-Premises Equipment

CPU Central Processing Unit

CSV Comma Separated Values

DB Datbase

DB-WG Database Working Group in RIPE

De-CIX Deutsche Commercial Internet Exchange

DFZ Default Free Zone

DNS Domain Name System

EBNF Extended Backus–Naur Form

EGP Exterior Gateway Protocol

ENGRIT Extendible Next Generation Routing Information Toolkit

106



FIB Forwarding Information Base

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

ICANN Internet Corporation for Assigned Names and Numbers

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IOS Internetwork Operating System, (Cisco proprietary OS)

IP Internet Protocol

IRC Internet Relay Chat

IRIS Internet Registry Information Service

IRR Internet Routing Registry

ISOC Internet Society

ISP Internet Service Provider

IT Information Technology

IX Internet Exchange

IXP Internet Exchange Point

JSON JavaScript Object Notation

LACNIC Latin America and Caribbean Network Information Centre

LINX London Internet Exchange

LIR Local Internet Registry

LISP Locator Identifier Separation Protocol

MED Multi-Exit Discriminator

MIXP Montenegro Internet Exchange Point

MPLS Multiprotocol Label Switching

MPLS-TE Multiprotocol Label Switching Traffic Engineering

MTU Maximum Transmission Unit

107



NANOG North American Network Operations Group

NAT-PT Network Address Translation - Protocol Translation

NETCONF Network Configuration

NetIDE Network Interactive Development Environment

NFS Network File System

NIX Neutral Internet Exchange, IXP based in Prague, Czech Republic

NLRI Network Layer Reachability Information

NOC Network Operations Center

OSS Open Source Software

PA Provider Aggregatable IP address space

PERL Practical Extraction and Report Language

PGP Pretty Good Privacy

PI Provider Independent IP address space

RDAP Registration Data Access Protocol

RDL Routing Documentation Language

REST Representational State Transfer

RFC Request For Comment

RIB Routing Information Base

RIPE Réseaux Internet Protocol Européens

RIPE NCC Réseaux Internet Protocol Européens Network Coordination Centre

RIR Regional Internet Registry

RIS Routing Information Service, RIPE NCC service

RPC Remote Procedure Call

RPF Reverse Path Forwarding

RPKI Resource Public Key Infrastructure

RPSL Routing Policy Specification Language

RS Route Server

RTBH Remotely Triggered Black Hole

RTT Round-Trip Time

108



S-BGP Secure BGP

SDN Software Defined Network

SDP Standard Development Process

SIX Slovak Internet eXchange

SSO Single Sign-On, RIPE NCC resources authentication method

STD Internet Standard

TCP Transmission Control Protocol

TOTP Time-Based One-Time Password Algorithm

TTL Time To Live

VRF Virtual Routing and Forwarding

WG Working Group

XML Extensible Markup Language

YAML Yet Another Markup Language

YANG Yet Another Next Generation, data modeling language

109



Attachments



A. RPSL and BGP data analysis

The appendix presents selected results of the data analysis, referenced in previous
chapters. The results came from a software called bgpcrunch, which has been
created during the preparation phase of this thesis. The functional description
of the software in this chapter is going to be brief. The next appendix contains
detailed API documentation and programmer’s manual. The source code of the
bgpcrunch software is published under OSS license on GitHub [85] (https:
//github.com/tmshlvck/bgpcrunch) for further reference.

Please note that this appendix contains only a small portion of the selected
results. Complete results in both text and graphical form are published on the web
site http://aule.elfove.cz/~brill/bgpcrunch. The reason for not including
the full results in appendices or in electronic form is the size of the entire result
set that reaches several hundreds of gigabytes.

A.1 Available data

A.1.1 Outline of the experiment

Extent and subject

The idea of conducting an Internet routing system analysis from two different
points of view arose in fall 2011. The primary concern was to measure the ac-
curacy of routing policy data in RIPE DB and observe IP routing trends that
could be seen in turbulent time of IPv4 to IPv6 transition. In 2011, the IPv6
was generally deployed in backbone networks, but it was still generally disabled
by content providers. People were concerned about turning IPv6 on and, at the
same time, they were anxious about the future of the Internet because the IPv4
address pool exhaustion was imminent at that time. Despite the fact that IPv6
exists from late 1990’s, the community did not have consistent and broad expe-
rience with end-to-end IPv6 services even after more than 15 years of small-scale
dual-stacking. This situation was interesting not only from operational point of
view, but also as an opportunity to capture the dynamics of IPv6 deployment and
observe practices, concerning the new protocol in the Internet routing system.

The first part of the work that preceded this IRR measurement initiative was
based on collecting data and storing them until the software for its analysis is
finished. The plan was to seek for additional support later, namely obtaining
more processing power to analyze the collected data, if it proves to be necessary.

Data collection period

The data collection started on November 11, 2011. There has been a brief discus-
sion with the thesis supervisor, the representatives of my former employer who
offered resources for the experiment, and a few people who showed interest in
this topic about what data to collect and what to do with them afterwards.

With the known limits of available resources, I have created an outline for the
data analysis, which is also the abstract for this thesis.

111

https://github.com/tmshlvck/bgpcrunch
https://github.com/tmshlvck/bgpcrunch
http://aule.elfove.cz/~brill/bgpcrunch


The collection process required subsequent adjustments: This is the reason
why we have the first data that are usable for the subsequent analysis since
March 3, 2012. Data collected in the period from November 11, 2011 to March
3, 2012 are incomplete and do not provide enough evidence for comprehensive
analysis, though some information could be extracted. Later, the analysis process
proved to be time-consuming and requiring a lot of resources in general. This
fact discouraged me from putting an extra effort to analyze partial and possibly
inconsistent data from the beginning of the experiment.

A.1.2 Data types

The collected data on a daily basis consists of two basic parts:

1. Snapshot of BGP table in text form,

2. Snapshot of RIPE DB contents.

BGP table

The BGP snapshot is a captured output generated by Cisco commands show

bgp ipv4 unicast and show bgp ipv6 unicast. An example of a short output
capture fragment follows:

Network Next Hop Metric LocPrf Weight Path

*>i 1.0.0.0/24 217.31.48.125 0 128 0 6939 15169 i

* 195.39.49.133 127 0 5588 15169 i

*>i 1.0.4.0/24 217.31.48.125 1 256 0 6939 4826

38803 56203 i

* 91.210.16.201 1 240 0 6939 4826

38803 56203 i

* 195.39.49.133 127 0 5588 6939

4826 38803

56203 i

*>i 1.0.5.0/24 217.31.48.125 1 256 0 6939 4826

38803 56203 i

* 91.210.16.201 1 240 0 6939 4826

38803 56203 i

* 195.39.49.133 127 0 5588 6939

4826 38803 56203 i

*>i 1.0.6.0/24 217.31.48.125 1 256 0 6939 4826

38803 56203 56203 56203 i

* 91.210.16.201 1 240 0 6939 4826

38803 56203 56203 56203 i

* 195.39.49.133 127 0 5588 6939

4826 38803 56203 56203 56203 i

*>i 1.0.64.0/18 217.31.48.125 1 256 0 6939 4725

4725 7670 7670 7670 18144 i

* 91.210.16.201 1 240 0 6939 4725

4725 7670 7670 7670 18144 i

* 195.39.49.133 127 0 5588 6939

112



4725 4725 7670 7670 7670 18144 i

The first two lines, that follow the header, describe the two possible paths
towards prefix 1.0.0.0/24. The most interesting part of it for routing policy
analysis is the Path column. This example contains two distinct paths over
two different upstreams AS6939 and AS5588. We can also observe that the
originator of the prefix is AS15169, BGP origin attribute is i (internal). The
path over AS6939 is being used because it has greater LocPrf (local preference)
and therefore it has been selected by the BGP best path selection algorithm as
the best path. This fact is displayed by the “>” character in the first column.

The complete output capture contains information about all prefixes in the
Internet that are reachable from our observation point at the capture generation
time.

However, some prefixes might be less straight-forward to read, namely the
prefixes created by route summarization, redistribution from EGP or prefixes
manipulated by some non-standard mechanism.

These prefixes are less frequent and the non-standard results should not occur
in DFZ, even though some appear anyway.

Moreover, for the first three months the router, which has been used for
obtaining the data, did not support 32-bit ASNs and therefore path data have
been mangled by the backward compatibility mechanism, described in RFC 6793
[61]. However, since data from this period are not used in the subsequent analysis,
it does not affect our results.

The size of the IPv4 table dumps varies from 783 555 lines and 67 250 680
bytes in the beginning (2012), up to 1 220 336 lines and 105 552 786 bytes in June
2015. For IPv6 the data size is considerably lower: It consisted of only 30 491
lines in November 2011 and in June 2015 it contained 181 681 lines.

Please note that the BGP table size is larger than the RIB1 table size because
the BGP table contains multiple paths for many prefixes. The reason for holding
redundant information is to be able to decide on the best path and to switch to
the second best path immediately when the best path fails. Generally speaking,
the BGP table in our case contains at least two possible paths for most prefixes.
Nonetheless, for some prefixes we might have as much as 10 competing BGP
paths.

RIPE DB

In order to conduct analysis of the routing policies, I have decided to collect RIPE
DB snapshots and store them in compressed form. The RIPE DB content dumps
are available on FTP server of RIPE NCC. FTP makes it easy to download and
pack daily snapshots.

The files from FTP are anonymized in order to protect personal data in certain
RIPE DB object types, but the anonymization does not interfere with our goals
because IRR and routing related information are preserved. The RIPE DB format
has already been described in previous chapters: It is based on text files that
contain RPSL objects grouped by the object type.

1Routing Information Base - the effective routing table on the router.

