
Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Model-Driven Engineering Approach

for OntoUML

Bc. Dan Homola

Supervisor: Ing. Robert Pergl, Ph.D.

1st May 2016

Acknowledgements

I would like to thank my supervisor, Ing. Robert Pergl, Ph.D., for his patient
and plentiful support and my friend, Ing. Tomáš Doležal, for invaluable advice
with some C# details. Many thanks also belong to my family and friends for
emotional support and motivation.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with
respect to each and every work that is created (wholly or in part) based on the
Work, by modifying the Work, by combining the Work with another work, by
including the Work in a collection of works or by adapting the Work (including
translation), and at the same time make available the source code of such work
at least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 1st May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Dan Homola. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Homola, Dan. Model-Driven Engineering Approach for OntoUML. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2016.

Abstrakt

V této práci je představeno OntoUML a možnosti jeho využit́ı v Model-
Driven Engineering př́ıstupu. Je popsán sled tranformaćı, které vedou od
konceptuálńıho OntoUML modelu ke zdrojovému kódu objektově orientovaného
jazyka a je pro něj vytvořena aplikačńı infrastruktura. Jej́ı vhodnost je
následně demonstrována implementaćı transformace OntoUML modelu ze
zvolené vstupńı formy do zdrojových kód̊u v jazyce C#.

Kĺıčová slova Model-Driven Engineering, OntoUML, transformace model̊u,
C#, generováńı kódu

Abstract

In this thesis, OntoUML and possibilities of its usage in Model-Driven Engineer-
ing are introduced. A set of transformations from OntoUML conceptual model
into object-oriented source code is described and an application framework
is created for it. The viability of it is then illustrated by implementing the
transformation from OntoUML in a concrete input form into C# source code.

Keywords Model-Driven Engineering, OntoUML, model transformation,
C#, code generation

ix

Contents

Introduction 1

Goals and methodology . 1

Thesis structure . 2

I Review 3

1 Model-Driven Engineering 5

1.1 Model-Driven Architecture . 5

2 OntoUML 9

2.1 Entity Types . 9

2.2 Relations . 11

3 Object Model 15

4 C# 17

4.1 Type system . 17

4.2 Members . 17

4.3 Inheritance and interfaces . 19

4.4 Namespaces . 19

4.5 Syntactic features in C# 6.0 . 19

4.6 C# and the Object Model . 21

5 PIM languages 23

5.1 RDF, RDF Schema and OWL 23

5.2 RefOntoUML . 24

xi

II Solution 25

6 Solution overview 27
6.1 Transformations . 27
6.2 Technologies used . 27
6.3 Application . 30
6.4 C# utilities library . 32

7 Input form into OntoUML transformation 35
7.1 Purpose and interface . 35
7.2 Inner OntoUML representation 36
7.3 Implementation . 38

8 OntoUML into OntoObjectModel transformation 41
8.1 Purpose and interface . 41
8.2 Object Model representation 42
8.3 Implementation . 44

9 OntoObjectModel into view model transformation 53
9.1 Purpose and interface . 53
9.2 Primitive type mapping . 53
9.3 C# view model representation 54
9.4 Implementation . 58

10 Target language view model rendering 67
10.1 Purpose and interface . 67
10.2 Implementation . 67

IIIAssessment 85

11 Case studies 87
11.1 Case study 1 . 87
11.2 Case study 2 . 90

12 Final assessment 93
12.1 Model fidelity . 93
12.2 Future work . 94

Conclusion 95

Bibliography 97

A Acronyms 103

B Case study 1 generated code 105

xii

C Case study 2 generated code 117

D Contents of enclosed DVD 125

xiii

List of Figures

2.1 OntoUML type hierarchy . 9

6.1 Transformation sequence . 28

11.1 Case study 1 . 87
11.2 Case study 2 . 90

xv

List of Tables

8.1 Valid super class types . 47

xvii

List of Listings

4.1 Null-propagating operator example 20

4.2 Expression bodied members example 20

4.3 nameof example . 20

7.1 Front-End interface . 35

8.1 OntoUmlToOntoObjectModelMapper interface 41

9.1 ILanguageMapper interface . 53

10.1 ILanguageRenderer interface 67

10.2 Rendering template example 68

10.3 Render helpers . 68

10.4 Interface render . 69

10.5 Class render . 70

10.6 File render . 71

10.7 Type name render . 71

10.8 Type signature render . 71

10.9 Method render . 72

10.10Property render . 72

10.11Relation render helpers . 73

10.12Relation interface render . 74

10.13Relation body render helpers 74

10.141:1 relation body render . 75

10.151:N relation body render . 75

10.16M:N relation body render . 76

10.17Relation body render . 76

10.18Constructor render . 76

10.19Derived relation body render 77

10.20Superclass prop decomposition 78

10.21Union classes property and method delegation 79

10.22Union classes relation delegation 79

10.23Union classes derived relation delegation 80

10.24ICanValidate . 81

xix

List of Listings

10.25Invalidate render . 81
10.26IsValid render . 82
B.1 Boat.cs . 105
B.2 BoatPlane.cs . 106
B.3 ICanValidate.cs . 107
B.4 Location.cs . 107
B.5 Plane.cs . 109
B.6 Port.cs . 110
B.7 Registrar.cs . 112
B.8 Registration.cs . 113
B.9 Vehicle.cs . 115
C.1 Brain.cs . 117
C.2 DeadPerson.cs . 118
C.3 ICanValidate.cs . 118
C.4 IPersonPhase.cs . 118
C.5 ITeamMember.cs . 118
C.6 LivingPerson.cs . 119
C.7 NamedIndividual.cs . 120
C.8 Person.cs . 120
C.9 Robot.cs . 122
C.10 Team.cs . 123

xx

Introduction

OntoUML is a very useful language for conceptual modelling that provides
a way to create semantically precise models. However, to use it with Model-
Driven Engineering approach is very impractical and inefficient because there
are very few tools that even support it and fewer that are capable to generate
source code from it (for example OWL files). To my knowledge there is no
tool capable of directly generating object-oriented source code from OntoUML
models.

Goals and methodology

This thesis aims to create a semi-automated tool that enables transformation
from OntoUML conceptual models into target object-oriented language source
code files. This should facilitate the usage of OntoUML in Model-Driven
Engineering. The main requirements of the system are:

1. Make as little assumptions about the input and output forms as possible

2. Make the system extensible, i.e. easy to add support for another input
or output language

Very little assumptions are made about the input form — the only one
being that it can be transformed into a valid OntoUML model. Same goes for
the output form — it has to be an object-oriented language.

The system is also to be designed in a way that facilitates adding support
for other input and output forms than those implemented in this thesis. This is
achieved by abstracting the main transformation from OntoUML into Object
Model representation (OntoObjectModel) from the input and output forms
and separating the parsing of input file and generating of the output file or
files. This allows for easy way to add support for another input and/or output
form while being able to utilize already existing ones.

1

Introduction

Methodology

First, existing solutions were reviewed. Then, intermediate model forms were
created and the transformations between them defined. Finally, application
that performs these transformations was written to illustrate the viability of
the approach.

The application was written in TypeScript 1.8[1] for the Node.js platform
5.10[2] in Visual Studio Code[3] and its C# generator generates C# 6.0 code, so
it needs Visual Studio 2015[4] or newer to be compiled (see section 4.5). The
utility C# library was written as a NuGet package[5] using Visual Studio 2015
for the .NET platform 4.5.2[6], the tests for it were written using the xUnit.net
test framework[7]. The illustrative models were created using OLED editor[8]
and diagrams were drawn in UMLet[9] using either OntoUML notation or
Yourdon Data Flow Diagram notation[10]. The text was written and typeset
in TeXstudio[11].

Thesis structure

In Part I, theoretical basis is established and existing approaches are described
and compared. Part II is dedicated to the description of the solution chosen for
this thesis – all the intermediate forms and their transformations are specified
and also the architecture of the implementation and some of its details are
discussed. Part III discusses the results of the provided solution along with its
benefits and negatives and potential ways to expand upon them.

2

Part I

Review

3

Chapter 1

Model-Driven Engineering

Model-Driven Engineering (MDE) is an approach to software development that
is based around domain models. These models are created on a conceptual level,
therefore they are independent on the final implementation. After they are
validated, they can be transformed into more concrete levels (see section 1.1.3).
This very early validation aims to find errors in the solution’s design as soon
as possible hence reducing costs (the sooner in the development an error is
found the cheaper it is to fix it [12]).

MDE is an abstract methodology so initiatives were created based on it
that try to formalize MDE’s methods and principles. One of the better known,
that we will talk about in this thesis, is Model-Driven Architecture.

1.1 Model-Driven Architecture

Model-Driven Architecture (MDA) is an implementation of MDE principles
created by OMG. It is built on other OMG standards such as UML, XMI
and others. The main goal is to provide ‘an approach for deriving value from
models and architecture’ ([13]).

In other words, this methodology puts accent on formalized models of
a system as the ultimate source for all the software development life-cycle
activities including design, implementation, deployment and documentation.
Also it exploits various types of transformations of those models. Some of the
proclaimed benefits of using MDA are[14]:

• Portability and technology obsolescence – the core of the system is
described in a way that is independent on the target platform, hence any
changes of the platform (be it because of business needs or technological
reasons) is much easier

• Productivity – using automated transformations removes the need of
some programming and thus enables the developers to put their effort to
more crucial parts of the system

5

1. Model-Driven Engineering

• Quality – artifices produced from formally defined models are reliable
and contribute to improved quality

In the following sections we will discuss the key notions of MDA relevant
to this thesis.

1.1.1 System and Environment

As MDA was created primarily for software development, one might assume
that system in this context means computer or software system. However this
term is defined much more broadly as ‘a collection of parts and relationships
organized to accomplish some purpose’ ([15]). With this definition, system can
contain not only computers and software but also people, companies and even
groups of companies.

Environment is everything external to the system that interacts with it.
Interesting thought here is that a system can play a role of an environment
for another system allowing us to apply the same principles recursively where
appropriate.

1.1.2 Model and Metamodel

Model is a structured representation of a system or its part, that is created
to address certain aspects of the modelled system (e.g. UML model, DEMO
model, etc.). Metamodel is a model of another model’s language and syntax
that establishes rules every model in that language must conform to.

1.1.3 Viewpoint and View

Viewpoint is a level of abstraction defined by a set of rules and criteria for
model creation allowing us to focus only on certain aspects of the system
ignoring others. It is realized by a view i.e. one or more models. MDA defines
three basic viewpoints (in decreasing level of abstraction):

1. Computation Independent

2. Platform Independent

3. Platform Specific

The most abstract viewpoint is Computation Independent. Models in views
conforming to this viewpoint1 are created in such a way that they do not imply
their implementation has to use any certain way (mostly computer systems).
These are typically conceptual models and are focused on requirements, ignoring
processing etc.

1For the sake of brevity we will refer to models in views conforming to a certain viewpoint
as viewpoint models from now on.

6

1.1. Model-Driven Architecture

More concrete viewpoint is called Platform Independent. Its models are
constrained by the general way the system is to be implemented (a computer
system) but is agnostic to the concrete platforms used by the implementation
and describes the operation side of things.

Platform Specific models extend the Platform Independent ones with
details regarding the set of technologies selected for the implementation (type
of database, programming platform, communication protocols etc.).

7

Chapter 2

OntoUML

OntoUML is a modelling language based on Unified Foundation Ontology
(UFO) [16] built as an UML Profile. It makes use of cognitive psychology
— i.e. ‘the study of higher mental processes such as attention, language use,
memory, perception, problem solving, and thinking’ ([17]) — and modal logic.
It was first introduced in G. Guizzardi’s PhD. thesis [18] and today is further
developed by NEMO research group (Guizzardi is a member) [19].

2.1 Entity Types

OntoUML defines several types of entities that can be used in diagrams which
can be seen in grey in fig. 2.1. They are divided in two main groups – Sortals
and Nonsortals (Mixins). The difference is that Sortal types provide ontological
identity to their entities whereas Nonsortals do not. As opposed to UML, in

RoleMixin

MixinCategory AntiRigid Mixin

NonRigid MixinRigid Mixin

Mixin Universal

RolePhase

CollectiveQuantity

SubKind

Kind

Substance Sortal

AntiRigid SortalRigid Sortal

Sortal Universal

Substantial Universal

Universal

 {disjoint, complete}

 {disjoint, complete}{disjoint, complete}

 {disjoint, complete}

{disjoint, complete}

{disjoint, complete}

Figure 2.1: OntoUML type hierarchy (adapted from [20])

9

2. OntoUML

OntoUML an object can be instance of multiple types (classes) simultaneously
but they must form a generalization tree with the root providing the object’s
identity. This implies that generalization and generalization sets are used
more often in OntoUML. There is also a slight difference in the notation of
the completeness and disjointness of members of a generalization set – they
are incomplete and overlapping by default, any differences must be explicitly
marked by complete and disjoint attributes respectively. The semantics are
the same as in UML, though.

Another type of division is according to the type’s rigidity. If an object
is an instance of a rigid type, this fact cannot change over time. On the
other hand, object may become (or cease to be) an instance of an anti-rigid or
non-rigid type over time. In the following subsections we will briefly introduce
all of OntoUML’s types.

2.1.1 Kind and Subkind

Kind and Subkind are rigid sortal types. Kind is the most general type that
provides identity to its instances. Subkind represents a specialization of a Kind
and must have exactly one Kind as its ancestor to inherit its identity from.
Both often serve as ancestors (and therefore sources of identity) to other types.

2.1.2 Role and Phase

Role and Phase are antirigid sortal types. They cannot provide identity and
so they must inherit it from some other type. In other words, these types are
used to model their ancestors’ attributes in certain points in time.

Role is used to model the fact that its ancestor may play a certain role
in relation to another object. That object is connected to the role using
an association. This relation is essential as role without the related object does
not make sense (e.g. a Person may play a role of an Employee in relation to
a Company, but without the Company the role is nonsensical).

Phases are used to represent different states of their ancestor. The ancestor
may freely change the phase it is in, but can only be in exactly one of the
phases. This is asserted by the fact, that the related phases must form a phase
partition i.e. a disjoint and complete generalization set that represents all the
different phases the ancestor can be in.

2.1.3 Category, Role Mixin and Mixin

As non-sortal types do not provide identity they cannot be directly instantiated.
Instead they are used to group other types. This is useful for simplification
and removal of duplicities in the model.

Of three non-sortal types, Category is the only one that is rigid. It defines
a set of attributes common to the Kinds and/or Subkinds that inherit from it.

10

2.2. Relations

Role Mixin is antirigid type used to group different Roles together. Another
way to look at Role Mixins is that they are a kind of an abstract Role.

Mixin is semi-rigid meaning it groups rigid and non-rigid types. To achieve
semi-rigidity they must have at least one rigid and at least one non-rigid type
as their descendants.

2.1.4 Aspects

Aspects are types of entities that are existentially dependent on another type
(called aspect bearer). This means instance of an aspect cannot exist without
its bearer. We use aspects to model properties that are structured or otherwise
too complex to be modelled using attributes. There are four types of aspects:

• Perceivable Quality

• Non-Perceivable Quality

• Nominal Quality

• Mode

Qualities represent such properties of the bearer that can be quantified
by some value. Perceivable Quality represents a property the value of which
can be measured (e.g. size, color, etc.). Non-Perceivable Quality on the other
hand cannot be measured (e.g. currency). Lastly, Nominal Quality represents
a property that is not intrinsic to the bearer but has been assigned to it to
make reference to it (e.g. serial number). Mode is used for properties that
cannot be quantified (e.g. the edition of a book, or a skill of an individual).

2.2 Relations

Relations represent ways entities can interact with each other or be composed
to form more complex ones. OntoUML introduces a precise system of relation
types and meta-attributes that will be described in the following subsections.

2.2.1 Formal and material relations

Formal and material relations expand upon UML’s association. Formal relation
is such a relation between entities that is dependent solely on their intrinsic
properties (e.g. ‘taller than’).

Material relations in contrast require an external entity (a truthmaker) to
make them valid2. OntoUML defines a special entity type for this – Relator.
The sides of the relation are connected to the Relator using a special mediation

2The truthmaker does not necessarily have to be a physical thing like a contract, it can
also be something like a consensus or a deal that has no representation in the physical world.

11

2. OntoUML

relation. There can also be material relations derived from a Relator to specify
the name of the relationship between the relation sides directly.

2.2.2 Part–whole relations

OntoUML puts great emphasis on part–whole relations. It uses the UML’s
symbols for aggregation and composition (filled and blank diamonds), but
redefines their meaning. Blank diamond means that the part can be shared
among different wholes whereas the filled one means that the part may belong to
at most one whole at a time. OntoUML also introduces various meta-attributes
of the part–whole relations used to further specify their semantics:

• Mandatory part – the aggregating object must contain at least the
specified minimum of the parts (e.g. a living person must have a heart
to live), this is modelled by setting the lower bound on cardinality on
the part’s side to a non-zero value

• Essential part – the aggregating object is existentially dependent on the
part and the part contributes to its identity (e.g. the relation between
an art collection and its artifices), the essential meta-attribute is used
to express this

• Optional whole – the part can exist without being aggregated (e.g. a light
bulb can exist without being attached to a lamp), in this case the lower
bound on cardinality on the aggregating object’s side is zero

• Mandatory whole – the part has to be contained in an aggregating object,
this fact is declared with non-zero cardinality on the aggregating object’s
side

• Inseparable part – the part cannot be removed from the aggregating
object without ceasing to exist (e.g. we cannot remove a hole from a shirt
without ‘destroying’ it), there is the inseparable meta-attribute for this
situation

• Inseparable essential part – the part cannot exist without the aggregating
object and vice versa (e.g. a person and their brain), both essential

and inseparable meta-attributes are used in this case

There are two more meta-attributes that aim to cope with the non-rigid
types’ ability to change over time:

• Immutable part – the part must stay the same independently on the
aggregating object’s current state – the immutable part meta-attribute

• Immutable whole – analogous to the previous one with the part and the
aggregating object exchanged, the meta-attribute is immutable whole

12

2.2. Relations

Three types of aggregating objects are distinguished in OntoUML:

1. Quantity

2. Collective

3. Functional whole

We use Quantity (a special entity type that provides identity) to model
scenarios where the part is infinitely divisible and is defined by its topology.
This means that every Quantity must have a relation to its container that
defines the topology (either directly or via another Quantity it composes).
This relation has the containment stereotype. Quantities can also be composed
from other Quantities with a special subQuantityOf relation.

Collectives are used to model groups of other objects that share the same
role in that group (the role defines what is called the unifying relation of the
collective). There are two relation types dedicated to Collectives – memberOf
used to assign members to a Collective and subCollectionOf to compose
a Collective from other Collectives.

Functional whole is the most basic of aggregating object – it is composed
of different parts that have different purpose in it. These parts are assigned to
the aggregating object using the componentOf relation.

13

Chapter 3

Object Model

Object model is the set of basic concepts upon which object-oriented program-
ming is built. There are only a few of them [21]:

Object An entity that represents some part of the system. It has inner state
represented by its set of attributes (sometimes called instance variables)
and its protocol – set of messages sent by other objects using its methods
it can receive.

Class As defined in [22], classes are ‘extensible templates for creating objects,
providing initial values for instance variables and the bodies for methods’.
Objects created using a class are called its instances.

Constructor A special method of a class that creates new instances. In many object-
oriented languages there can be more than one constructor for a class
allowing for different initialization for different use cases.

Collection A special object that can hold references to a number of other objects. In
pure object-oriented languages (e.g. Smalltalk) members of the collection
can be of different types (those collections are called heterogeneous), in
other languages (such as C++, Java or C#) members need to have the
same type (or at least a common ancestor type).

There are two main types of relations between classes:

Inheritance the relation between a class and a class that is its specialization (also
called is-a relation). The specialized class usually overrides or extends
the behaviour of its parent. A class can have multiple parents at the
same time (although in some object-oriented languages the number of
parents is limited to one, e.g. in C#).

Aggregation the relation between a whole and a part – the aggregating object contains
aggregated objects as its parts.

15

Chapter 4

C#

C# is a type-safe, garbage-collected, compiled, object-oriented 3 language for
Microsoft’s .NET platform [23]. Its first version was published in 2002 and the
latest one at the time of this thesis (6.0) in 2015. In this section we will discuss
how it copes with implementing the Object model while first describing its
part relevant to this topic.

4.1 Type system

C# is a type-safe language, meaning every object is an instance of some type.
There are two main kinds of types: value types and reference types. Value
types represent value-passed types of objects (e.g. numbers, enums or structs).
Instances of reference types are passed by reference (e.g. classes, arrays and
interfaces).

There is a special literal — null — that represents a so called null reference
— reference that does not point to any object. Any variable of a reference type
can hold the null value. To be able to have instances of value types that can
also have the value null, so called Nullable types were introduced to C# (see
section 4.1.10 of [23]). These are denoted by the ? suffix (e.g. nullable int is
int?).

