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Abstrakt / Abstract

Tato práce formalizuje Stackelber-
govo korelované ekvilibrium s vícero
následovníky v hrách reprezentovaných
v extenzivní formě. V tomto ekvilib-
riu se vedoucí hráč zavazuje, že bude
hrát strategii, kterou veřejně oznámí.
Tato strategie je reflektována dalšími
hráči, kteří na ni reagují, jak nejlépe
mohou. Navíc je vedoucí hráč schopen
koordinovat hru pomocí série doporuče-
ných akcí zaslaných ostatním hráčům.
Každá taková akce je ale následovní-
kovi skryta, dokud nedosáhne stavu,
ve kterém může být vykonána. Práce
ukazuje, že v extenzivních hrách s ví-
cero hráči lze toto ekvilibrium popsat
lineárním programem s polynomiálně
mnoha nerovnostmi, avšak exponenci-
álně mnoha proměnnými. Navíc tato
práce dokazuje, že v případě, že P 6=
NP, není nalezení takového ekvilibria
v polynomiálním čase možné, kdykoli
se hry účastní více jak dva následnov-
níci, či pokud hra obsahuje náhodné
události. Algoritmus počítající Stac-
kelbergovo korelované ekvilibrium byl
naimplementován a odtestován na ná-
hodně generovaných hrách. Výsledky
experimentů ukazují, že výpočetní čas
roste exponenciálně ve velikosti herního
stromu.

Klíčová slova: Teorie her; Multi-
agentní systémy; Extenzivní forma;
Korelované ekvilibrium; Stackelbergovo
ekvilibrium; Stackelbergovo korelované
ekvilibrium.

Překlad titulu: Korelované Stackel-
bergovo equilibrium v sekvenčních hrách
s vícero následovníky

This thesis formalizes the Stackelberg
extensive form correlated equilibrium
(SEFCE) with multiple followers for
extensive games with perfect recall. In
this scenario, the leader commits to a
strategy that is observed by the follow-
ers that play a best response. Moreover,
he is able to coordinate the course of
the game through a series of moves rec-
ommended to the players. Each move is
revealed to a follower when he reaches
the information set where he can take
that move. The thesis shows that
in multi-player extensive games with
perfect recall, the linear program de-
scribing SEFCE has polynomial number
of constraints, but number of variables
is exponential. Moreover, it proves that
unless P = NP, the equilibrium can
never be found in polynomial time in
games with more than three players, or
if the game contains chance nodes. The
algorithm computing SEFCE was im-
plemented and evaluated on randomly
generated games. The experimental
results show that the computation time
grows exponentially in a size of a game
tree.

Keywords: Game theory; Multi-
agent systems; Extensive form; Cor-
related equilibrium; Stackelberg equi-
librium; Stackelberg extensive-form
correlated equilibrium.
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Chapter 1
Introduction

Games and puzzles have fascinated the human society since its early origins. Might it
be the immersive spirit of competition, the eternal circle of winning and losing, which
encourages humans across all civilizations to spend endless time striving to become the
masters of various games. In fact, games accompanied the human kind throughout
its own evolution, being an integral part of social interaction between individuals in
cultures separated in time and space. And it is not just the humanity, which could not
resist the charm of challenging the uncertainty through the physical and mental skill.
Also other animals were observed to play games like hide and seek. For some reason,
games seem to be written deeply in the genes of all living beings.

Together with the number of different games grew also the curiosity of mankind how
to solve the games. The fundamental challenge became to recognize rational responses
in various scenarios. The search for the ways to win led to the mathematical formalism
of noncooperative game theory. This theory tries to formally define games and identify
reasonable behavior optimizing the probability of victory. However, the solution con-
cepts may differ greatly, based on the disparity of information provided to participating
players. The foundations were laid when the Nash Equilibrium (NE) [38] was defined,
implying that every game contains a set of strategies for each player so that no one
profits from altering his strategy. The Nash equilibrium was later refined several times
to overcome the perceived flaws, but all these concepts are closely related. The more
general solution concept called Correlated Equilibrium (CE) [2] introduced the external
events which can help the players to cooperate. Nevertheless, the roles of the players
are still considered symmetric. On the other hand, a completely different concept was
proposed in Stackelberg Equilibrium (SE) [51], when one of the players has an advantage
to publicly announce his strategy, while the other players observe this strategy and play
as best as they can.

The advent of computers changed the game theory from a mathematical concept to
a computable solution. In late 40’, the academic computer scientists began designing
simple games either as a part of their research or solely for their own amusement. For
them, computers provided a computational power for computing the equilibria even in
large games – a process which could be hardly ever done manually. This breakthrough
encouraged the effort to mathematically formalize many processes in the human society
as games. The main applications remain in computational economics, however, any
multiagent system with limited resources, where the agents are forced to interact, can
be modeled as game. Such systems can include, but are not restricted to, the examples
like:

.Security of dynamic traffic light control [32]. The complex large-scale transport sys-
tems with many remotely controllable intersections present in modern urban centers
require effective design of its traffic control systems. Their deployment is fundamen-
tal, as they offer significant gains in traffic flow especially during rush hours. Even
though dynamic and adaptive in nature, their dependence on external sensors can

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
be exploited to substantially increase congestion. The optimal placement of sensors
can ensure robustness against data loss while maintaining system control..Threat detection in computer networks [57]. In large computer networks with multiple
valuable computers of differing importance, the defender has to optimally allocate
resources to select and inspect packets to detect potential threats. Meanwhile, an
attacker tries to evade the detection and infiltrate the targets by sending malicious
packets from several entry points of the network..Optimal honeypot selection [44]. A decoy computer systems called honeypots are
commonly used in network security to waste the time and resources of attackers
and to analyze their behavior. The designer of the network has to decide how to
design the honeypot systems and also how to locate the honeypots strategically in
the network defense. A mathematical models provide important insights into how
should honeypots look like to maximize the probability that a rational attacker will
attempt to target it..Patrolling and property protection [54]. A learning attacker tries to identify the
patterns in security and then chooses how to attack the facility being protected. A
defender schedules randomized patrols to minimize the risk of being infiltrated..Schedules of ticket inspections [54]. The provider of public transport assigns officers
on patrols to search for fare evaders. He has to take into account the information
about the places with high concentration of people and the predicted behavior of
evaders. The evaders try to remain undetected..Vaccine design to maximize evasion difficulty [40]. The modern medicine uses vac-
cination therapies as a very important part of the prevention of spreading infectious
diseases such as HIV or influenza. However, most viruses are capable to build them-
selves a specific immunity throughout sequence of mutations and therefore escape
the effect of vaccination. A model-based interaction enables to design vaccines that
make such evasion difficult..Analysis of re-identification risk of anonymous data [58]. Nowadays, many companies
can profit greatly from analyzing personal data in large databases. The organizations
seek a way to trade their data while protecting privacy by sharing de-identified data.
The concerns persist as various methods demonstrated that such data can be re-
identified. It is possible to balance re-identification risk with the value of traded
data, taking into account that a recipient will try to re-identify it if its potential
gains outweigh the incurred costs.

Many of these real-world applications have already been deployed in their domain.
However, the scalability and robustness of created algorithms vary. The hardness of
computation can cause significant delays when facing a large amount of data. One of the
proposed approaches in order to design faster and more effective domain-independent
algorithms is to model the complex situations more precisely. In past years, various
specialized solution concepts emerged to describe distinct multiagent systems.

This thesis focuses on computation of an equilibrium called Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). In this scenario, a leading agent commits to a
publicly known strategy and coordinates the other players. The coordination is realized
through the recommendations to the players, which are the moves that are generated
before the game starts. However, each recommended move is assumed to be in a sealed
envelope and is only revealed to a player when he reaches the point where he can make
that move. The applications of this concept may include for example the situations
where a commission of union of states strives to coordinate several independent law
enforcement forces, even though the law disallows it to directly control the services

2
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of any sovereign state. Such situations can be found in economics, politics or national
security. Concrete applications are analyzed in detail in Appendix B. Last but not least,
this equilibrium can be also used as highly effective heuristic for computing original
Stackelberg equilibrium [11].

1.1 Related work

The Stackelberg Extensive-Form Correlated Equilibrium generalizes the Stackelberg
equilibrium in extensive-form games by introducing recommendations to the players.
Even though the variant with multiple followers has not yet been researched, the concept
is closely related to several other works, especially the original correlated equilibrium.

