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Abstract: This thesis focuses on novel video retrieval scenarios. More par-
ticularly, we aim at the Known-item Search scenario wherein users search for
a short video segment known either visually or by a textual description. The
scenario assumes that there is no ideal query example available. Our former
known-item search tool relying on color feature signatures is extended with major
enhancements. Namely, we introduce a multi-modal sketching tool, the explo-
ration of video content with semantic descriptors derived from deep convolutional
networks, new browsing/visualization methods and two orthogonal approaches
for textual search. The proposed approaches are embodied in our video retrieval
tool Enhanced Sketch-based Video Browser (ESBVB). To evaluate ESBVB per-
formance, we participated in international competitions comparing our tool with
the state-of-the-art approaches. Repeatedly, our tool outperformed the other
methods. Furthermore, we show in our user study that even novice users are able
to effectively employ ESBVB capabilities to search and browse known video clips.
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1. Preface

Nowadays world is without any doubt greatly influenced by modern information
technologies. Digital revolution is rapidly transforming virtually every branch of
industry and countless aspects of our every day life. Devices capable of recording
and storing data are omnipresent and interconnected. Nonetheless, the Internet
is nothing like cold digital plains occupied by machines, it is in fact the exact
opposite. Billions of peoples are communicating through social networks on daily
basis with texts, emails, images and videos.

On YouTube alone, more than 300 hours of video content is being uploaded
every minute. With personal devices capable of capturing images and videos we
indeed face an explosion of multimedia. Multimedia databases are vigorously
growing in the terms of size, complexity and diversity. Hence, we see the arising
need of effective solutions for browsing and retrieving multimedia collections.

Similarly to vision being the dominant source of information from our envi-
ronment, video represents one of the richest, most complex and also challenging
type of multimedia. Within five minutes, one writes an email while another
records a several gigabytes of video. Collections comprising hundreds of hours of
video content are becoming commonly available for educational, professional and
personal use.

With diverse applications, novel video retrieval scenarios are emerging. Fur-
thermore, the video data are generally not annotated; thus, it is not possible to
employ regular textual search techniques. In this thesis, we tackle the topic of
video retrieval and browsing. We propose, implement and evaluate a tool for
interactive browsing of large video collections. Main attention is paid to the
scenario where users search for a known video segment having no suitable example
object.

We base our tool on simple yet effective description of a color distribution
in video key-frames. Users express their search intent in the form of color-
position sketches. This basic approach is further combined with edge-based
descriptors, semantic similarity search, text-based retrieval and effective browsing.
In comparison to other state-of-the-art tools, our approach appears vital and
actually outperforms a number of them. Our system has become a decent base-line
for the problem of known-item search in video.

All the up-to-date solutions to the problem including ours put users to the
central role. The performance is therefore influenced by the level of expertise and
many other factors. Meanwhile, artificial intelligence is able to answer questions
asked in natural language within fractions of seconds. Effortlessly, we obtain
informations such as where is the nearest coffee shop. We do expect similar
solution to be available for video retrieval in the foreseeable future.



2. Introduction

With the advance of various recording devices, multimedia creation is no longer
a domain reserved for professionals. Devices being used on daily basis such as
smartphones or tablets are able to capture high-quality images and videos in a
convenient way. Hence, large video collections are becoming common, yet their
sizes, contents and applications are indeed diverse. To portray the variability of
video collections, let us describe few examples:

Medical videos for surgery after inspection and training of physicians are
often recorded. During the after inspection, physicians control critical phases
of the surgery and select screenshots for documentation (in some countries
required by legislation). During their education, surgeons have to observe a
number of operations before they can assist at one. Educational database of
operations captured on video might accelerate this process. Students might
look up for the particular type of operation or retrieve cases when a specific
complication happened.

Industrial research videos help to better understand and analyze complex
physical processes in various products. For example, high-speed cameras
can be used to record processes in an engine during the combustion. The
results of such analysis can help to design new types of engines with lower
fuel consumption and producing less harmful emissions.

Personal video collections are probably the most growing category of
videos. Memorable moments from people vacation, weddings etc. are being
commonly captured and stored by billions of ordinary users. Nonetheless,
finding one particular shot within tens or hundreds of hours of video content
collected over years can be quite challenging even for a single personal
archive.