For the purpose of discussing the Object model implementation, we will
focus on classes as they offer the functionality most relevant to that.

4.2 Members

Classes may contain two basic types of members – static and instance. Static
members are those that belong to the class itself (denoted using the keyword
static) whereas instance members belong to the individual instances of the

3 There are also aspects from functional, component-oriented, and other programming
paradigms but for this thesis, we will cover only the object-oriented side of C#.

17

4. C#

class. Classes can be marked static meaning they cannot have instances.
Members can be of several types, here are those relevant to this thesis [23]:

• Constants – named constant values

• Fields – named attributes of the class

• Methods – actions the class can perform

• Properties – special actions used to read and/or write a named property
of the class (typically a field or a computed value)

• Constructors – actions to initialize instances

Constants, fields and properties can be of any type. The fact that constants
are not modified is checked at compile time.

Methods must specify their return type (there is a special return type void

for methods that do not return a value) and can take parameters. They can
also be overloaded i.e. there can be more than one method with the same
name but different set of parameters. Methods can be marked as virtual

making them late bound, or abstract i.e. virtual with no implementation.
Virtual (and of course also abstract) methods can be overridden in derived
classes using the override keyword.

Properties are a special way to define a member that is similar to a field
but can have actions associated with reading and/or writing to it. The read
and write (called get and set) parts can be marked as private or protected
independently and can also be marked as virtual or abstract. Similarly to
methods, virtual and abstract properties can be overridden.

Constructors provide a way to initialize other members of an instance
(or the class itself if the constructor is static). Instance constructors can be
overloaded similarly to methods. Constructors can also include the call to base
class’ constructor (see section 4.3) that is called before the current constructor.
This is denoted by a base call between the argument list and the constructor
body (see section 10.11.1 of [23] for more information).

4.2.1 Access modifiers

In C# members can have five different levels of visibility to other parts of the
program [24]:

• public – the item is accessible without restriction

• internal – the item is accessible only within the defining assembly (roughly
equivalent to Java’s jar archives)

• protected – the item is accessible only to the defining class and its
instances or its subclasses

18

4.3. Inheritance and interfaces

• protected internal – a union of protected and internal, the item is access-
ible via defining class and subclasses or within the defining assembly

• private – the item is accessible only to the defining class and its instances

4.3 Inheritance and interfaces

Inheritance is implemented in a way that allows exactly one predecessor class
called ‘base class’ to be set. If no base class is explicitly specified, special
object class is used instead4). Classes can be marked with the sealed keyword
to indicate that no other class can inherit from them.

Classes can implement multiple interfaces – contracts that specify a set of
methods and/or properties the implementing class contains. Classes can also
be generic, meaning that types of some of its members can be parametrized.
Various constraints can be defined for the type parameters.

As stated in section 4.2, class members can be marked as virtual which
allows child classes to override their behaviour (using the override keyword),
see section 1.6.6.4 of [23]. Also even when the member is not marked as
virtual, the derived class can hide it using the new keyword (see section
3.7.1.2 of [23]).

4.4 Namespaces

Namespaces represent a way to organize the structure of C# programs. Using
those, classes can be grouped into logical chunks to make the structure of the
program clearer. Reference to a namespace is declared by the using statement
(e.g. using System;) usually at the top of a file. See section 9 of [23] for
more.

4.5 Syntactic features in C# 6.0

The latest version of the C# language introduces some useful syntactic con-
structs that help to make the code shorter and more to the point (as there is
no specification for this version yet, I suggest reading [25] for more info). In
this thesis, I use three of them: null-propagating operator, expression bodied
members and nameof expression. These are all compile-time features, so to
use them, Visual Studio 2015 or newer is required.

The null-propagating operator ?. (often called ‘elvis operator’) facilitates
navigating through members that might be null. In listing 4.1 we see an example.
The assignment to age1 ends with an instance of NullReferenceException
being thrown. Checking whether every needed member is not null is quite

4object is therefore the only class that does not have a predecessor.

19

4. C#

tedious and so in C# 6.0 the null-propagating operator can be used as seen in
the assignment to age2. If either a or Age is null the value assigned to age2 is
null and no exception is thrown.

class Person { public int ? Age { get ; s e t ; } }
Person a˜= null ;
var age1 = a . Age . ToString () ; // Nul lRe ferenceExcept ion
var age2 = a ? . Age ? . ToString () ; // OK, age2 == n u l l

Listing 4.1: Null-propagating operator example

Expression bodied members provide a way to simplify single expression
methods and get-only properties declaration. In listing 4.2 we can see this
clearly. Functionally equivalent SayHi and SayHiNew represent the method
simplification, Initial and InitialNew the get-only properties.

class Person
{

public string Name { get ; s e t ; }

public string SayHi (string s a l u t e)
{

return s a l u t e + ” , ” + Name ;
}

public string SayHiNew(string s a l u t e)
=> s a l u t e + ” , ” + Name ;

public char I n i t i a l { get { return Name [0] ; } }

public char In i t i a lNew => Name [0] ;
}

Listing 4.2: Expression bodied members example

The nameof expression is used to get names of members in a type checked
way. Every nameof expression is resolved to a string at compile time. Example
can be seen in listing 4.3. The advantage of using nameof over string constants
is that when the argument of nameof is renamed and we forget to update it,
the build fails and we notice the error easily. This is useful for example when
passing the name of the parameter that is null to the ArgumentNullException
constructor (it expects the name as a string).

class Person { public int Age { get ; s e t ; } }
var nameOfPerson = nameof (Person) ; // ”Person”
var p = new Person () ;
var nameOfAge = nameof (p . Age) ; // ”Age”

Listing 4.3: nameof example

20

4.6. C# and the Object Model

4.6 C# and the Object Model

C# does not precisely implement the Object Model described in chapter 3. All
the Object Model aspects are enumerated once again and it is discussed how
C# deals with them below:

Object Instances in C# conform to the definition without exception – they have
inner state represented by the values of their fields and they can expose
a set of methods creating their protocol.

Class Classes align with the definition as well – they provide the template for
creating objects and can be extended by inheritance. Classes are not
a first-class object in C#, they must be handled by a special Type class
instances.

Constructor Constructors in C#behave as stated in the Object Model definition and
can be overloaded.

Collection Collections are homogeneous in C# meaning they can only contain
instances of one particular type.

Inheritance In C#a class can only have one other class as its ancestor (and multiple
interfaces). This will prove to be quite a challenge to overcome (see
section 8.3.2.2).

Aggregation Objects can hold references to other objects in C#, so this is implemented
with no dissonance from the Object Model

21

Chapter 5

PIM languages

In this chapter we will discuss existing languages suitable for using as Platform
Independent Model in OntoUML into source code transformation process.

5.1 RDF, RDF Schema and OWL

RDF (Resource Description Framework) is a framework for expressing informa-
tion about resources[26] (resource meaning anything from concrete individuals
to abstract concepts). It was created by W3C as standardized means to
represent various metadata of web content used for example during machine
processing. As such, RDF is meant to be used as a base for other semantic
extending notations.

For data modelling RDF was extended by RDF Schema (often abbreviated
as RDF-S). This extension adds concepts like classes and properties with
semantics very similar to object-oriented programming languages (including
inheritance and so on).

OWL (Web Ontology Language) is an ontology language for semantic web.
It is built on RDF and RDF-S further enriching the RDF-S vocabulary with
tools that enable us to very precisely describe relations between entities[27].
The current version is OWL 2 released in 2012.

OWL is also used to query over models (commonly used term for this is
reasoning with the model). There are three so called profiles of OWL 2: OWL
EL, OWL QL and OWL RL. These represent subsets of OWL constrained in
certain ways to guarantee certain levels of computational complexity of the
reasoning. As we are not going to reason with our models, further details of
those profiles fall out of the scope of this thesis (specification can be found in
[28]) and from now on we will consider OWL 2 in its unconstrained form.

OWL contains constructs that are very similar to those used in OntoUML.
For example a class can be an intersection and/or union of other classes which
is close to OntoUML’s interpretation of generalization sets.

23

5. PIM languages

5.1.1 Code generators

There are several code generators that are able to generate Java or C# code
from OWL models:

• ROWLEX – C# generator, the project seems discontinued from at least
2012[29]

• Jastor – Java generator[30], latest version (1.0.4) was released in 2006[31]

• protégé – OWL editor capable of generating Java code[32], this project
is still active, latest version was released in late 2015[33]

As we can see, although OWL is a standard language, code generation
support is quite problematic as most of the projects related to this topic are
defunct and their support has ended.

5.2 RefOntoUML

RefOntoUML is a language developed by NEMO (Ontology & Conceptual
Modeling Research Group), a research group around the author of OntoUML,
for their OLED editor [8]. It is a simple XML based language describing
the OntoUML model. The structure closely aligns with OntoUML structure
and as such resembles more or less a serialization of the OLED’s internal
representation. This means the resulting file is not very human readable and
more importantly due to its ad hoc nature is not very well known or supported
by other tools. Menthor, the closed-source spin-off of OLED[34], supports the
import of RefOntoUML files from OLED, but exports RefOntoUML files that
are slightly different. For the purpose of this thesis we will consider only the
files generated by OLED.

5.2.1 Code generators

As mentioned above, RefOntoUML is a language created for a concrete tool. At
the time of writing this thesis, the latest stable version of OLED is version 2.0.1
[35]. There are no functions that allow for generation of any object-oriented
code (there is an OWL generator, however). The same stands for Menthor.

24

Part II

Solution

25

Chapter 6

Solution overview

The solution consists of a set of transformations that gradually turn OntoUML
model into target language source code and the application that provides
a framework for these transformations and illustrates this process by trans-
forming RefOntoUml files into C# classes.

6.1 Transformations

To allow for maximum extensibility of the program the transformation is
divided into four subtransformations as shown in Figure 6.1 (the diagram uses
Yourdon Data Flow Diagram notation [10]). All of the white transformers can
be added to either support another input form or different output language.
The greyed out transformation is the core in which the transformation from
OntoUML as a Computation Independent Model (CIM) is transformed into
OntoObjectModel – a Platform Independent Model (PIM) – and is not to be
extended.

6.2 Technologies used

The application was written on Node.js platform in the TypeScript language.
The reason I chose this combination was to be as multiplatform as possible
(Node.js) and to have the comfort of type safety (TypeScript). Also it allows for
easy prototyping of the concepts I needed to show in this thesis and moreover,
I have been working with this stack for quite a while so I have some experience
with it.

There emerged a need for some helper C# classes to facilitate the work
with associations and collections with bounds on the number of items from
the generated C# code. Therefore I created a NuGet package with those (see
section 6.4). In this section all the technologies used are briefly introduced.

27

6. Solution overview

domain types to
target language types

mapping

output file(s)
(target source code)

input file
(valid OntoUML)

4
Target Language

renderer

3
Target Language

view model mapper

2
OntoUml to

OntoObjectModel
mapper

1
FrontEnd

outputtarget language
view model (PSM)

OntoObjectModel
(PIM)

inner OntoUML form
(CIM)

input

Figure 6.1: Transformation sequence

6.2.1 Node.js and npm

Node.js is ‘JavaScript runtime built on Chrome’s V8 JavaScript engine’ ([2]). It
is used to build a wide range of applications from web servers to command-line
utilities. The runtime can be run on Windows, Mac OS X, Linux and several
other platforms [36].

Applications and libraries written in Node.js can be distributed as modules.
The official package manager system is called npm. At the time of writing this
thesis, there were more than 250, 000 public open-source packages available
on npm which is almost twice as much as on Maven Central (Java package
registry) and five times as much as on NuGet Gallery (C# package registry,
see section 6.2.6) [37].

6.2.2 NPM packages used

As stated before, there are many useful npm packages out there. The application
uses several of them to perform various tasks:

• command-line-args – package to handle command line arguments pars-
ing and to generate usage guide for the application [38]

• handlebars – JavaScript templating engine [39]

• json-format – simple JSON formatter [40]

• lodash – utility library providing tools to facilitate functional program-
ming and many other functions [41]

• mkdirp – utility to recursively create directories (similar to mkdir -p

command in Unix systems) [42]

28

6.2. Technologies used

• q – library implementing JavaScript Promises (see section 6.2.5) [43]

• tv4 – library for JSON Schema validation (see section 6.2.4) [44]

• xml2js – library for simple XML to JavaScript objects conversion [45]

The usage of each package will be mentioned in the relevant sections. There
are also so called devDependencies – these are packages used to build and test
the application (not while the application itself is run):

• chai – assertion library for unit testing [46]

• chai-as-promised – plug-in for chai that facilitates writing assertions
for Promises [47]

• istanbul – code coverage library for JavaScript [48]

• mocha – unit test framework [49]

• mock-fs – library for mocking the calls to file system [50]

• remap-istanbul – library for remapping istanbul JavaScript results to
TypeScript source files [51]

• typescript – official TypeScript compiler for Node.js [52]

• typings – type definition manager for TypeScript [53]

6.2.3 TypeScript and Typings

TypeScript is an open source ‘typed superset of JavaScript that compiles
to plain JavaScript’ ([1]). It was created by Microsoft and is still actively
developed. It adds static typing to JavaScript that helps to prevent errors, as
well as some other useful features from the modern ES2015 (formerly called
ES6) JavaScript specification [54] (such as arrow functions, destructuring and
others) that can be transpiled to the more commonly supported ES5 version.

As TypeScript is a strict superset of JavaScript, all valid JavaScript sources
are also valid TypeScript sources. This means existing JavaScript libraries (and
therefore npm packages) can be used in TypeScript. To interoperate with them
it is very beneficial (although not necessary) to include so called type definitions
file for the used library. This file contains all the type information about the
library allowing TypeScript to perform type checking when using them. There
is a popular utility called Typings [53] (that obsoleted the previously used
TSD utility) that allows users to search for, install and update type definitions
for the libraries they want to use. This was utilized for several npm packages
that are used by the application and for which the type definitions file existed
at the time.

29

6. Solution overview

6.2.4 JSON Schema

JSON Schema is a way to describe the structure of JSON documents [55]. It
can be viewed as an analogy of XML Schema (XSD) and XML files. It is
itself a JSON based document that can also be (and actually is) described by
a JSON Schema. It is used to validate all the JSON inputs to the application
– serialized OntoObjectModel (see section 7.3.1) and PrimitiveTypeMapping
files (see section 9.2).

6.2.5 Promises

In Node.js many operations are asynchronous (e.g. file I/O) and are handled
via providing callback function to be called when the operation is completed.
This approach is simple but can lead to very deeply nested code in situations
when another asynchronous operation is called from within a callback. This is
one of the reasons I decided to use Promises.

Promise is a special type of object that allows ‘to associate handlers
to an asynchronous action’s eventual success value or failure reason’ ([56]).
Promises also support chaining i.e. a Promise’s success handler can return
another Promise etc. This brings some advantages to the table, along with
the improved readability of the code, they allow to write nicer interfaces (see
section 10.1 for an example) and to centralize error handling (we can specify
one ‘catch-all’ error handler instead of writing one for every asynchronous
operation). Although Promises are natively supported in Node.js, there are
still some issues with it (e.g. [57]), so I chose to use the q library for it (see
section 6.2.2).

6.2.6 NuGet

According to its official website ‘NuGet is the package manager for the Microsoft
development platform including .NET. ’ ([5]). It enables developers to easily
manage external packages for .NET projects (libraries etc.), their dependencies,
updates and so on. It also abstracts the developer from integrating the library
in the package into their project (setting up references and other things).

6.3 Application

In this section the application created for this thesis is described. First its
architecture is overviewed and then instructions on how to run it are provided.
The application sources can be found on the enclosed DVD and also on [58].

6.3.1 Application architecture

The application architecture closely aligns with the transformation flow depicted
in fig. 6.1. The application entry-point – app.ts parses the command-line

30

6.3. Application

arguments (using the command-line-args package, see section 6.2.2) and
according to their values chooses the front-end implementation, output language
mapper and renderers (for argument reference see section 6.3.3). After that,
front-end’s parseFile method is called (see section 7.1) and on the resulting
Promise (see section 6.2.5), subsequent calls are chained. Those calls are in
order:

1. OntoUmlToOntoObjectModelMapper call, unless the front-end has its
returnsOntoObjectModel flag set to true indicating it returns
OntoObjectModel directly (see chapter 8)

2. the selected target language mapper’s modelToViewModel call (chapter 9)

3. all the selected target language renderers’ generateCode calls (chapter 10)

6.3.2 Running the Application

The only requirement to run the application is to have the Node.js runtime of
version at least 5.x installed (which also installs the npm utility 3.x along with
itself). It can be downloaded from [36]. The application is initialized using
the npm install command. This ensures that all of the packages depended
upon are installed (see section 6.2.2), type definition files are downloaded (see
section 6.2.3) and the TypeScript files are compiled into JavaScript. Unit
tests can be run using the npm test command and test coverage report can
be generated using the npm run code-coverage command. This command
creates a HTML page in the coverage directory where details on unit test
code coverage can be found. The application can be run using the npm

start command, additional parameters can be added like this: npm start --

--parameter value (note the double dash between start and the parameters).
See section 6.3.3 for parameter reference.

6.3.3 Application parameters

The application can be run with several command-line parameters that can be
used to adjust the code generation. They are listed bellow in the form usual
in command-line utilities’ help (the same text can be also obtained by running
the application without parameters or with the --help parameter):

--input, -i – Path to the input file. If a parameter is not prefixed with any name,
it is assumed that it is this one (i.e. npm start -- -i file.txt is
identical to npm start -- file.txt).

--inputForm, -I – The input form code. Valid values are (default is refontouml):

refontouml – RefOntoUml from OLED (see section 5.2).

onto-object-model – JSON of the OntoObjectModel (section 8.2).

31

6. Solution overview

--output, -o – The path to the output directory (or if --singleFile flag is set the
name of the output file). If it does not exist, it is created.

--outputForm, -O – The output form code. Valid values are (default is csharp-model):

csharp-model – C# model classes (see section 9.3).
Config options:

-c namespace=<namespaceName> – Name of the namespace to use
in the generated file(s) (see section 9.3.1).

onto-object-model – JSON of the OntoObjectModel.

--typeMapping, -t – Path to the type mapping file (see section 9.2).

--singleFile, -s – If set, all the generated code will be placed in a single file.

--config, -c – Additional configuration options in the form <name>=<value>.

--help, -h – Displays the help message with usage information and parameter
reference and quits.

--verbose, -v – Displays additional output (e.g. generated files’ content).

6.4 C# utilities library

To address some of the conceptual constraints from OntoUML in the generated
code I created a NuGet package Ccmi.OntoUml.Utilities (for more inform-
ation on NuGet see 6.2.6). It consists of two main parts – classes to work
with associations and collections that hard check the bounds on the number
of items they can contain. The package source files are available on the DVD
enclosed to this thesis and also on [59]. The built package is accessible from
the feed in [60].

6.4.1 Association classes

In the Ccmi.OntoUml.Utilities.AssociationClasses namespace, there are
three classes, one for each of the association types:

• OneToOneAssociation<TLeft, TRight> for one to one associations

• OneToManyAssociation<TOne, TMany> for one to many associations

• ManyToManyAssociation<TM, TN> for many to many associations

The implementation is an adapted port of the Java version proposed in [61].
The main advantage of this approach is that both ends can navigate to each
other without synchronization issues that are introduced when implementing
associations näıvely using attributes.

32

6.4. C# utilities library

The singleton implementation utilizes the System.Lazy<T> class[62] in
OneToOneAssociation<TLeft, TRight> and standard double checked locking
to prevent race conditions in the other two. Lazy<T> could not be used in
those because of the constructor parameter5. All three classes have similar
interfaces:

• Instance accessor taking optional parameter that specifies whether there
can be multiple associations between the same instances (this parameter
is obviously missing in one to one association). The parameter defaults
to false meaning there cannot be multiple associations between the same
instances.

• Methods to create association between an instance of one type and many
instances of the other type (except for the 1:1 where there can be only
one). It throws an instance of System.InvalidOperationException

if duplicate associations are not allowed and an attempt to add such
association is made.

• Method to remove an association between two objects. If duplicate
associations are allowed, only one is removed. If no association between
the objects is specified, the method does nothing.

• Methods to retrieve associated objects for a specified object. If there can
possibly be only one result and none is found, the method returns null,
if there can be more than one, it returns an empty Enumerable<T> of
the appropriate type.

6.4.2 Bounded collections

The Ccmi.OntoUml.Utilities.Collections namespace contains interfaces
and implementation of collection that checks the number of items in it against
provided bounds.