The correlated equilibrium was first introduced by Aumann as a solution concept
in single step games [2]. The significant advantage of this concept is that it is com-
putationally more tractable when compared with Nash equilibrium, which is caused
by the convexity of the set of equilibria [17]. The property holds also for multiplayer
single step games [41, 21]. The concept was later extended to more general classes of se-
quential games. The best known is perhaps the Extensive-Form Correlated Equilibrium
(EFCE). This equilibrium describes a correlation device which recommends moves to
every participating player at the very moment they reach a situation when they can
take that move. Algorithms for computing EFCE were first introduced in two-player
games [52] and consequently also in games with multiple players and random events
[19]. The theoretical results achieved in analysis of EFCE are essential for this thesis.
Even more promising property is that the problem of finding one equilibrium is still
polynomial even in sequential games.

Another proposed extension of correlated equilibrium is the Agent-Form Correlated
Equilibrium (AFCE) [13]. This concept is very similar to EFCE. In fact, every EFCE is
an AFCE [52]. However, in the agent form of the game, moves are chosen by a separate
agent for each information set of the player. Moreover, the set of possible outcomes of
AFCE can be generally larger than the set of EFCE outcomes. The computation of
one AFCE also remains polynomial.

The first extension of the correlated equilibrium which applies to multistage games
is the communication equilibrium [37, 14]. In this concept, all players are capable to
send inputs to the device, which the author calls communication device. This is the
main difference when compared with EFCE, in which the device is considered strictly
separated and unreachable by the players.

The second extension of CE in multistage games is the autonomous correlated equi-
librium [14]. It differs from the communication equilibrium by disallowing the players
to make any inputs to the device. However, they still receive the signals at every stage
of the game. In the canonical form of autonomous correlated equilibrium, the device
recommends at every stage to every player a mapping, which based on the relevant part
of his strategy for the appropriate stage selects a suitable move. Each player is therefore
aware of the optimal behavior throughout the entire stage and not only locally in every
information set as in EFCE or SEFCE.

In [22, 59], the authors introduce a specific structure of extensive game with single
initial chance node. A separate disinterested player called „the maven“ replaces the
correlation device and his role is to reveal a partial information about the initial chance
move to every player. The concept is similar to EFCE and as the authors of EFCE
remark, the resulting set of obtainable payoffs can be almost identical [52]. Anyway,

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the maven is a much stronger correlating factor than the correlation device, as he is
able to observe and intervene during the entire gameplay.

In both the Nash equilibrium or correlated equilibrium concepts the strategies are
analyzed under the assumption that all players will choose their strategies simultane-
ously, independently on others. However, in some cases the roles of player can become
asymmetric. The solution concept called Stackelberg equilibrium (also known as leader-
follower or commitment equilibrium) [51] captures a unique situation when one of the
players has some sort of advantage, which enables him to move first. The possible
advantage of commitment power is a result well-known in both economic and game-
theoretic fields [46, 15, 18]. It was demonstrated that the leadership position can be
extremely profitable for the player who can acquire it. The reason is that if one player
(called the leader) commits to a strategy, the only rational reaction of other players
(called the followers) is to play their best responses. The expected utility of the leader
is hence always at least the same as in the Nash solution. The equilibrium is well-
studied and proved to be effectively scalable in many classes of single step games [28,
25]. Moreover, this model is more realistic and algorithms based on Stackelberg solu-
tion concept are already deployed in systems closely related to security. The successful
applications include airport security [43], coastal patrolling [47] and many others [54].
However, computing Stackelberg equilibrium is often NP-hard when sequential interac-
tion is allowed [30].

The idea of correlated equilibrium with one leading player was first mentioned in the
field of simple matrix games [7, 9], but this concept was soon informally extended to
sequential games [31]. However, the first formal definition and computing algorithms
for extensive-form games were presented in [11, 4]. The authors formulate the equilib-
rium as a Stackelberg analogue of EFCE. The Stackelberg correlated equilibrium (SCE)
hence has a specific property – while Stackelberg equilibrium pushes the computational
demands up, the convexity of correlated equilibrium suggests the possibility of efficient
calculation. In the algorithms presented so far, the more deciding property among these
conflicting characteristics proved to be the convexity, as they are polynomial.

1.2 Computational motivation
The main motivation for introducing the SEFCE concept with multiple followers is
computational..Knowing that most relevant solution concepts are polynomial, is it possible to

compute a Stackelberg Extensive-Form Correlated Equilibrium with multiple fol-
lowers in polynomial time?

Unfortunately, an answer to this question is no (unless P = NP). This result is proved
in this thesis. Note that the complexity is actually closely related to the size of the
game description. The input of any solving algorithm is typically some representation
of the sequential game. This representation has to be complete in the sense that it en-
tirely encodes the whole structure including the game tree, the information of players,
their possible actions, the chance probabilities (if present) and outcomes. Polynomial
(or linear or exponential) complexity always refers to the size of this description. The
general non-compact form of the sequential games has typically exponential size. How-
ever, the compression of the description is possible in many cases. Unfortunately, the
computation of correlated Stackelberg equilibrium with multiple followers does not al-
low the structure to be represented compactly. The thesis characterizes the complexity
of SEFCE in two most general classes of games.

4
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Main result I. For a two-player, perfect-recall extensive game with imperfect infor-
mation and with chance moves, the problem of finding SEFCE is NP-hard.

The existence of chance nodes therefore marks the transition from polynomial com-
plexity to NP-hardness. Interestingly, the same holds for multiple followers.

Main result II. For an imperfect-information perfect-recall extensive game with more
than three players and no chance nodes, the problem of finding SEFCE is NP-hard.

The second result can not be directly derived from the properties of EFCE, since the
complexity of finding maximum-payoff EFCE in games with two correlated players is
still polynomial. While the related solution concepts can be computationally easier than
Stackelberg correlated equilibrium or even Nash equilibrium for simple matrix games,
the situation becomes much more ambiguous when considering sequential games. The
reason is their representation can be exponentially large. This thesis confirms that
even though the set of SEFCE is a polytope defined by polynomially many inequalities,
finding a SEFCE can never (unless P = NP) be done in polynomial time.

1.3 Approach of this thesis
This thesis aims at designing a domain-independent algorithm for the problem of find-
ing Stackelberg Correlated equilibrium in extensive-form games. First, the related con-
cepts are introduced, explained and the algorithms for their computation are described.
Second, the SEFCE is formally defined, emphasizing the properties shared with other
solution concepts. An already existing algorithm for computing this equilibrium in a
relatively narrow class of two-player games is shown to not apply to games with chance
nodes. Third, a more general algorithm in games with multiple followers is presented.
The existence of the equilibrium in every game is formally proved and the complexity
of finding SEFCE in different classes of games is analyzed.

Furthermore, the scalability of the designed algorithm is then examined in various
games, including general approaches into solving linear programs.

1.3.1 Overview

The thesis is organized in the following structure:

.The game theory provides the necessary theoretic background for playing games.
The basics of its mathematical formalism are formulated in Chapter 2..Chapter 3 presents various related concepts and algorithms for finding equilibria in
games; together with their properties..The existence and complexity of finding SEFCE are proven in Chapter 4. This
chapter contains also the description of the designed algorithm..Chapter 5 contains the experimental results achieved with the algorithm..Finally, Chapter 6 concludes this thesis. It discusses both the theoretical and exper-
imental results and proposes the possible directions for future research.
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Chapter 2
Introduction to Game Theory

This chapter formally introduces the fundamentals of game theory. At the beginning it
formalizes the central notion – utility, and proceeds with the definitions of basic game
descriptions. The structure and the technical background are inspired by [48].

Game theory was originally proposed as a mathematical study of winning strategies
in games, but was further developed into a theory describing interaction among inde-
pendent and self-interested agents. In contrast to the cooperative theory, the basic unit
of the non-cooperative game theory is an individual, not a group. The interest of each
agent is effectively quantified using utility functions. The utility functions are a central
concept of utility theory, which studies the measures of preferences over a set of possible
outcomes of a given interaction. In game theory, this interaction is the very game.

Every utility function is a mapping from states of the game to real numbers and
represents the satisfaction of each player of being located in this state. The utility
functions can be regarded as ordinal, when only the preference relation is meaningful;
or cardinal, when the increments to satisfaction can be compared across different states.
The rational models of game theory assumes the utility functions to be cardinal.

Moreover, the correlation of utility functions of different players is essential. In so-
called zero-sum (or more generally, constant-sum) games the sum over utilities of the
players in each terminal state of the game is always equal to zero (or any given constant).
These games are usually easier to analyze than general-sum games, where the property
of a constant sum is violated in at least one terminal state.

Before the games are formally defined, note, that identifying rational behavior is
much easier when considering only one player (which is a subject matter of decision
theory), but becomes significantly more complex once more agents interact.

2.1 Normal form
Normal (or strategic) form is a basic type of game representation in single step games.
Each player moves only once and actions are chosen simultaneously. This makes the
model simpler than other forms at a cost of neglecting sequential decision making.

Definition 2.1. Normal-form game. Every normal-form game (NFG) is a tuple
G = (N, A, u), where.N = {1,..., n} is a set of players;.A = {A1, ..., An} is a set of sets of actions for each player; and.u is a utility function for each player, ui : A1 × ...×An → IR.