Professional media productions create high quality videos, often equipped
with subtitles and soundtracks. Thousands of short clips are organized and

labeled for easy navigation and access. The provided annotation however,

might be ambiguous, misleading or even missing.

Once the quantity of video data reaches some level, the findability of specific
scenes becomes one of the main issues of video management systems. The videos
can be searched by means of available attributes (e.g., date of creation, GPS
location, length). However, these attributes do no help to find semantic information
recorded in the videos. Some engines [22] 40] implement keyword search, where
users specify their search intents using natural language. The keyword search
stands or falls on the automatic annotation of the videos [41], 79, 85]. While
humans are able to effortlessly and precisely process visual stimuli and recognize
objects, persons or ongoing events, the same does not apply to machines. Although
computer vision has achieved major breakthroughs [60] in recent years, many
problems are far from being satisfactory solved. For example, when it comes to
automatic video event detection state-of-the-art methods [82] achieve no more
than 45% mean average precision for specific benchmarks. Since it is still a difficult



task to automatically annotate video collections, the search engines employ also
content-based similarity search using query by example. In this research area,
deep learning [38] has started a revolution boosting the performance of similarity
search significantly. However, this scenario can be considered as long as users have
an appropriate query example object. Therefore, some research directions focus
on the Known-item Search (KIS) tasks where users are searching for a particular
video clip known either visually or by textual description (i.e., no example video
is available).

To solve KIS tasks, automatic annotation and content-based similarity search
are employed in combination with exploration scenarios, where users conveniently
browse and explore the database contents or lists of results. For example, users
start with KIS query specification, browse the results and pick one of the results
for similarity search. Iterations of results browsing, query refinement and similarity
search form interactive and often effective user-centric retrieval process.

Although various advanced KIS retrieval tools exist, the usability gap can
prevent from using them. It is common that once the keyword search fails,
ordinary users often skip to classical players with intuitive playback controls.
Clearly not optimal, nor scalable, but very intuitive solution. Hence, as users
become a significant element of the retrieval process, the interfaces have to be
intuitive, responsive and convenient. In other words, KIS tools have to provide
comprehensible query initialization, data visualization and exploration interfaces.

In order to initialize KIS search, the state-of-the-art KIS tools often rely on
automatic concept detection methods. Even with lower than desirable precisions,
object recognition and localization or concept detection techniques might provide
valuable additional information for video retrievall With effective browsing
features, a system for video retrieval [53] [63] based on automated concept detectors
may provide reasonable results. Alternatively, video content might be described
with robust low-level features such as color distribution [50] or optical flow [11].
Differently to high-level concept detection, the features can be directly extracted
from the data. Nonetheless, these low-level features are often hard to be specified
by users or they are not descriptive enough.

During the last decade, several orthogonal approaches for KIS have emerged [76].
Unlike classical benchmarks for automatic retrieval, the performance assessment
of tools for KIS video retrieval is complicated problem on its own. As users
are involved in the process, the results are influenced by many factors including
the level of user expertise. For this reason, comparative competitions such as
Video Browser Showdown (VBS) [73] are being organized. In VBS case, each
participating team develops its own tool for video retrieval with which solves
plurality of KIS tasks. In particular, both visual and textual KIS tasks are solved
by experts and novices during live competition. In this way, the state-of-the-art
methods are directly compared. Another relevant workshop is TRECVID []0]
where algorithms for concept detection, object localization and event recognition
in video are compared. In 2017, VBS will cooperate with TRECVID and use the
same IACC.3 video data set comprising 600 hours of video.

!Note that in some specific cases, machine learning algorithms even surpassed human
performance [20].



2.1 Owur contribution

In this thesis, we propose, implement and evaluate a video retrieval tool that
provides an aid for KIS in video collections. We aim at the situation when no
additional information for video content is available (i.e., no subtitles, no sound-
track). In the early versions of the tool, users could express their search intent in a
form of color-position sketch drawings, which led to the name Sketch-based Video
Browser (SBVB). The actual version introduces multi-modal sketches and supports
also keyword search to initialize textual known item search tasks. Interactive
exploration of the database content is further supported with a number of fea-
tures including semantic similarity search, compact visualizations and interactive
navigation summaries.