113



Figure A.1: BGP crunch architecture

A.1.3 Data size

Overall data size of the captured data prior to the first analysis (June 2015) in
compressed form was 198 GB. Major part of the data was the RIPE DB dump
archive. Results and byproducts of the analysis took 776 GB, while the actual
results without byproducts take approximately 26 GB.

A.2 Data processing

A.2.1 Software requirements

Programming language

The presented outline calls for batch processing of great amount of data. The
basic decision I made in the beginning was to use scripting language. The lan-
guage should interact well with many different data analysis tools, in should be
fast and should support distributed processing.

The language of choice for this project is Python 2.7, even though it does not
excel in all the mentioned requirements. It proved to be reasonable choice and
I was able to create and debug all components needed for the data analysis in a
period of several months.

Parallel execution

I needed to scale out the CPU intensive parts of the analysis to more computers
to get the results in reasonable time - in order of days for partial results and
weeks for the complete analysis. Luckily, the analysis is easy to partition into
independent tasks: Analysis of snapshots from a particular day does not depend
on other days. The daily results can be merged and summarized in relatively
short time.

This feature of the data set allowed to automate scheduling to N different
servers with M CPU cores to achieve almost linear scaling.

A.2.2 Software architecture

The figure A.1 shows the high-level architecture of the analysis software bg-
pcrunch.

Processing of data can be divided into three steps:

114



1. Pre-processing: Scripts take the raw text data, generates internal data
structures and several by-products for preliminary statistics and debugging
purposes.

2. Processing: The actual matching of routing policies and BGP path vectors.
The most CPU intensive and time-consuming part of the process.

3. Post-processing: Merging data, creation of the summary outputs and for-
matting outputs for subsequent visualization.

Pre-processing

This step begins with unpacking the archived data. Then we take the raw text
data, parse them and create a few text outputs and very basic Gnuplot charts
as well as Python lookup data structures that are stored into pickle files. The
saved files are actually much larger than the input files, mostly because input files
are compressed. Since the raw data are text files with a lot of repetitions, the
compression ratio is high for these files. In fact, decompressing the raw input was
a surprisingly time-consuming operation and it generated huge I/O load as well.
Therefore I was able to decompress the input files on the main server, where all
the data physically resided, in only 6 threads and it took a few days to complete.

Processing

The resulting pickle files with the pre-processed data structures are passed to the
main and the most CPU intensive part of the analysis, which is called “process-
ing”. At this point we take the path vectors from the pre-processed BGP dumps
and match the prefixes and corresponding paths to the route or route6 objects
in the pre-created lookup structures and record results to another pickle file.

Then we analyze each hop in the AS paths of each path vector in the BGP
table and we try to validate the hops in AS path according to filters in the corre-
sponding aut-num objects. The objects are in the pre-created lookup structures
loaded from the pickle files. The difficult part is to resolve recursive selectors and
then the recursive filters that might refer to many different objects that are in
another pre-processed lookup structures. The depth of the recursion is bound
by the recursive tree depth in -set objects superposed with depth of inherent
recursive nature of the filter expressions.

The matching process has to lookup the proper aut-num object, loop through
selectors and evaluate the filters that have the matching selectors. This task
represents a lot of CPU-bound work but it also burdens memory and I/O as well.

This procedure is exceptionally time consuming. The analysis of the data, cov-
ering one day, takes almost a day on a single contemporary (May 2015) state-of-
the-art CPU core. Therefore, distribution of the workload is needed. To achieve
that, the data has been shared among many servers via NFS. The distribution
of the work has been semi-automatic in the aspect of distributing work among
the servers, because the workload assignment required special consideration with
respect to the particular server power and spare capacity I was allowed to utilize.
The work assignment has been fully-automatic at the servers in the aspect of dis-
tributing work among the available CPU cores and throttling the bulk processing
to avoid blocking the primary application that ran on the server.

115



Phase Running time No. of CPU cores
pre-processing 127 hours 6
processing 247 hours 56
post-processing 27 hours 1

Table A.1: Analysis running time

Post-processing

The results of the “processing” phase still consist only of a few text outputs and
several pickle files that contain the validation results in internal data represen-
tation. The last portion of the bgpcrunch software does the post-processing to
take the analysis results in the pickle files and create main text outputs, count
totals and generate sources of charts, that can be later processed by Gnuplot.
Unfortunately this part has to run in a single thread because it needs to process
the data sequentially and generate the output in the precise order. Of course
it could be parallelized to a certain degree, but the running time is only several
hours even on a single CPU core, so there is no real need to justify an extra effort
needed for speeding this step up.

Postprocessing tools

The collection of tools used to post-process results from my Python software is
limited to R and Gnuplot. Both tools helped with visualization and simple
reasoning on basic features of the results and generated data.

A.2.3 Running time

The table A.1 shows the running time of the data analysis that covers 1 119 days
of BGP and RIPE DB snapshots: From March 22, 2012 to June 21, 2015.

A.2.4 Data and product size

Another interesting aspect of the analysis is the size of the data and byproducts
generated in the process. The table A.2 contains an overview of data types and
their approximate total size.

A.2.5 Syntax errors

During the data pre-processing, I also discovered a bug in RIPE DB software that
permitted a syntactically invalid object into RIPE DB. It was an unfortunate
coincidence that the offending object aut-num: AS2852 belongs to CESNET
z.s.p.o. - Czech academical and research network. The problem was the following
line:

mp-import: afi ipv6.unicastfrom AS39790 action pref=150; accept AS39790

The ipv6.unicastfrom fragment consists of two keywords ipv6.unicast and
from, that should be separated by one or more white space characters. The bug

116



Data Compressed Uncompressed
IANA IP space map N/A 44 kB
BGP snapshots 4 GB 91 GB
RIPE DB snapshots 194 GB 5.1 TB
pre-processing results N/A 522 GB
processing results N/A 306 GB
post-processing daily results N/A 132 GB
post-processing summary results N/A 9 MB
post-processing timeline results N/A 2 GB
Total 198 GB 6.2 TB

Table A.2: Size of data and products

has been reported and acknowledged by RIPE NCC staff and a correction is
expected in a future release.

Apart from this obvious syntax error I encountered two other types of more
complex syntax errors in selectors that, I believe, break the standard to a certain
degree. I created a work-around for the parsing errors and noted them for later
discussion in mailing lists.

A.3 Long-term changes and trends

A.3.1 Global changes

The period covered by the available data captures important events with an
impact on the entire Internet. The time frame covers the culmination of IPv4
scarcity problem and subsequential run-out in all but one RIRs. It also captures
major IPv6 event: World IPv6 Launch [84] on June 6, 2012. Unfortunately, this
event is not directly visible on the BGP propagation plots because the IPv6 BGP
announcements of the participating parties had been in DFZ for a long time
before the World IPv6 Launch day. The flip of the switch on the World IPv6
Launch day happened inside DNS.

A.3.2 IPv4

IPv4 prefix count

Despite of IPv4 run-out, the IPv4 BGP table has been growing steadily during
the whole period, as the figure A.2 shows.

The possible answer to the question “How it is possible that IPv4 table is
growing despite the fact that the IPv4 source has been depleted in major part of
the world?”, is that there are three factors that allow ISPs to add new prefixes
to the DFZ:

1. The first possibility is to announce old and previously unannounced prefixes
that some of the ISPs had obtained in the past and have not used them
yet. The problem is that, except the prefixes allocated in pre-RIR era, it
would be a breach of RIR’s policies. Still, it is possible.

117



 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

P
re

fi
x
 c

o
u

n
t

Date

# of pfxes

Figure A.2: IPv4 prefixes in BGP

2. The second possibility is obtaining small prefixes from RIRs’ last /8. IPv4
run-out is not yet total (May 2015): RIRs decided a few years ago that
they needed to change IPv4 distribution policy, when they hit a certain
level of remaining addresses in the pool. According to this policy, most
RIRs halted IPv4 distribution according to “justifiable need” when they
reached their last /8 IPv4 prefix. New distribution policy for the last /8 in
RIPE allows each LIR to obtain a single uniformly-sized /22 prefix from the
last /8 under similar conditions regarding the justification of the need as for
prefixes allocated before this policy. The intention is to support future new-
comers with modest amount of IPv4 addresses to allow basic connection to
IPv4 Internet and deployment of IPv6 transition mechanisms like NAT-PT.

3. The third possibility is deaggregation of existing prefixes in the DFZ. This
is actually the most problematic consequence of IPv4 depletion for most
ISPs, because prefix deaggregation on a large scale can cause substantial
increase of IPv4 routes count in DFZ in a short time. Since BGP routers
are usually hardware-assisted routing platforms, there is a certain hardware
limitation on maximum routes in FIB. Reaching the limitation implies that
the router can not operate in the Internet correctly anymore and has to be
replaced or carefully configured to drop certain routes, which has a huge
potential to cause further problems.

Average prefix length

The possible deaggregation and injection of a large number of /22 routes at the
same time should be visible. In fact, the time series of average prefix length
displayed in the figure A.3 shows rather steady growth throughout the whole
period. The expected trend is visible in longer time frame in BGP analysis
reports created by Geoff Houston from APNIC that are published on website
[15].

118



 22.32

 22.34

 22.36

 22.38

 22.4

 22.42

 22.44

 22.46

 22.48

 22.5

 22.52

 22.54

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

a
v
g

 p
fx

 l
e
n

g
th

Date

BGP average

Figure A.3: IPv4 average prefix length in BGP

IPv4 /22 prefixes

Another interesting point is the possible increase of /22 prefixes in routing table
due to policy for handling the last /8. The problem is that the RIPE NCC started
to allocate IPv4 address from the last /8 on September 14, 2012 which means
that my data set is not old enough to capture the change in the trend. The figure
A.4 shows rather steady growth, and once again I have to refer to BGP analysis
reports by Geoff Houston [15].