The utility functions in normal-form games are usually visualized as a payoff matrix.
The number of dimensions of this matrix is equal to the number of players participating
in the game. The elements of the payoff matrix are the tuples of utility values, indexed
by the respective actions available to each player.

Strategies can be seen as plans contingency or policy for playing the game. In every
situation, player’s reaction is defined by his strategy. One option is to choose a pure
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strategy πi ∈ Πi, which assigns exactly one action from Ai to player i. On the other
hand, a mixed strategy δi ∈ ∆i is a probability distribution over Πi. From the player’s
perspective, randomizing the decisions can be seen as a belief that he can profit from
playing such action. A strategy profile is a tuple of pure strategies π = (π1, ..., πn) ∈ Π
or mixed strategies δ = (δ1, ..., δn) ∈ ∆, which completely defines how the game will
progress.

Cooperate Defect

Cooperate -1,-1 -4,0

Defect 0,-4 -3,-3

Player 2

P
la
y
e
r
1

Figure 2.1. An example of normal-form game [48].

Example Consider a two-player game in Figure 2.1. The depicted payoff matrix
describes the prisoner’s dilemma, a standard game modeling the situation when two
members of a criminal gang are arrested and kept in isolated confinements. Both
are given an opportunity to betray the other prisoner in exchange for a lesser charge.
However, none of them is aware of the choice of his colleague. If they both decide to
remain silent and Cooperate, each of them serves only an year in prison. On the other
hand, if they Defect, the charge is 3 years. The combined choices lead to a situation
when the traitor is freed and the betrayed prisoner serves 4 years.

2.2 Extensive form
Extensive-form games (EFGs) represent sequential interactions between the players.
The structure of EFGs can be visually represented as game trees, with each node
representing a different state of the game. Every game-state is uniquely determined by
a sequence of moves executed by all players during the gameplay. In every node of a
game tree exactly one player acts. An edge from a node corresponds to an action that
can be performed by the player who acts in this node. All actions are deterministic,
so that they are always correctly executed. EFGs model limited observations of the
players by grouping certain nodes into information sets; a player cannot distinguish
between nodes that belong to the same information set. In perfect-information games,
each information set contains exactly one node, which makes their existence redundant.
A special case are concurrent-move games (also called simultaneous), where players act
all at once during one round. The EFG model also represents uncertainty about the
environment and stochastic events by introducing chance moves of a special Nature
player.

Definition 2.2. Extensive-form game. Every EFG is a tuple G = (N, H, Z, A, ρ, u,
C, I), where

.N is a set of players;.H is a set of nodes;.Z ⊆ H is a set of terminal nodes;.A is a set of all actions, A(h) are the possible actions in node h ∈ H;
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2. Introduction to Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.ρ is a player function, ρ: H → N;.u is a utility function for each player, ui : Z → IR;.C is a probability function for performing a chance action, C : A → [0, 1]; and. I is a set of information sets for each player.

The function ρ : H → N ∪ c assigns each node to a player who is on a move in
the node, where c implies that the Nature player chooses an action based on a fixed
probability distribution. This probability is denoted as function C : A → [0, 1] and is
known to all players in advance. Consequently, the probability of reaching node h due
to Nature (i.e., assuming that all players play all actions required to reach node h) is
defined to be the product of the probabilities of all actions taken by the Nature player
in history of h. The function C can be overloaded to denote this product as C(h).

As already mentioned, in some cases the players have only limited information about
their true state in the game tree. This so-called imperfect observation of player i is
expressed by information sets Ii that form a partition over the nodes {h ∈ H : ρ(h) = i}
belonging to player i. Every information set contains at least one node (and singular
information sets carry a perfect information) and each node is assigned to exactly one
information set. All nodes in an information set of a player are not distinguishable to
that player. Therefore, the nodes h in a single information set I ∈ Ii have the same set
of possible actions A(h). Any action a from A(h) uniquely identifies information set
I and there cannot exist any other node h′ ∈ H belonging to information set different
from I in which a can be performed (i.e., a ∈ A(h′)). The overloaded notation A(I) is
also used to denote the set of actions which can be played in this information set. The
game is said to be a game of perfect recall if the players remember the history of their
own actions and all information gained during the gameplay.

Similar to the strategic form, players can play pure strategies, which assign one
action from A(I) to each information set I ∈ Ii for player i. Unlike in NFGs, the
set of all pure strategies can be reduced by using only relevant pure strategies in each
information set. This set of reduced pure strategies is denoted Π∗. For example in
Figure 2.2, the choice of action in the second information set of player 1 is irrelevant,
when assuming the player decided to take action R in his first information set. However,
representing an EFG using pure strategies is highly inefficient, because the number of
actions in the equivalent normal-form game is exponential in the size of the game tree.
This exponential blowup is caused by the inevitability to consider all combinations of
actions in every information set for each player.

The mixed strategies in EFGs are again the probability distributions over the set
of pure strategies. Moreover, games in extensive form can be also played according
to another kind of strategy. The behavioral strategy βi ∈ Bi is similar to a mixed
strategy in a sense of repeated one-turn games. But instead of randomizing over the
set of pure strategies, behavioral strategy randomizes independently over actions in
each information set with preset probability distribution. In games of perfect recall,
behavioral strategies allowed their compact representation called sequence form [27].

A sequence of actions for player i is a list of actions σi ∈ Σi that lie on the path
from root state r to any state h ∈ H. ∅ is an empty sequence and all sequences leading
to an information set I or a node h are denoted seqi(I) and seqi(h), respectively. The
function infi(σi) is used to obtain the information set in which the last action of the
sequence σi is taken. For an empty sequence, function infi(∅) returns the information
set of the root node r. Sequences can be extended by finding feasible actions in the
information set to which the particular sequence leads. Formally, for every sequence
σi ∈ seqi(I), a set of its extensions is a set Ext(σi) = {σiaj | aj ∈ A(I)}. The sequence σ′

i
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is a prefix of σi (σ′
i ⊑ σi) if σi is obtained by finite number of extensions of σ′

i. The game
tree is constructed inductively in the way that for every information set the sequences
which lead to it are taken and by their extensions is found a subsequent information
set. Every state in every information set is clearly characterized by a combination of
sequences of all players, which lead to this state.

Given a behavioral strategy, it is obvious that some sequences will be preferred over
others in sense of their likelihood to be played. This concept is called a realization plan
of βi and for each player i it is a function ri : Σi → [0, 1] defined as ri(σi) =

∏
a∈σi

βi(a).
Intuitively, realization plans compute the conditional probability of playing a sequence
σi when considering a behavioral strategy βi. However, this realization probability
cannot be arbitrary. The following network-flow linear constraints have to be met:

ri(∅) = 1
∑

σ′
i∈Exti(I)

ri(σ
′
i) = ri(seqi(I)) ∀I ∈ Ii

ri(σi) ≥ 0 ∀σi ∈ Σi

(2.1)

The first constraint says that the conditional probability of playing an empty sequence
when considering any behavioral strategy is always 1. The second constraint ensures
that the realization plans of sequences leading to the states reachable by one action
from information set I sum up to the realization plan of reaching set I. This also
allows the original behavioral strategy to be possibly recovered afterwards, just from
these equations. Finally, the third constraint demands the realizations of all sequences
to be nonnegative. It is quite natural, since the realization plans are the probabilities,
which are by definition at worst zero.

1

2

1

(0, 0)

l

(2, 4)

r

A
1

(2, 4)

l

(0, 0)

r

B

L

(1, 1)

R

Figure 2.2. An example of extensive-form game, inspired by [48].

The sequence form is much smaller than the normal form, or even reduced normal
form. The reason is that every sequence contains only moves of one player along the
path from the root. The maximum number of sequences is therefore bounded by the
number of nodes in the tree. The realization plan is described by a polynomial number
of constraints (one equation for each information set), which uniquely represents any
EFG.

In this representation, the extended utility function gi : Σ1×...×Σn → R is defined for
each player i as gi(σ1× ...×σn) =

∑
z∈Z|∀σi∈σ:seqi(z)=σi

ui(z)C(z). If no leaf is reachable
with a tuple of sequences σ, a value of gi is 0.

Finally, the set of opponents of player i is often denoted as −i. This notation is
frequently used for tuples of strategies restricted to the opponents, such as δ−i = δ\δi
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or π−i = π\πi. In games with only two players, −i is the only opponent of player i.
Therefore, his set of sequences is referred as Σ−i and the same notation is used also in
functions seq−i or inf−i.