There are two interfaces (IBoundedCollection and IBoundedList) that
are similar to their System.Collections.Generic counterparts [63] and the
BoundedList that implements the IBoundedList. The implementation is
based on inheriting the System.Collections.Generic.List<T>[64] and hid-
ing those of its methods that can change the number of items in it using the
new construct (see section 4.3). When a bound is about to be crossed, instance
of System.InvalidOperationException is thrown. The bounds can be set
using the constructor that has two optional parameters for upper and lower
bound of the items count (maxItems and minItems respectively) or setting the
appropriate property (MaxItems and MinItems) – these assert that the new

5This could have been circumvented by creating two classes per association type
(e.g. ManyToManyAssociation<TM, TN> and UniqueManyToManyAssociation<TM, TN> but
this would lead to code replication across those which I found undesirable.

33

6. Solution overview

bound is compatible with the current number of items (e.g. not trying to set
the upper bound to 5 on an instance that already contains 10 items) throwing
InvalidOperationException if the assigned value is not valid.

34

Chapter 7

Input form into OntoUML
transformation

To be able to abstract the core transformation from OntoUML into OntoOb-
jectModel from the input format, there must be a layer between the input files
and that transformation. This chapter describes how this layer is constructed
and discusses the concrete implementation.

7.1 Purpose and interface

The purpose of this layer (taking analogy in compilers, I call it front-end) is
to read the input file and transform it into the inner OntoUML representation.
Its interface is quite simple:

i n t e r f a c e IFrontEnd {
p a r s e F i l e : (f i l e : s t r i n g) =>

Q. Promise<OntoUmlModel | OntoObjectModel>;
returnsOntoObjectModel : boolean ;

}

Listing 7.1: Front-End interface

The parseFile method takes the path to the input file as a parameter and
returns a promise to the result of the transformation into either OntoUmlModel
or directly into OntoObjectModel (effectively bypassing the core transform-
ation to allow inputting for example OntoObjectModel serialized to a file).
Whether OntoUmlModel or OntoObjectModel is returned is specified by the
returnsOntoObjectModel flag.

35

7. Input form into OntoUML transformation

7.2 Inner OntoUML representation

The inner OntoUML form is represented by interfaces in the OntoUml module.
Its structure is defined in this section.

7.2.1 OntoUmlModel

The entire model is encapsulated in an object of OntoUmlModel type. This
object contains three dictionaries:

• entities – all the entities in the model (instances of OntoUmlEntity,
see section 7.2.2)

• generalizationSets – all the generalization sets in the model (instances
of OntoUmlGeneralizationSet, see section 7.2.5)

• relations – all the relations between entities in the model except for
generalizations (OntoUmlRelation instances, see section 7.2.6)

All these dictionaries are keyed by the name of the items in them. Those
are considered to be unique across the model.

7.2.2 OntoUmlEntity

Each entity (a class) in the OntoUML model is described by an object of the
OntoUmlEntity type. It has the following properties:

• name – unique name of the entity

• type – OntoUML object type of the entity (e.g. Kind, Role, etc.)
specified by an OntoUmlEntityType enum value

• attributes – all the attributes of the entity (OntoUmlAttribute in-
stances, see section 7.2.3)

• generalizations – all the generalizations in the model where this entity
is a successor (OntoUmlGeneralization instances, see section 7.2.4)

7.2.3 OntoUmlAttribute

Every attribute of an entity is described by an object of the OntoUmlAttribute
type. It contains these properties:

• name – unique name of the attribute

• type – name of the domain type of the attribute

• minItems – minimal count of items in the attribute (lower bound on its
cardinality)

36

7.2. Inner OntoUML representation

• maxItems – maximal count of items in the attribute (upper bound on
its cardinality), −1 for unlimited

7.2.4 OntoUmlGeneralization

The generalization relation of an entity and its predecessor entity is represented
by the OntoUmlGeneralization type. It has two properties:

• predecessor – name of the predecessor entity

• generalizationSet – (optional) name of the generalization set this
generalization contributes to

7.2.5 OntoUmlGeneralizationSet

OntoUmlGeneralizationSet instances are used to describe all the generaliza-
tion sets in the model. Its properties are:

• name – unique name of the generalization set

• childrenNames – names of the children entities

• isComplete – flag indicating whether the generalization set is complete
(see section 2.1)

• isDisjoint – flag indicating whether the generalization set is disjoint
(see section 2.1)

7.2.6 OntoUmlRelation

Relations between entities are described by the OntoUmlRelation type. It has
several properties:

• name – unique name of the relation

• type – OntoUML relation type (e.g. Material, MemberOf, etc.) specified
by an OntoUmlRelationType enum value

• sourceEnd – source end of the relation (instance of OntoUmlRelationEnd,
see section 7.2.7)

• targetEnd – target end of the relation (instance of OntoUmlRelationEnd,
see section 7.2.7)

• isShareable, isImmutablePart, isImmutableWhole,
isEssential, isInseparable – flags indicating whether the respective
part–whole relation meta-attributes are present (see section 2.2.2)

37

7. Input form into OntoUML transformation

• allowDuplicates – flag indicating that the relation can exist multiple
time between the same instances

• derivedFrom – name of the relator this relation is derived from (see
section 2.2.1

7.2.7 OntoUmlRelationEnd

OntoUmlRelationEnd describes an end of a relation. It has properties analog-
ous to OntoUmlAttribute:

• name – unique name of the end field

• type – name of the entity this end represents

• minItems – minimal count of items in the relation end (lower bound on
its cardinality)

• maxItems – maximal count of items in the relation end (upper bound on
its cardinality), −1 for unlimited

7.3 Implementation

To illustrate the extensibility of the front-end side, two front-ends have been
implemented: OntoObjectModelFrontEnd and RefOntoUmlFrontEnd.

7.3.1 OntoObjectModelFrontEnd

OntoObjectModelFrontEnd allows to parse OntoObjectModel serialized to
JSON and bypasses the core transformation. It is useful for debugging the
final code generation and as such was the first front-end I implemented to test
the technologies and techniques I used in those stages of transformation. It
is extremely simple – it just reads the file specified, validates that the file is
a valid OntoObjectModel using JSON Schema and the tv4 package, calls the
internal JSON.parse method and returns a promise to the result.

7.3.2 RefOntoUmlFrontEnd

RefOntoUmlFrontEnd parses RefOntoUml files from OLED (see section 5.2)
and returns promise to an OntoUmlModel. Upon closer inspection we can
see that the RefOntoUml file structure is very similar to the OntoUmlModel
structure. This in fact was one of the reasons I chose RefOntoUml (the other
one being that OLED is one of the best OntoUML editors I know).

It uses the xml2js package (see section 6.2.2) to easily transform XML-
based RefOntoUml files into JavaSript objects. After the XML is parsed, the
front-end does some fairly simple transformations such as mapping the entity

38

7.3. Implementation

and relation types to enum values, converts strings to numbers or boolean
values where applicable and structures list-like XML attributes to arrays. As
the transformation is so simple, it will not be described here.

39

Chapter 8

OntoUML into
OntoObjectModel

transformation

This chapter describes the core transformation from OntoUML model into
OntoObjectModel. During this step, most of the OntoUML concepts are
translated to object model constructs. The result of this transformation can
then be used to render the output source code (see sections 9 and 10).

8.1 Purpose and interface

This transformation is designed to take OntoUML model — a CIM — as
an input (see section 7.2) and implement many of its aspects using OntoOb-
jectModel — a PIM — as a result (see section 8.2). Its interface consists of
a single method:

i n t e r f a c e IOntoUmlToOntoObjectModelMapper {
mapToOntoObjectModel : (model : OntoUmlModel) =>

OntoObjectModel ;
}

Listing 8.1: OntoUmlToOntoObjectModelMapper interface

The mapToOntoObjectModel method takes an OntoUmlModel instance as
its only argument and returns an OntoObjectModel instance. All the under-
lying transformations are hidden in the OntoUmlToOntoObjectModelMapper

instance.

41

8. OntoUML into OntoObjectModel transformation

8.2 Object Model representation

This section covers the Object Model representation – OntoObjectModel. It is
a JSON format that can be validated using JSON Schema.

8.2.1 OntoObjectModel

The whole OntoObjectModel is represented by an instance of the eponymous
type. It has the following properties:

• classes – all the classes in the model, also covering the inheritance
structure (ClassInfo instances, see section 8.2.2)

• relations – all the relations between the classes, except for inheritance
(RelationInfo instances, see section 8.2.7)

8.2.2 ClassInfo

Every class in the OntoObjectModel is represented by an instance of ClassInfo
type. The suffix Info was used to avoid confusion between the name Class

and the class keyword in TypeScript (and many other languages). Therefore
all the types in OntoObjectModel have this suffix for the naming to remain
consistent. Its properties are listed below:

• name – unique name of the class, it is used as an identifier of the class in
other properties (e.g. superClass property, see below)

• attributes – all the attributes of the class (AttributeInfo instances,
see section 8.2.3)

• methods – all the methods of the class (MethodInfo instances, see sec-
tion 8.2.5)

• superClass – (optional) name of the super-class of this class, see sec-
tion 8.3.2.2 for more

• unionClasses – (optional) names of the classes this class is an union of,
see section 8.3.2.2 for more

• implementing – (optional) names of the interfaces this class implements,
see sections 8.3.4 and 8.3.8 for usage

• isAbstract – (optional) flag indicating the class should not be instanti-
ated directly

• isInterface – (optional) flag indicating this class represents an interface
i.e. has no method bodies

42

8.2. Object Model representation

• existentiallyDependentOn – (optional) name of the class the given
class is existentially dependent on, see section 8.3.6 for more

The presence of the methods property may seem surprising as OntoUML
does not support definition of methods. However, I wanted to take all the
object model aspects into account, so methods are included and supported in
the mappings (this can be tried by using the OntoObjectModelFrontEnd, see
section 7.3.1).

8.2.3 AttributeInfo

Each attribute can be described using instances of AttributeInfo type. This
type has the following properties:

• name – name of the attribute unique across the attributes of the same
class

• typeInfo – (optional) information about the attribute type (TypeInfo
instance, see section 8.2.4)

• minItems – (optional) minimal count of items in the attribute, defaults
to 0

• maxItems – (optional) maximal count of items in the attribute, −1 for
unlimited, defaults to 1

8.2.4 TypeInfo

Information about the type of an attribute or a method parameter is encapsu-
lated into instances of the TypeInfo type. Its properties are as follows:

• name – name of the domain primitive type or a class in the model

• isReference – flag indicating the name field denotes a class this type,
not a domain primitive type name

8.2.5 MethodInfo

Method signatures are described by MethodInfo instances 6. They have these
properties:

• name – name of the method

• parameters – (optional) description of all the method’s parameters
(ParameterInfo instances, see section 8.2.6)

6We are not concerned with method bodies here as they cannot be represented in platform
independent way easily.

43

8. OntoUML into OntoObjectModel transformation

• typeInfo – (optional) the return type of the method (a TypeInfo in-
stance, see section 8.2.4)

8.2.6 ParameterInfo

Method parameters are defined using instances of ParameterInfo type. It has
three properties:

• name – name of the parameter,

• typeInfo – (optional) information about the parameter’s type (TypeInfo
instance, see section 8.2.4)

• isCollection – flag indicating the argument represents a collection of
items

8.2.7 RelationInfo and RelationEndInfo

Relations and relation ends are represented in a very similar way as in On-
toUmlModel (see sections 7.2.6 and 7.2.7) to convey the as much semantics
as possible. There are only two differences: RelationInfo does not have the
relation type and adds one attribute:

• isPartInitializedWithWhole – flag indicating that the part instance
should be initialized at the same time as the whole (typically in the
whole’s constructor)

8.3 Implementation

This section covers the transformation from OntoUmlModel into OntoObject-
Model (see sections 7.2.1 and 8.2.1 respectively). For clarity, the transform-
ations are divided into thematically related subsections. The order of the
transformation is as follows:

1. Basic mapping – creates a class for every entity and sets its attributes,
super-class and union classes (see section 8.3.2)

2. Aspect mapping – handles the existential dependency property of aspect
types (see section 8.3.6)

3. Overlapping inheritance mapping – creates the classes that are the result
of overlapping generalization sets (see section 8.3.3)

4. Phase partitions mapping – creates auxiliary interfaces for each Phase
partition and connects the Phases to their owner (see section 8.3.4)

5. Role mapping – connects all the Roles to their owners (see section 8.3.5)

44

8.3. Implementation

6. Association-like relations mapping – maps the relations of certain types
to their simplified versions (see section 8.3.7)

7. Special relations mapping – processes the SubQuantityOf, SubCollec-
tionOf and MemberOf relations in a way that is similar to Phase partition
mapping (see section 8.3.8)

8.3.1 Pseudocode notation

Pseudocode syntax used to describe the algorithms in this chapter and chapter 9
is loosely based on C syntax but is indentation based. The individual aspects
are described below.

• procedure is used to denote a routine that does not return a value,
function is for routines that do.

• The if-then-else and while-do constructs have the same semantics
as in C or JavaScript.

• The for all x ∈ y do construct iterates over the y collection and uses
x to refer to the currently processed element.

• The ‘←’ symbol denotes assignment, all other logical and mathematical
symbols retain their usual semantics.

• Curly braces are used to denote object literals, dots are used to access
object attributes, null denotes a null reference.

• Square brackets are used to access collection members, [] means empty
collection literal. Every collection has a push method used to add its
argument to the end of the collection.

8.3.2 Basic mapping

Every entity in the OntoUmlModel is iterated over with the basic mapping.
This creates a ClassInfo instance for every OntoUmlEntity instance in the
model. The steps are:

1. The target’s name is copied from the name property of the source

2. The primitive attributes are mapped, see section 8.3.2.1

3. Inheritance is mapped, see section 8.3.2.2

8.3.2.1 Attribute mapping

Primitive attribute mapping is straight-forward (see Algorithm 1). Most of
the properties are copied and the type is wrapped into a TypeInfo instance
with the isReference flag set accordingly.

45

8. OntoUML into OntoObjectModel transformation

Algorithm 1 Attribute mapping

1: function mapAttribute(attribute)
2: return {
3: name← attribute.name,
4: minItems← attribute.minItems,
5: maxItems← attribute.maxItems
6: typeInfo← {name← attribute.type, isReference← ⊥}
7: }

8.3.2.2 Inheritance mapping

To understand inheritance mapping, we need to discuss the difference between
superClass and unionClasses properties of ClassInfo. The superClass

property contains the name of the class this class inherits its identity from (see
section 2.1) and there can be at most one. In the unionClasses the names of
classes that the current class is an union of. This happens for example when
creating classes that are the result of overlapping inheritance. The reason
those two properties are not merged into one is that many OO languages do
not allow multiple inheritance and so it is important to distinguish the ‘true’
super class from which the class should inherit. The algorithm to find the
superClass and unionClasses is shown in Algorithm 2.

Algorithm 2 Getting the superClass and unionClasses

1: function getSuperClass(element)
2: if element.generalizations is empty then return null

3: candidates← getPredecessorsFrom(element.generalizations)
4: return findV alidSuperClass(candidates, entity.type)

5: function getUnionClasses(element, superClass)
6: if element.generalizations is empty then return []

7: candidates← getPredecessorsFrom(element.generalizations)
8: return all c’s such that c ∈ candidates ∧ ¬(c = superClass
9: ∨isIdentityProvider(c))

The getPredecessorsFrom function projects the generalizations array to
the predecessor property. The findValidSuperClass function filters the list
of candidate predecessors according to the allowed type. These are shown in
Table 8.1. For types not in the table the superClass is always null as those
inheritances are handled in different ways. The isIdentityProvider function
returns true if its argument is of type that provides identity – Kind, Subkind,
Quantity or Collective (see section 2.1). Identity providers are excluded in the
getUnionClasses function as they should be inherited via superClass.

46

8.3. Implementation

Table 8.1: Valid super class types

Class type Valid super class types

Subkind Kind, Subkind

Role Role

Phase Phase

8.3.3 Overlapping inheritance mapping

When a generalization set is not marked as disjoint, there are classes needed
for every combination of the subclasses (for distinction I will call them atomic
subclasses). As the atomic subclasses are taken care of in another step (see
section 8.3.2.2), this step handles only the classes that need to be created from
the combinations (I call them overlapping classes). The algorithm is listed in
Algorithm 3.

Algorithm 3 Generating overlapping classes

1: procedure createOverlappingClasses(generalizationSet)
2: if ¬generalizationSet.isDisjoint then return

3: children← getChildrenNames(generalizationSet)
4: combinations← getAllCombinations(children)
5: for all combination ∈ combinations do
6: names← getNames(combination)
7: addClass({
8: name← concatAll(names),
9: superClass← getSuperClass(combination[0]),

10: unionClasses← names
11: })

The getChildrenNames returns an array of all the children classes’ names
for a specified OntoUmlGeneralizationSet. The getAllCombinations returns
all the combinations of the provided elements that have at least two members,
the return form is an array of arrays. The concatAll function concatenates
an array of strings passed to it into a single string. The getSuperClass function
is the same as in Algorithm 2, here it is called with the first member of the
combination (as all the members have the same superclass, it does not matter
which one we use to determine the superclass of the overlapping class). The
addClass function adds a new class to the mapping results.

8.3.4 Phase mapping

Because all the entities are mapped to classes by now, the mapping of phase
partitions (see section 2.1.2) is realised altering the existing classes by these
three steps:

47

8. OntoUML into OntoObjectModel transformation

1. adding an interface class for the phase partition

2. declaring that all the phase classes from the partition implement that
interface

3. adding a relation between the class that can be in those phases and the
partition interface

The relation is created in such a way, that Phase cannot separate itself from
the owner and the owner must be initialized with a Phase. The process can
be seen in Algorithm 4. There is an important precondition on the procedure
– the generalization set must be disjoint and complete, otherwise it cannot
represent a Phase partition and so calling this procedure is nonsensical.

Algorithm 4 Mapping of Phase partitions

Require: generalizationSet.isDisjoint ∧ generalizationSet.isComplete
1: procedure mapPhasePartition(generalizationSet)
2: children← getChildren(generalizationSet)
3: if any of children is not a Phase then return

. All of the children in Phase partitions must be Phases
4: ownerClass← getParent(generalizationSet)
5: partitionName← generalizationSet.name
6: addClass({name← partitionName, isInterface← >}) . Step 1:

add the interface
7: for all phase ∈ children do
8: phaseClass← getClass(phase)
9: phaseClass.implementing.push(partitionName)

. Step 2: declare that Phase classes implement the interface
10: addRelation({
11: name← partitionName,
12: isInseparable← >,
13: isPartInitializedWithWhole← >,
14: sourceEnd← {
15: className← ownerClass.name,
16: name← ownerClass.name,
17: maxItems← 1,minItems← 1
18: },
19: targetEnd← {
20: className← partitionName,
21: name← partitionName,
22: maxItems← 1,minItems← 1
23: }
24: }) . Step 3: add the relation between owner and partition

The getChildren function returns all the child entities for a given instance
of OntoUmlGeneralizationSet. The getParent function returns the parent

48

8.3. Implementation

entity for a given OntoUmlGeneralizationSet. The getClass function returns
the already mapped class that corresponds to the argument passed. The
addClass function is the same as in section 8.3.3. The addRelation function
adds a new relation to the mapping results.

8.3.5 Role mapping

Mapping of roles is very simple – as all the classes are mapped elsewhere, the
only thing left to do is to add the relation between the class that plays the
given role and the role itself. This approach is described in [21]. The relation
is marked with the isInseparable flag, because when a role is separated
from its owner it does not make sense anymore. The algorithm is shown in
Algorithm 5.

Algorithm 5 Mapping of Roles

1: procedure mapRole(role)
2: ownerClass← getV alidRoleOwnerClass(role)
3: addRelation({
4: name← partitionName,
5: isInseparable← >, allowDuplicates← >,
6: sourceEnd← {
7: className← ownerClass.name,
8: name← ownerClass.name,
9: maxItems← 1,minItems← 1

10: },
11: targetEnd← {
12: className← role.name,
13: name← role.name + ”Role”,
14: maxItems← −1,minItems← 0
15: }
16: })

The getValidRoleOwnerClass iterates over its argument’s generalizations
and finds an ancestor that is a type that can play a role – Kind, Subkind,
Quantity, Collective, Relator, Quality, Mode, Phase [65]. I excluded RoleMixin,
because generalization between RoleMixin and Role does not mean that Role-
Mixin can play the Role. Also I set the upper bound of the roles collection to
unlimited as there is no way to limit the number of roles an entity can play in
OntoUML. The addRelation function is the same as in section 8.3.4.

8.3.6 Aspect mapping

The aspect types are existentially dependent on other types (see section 2.1.4
and we need to preserve this information in the class that represents the aspect.

49

8. OntoUML into OntoObjectModel transformation

The problem is that an aspect can be existentially dependent on another aspect
and there we do not know which one is existentially dependent on the other
just from the characterization relation. Therefore all the aspects in the model
are processed at once by algoritm described in Algorithm 6.