IPv4 lower prefix lengths

But it fact the IPv4 depletion consequences are visible in plots of IPv4 prefix
counts for lower prefix lengths, which translates to greater portion of IPv4 address
space. For instance, share of one of the most common IPv4 prefixes - /20 is still
increasing but it decelerates, as the figure A.5 shows.

In addition, even shorter prefixes started to drop. The most visible case is
/16 in the figure A.6.

A.3.3 IPv6

Prefix count

Even though IPv6 growth is an interesting point on its own, the IPv6 growth in
my data does not show anything exceptional or surprising. The growth in the
captured period is steady and the shape in the figure A.7 seems to be linear in
time.

Prefix size distribution

The growth of IPv6 prefix count is concentrated mostly in the default allocation
units, which are /32 for PA allocations and anything between /32 and /48 for PI

119



 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/2
2

 p
fx

 c
o
u

n
t

Date

# of pfxes

Figure A.4: Number of IPv4 /22 prefixes in BGP

 28000

 29000

 30000

 31000

 32000

 33000

 34000

 35000

 36000

 37000

 38000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/2
0
 p

fx
 c

o
u

n
t

Date

# of pfxes

Figure A.5: Number of IPv4 /20 prefixes in BGP

120



 12000

 12200

 12400

 12600

 12800

 13000

 13200

 13400

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/1
6

 p
fx

 c
o
u

n
t

Date

# of pfxes

Figure A.6: Number of IPv4 /16 prefixes in BGP

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

P
re

fi
x
 c

o
u
n
t

Date

# of pfxes

Figure A.7: IPv6 prefixes in BGP

121



 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/3
2

 p
fx

 c
o

u
n

t

Date

# of pfxes

Figure A.8: Number of IPv6 /32 prefixes in BGP

allocations in most RIR service regions.
The figures for /32 - A.8 and for /48 - A.9 shows the growth throughout the

captured period. It is also interesting that since IPv6 allocation policies allow
allocation of even shorter prefixes than /32, there are prefixes as short as /20,
which are visible in the figure A.10.

Average prefix length

The average prefix length in IPv6 was also growing for most of the captured
period and the numbers over 40 are surprisingly high. Luckily it seems that it is
slowing down and there is some hope that it might be turning for good to even
decreasing trend in the future as the figure A.11 shows.

A.3.4 Changes near the observation point

The covered period captures global changes in scale of entire RIR service regions
and in scale of the entire Internet, but in addition, the collected data are also
affected by local changes that have happened in the proximity of the observation
point.

Observation point

The observation point is an autonomous system border router in AS29134. The
primary purpose of this router is to provide connectivity for an important Czech
ISP that is focused on server hosting and related networking business.

The advantage of this observation point is that we have first-hand data from
the real router, which is involved in day-to-day operation of backbone network.
The ISP in question operates the autonomous system fully on its own. At the
same time, the entire ISP network is fairly simple because there are only two
BGP routers and a few IGP routers connected to them. Moreover, the network

122



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/4
8

 p
fx

 c
o
u

n
t

Date

# of pfxes

Figure A.9: Number of IPv6 /48 prefixes in BGP

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

/2
0
 p

fx
 c

o
u

n
t

Date

# of pfxes

Figure A.10: Number of IPv6 /20 prefixes in BGP

123



 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 43

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

a
v
g

 p
fx

 l
e
n

g
th

Date

BGP average

Figure A.11: IPv6 average prefix length in BGP

architecture follows design patterns and network engineering best practices to a
great extent.

Upstreams of the observation point

On the contrary, the disadvantage of having this particular observation point,
at this place and at this particular time frame is related to the fact that the
European and especially Czech ISP business underwent transformation and re-
structuralization during the observation period.

Analysis of the European ISP business trends is clearly beyond the scope of
this thesis. The consequences for the observation point AS29134 have been
mainly several changes of upstream providers and experiments with low-cost
upstream and remote peering2 services, provided by certain networks that had
started to operate in the Czech Republic not long ago.

IPv4 path length

The consequences were rapid changes in DFZ view and quality of visible paths.
The figure A.12 shows average daily path length for all prefixes in DFZ. To inter-
pret the figure please note that longer paths do not need to be worse than shorter
ones. Nevertheless, fluctuations and instability is always harmful in networking.

The reason for the changes is that the observation point changed the main
upstream networks several times:

1. September - November 2012: Upstream changed from AS174 to AS6939.

2. June 2013: Remote peerings to AMS-IX (Amsterdam) and De-CIX (Frank-
furt) added.

2Remote peering is a partial upstream service. Usually a network that have points of presence
in one or more important locations connects to the IXPs at these locations and it provides
connectivity to the IXPs from remote PoPs via MPLS.

124



 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

T
o

ta
l 
a

v
g

 p
a

th
 l
e

n

Date

# of hops

Figure A.12: IPv4 BGP average path length

3. May 2014 - Remote peerings to SIX (Bratislava) and LINX (London) added.

4. January 2015 - Remote peerings migrated to AS5580. New upstream AS42000.

5. March 2015 - Remote peerings shutdown. New upstream AS2819.

6. July 2015 - Change of upstream priorities. Removal of AS42000 upstream.

The first upstream hop has a great potential to change the statistics because
average path length to all IPv4 prefixes in DFZ from the observation point is only
approximately 3.8.

IPv6 path length

Generally, any fluctuations and rapid changes in BGP translates to lower quality
of the connection.

Quality of the Internet connection in general means high throughput, lack
of blind sports3 and consistency. The rapid changes in path length usually con-
tribute to breaching consistency.

Unfortunately, the plot of IPv6 average path length A.13 shows even more
fluctuations. But this results can be explained by the lower number of prefixes
in IPv6 DFZ and lower stability of the new address family.

IPv4 path length relative to prefix length

Unlike in the previously discussed peaks in the total average charts that have been
correlated with known changes in the AS29134 connectivity, we can observe
general trends in plots of path length relative to prefix length and time. The
figure A.14 shows the path length plot in 3D. The two independent variables are
prefix length and time.

3Blind spots are unreachable or badly reachable remote networks.

125



 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

T
o

ta
l 
a

v
g
 p

a
th

 l
e

n

Date

# of hops

Figure A.13: IPv6 BGP average path length

# of hops

 2012
 2012.5

 2013
 2013.5

 2014
 2014.5

 2015
Date

 0

 5

 10

 15

 20

 25

 30

 35

Prefix length

 1

 1.5

 2

 2.5

 3

 3.5

 4

Avg path      
length

Figure A.14: IPv4 BGP path length per prefix length

126



 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g

 p
a

th
 l
e

n

Date

# of hops

Figure A.15: IPv4 BGP path length time series for /16

This figure shows two groups of peaks from left to right in the chart and the
peaks invert each other in the path length axis. The peaks happens to be at /16
and /24 marks. The /16 group shows decrease of the average path length. The
/24 group seems to be increasing.

It is worth examining that particular prefix lengths in more detail. The figures
A.15 and A.16 shows 2D plots of the groups in question. The first one is the
decreasing /16 group and the second one is the increasing /24 group. These
charts show the bad effect of deaggregation: Paths are getting longer for smaller
and less specific prefixes are disappearing and deaggregating. The side effect of
the dissolution of less specific prefixes is decreasing length of the remaining paths
since deaggregation is the case of remote networks that are relatively far from
our observation point.

The 3D plot reveals the rough profile of the IPv4 path length plotted relative
to prefix length, but it is imprecise and too difficult to analyze.

Another possibility to analyze relation between prefix length and path length
is to plot them on a daily basis. The figure A.17 shows the prefix length to path
length profile for June 21, 2015. It is in fact only Y - Z projection of the proper
X point in the 3D plot.

The IPv4 path length profile have actually changed substantially several times
because of upstream changes or because the new connections have been created
either locally or remotely. The remote changes have to happen near enough to
the observation point to affect the local view of the Internet.

For instance, we can see the completely different profile in the chart for the
first day of the observations - March 22, 2012 in the figure A.18.

These charts reveal the local quality of the IPv4 connection to a certain level,
but the interpretation of the captured data and reasoning about them clearly
depends on operational context and network needs.

The figures are presented in this chapter because it is important to get a high-
level view on the DFZ data, scale and speed of changes in the captured period

127



 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g

 p
a

th
 l
e

n

Date

# of hops

Figure A.16: IPv4 BGP path length time series for /24

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  5  10  15  20  25  30  35

A
v
g
 p

a
th

 l
e
n

Prefix length

# of hops

Figure A.17: 2015-06-21 - IPv4 BGP path length per prefix length

128



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  5  10  15  20  25  30  35

A
v
g

 p
a

th
 l
e

n

Prefix length

# of hops

Figure A.18: 2012-03-22 - IPv4 BGP path length per prefix length

before we can continue to discuss the main results.

IPv6 path length relative to prefix length

Quality of IPv6 connectivity is correlated to a certain degree with IPv4 service
provider because the AS29134 applies a policy that dictates to operate always
in fully dual-stacked mode.

The requirement of dual-stacked networking has been applied in all contrac-
tual relationships with upstream providers or any other service providers. How-
ever, IPv4 is still more important than IPv6 both from technical and business
point of view. This natural prioritization affects the quality of IPv6 paths in a
negative way almost everywhere in the Internet.

The figure A.19 shows the basic BGP path lengths plotted relative to time
and prefix length in the same manner as in 3D plot for IPv4.

The major changes perpetuated by the upstream connection migrations to
various service providers over time are visible at almost same points as in case of
IPv4.