Example Consider the two-player imperfect-information extensive game in Figure 2.2.
In this game, player 1 has two information sets – the set including only the top root
state, and the set which contains two nodes in the bottom part of the game tree. A
dotted line denotes that the states are indistinguishable for player 1. Note that the sets
of actions which can be performed in these states belonging to the second information
set are identical. Player 1 can be regarded as not informed about an action player 2
took in his information set. On the other hand the second player is always aware where
in the game tree he finds himself. This is because his information set contains only
a single state. To reach one of the leaves, the players can choose from the following
maximal sequences – R, Ll and Lr for player 1 and A or B for player 2. In contrast,
the corresponding normal-form equivalent is exponential. The strategies of player 1 are
Ll, Lr, Rl and Rr; while player 2 chooses from A or B.

10



Chapter 3
Solution Concepts

This chapter describes the algorithms for computing both the correlated and Stackelberg
equilibrium in finite imperfect-information games with perfect recall and finite utilities,
which is assumed to be a canonical class of games. Anytime throughout this thesis a
game is mentioned in the text, it refers to this class, unless expressively stated otherwise.
However, the individual subclasses may differ in the number of players and the existence
of chance nodes.

Game equilibria are the central concepts of game theory, describing optimal strategy
profiles. First, equilibria are successfully used to predict and describe what will happen
in strategic interactions between multiple rational agents. Second, every equilibrium
is stable. When looking for an optimal reaction, an equilibrium provides a strategy to
which (by definition) there is no better response than the equilibrium. An opponent
who changes his strategy from the equilibrium is now playing a worse strategy.

The chapter starts with definitions formalizing an optimal gamepley. A player that
plays a mixed strategy can gain a various range of outcomes. To evaluate different
strategies, he can use an expected payoff. An expected payoff for player i is defined as
ui(δ) =

∑
a∈A1×...×An

ui(a)
∏n

j=1 δj(aj). By δj(aj) is denoted a probability of player j

taking jth action from a. Now it is possible to ask which strategy is the best. Agent’s
strategy δ∗

i in game G = (N, A, u) is a best response to strategies δ−i if and only if
∀δi∈∆i: ui(δi,δ−i) ≤ ui(δ∗

i ,δ−i). As every player intends to do his best to maximize
his utility and considers the decision-making of his opponents, behavior of all agents
playing the same game over and over again is evolving. At a certain point of finding
their best responses, players realize that changing their strategy would not lead to
earn more than with their current decision plan. This concept of balance is called an
equilibrium.

Definition 3.1. Nash equilibrium (NE) Given a game G = (N, A, u) and strategy
profile δNash = (δ1, ..., δn) ∈ ∆, players N are in Nash equilibrium if and only if for each
player i it holds that δi is a best response to δ−i.

If the current strategy profile allows no one to benefit from changing his strategy,
the situation remains stable. It has been proved, that in every game with finitely many
players and with finite set of pure strategies, there is at least one Nash equilibrium
profile, although it might consist of mixed strategies [38].

Not all equilibria can be computed efficiently. For example, Nash equilibrium in
general-sum games of two players can be found by solving a sequence form linear com-
plementarity problem. However, several sets of equilibria in this chapter are represented
using linear programs (LPs). The complexity of solving the game is dependent on the
size of the LP describing the desired equilibrium. Every LP can be solved in time
polynomial in its size [24, 23], even though the most well-known simplex algorithm is
faster, but with worst-case exponential time [26].

Proofs of all stated theorems can be found in the respective cited literature.
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3.1 Correlated equilibrium
Correlated equilibrium describes the situation when players are given a chance to coor-
dinate according to an external event. This so-called correlation device can be imagined
as a signaling device (e.g., the traffic lights) helping the players to synchronize. In the
canonical representation of correlated equilibrium, the recommendations to the players
are the moves, not arbitrarily signals. It was shown that this can be assumed without
loss of generality [14]. The very important aspect is that even if the probability dis-
tribution that correlation device uses to generate signals is known, each player is not
aware of the recommendations given to the other players. All he knows is that they are
proposed the best move with respect to the others.

Finding a correlated equilibrium is less difficult than finding a Nash equilibrium,
because the sets of correlated equilibrium distributions and payoffs are convex. This
property enables the description to be more compact and thus computationally less
demanding.

3.1.1 Normal-form CE

In matrix games, players are in correlated equilibrium when given a move according
to the correlation device λ, they do not have an intention to unilaterally deviate from
the recommended strategy, given his posterior on the recommendations to the other
players.

Definition 3.2. Normal-form correlated equilibrium The distribution λ on Π is a
correlation device of a correlated equilibrium if and only if for all i, every πi ∈ Πi with
λ(πi) > 0 and every π′

i ∈ Πi,

∑

π−i∈Π−i

ui(πi, π−i)λ(π−i|πi) ≥
∑

π−i∈Π−i

ui(π
′
i, π−i)λ(π−i|πi) (3.1)

A correlation device λ makes recommendations to the players by randomly picking
a strategy profile π∗ according to its distribution λ. Then it privately recommends the
component πi of π∗ to each player i before the game starts. The equilibrium can be
found in polynomial time even in multiplayer games [41, 21].

LW WL

LW 2,1 0,0

WL 0,0 1,2

Husband

W
if
e

Figure 3.1. An example of correlated equilibrium in normal-form game [48].

Example Consider the Battle of Sexes game in Figure 3.1. The game has a unique
mixed-strategy Nash equilibrium δNash =((1/3, 2/3), (2/3, 1/3)) which guarantees
each player an expected payoff of 2/3. However, imagine the players can observe an
external event and correlate their actions according to this event. Their strategies are
therefore conditioned on this event. For example, if they decide their strategies based
on flipping a fair coin, their strategies are extended by the possibility of “head” or

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Correlated equilibrium

“tail”. A pair of strategies “WL if heads, LW if tails” forms an equilibrium in this
richer strategy space, because whenever one player adopts this strategy, the other one
can only lose if he decides to play another. Moreover, the expected payoff of each player
is 0.5 · 2 + 0.5 · 1 = 1.5, which is strictly more than they receive in the mixed-strategy
equilibrium in the original game.

3.1.2 Extensive-form CE

The notion of a commitment equilibrium where the leader can adopt a correlated strat-
egy in a sequential game (i.e. SEFCE) is the Stackelberg analogue of the Extensive-
Form Correlated Equilibrium (EFCE) introduced in [52]. The definition was shown to
be relevant also technically, enabling using techniques of finding EFCE for computing
SEFCE [4]. The properties of EFCE are therefore important for better understanding
of SEFCE and are explained in this section in detail.

The behavior of correlation device in extensive games differs from the definition of
correlation device in normal-form games. In EFGs, the device recommends a move just
at the moment an information set is reached. For this reason the recommendations
become local and players are less aware of the intended progress of the game. Conse-
quently, also the set of EFCE in an extensive-form game is larger than the set of CE
of the equivalent normal-form game. Again, the distribution λ describes a correlation
device of EFCE if any rational player behaves according to his recommendations while
assuming that

.all other players also follow their recommendations – this is a standard assumption
for any equilibrium; and.when any player decides to deviate from the recommended move, he gets no further
information. Consequently, the posterior of the player at all following information
sets is equal to that at the last information set before he deviates.

This assumption can be made without loss of generality because any EFCE can be
defined using reduced strategies only [52].

Example Consider an extensive-form game with two players depicted in Figure 3.2.
This game is described in [52] as a costless variant of a signaling game presented in
[50]. In this game a professor (player 2) decides whether to accept a student (player 1)
applying for a summer research job. With the same probability, the student is either
well-educated (type G) or inexperienced (type B). He sends a costless signal X or Y.
Consistently with the structure of the game shown in the Figure, the professor is able
to distinguish the signals X and Y, but not the education level of the student. The
student is hence capable to impersonate an experienced person and get hired even if his
education is poor. In case the professor lets the student to work with him, the payoffs
are either (4, 10) for G or (6, 0) for B. Refusal leads to the utility (0, 6) in both cases.

In [52] the authors analyze the correlated equilibria of this game and show that
in every equilibrium the professor plays rXrY with a probability of 1. Therefore, he
never allows the student to work with him and both players always receive the pay-
off (0, 6). On the other hand, the situation changes significantly when considering
EFCE. The signal for the well-educated student is now hidden from the student with
insufficient skills, which effectively prevents any bad student to wittingly overvalue his
education. The professor is thus able to evaluate student’s knowledge more precisely.
Therefore, this situation is advantageous for both of them. For example, a distribu-
tion λEF CE which with the equal probability picks one of the following strategies –
{(XGXB , lXrY ), (XGYB , lXrY ), (YGXB , rX lY ), (YGYB , rX lY )} – is an EFCE. Note that
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to prohibit any insidious student from impersonating a good student, λEF CE recom-
mends the correct signal exactly in one half of cases. Otherwise, he could do exactly the
opposite of what he is given and λEF CE would not be an EFCE. The expected payoff
of this equilibrium is (3.5, 6.5), which is strictly more than each of them obtains in the
correlated equilibrium.