The main idea is that every characterization hierarchy must form a tree
with an identity provider in its root and every node in the tree is existentially
dependent on its parent. Therefore the algorithm tries to find a non-aspect
entity related to each aspect and if it finds one, it sets it as the existential
dependency on the aspect. Otherwise, it tries to find a related aspect, that
already has its dependency set (meaning it is closer to the root) and again if it
finds one, it sets it as the dependency. If no dependency is found, the entity is
pushed to the end of the processing queue in hopes that the other time around
some of its related aspects will have been resolved and therefore will be able to
be used as a dependency. This can be repeated at most the number of aspect
types to the power of two times, as every time the whole queue is processed,
at least one of the items in it must have been processed (either because it has
a non-aspect related to itself, or one of its relatives has been resolved in the
previous round). This limit is enforced to prevent infinite loops for invalid
models.

The Queue and its methods behave like the standard ‘first-in-first-out’
queue. The getCharacterizations function return all the characterization
relations in the model, that contain the entity provided. The getClass is
the same as described in Algorithm 4. The getOtherClass function returns
the already mapped class that corresponds to the entity other than the one
provided in the relation provided. The findNonAspect returns a class of non
aspect type in the collection provided. The findResolvedAspect returns a class
of aspect type that has its existential dependency already set from the collection
provided.

8.3.7 Association-like relations relations mapping

Most of the relation types are mapped using associations. This means they
are copied as is to the OntoObjectModel to retain as much of the OntoUML
semantics as possible to allow for their implementation in the target language
to be adapted in the later stages. The relation types mapped this way are:
Material, Mediation, Association, Characterization and ComponentOf.

8.3.8 SubQuantityOf, SubCollectionOf and MemberOf
relations mapping

SubQuantityOf, SubCollectionOf and MemberOf relations are handled in the
same way that is different form other relations (see section 8.3.7 for those).
To a certain extent, this mapping is similar to the mapping of Phases (see
section 8.3.4), the algorithm is listed in Algorithm 7.

50

8.3. Implementation

Algorithm 6 Determinig existential dependencies

1: procedure processExistentialDependencies(model)
2: queue← new Queue()
3: for all entity ∈ model that is an aspect type do
4: characterizations← getCharacterizations(entity,model)
5: entityClass← getClass(entity)
6: related← []
7: for all ch ∈ characterizations do
8: related.push(getOtherClass(ch, entity))

9: queue.enqueue({class← entityClass, related← related})
10: limit← (queue.length)2

11: while !queue.empty ∧ limit > 0 do
12: current← queue.front; queue.dequeue()
13: dependency ← findNonAspect(current.related)
14: if dependency is not null then
15: setDependecy(currentClass, dependency)
16: else
17: dependency ← findResolvedAspect(current.related)
18: if dependency is not null then
19: setDependecy(currentClass, dependency)
20: else
21: queue.enqueue(current)

22: limit← limit− 1

23: if queue.length > 0 then
24: error(”Invalid aspects in model.”)

The cardinality has to be set to many to many as I could not come up with
a way to handle situations when different members (and sub-quantities and
sub-collections) have different cardinality of their relations to the same owner.
To allow for all the variants, the cardinality is set as broad as possible.

The getClass, addClass and addRelation functions are the same as described
in see section 8.3.4.

51

8. OntoUML into OntoObjectModel transformation

Algorithm 7 Mapping of SubQuantityOf, SubCollectionOf and MemberOf

1: procedure mapRelation(type, interfaceSuffix, attributeSuffix)
2: groups← group all relations of type type in model by their source end

entity
3: for all (relations, source) ∈ groups do
4: if length of relations > 1 then . add interface if needed
5: targetTypeName← source + interfaceSuffix
6: addClass({
7: name← targetTypeName,
8: isInterface← >,
9: })

10: for all relation ∈ relations do
11: targetClass← getClass(relation)
12: targetClass.implementing.push(targetTypeName)

. declare subitems implement the interface
13: else
14: targetTypeName← relations[0].targetEnd.type

15: ownerClass← getClass(source)
16: addRelation({
17: name← partitionName,
18: isInseparable← >, allowDuplicates← >,
19: sourceEnd← {
20: className← ownerClass.name,
21: name← ownerClass.name,
22: maxItems← −1,minItems← 0
23: },
24: targetEnd← {
25: className← targetTypeName,
26: name← targetTypeName,
27: maxItems← −1,minItems← 0
28: }
29: })

52

Chapter 9

OntoObjectModel into target
language view model

transformation

This chapter covers the transformation from OntoObjectModel as a PIM into
the target language’s view model – a PSM. We will discuss the purpose and
interface first and then the implementation for C# will be described.

9.1 Purpose and interface

As stated before, the purpose of this transformation is to transform OntoOb-
jectModel into target language’s view model which is then to be rendered by
a renderer (see chapter 10). Its interface is simple:

i n t e r f a c e ILanguageMapper {
modelToViewModel : (

model : OntoObjectModel ,
opt i ons : IOptions

) => Q. Promise<any>;
}

Listing 9.1: ILanguageMapper interface

The single method takes the OntoObjectModel and application options
(see section 6.3.3) and returns a Promise to the resulting view model.

9.2 Primitive type mapping

For typed languages, ILanguageMapper can also perform mapping from domain
types used in OntoObjectModel (e.g. money) to platform specific types (e.g.
decimal in C#). This is made possible by the typeMapping application

53

9. OntoObjectModel into view model transformation

parameter (see section 6.3.3). If specified, it should point to a JSON file
with the mapping. Its structure is simple, just key–value pairs of domain
type–platform type. This file is validated using a JSON Schema. If a type is
not found in the mapping file, it is copied as is to the result.

9.3 C# view model representation

This section covers the C# view model that is used in rendering (see sec-
tion 10.2). It extends OntoObjectModel with various platform specific attrib-
utes needed in rendering. Each of the added attribute will be linked with the
corresponding rendering part to illustrate its purpose. Some of the properties
introduced could be inferred from other properties, however the templating
engine may not support complex conditions so these ‘redundant’ properties
are added to facilitate the rendering.

9.3.1 ModelViewModel

The whole model is represented by an instance of ModelViewModel. It has
two properties:

• classes – all the classes in the model, also covering all the relations
among them (ClassViewModel instnaces, see section 9.3.2)

• namespace – name of the namespace the generated classes should be in
(see section 4.4)

As opposed to OntoObjectModel, relations are described inside classes, not
on the root level (see section 8.2.7).

9.3.2 ClassViewModel

Every class is represented by instances of ClassViewModel. It has the following
properties:

• name, isInterface, existentiallyDependentOn – these are analogous
to their ClassInfo counterparts (see section 8.2.2)

• superClass, unionClasses, implementing – also analogous to their
ClassInfo counterparts, only difference being they contain reference to
the corresponding view model(s), not the name

• isOverlapping – flag indicating the class originated as a result of over-
lapping inheritance (see section 8.3.3 for definition and section 10.2.9 for
usage)

54

9.3. C# view model representation

• props – all the public properties of the class (PropertyViewModel in-
stances, see section 9.3.3), for usage, see section 10.2.5

• methods – all the public methods of the class (MethodViewModel in-
stances, see section 9.3.5), for usage, see section 10.2.4

• ctor – constructor information (instance of CtorViewModel, see sec-
tion 9.3.7), this is used for example while handling essential relations,
see section 10.2.7

• interfaceExtends – names of the interfaces the class’ interface extends
(see section 10.2.2)

• classExtends – names of the classes or interfaces the class extends (see
section 10.2.2)

• relations – information about all the relations this class is a part of
(RelationViewModel instances, see section 9.3.8)

• derivedRelations – information about all the derived relations this class
is a part of (DerivedRelationViewModel instances, see section 9.3.9),
see section 10.2.8 for usage

Note that the isAbstract flag is missing. The reason for this is that due to
the way multiple inheritance is implemented (via composition), it is sometimes
necessary to instantiate classes marked as abstract, so this flag is ignored
altogether (see section 10.2.2 for details).

9.3.3 PropertyViewModel

In C# attributes are modelled using properties (see section 4.2), and so every
attribute of a class is represented by a PropertyViewModel instance. Its
properties are:

• name – name of the property

• minItems – minimal count of items in the property

• maxItems – maximal count of items in the property (null for unlimited)

• typeInfo – information about the type of the property (instance of
TypeInfoViewModel, see section 9.3.4)

• isCollection – flag indicating the property represents a collection of
items

• hasConstraints – flag indicating the has at least one constraint on the
count of the items it stores

55

9. OntoObjectModel into view model transformation

9.3.4 TypeInfoViewModel

Instances of TypeInfoViewModel store information about types of properties
or method arguments. It is very similar to TypeInfo (see section 8.2.4), it
only adds two properties:

• isInterface – flag indicating the type should reference its type by its
interface (see section 10.2.2)

• shouldMakeNullable – flag indicating that the type represents a value
type and should be made nullable (see section 4.1 for definition of nullable
and section 9.4.2 for usage)

9.3.5 MethodViewModel

There is nothing to add when describing methods in C#, the MethodViewModel
is therefore very close to MethodInfo (see section 8.2.5), the only difference
being the reference properties refer to view model types (TypeInfoViewModel
and ParameterViewModel, see section 9.3.6).

9.3.6 ParameterViewModel

As with MethodViewModel, ParameterViewModel is similar to ParameterInfo,
see section 8.2.6, the typeInfo understandably references to an instance of
TypeInfoViewModel.

9.3.7 CtorViewModel

Constructors are described using instances of CtorViewModel. It has these
properties:

• parameters – every parameter of the constructor (ParameterViewModel
instances, see section 9.3.6)

• relations – mapping between parameter name and the relation it
initializes, see section 10.2.7

• parentParameterNames – names of the parameters (included in the
parameters property), that should be used to initialize the parent class
(see section 4.3 for details and section 10.2.7 for usage)

9.3.8 RelationViewModel

RelationViewModel is used to represent a relation a given class is a member
of. All the properties are listed below:

56

9.3. C# view model representation

• name, allowDuplicates – analogous to their RelationInfo counterparts
(see section 8.2.7)

• type – information about the type of the relation (1:1, 1:N or M:N)

• isSource – flag indicating the given class is at the source end of the
relation (e.g. the ‘1’ in 1:N)

• sourceClassName, targetClassName – names of the source and target
classes respectively

• hasSet – flag indicating the given class can add members of the relation

• hasUnset – flag indicating the given class can remove members of the
relation

• minItems – minimal count of items in the relation

• maxItems – maximal count of items in the relation (null for unlimited)

• hasConstraints – flag indicating the has at least one constraint on the
count of the items that can be in this relation end

• shouldRenderField – flag indicating the given class should render the
field backing the relation, see section 10.2.6

• shouldInvalidateOnRemove – flag indicating the given class should
invalidate the items when they are unset or removed, see section 10.2.10

It also contains several ‘redundant’ properties to facilitate rendering:

• isOneToOne, isOneToMany and isManyToMany – denormalized informa-
tion about relation type (see section 10.2.6)

• otherClassName – name of the class that is not the given class (i.e.
targetClassName if isSource is true)

9.3.9 DerivedRelationViewModel

DerivedRelationViewModel instances provide all the properties needed to
render a derived relation (see section 10.2.8):

• name – name of the derived relation

• relatorName – name of the relator the relation is derived from

• otherClassName – name of the class of the results of the derived relation

• otherItemName – name of the field in the class that points to the results
of the derived relation

57

9. OntoObjectModel into view model transformation

• relatorOtherItemName – name of the field in the relator that points to
the resulting instances of this derived relation

There are also some ‘redundant’ properties to facilitate rendering:

• isManyRelators – flag indicating there can be more than one instance
of the relator associated to the class

• isManyOthers – flag indicating there can be more than one instance of
the other class associated to the relator

• isManyResults – flag indicating there can be more than one result of
the relation

9.4 Implementation

This section describes the C# language mapper that was implemented to
provide input to the C# renderer (see section 10.2). The notation used here is
described in section 8.3.1.

9.4.1 Basic mapping

The overall order of the mapping is as follows:

1. Model for ICanValidate is added (see section 10.2.10).

2. Every class is mapped using the mapClass function (see section 9.4.5).

3. Every non-derived relation is mapped using the mapRelation function
(see section 9.4.6)

4. Every derived relation is mapped using the mapDerivedRelation function
(see section 9.4.7)

5. All the classes’ constructors are updated using the updateCtorParameters
function (see section 9.4.8)

All the mapping algorithms are described in the following sections. The
order is chosen so that the mappings used in other mappings are described
first.

58

9.4. Implementation

Algorithm 8 Mapping of TypeInfo to TypeInfoViewModel

1: function mapTypeInfo(typeInfo, checkNullable)
2: name← tryMapPrimitiveType(typeInfo.name)
3: result← {
4: name← name,
5: isInterface← ⊥, isReference← typeInfo.isReference,
6: shouldMakeNullable← checkNullable ∧ isV alueType(name)
7: }
8: if typeInfo.isReference then
9: ref ← getClassInfo(typeInfo.name)

10: result.name← ref.name
11: result.isInterface← ref.isInterface
12: result.shouldMakeNullable← ⊥
13: return result

9.4.2 TypeInfo mapping

As the TypeInfoViewModel is very similar to TypeInfo (see section 9.3.4) the
mapping is straight forward, it is listed in algorithm 8.

The tryMapPrimitiveType performs the primitive type mapping (see sec-
tion 9.2), the getClassInfo function returns a ClassInfo instance with the
name specified. The function isValueType returns true if the type name
provided to it represents a C# value type and therefore should be made nul-
lable (see section 4.1) to be able to distinguish for example between 0 and
not set values for int property. These types are considered to be value types:
bool, byte, char, decimal, double, float, int, long, sbyte, short, uint,
ulong, ushort (adapted from [66]).

9.4.3 Method mapping

Methods are mapped very simply by copying all the attributes from the
MethodInfo instance, performing type mapping described in section 9.4.2 on
the return type and all the parameters’ types without checking for nullable
types. There is no added logic or properties.

9.4.4 Property mapping

Mapping of properties from AttributeInfo instances is simple (algorithm 9).
It copies the properties, performs primitive type mapping (mapTypeInfo func-
tion) as described in section 9.4.2 checking for nullable types and computes
the auxilliary flags.

59

9. OntoObjectModel into view model transformation

Algorithm 9 Mapping of AttributeInfo to PropertyViewModel

1: function getMaxItems(n)
2: if n > 0 then
3: return n
4: else
5: return null
6: function mapAttribute(attr)
7: return {
8: name← attr.name,
9: typeInfo← mapTypeInfo(attr.type),

10: minItems← attr.minItems,
11: maxItems← getMaxItems(attr.maxItems),
12: isCollection← attr.minItems > 1 ∨ attr.maxItems > 1
13: ∨attr.maxItems < 0,
14: hasConstraints← attr.minItems > 1 ∨ attr.maxItems > 1
15: }

9.4.5 Class mapping

Classes are mapped using the recursive function described in algorithm 10. It
memoizes the results to be effective.

Algorithm 10 Mapping of ClassInfo to ClassViewModel

1: function mapClass(c)
2: if isMapped(c) then
3: return getMappedClass(c)

4: return {
5: name← c.name,
6: isInterface← c.isInterface,
7: isOverlapping ← length of c.unionClasses > 0,
8: existentiallyDependentOn← c.existentiallyDependentOn
9: methods← mapMethods(c)

10: props← mapAttributes(c)
11: superClass← mapClass(c.superClass)
12: unionClasses← mapClasses(c.unionClasses)
13: implementing ← mapClasses(c.implementing)
14: classExtends← getClassExtends(c)
15: interfaceExtends← getInterfaceExtends(c)
16: }

The isMapped function determines if the argument passed to it has already
been mapped and getMappedClass returns the result of that mapping (these
perform the memoization). The mapMethods function maps mapMethod from

60

9.4. Implementation

section 9.4.3 on the array provided and similarly mapAttributes maps the
mapAttribute from section 9.4.3 and so does mapClasses with the mapClass
described here.

The getClassExtends function returns an array of names of the items the
mapped class should extend:

• own interface (see section 10.2.2)

• the super class

Analogously, the getInterfaceExtends function returns an array of names of
items the mapped class’ interface should extend (see section 10.2.2 for why
there are both class and interface):

• the ICanValidate interface (see section 10.2.10)

• the super class interface (unless the class is overlapping)

• all the items from unionClasses

• all the items from implementing

9.4.6 Relation mapping

Non-derived relations are iterated over and added to the classes they are
related to (for derived relations mapping see section 9.4.6). The procedure
is listed in algorithm 11. It calculates various flags that apply to each end
of the relation and are used when rendering. Also if the relation is essential,
the constructor of the source class (i.e. the whole class) is updated to ensure
the essential part is initialized upon creation. The reason source and target
ends are treated differently is mainly caused by the fact that in essential and
inseparable relations, the whole is always the source.

The getRelationType function returns the relation type (1:1, 1:N or M:N).
The getMappedClass function is the one described in algorithm 10, mapTypeInfo
is defined in algorithm 8 and getMaxItems is the same as in algorithm 9.

9.4.7 Derived relation mapping

Derived relations must be mapped after the regular ones (see section 9.4.6)
as the mapping uses the already mapped relations. The procedures needed
are listed in algorithm 12. They basically copy the correct attributes to the
properties needed by rendering (see section 10.2.8).

The mapDerivedRelationEnd function returns a mapped end with computed
auxiliary flags. It is then used by the mapDerivedRelation procedure that uses
it to map both source ans target ends of the relation. The getRelationFrom
returns a relation that connects the relator and the class provided. The
getMappedClass function is the one described in algorithm 10.

61

9. OntoObjectModel into view model transformation

Algorithm 11 Mapping of RelationInfo to ClassViewModels

Require: In case of 1:N relation, the source end is poniting to the ‘1’ end
1: procedure mapRelation(r)
2: relationType← getRelationType(r)
3: sourceClass← getMappedClass(r.sourceEnd.className)
4: targetClass← getMappedClass(r.targetEnd.className)
5: isEssentialOrInseparable← r.isEssential or r.isInseparable
6: isSourceAspect← sourceClass.existentiallyDependentOn is not null
7: isTargetAspect← targetClass.existentiallyDependentOn is not null
8: hasSourceSet← (¬r.isEssential)
9: ∧¬(isSourceAspect ∧ ¬isTargetAspect)

10: hasTargetSet← ¬isEssentialOrInseparable ∧ ¬isTargetAspect
11: sourceRelation← {
12: name← r.name,
13: type← relationType,
14: isOneToOne← relationType = ONE TO ONE,
15: isOneToMany ← relationType = ONE TO MANY,
16: isManyToMany ← relationType = MANY TO MANY,
17: allowDuplicates← r.allowDuplicates,
18: isSource← >,
19: sourceClassName← sourceClass.name
20: targetClassName← targetClass.name
21: otherClassName← targetClass.name
22: otherItemName← r.targetEnd.name or targetClass.name
23: hasSet← hasSourceSet
24: hasUnset← hasSourceSet
25: ∧¬(r.targetEnd.minItems = r.targetEnd.maxItems = 1)
26: minItems← r.targetEnd.minItems
27: maxItems← getMaxItems(r.targetEnd.maxItems)
28: shouldRenderF ield← >,
29: shouldInvalidateOnRemove←
30: targetClass.existentiallyDependentOn = sourceClass.name
31: }
32: sourceClass.relations.push(sourceRelation) . add to source class

62

9.4. Implementation

33: targetRelation← {
34: name← r.name,
35: type← relationType,
36: isOneToOne← relationType = ONE TO ONE,
37: isOneToMany ← relationType = ONE TO MANY,
38: isManyToMany ← relationType = MANY TO MANY,
39: allowDuplicates← r.allowDuplicates,
40: isSource← ⊥,
41: sourceClassName← sourceClass.name
42: targetClassName← targetClass.name
43: otherClassName← sourceClass.name
44: otherItemName← r.sourceEnd.name or sourceClass.name
45: hasSet← hasTargetSet
46: hasUnset← hasTargetSet
47: ∧¬(r.sourceEnd.minItems = r.sourceEnd.maxItems = 1)
48: minItems← r.sourceEnd.minItems
49: maxItems← getMaxItems(r.sourceEnd.maxItems)
50: shouldRenderF ield← sourceClass.name 6= targetClass.name,
51: shouldInvalidateOnRemove←
52: sourceClass.existentiallyDependentOn = targetClass.name
53: }
54: targetClass.relations.push(targetRelation) . add to target class
55: if r.isEssential ∨ r.isPartInitializedWithWhole then
56: sourceClass.ctor.parameters.push({
57: name← r.targetEnd.name
58: typeInfo← mapTypeInfo({
59: name← targetClass.name, isReference← >
60: })
61: isCollection← r.targetEnd.maxItems > 1
62: ∨r.targetEnd.maxItems < 0
63: })
64: sourceClass.ctor.relations.push({
65: parameterName← r.targetEnd.name
66: relation← targetRelation
67: })

. add ctor parameter and relation for essential relations

63

9. OntoObjectModel into view model transformation

Algorithm 12 Mapping of DerivedRelationViewModel

1: function mapDerivedRelationEnd(r, rToThis, rToOther, otherEnd,
relator)

2: result← {
3: name← r.name,
4: relatorName← relator.isInterface,
5: otherClassName← otherEnd.className,
6: otherItemName← otherEnd.name,
7: relatorOtherItemName← relationToOther.otherItemName,
8: isManyRelators← rToThis.isManyToMany
9: ∨(rToThis.isOneToMany ∧ ¬rToThis.isSource)

10: isManyOthers← rToOther.isManyToMany
11: ∨(rToOther.isOneToMany ∧ rToOther.isSource)
12: }
13: result.isManyResults← result.isManyRelators
14: ∨result.isManyOthers
15: return result
16: procedure mapDerivedRelation(r)
17: relator ← getMappedClass(r.derivedFrom)
18: rToSource← getRelationFrom(relator, r.sourceEnd.className)
19: rToTarget← getRelationFrom(relator, r.targetEnd.className)
20: source← getMappedClass(r.sourceEnd.className)
21: target← getMappedClass(r.targetEnd.className)
22: source.derivedRelations.push(
23: mapDerivedRelationEnd(r, rToSource, rToTarget,
24: r.TargetEnd, relator))
25: target.derivedRelations.push(
26: mapDerivedRelationEnd(r, rToTarget, rToSource,
27: r.SourceEnd, relator))

64

9.4. Implementation

9.4.8 Constructor mapping

The constructor parameters can be modified from various places – e.g. when
mapping an essential relation (see algorithm 11). The procedure listed in
algorithm 13 ensures that classes derived from classes with constructor para-
meters have those constructor parameters added as well. It iterates over the
superClass’ constructor parameters and adds it to the current class constructor
parameters and similarly for each of the union classes.