Note that the first version of the tool was introduced and defended as my
Bachelor Thesis [9] in 2014. Since then, the work has continued and we enhanced
SBVB with a lot of new features, modalities and browsing options. In other words,
SBVB evolved to Enhanced SBVB (ESBVB) which is presented in this thesis.
Most of the contributions were published at international conferences. Hereby, we
include the list of our published papers:

1. Signature-Based Video Browser [46]
Demo paper describing the overall functionality of SBVB.

2. On Effective Known Item Video Search Using Feature Signatures [48]
Demo paper describing our retrieval model.

3. Video Retrieval with Feature Signature Sketches [7]
Full paper on the overall concept and index optimizations.

4. Enhanced Signature-Based Video Browser [§]
Extended demo paper describing the enhancements done in 2014.

5. Multi-sketch Semantic Video Browser [39]
Extended demo paper describing the enhancements done in 2015.

6. Known-Item Search in Video Databases with Textual Queries
Short paper describing our textual query interface and model. Paper is
accepted to the conference on Similarity Search and Applications 2016 in
Tokyo. Its contents are covered with Sections [6.3] and [9.2]

7. Interactive Video Search Tools: a Detailed Analysis of the Video
Browser Showdown 2015 [14]
Journal paper thoroughly analyzing the results from VBS 2015.

Demo papers 1, 4 and 5 were accepted to VBS 2014, 2015 and 2016 respectively
where our tool competed with the other state-of-the-art methods. In short, we
won VBS 2014 and 2015 and ended up 3rd in VBS 2016. Detailed results and
analysis are presented in Chapter [§



2.2 Thesis Structure

The thesis is organized as follows. We start with introduction to similarity search
and image/video retrieval as preliminaries to our work (Chapter [3]). Before we
describe our system, we portray the state-of-the-art of video retrieval in Chapter [4
The description of the tool is divided in two chapters. Firstly, in Chapter
we present the original SBVB version with many (not yet published) additional
details about the retrieval model. Secondly, in Chapter [6] we go through all the
enhancements done in the last two years.

The architecture of our ESBVB implementation (available in[DVD)) is discussed
in Chapter [7] In the following Chapter [§ we present and discuss the results from
VBS 2014 — 16. Next, we discuss the results of two user studies in Chapter [J] and
finally, we conclude the work and outline our future work in Chapter [10]

An inseparable part of the thesis is a [DVD] containing the ESBVB implemen-
tation, the user tutorial and other materials. Additionally, we maintain a project
web page available at http://siret.cz/project/sbvb.

The proposed models and algorithms were tested on a dataset of 200 hours
of video content kindly provided by BBC. The dataset comprises various BBC
programmes including TV shows, documents and broadcasts. If not stated
otherwise, the depicted images originate from this dataset. All rights regarding
these materials are reserved to BBC.


http://siret.cz/project/sbvb

3. Preliminaries

In this chapter, we build the apparatus needed to describe our tool and algorithms.
In particular, we start with defining concepts related to metric spaces, similarity
search and general object retrieval. We follow with domain specific concepts such
as digital image processing and image descriptors.

3.1 Metric and Vector Spaces

A Metric space M is a pair M = (ID, ), where D denotes a descriptor universe
and ¢ is a distance function D x I — R (R is the set of real numbers) satisfying
the following conditions Vx,y, z € D:

d(z,y) >0 (non-negativity)
z,y) =0 iff z=y (identity)

o(z,y) =d(y, x) (symmetry)

Sz, y) + d(y, 2) > d(z, 2) (triangular inequality)

We understand the elements of D as object descriptors (or simply objects) and
the function ¢ as a distance or dissimilarity measure between them. The crucial
property of metric spaces is the triangular inequality as it induces a number of
interesting properties.

The well known example of a metric space is defined over the d-dimensional
vector space R? with the following formula:

5(3?,?/) - LZ(x7y) =

The distance function (3.1) is also called the Euclidean distance. With d = 2
or d = 3 we get the regular space with § measuring the actual distance between
two points. The distance function (3.1)) might be generalized to

T, y) = (Z |z — y#’) (3.2)

for an arbitrary p > 1. The effects of different values of p are demonstrated in
Figure , wherein we display unit ball regions E] centered in (0, 0).

'For point x a unit ball is the set of all y having §(x,y) < 1.
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Figure 3.1 Unit balls centered in (0, 0) under different L, metric functions. From
left to right: p = 1 (Manhattan distance), p = 2 (Euclidean distance) and p = oo
(Chebyshev distance).