Chance

1

2

(4, 10)

lX

(0, 6)

rX

XG

2

(4, 10)

lY

(0, 6)

rY

YG

G 1/2
1

2

(6, 0)

lX

(0, 6)

rX

XB

2

(6, 0)

lY

(0, 6)

rY

YB

1/2 B

Figure 3.2. Signaling game with costless signals (X or Y) for player 1 [52].

3.1.2.1 Two-player games

When a game has only two players and no chance moves, for every selected reference
sequence, the information set is uniquely determined by the player’s own history path
and the reference sequence. This is the reason why sequence form can be used to
compactly describe EFCE in this class of games.

Definition 3.3. Relevant sequences [52] A pair of sequences (σ1, σ2) is termed relevant
if and only if ∃i ∈ {1, 2} either σi = ∅ or ∃h, h′ ∈ H, h′ ⊑ h; σi = seqi(h) ∧ σ−i =
seq−i(h′).

The set of sequences of −i which form a relevant pair with σi is denoted rel(σi).
Informally, the sequences are relevant when decisions at the information sets reachable
by one of the sequences can affect the decisions at the information sets reachable by
the other sequence. This happens exactly when the information sets are connected.
In two-player games, if one information set precedes another, the opposite can not
hold. The relation of “preceding” is hence antisymmetric even for information sets of
different players. This is not true when considering games with chance nodes or strictly
more than two players. Now it is possible to extend the constraints for realization plans
(2.1) to consistency constraints for joint probabilities of pairs of sequences, which define
what is called a correlation plan. These constraints apply only to mutually relevant
information sets, where the consistency of recommendations can be violated.

Definition 3.4. A correlation plan [52] is a partial function p : Σ1 × Σ2 → IR so
that there is a probability distribution λ on the set of reduced strategy profiles Π∗ so
that for each relevant sequence pair (σ1, σ2), the term p(σ1, σ2) is defined and fulfills
p(σ1, σ2) =

∑
(π1,π2)∈Π∗ λ(σ1, σ2) where π1, π2 prescribe playing all of the actions in σ1

and σ2, respectively.

The correlation plans describe a joint realization probability p(σ1, σ2) that a pair of
sequences (σ1, σ2) is recommended to the two players. In [52] the authors proved that
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correlation plans are sufficient to characterize the set of EFCE in two-player games with
no chance nodes.

Theorem 3.5. Extensive-form correlated equilibrium in two-player game without
chance moves [52] The distribution λ on Π∗ is a correlation device of an EFCE if and
only if the respective correlation plan p for all players i ∈ {1, 2} satisfies

p(∅, ∅) = 1; 0 ≤ p(σ1, σ2) ≤ 1

p(seqi(I), σ−i) =
∑

a∈A(I)

p(seqi(I)a, σ−i) ∀I ∈ Ii,∀σ−i ∈ rel(σi)

v(σi) =
∑

σ−i∈rel(σi)

p(σ−i, σi)gi(σ−i, σi) +

+
∑

I∈Ii; seqi(I)=σi

∑

a∈A(I)

v(σia) ∀σi ∈ Σi

v(I, σi) ≥
∑

σ−i∈rel(σi)

p(σ−i, σi)gi(σ−i, seqi(I)a) +
∑

I′∈Ii; seqi(I′)=seqi(I)a

v(I ′, σi)

∀I ∈ Ii,∀σi ∈
⋃

h∈I
rel(seq−i(h)),∀a ∈ A(I)

v(seqi(I)a) = v(I, seqi(I)a) ∀I ∈ Ii,∀a ∈ A(I)

(3.2)

First two constraints are based on the formulation of realization plan constraints
(2.1). The following constraint ensures that vσi

is a representation of an expected
payoff of the player when he plays σi, assuming he follows his recommendations. The
constraint consists of two parts – the first sum computes the expected utility of the
leaves reached by playing according to σ−i and σi, the second sum adds the contribution
of the expected utility of information sets reachable by all the extensions of σi. The
next constraint guarantees that the expected payoff v(I, σi) is the maximum over all
possible sequences leaving the information set I (denoted as seqi(I)a for all possible
actions a ∈ A(Ii)) after the player is recommended to play σi. Finally, the last constraint
forces the move which is recommended to player i in the information set I to be optimal.

Both the number of constraints and the number of variables in Theorem 3.5 are
polynomial in the size of the tree, so any EFCE in this class of games can be computed
in polynomial time. However, the authors remark that the problem of finding maximum-
payoff EFCE seems to be an example of a game-theoretic solution concept where the
introduction of chance moves marks the transition from polynomial-time solvability to
NP-hardness. Consequently, finding EFCE in more general classes of games is much
harder. In [52], the authors demonstrate it on a real example of a constructed game tree
with chance nodes. They show that the consistency constraints (2.1) of realization or
correlation plans used also in the linear program (3.2) are not sufficient to completely
characterize the convex hull of pure (and reduced) strategy profiles. It means that there
exists a distribution on sequence pairs p̂ that satisfies the conditions (2.1), but is not
a convex combination of pure strategy pairs. The moves which are recommended to
players according to p̂ are not consistent and therefore cannot be a part of any EFCE.
The sequence form is hence not suitable for any game with chance nodes or strictly
more than two players.
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3.1.2.2 Multi-player games

In [19], the author points out that not only a sequence form, but generally no compact
representation like sequence form is about to be expected when aiming to compute
an EFCE in more general classes of games. In perfect-recall games of two players,
the structure of information sets significantly differs from games with chance nodes or
multiple players. The imposed restrictions enable the recommendations to be generated
uniquely for each information set, while maintaining the compact description. However,
in more general classes of games, the consistency constraints satisfied by a sequence form
become only a necessary condition. Consequently, the size of the game representation
used for describing EFCE is always asymptotically equal to the size of an equivalent
normal-form game. There is also no correlation plan.

On the other hand, the compact representation of games with two players require
to compare every pair of preceding information sets, regardless on whom they belong
to. In the multi-player case, it is sufficient to compare only those sets where the same
player acts. The preceding relation is altered to suit the game representation based on
pure strategies, which is introduced in [19] to describe the set of EFCE.

Definition 3.6. Agreeing strategy [52] A strategy πi ∈ Πi agrees with a sequence σ if
and only if ∀a ∈ σ ∃I ∈ Ii; πi(I) = a. A partial strategy profile πJ where J ⊆ {1, .., n}
agrees with a node h ∈ H if and only if every πi ∈ πJ agrees with seqi(h).

Furthermore, the set of all agreeing strategies for sequence σ or (possibly partial)
strategy profiles for node h is denoted agr(σ) and agr(h), respectively.

Similarly to the linear program for computing EFCE in games with two players, the
conditions for EFCE in multiplayer games can be expressed using inequalities. First,
in the equilibrium no player has an intention to deviate from his received recommen-
dations. To consider a deviation, a player i calculates the expected payoff contribution
of a ∈ Ai as a sum of expected utilities from all leaves reachable by playing a.

u(a) =
∑

t∈Z:
a∈seqi(t)

ui(t)C(t)
∑

π∈agr(t)

λ(π) (3.3)

The second constrain then compares the expected payoff contribution of action a ∈
A(I ′) with the potential payoff the player is able to obtain in case he deviates from
his recommendation at this information set I ′. The deviation will affect the expected
utilities in all subsequent information sets. The optimal expected payoff at information
set I (under the assumption the player is recommended move a ∈ A(I ′) where I ′

precedes I) is the maximum of the utilities the player expects for actions b ∈ A(I).

v(I, a) ≥
∑

πi∈agr(seqi(I′)a)

∑

t∈Z:
seqi(I)d=seqi(t)

∑

π−i∈agr(t)

ui(t)C(t)λ(πi, π−i)

+
∑

l̂:seq(l̂)=seqi(I)b

v(l̂, a)
(3.4)

Note that by the definition, once the player decides not to follow the recommenda-
tions, he starts to ignore every further signal. Equivalently, he may as well not receive
the recommendations any more. Finally, the last equation makes sure that the expected
payoff contribution and the optimal expected payoff of every move a ∈ A(I) is equal.

u(a) = v(I, a) (3.5)
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If there exists a probability distribution λ on pure strategy profiles that fulfills the
presented constraints, it clearly represents an EFCE. Before the game starts, the corre-
lation device picks one of the strategy profiles according to the equilibrium distribution
and privately recommends the appropriate moves to every player once they reach a
state where they can take that move. Based on the assumption and the presented in-
equalities, no player has an intention to deviate and hence the distribution λ describes
an EFCE. Formally, this fact is summarized in the following theorem.