IPv6 path length time series of the most common prefix lengths are in the
following figures: The figure A.20 shows the path length for /28 prefixes. The
/28 prefixes are shorter than the preferred default in most RIR regions. However,
it is easy to justify the need for such a large IPv6 prefix, especially for large ISPs
that have plans for deployment of 6rd4.

In IPv6 the preferred default allocation size for PA IPv6 address space is
usually /32. The figure A.21 shows path length time series for /32 prefixes.

Even though IPv6 is expected to provide better opportunity for aggregating
IP addresses, it seems that a lot of networks announce the longest practically

46rd is acronym for IPv6 Rapid Deployment transition mechanism, which needs a large
amount of IPv6 addresses for direct mapping of IPv4 address space to network part of IPv6
address. It usually uses /28 prefix combined with 32 bits of IPv4 address as a prefix delegation
to the CPE. It allows the CPE to assign 16 networks with standard /64 prefix for each one.

129



# of hops

 2012
 2012.5

 2013
 2013.5

 2014
 2014.5

 2015
Date

 0

 20

 40

 60

 80

 100

 120

 140

Prefix length

 1

 1.5

 2

 2.5

 3

 3.5

 4

Avg path      
length

Figure A.19: IPv6 BGP path length per prefix length

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g
 p

a
th

 l
e
n

Date

# of hops

Figure A.20: IPv6 BGP path length time series for /28

130



 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g

 p
a

th
 l
e

n

Date

# of hops

Figure A.21: IPv6 BGP path length time series for /32

usable5 prefixes, which is /48. The figure A.22 shows the path length time series
for these prefixes.

We know from the figure A.9, which shows the number of visible /48 prefixes
in DFZ in time, that this group forms a considerable portion of IPv6 DFZ and it
is growing quickly.

It is actually not surprising because in IPv4 the /24, the longest and therefore
smallest prefixes that are practically usable, form the most ample group of prefixes
in DFZ. In fact, more than half of all IPv4 prefixes are the /24s. And it seems
that this unfortunate situation of large scale utilization of the longest possible
prefixes transitions to IPv6 as well.

The limit of practical usability is a matter of the best practice, an unwritten
rule and a common belief in the Internet community, that there are and should be
filters on certain boundaries. Effects of these limits are interesting: Because the
AS29134 does not impose any limits on incoming prefixes, there are occasionally
some shorter prefixes visible in corresponding time series. Please refer to the IPv4
BGP timeline of prefix count per prefix length or IPv6 BGP timeline of
prefix count per prefix length figures on the website http://aule.elfove.

cz/~brill/bgpcrunch for more information about short prefixes.

A.3.5 RIR service region differences

Even though this thesis is focused on RIPE NCC service region that covers Eu-
rope, the Middle East and parts of Central Asia, the Internet is a global network
and we get all the routes blended in the BGP table.

5The practical usability does not have any specification or general rule. The current de-
facto standard of filtering more specific prefixes than /24 in IPv4 and /48 in IPv6 has been
established on strictly informal and unwritten basis. Any AS operator is free to set his own
rules and impose his own limits on prefix length.

131

http://aule.elfove.cz/~brill/bgpcrunch
http://aule.elfove.cz/~brill/bgpcrunch


 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g

 p
a

th
 l
e

n

Date

# of hops

Figure A.22: IPv6 BGP path length time series for /48

RIR No. of prefixes Average prefix length
LACNIC 65045 22.33
APNIC 133151 22.33
ARIN 189472 22.33
RIPE NCC 136158 22.33
AFRINIC 12273 22.33

Table A.3: IPv4 RIR regions size - 2015-06-21

Region prefix share

The figure A.23 shows the share of the routes in DFZ of each RIR region in the
IPv4 Internet. The chart is a time series that captures the observation period.
The figure A.24 shows the same numbers for IPv6 AFI.

The most interesting points are that RIPE NCC service region clearly sur-
passed ARIN region in IPv6 deployment, and it is also the fastest growing and
consistently increasing region in IPv6 AFI.

On the contrary, the IPv4 time series shows a huge gap among ARIN region
and all others.

IPv4

The table A.3 shows the share of IPv4 DFZ by the RIR regions and the average
prefix length in each region on June 21, 2015. The average prefix length indicates
the level of deaggregation within the region.

The most alarming figure of this section is the RIR average path length time
series for IPv4 in the figure A.25. Although we know that service region of
AFRINIC comes through troubled times and there are understandable reasons
for deaggregations and and changes in subnet announcements, this result exceeds
any fears and the worst expectations. The chart proves that the Internet is

132



 0

 50000

 100000

 150000

 200000

 250000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

P
fx

 c
o
u

n
t

Date

LACNIC

APNIC

ARIN

RIPE NCC

AFRINIC

Figure A.23: IPv4 RIR DFZ share

 0

 2000

 4000

 6000

 8000

 10000

 12000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

P
fx

 c
o

u
n

t

Date

LACNIC

APNIC

ARIN

RIPE NCC

AFRINIC

Figure A.24: IPv6 RIR DFZ share

133



 22.15

 22.2

 22.25

 22.3

 22.35

 22.4

 22.45

 22.5

 22.55

 22.6

 22.65

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g
 p

fx
 l
e

n

Date

LACNIC
APNIC

ARIN
RIPE NCC

AFRINIC

Figure A.25: IPv4 RIR average prefix length

RIR No. of prefixes Average prefix length
LACNIC 1890 38.19
APNIC 4060 43.61
ARIN 7629 43.25
RIPE NCC 8822 38.99
AFRINIC 258 40.05

Table A.4: IPv6 RIR regions size - 2015-06-21

extremely dynamic even in its technical base and it seems that people are trying
to attain more performance, revenue and any advantage from their resources by
constant changes. The changes seem to be unfortunately too huge and violent.

IPv6

The table A.4 shows the prefix count and average prefix length for IPv6 on June
21, 2015. The absolute numbers are naturally much lower than in the previous
case.

The level of deaggregation in IPv6 DFZ is a huge disappointment because in
IPv6 the common allocation for a LIR is /32, but the numbers are reaching close
to /48, which is the suggested minimum assignment for the end network. The
end networks are supposed to get aggregated at the ISP level, but it is obviously
not happening.

The average prefix length chart for IPv6 is in the figure A.26. It shows more
consistent but still alarming numbers. In case of IPv6, the most concerning point
is mainly the scale of changes within short periods of time.

APNIC region exhibits prefix length amplitude over 2 in the last year and it
oscillates within weeks or even days.

In IPv6 it is highly unlikely for one single ISP to affect the whole region

134



 34

 36

 38

 40

 42

 44

 46

 48

 50

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

A
v
g
 p

fx
 l
e

n

Date

LACNIC
APNIC

ARIN
RIPE NCC

AFRINIC

Figure A.26: IPv6 RIR average prefix length

because even the major ISPs are supposed to have a single PA allocation. They
might deaggregate, however it is hard to imagine one single ISP to announce one
short prefix on one day and thousands of longer prefixes the next day. More
research into this aspect might yield interesting results in the future, but it is not
required for this analysis to further elaborate on different RIR region.

This section intentionally presents only a few selected charts to show long-term
trends and the scale of the parameters. There are over 1800 charts that contain
relevant results on the above mentioned bgpcrunch results web site. The web
site contains charts with even more data points and the full text outputs with
detailed categorization of IP resources.

A.4 Origin validation

A.4.1 Method

Objects

The origin of BGP routes is moderately easy to validate. The idea of this mea-
surement has been formally described in chapter 4. The question is whether we
can find route or route6 objects for each path vector in DFZ BGP table. If yes
we try to match the origin attribute in one of the objects with the first AS in
AS path BGP attribute of the path vector. If there is a match, the path vector is
valid. If not, the vector is either invalid or undecidable, depending on the region
to which the prefix belongs.

Apart from the object type in IRR, the checking process is the same for both
IPv4 and IPv6.

135



Prefix Announcing AS route object Result

RIPE RIPE missing fail (missing route

obj)
RIPE RIPE prefix match, no

origin match
fail (AS not match)

RIPE RIPE prefix match, origin

match
OK

RIPE no AS (local pre-
fix)

N/A N/A (origin missing)

RIPE anything, but
the path is
summarized

N/A N/A (no-search aggre-
gate)

RIPE non-RIPE missing fail (missing route

obj)
RIPE non-RIPE prefix match, no

origin match
fail (AS not match)

RIPE non-RIPE prefix match, origin

match
OK

non-
RIPE/legacy

anything anything N/A (non-RIPE)

Table A.5: Origin validation states

Object multiplicity

It is possible to find more route or route6 objects for one prefix in one routing
database and the meaning is logical OR. Therefore, the path vector is valid when
it matches at least one route or route6 object, according to the proper AFI.

IRR resolution and undecidable path vectors

Since the experiment is limited to European prefixes and RIPE DB data, we do
not have to resolve the fundamental problem of multiple Internet routing reg-
istries: Deciding what data are authoritative for each path vector in the Internet.

In case of route or route6 objects, the problem seems to be reasonably
simple because a single match is sufficient for marking the path vector as valid.
The problem is that more routing registries might contain outdated and even
conflicting data, which would be an issue. In our case with only one database
the possible situations are described in the table A.5. The table lists regions of
origin for prefixes and the first (right-most) autonomous systems in AS path and
the possible outcomes of the checks.

Path vector multiplicity

The outlined resolution procedure has a hidden limitation that concerns conflict-
ing path vectors: A prefix could be present in BGP table of the observation point
multiple times. It effectively means that there are more competing path vectors
with the same prefix component and different remaining components.