3.1.1 Similarity Search

Often, S C D represents a database of objects subjected to various queries. As we
have available a dissimilarity measure o we are able to identify the most similar
(or least dissimilar) objects within S for a particular query ¢ € D. The query
could be expressed in natural language as “find k closest objects for ¢”. Formally,
we consider two popular types of queries:

k-nn Given a query object ¢ € D and k € N; return first £ objects from
the ascending ordering of all objects x € S with respect to d(q, z) (i.e.,
k-nearest neighbors from S to q)

range Given query object ¢ € D and a range r € R{; return X = {z|z €
SA 6(q,x) <r} (i.e., all the objects within the specified range)

Both queries might be processed with naive algorithm which calculates all the
distances between database objects and query object g. Unfortunately, the distance
function ¢ could be computationally expensive and/or the number of objects in S
might be very high.

3.1.2 Indexing Metric Spaces

In order to avoid the computation of the distance function during processing of
similarity search queries, various indexing techniques were proposed [87]. Roughly,
the idea is to pre-compute some auxiliary data structures so that we can filter
the database objects that should not be retrieved. The filtering conditions often
utilize the triangular non-equality in some form. Sometimes, it is acceptable to
allow filtering which also filters objects that should be retrieved. In such case, we
are talking about approximate similarity search.

To demonstrate how filtering in a metric space might look alike assume the
following example. In metric space (R? Ly) with objects O = {01,095 ...} we
pre-compute the distances to the selected pivot p (that is La(p, 01), La(p,09)...).
Given a range query (¢, r) we do the following:

1. Compute Ls(q,p)
2. Filter O’ ={o|o € O, |La(q,p) — La(p,0)| <}

3. Return O" = {olo € O', Ly(q,0) <1}



The situation is depicted in Figure[3.2] Note that we do not compute any distances
in the second step! The distance is computed only to the pivot and objects that
pass the filtering. This filtering is beneficial for expensive distance functions.
Mathematically, the condition in the second step is justified with

Lo(q,p) — La(p,0) > r (filtered object)
Lo(q,0) + La(p,0) >= Lao(q,p)  (triangular inequality)
Ls(q,0) >= La(q,p) — La(p, 0)

Now, by combining 1st and 3rd row we obtain:

Ly(q,0) >r (out of range)

L.e., a filtered object o can not be in the range r from gq.

Figure 3.2 Range query (¢, r) configuration in which we can filter the object o
thanks to the pivot constraint Lo(q, p) — La(p,0) > r.

Our pivot and the actual query range effectively identify parts of the database that
can be completely skipped. With additional pivots and constraints we are able to
further partition the database and tighten the searched area even more. The metric
space approach provides also ball and generalized hyperplane partitioning methods
enabling filtering of groups of objects [87]. Although we do not propose novel
constraints and filtering techniques, we utilize state-of-the-art metric indexing
methods in our system.

The metric space approach is an efficient choice especially for high-dimensional
data that cannot be indexed by traditional spatial access methods [71]. However,
for uniformly distributed low-dimensional vector data, classical grid indexes could
be a more efficient choice [7].

3.2 Image Retrieval and Similarity Search

Despite we aim at video retrieval problems, most of the concepts are exactly the
same in the image domain. As images are less complex than video content, we
start with defining basic image related concepts and we move to the video domain
later on.

10



An image is often defined as a real function of two spatial variables.
fle,y) =2 ; f:RxR—RT (3.3)

That is, for a given point (x,y) we understand f(x,y) as the intensity at that
point. Although working with images as functions may clarify and ease a number
of complex problems, we are going to prefer the discrete definition. For our needs
a gray-scale image [ is a matrix of size M x N of integer values in one byte range
0 — 255. An image element I;; is named pixel. A color image can be defined as a
stack of 3 gray-scale images, each image or channel representing either red, blue
or green color component (Fig. (3.3)).

12 64 98
4 55 L

112 | 87 12

204 | 188 | 63

Figure 3.3 Discrete understanding of digital images. A gray-scale image (left)
and a color image (right).

3.2.1 Image Retrieval

Nowadays, databases of millions of images are quite common; thus, algorithms,
indexes and techniques for large scale image retrieval are in the spotlight. Out of
all the problems being solved, we define the following scenarios:

gbe Query by Example: given an example image, we are searching for either
other instances of the same object or visually similar images.

sbir Sketch-based Image Retrieval: searching for particular object/image,
users do not have an example available; thus, the query is specified as a
user-drawn sketch.