Theorem 3.7. Extensive-form correlated equilibrium in multi-player game [19] A
probability distribution λ on Π∗ is a correlation device defining an EFCE if and only if
it satisfies for all players i ∈ {1, ..., n} the incentive constraints

u(a) =
∑

t∈Z:
a∈seqi(t)

ui(t)C(t)
∑

π∈agr(t)

λ(π) ∀I ∈ Ii,∀a ∈ A(I)

v(I, a) ≥
∑

πi∈agr(seqi(I′)a)

∑

t∈Z:
seqi(I)d=seqi(t)

∑

π−i∈agr(t)

ui(t)C(t)λ(πi, π−i) +
∑

l̂:seq(l̂)=seqi(I)b

v(l̂, a)

∀I, I ′ ∈ Ii; seqi(I
′) ⊑ seqi(I)∀a ∈ A(I ′)∀b ∈ A(I)

u(a) =v(I, a) ∀I ∈ Ii,∀a ∈ A(I)
(3.6)

The number of these constraints that describe the set of EFCE is polynomial in the size
of the game tree.

The linear program specified in Theorem 3.7 has an exponential number of vari-
ables, since every pure strategy profile is described by exactly one variable; but only a
polynomial number of constraints. The respective dual program has therefore only a
polynomial number of variables. In [20], the authors exploited the fact that the solu-
tion, which is obtainable in polynomial time, is polynomial reducible to a behavioral
strategy satisfying the conditions of the primal program. Such reduction is generally
not realizable when considering a general linear program. A direct consequence is that
despite the exponential representation of the game, one equilibrium can always be found
in polynomial time.

3.2 Stackelberg equilibrium
Stackelberg equilibrium [51] models a situation when the roles of players are asymmetric.
In this scenario, one of the players (the leader) moves first, while the other players (the
followers) observe his strategy and then move sequentially. The expressive power of this
concept is suitable for modeling existing real-world situations, because it often occurs
in economy, e.g. when the market leader has the power to set the price for items or
service; or in security, e.g. when the defender allocates a number of road checkpoints
to protect a urban road network.

Despite being the thoroughly useful solution concept, maybe the most burdensome
drawback of Stackelberg equilibrium is its high computational complexity in extensive
games. The reason is that in contrast with NE or CE, the Stackelberg concept is
optimal not even locally, which means that no player has an intention to deviate; but
also globally. The leading player strives to adopt a strategy which optimizes his expected
utility while knowing the followers will observe it and adapt their own strategies.

In two-player games, it is possible to assume that the follower will adopt a strategy
maximizing the payoff of the leader if he does not strictly prefer one of the possibilities.
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This property of the follower to act in leader’s favor when indifferent is called compliance
and it is the basis of the commitment theory [33]. In [53], the authors demonstrated
that the rational reason for the follower to be compliant is that his outcome is in this
case always better or at least equal to that obtained in the Nash equilibrium. Formally,
this situation is referred as Strong Stackelberg equilibrium (SSE).

Definition 3.8. Strong Stackelberg equilibrium The distribution p on Πl is an optimal
leader’s strategy of Strong Stackelberg equilibrium if and only if p is a leader’s strategy
of Stackelberg equilibrium and the followers will break ties in leader’s favor.

However, in the same article they also show that this assumption generally no longer
holds for games with more than two players. If the followers are able to coordinate, they
can cooperate to achieve the outcome which is best for them. In this case the expected
payoff of the leader can be even worse than in the best Nash equilibrium and hence
publicly announcing his strategy can be considered as a disadvantage. On the other
hand, in the scenarios where the followers cannot coordinate, the leader can still make
the followers to adopt the equilibrium which is best for him. Note that in SEFCE, the
leader is able to coordinate the followers using the correlation signals, which effectively
solves the problem of inconvenienced leader. Once every follower is aware that all other
followers are suggested a move consistent with an equilibrium, no one would prefer to
deviate from this strategy.

3.2.1 Normal-form SE

For games in normal form [8, 53], computing the Stackelberg equilibrium is straightfor-
ward when the class is restricted to two-player games. In this case the follower reacts
to the leader’s strategy exclusively. When more followers are involved, the situation
becomes more complex. Intuitively, the players are in the equilibrium when the leader’s
expected payoff is maximal possible and the followers cannot obtain higher payoffs by
changing their strategy. In the following definition, the set of pure strategies of the
leader is denoted as Πl. If there is only one follower, his set of pure strategies is referred
as Πf .

Definition 3.9. Stackelberg equilibrium The distribution p on Πl is an optimal leader’s
strategy of Stackelberg equilibrium if and only if p maximizes leader’s utility and all the
followers play their best responses. In 2-player games [8], this can be expressed as

max
p,πf

∑

πl∈Πl

ul(πl, πf )p(πl) (3.7)

and one inequality for every π′
f ∈ Πf

∑

πl∈Πl

uf (πl, πf )p(πl) ≥
∑

πl∈Πl

uf (πl, π′
f )p(πl). (3.8)

In [8], the authors proved that the equilibrium can be effectively found in games
with two players using the linear program from the definition. However, the problem
of finding Stackelberg equilibrium in matrix games with more than three players is
NP-hard.
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Figure 3.3. An example of Stackelberg equilibrium in normal-form game [8].

Example Consider the matrix game in Figure 3.3. Let player 1 be a leader in this
game. First, imagine a situation in which the leader is capable to commit only to a
pure strategy. In the Nash concept, he would always try to avoid playing r, because
no matter what the second player does, the first player will obtain a higher utility. In
contrast, when considering a Stackelberg concept, playing the bottom strategy is exactly
what the leader is supposed to do to maximize his expected outcome. The follower is
now forced to prefer an action B, which leads to a utility 3 for the leader. Conversely, if
the leader decides to commit to the top strategy, the follower would choose A, leaving
only a utility 2 for the leader.

Moreover, if the leader commits to a mixed strategy, he is able to obtain even higher
payoff. If he decides to play r with higher probability than l, the follower will still
prefer B and the expected payoff of the leader is the appropriate proportion of utility
4 and 3. However, in case he commits to placing the equal probability on both his
strategies, the follower is indifferent between his strategies. By definition of SSE, the
follower adopts a strategy that maximizes the payoff of the leader. The expected utility
in this equilibrium is (3.5, 0.5), which is more than the first player is able to obtain in
both CE and NE.

3.2.2 Extensive-form SE

Although the security applications of the Stackelberg concept proved to be suitable
for many domains, the existing works typically focus on the situations where the play-
ers cannot interact in a sequential manner. The first algorithm for computing SSE in
extensive games was presented in [8] and its implementation is based on solving mul-
tiple linear programs. Specifically, for every pure strategy of the follower it computes
the strategy of the leader and then picks the one maximizing his outcome. Number
of LPs solved is therefore exponential. Moreover, their implementation uses normal-
form games only, thus making it computationally impossible for large EFGs, since the
transformation between the forms is also exponential.

The second approach primarily focuses on the Bayesian games, where the leader is
playing against one of possible followers with different preferences. The algorithm of [42]
formulates the problem as a mixed-integer linear program (MILP). The main advantage
of the MILP formulation is in avoiding the exponential Harsanyi transformation of a
Bayesian game into a normal-form game.

Even more general algorithm for computing Strong Stackelberg equilibrium in
imperfect-information games with two players is the formulation introduced in [3].
The authors exploit both the compact sequence form representation of EFGs and the
MILP-based algorithm of [42].

19



3. Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem 3.10. Strong Stackelberg equilibrium in two-player game [3] The strategies
represented as the realization plans r1 and r2 describe a SSE if and only if they maximize
the leader’s expected utility

max
p,r,v,s

∑

z∈Z

p(z)u1(z)C(z) (3.9)

and satisfy the constraints

v(inff (σf )) = sσf
+

∑

I′∈If :seqf (I′)=σf

v(I ′)

+
∑

σl∈Σl

rl(σl)gf (σl, σf ) ∀σf ∈ Σf

ri(∅) = 1 ∀i ∈ N

ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N, ∀Ii ∈ Ii, σi = seqi(Ii)

0 ≤ sσf
≤ (1− rf (σf ))M ∀σf ∈ Σf

0 ≤ p(z) ≤ rf (seqf (z)) ∀z ∈ Z

0 ≤ p(z) ≤ rl(seql(z)) ∀z ∈ Z

1 =
∑

z∈Z

p(z)C(z)

rf (σf ) ∈ {0, 1} ∀σf ∈ Σf

0 ≤ rl(σl) ≤ 1 ∀σl ∈ Σl

(3.10)

The first constraint in this linear program ensures the follower plays a best response
in each information set. As always, the following network flow constraints restricts the
realization plans and hence guarantee their well-formedness. Because the best response
of the follower in Stackelberg equilibrium is limited to pure strategies, his realization
plan is binary. The next constraint effectively enforces the slack variables sσf

to be
zero for the sequences contained in the realization plan of the follower. This is achieved
by using large constant M . Finally, the linear program introduces a variable p, which
semantically corresponds to the probability of reaching a particular leaf, assuming the
players behave according to their realization plans. This probability is equal to a
multiplication of the realization plans rl and rf , which cannot be in a linear program
realized otherwise. The use of p ensures the objective function is formulated as a linear
expression.