Algorithm 13 Updating the constructor parameters

1: procedure updateCtorParameters(c)
2: for all p ∈ c.superClass.ctor.parameters do
3: c.ctor.parentParameterNames.push(p.name)
4: c.ctor.parameters.pushUnique(p)

5: for all uc ∈ c.unionClasses do
6: for all p ∈ uc.ctor.parameters do
7: c.ctor.parameters.pushUnique(p)

The pushUnique method pushes an item to an array unless it is already
contained in the array.

65

Chapter 10

Target language view model
rendering

In this chapter, the process of rendering the target language source code is
described. First the interface and purpose of the renderers is explained and
then the C# renderer is introduced in detail.

10.1 Purpose and interface

Renderer is responsible for the transformation of a view model into the target
language source code file/files. It may be implemented in various ways as long
as it implements this interface:

i n t e r f a c e ILanguageRenderer {
generateCode : (model : any , opt ions : IOptions)

=> Q. Promise<any>;
}

Listing 10.1: ILanguageRenderer interface

The interface consists of a single method that takes a view model (that can
be of any type) and in instance of application options (see section 6.3.3) and
returns a Promise to all the operations it needs to perform (typically writing
to disk).

10.2 Implementation

This section describes the C# language renderer that was implemented (using
the handlebars template engine, see section 6.2.2) to illustrate the viability
of the solution presented in this thesis. The handling of various concerns will
be covered in the following text.

67

10. Target language view model rendering

10.2.1 Note on template notation

Rendering templates will be listed in the following form:

• variable.property – the value of property will be output

• monospace text – this will be output as is

• italics text – this denotes a call to another template the result of which
will be output

• 〈text in angle brackets〉x – this will be output if the condition x is satisfied

• 〈text in angle brackets〉∗1 – this will be output if the condition explained
under the listing using the specified number is satisfied

• J(member of collection): content K – for every member of the collection
the content will be output

• // text – this is a comment stating the template name and parameter

To see it in an example:

// templateName (parameterName : parameterType)
always〈conditionally〉parameterName.property>2

anotherTemplate(itsParameter) parameterName . property

Listing 10.2: Rendering template example

The content in the angle brackets will be rendered if the value specified by
parameterName.property is greater than 2. There are also some utility string
functions used throughout this chapter:

• s.lowerCamel() – renders s in CamelCase with the first letter in lower
case

• s.upperCamel() – renders s in CamelCase with the first letter in upper
case

• s.upperSnake() – renders s in UPPER SNAKE CASE

• s.plural() – renders s in plural form

Also, there are a few auxiliary templates:

// minItemsConst (x : {name : s t r i n g ;})
x . name . upperSnake () MIN ITEMS

// maxItemsConst (x : {name : s t r i n g ;})
x . name . upperSnake () MAX ITEMS

// a s s o c i a t i o n F i e l d (r : RelationVeiwModel)
r . name . lowerCamel ()Association

68

10.2. Implementation

// t o V a l i d a t e F i e l d ((x : {name : s t r i n g ;})
x . name . lowerCamel ()ToValidate
// c o u n t F i e l d ((x : {name : s t r i n g ;})
x . name . lowerCamel ()Count

Listing 10.3: Render helpers

10.2.2 Basic rendering

Each entity in the model is rendered as an interface — class pair, unless
the isInterface flag is set, then the class part is omitted (see section 8.2).
The reason is that, as stated in section 4.3, C# does not allow for multiple
inheritance, but we need to maintain the ability of an entity to inherit from
multiple other entities. The solution for this is that instead of inheritance,
the derived classes inherit only from its super class (see section 8.2.2) and
implements the other predecessors’ interfaces (and this is fine in C# to be done
multiple times). Moreover, each class implements ‘its own’ interface.

The interface rendering template is listed in listing 10.4. It iterates over
members and uses the corresponding templates to render their interfaces:
properties (see section 10.2.5), methods (see section 10.2.4), relations (see
section 10.2.6) and derived relations (see section 10.2.8).

// i n t e r f a c e (c : ClassViewModel)

public interface Ic . name . upperCamel () 〈:〉c.interfaceExtends is not empty

J(n o f c . i n t e r f a c eExtends) : In . upperCamel () 〈,〉n is not lastK
{

J(p o f c . props) : propertyInterface(p)K
J(m o f c . methods) : methodSignature(m)K
J(r o f c . r e l a t i o n s) :

〈oneSideRelationInterface(r)〉r.isOneToOne∨(r.isOneToMany∧¬r.isSource)

〈manySideRelationInterface(r)〉r.isManyToMany∨(r.isOneToMany∧r.isSource)

K
J(r o f c . d e r i v edRe l a t i on s) :

〈oneResultDerivedInterface(r)〉¬r.isManyResults

〈manyResultsDerivedInterface(r)〉r.isManyResults

K
}

Listing 10.4: Interface render

The template for rendering classes is listed in listing 10.5. Similarly to
interfaces it merely calls various other templates to render different things:
constructor (see section 10.2.7), relations (section 10.2.6) and derived relations
(section 10.2.8), union classes inner instances and delegations (section 10.2.9),
properties (section 10.2.5), methods (section 10.2.4) and utility interface im-
plementations (section 10.2.10).

69

10. Target language view model rendering

// c l a s s (c : ClassViewModel)

public class c . name . upperCamel () 〈:〉c.classExtends is not empty

J(n o f c . c l a s sExtends) :

〈I〉n is not superClassn . upperCamel () 〈,〉n is not lastK
{

constructor(c)
J(r o f c . r e l a t i o n s) : relationBody(r) K
J(r o f c . d e r i v edRe l a t i on s) : derivedRelation(r)K
J(uc o f c . un ionClas se s) :
private readonly Iuc . name . upperCamel ()

uc . name . lowerCamel ();
K
overlappingSuperClassProps(c)
overlappingSuperClassMethods(c)
unionClassesProps(c)
unionClassesMethods(c)
unionClassesRelations(c)
unionClassesDerivedRelations(c)
J(p o f c . props) : propertyDeclaration(p)K
J(m o f c . methods) : methodDeclaration(m)K
J(i o f c . implementing) :

J(p o f i . props) : propertyDeclaration(p)K
J(m o f i . methods) : methodDeclaration(m)K
J(r o f i . r e l a t i o n s) : relationBody(r)K

K
invalidate(c)
isValid(c)

}
Listing 10.5: Class render

Every file’s content is rendered using the template listed in listing 10.6. It
wraps the file content into a namespace declaration (see section 4.4) and adds
references to the namespaces needed for the following reasons:

• Ccmi.OntoUml.Utilities.AssociationClasses – provides classes to
implement associations (see section 6.4.1)

• Ccmi.OntoUml.Utilities.Collections – provides classes representing
bounded collections (see section 6.4.2)

• System – contains definitions of exceptions used in the implementation

• System.Collections.Generic – the IEnumerable<T> interface is defined
here

70

10.2. Implementation

• System.Linq – contains definitions of Select, SelectMany, Count and
Distinct methods

// f i l e (content : s t r i n g , namespaceName : s t r i n g)
using Ccmi.OntoUml.Utilities.AssociationClasses;

using Ccmi.OntoUml.Utilities.Collections;

using System;

using System.Collections.Generic;

using System.Linq;

namespace

〈namespaceName . upperCamel () 〉namespace is not empty

〈DefaultNamespace〉namespace is empty

{
content

}
Listing 10.6: File render

10.2.3 Type rendering

Types are rendered in two steps. First the type name is determined:

// typeName (t y p e I n f o : TypeInfoViewModel)
〈I〉∗1 type In fo . name〈 . upperCamel () 〉∗1〈?〉∗2

Listing 10.7: Type name render

The items in the numbered angle brackets are rendered if

1. typeInfo.isInterface or typeInfo.isReference is true

2. typeInfo.shouldMakeNullable is true

respectively (see section 9.3.4). Then type signatures for various usages
are rendered for use in other templates:

// t y p e S i g n a t u r e (t : TypeInfoViewModel)

〈IBoundedCollection<〉t.isCollectiontypeName(typeInfo)〈>〉t.isCollection

// ctorTypeSignature (t : TypeInfoViewModel)

typeName(typeInfo)〈[]〉t.isCollection

Listing 10.8: Type signature render

71

10. Target language view model rendering

10.2.4 Method rendering

Own methods and methods from implemented interfaces are rendered in a very
simple way (for rendering of methods delegated to the union classes instances
see section 10.2.9):

// parameterLis t (m: MethodViewModel)
J(p o f m. parameters) :

typeSignature(p.type) p . name . lowerCamel () 〈,〉p is not last

K

// methodSignature (m: MethodViewModel)

〈typeSignature(m.typeInfo)〉m.typeInfo is not null〈void〉m.typeInfo is null

m. name . upperCamel ()(parameterList(m))

// methodDeclarat ion (method : MethodViewModel)
public methodSignature(method)
{

throw new NotImplementedException();

}

// methodCal l (m: MethodViewModel)
m. name . upperCamel ()(

J(p o f m. parameters) : p . name . lowerCamel () 〈,〉p is not lastK
);

Listing 10.9: Method render

As we can see method signature is rendered using type rendering described
in section 10.2.3 using void if no return type is provided. The method body is
rendered to throw NotImplementedException to indicate that the actual body
has to be written by hand. There is also a helper template to call a method
defined that is used in other templates.

10.2.5 Property rendering

Properties are rendered in the way shown in listing 10.10. If a property has
an upper bound on the count of items it can contain, this bound is enforced by
the check in the property setter (for the flag reference see section 9.3.3) and so
the collection assigned must be big enough. Also, properties are marked as
virtual to allow for overriding them (this is used in section 10.2.9). Other
than that, the rendering is pretty straight-forward.

// p r o p e r t y I n t e r f a c e (prop : PropertyViewModel)
typeSignature(prop.typeInfo) prop . name . upperCamel () { get; set; }

// p r o p e r t y B a c k i n g F i e l d (prop : PropertyViewModel)

72

10.2. Implementation

private typeSignature(prop.typeInfo) prop . name . lowerCamel ();

// s e t t e r C o n t r a i n t s (prop : PropertyViewModel)
〈if (value != null)

{
〈const int MAX ITEMS = prop . maxItems;
if (value.MaxItems > MAX ITEMS)

throw new InvalidOperationException("The source collection

for prop . name . upperCamel () is too small.");

value.MaxItems = MAX ITEMS;〉prop.maxItems>1

}〉prop.hasConstraints

// p r o p e r t y D e c l a r a t i o n (prop : PropertyViewModel)
propertyBackingField(prop)
public virtual typeSignature(prop.typeInfo) prop . name
{

get { return prop . name . toLower (); }
set

{
setterContraints(prop)
prop . name . lowerCamel () = value;

}
}

Listing 10.10: Property render

10.2.6 Relation rendering

Rendering of relations uses the utility classes in the utilities library (described
in section 6.4.1). The interface rendering methods listed in listing 10.12
just render appropriate calls to those classes creating relevant names for the
wrapping methods and their parameters using the helpers from listing 10.11.

// r e l a t i o n G e t (r : RelationViewModel)
Getr . otherItemName . lowerCamel ()
// relationGetMany (r : RelationViewModel)
Getr . otherItemName . p l u r a l () . lowerCamel ()
// r e l a t i o n S e t (r : RelationViewModel)
Setr . otherItemName . lowerCamel ()
// r e l a t i o n U n s e t (r : RelationViewModel)
Unsetr . otherItemName . lowerCamel ()
// re la t ionAdd (r : RelationViewModel)
Addr . otherItemName . lowerCamel ()
// relat ionRemove (r : RelationViewModel)
Remover . otherItemName . lowerCamel ()

73

10. Target language view model rendering

// re lat ionMethodParameters (r : RelationViewModel)
〈this, r . otherItemName . lowerCamel () 〉r.isSource
〈r . otherItemName . lowerCamel (), this〉¬r.isSource

Listing 10.11: Relation render helpers

// o n e S i d e R e l a t i o n I n t e r f a c e (r : RelationViewModel)
〈void relationSet(r)

(Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

);〉r.hasSet
〈void relationUnset(r)();〉r.hasUnset

Ir . otherClassName . upperCamel () relationGet(r)();

// manySideRe la t ionInter face (r : RelationViewModel)
〈void relationAdd(r)

(Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

);〉r.hasSet
〈void relationRemove(r)

(Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

);〉r.hasUnset

IEnumerable<Ir . otherClassName . upperCamel ()>
relationGetMany(r)();

Listing 10.12: Relation interface render

As we can see, rendering of setters and unsetters is managed by their
respective flags. Getters are always rendered.

Listings 10.14, 10.15 and 10.16 show rendering of the relation bodies. First
the backing field is rendered if the shouldRenderBackingField flag is set. This
prevents situations when a class is in a relation with itself and the backing
field would be rendered twice (see section 9.4.6). Then setters and unsetters
are rendered using helpers defined in listing 10.13 and finally the getter is
rendered wrapping the correct Get call of the appropriate association class.

// oneSideSetUnset (r : RelationViewModel)
〈public void relationSet(r)(

Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ())

{
relationUnset(r)();
associationField(r).CreateLink(relationMethodParameters(r));

}〉r.hasSet

74

10.2. Implementation

〈private〉r.hasSet∧¬r.hasUnset〈public〉r.hasUnset relationUnset(r)()
{
〈relationGet(r)()?.Invalidate();〉r.shouldInvalidateOnRemove

associationField(r).DestroyLink(
〈associationField(r).GetOne(this), this〉r.isOneToMany

〈this, associationField(r).GetRight(this)〉r.isOneToOne∧r.isSource

〈associationField(r).GetLeft(this), this〉r.isOneToOne∧¬r.isSource

);

}

// manySideSetUnset (r : RelationViewModel)
〈public void relationAdd(r)(

Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ())

=> associationField(r).CreateLink(relationMethodParameters(r));〉r.hasSet

〈public relationUnset(r)()
{
〈relationGet(r)()?.Invalidate();〉r.shouldInvalidateOnRemove

associationField(r).DestroyLink(relationMethodParameters(r));

}〉r.hasUnset

// a s s o c i a t i o n C l a s s (r : RelationViewModel)
〈OneToOne〉r.isOneToOne〈OneToMany〉r.isOneToMany〈ManyToMany〉r.isManyToMany

Association<

Ir . sourceClassName . upperCamel (),
Ir . targetClassName . upperCamel ()>

Listing 10.13: Relation body render helpers

// oneToOneRelationBody (r : RelationViewModel)
〈private static associationClass(r)

associationField(r) = associationClass(r).Instance();

〉r.shouldRenderF ield

oneSideSetUnset(r)
public Ir . otherClassName . upperCamel () relationGet(r)()

=> associationField(r).Get〈Right〉r.isSource〈Left〉¬r.isSource(this);
Listing 10.14: 1:1 relation body render

// oneToManyRelationBody (r : RelationViewModel)
〈private static associationClass(r) associationField(r)

= associationClass(r).Instance(〈true〉r.allowDuplicates);

〉r.shouldRenderF ield

〈manySideSetUnset(r)

75

10. Target language view model rendering

public IEnumerable<Ir . otherClassName . upperCamel ()>
relationGetMany(r)() => associationField(r).GetMany(this);

〉r.isSource
〈oneSideSetUnset(r)
public Ir . otherClassName . upperCamel () relationGet(r)()

=> associationField(r).GetOne(this);
〉¬r.isSource

Listing 10.15: 1:N relation body render

// manyToManyRelationBody (r : RelationViewModel)
〈private static associationClass(r) associationField(r)

= associationClass(r).Instance(〈true〉r.allowDuplicates);

〈manySideSetUnset(r)
public IEnumerable<Ir . otherClassName . upperCamel ()>

relationGetMany(r)()
=> associationField(r).Get〈Ms〉r.isSource〈Ns〉¬r.isSource(this);

Listing 10.16: M:N relation body render

// re la t ionBody (r : RelationViewModel)

〈oneToOneRelationBody(r)〉r.isOneToOne)

〈oneToManyRelationBody(r)〉r.isOneToMany)

〈manyToManyRelationBody(r)〉r.isManyToMany)

Listing 10.17: Relation body render

10.2.7 Essential associations rendering

Setting the value of essential associations upon instance creation is enforced in
the constructor. Its template is shown in listing 10.18. First, relevant paramet-
ers are passed to the parent constructor via the base call (see section 4.3) and
then all parameters are checked for nulls (throwing an exception on null). Next,
all the union class inner instances are initialized and finally, the appropriate
relations are created.

// c o n s t r u c t o r (c : ClassViewModel)
public c . name . upperCamel ()(

J(p o f c . c t o r . parameters) :

ctorTypeSignature(p.typeInfo) p . name . lowerCamel () 〈,〉p is not last

K)〈: base(

J(pn o f c . c t o r . parentParameterNames) :

pn . lowerCamel () 〈,〉pn is not last

K)〉c.ctor.parentParameterNames is not empty

{
J(p o f c . c t o r . parameters) :

76

10.2. Implementation

if (p . name . lowerCamel () == null)

throw new ArgumentNullException(

nameof(p . name . lowerCamel ()));
K
J(uc o f c . un ionClas se s) :
uc . name . lowerCamel () = new uc . name . upperCamel ()(

J(p o f uc . c t o r . parameters) :

p . name . lowerCamel () 〈,〉p is not last

K);
K
J(r o f c . c t o r . r e l a t i o n s) :
associationField(r).CreateLink(this,

r . parameterName . lowerCamel ());
K);

}
Listing 10.18: Constructor render

10.2.8 Derived relations rendering

As managing of creating and destroying the relators would be too complicated,
only getters are rendered for derived relations. The template is shown in
listing 10.19. Its sole purpose is to generate appropriate method call chains
according to the cardinality of the relevant fields in the class and the relator.
It utilizes C#features like Select and SelectMany (for explanation of the
difference see [67]) and the null-propagating operator and expression-bodied
members to make the code more concise (see section 4.5).

// o n e R e s u l t D e r i v e d I n t e r f a c e (r : DerivedRelationViewModel)
public Ir . otherClassName . upperCamel () relationGet(r)()
// manyResu l t sDer ivedInter face (r : DerivedRelationViewModel)
public IEnumerable<Ir . otherClassName . upperCamel ()>

relationGetMany(r)()
// d e r i v e d R e l a t i o n (r : DerivedRelationViewModel)
〈manyResultsDerivedInterface(r) =>

〈Getr . relatorName . p l u r a l () . upperCamel ()()
〈.SelectMany(

r => r.Getr . relatorOtherItemName . p l u r a l () . upperCamel ()

()).Distinct();〉r.isManyOthers

〈.Select(
r => r.Getr . relatorOtherItemName . upperCamel ()

()).Distinct();〉¬r.isManyOthers

〉r.isManyRelators

〈Getr . relatorName . upperCamel ()()
?.Getr . relatorOtherItemName . p l u r a l () . upperCamel ()()

77

10. Target language view model rendering

.Distinct();

〉¬r.isManyRelators

〉r.isManyResults

〈oneResultDerivedInterface(r)
=> Getr . relatorName . upperCamel ()()

?.Getr . relatorOtherItemName . upperCamel ()();

〉¬r.isManyResults

Listing 10.19: Derived relation body render

10.2.9 Overlapping inheritance rendering

Overlapping inheritance is rendered using composition. This means the every
class that is a result of overlapping inheritance (see section 8.3.3) contains
a private instance of every union class it is composed of and it delegates the
calls to their properties and methods to them. The isOverlapping is used to
mark such classes (see section 9.3.2).