In fact, those image retrieval scenarios can be solved by the metric spaces
approach and similarity queries. Furthermore, we know that with proper indexing
techniques, similarity search queries might be processed efficiently.

Now, the question is what is the proper descriptor space for images and of
course what distance function shall be utilized. Often these two challenges are
solved together, i.e. we design an image descriptor together with a distance
function.

3.2.2 TImage Descriptors

The selection of an appropriate image descriptor is often a complicated problem.
There is no always-best option and with different tasks and datasets the optimal
descriptor would also differ. We do not provide an exhaustive list of image
descriptors; instead, we demonstrate the overall idea of descriptor design on the

11



simple example of a color histogram descriptor which captures the distribution of
colors in images.

Speaking about descriptors capturing color distribution in images, we already
have one — the images themselves. Unfortunately, for image retrieval problems
raw images are rather useless for a number of reasons. At first, we would have to
deal with the very large number of dimensions (the number of pixels times the
number of channels). Furthermore, even an image shifted by a few pixels would be
quite different (pixel-wise) from the original; thus, we would have to design more
sophisticated perceptually sensitive similarity measures that are more expensive.

Basic color histograms compactly represent color frequencies in images. Basi-
cally, we sum up the numbers of pixels with specific colors. Alternatively, we do
this summation channel-wise as is depicted in Figure As we lost the spatial
distribution of colors, color histogram is so called global descriptor capturing
overall image characteristics.

Figure 3.4 Per-channel color histogram of Lena color image.

Now, imagine an image with randomly shuffled pixels. Its color histogram
would be the same as the color histogram of the original image although the
images are not similar at all (Fig. . This should be no surprise as we know
that we simply completely lost the spatial information.

Figure 3.5 Image of Lena (left), the same image with randomly shuffled tiles
(center) and with randomly shuffled pixels (right). All the images would have
exactly the same color histogram.

We might enhance the global color histogram descriptor so that it roughly cap-

tures the color distribution with simple trick. We divide the image in K x L equally
sized parts and calculate the color histogram for each part separately (Fig. .

12



In this way, images in Figure would yield different descriptors. Side effect
is that the local histograms descriptor is precisely K x L times larger than one
global histogram.

iy o Hu dh\”Hu\\ bt L IMH‘M“\
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Ml H“‘”HMhlm\h\.‘.‘ ‘ il ‘
alllr mml‘ H‘\ i aulingr e ol il \| ‘n alllia o oLl M_
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Figure 3.6 An image (left), its local image histogram descriptor (center) and
feature signature (right).

With 1-byte per color channel representation, total of 2563 = 16777216 different
colors may be specified. A color histogram with this dimensionality would not
be any more compact than the image itself. For this reason, we often quantize
the colors in each channel. Finally, a difference between two histograms might be
measured with their correlation.

Color histogram is quite simple yet in some scenarios surprisingly powerful
image descriptor. Nonetheless, it is easy to come up with scenarios when it fails
completely. For example, although images of dalmatian and golden retriever are
semantically close (both are dogs), their color histograms would be completely
different.

In our system, we utilized the feature signature color descriptor (see Fig. -
right) which represents the image as a set of distinct color regions. Differently
form local color histograms, feature signatures do not follow a rigid grid structure
and thus adapts better to image contents. We provide more elaborate description
of feature signatures in Section 5.1}

It is clear that the selection of a suitable image descriptor is the crucial step
in designing an image retrieval system. We might utilize descriptors capturing
different image properties such as its edges, complexity etc. or even combine
multiple descriptors together. Through this work, we describe several additional
image descriptors and discuss the reasons for their selection.

3.2.3 Image Convolution

Seemingly aside from image retrieval and image descriptors is the image convolution
operation. Mathematically, the convolution is defined as a functional operator,
i.e., a mapping between two function spaces where in our case the functions are
images. If we stay with the discrete images it is a sliding window operator which
maps an image to another image. The window is called the convolution filter or
kernel and is in fact a small matrix (e.g.: 3 x 3 or 5 x 5). With an input image [
and a kernel K of dimensions W x H, the output image O is defined as:

S8 et s o
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Le., the kernel is centered at (i,7), point-wise multiplied with the underlying
portion of image I and summed to produce the pixel value of the filtered image

O(i, §) (Fig. 37).