The analysis of computational complexity of SSE in [30] confirms that in most classes
of games (except the perfect-information games with two players and no chance) the
problem of finding Strong Stackelberg equilibrium is NP-hard. The formulation used
in Theorem 3.10 remains consistent with the analysis, since solving a mixed-integer
linear program is also known to be NP-complete. However, in [11], the authors demon-
strated that SSE can be calculated using an iterative branch-and-bound algorithm with
heuristic based on solving for SEFCE. Even though the problem is still NP-hard, their
approach proved to significantly outperform the previous state-of-the-art formulation
(3.10) in terms of computational time. Their work was one of the main motivations for
analyzing SEFCE with multiple followers.
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Figure 3.4. An example of Stackelberg equilibrium in extensive-form game [30].

Example Consider an extensive-form game depicted in Figure 3.4. Assume that
player 1 acts like a leader in this game, which means that according to the game tree,
he moves as a second. In case the roles of the players are symmetric, the solution is
a Nash equilibrium where player 1 prefers the moves l and p, which induces player 2
to choose A. The payoffs of the players in this equilibrium are (1, 3). However, once
player 1 exploits the power of commitment to pure strategy, he can force player 2 to
move to right at the top state by committing to play r and o. The resulting utilities are
now (2, 2), which is strictly more than the leader would get in NE. Moreover, suppose
that the leader can commit to a behavioral strategy. If he announces that he prefers r
in his left state and plays o and p with equal probability in his right state, the follower
is indifferent between A and B. By the assumption of Strong Stackelberg equilibrium
he therefore takes B, which guarantees the players the expected payoff (2.5, 1).

21



Chapter 4
Computing Stackelberg Extensive-Form
Correlated Equilibrium

This chapter presents the main theoretic results of this thesis. At the beginning
it formally defines Stackelberg extensive-form correlated equilibrium in imperfect-
information extensive games with perfect recall. It introduces an analysis of algorithm
of [11] for computing SEFCE in the elementary class of two-player games without
chance moves. The key elements of the transition from a linear program describing
EFCE to a linear program describing SEFCE are emphasized. It is shown that the
algorithm of [11] cannot be extended any further. In fact, just computing SEFCE in
games with two players and chance nodes is by Theorem 4.3 NP-hard. The chapter
proceeds by presenting a general linear program for computing SEFCE in games with
more than two players and also with the possibility of chance. In addition, the proof
is provided to show that SEFCE always exists in every extensive game with perfect
recall.

Players Information Chance Complexity Source

2 perfect No O(|S||Z|) [4]
2 imperfect No poly [11]
2 CM Yes poly [4]
2+ imperfect Yes NP-hard Theorem 4.3
3+ imperfect No NP-hard Theorem 4.8
4+ imperfect No NP-hard Theorem 4.6

Table 4.1. The complexity of finding SEFCE in games with perfect information, concurrent
moves (CM) or imperfect information.

The subsequent hardness result proved in Theorem 4.8 claims that the problem of
finding SEFCE in games with more than two followers is NP-hard, independently on
whether a game contains the chance moves. The obtained complexity results rely on
the inspection of proofs of complexity of EFCE presented in [52] and their consecutive
reformulation into the formalism of the correlated Stackelberg solution concept. More-
over, a method of pseudo-chance nodes from [30] is adapted to conclude the proof of
NP-hardness in three-player games.

Definition 4.1. Stackelberg Extensive-Form Correlated Equilibrium [4] A probability
distribution λ on reduced pure strategy profiles Π∗ is called a Stackelberg Extensive-Form
Correlated Equilibrium if it maximizes the leader’s utility subject to the constraint that
whenever play reaches an information set I where any follower can act, this follower
is recommended an action a according to λ such that he cannot gain by unilaterally
deviating from a in I and possibly in all succeeding information sets given the posterior
on the probability distribution of the strategies of other players, defined by the actions
taken by the leader and other followers so far.
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The definition suggests that the correlated Stackelberg equilibrium is in fact the

“Stackelberg analogue” of extensive-form correlated equilibrium. However, in contrast
to the correlated equilibrium, where the signals were recommended by an external cor-
relation device, the signals in SEFCE are the moves which the leader suggests the
followers should play. As mentioned in Section 3.2.2, no rational follower would in-
tentionally prefer to deviate from this signal knowing that all other followers are also
recommended a move which describes an equilibrium. The leader is hence able to choose
the recommendations so that his utility is maximized, while the expected payoffs of the
followers are still ensured. The probability distribution λ encodes this (possibly) mixed
behavioral strategy of the leader in the equilibrium. In every information set of the
leader, he chooses his actions according to λ. This action identifies the strategy profile
π∗ with non-zero probability λ(π∗) from which the actions are given to the followers
in the subsequent information sets. Similarly to correlated equilibrium, the correlation
of the followers gives the leader an opportunity to expect even higher payoff than in
strong Stackelberg equilibrium. Consider the following example, which demonstrates
the difference between the behavior of leader in SSE and SEFCE.

2
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(4, 0)

l

(0, 2)

r

C
1

(0, 1)

o

(1, 3)

p

D

A

(0, 2)

B

Figure 4.1. An example of correlated Stackelberg equilibrium in extensive-form game [4].

Example Consider an extensive-form game shown in Figure 4.1 and assume that
player 1 acts like a leader in this game. In case he is not able to correlate the follower,
the solution is a strong Stackelberg equilibrium in which player 1 commits to play a
pure strategy l and p in his information sets. The follower is therefore induced to play
A and D, resulting in the final payoffs (1, 3). Note that even if the leader plays a
strictly mixed strategy, he cannot improve this outcome. The reason is that he has
to guarantee the follower the expected utility at least 2 to make him choose action A
instead of B. However, the commitment to correlated strategies enables the leader to
change it. Consider the distribution over strategy profiles λSEF CE where the leader with
probability 0.5 picks profile (lp, AD) and with the equal remaining probability chooses
profiles {(ro, AC), (lo, AC)}. The probability distribution λSEF CE is interpreted so
that with the equal probability the leader sends either signal C or signal D to the
follower. In case the follower receives C, the leader commits to play a uniform strategy
in his first bottom information set and o in the second information set. Otherwise
the follower receives D and the leader is about to take actions l and p. Note that
λSEF CE is indeed an equilibrium, because the follower does not intend to deviate from
his recommendations. Using the signals according to this equilibrium, the leader is able
to increase his expected payoff to 1.5 while maintaining the expected utility equal to 2
for the follower.
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4.1 Two-player games
As it was shown in the work about EFCE [52], the structure of any two-player perfect-
recall extensive game without chance moves can be effectively described using sequence
form. This representation leads to the linear program (3.2), which is able to describe
and compute extensive-form correlated equilibrium in polynomial time. In [7], the
authors discussed the formulation of Stackelberg counterpart of correlated equilibrium
in normal-form games. They argue that the Stackelberg correlated equilibrium can be
described by dropping the incentive constraints for leader in the linear program and
instead adding an objective of maximizing leader’s expected utility. It is important
to realize that if the incentive constraints for the leading player are added back in,
their program just finds the correlated equilibrium that maximizes leader’s expected
utility. This concept differs from SEFCE significantly. In [11], the authors combined the
formulation of EFCE and the approach of [7] to formulate the following linear program
computing SEFCE in two-player games without chance moves. They remark (but not
prove) that the same approach cannot be used for games with chance nodes.