Every property of the super class must be handled in a way that on each set
the properties of the inner union class instances are set as well as the property
of the given overlapping class to keep the inner union class instances in sync.
The same goes for methods – we need to call the method also on the union
classes’ instances in case the method has side effects. If the method should
return a value, the result of the superclass version is returned. This handling
is shown in listing 10.20, notice the use of the override keyword to override
the inherited property or method (see section 4.3).

// over lapp ingSuperClassProps (c : ClassViewModel)
〈J(p o f c . superClas s . props) :
propertyBackingField(p)
public override typeSignature(p.typeInfo)p . name . upperCamel ()
{

get { return p . name . lowerCamel (); }
set

{
setterContraints(p)
p . name . lowerCamel () = value;

J(uc o f c . un ionClas se s) :
uc . name . lowerCamel ().p . name . upperCamel () = value;

K
}

}K〉c.isOverlapping

// over lappingSuperClassMethods (c : ClassViewModel)
〈J(m o f c . superClas s . methods) :
public override methodSignature(m)
{

78

10.2. Implementation

J(uc o f c . un ionClas se s) :
uc . name . lowerCamel ().methodCall(m)

K
〈return 〉m.typeInfo is not nullmethodCall(m)

}K〉c.isOverlapping

Listing 10.20: Superclass prop decomposition

Each of the properties and methods that are to be realized by delegation
to the inner union class instance need to be handled appropriately (see list-
ing 10.21). They are simply delegated to the inner instance as is, transparently
to the user of the overlapping class.

// unionClassesProps (c : ClassViewModel)
J(uc o f c . un ionClas se s) :

J(p o f uc . props) :
public typeSignature(p.typeInfo)p . name . upperCamel ()
{

get { return uc . name . lowerCamel ().p . name . upperCamel (); }
set { uc . name . lowerCamel ().p . name . upperCamel () = value; }

} K
K

// unionClassesMethods (c : ClassViewModel)
J(uc o f c . un ionClas se s) :

J(m o f uc . methods) :
public methodSignature(m) => uc . name . lowerCamel ().methodCall(m)

K
K

Listing 10.21: Union classes property and method delegation

Similarly to properties and methods, relations are delegated as well (see
listing 10.22). The main idea behind the delegation remains the same, only
more methods need to be processed per relation.

// oneSideDe lega t ion (r : RelationViewModel ,
// c : ClassViewModel)
〈public void relationSet(r)(

Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

) => c . name . lowerCamel ().relationSet(r)(

r . otherItemName . lowerCamel ());〉r.hasSet
〈public void relationUnset(r)() =>

c . name . lowerCamel ().relationUnset(r)();〉r.hasUnset

public Ir . otherClassName . upperCamel () relationGet(r)() =>

c . name . lowerCamel ().relationGet(r)();

79

10. Target language view model rendering

// manySideDelegation (r : RelationViewModel ,
// c : ClassViewModel)
〈public void relationAdd(r)(

Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

) => c . name . lowerCamel ().relationAdd(r)(

r . otherItemName . lowerCamel ());〉r.hasSet
〈public void relationRemove(r)(

Ir . otherClassName . upperCamel ()
r . otherItemName . lowerCamel ()

) => c . name . lowerCamel ().relationRemove(r)(

r . otherItemName . lowerCamel ());〉r.hasUnset

public IEnumerable<Ir . otherClassName . upperCamel ()>
relationGetMany(r)()

=> c . name . lowerCamel ().relationGetMany(r)();

// u n i o n C l a s s e s R e l a t i o n s (c : ClassViewModel)
J(uc o f c . un ionClas se s) :

J(r o f uc . r e l a t i o n s) :

〈oneSideDelegation(r, uc)〉r.isOneToOne∨(r.isOneToMany∧¬r.isSource)

〈manySideDelegation(r, uc)〉r.isManyToMany∨(r.isOneToMany∧r.isSource)

K
K

Listing 10.22: Union classes relation delegation

Lastly, derived relations are delegated as well (see listing 10.23). The logic
is still the same, just call the corresponding method of the inner union class
instance.

// u ni o nC la s se sD e r i ve d Re la t io ns (c : ClassViewModel)
J(uc o f c . un ionClas se s) :

J(r o f uc . d e r i v edRe l a t i on s) :
〈oneResultDerivedInterface(r)

=> uc . name . lowerCamel ().relationGet(r)();

〉¬r.isManyResults

〈manyResultsDerivedInterface(r)
=> uc . name . lowerCamel ().relationGetMany(r)();

〉r.isManyResults

K
K

Listing 10.23: Union classes derived relation delegation

80

10.2. Implementation

10.2.10 Soft checking

Constraints that are imposed on the model by some constructs that cannot be
effectively enforced by other means in C# are dealt with using so called soft
checking. This means that every class in the model provides a method that
returns true if the instance is valid according to those constraints. This is
achieved by the ICanValidate interface. It is listed in listing 10.24:

public interface ICanValidate
{

bool I sVa l i d (bool deep) ;
void I n v a l i d a t e () ;

}
Listing 10.24: ICanValidate

Every class’ interface extends the ICanValidate, so on every class the
IsValid and Invalidate methods can be called. The IsValid method returns
a value indicating whether the instance does not violate any validity rules. If
the deep parameter is set to true, IsValid is called also on all of the instances
associated by relations.

After the Invalidate method is called, the instance should return false to
all subsequent IsValid calls. Also once invalidated, the instance cannot be ‘re-
validated’. This is used for indicating for example that an aspect was separated
from its bearer (there is no easy way to destroy an instance deterministically
in C#, so we must use this method to at least enable the soft checking).

The template of Invalidate is shown in listing 10.25. First a private flag
field is rendered and then the method itself. The method is marked virtual

in base classes to allow for the derived classes to override it according to
their needs (see section 4.3). In it, the flag is raised and then every aspect
dependent on the current class is removed from it and therefore invalidated (as
we saw in section 10.2.6, aspects are invalidated upon removing from relation).
This ensures that even the instances transitively dependent on the current
class are properly invalidated recursively.

The template of IsValid can be seen in listing 10.26. The method is
marked virtual/override as well. Inside the method the isInvalidated

flag is checked, then all the inner instances of union classes are checked (see
section 10.2.9) and finally constraints on relations – and optionally also their
members – (section 10.2.6) and properties (section 10.2.5) are checked. If any
of the checks fails, false is returned immediately, otherwise true is returned
to indicate the instance is valid. The recursive validation utilizes the Any
method from the System.Linq namespace (see [68]).

// removeAll (r : RelationViewModel)
foreach (var item in relationGetMany(r))
{

relationRemove(r)(item);

81

10. Target language view model rendering

}

// i n v a l i d a t e (c : ClassViewModel)
private bool isInvalidated = false;

public 〈override〉c.superClass〈virtual〉¬c.superClassvoid Invalidate()

{
isInvalidated = true;

J(r o f c . r e a l t i o n s)

〈relationUnset(r)();〉r.isOneToOne∨(r.isOneToMany∧¬r.isSource)

〈removeAll(r)〉r.isManyToMany∨(r.isOneToMany∧r.isSource)

K
}

Listing 10.25: Invalidate render

// isValidOneEnd (r : RelationViewModel)
var toValidateField(r) = relationGet(r)();
if (associationField(r) == null

〈|| toValidateField(r) == null〉r.minItems>0

|| (deep && !toValidateField(r).IsValid(deep))
) return false;

// isValidManyEnd (r : RelationViewModel)
〈const int minItemsConst(r) = r . minItems;〉r.minItems>0

〈const int maxItemsConst(r) = r . maxItems;〉r.maxItems>1

var toValidateField(r) = relationGetMany(r)();

〈var countField(r) = toValidateField(r).Count();〉r.hasConstraints

if (associationField(r) == null

〈|| countField(r) < minItemsConst(r)〉r.minItems>0

〈|| countField(r) > maxItemsConst(r)〉r.maxItems>1

|| (deep && toValidateField(r).Any(x => !x.IsValid(deep)))

) return false;

// i s V a l i d (c : ClassViewModel)

public 〈override〉c.superClass〈virtual〉¬c.superClassbool IsValid()

{
〈if(isInvalidated) return false;〉c.existentiallyDependentOn

J(uc o f c . un ionClas se s) :
if (uc . name . lowerCamel () == null

|| !uc . name . lowerCamel ().IsValid()) return false;

K
J(r o f c . r e l a t i o n s) :

〈isValidOneEnd(r)〉r.isOneToOne∨(r.isOneToMany∧¬r.isSource)

〈isValidManyEnd(r)〉r.isManyToMany∨(r.isOneToMany∧r.isSource)

82

10.2. Implementation

K
J(p o f c . props) :

〈〈const int minItemsConst(p) =p . minItems;〉p.isCollection

if (p . name . upperCamel () == null

〈|| !p . name . upperCamel ()().Count()

< minItemsConst(r)〉p.isCollection) return false;

〉p.minItems>0

K
return true;

}
Listing 10.26: IsValid render

83

Part III

Assessment

85

Chapter 11

Case studies

To illustrate the code generation capabilities two sample models were created
to illustrate the features implemented. The models were constructed to be as
small as possible while showing the most of the features to keep the output
focused. We will not discuss their domain usage or the problems they should
solve, we will settle with that they are valid OntoUML models that make
logical sense.

11.1 Case study 1

The diagram of the first sample model is shown in fig. 11.1. There is a Vehicle
Kind with two overlapping Subkinds – Plane and Boat (the overlapping class
can represent a seaplane for example). Every Boat can be registered at a Port
playing the Role of a Registrar and every Port has a Location.

<<nominal quality>>
Location

latitude: decimal[1]
longitude: decimal[1]

<<kind>>
Port

<<role>>
Registrar

<<relator>>
Registration

<<subkind>>
Boat

<<subkind>>
Plane

callSigns: string[1..5]

<<kind>>
Vehicle

name: string[1]

{complete}
 1

0..1
<<mediation>>

 1

1..*
<<mediation>>

0..1 1..*
registration

<<material>>

1 1
<<characterization>>

Figure 11.1: Case study 1

87

11. Case studies

The code generated from this case study model is listed in Appendix B
(the code has been manually reformatted to fit on the page and to conserve
space the using statements and namespace declarations were omitted as they
are the same across all the files). This model shows the following features:

• Relations

• Derived Relations

• Roles

• Attributes (both scalar and collections)

• Overlapping inheritance

• Aspects

• Soft checking

In the following sections the enumerated features implementation will be
assessed.

11.1.1 Relations

The relations implementation can be seen in almost all the classes, a good
example is the Registration class (that originated from a Relator). The code
generated for it can be seen in listing B.8. We can see from its interface that
it can Get a Boat and Set a Boat. It cannot Unset it however. This is because
as seen in the model the cardinality for the boat is 1 meaning a Registration
always has to have exactly one Boat associated with it – the Unset method is
therefore not rendered as public to avoid breaking the modelled rules. It is
implemented as private however, because it is needed internally while Setting
(and thus replacing) the Boat.

Another example is the Registrar (listing B.7). Since it can have multiple
Registrations attached, all three methods are public – AddRegistration, Re-
moveRegistration and GetRegistrations. However, there is a lower bound on the
number of Registrations and this is checked in the IsValid method as checking
the number on each removal would be potentially very inefficient.

11.1.2 Derived relations

There is a derived relation in the model between Boat and Registrar. Taking
the Boat (listing B.1) as the illustration of the case with at most one result,
we see that it has a method called GetRegistrar. In its implementation we see
that the Registration is retrieved and from it the Registrar is returned.

Registrar (listing B.7) on the other hand can be associated with many
boats and so its GetBoats method returns an IEnumerable<Boat> (see [63]).

88

11.1. Case study 1

The implementation correctly retrieves all the Registrations and, as there is
at most one boat per Registration, calls the Select method with the correct
getter lambda.

11.1.3 Roles

The Port’s Registrar Role implementation can be seen in listing B.7. It is
a standard class, that is connected to its owner as also seen in listing B.6. It
does not inherit from the Port, as that would lead to a cyclic reference and
also bring synchronization problems with the properties of both the Role and
the owner. Instead it is connected using the Association class in a way that
prohibits Registrar from detaching itself from the Port or change which one it
is attached to. The Port however can let go of its Registrar roles invalidating
them in the process. This goes very well with the semantics of Roles (see
section 2.1.2).

11.1.4 Attributes

There are examples of both scalar attributes and collections in the model. For
a scalar attribute example, take Vehicle (listing B.9) and its name attribute.
It has been transformed to a property Name and since it is marked as required
in the model (the cardinality is 1), the fact that property is not null is checked
in the IsValid method implementation.

Plane’s callSigns attribute represents a collection example (listing B.5). It
has both upper and lower bounds. The upper bound as it can be set even on
an empty collection is enforced on the resulting property setter. The lower
bound however is not enforced there to make the usage of the class more
convenient (we want to be able to create the Plane with the collection empty
and then add members to it). Instead the lower bound if checked in the IsValid
method.

11.1.5 Overlapping inheritance

As the generalization set with the two Vehicle subtypes is overlapping, a new
class called BoatPlane was generated (see section 10.2.9). The resulting C#

code can bee seen in listing B.2. There we can see that its interface is correctly
composed of the interfaces of both atomic classes. Inner private instances of
the atomic classes are declared and initialized in the constructor. The Name
property is overridden and kept in sync with the inner instances. The CallSigns
property is delegated to the inner Plane instance and the relation methods are
delegated to the Boat instance (both the relation to the Registration relator
and the derived relation). In the IsValid method, both inner instances are
validated (see section 10.2.10).

89

11. Case studies

11.1.6 Aspects

In the model there is one entity of an aspect type – the Location Nominal
Quality (listing B.4). As can be seen from its interface, the navigation to its
associated Port is possible, however Location cannot change or remove its Port
(it is existentially dependent on it, therefore removing the bond would destroy
the Location itself as well). Looking at Port (listing B.6), we see that it can
change its Location (but not remove it as it is required in the model) and when
it does so, the previous Location is invalidated to indicate it is no longer valid
because of the existential dependency (see section 2.1.4).

11.1.7 Soft checking

Some of the constraints are enforced using soft checking (see section 10.2.10).
A good example of this can be seen in Registrar code (listing B.7). In its
IsValid method both a relation end with at most one member and an end with
multiple members can be validated using the deep parameter.

The conditions are placed in such an order that the most expensive oper-
ations (recursive validation) are placed last. This ensures that if the cheap
count checks fail, the expensive ones are not even performed.

11.2 Case study 2

The diagram of the second sample model is shown in fig. 11.2. There is a Person
that can be in two Phases. The Person must have a Brain and a Living Person
can be a member of various teams. Robots can also be members of teams
and both Person and Robot must have a name, and so they belong to the
NamedIndividual Category.

<<category>>
NamedIndividual
name: string[1]

<<kind>>
Robot

<<collective>>
Team

<<phase>>
DeadPerson

<<phase>>
LivingPerson

<<kind>>
Person

<<kind>>
Brain

{disjoint}

M10..*

M0..*0..*

 {disjoint, complete}

11
{essential}

Figure 11.2: Case study 2

This model was created to cover the constructs not covered in Case study
1, so it has been simplified as much as possible (even removing attributes).
The generated code is listed in Appendix C. The constructs covered here are:

90

11.2. Case study 2

• Phases

• Essential relations

• Special relations (memberOf)

• Non-sortals (Category)

11.2.1 Phases

As seen in the model, a Person must be either in DeadPerson or LivingPerson
Phase. When covering Phases mapping (section 8.3.4) we discussed how this
is achieved. The generated interface, IPersonPhase, is shown in listing C.4
and the generated Phases (both implementing the interface) in listing C.2 and
listing C.6. The interface contains only one method – GetPerson. This enables
instances of Phases to navigate to their owner and the absence of setter and
unsetter makes sure that an instance of a Phase does not abandon its owner.

The Phase owner, Person, is listed in listing C.8. We can see that its
constructor has a parameter of the IPersonPhase type. This (along with
missing unset method for the Phase) ensures, that every Person is in some
Phase.

11.2.2 Essential relations

There is an essential relation between Person and Brain. This means, that every
Person must have a Brain since the moment it is created (see section 2.2.2). As
we can see in listing C.8, an instance of IBrain must be passed to the Person’s
constructor. Moreover this instance is checked for nulls, throwing an exception
if the check fails. Also, there is no setter or unsetter for the other member in
both Person and Brain (listing C.1).

11.2.3 Special relations

In section 8.3.8 we stated that memberOf, subCollectionOf and subQuantityOf
are handled similarly. In our model, Team (listing C.10) can have Person and
Robot members. Note that these have different cardinality of their relation
to Team. The generated interface, ITeamMember, is listed in listing C.5 and
both Person and Robot implement it. Team then works with instances of that
interface, not the Person or Robot directly.

11.2.4 Non-sortals

The NamedIndividual Category listed in listing C.7 is an example on how
non-sortal types are handled (see section 2.1.3). It has only one property,
Name. Robot as a member of the Category, implements its interface (see
listing C.9), contains an instance of the Category and delegates the Name calls

91

11. Case studies

to that instance. The need for the inner instance is the reason the abstract
attribute is ignored in this implementation.

92

Chapter 12

Final assessment

In this chapter the overall performance (mainly in terms of preserving the
fidelity of model semantics) is discussed. Also, areas for eventual further work
are laid out.

12.1 Model fidelity

When discussing model fidelity I find that the most expressive way is to list
all the aspects of the model that are preserved and those that are not. The
aspects of the OntoUML model preserved in the generated C# code in at least
a soft check form are:

• Entity names

• Entity attributes including cardinality constraints and type

• Inheritance structure even with overlapping inheritance

• Role and Phase semantics

• Part whole relations with cardinality and the essential and inseparable

metaatributes

• memberOf, subQuantityOf and subCollectionOf relations without car-
dinality

• Derived relations (only the get part)

• Aspect types existential dependency property

These can be seen in the Case studies (see chapter 11). Parts that are not
included:

• immutablePart and immutableWhole metaatributes

93

12. Final assessment

• memberOf, subQuantityOf and subCollectionOf relations cardinality

• abstract class attribute

The immutable attributes were not implemented in the C# code generator,
because I was not able to invent a way to do it elegantly and efficiently enough.
The cardinality of the enumerated relation types is lost in the OntoObjectModel
creation for reasons discussed there (see section 8.3.8). Ignoring of the abstract
by the C# implementation is explained in section 11.2.4.

12.2 Future work

There are a few parts of the approach that could be improved or expanded
upon. Most importantly the missing aspects listed in the Model fidelity section
(12.1) provide a topic to research further.

Other area that could be made better is naming of the generated entities
and properties. The pluralization of the names is done näıvely and it could
be made more grammatically correct (understandably, this was not this thesis
goal). Another naming problem is in the classes generated from overlapping
inheritance. As it stands their names are created simply by concatenating the
names of the atomic classes. This can lead to very strange and in cases of wide
inheritance trees even very long names. A solution could be to provide the
user an option to specify the names manually (in the current state this can be
fixed using a simple search and replace in the generated model but that is far
from usable).

This is connected to another area that could be a research topic – integrating
the application (or at least the described algorithms) into some modelling tool.
This would bridge the gap between creating the model and generating the
code. The last and most obvious area of future work is adding support for
other input and output languages.

94

Conclusion

In Part I, Model-Driven Engineering and its implementation — Model-Driven
Architecture — were presented (chapter 1). OntoUML as an useful language for
conceptual modelling was introduced (chapter 2). Object Model as a theoretical
basis for object-oriented programming was described (chapter 3) and the
relevant features of the C# language were detailed as well as the way it
implements the Object Model in chapter 4. Finally, existing languages that are
used in OntoUML to source code transformation were reviewed (chapter 5).

The practical Part II introduced the transformations and intermediate
models on the way from OntoUML model to C# source code. First the
canonical OntoUML form was defined in chapter 7, then the OntoObjectModel
structure and the algorithm to implement various OntoUML construct in it
was described in chapter 8 and finally, the process of creating C# code from it
was explained in chapters 9 and 10.

Part III is dedicated to evaluating the viability and suitability of the
solution chosen. Simple case studies were created and their aspects discussed
in chapter 11, and in chapter 12 the overall coverage of the OntoUML as well
as opportunities for further work are examined.