136



It is perfectly normal and desirable to have alternate paths to one destina-
tion. In this case, BGP selects one of these path vectors as the best, installs the
corresponding route into FIB and further propagates the best path vector.

It is even possible to have one prefix with different origins, though it is highly
unusual and each case raises suspicion since there is practically no valid reason to
do this intentionally. On the contrary, it might be a symptom of ongoing prefix
hijacking attack.

We have many different paths to each prefix in DFZ and we want to save CPU
time spent on matching them with the route or route6 objects. In this situation
it is reasonable to assume that all paths have the same origin and examine only
the best paths.

It means we have to examine approximately only 500.000 path vectors for each
day instead of over two millions. An obvious downside is that we miss possible
prefix hijacking incidents. To remove this issue we have searched through data
specifically for this incidents and we found none. In fact, it is not likely to
capture this kind of attacks because they are rare and it would have to happen
near (BGP-wise) the observation point. Furthermore, we would need to have
diverse connectivity to the victim AS and to the attacker at the same time.

Decision rules

Decision rules for the origin validation procedure derive not only from standards
and RFC documents, but also from the current best practices and IP allocation
policies of RIRs. These rules are subject for interpretation and some of the
rules are unwritten and customary. The main issue is whether we can ignore
path vectors that are parts of IP space allocated through RIPE NCC, but the
announcing AS is not a part of RIPE NCC blocks. According to current RIPE
NCC allocation policies it seems correct to count failed path vectors that fall
within RIPE IP space into errors regardless of the announcing AS. The reason
is that policies forbid using the majority of resources allocated by RIPE NCC
outside of the RIPE NCC region. Therefore the autonomous systems of different
provenience should operate in RIPE NCC service region and should submit to
the same rules. Moreover, it is possible and encouraged to register foreign AS
into RIPE DB and use it as an origin in route or route6 objects withing RIPE
DB.

A.4.2 Results

Absolute numbers

The figure A.27 shows the BGP origin validation time series for IPv4. The IPv6
counterpart is in the figure A.28. Both charts contain absolute numbers of the
result states according to the table A.5.

The complete origin validation results in text form are too long to be presented
here or attached to the thesis in any other form. The results are accessible on
the above mentioned web site in the sections called Daily IPv4 BGP route
matching report (text) and Daily IPv6 BGP route matching report
(text).

137



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p
fx

e
s

Date

OK
no-search aggregate

origin missing
AS not match

route obj not found
non-ripe

Figure A.27: IPv4 BGP origin validation time series

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p
fx

e
s

Date

OK
no-search aggregate

origin missing
AS not match

route obj not found
non-ripe

Figure A.28: IPv6 BGP origin validation time series

138



Status No. of path vectors
OK 104778
no-search aggregate 164
origin missing 3
AS not match 5778
route obj not found 25555
non-ripe 407049

Table A.6: IPv4 Origin validation states

Status No. of path vectors
OK 7113
no-search aggregate 14
origin missing 2
AS not match 204
route obj not found 1498
non-ripe 13837

Table A.7: IPv6 Origin validation states

The most interesting output is the section Route violations timeline. And
the same results are attached on the disc that comes with the printed version of
this thesis. This collection of results comprises of one file for each prefix that failed
the BGP origin validation test at least once in the whole captured period. Each
file contains all changes that happened either in BGP or in IRR, that concern
the prefix in question.

The table A.6 shows IPv4 and the table A.7 shows results for IPv6 from June
21, 2015.

The following two charts show high-level summary of the results. The figure
A.29 contains IPv4 totals and the figure A.30 shows the same numbers for IPv6.

Relative success ratio

It is useful to plot relative success rate in order to provide evidence for the hy-
pothesis in chapter 4. The figure A.31 shows time series of invalid to valid ratio
(error ratio) for IPv4 and the figure A.32 shows the same ratio for IPv6.

Conclusion

The origin validation results proved that almost one fourth of the prefixes in the
RIPE NCC service region have invalid origin with respect to the IRR at any given
time. It happens despite the fact that the RIPE community encourages LIRs,
ISPs and network operators within the RIPE NCC service region to use route

and route6 objects to describe the most elementary BGP routing configuration.
There is an obvious question: Is it worse not to have any matching route

or route6 object for the prefix at all (which is the route obj not found status in
validation) or to have some object with the wrong origin?

139



 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
ro

u
te

s

Date

OK

validation fail

Figure A.29: IPv4 route origin validation results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
ro

u
te

s

Date

OK

validation fail

Figure A.30: IPv6 route origin validation results

140



 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure A.31: IPv4 route origin validation percentage

 16

 17

 18

 19

 20

 21

 22

 23

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

%

Date

validation fail

Figure A.32: IPv6 route origin validation percentage

141



The level of incorrectness depends on the reason why the discrepancy among
BGP path vector and the available route and route6 objects in IRR exists:

• It might be transitional state. The prefix might be in process of migration
from one AS to another. In this case the correct procedure is to create a new
route or route6 object with the new origin and then migrate the prefix in
BGP. Only after that the old route or route6 objects can be removed.

• Another possibility is that the corresponding route or route6 objects are
completely missing through the entire history of the prefix. This is not
a rare situation at all. These prefixes are present even in case they get
filtered out when the origins are validated in IXPs, especially when the
prefixes traverse route servers. It effectively means that the failed prefixes
are more likely to take longer and more expensive paths and are generally
limited in number of alternate paths in the entire Internet.

• It is also possible that some failed prefixes are actually hijacked. It means
that the prefix is announced to DFZ by other autonomous system than the
entitled to do it. The most common type of hijacking concerns either unused
legacy prefixes that have not been reclaimed, or generally unused prefixes.
In the Internet any autonomous system can start to announce the prefix into
DFZ even though it is unrelated to the prefix in question. Responsibility for
spreading that announcement to the neighboring networks and subsequently
to the Internet is shared between the originating AS and its upstreams that
accepted and forwarded the announcement.

• It is also possible to hijack an utilized prefix. This type of hijacking almost
certainly causes network outage to the legitimate user of the IP space. These
hijacking attacks, either malicious or unintentional, should be prevented by
filtering on the upstream input and by peering filters.

Despite the current practice that AS operators use many different side chan-
nels (e-mail, written contracts, etc.) to distribute information about the an-
nouncements, the primary source for generating the BGP filters should be IRR.

The route and route6 objects contain the most important information that
can prevent BGP hijacking attacks if it is used correctly.

Nonetheless automatic filtering seems not to work on a global scale despite
the relative simplicity of the concept. By observing over 30 000 prefixes without
valid route or route6 objects in RIPE NCC service region we can conclude that
input and peering filters are neither correctly generated from IRR nor used at all.

Since a huge number of prefixes work without the proper origin records, their
originators feel no need to care about their routing policy, and more specifically
about validity of their announcements with respect to route and route6 objects.

The time series shows that the number of failures is steady and actually
slightly declining in IPv4. In IPv6 the situation is a bit worse: Time series
shows that the number of failures is increasing, but fortunately the increase is
slower than the growth of the correct prefixes. According to the table A.7, the
total number of errors in IPv6 is not too high. Moreover, in IPv6 keeping of the
records should be straight-forward and simple, because even the biggest networks
usually need no more than a single IPv6 prefix.

142



A.5 Path validation

A.5.1 Method

Path validation is the most complex and novel part of this work. Unlike the basic
data analysis and origin matching that has been done before by other researchers
or by IXP operators, I am not aware of any other recent attempt to validate paths
in the entire RIR region.

Procedure outline

The basic idea is to take each path vector in DFZ and traverse the entire path
from the originator up to the observation point. At the start of the path we have
to check the origin. The question is what to do with a path that fails the origin
validation test in the beginning? To resolve this for sake of the measurement
simplicity, we can assume that the origin validation error is only another failure
mode in the path verification.

For each AS, apart from the first and the last one in the AS path, we can
lookup and verify conformance of each prefix that traverses the AS with its routing
policy. The basic source of the routing policy specification for the AS is the
corresponding aut-num object.

The object should have import and default filters that contain a selector
for the neighboring AS that have announced the path vector in question. And
the AS should allow the path vector to its routing table only if the import filter
matches.

The opposite direction works in the same manner: There should be export

filters in the aut-num object of the AS. Each export filter contains a selector
and a filter that allows the corresponding path vectors to be announced to the
neighbors listed by the selector.

Filter evaluation

The selector might be directly an autonomous system number of the neighbor,
which is fortunately the most common case. Otherwise the selector can contain
selector expressions that can contain ASNs, lists of ASNs, references to -set

objects and operators. The expression might require recursive resolution.
In order to evaluate the path vector imported into the AS we have to search

through all selectors and subsequently all the corresponding filters in the import

lines of its aut-num object.
We can stop searching only when we find a selector and corresponding filter

that accepts the path vector, or when we reach the end of the aut-num object.
The exhaustive search is necessary because finding a selector with a filter that
rejects the prefix does not mean that there is not another selector that matches
the neighboring AS as well. The corresponding filter for the later selector could
accept the path vector in question. Therefore, we need to potentially examine
each import and default line in the aut-num object and attempt to match
filters of the lines that match in the selectors.

The same procedure can be applied to export filters.

143



Asymmetrical filter evaluation

Evaluation of the path vectors with respect to IRR filters is asymmetric in a
certain aspect: We can only find validation errors in path vectors that are visible
at the observation point in BGP and violate routing policy at some point in the
AS path. It means that routing policy effectively does not allow propagation of
the particular path vector, but the vector propagates anyway.

On the contrary, we can not observe the opposite situation: Prefix propagation
might be suppressed by BGP configuration even though the prefix should be
allowed to propagate according to the routing policy.