2
3 % 3 [ 2

4 99

Figure 3.7 Discrete 2D convolution schema. The convolution filter or kernel
(middle) is slided over the original image (left). At each position, point-wise
multiplication and summation produce one pixel value in the resulting filtered
image (right).

The output image is dependent on the values of the utilized convolution kernel
and, of course, on the input image. We might design filters for amplifying image
edges, blurring images etc.

Convolution operations are fundamental building blocks of deep convolutional
neural networks (DCNN) described in the following section. Furthermore, we
utilize convolution for detecting edges in images (Section .

3.3 Deep Learning as Frontier in Image Retrieval

For a long time, hand crafted features based on detection of key points in images
were dominant in image retrieval, image matching, image registration etc. Huge
effort was paid for crafting, refining and nurturing these features. A typical
example of such hand-crafted feature is the Scale-Invariant Feature Transform
image descriptor (SIFT) [49]. The SIFT descriptor pursues the idea that certain
key points are characteristic for the objects captured in images. Ideal key points
should be invariant to various image transformations such as rotation, scaling etc.
SIFT features actually hold these properties and thus, became very popular for
various image related problems. An example of detected SIFT key-points might
be seen in Figure [3.8]

Visual object recognition and image classification has been one of the major
challenges in computer vision for decades. Since its introduction, SIFT and other
similar features played a major role in virtually every solution proposed for these
problems. Given a set of images divided to certain classes, we start with detection
of key points. These key points are consequently quantized to centers of clusters
(so called Visual Words) obtained by clustering of all the extracted key points.

14



Figure 3.8 A gray-scale image (left) and its SIFT key points (right). Images
courtesy of [45]

Each image is represented by the histogram of these Visual Words, which is known
as the Bag of Visual Words (BoVW) model |

Machine learning algorithms, such as Support Vector Machines (SVM) [27],
can be employed to classify the resulting feature vectors. A common processing
pipe-line designed in 2012 or earlier would comprise these steps:

1. Key-points detection

2. Key-points clustering (visual vocabulary building)
3. Calculating BoVW representation

4. Training SVM classifier

While each step of the pipe-line can be optimized with variety of improvements
and tricks, everything depends on the properties of the key points being utilized.
It is unclear if there is any better way of selecting and representing the key points.
The performance of visual recognition systems is being evaluated annually at
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [68]. ILSVRC
comprises 1000 object categories, each having around 1000 example images. In
years 2010 and 2011 the state-of-the-art systems following roughly the sketched
pipe-line did not achieve better than 25% top-5 error rate H which is quite far
from the desirable levels.

Then, deep convolutional neural networks (DCNN) emerged on the scene
in 2012. The renaissance of neural networks was initialized by daringly large
model utilizing convolutional layers, thorough sub-sampling with max pooling
and clever prevention of over-fitting with so called drop-out. Famous AlexNet [3§]
was designed for ILSVCR 2012 and achieved less than 16.5% error rate. The
community quickly adopted the new course and pushed the performance of DCNNs
on image classification tasks even further (see Table for details).

The power and beauty of DCNNs lies in their architecture mimicking the
mammalian visual cortex. Crucial components of DCNNs for visual recognition

2An alternative to BoOVW model are the Fisher [72] or VLAD [34] Vectors encodings. Both
are global image descriptors obtained by an aggregating of the local image features (e.g. SIFTs).

3Top-5 error rate refers to the percentage of images for which the real category was not
within the top-5 categories suggested by a particular visual recognition system.
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Table 3.1 ILSVCR image classification results from 2010-2014.

Year Method Top-5 error
2010 Key points + SVM  29.8%
2011 Key points + SVM  25.6%

2012 DCNN 16.4%
2013 DCNN 11.7%
2014 DCNN 7.4%

are convolution layers containing small convolution filters with learned parameters.
Once learned, convolution filters detect local patterns present in images. As
we delve deeper, detected patterns become more complex until finally, we are
able to separate the image categories with regular neural network with couple of
fully connected layers. Although the architecture is not complicated (see Figure
, one must make use of many tricks to actually create a DCNN model which
generalizes well. Bottom line is that features are learned instead of crafted by
hand and the whole system is learned in the end-to-end manner. Furthermore,
some of the learned models are publicly available which allows us to stay within a
user-level and utilize them as black-box components. The details how we utilize
DCNNs are provided in Sections [6.2] and [6.3]
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Figure 3.9 AlexNet architecture comprising convolutional layers (local pattern de-

tectors), max-pooling layers (down-sampling) and fully connected layers (classifier).
Courtesy of [3§].
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4. Known-item Search Tools