I believe the presented solution proved to be usable for real life applications.
It covers majority of OntoUML concepts while remaining reasonably simple.
Also, this thesis can serve as a good starting point for following research in
this field.

95

Bibliography

[1] Rosenwasser, D.; Najmabadi, C.; Hejlsberg, A.; et al. TypeScript -
JavaScript that scales. 2016, [Accessed 2016-04-01]. Available from:
https://www.typescriptlang.org/

[2] Dahl, R.; Noordhuis, B.; Schlueter, I. Z.; et al. Node.js. 2016, [Accessed
2016-04-01]. Available from: https://nodejs.org/en/

[3] Microsoft. Visual Studio Code [software]. [Accessed 2016-04-29]. Available
from: https://code.visualstudio.com/

[4] Microsoft. Visual Studio 2015 [software]. [Accessed 2016-04-23]. Avail-
able from: https://www.visualstudio.com/en-us/products/vs-2015-
product-editions.aspx

[5] Foundation, N. NuGet Gallery. 2016, [Accessed 2016-04-08]. Available
from: https://www.nuget.org/

[6] Microsoft. .NET Framework 4.5.2 [software]. [Accessed 2016-04-
23]. Available from: https://www.microsoft.com/en-us/download/
details.aspx?id=42642

[7] Wilson, B.; et al. xUnit.net. [Accessed 2016-04-26]. Available from: https:
//github.com/xunit/xunit

[8] Sales, T. P.; Amorim, V.; Brasileiro, F. OntoUML lightweight editor
(OLED) [software]. 2016, [Accessed 2016-01-21]. Available from: https:
//github.com/nemo-ufes/ontouml-lightweight-editor

[9] Auer, M.; Poelz, J.; Fuernweger, A.; et al. UMLet [software]. [Accessed
2016-04-23]. Available from: http://www.umlet.com/

[10] Shanu, U. Data flow diagrams. 2013, [Accessed 2016-04-23]. Available from:
http://www.slideshare.net/ujjmishra1/data-flow-diagrams-2

97

https://www.typescriptlang.org/
https://nodejs.org/en/
https://code.visualstudio.com/
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx
https://www.nuget.org/
https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://github.com/xunit/xunit
https://github.com/xunit/xunit
https://github.com/nemo-ufes/ontouml-lightweight-editor
https://github.com/nemo-ufes/ontouml-lightweight-editor
http://www.umlet.com/
http://www.slideshare.net/ujjmishra1/data-flow-diagrams-2

Bibliography

[11] van der Zander, B.; Sundermeyer, J.; Braun, D.; et al. TeXstudio [software].
[Accessed 2016-04-23]. Available from: http://www.texstudio.org/

[12] Stecklein, J. M.; Dabney, J.; Dick, B.; et al. Error Cost Escalation Through
the Project Life Cycle. [Accessed 2016-02-12]. Available from: http:

//ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf

[13] Object Management Group R©. Object Management Group Model Driven
Architecture (MDA) MDA Guide rev. 2.0. [Accessed 2016-01-23]. Available
from: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf

[14] Truyen, F. The Fast Guide to Model Driven Architecture. Jan 2006,
[Accessed 2016-01-23]. Available from: http://www.omg.org/mda/mda_
files/Cephas_MDA_Fast_Guide.pdf

[15] Object Management Group R©. (MDA Foundation Model. [Accessed 2016-
01-23]. Available from: http://www.omg.org/cgi-bin/doc?ormsc/10-
09-06.pdf

[16] Guizzardi, G.; Wagner, G. Using the Unified Foundational Ontology
(UFO) as a Foundation for General Conceptual Modeling Languages. In
Theory and Applications of Ontology: Computer Applications, edited by
R. Poli; M. Healy; A. Kameas, Springer Netherlands, 2010, ISBN 978-
90-481-8846-8, 978-90-481-8847-5, pp. 175–196. Available from: http:

//link.springer.com/chapter/10.1007/978-90-481-8847-5_8

[17] American Psychological Association. Glossary of Psychological Terms.
2016, [Accessed 2016-03-31]. Available from: https://www.apa.org/
research/action/glossary.aspx?tab=3

[18] Guizzardi, G. Ontological Foundations For Structural Conceptual Models.
Enschede: Centre for Telematics and Information Technology, Telematica
Instituut, 2005, ISBN 90-75176-81-3.

[19] Guizzardi, G.; Andrade Almeida, J.; Souza Guizzardi, R.; et al. On-
tology & Conceptual Modeling Research Group (NEMO). 2014, [cit.
2014-04-23]. Available from: http://nemo.inf.ufes.br/en

[20] Wiegers, R. Behavior Specification for Ontologically Grounded Conceptual
Models. Master’s thesis, University of Twente, 2014.

[21] Pergl, R.; Sales, T. P.; Rybola, Z. Towards OntoUML for Software Engin-
eering: From Domain Ontology to Implementation Model. In Proceedings
of MEDI 2013, volume 3rd, Amantea, Italy: Springer, Sept. 2013, ISBN
978-3-642-41365-0, pp. 249–263, doi:10.1007/978-3-642-41366-7, 00001.

[22] Bruce, K. Foundations of object-oriented languages types and semantics.
Cambridge, Mass: MIT Press, 2002, ISBN 978-0-262-02523-2.

98

http://www.texstudio.org/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/cgi-bin/doc?ormsc/10-09-06.pdf
http://www.omg.org/cgi-bin/doc?ormsc/10-09-06.pdf
http://link.springer.com/chapter/10.1007/978-90-481-8847-5_8
http://link.springer.com/chapter/10.1007/978-90-481-8847-5_8
https://www.apa.org/research/action/glossary.aspx?tab=3
https://www.apa.org/research/action/glossary.aspx?tab=3
http://nemo.inf.ufes.br/en

Bibliography

[23] Microsoft. C# Language Specification 5.0. 2012, [Accessed 2016-03-
30]. Available from: https://www.microsoft.com/en-us/download/
details.aspx?id=7029

[24] Microsoft. Access Modifiers (C# Reference). 2016, [Accessed 2016-
02-05]. Available from: https://msdn.microsoft.com/en-us/library/
wxh6fsc7.aspx

[25] Michaelis, M. C# : The New and Improved C# 6.0. 2014, [Accessed 2016-
04-22]. Available from: https://msdn.microsoft.com/en-us/magazine/
dn802602.aspx

[26] Schreiber, G.; Raimond, Y. RDF 1.1 Primer. [Accessed 2016-01-21]. Avail-
able from: https://www.w3.org/TR/rdf11-primer/

[27] Hitzler, P.; Krötzsch, M.; Parsia, B.; et al. OWL 2 Web Ontology Language
Primer (Second Edition). [Accessed 2016-01-21]. Available from: https:
//www.w3.org/TR/2012/REC-owl2-primer-20121211/

[28] Motik, B.; Grau, B. C.; Horrocks, I.; et al. OWL 2 Web Ontology Language
Profiles (Second Edition)). [Accessed 2016-01-21]. Available from: https:
//www.w3.org/TR/owl2-profiles/

[29] ROWLEX Admin. ROWLEX . Net RDF website access? [Accessed
2016-02-05]. Available from: http://stackoverflow.com/a/7038336/
2546338

[30] Szekely, B.; Betz, J. Jastor – Typesafe, Ontology Driven RDF
Access from Java. [Accessed 2016-02-05]. Available from: http://

jastor.sourceforge.net/

[31] Szekely, B.; Betz, J. Jastor – Browse Files at SourceForge.net. [Ac-
cessed 2016-02-05]. Available from: http://sourceforge.net/projects/
jastor/files/

[32] Musen, M.; Tu, S.; Tudorache, T.; et al. protégé. Available from: http:
//protege.stanford.edu/

[33] Musen, M.; Tu, S.; Tudorache, T.; et al. Protege Desktop Older
Versions. Available from: http://protegewiki.stanford.edu/wiki/
Protege_Desktop_Old_Versions

[34] Braga, B.; Brasileiro, F.; Guerson, J.; et al. Menthor. 2015, [Accessed
2016-04-23]. Available from: http://www.menthor.net

[35] Sales, T. P.; Amorim, V.; Brasileiro, F. OntoUML lightweight editor
(OLED) Releases. 2016, [Accessed 2016-03-30]. Available from: https:

//github.com/nemo-ufes/ontouml-lightweight-editor/releases

99

https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx
https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx
https://msdn.microsoft.com/en-us/magazine/dn802602.aspx
https://msdn.microsoft.com/en-us/magazine/dn802602.aspx
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
http://stackoverflow.com/a/7038336/2546338
http://stackoverflow.com/a/7038336/2546338
http://jastor.sourceforge.net/
http://jastor.sourceforge.net/
http://sourceforge.net/projects/jastor/files/
http://sourceforge.net/projects/jastor/files/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/Protege_Desktop_Old_Versions
http://protegewiki.stanford.edu/wiki/Protege_Desktop_Old_Versions
http://www.menthor.net
https://github.com/nemo-ufes/ontouml-lightweight-editor/releases
https://github.com/nemo-ufes/ontouml-lightweight-editor/releases

Bibliography

[36] Foundation, N. Download — Node.js. 2016, [Accessed 2016-04-01]. Avail-
able from: https://nodejs.org/en/download/stable/

[37] DeBill, E. Modulecounts. 2016, [Accessed 2016-04-01]. Available from:
http://www.modulecounts.com/

[38] Brookes, L. command-line-args. 2016, [Accessed 2016-04-01]. Available
from: https://www.npmjs.com/package/command-line-args

[39] Katz, Y.; Decker, K.; Johnson, A.; et al. handlebars. 2016, [Accessed 2016-
04-01]. Available from: https://www.npmjs.com/package/handlebars

[40] Estácio, L. json-format. 2016, [Accessed 2016-04-01]. Available from:
https://www.npmjs.com/package/json-format

[41] Dalton, J.; Ashkenas, J.; et al. lodash. 2016, [Accessed 2016-04-01]. Avail-
able from: https://www.npmjs.com/package/lodash

[42] Halliday, J. mkdirp. 2016, [Accessed 2016-04-01]. Available from: https:
//www.npmjs.com/package/mkdirp

[43] Kowal, K.; Denicola, D. q. 2016, [Accessed 2016-04-01]. Available from:
https://www.npmjs.com/package/q

[44] Luff, G. tv4. 2016, [Accessed 2016-04-01]. Available from: https://

www.npmjs.com/package/tv4

[45] Kubica, M. xml2js. 2016, [Accessed 2016-04-01]. Available from: https:
//www.npmjs.com/package/xml2js

[46] Luer, J.; Todorov, V.; et al. chai. 2016, [Accessed 2016-04-21]. Available
from: https://www.npmjs.com/package/chai

[47] Denicola, D. chai-as-promised. 2016, [Accessed 2016-04-21]. Available
from: https://www.npmjs.com/package/chai-as-promised

[48] Anantheswaran, K. istanbul. 2016, [Accessed 2016-04-21]. Available from:
https://www.npmjs.com/package/istanbul

[49] Holowaychuk, T.; Jeffery, T.; Hiller, C.; et al. mocha. 2016, [Accessed
2016-04-21]. Available from: https://www.npmjs.com/package/mocha

[50] Schaub, T. mock-fs. 2016, [Accessed 2016-04-21]. Available from: https:
//www.npmjs.com/package/mock-fs

[51] Kelly, K. remap-istanbul. 2016, [Accessed 2016-04-21]. Available from:
https://www.npmjs.com/package/remap-istanbul

100

https://nodejs.org/en/download/stable/
http://www.modulecounts.com/
https://www.npmjs.com/package/command-line-args
https://www.npmjs.com/package/handlebars
https://www.npmjs.com/package/json-format
https://www.npmjs.com/package/lodash
https://www.npmjs.com/package/mkdirp
https://www.npmjs.com/package/mkdirp
https://www.npmjs.com/package/q
https://www.npmjs.com/package/tv4
https://www.npmjs.com/package/tv4
https://www.npmjs.com/package/xml2js
https://www.npmjs.com/package/xml2js
https://www.npmjs.com/package/chai
https://www.npmjs.com/package/chai-as-promised
https://www.npmjs.com/package/istanbul
https://www.npmjs.com/package/mocha
https://www.npmjs.com/package/mock-fs
https://www.npmjs.com/package/mock-fs
https://www.npmjs.com/package/remap-istanbul

Bibliography

[52] Rosenwasser, D.; Najmabadi, C.; Hejlsberg, A.; et al. typescript. 2016,
[Accessed 2016-04-21]. Available from: https://www.npmjs.com/package/
typescript

[53] Embrey, B.; et al. typings/typings: The TypeScript Definition Manager.
Jun 2016, [Accessed 2016-04-01]. Available from: https://github.com/
typings/typings

[54] ECMA. ECMAScript R© 2015 Language Specification. Jun 2015, [Accessed
2016-04-01]. Available from: http://www.ecma-international.org/
ecma-262/6.0/

[55] IEFT. JSON Schema: core definitions and terminology. 2016, [Accessed
2016-04-08]. Available from: https://tools.ietf.org/html/draft-zyp-
json-schema-04

[56] Network, M. D. Promise - JavaScript — MDN. 2016, [Accessed 2016-
04-03]. Available from: https://developer.mozilla.org/cs/docs/Web/
JavaScript/Reference/Global_Objects/Promise

[57] Nishizawa, K. Memory Leak? native Promise and complex arrow functions
with Generators. 2015, [Accessed 2016-04-24]. Available from: https:

//github.com/nodejs/node/issues/4210

[58] Homola, D. ontouml-code-generator: Release for thesis. May 2016, doi:
10.5281/zenodo.50713, [Accessed 2016-05-01]. Available from: http://

dx.doi.org/10.5281/zenodo.50713

[59] Homola, D. ontouml-csharp-utils: Release for thesis. May 2016, doi:
10.5281/zenodo.50714, [Accessed 2016-05-01]. Available from: http://

dx.doi.org/10.5281/zenodo.50714

[60] Homola, D. ontouml-utilities MyGet Feed. May 2016, [Accessed 2016-05-
01]. Available from: https://www.myget.org/F/ontouml-utilities

[61] Dominik Gessenharter. Implementing UML associations in Java: a slim
code pattern for a complex modeling concept. In Proceedings of the
Workshop on Relationships and Associations in Object-Oriented Lan-
guages, RAOOL ’09, New York, NY, USA: ACM, 2009, ISBN 978-1-60558-
549-9, pp. 17–24, doi:10.1145/1562100.1562104, 00008. Available from:
http://doi.acm.org/10.1145/1562100.1562104

[62] Microsoft. Lazy(T) Class (System). 2016, [Accessed 2016-03-21]. Avail-
able from: https://msdn.microsoft.com/en-us/library/dd642331(v=
vs.110).aspx

101

https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://github.com/typings/typings
https://github.com/typings/typings
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://developer.mozilla.org/cs/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/cs/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://github.com/nodejs/node/issues/4210
https://github.com/nodejs/node/issues/4210
http://dx.doi.org/10.5281/zenodo.50713
http://dx.doi.org/10.5281/zenodo.50713
http://dx.doi.org/10.5281/zenodo.50714
http://dx.doi.org/10.5281/zenodo.50714
https://www.myget.org/F/ontouml-utilities
http://doi.acm.org/10.1145/1562100.1562104
https://msdn.microsoft.com/en-us/library/dd642331(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd642331(v=vs.110).aspx

Bibliography

[63] Microsoft. System.Collections.Generic Namespace. 2016, [Accessed 2016-
03-21]. Available from: https://msdn.microsoft.com/en-us/library/
system.collections.generic(v=vs.110).aspx

[64] Microsoft. List(T) Class (System.Collections.Generic). 2016, [Accessed
2016-03-21]. Available from: https://msdn.microsoft.com/en-us/
library/6sh2ey19(v=vs.110).aspx

[65] Sales, T. P. Role. 2016, [Accessed 2016-04-04]. Available from: https:

//github.com/MenthorTools/ontouml/wiki/Role

[66] Microsoft. Value Types Table (C# Reference). 2016, [Accessed 2016-
04-13]. Available from: https://msdn.microsoft.com/en-us/library/
bfft1t3c.aspx

[67] Two, M. Difference Between Select and SelectMany. 2009, [Accessed 2016-
04-22]. Available from: http://stackoverflow.com/a/959057/2546338

[68] Microsoft. Enumerable Methods. 2016, [Accessed 2016-03-26].
Available from: https://msdn.microsoft.com/en-us/library/
system.linq.enumerable_methods(v=vs.100).aspx

102

https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://github.com/MenthorTools/ontouml/wiki/Role
https://github.com/MenthorTools/ontouml/wiki/Role
https://msdn.microsoft.com/en-us/library/bfft1t3c.aspx
https://msdn.microsoft.com/en-us/library/bfft1t3c.aspx
http://stackoverflow.com/a/959057/2546338
https://msdn.microsoft.com/en-us/library/system.linq.enumerable_methods(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.linq.enumerable_methods(v=vs.100).aspx

Appendix A

Acronyms

CIM Computation Independent Model

DEMO Design & Engineering Methodology for Organizations

JSON JavaScript Object Notation

MDA Model-Driven Architecture

MDE Model-Driven Engineering

NEMO Núcleo de Estudos em Modelagem Conceitual e Ontologias (Ontology
and Conceptual Modeling Research Group)

OntoObjectModel Ontological Object Model

OLED OntoUML Lightweight Editor

OMG Object Management Group R©

OWL Web Ontology Language

PIM Platform Independent Model

PSM Platform Specific Model

RDF Resource Description Framework

UML Unified Modelling Language

W3C World Wide Web Consortium

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

103

Appendix B

Case study 1 generated code

public interface IBoat : ICanValidate , IVe h i c l e
{

void S e t R e g i s t r a t i o n (I R e g i s t r a t i o n r e g i s t r a t i o n) ;
void UnsetReg i s t ra t i on () ;
I R e g i s t r a t i o n GetReg i s t ra t ion () ;
I R e g i s t r a r GetReg i s t rar () ;

}
public class Boat : Vehic le , IBoat
{

public Boat ()
{ }
private stat ic OneToOneAssociation<I R e g i s t r a t i o n , IBoat>

b o a t R e g i s t r a t i o n A s s o c i a t i o n
= OneToOneAssociation<I R e g i s t r a t i o n , IBoat >. In s tance () ;

public void S e t R e g i s t r a t i o n (I R e g i s t r a t i o n r e g i s t r a t i o n)
{

UnsetReg i s t ra t i on () ;
b o a t R e g i s t r a t i o n A s s o c i a t i o n

. CreateLink (r e g i s t r a t i o n , this) ;
}
public void UnsetReg i s t ra t i on ()
{

b o a t R e g i s t r a t i o n A s s o c i a t i o n
. DestroyLink (b o a t R e g i s t r a t i o n A s s o c i a t i o n

. GetLeft (this) , this) ;
}
public I R e g i s t r a t i o n GetReg i s t ra t ion ()

=> b o a t R e g i s t r a t i o n A s s o c i a t i o n . GetLeft (this) ;
public I R e g i s t r a r GetReg i s t rar ()

105

B. Case study 1 generated code

=> GetReg i s t ra t ion () ? . GetReg i s t rar () ;
private bool i s I n v a l i d a t e d = fa l se ;
public override void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public override bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
var r e g i s t r a t i o n T o V a l i d a t e = GetReg i s t ra t ion () ;
i f (b o a t R e g i s t r a t i o n A s s o c i a t i o n == null
| | (deep && ! r e g i s t r a t i o n T o V a l i d a t e . I sVa l i d (deep)))
return fa l se ;

return true ;
}

}
Listing B.1: Boat.cs

public interface IBoatPlane : ICanValidate , IBoat , IPlane
{
}
public class BoatPlane : Vehic le , IBoatPlane
{

public BoatPlane ()
{

boat = new Boat () ;
p lane = new Plane () ;

}
private readonly IBoat boat ;
private readonly IPlane plane ;
private string name ;
public override string Name
{

get { return name ; }
s e t
{

name = value ;
boat .Name = value ;
plane .Name = value ;

}
}
public IBoundedCol lect ion<string> Ca l lS i gn s
{

get { return plane . Ca l lS i gn s ; }

106

s e t { plane . Ca l lS i gn s = value ; }
}
public void S e t R e g i s t r a t i o n (I R e g i s t r a t i o n r e g i s t r a t i o n)

=> boat . S e t R e g i s t r a t i o n (r e g i s t r a t i o n) ;
public void UnsetReg i s t ra t i on ()

=> boat . Unse tReg i s t ra t i on () ;
public I R e g i s t r a t i o n GetReg i s t ra t ion ()

=> boat . GetReg i s t ra t ion () ;
public I R e g i s t r a r GetReg i s t rar ()

=> boat . GetReg i s t rar () ;
private bool i s I n v a l i d a t e d = fa l se ;
public override void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public override bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
i f (boat == null | | ! boat . I sVa l i d (deep))

return fa l se ;
i f (plane == null | | ! p lane . I sVa l i d (deep))

return fa l se ;
return true ;