In theory, we could build a graph of all relations among autonomous systems
in the Internet according to routing policies. Then we could compute the best
path matrix in this enormous graph and then compare real path for each prefix
in BGP with the theoretically devised best paths for them.

There are obvious technical problems with that thought experiment and it is
beyond the scope of this thesis.

Limitation on the best paths

Another drawback is that, given the validation computational complexity and
finite resources and time, we have managed to validate only the best paths in the
BGP table of the observation point.

It would be easy to switch on evaluation of the alternate paths in bgpcrunch
software. Increase of the available paths would be three to five times the count of
the best paths, depending on the upstream configuration that was active to the
measurement date.

Error types

There are many possible failure modes in this path validation experiment. The
basic outline has been formally specified in chapter 4. The table A.8 shows
possible results from validation of one hop (one transition from one AS to another
in the AS path). Both the import and export filters are taken into consideration.

There is a special case for transit autonomous systems that do not operate
within RIPE NCC service region and in spite of that decided to create aut-num

object in RIPE DB for registration and authorization.
These objects for foreign entities might have also been generated automati-

cally. It means that the objects have been left with virtually no useful informa-
tion. Strictly speaking, traversing such an object is a routing policy failure but
we conjecture that it is less severe type of a failure. Therefore, we define a special
failure type that is subsequently counted to missing aut-num object in RIPE DB
rather than to the counter for missing filter error.

Checking the hop with corresponding aut-num object consists of:

1. Considering the proper import and default lines one by one, if some exist,
to find the previous AS in the AS path and verify the corresponding filters
until the first match is found or the end of the object is reached.

2. Taking proper export lines (if some exist) for the next AS in the AS path

and verifying corresponding filters until the first match is found or the end
of the object is reached.

144



AS aut-num filter result

RIPE present match OK
RIPE present not-match fltr fail
RIPE missing N/A fltr not found

non-RIPE present match OK
non-RIPE present not-match fltr fail
non-RIPE dummy not-match unknown
non-RIPE missing N/A unknown

Table A.8: Path validation states

import or
default

export result

match match OK
no-match match import fltr fail
match no-match export fltr fail
no-match no-match import fltr fail
N/A, originating
AS

match OK

N/A, originating
AS

no-match export fltr fail

match N/A, last AS OK
no-match N/A, last AS import fltr fail

Table A.9: Hop validation states

There are obviously special cases: The first and the last autonomous systems
in the AS path. In these cases we can check only the available portion of the
filter: The export for the right-most AS and import for the left-most one.

The possible results of the entire hop validation process are listed in table A.9.
Please note that the result for the case when both import and export filters fail is
actually “import filter failure”. This result is selected because the prefix should
not have been imported in the first place. Obviously, the export filter is also
violated in this case. Nonetheless, due to software internal limitation we can only
have one exit status from the validation procedure.

The reason for categorizing various failure modes is that we have many of them
at different points of AS paths. Therefore, we have to distinguish errors in order
to learn about structure, dynamics and trends in failures relative to time. Thus
it is not enough to mark any path that contains at least one error as “invalid”.
On the contrary, we count the errors by their type and by their position in the
AS path, relative to the observation point, and record many metrics that help to
describe the errors.

145



 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p

fx
e
s

Date

Path verification OK
Uncheckable (non-RIPE/aggregate/...)

Path verification failed

Figure A.33: IPv4 BGP path validation time series

A.5.2 Results

IPv4 overview

The figure A.33 shows the summary time series of path validation results for
IPv4 through the entire captured period. From the chart we can see that judging
the result based on one single filter failure in the AS path is not sufficient. The
fluctuations are heavily dependent on network paths that the prefixes take from
the originator to the observation point at the time of the BGP table snapshot
creation.

It changes rapidly over time and we can see that the changes correlate with the
major fluctuations of the average BGP path length presented in figure A.12, that
depend on local changes in the BGP setup, which have been already discussed.

It is obvious that the summary time series is too coarse and too dependent on
the observation point location and network connectivity, that we can not judge
on trends or global tendencies based on this fact only.

The first possible approach to obtain more information is to decompose the
validation results based on detailed verification state. Unfortunately, that is still
not enough to see how many errors are in the routing policies when we compare
them to the actual BGP state.

The figure A.34 shows error count time series for each validation failure type
that occurred during the entire validation process. It means that each traversed
AS in AS path that failed to validate counts once and results for all path vectors
have been summed up.

To interpret this validation error time series chart we have to compare it to
the number of IPv4 prefixes in DFZ from the figure A.2 and to the average path
length that has been shown in the figure A.3.

It is also promising approach to compute combined time series from the pre-
viously mentioned parameters. The figure A.35 shows the time series of average
path length and compare it with the average number of errors per path. It shows

146



 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1.6x10
6

 1.8x10
6

 2x10
6

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p

fx
e
s

Date

Hops OK
Hops UNKNOWN

Import NOT FOUND
Export NOT FOUND

Import fltr FAIL
Export fltr FAIL

Figure A.34: IPv4 BGP path validation details

that in average case each path has 3.5 to 4 hops in AS path. From that 4 hops
0.5 to 1 hop is invalid.

The detailed results for each prefix in DFZ and for each day within the cap-
tured period are published in text form on web site mentioned above in section
Daily IPv4 BGP path matching report (text). The summary for June 21,
2015 follows:

Total prefixes: 543327

Path verification OK: 5234

Uncheckable (non-RIPE/aggregate/...): 529193

Path verification failed: 8900

Total hops observed: 2083177

Total hops valid: 199971

Total hops unknown (non-RIPE/aggregate/filter-unknown): 1748076

Total hops unknown due to filter syntax error (included in unknown): 90

Total import filter not-found: 49342

Total import filter invalid: 29628

Total export filter not-found: 50933

Total export filter invalid: 5227

This following text output shows decomposed points of the chart A.35 for
June 21, 2015:

Avg path length: 3.83

Avg unknown per path: 3.22

Avg unknown per path: 0.25

IPv4 hop validation

The number of the decidable paths in the end of the previous section is low. Both
the correctly verified and the failed paths are a minority compared to undecidable

147



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
o

c
c
u
re

n
c
e

s

Date

Errors per path
Dunno per path

Avg path len

Figure A.35: IPv4 BGP validation errors per path

ones.
The reason is that the AS29134 used upstream connection to the AS6939

to the date of capture. And this AS is an international carrier that is based in
the USA. Furthermore, the AS operates within ARIN service region and therefore
the aut-num object for the main upstream provider of the observation point went
out of our scope.

The paths that can be completely verified to the mentioned date consist only
of the ASes within Europe, which can be reached form AS29134 via peerings.

It is still possible to create a meaningful analysis of the data despite the fact
that we do not have information regarding the first hop in most paths. We can
focus on individual hops and thus ignore only the first undecidable hop in paths
that traverse the upstream.

The numbers of observed prefixes and sizes of verification status groups rel-
ative to the distance from the observation point are displayed by the following
output for June 21, 2015:

Hop 0 : 543324 pfx traversed, 8841 ok, 6554 errors, 527929 unknown

Hop 1 : 540934 pfx traversed, 60375 ok, 74560 errors, 405999 unknown

Hop 2 : 450513 pfx traversed, 53877 ok, 33922 errors, 362714 unknown

Hop 3 : 259788 pfx traversed, 30320 ok, 13476 errors, 215992 unknown

Hop 4 : 116076 pfx traversed, 17952 ok, 3781 errors, 94343 unknown

Hop 5 : 59055 pfx traversed, 9718 ok, 858 errors, 48479 unknown

Hop 6 : 36046 pfx traversed, 6255 ok, 422 errors, 29369 unknown

Hop 7 : 23248 pfx traversed, 3776 ok, 316 errors, 19156 unknown

Hop 8 : 16240 pfx traversed, 2821 ok, 218 errors, 13201 unknown

Hop 9 : 10421 pfx traversed, 1892 ok, 161 errors, 8368 unknown

Hop 10 : 6765 pfx traversed, 1333 ok, 206 errors, 5226 unknown

Hop 11 : 5281 pfx traversed, 942 ok, 181 errors, 4158 unknown

Hop 12 : 3971 pfx traversed, 516 ok, 191 errors, 3264 unknown

Hop 13 : 3225 pfx traversed, 405 ok, 200 errors, 2620 unknown

148



Hop 14 : 2422 pfx traversed, 294 ok, 57 errors, 2071 unknown

Hop 15 : 1945 pfx traversed, 117 ok, 27 errors, 1801 unknown

Hop 16 : 735 pfx traversed, 73 ok, 0 errors, 662 unknown

Hop 17 : 688 pfx traversed, 60 ok, 0 errors, 628 unknown

Hop 18 : 596 pfx traversed, 49 ok, 0 errors, 547 unknown

Hop 19 : 227 pfx traversed, 25 ok, 0 errors, 202 unknown

Hop 20 : 186 pfx traversed, 24 ok, 0 errors, 162 unknown

Hop 21 : 134 pfx traversed, 23 ok, 0 errors, 111 unknown

Hop 22 : 116 pfx traversed, 22 ok, 0 errors, 94 unknown

Hop 23 : 108 pfx traversed, 20 ok, 0 errors, 88 unknown

Hop 24 : 101 pfx traversed, 20 ok, 0 errors, 81 unknown

Hop 25 : 100 pfx traversed, 19 ok, 0 errors, 81 unknown

Hop 26 : 97 pfx traversed, 19 ok, 0 errors, 78 unknown

Hop 27 : 96 pfx traversed, 18 ok, 0 errors, 78 unknown

Hop 28 : 96 pfx traversed, 18 ok, 0 errors, 78 unknown

Hop 29 : 77 pfx traversed, 18 ok, 0 errors, 59 unknown

Hop 30 : 49 pfx traversed, 18 ok, 0 errors, 31 unknown

Hop 31 : 49 pfx traversed, 18 ok, 0 errors, 31 unknown

Hop 32 : 49 pfx traversed, 18 ok, 0 errors, 31 unknown

Hop 33 : 48 pfx traversed, 18 ok, 0 errors, 30 unknown

Hop 34 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 35 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 36 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 37 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 38 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 39 : 25 pfx traversed, 3 ok, 0 errors, 22 unknown