Video retrieval is a broad research topic touching other areas such as machine
learning, information retrieval, database systems and cognitive science. It is out
of the scope of this work to provide exhaustive introduction to all these areas.
Instead, we portray the context of our work with a short description of video
retrieval systems designed to solve the same tasks as we try to solve using our
Sketch-based Video Browser.

In particular, a short overview of the top performing teams during the last five
years of the Video Browser Showdown are presented. Although many interesting
approaches and tools competed at the Video Browser Showdown, only the top-3
teams are summarized for each year in this chapter. If a team appeared with their
tool multiple times in the set of top-3 scoring teams, the evolution of the tool is
chronologically summarized.

The overall results of VBS 2012-2016 are captured in Table wherein our
tool is denoted as SIRET. (E)SBVB is thoroughly described in Chapters [5{ and
Chapters [6] In depth analysis of the VBS results is provided in Chapter [

Year | 2012 2013 2014 2015 2016
15 place | KLU1 | NII-UIT | SIRET SIRET HTW
2nd place | NUS DCU | NII-UIT | IMOTION | KLU-UU

3" place | KLU2 | KLU1 KLU1 uu SIRET
Teams 8 6 7 9 9
DB size | 1h* 1h* 25h 100h 250h

Table 4.1 Video browser showdown winners and competition settings. * the
name of a one hour video was specified before each search task.

4.1 KLU team

The KLU team from the Institute of Information Technology, Klagenfurt University
has successfuly presented several top-3 scoring tools at VBS. The first tool (KLU1
in Table is the AAU video browser [16} 18] that won VBS in 2012 and then
took the third place for two times in 2013 and 2014 (out of competition). The
AAU video browser relies on (exhaustive) human computing by providing parallel
or hierarchical browsing methods. The tool relies mainly on the ability of the
users to track several video streams in parallel. Surprisingly, the tool performed
well also on the collection comprising 25 hours of video. The second version of
the AAU video browser tool uses also a content-based analysis of the video to
provide augmented navigation bars depicting repeating segments [I8]. The second
presented tool (KLU2 in Table focuses on video browsing with a 3D thumbnail
ring arranged by color similarity [75] and participated only in 2012. The second
tool relies also on the sequential inspection of the video. Instead of time preserving
visualization, the tool arranges the keyframes by their dominant hue color in the
HSV color space. The third tool, developed together with UU team (KLU-UU
in Table , utilizes also content-based filtering considering automatic concept
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detection and color feature signatures. The tool focuses also on the collaborative
video search (involving more users) combining video retrieval using a desktop
application with human-based visual inspection of a tablet application [30].

4.2 NII-UIT team

The NII-UIT tool was designed by the international team from National Institute
of Informatics in Tokyo and the University of Information Technology and the
University of Science in HCM City. The tool participated three times at the VBS,
where in years 2013 and 2014 the tool took the first and the second place [42, [55].
The first version of the tool relies on coarse-to-fine presentation, where each one
hour video clip is divided into short compact segments and then grouped using a
hierarchial clustering method. The tool employs also filtering methods reducing
the number segments for inspection. Category, layout and color distribution based
filters are considered. The second version of the tool adds also sequential patterns
that can be used to find pairs of consecutive scenes with predefined patterns. In
order to identify concepts, support vector machines in connection with classical
features (BoVW and HOG) are trained.
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Figure 4.1 The tool winning VBS 2013 developed by the NII-UIT team. Image
courtesy of [42].

4.3 HTW team

The Visual Computing Group from HTW Berlin, University of Applied Sciences,
has presented a novel browsing approach [5] based on a hierarchical graph and
visually sorted image maps. In order to create the graph (in the preprocessing

18



phase), the authors consider visual features and semantic features learned from
a convolutional neural network. In order to preserve complex image relations
during efficient navigation, a novel method projecting images from the graph
organization to 2D plane is utilized. To initialize the search, time ordered sketches,
categories or frequent scenes can be employed. The results of 