}
Listing B.2: BoatPlane.cs

public interface ICanValidate
{

bool I sVa l i d (bool deep) ;
void I n v a l i d a t e () ;

}
Listing B.3: ICanValidate.cs

public interface ILocat ion : ICanValidate
{

decimal? Longitude { get ; s e t ; }
decimal? Lat i tude { get ; s e t ; }
IPort GetPort () ;

}
public class Locat ion : ILocat ion
{

public Locat ion ()
{ }

107

B. Case study 1 generated code

private stat ic OneToOneAssociation<ILocat ion , IPort>
por tLoca t i onAssoc i a t i on
= OneToOneAssociation<ILocat ion , IPort >. In s tance () ;

public IPort GetPort ()
=> por tLoca t i onAssoc i a t i on . GetRight (this) ;

private decimal? l ong i tude ;
public virtual decimal? Longitude
{

get { return l ong i tude ; }
s e t { l ong i tude = value ; }

}
private decimal? l a t i t u d e ;
public virtual decimal? Lat i tude
{

get { return l a t i t u d e ; }
s e t { l a t i t u d e = value ; }

}
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
var portToVal idate = GetPort () ;
i f (po r tLoca t i onAssoc i a t i on == null
| | portToVal idate == null
| | (deep && ! portToVal idate . I sVa l i d (deep)))
return fa l se ;

i f (Longitude == null) return fa l se ;
i f (Lat i tude == null) return fa l se ;
return true ;

}
}

Listing B.4: Location.cs

108

public interface IPlane : ICanValidate , I Veh i c l e
{

IBoundedCol lect ion<string> Ca l lS i gn s { get ; s e t ; }
}
public class Plane : Vehic le , IPlane
{

public Plane ()
{ }
private IBoundedCol lect ion<string> c a l l S i g n s ;
public virtual IBoundedCol lect ion<string> Ca l lS i gn s
{

get { return c a l l S i g n s ; }
s e t
{

i f (va lue != null)
{

const int MAX ITEMS = 5 ;
i f (va lue . MaxItems > MAX ITEMS)

throw new Inva l idOperat ionExcept ion (
”The source c o l l e c t i o n f o r Ca l lS i gn s i s too smal l . ”

) ;
va lue . MaxItems = MAX ITEMS;

}
c a l l S i g n s = value ;

}
}
private bool i s I n v a l i d a t e d = fa l se ;
public override void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public override bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
const int CALL SIGNS MIN ITEMS = 1 ;
i f (Ca l lS i gns == null
| | Ca l lS i gn s . Count () < CALL SIGNS MIN ITEMS)
return fa l se ;

return true ;
}

}
Listing B.5: Plane.cs

109

B. Case study 1 generated code

public interface IPort : ICanValidate
{

void AddRegistrarRole (I R e g i s t r a r r e g i s t r a r R o l e) ;
void RemoveRegistrarRole (I R e g i s t r a r r e g i s t r a r R o l e) ;
IEnumerable<IReg i s t r a r> GetReg i s t rarRoles () ;
void SetLocat ion (ILocat ion l o c a t i o n) ;
ILocat ion GetLocation () ;

}
public class Port : IPort
{

public Port ()
{ }
private stat ic OneToManyAssociation<IPort , IReg i s t r a r>

r e g i s t r a r R o l e s A s s o c i a t i o n
= OneToManyAssociation<IPort , IReg i s t r a r>

. In s tance (true) ;
public void AddRegistrarRole (I R e g i s t r a r r e g i s t r a r R o l e)

=> r e g i s t r a r R o l e s A s s o c i a t i o n
. CreateLink (this , r e g i s t r a r R o l e) ;

public void RemoveRegistrarRole (I R e g i s t r a r r e g i s t r a r R o l e)
{

r e g i s t r a r R o l e ? . I n v a l i d a t e () ;
r e g i s t r a r R o l e s A s s o c i a t i o n

. DestroyLink (this , r e g i s t r a r R o l e) ;
}
public IEnumerable<IReg i s t r a r> GetReg i s t rarRo les ()

=> r e g i s t r a r R o l e s A s s o c i a t i o n . GetMany(this) ;
private stat ic OneToOneAssociation<ILocat ion , IPort>

por tLoca t i onAssoc i a t i on
= OneToOneAssociation<ILocat ion , IPort >. In s tance () ;

public void SetLocat ion (ILocat ion l o c a t i o n)
{

UnsetLocation () ;
po r tLoca t i onAssoc i a t i on . CreateLink (l o ca t i on , this) ;

}
private void UnsetLocation ()
{

GetLocation () ? . I n v a l i d a t e () ;
po r tLoca t i onAssoc i a t i on

. DestroyLink (por tLoca t i onAssoc i a t i on
. GetLeft (this) , this) ;

}
public ILocat ion GetLocation ()

=> por tLoca t i onAssoc i a t i on . GetLeft (this) ;

110

private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
foreach (var item in GetReg i s t rarRoles ())
{

RemoveRegistrarRole (item) ;
}
UnsetLocation () ;

}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
var r eg i s t r a rRo l eToVa l ida t e = GetReg i s t rarRoles () ;
i f (r e g i s t r a r R o l e s A s s o c i a t i o n == null
| | (deep && reg i s t r a rRo l eToVa l ida t e

. Any(x => ! x . I sVa l i d (deep))))
return fa l se ;

var l ocat i onToVal idate = GetLocation () ;
i f (po r tLoca t i onAssoc i a t i on == null
| | l o ca t i onToVal idate == null
| | (deep && ! locat i onToVal idate . I sVa l i d (deep)))
return fa l se ;

return true ;
}

}
Listing B.6: Port.cs

111

B. Case study 1 generated code

public interface I R e g i s t r a r : ICanValidate
{

IPort GetPort () ;
void AddRegistrat ion (I R e g i s t r a t i o n r e g i s t r a t i o n) ;
void RemoveRegistration (I R e g i s t r a t i o n r e g i s t r a t i o n) ;
IEnumerable<I R e g i s t r a t i o n> GetReg i s t ra t i ons () ;
IEnumerable<IBoat> GetBoats () ;

}
public class Reg i s t r a r : I R e g i s t r a r
{

public Reg i s t r a r ()
{ }
private stat ic OneToManyAssociation<IPort , IReg i s t r a r>

r e g i s t r a r R o l e s A s s o c i a t i o n
= OneToManyAssociation<IPort , IReg i s t r a r>

. In s tance (true) ;
public IPort GetPort ()

=> r e g i s t r a r R o l e s A s s o c i a t i o n . GetOne(this) ;
private stat ic OneToManyAssociation

<IReg i s t r a r , IR e g i s t r a t i o n>
r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n
= OneToManyAssociation<IReg i s t r a r , I Re g i s t r a t i o n>

. In s tance () ;
public void AddRegistrat ion (I R e g i s t r a t i o n r e g i s t r a t i o n)

=> r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n
. CreateLink (this , r e g i s t r a t i o n) ;

public void RemoveRegistration (I R e g i s t r a t i o n r e g i s t r a t i o n)
{

r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n
. DestroyLink (this , r e g i s t r a t i o n) ;

}
public IEnumerable<I R e g i s t r a t i o n> GetReg i s t ra t i ons ()

=> r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n . GetMany(this) ;
public IEnumerable<IBoat> GetBoats ()

=> GetReg i s t ra t i ons ()
. S e l e c t (r => r . GetBoat ()) . D i s t i n c t () ;

private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;

112

var portToVal idate = GetPort () ;
i f (r e g i s t r a r R o l e s A s s o c i a t i o n == null
| | portToVal idate == null
| | (deep && ! portToVal idate . I sVa l i d (deep)))
return fa l se ;

const int REGISTRATION MIN ITEMS = 1 ;
var r e g i s t r a t i o n T o V a l i d a t e = GetReg i s t ra t i ons () ;
var r eg i s t r a t i onCount = r e g i s t r a t i o n T o V a l i d a t e . Count () ;
i f (r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n == null
| | r eg i s t r a t i onCount < REGISTRATION MIN ITEMS
| | (deep && r e g i s t r a t i o n T o V a l i d a t e

. Any(x => ! x . I sVa l i d (deep))))
return fa l se ;

return true ;
}

}
Listing B.7: Registrar.cs

public interface I R e g i s t r a t i o n : ICanValidate
{

void SetBoat (IBoat boat) ;
IBoat GetBoat () ;
void Se tReg i s t r a r (I R e g i s t r a r r e g i s t r a r) ;
I R e g i s t r a r GetReg i s t rar () ;

}
public class R e g i s t r a t i o n : I R e g i s t r a t i o n
{

public R e g i s t r a t i o n ()
{ }
private stat ic OneToOneAssociation<I R e g i s t r a t i o n , IBoat>

b o a t R e g i s t r a t i o n A s s o c i a t i o n
= OneToOneAssociation<I R e g i s t r a t i o n , IBoat >. In s tance () ;

public void SetBoat (IBoat boat)
{

UnsetBoat () ;
b o a t R e g i s t r a t i o n A s s o c i a t i o n . CreateLink (this , boat) ;

}
private void UnsetBoat ()
{

b o a t R e g i s t r a t i o n A s s o c i a t i o n
. DestroyLink (this , b o a t R e g i s t r a t i o n A s s o c i a t i o n

. GetRight (this)) ;
}
public IBoat GetBoat ()

113

B. Case study 1 generated code

=> b o a t R e g i s t r a t i o n A s s o c i a t i o n . GetRight (this) ;
private stat ic OneToManyAssociation

<IReg i s t r a r , IR e g i s t r a t i o n>
r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n
= OneToManyAssociation<IReg i s t r a r , I Re g i s t r a t i o n>

. In s tance () ;
public void Se tReg i s t r a r (I R e g i s t r a r r e g i s t r a r)
{

UnsetReg i s t rar () ;
r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n

. CreateLink (r e g i s t r a r , this) ;
}
private void UnsetReg i s t rar ()
{

r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n
. DestroyLink (r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n

. GetOne(this) , this) ;
}
public I R e g i s t r a r GetReg i s t rar ()

=> r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n . GetOne(this) ;
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
var boatToValidate = GetBoat () ;
i f (b o a t R e g i s t r a t i o n A s s o c i a t i o n == null
| | boatToValidate == null
| | (deep && ! boatToValidate . I sVa l i d (deep)))
return fa l se ;

var r e g i s t r a r T o V a l i d a t e = GetReg i s t rar () ;
i f (r e g i s t r a r R e g i s t r a t i o n A s s o c i a t i o n == null
| | r e g i s t r a r T o V a l i d a t e == null
| | (deep && ! r e g i s t r a r T o V a l i d a t e . I sVa l i d (deep)))
return fa l se ;

return true ;
}

}
Listing B.8: Registration.cs

114

public interface IV eh i c l e : ICanVal idate
{

string Name { get ; s e t ; }
}
public class Vehic l e : I Veh i c l e
{

public Vehic l e ()
{ }
private string name ;
public virtual string Name
{

get { return name ; }
s e t { name = value ; }

}
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
i f (Name == null) return fa l se ;
return true ;

}
}

Listing B.9: Vehicle.cs

115

Appendix C

Case study 2 generated code

public interface IBra in : ICanValidate
{

IPerson GetPerson () ;
}
public class Brain : IBra in
{

public Brain () { }
private stat ic OneToOneAssociation<IPerson , IBrain>

per sonBra inAssoc ia t i on
= OneToOneAssociation<IPerson , IBrain >. In s tance () ;

public IPerson GetPerson ()
=> per sonBra inAssoc ia t i on . GetLeft (this) ;

private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
var personToVal idate = GetPerson () ;
i f (pe r sonBra inAssoc ia t i on == null
| | personToVal idate == null
| | (deep && ! personToVal idate . I sVa l i d (deep)))
return fa l se ;

return true ;
}

}
Listing C.1: Brain.cs

117

C. Case study 2 generated code

public interface IDeadPerson : ICanValidate , IPersonPhase
{
}
public class DeadPerson : IDeadPerson
{

public DeadPerson ()
{ }
private stat ic OneToOneAssociation<IPerson , IPersonPhase>

personPhaseAssoc iat ion
= OneToOneAssociation<IPerson , IPersonPhase>

. In s tance () ;
public IPerson GetPerson ()

=> personPhaseAssoc iat ion . GetLeft (this) ;
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
return true ;

}
}

Listing C.2: DeadPerson.cs

public interface ICanValidate
{

bool I sVa l i d (bool deep) ;
void I n v a l i d a t e () ;

}
Listing C.3: ICanValidate.cs

public interface IPersonPhase : ICanValidate
{

IPerson GetPerson () ;
}

Listing C.4: IPersonPhase.cs

public interface ITeamMember : ICanValidate
{

void AddTeam(ITeam team) ;
void RemoveTeam(ITeam team) ;

118

IEnumerable<ITeam> GetTeams () ;
}

Listing C.5: ITeamMember.cs

public interface IL iv ingPerson
: ICanValidate , IPersonPhase , ITeamMember

{
}
public class LivingPerson : IL iv ingPerson
{

public LivingPerson ()
{ }
private stat ic OneToOneAssociation<IPerson , IPersonPhase>

personPhaseAssoc iat ion
= OneToOneAssociation<IPerson , IPersonPhase>

. In s tance () ;
public IPerson GetPerson ()

=> personPhaseAssoc iat ion . GetLeft (this) ;
private stat ic ManyToManyAssociation<ITeam , ITeamMember>

teamMembersAssociation
= ManyToManyAssociation<ITeam , ITeamMember>

. In s tance () ;
public void AddTeam(ITeam team)

=> teamMembersAssociation . CreateLink (team , this) ;
public void RemoveTeam(ITeam team)
{

teamMembersAssociation . DestroyLink (team , this) ;
}
public IEnumerable<ITeam> GetTeams ()

=> teamMembersAssociation . GetMs(this) ;
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
return true ;

}
}

Listing C.6: LivingPerson.cs

119

C. Case study 2 generated code

public interface INamedIndividual : ICanVal idate
{

string Name { get ; s e t ; }
}
public class NamedIndividual : INamedIndividual
{

public NamedIndividual ()
{ }
private string name ;
public virtual string Name
{

get { return name ; }
s e t { name = value ; }

}
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
i f (Name == null) return fa l se ;
return true ;

}
}

Listing C.7: NamedIndividual.cs

public interface IPerson : ICanValidate , INamedIndividual
{

void SetPersonPhase (IPersonPhase personPhase) ;
IPersonPhase GetPersonPhase () ;
IBra in GetBrain () ;

}
public class Person : IPerson
{

public Person (IPersonPhase personPhase , IBra in bra in)
{

i f (personPhase == null)
throw new ArgumentNullException (nameof (personPhase)) ;

i f (bra in == null)
throw new ArgumentNullException (nameof (bra in)) ;

namedIndividual = new NamedIndividual () ;
per sonPhaseAssoc iat ion . CreateLink (this , personPhase) ;

120

per sonBra inAssoc ia t i on . CreateLink (this , bra in) ;
}
private stat ic OneToOneAssociation<IPerson , IPersonPhase>

personPhaseAssoc iat ion
= OneToOneAssociation<IPerson , IPersonPhase>

. In s tance () ;
public void SetPersonPhase (IPersonPhase personPhase)
{

UnsetPersonPhase () ;
personPhaseAssoc iat ion . CreateLink (this , personPhase) ;

}
private void UnsetPersonPhase ()
{

GetPersonPhase () ? . I n v a l i d a t e () ;
per sonPhaseAssoc iat ion

. DestroyLink (this , per sonPhaseAssoc iat ion
. GetRight (this)) ;

}
public IPersonPhase GetPersonPhase ()

=> personPhaseAssoc iat ion . GetRight (this) ;
private stat ic OneToOneAssociation<IPerson , IBrain>

per sonBra inAssoc ia t i on
= OneToOneAssociation<IPerson , IBrain >. In s tance () ;

public IBra in GetBrain ()
=> per sonBra inAssoc ia t i on . GetRight (this) ;

private readonly INamedIndividual namedIndividual ;
public string Name
{

get { return namedIndividual .Name ; }
s e t { namedIndividual .Name = value ; }

}
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
UnsetPersonPhase () ;

}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
i f (namedIndividual == null
| | ! namedIndividual . I sVa l i d (deep))
return fa l se ;

var personPhaseToValidate = GetPersonPhase () ;

121

C. Case study 2 generated code

i f (personPhaseAssoc iat ion == null
| | personPhaseToValidate == null
| | (deep && ! personPhaseToValidate . I sVa l i d (deep)))
return fa l se ;

var bra inToVal idate = GetBrain () ;
i f (pe r sonBra inAssoc ia t i on == null
| | brainToVal idate == null
| | (deep && ! brainToVal idate . I sVa l i d (deep)))
return fa l se ;

return true ;
}

}
Listing C.8: Person.cs

public interface IRobot
: ICanValidate , INamedIndividual , ITeamMember

{
}
public class Robot : IRobot
{

public Robot ()
{

namedIndividual = new NamedIndividual () ;
}
private readonly INamedIndividual namedIndividual ;
public string Name
{

get { return namedIndividual .Name ; }
s e t { namedIndividual .Name = value ; }

}
private stat ic ManyToManyAssociation<ITeam , ITeamMember>

teamMembersAssociation
= ManyToManyAssociation<ITeam , ITeamMember>

. In s tance () ;
public void AddTeam(ITeam team)

=> teamMembersAssociation . CreateLink (team , this) ;
public void RemoveTeam(ITeam team)
{

teamMembersAssociation . DestroyLink (team , this) ;
}
public IEnumerable<ITeam> GetTeams ()

=> teamMembersAssociation . GetMs(this) ;
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()

122

{
i s I n v a l i d a t e d = true ;

}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;
i f (namedIndividual == null
| | ! namedIndividual . I sVa l i d (deep))
return fa l se ;

return true ;
}

}
Listing C.9: Robot.cs

public interface ITeam : ICanValidate
{

void AddTeamMember(ITeamMember teamMember) ;
void RemoveTeamMember(ITeamMember teamMember) ;
IEnumerable<ITeamMember> GetTeamMembers () ;

}
public class Team : ITeam
{

public Team()
{ }
private stat ic ManyToManyAssociation<ITeam , ITeamMember>

teamMembersAssociation
= ManyToManyAssociation<ITeam , ITeamMember>

. In s tance () ;
public void AddTeamMember(ITeamMember teamMember)

=> teamMembersAssociation . CreateLink (this , teamMember) ;
public void RemoveTeamMember(ITeamMember teamMember)
{

teamMembersAssociation . DestroyLink (this , teamMember) ;
}
public IEnumerable<ITeamMember> GetTeamMembers ()

=> teamMembersAssociation . GetNs (this) ;
private bool i s I n v a l i d a t e d = fa l se ;
public virtual void I n v a l i d a t e ()
{

i s I n v a l i d a t e d = true ;
}
public virtual bool I sVa l i d (bool deep)
{

i f (i s I n v a l i d a t e d) return fa l se ;

123

C. Case study 2 generated code

var teamMemberToValidate = GetTeamMembers () ;
i f (teamMembersAssociation == null
| | (deep && teamMemberToValidate

. Any(x => ! x . I sVa l i d (deep))))
return fa l se ;

return true ;
}

}
Listing C.10: Team.cs

124

Appendix D

Contents of enclosed DVD

readme.txt.............................brief DVD contents description
impl..implementation files

code-generator......code generator application and its source codes
examples.........................source files for the Case studies

csharp-utils....................C# utility library and source codes
src..thesis source files

DP Homola Dan 2016.tex........................thesis LATEX source
text...thesis text

DP Homola Dan 2016.pdf.........................thesis text in PDF

125

	Introduction
	Goals and methodology
	Thesis structure

	Review
	Model-Driven Engineering
	Model-Driven Architecture

	OntoUML
	Entity Types
	Relations

	Object Model
	C#
	Type system
	Members
	Inheritance and interfaces
	Namespaces
	Syntactic features in C# 6.0
	C# and the Object Model

	PIM languages
	RDF, RDF Schema and OWL
	RefOntoUML

	Solution
	Solution overview
	Transformations
	Technologies used
	Application
	C# utilities library

	Input form into OntoUML transformation
	Purpose and interface
	Inner OntoUML representation
	Implementation

	OntoUML into OntoObjectModel transformation
	Purpose and interface
	Object Model representation
	Implementation

	OntoObjectModel into view model transformation
	Purpose and interface
	Primitive type mapping
	C# view model representation
	Implementation

	Target language view model rendering
	Purpose and interface
	Implementation

	Assessment
	Case studies
	Case study 1
	Case study 2

	Final assessment
	Model fidelity
	Future work

	Conclusion
	Bibliography
	Acronyms
	Case study 1 generated code
	Case study 2 generated code
	Contents of enclosed DVD