Hop 40 : 24 pfx traversed, 3 ok, 0 errors, 21 unknown

Hop 41 : 24 pfx traversed, 3 ok, 0 errors, 21 unknown

Hop 42 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 43 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 44 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 45 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 46 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 47 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 48 : 23 pfx traversed, 3 ok, 0 errors, 20 unknown

Hop 49 : 3 pfx traversed, 3 ok, 0 errors, 0 unknown

Hop 50 : 3 pfx traversed, 3 ok, 0 errors, 0 unknown

Hop 51 : 3 pfx traversed, 3 ok, 0 errors, 0 unknown

Hop 52 : 3 pfx traversed, 3 ok, 0 errors, 0 unknown

The first hop is for the vast majority of prefixes unfortunately the upstream
AS, which actually breaks the validation of the entire path. However, the rest of
the paths shows more reasonable numbers of validated as well as failed prefixes
and less unknown results. The most important results are the first four hops. The
second and the third hops exhibit less unknown results because for the majority
of European path vectors the path went out of scope at the first hop, and it
returns to the autonomous systems operated within RIPE NCC service region in
a subsequent hop, and therefore these hops are decidable.

The presented text outputs can be visualized to make the point clear. The

149



 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60

y

Path hops

# of pfx
# of errors

# of dunnos

Figure A.36: IPv4 BGP filter matching along the paths

2012-03-22 2014-03-20 2015-06-21
Valid 524723 243988 199971
Unknown 807522 1227030 1748076
import not-found 102792 126817 49342
import invalid 36181 156308 29628
export not-found 47749 75866 50933
export invalid 5543 5195 5227
Total hops 1524510 1835204 2083177

Table A.10: IPv4 Path AS transition validation results

figure A.36 shows the number of errors in relation to the number of prefixes and
the number of undecidable hops along the path lengths on June 21, 2015.

The chart shows that most of the path validation failures happens within first
five hops and peak seems to be in the second hop in our case.

We can analyze the structure of prefixes relative to path validation failures
further and see whether there is any observable pattern. The figure A.37 shows
the number of valid hops, failed hops and undecidable hops for all possible prefix
lengths on June 21, 2015.

The table A.10 summarizes hop failure observations presented in this chapter.
It shows the three different points in time when the observation point utilized dif-
ferent upstream providers. At the beginning, the upstream was leading European
ISP. In the middle of the period, the routing table consisted mostly of an Euro-
pean low cost and the USA-based low cost providers. In the end, there is only
one low-cost provider based in the USA, while other providers are kept in backup
mode.

It is clearly visible from the table and from the time series that the validation
errors are a persistent problem. But it actually matters the most what upstream
provider is used because some have more documented paths and some do not

150



 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 0  5  10  15  20  25  30  35

C
o

u
n

t

pfx len

# valid hops
# of errors

# of dunnos

Figure A.37: IPv4 BGP filter matching results per prefix length

2012-03-22 2014-03-20 2015-06-21
Valid 31063 11699 5234
Filter fail 59756 22799 8900
Unknown 306015 455926 529193
Total prefixes 396834 490424 543327

Table A.11: IPv4 Path validation results

actually bother with record keeping, which dramatically affects our results.
The table A.11 shows the summary of the entire path validation results in the

three selected times.
Unfortunately, the presented numbers prevent us from concluding on global

trends. The observation clearly shows that over the time the changes have made
the validation status worse in the AS29134 that hosted the observation point,
even though it is a decent and respectable Czech ISP. It also shows that despite
the high number of undecidable paths and hops, we have seen that IPv4 DFZ
contains a high number of prefixes that cause errors of various kinds. This state
is unfortunately consistent and long-term issue.

This section discussed the results briefly and only to the extent needed to
support hypotheses and conclusions presented in main part of the thesis. Web
site mentioned above contains the rest of the data and results that provide far
more evidence and information about the Internet routing system.

IPv6 overview

In the following section on IPv6, there will be the same type of data, tables and
visualizations from the same point of view and at the same points in time as for
the IPv4. It will allow easy comparison of IPv4 and IPv6 routing in the Internet.

The figure A.38 shows the path validation summary time series for IPv6. It

151



 0

 5000

 10000

 15000

 20000

 25000

 30000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p

fx
e
s

Date

Path verification OK
Uncheckable (non-RIPE/aggregate/...)

Path verification failed

Figure A.38: IPv6 BGP path validation time series

covers the entire captured period and the same observation as for IPv4 holds:
The chart is too coarse to judge any trends or global tendencies from it. We can
also refer to the figure A.13 to see correlation with the IPv6 average path length
time series.

Validation results, in the more detailed figure A.39, show how many errors
of each type occurred during the entire validation process. It works in the same
manner as in the IPv4 case. To interpret this validation error time series chart,
we have to compare it to the number of IPv6 prefixes in DFZ from the figure A.7
and to the average path length that has been shown in the figure A.11.

The figure A.40 shows the time series of average path length and it allows
comparison with the time series of average number of errors per path and average
number of correctly validated hops per path.

Again, the numbers for IPv6 are worse than the numbers for IPv4. The reason
might be that many people still consider IPv6 to be in “beta-testing” phase and
do not care much about correctness of their routing policies.

IPv6 hop validation

The detailed results for each prefix in DFZ and for each day within the captured
period are in text form on above mentioned web site in section Daily IPv6 BGP
path matching report (text). The summary report for June 21, 2015 follows:

Total prefixes: 22668

Path verification OK: 159

Uncheckable (non-RIPE/aggregate/...): 21984

Path verification failed: 525

Total hops observed: 72978

Total hops valid: 3444

Total hops unknown (non-RIPE/aggregate/filter-unknowm): 58561

152



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
p
fx

e
s

Date

Hops OK
Hops UNKNOWN

Import NOT FOUND
Export NOT FOUND

Import fltr FAIL
Export fltr FAIL

Figure A.39: IPv6 BGP path validation details

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

01/01/12 07/01/12 01/01/13 07/01/13 01/01/14 07/01/14 01/01/15 07/01/15 01/01/16

#
 o

f 
o
c
c
u
re

n
c
e

s

Date

Errors per path
Dunno per path

Avg path len

Figure A.40: IPv6 BGP validation errors per path

153



Total hops unknown due to filter syntax error (included in unknown): 5

Total import filter not-found: 5053

Total import filter invalid: 233

Total export filter not-found: 5605

Total export filter invalid: 82

Please note the low number of the decidable paths. The discussion and rea-
soning about these numbers is exactly the same as in IPv4 case. The problem
lies in the upstream provider based in the USA and operating under ARIN rules.

Interesting information can be found in the following outputs from the same
day. The numbers of observed prefixes and verification status relative to the
length of the path from the observation point to the originator are displayed in
the following output:

Hop 0 : 22666 pfx traversed, 276 ok, 1057 errors, 21333 unknown

Hop 1 : 22436 pfx traversed, 1185 ok, 5518 errors, 15733 unknown

Hop 2 : 16165 pfx traversed, 854 ok, 3353 errors, 11958 unknown

Hop 3 : 6958 pfx traversed, 616 ok, 837 errors, 5505 unknown

Hop 4 : 2306 pfx traversed, 214 ok, 146 errors, 1946 unknown

Hop 5 : 1131 pfx traversed, 137 ok, 32 errors, 962 unknown

Hop 6 : 433 pfx traversed, 55 ok, 16 errors, 362 unknown

Hop 7 : 292 pfx traversed, 34 ok, 4 errors, 254 unknown

Hop 8 : 193 pfx traversed, 26 ok, 3 errors, 164 unknown

Hop 9 : 145 pfx traversed, 20 ok, 2 errors, 123 unknown

Hop 10 : 75 pfx traversed, 12 ok, 2 errors, 61 unknown

Hop 11 : 45 pfx traversed, 6 ok, 0 errors, 39 unknown

Hop 12 : 37 pfx traversed, 2 ok, 0 errors, 35 unknown

Hop 13 : 35 pfx traversed, 1 ok, 0 errors, 34 unknown

Hop 14 : 26 pfx traversed, 1 ok, 0 errors, 25 unknown

Hop 15 : 8 pfx traversed, 1 ok, 0 errors, 7 unknown

Hop 16 : 7 pfx traversed, 1 ok, 0 errors, 6 unknown

Hop 17 : 7 pfx traversed, 1 ok, 0 errors, 6 unknown

Hop 18 : 7 pfx traversed, 1 ok, 0 errors, 6 unknown

Hop 19 : 3 pfx traversed, 1 ok, 0 errors, 2 unknown

Hop 20 : 1 pfx traversed, 0 ok, 1 errors, 0 unknown

Hop 21 : 1 pfx traversed, 0 ok, 1 errors, 0 unknown

Hop 22 : 1 pfx traversed, 0 ok, 1 errors, 0 unknown

This output exhibits much less favorable numbers than the IPv4 case. Though
it might be a temporary issue, because we are still in the middle of IPv6 transition
period. We can only hope that people are going to fix the filters and document
their connection to IPv6 DFZ in the future.

The last portion of the summary text output is actually the right most point
of the chart A.40:

Avg path length: 3.22

Avg unknown per path: 2.58

Avg errors per path: 0.48

154



 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25

y

Path hops

# of pfx
# of errors

# of dunnos

Figure A.41: IPv6 BGP filter matching along the paths

2012-03-22 2014-03-20 2015-06-21
Valid 1770 3728 3444
Unknown 17184 38684 58566
import not-found 2687 7849 5053
import invalid 70 108 233
export not-found 2748 5568 5605
export invalid 38 111 82
Total hops 24492 56042 72978

Table A.12: IPv6 Path AS transition validation results

Visualization of the same type as in IPv4 case follows. The figure A.41 shows
the number of errors in relation to number of prefixes and number of undecidable
hops along the path lengths on June 21, 2015.

The figure A.42 shows the number of valid hops, failed hops and undecidable
hops for all possible prefix lengths on June 21, 2015.

The table A.12 summarizes hop observations in this chapter. It shows the
three different points in the same as in IPv4 case in previous section.

The table A.13 shows the summary of the entire path validation results in the
same selected time points.

Conclusion

The presented numbers show the IPv6 Internet, still in its infancy, from three
different points of view and in three different points in time to greater detail.
The different points of view are based on three different upstream mixes that
were used by the observation point.

The high number of severe failures in the results is alarming. It might still
be the result of the low popularity of IPv6 among people and by perceivedness

155



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  20  40  60  80  100  120  140

C
o

u
n
t

pfx len

# valid hops
# of errors

# of dunnos

Figure A.42: IPv6 BGP filter matching results per prefix length

2012-03-22 2014-03-20 2015-06-21
Valid 139 203 159
Filter fail 282 1365 525
Unknown 7825 15573 21984
Total prefixes 8246 17141 22668

Table A.13: IPv6 Path validation results

156



of IPv6 as a “beta-testing” technology.

A.6 Further results

At the end of this chapter I have to emphasize that we discussed only a small
portion of the results. We have focused on the subset that is sufficient to prove
that the routing policies in RIPE DB are inaccurate and incomplete to the point
where their overall value becomes questionable.

The complete results, published on the web site http://aule.elfove.cz/

~brill/bgpcrunch, contain over 7000 charts and several gigabytes of text out-
puts.

The discussion of the results in this chapter should, in my opinion, suffice to
help orientate in the results. For further analysis of the BGP and IRR data, we
can only refer to the raw results and to the bgpcrunch software at this point.

157

http://aule.elfove.cz/~brill/bgpcrunch
http://aule.elfove.cz/~brill/bgpcrunch


B. Contents of attached disc

B.1 Overview

The attached disc contains:

• Electronic version of the thesis,

• snapshot of the bgpcrunch software,

• programmer’s manual and API documentation of the bgpcrunch software,

• selected subset of the primary results.

B.2 CD manifest

The listing of the CD contents follows:

• README - CD manifest

• thesis.pdf - The full (electronic) version of the thesis

• bgpcrunch/ - The snapshot of the software for conducting the data anlysis;
Please see chapters 4, 5 and appendix A of the thesis for details. The
current (possibly newer) version could be found on GitHub:
https://github.com/tmshlvck/bgpcrunch

• bgpcrunch-doc.pdf - Programmer’s manual and API documentation of the
bgpcrunch software.

• results/

– daily/

∗ YYYY-MM-DD/ (date of the analyzed day)

· marge-pathlen4.png - Daily IPv4 BGP average path length
by prefix length

· marge-pathlen4.txt - Daily IPv4 BGP path length report
by prefix length

· marge-pathlen6.png - Daily IPv6 BGP average path length
by prefix length

· marge-pathlen6.txt - Daily IPv6 BGP path length report
by prefix length

· rirstats4-marge.txt - Daily IPv4 BGP RIR share report

· rirstats6-marge.txt - Daily IPv6 BGP RIR share report

· bgp2paths.png - IPv4 BGP full paths matched against RIPE
DB

· bgp2paths6.png - IPv6 BGP full paths matched against RIPE
DB

158

https://github.com/tmshlvck/bgpcrunch


· bgppathbypfxlen4.png - IPv4 BGP paths matched against
RIPE DB by prefix length

· bgppathbypfxlen6.png - IPv4 BGP paths matched against
RIPE DB by prefix length

– global/

∗ route violations timeline/ - Route violations timeline dir (IPv4)

· aaa.bbb.ccc.ddd-nn - Analysis of the violating IP prefix +
netmask

∗ route6 violations timeline/ - Route violations timeline dir (IPv6)

· aaaa:...:zzzz-nn - Analysis of the violating IP prefix + net-
mask

∗ pfxcount4-N.png - IPv4 BGP time series of prefix count of prefix
length (N)

∗ pfxcount6-N.png - IPv6 BGP time series of prefix count of prefix
length (N)

∗ pfxcount4-avgpfxlen.png - Average prefix length time series
(IPv4)

∗ pfxcount6-avgpfxlen.png - Average prefix length time series
(IPv6)

∗ pfxcount4-sum.png - IPv4 prefixes in BGP

∗ pfxcount6-sum.png - IPv6 prefixes in BGP

∗ rirpfxcount4-marge.png - IPv4 BGP prefix count per RIR

∗ rirpfxcount6-marge.png - IPv6 BGP prefix count per RIR

∗ rirpfxlen4-marge.png - IPv4 BGP average prefix length per
RIR

∗ rirpfxlen6-marge.png - IPv6 BGP average prefix length per
RIR

∗ pathlen4-N.png - IPv4 BGP time series of path length of prefix
length (N)

∗ pathlen6-N.png - IPv6 BGP time series of path length of prefix
length (N)

∗ pathlen4-avg.png - IPv4 BGP average path length

∗ pathlen6-avg.png - IPv6 BGP average path length

∗ pathlen4-3d.png - IPv4 BGP path length per prefix length 3D
time series

∗ pathlen6-3d.png - IPv6 BGP path length per prefix length 3D
time series

∗ bgp2routes4.png - IPv4 BGP origin verification results

∗ bgp2routes6.png - IPv6 BGP origin verification results

∗ bgp2paths4.png - Path verification results (IPv4)

∗ bgp2paths6.png - Path verification results (IPv6)

∗ bgp2paths-detail4.png - Path verification details (IPv4)

∗ bgp2paths-detail6.png - Path verification details (IPv6)

159



∗ bgp2paths-stats4.png - Path verification errors per path (IPv4)

∗ bgp2paths-stats6.png - Path verification errors per path (IPv6)

160


	Introduction
	Thesis topic
	Hypothesis
	Extended hypothesis
	Thesis application

	Internet routing
	Internet resources
	Coordinators
	Consensus based rules

	Hierarchy of coordinators
	Coordination bodies
	Communities and their members

	Network operation
	Internet resources
	Internet standards
	Records and public databases
	Top level
	RIR level
	LIR level

	Routing registry databases
	Resource assignment records
	Routing databases
	Public routing databases
	Content of routing databases
	Relations among public routing databases

	Network operation process
	Resource setup
	Role of a LIR
	Resources managed by the end users
	Resource registration


	Routing and routing policies
	BGP
	BGP overview
	Sessions
	Path vectors
	Attributes
	Best path selection
	Metrics
	Communities
	Transit AS
	Prefix origination
	Instrumentation and data

	Routing Policy Specification Language
	History of the standard
	Current standard

	RPSL elements
	RPSL object types
	route object
	aut-num object
	inet-rtr
	-set objects

	References in RPSL
	Filters in RPSL
	Filter attributes
	Example aut-num object
	Peering definitions
	Filter section


	Related work on routing management
	Internet routing research
	Data analysis
	Routing description languages
	Theoretical approach
	Trends and current research

	RPSL development
	Tools development
	Data analysis
	Standard amendments and development

	Other relevant resources
	RPSL-related reports
	Supporting technical standards


	Evaluation of routing policies in the Internet
	Use cases for routing policies
	Usage of RPSL in RIPE region
	Prefix leakage

	Scale and accuracy hypothesis
	Hypothesis statement
	Definitions
	Failure set indicator functions
	DFZ subsets
	Evidence for the hypotheses


	RPSL
	RPSL decomposition and semantization
	RPSL language categorization
	IRR components
	RPSL data sources
	Parsing RPSL objects
	Semantic analysis and translation

	RPSL production
	Object creation
	IRR update mechanisms

	Extended hypothesis
	Possible benefits of RPSL deployment
	Increased workload
	Conclusion on the extended hypothesis

	RPSL parsing issues
	Number of elements
	Complexity
	Expressive power of RPSL


	Current IRR system
	Current IRR system accuracy
	Measurement method
	Results
	Accuracy hypotheses

	RPSL processing
	Complexity of RPSL
	Missing orthogonality of the language

	Reasons for low data quality in IRR
	Technical freedom in the Internet
	High demands on AS operators
	RIPE DB update mechanisms


	IRR system reform
	Reform of IRR standards
	Requirements for the IRR system
	Differences from RPSL

	New IRR outline
	Data
	Database and lookup system
	New IRR operation


	Impact of the results and future work
	Presentations of the results
	RIPE 71
	NIX WG
	CEE Peering Days

	Future work
	Future presentations and education effort
	Creating a RPSL looking-glass
	NLNet Labs RDL effort
	Internet community role


	Conclusion
	Bibliography
	List of Tables
	List of Figures
	List of Abbreviations
	RPSL and BGP data analysis
	Available data
	Outline of the experiment
	Data types
	Data size

	Data processing
	Software requirements
	Software architecture
	Running time
	Data and product size
	Syntax errors

	Long-term changes and trends
	Global changes
	IPv4
	IPv6
	Changes near the observation point
	RIR service region differences

	Origin validation
	Method
	Results

	Path validation
	Method
	Results

	Further results

	Contents of attached disc
	Overview
	CD manifest