Theorem 4.2. Stackelberg extensive-form correlated equilibrium in two-player game
without chance moves [11]The distribution λ on Π∗ defines a SEFCE if and only if λ
is a solution of the following linear program that maximizes leader’s expected utility

max
p,v

∑

σl∈Σl

∑

σf ∈Σf

p(σl, σf )gl(σl, σf ) (4.1)

and the respective correlation plan p satisfies

p(∅, ∅) = 1; 0 ≤ p(σl, σf ) ≤ 1

p(seql(I), σf ) =
∑

a∈A(I)

p(seql(I)a, σf ) ∀I ∈ Il,∀σf ∈ rel(σl)

p(σl, seqf (I)) =
∑

a∈A(I)

p(σl, seqf (I)a) ∀I ∈ If ,∀σl ∈ rel(σf )

v(σf ) =
∑

σl∈rel(σf )

p(σl, σf )gf (σl, σf ) +

+
∑

I∈If ; seqf (I)=σf

∑

a∈Af (I)

v(σf a) ∀σf ∈ Σf

v(I, σf ) ≥
∑

σl∈rel(σf )

p(σl, σf )gf (σl, seqf (I)a) +
∑

I′∈If ; seqf (I′)=seqf (I)a

v(I ′, σf )

∀I ∈If ,∀σf ∈
⋃

h∈I
rel(seql(h)),∀a ∈ A(I)

v(seqf (I)a) = v(I, seqf (I)a) ∀I ∈ If ,∀a ∈ A(I)

(4.2)

The close similarity to the linear program (3.2) is clearly noticeable. Consistent with
the assumptions, the constraints remain almost the same (except that the leader’s are
omitted), only the objective function maximizing the expected payoff is added. The
compact sequence representation ensures that the number of variables and constraints
of the linear program is polynomial in the size of the tree. Taking into account that any
linear program can be solved in polynomial time, finding SEFCE in this class of games
is also polynomial. Interestingly, adding chance moves to the game tree dramatically
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affects the complexity. The reason is the same as in EFCE – the presence of chance
nodes causes the recommendations to affect not only the expected contribution of action
in a particular sequence, but also across the tree. Even though the corresponding corre-
lation plan is locally consistent (which means it satisfies the network flow constraints),
it might not be a convex combination of pure strategy pairs.

Theorem 4.3. For a two-player, perfect-recall extensive game with imperfect informa-
tion and with chance moves, the problem of finding SEFCE is NP-hard.

The proof is given as a reduction from Boolean Satisfiability Problem, in which a
formula in conjunctive normal form has a size of each clause limited to at most three
literals (also known as 3-SAT). This problem is commonly known to be NP-hard [10].
The similar approach is used to prove hardness of either computing EFCE in [52] or
finding optimal plays in possible-worlds models in [6].
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Figure 4.2. A reduction from a 3-SAT instance φ = x ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y) to a two-
player imperfect-information game with perfect recall. The first player acts like a leader,

the second player follows. Inspired by a reduction from [52].

Proof. Let φ be a boolean formula in conjunctive normal form with n clauses, where
each clause has at most three literals. A two-player game Γ(φ) is constructed so that
in the root state there is a chance node which chooses each clause of φ with uniform
probability. Every choice leads to a singleton information set of the follower, who is
acknowledged which clause was chosen. His action is to choose one literal of the clause.
The leader then decides the boolean value of each variable without knowing if the
follower picked the positive or negated variant. If he chooses it correctly, both players
get utility 1, 0 otherwise. Apparently, the number of actions in the game tree is at most
10n and the number of information sets is at most 4n, so the reduction is linear in the
size of the formula. φ is satisfiable if and only if the expected utility of the leader in
SEFCE of Γ(φ) is 1.

→ If φ is satisfiable, then there exists a truth assignments e which maps each variable
of φ to the boolean truth value so that φ is true in e. If leader behaves in his
information sets according to e and the follower chooses the literal which makes the
clause true in e, this pure strategy profile is a SEFCE with expected payoff for both
players equal to 1.

← Assume φ to be not satisfiable and an equilibrium strategy profile λ with expected
utility 1. Without loss of generality, let λl is pure. If λl is mixed, then it has a
guaranteed maximal expected outcome 1 in every reachable subtree, which means
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it might as well be pure and the outcome stays the same. The action a leader
recommends to the follower in every information set I ∈ If must be semantically
equal to the action the leader plays in Il(a). If not, the probability of reaching
such I is non-zero and it would yield an expected utility strictly less than 1. These
recommended actions specify a literal in every clause, which satisfies it. So λ encodes
an assignment which makes φ true and that is a contradiction.

�

As a consequence, the compact representation of SEFCE cannot be expected when
chance moves are allowed. There is no characterization by a polynomial number of
linear inequalities, unless P = NP.

4.2 Multi-player games
The uppermost motivation for searching for algorithm which computes SEFCE with
multiple followers was computational. The concept of correlated Stackelberg is closely
related to the original correlated equilibrium, where the polynomial transition from the
two-player case to multi-player case proved to be realizable, first in the class of normal-
form games [41, 21]. Moreover, the similar technique was also proved to be suitable
for games in extensive form, which was accomplished by [19]. However, the author
showed that when facing the situation with strictly more then two correlated players,
the compact representation can not be expected. The description is always exponential
in the size of the game tree.

To obtain the description of SEFCE, it is possible to follow the same approach as in
the two-player case. The constraints related to leader’s information sets in the linear
program (3.6) are dropped and the criterion maximizing his expected utility is added.
The formal description follows.

Theorem 4.4. Stackelberg extensive-form correlated equilibrium in multi-player
game A probability distribution λ defines a SEFCE if and only if λ is a solution of
the following linear program that maximizes leader’s expected utility

max
λ,u,v

∑

t∈Z

ul(t)C(t)
∑

π∈agr(t)

λ(π) (4.3)

and satisfies for players i ∈ {1, ..., n}\l the incentive constraints

u(c) =
∑

t∈Z:
c∈seqi(t)

ui(t)C(t)
∑

π∈agr(t)

λ(π) ∀I ∈ Ii,∀c ∈ A(I)

v(I ′, c) ≥
∑

πi∈agr(σI c)

∑

t∈Z:
seqi(I′)d=seqi(t)

∑

π−i∈agr(t)

ui(t)C(t)λ(πi, π−i) +
∑

Î:σ(Î)=σI′ d

v(Î , c)

∀I, I ′ ∈ Ii; seqi(I) ⊑ seqi(I
′)∀c ∈ A(I)∀d ∈ A(I ′)

u(c) =v(I, c) ∀I ∈ Ii,∀c ∈ A(I)

(4.4)

Proof. When the follower f receives the signal recommending move c at information
set I ′, the constraints ensure that v(I ′, c) is the optimal payoff he can obtain from
deviating from c. By assumption all other followers obey their recommendations, which
means that player f plays his best response. The leader moves first, so the constraints
do not apply to him. His expected payoff is maximized by the objective function. The
linear program (4.4) with criterion (4.3) hence describes a SEFCE.

�
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The system used in Theorem 4.4 completely characterizes the set of all SEFCE.
However, this system can be simplified to contain a smaller amount of constraints,
similarly to the linear program representing an EFCE [19]. The reason is that for every
move c ∈ A(I), the last constraint makes sure that the expected payoff contribution of
c and the optimal expected payoff at the information set I where the acting follower
receives c is equal. Therefore, the variables representing u(c) and v(I ′, c) are redundant
and they can be removed. In [19] the constraints are reduced in two steps. First, the
variable v(I ′, c) is replaced with u(c), and second, the variable u(c) is substituted with
the expression describing the expected payoff contributions of c – the sum from the first
constrain in (4.4). The system (4.4) from Theorem 4.4 is therefore equivalent to the
following constraints.

∑

t∈Z:
c∈seqi(t)

ui(t)C(t)
∑

π∈agr(t)

λ(π) ≥

∑

πi∈agr(σI c)

∑

t∈Z:
seqi(I′)d=seqi(t)

∑

π−i∈agr(t)

ui(t)C(t)λ(πi, π−i) +
∑

Î:σ(Î)=σI′ d

v(Î , c)

∀I, I ′ ∈ Ii; seqi(I) ⊑ seqi(I
′)∀c ∈ A(I)∀d ∈ A(I ′)

v(I ′, c) ≥
∑

πi∈agr(σI c)

∑

t∈Z:
seqi(I′)d=seqi(t)

∑

π−i∈agr(t)

ui(t)C(t)λ(πi, π−i) +
∑

Î:σ(Î)=σI′ d

v(Î , c)

∀I, I ′ ∈ Ii; seqi(I) ⊑ seqi(I
′)∀c ∈ A(I)∀d ∈ A(I ′)

(4.5)
The number of constraints in the system (4.5) is polynomial. In fact, for every pair

of information sets I and I ′ of player p such that I precedes I ′ (which includes also
the possibility that I = I ′), the system contains one constraint for every c ∈ A(I) and
d ∈ A(I ′). The expected number of constraints E[C] is

E[C] =
∑

i∈{1,...,n}\l

∑

I∈Ii

∑

I′∈Ii:
seqi(I)⊑seqi(I)

|A(I)| · |A(I ′)| ∼ |P | · Ep[A]2 · Ep[I]2, (4.6)

where Ep[A] is an expected number of actions in every information set and Ep[I] is an
expected number of information sets of every player. Therefore, the linear program (4.4)
for computing SEFCE has an exponential number of variables, but only a polynomial
number of constraints.

4.2.1 Existence of equilibrium

Even if the linear program (4.4) is proved to identify a correlated Stackelberg equi-
librium, the existence of the equilibrium itself does not follow directly. The polytope
described by the constraints could be empty (which means the linear program is unfea-
sible) or conversely, its volume could be infinite in the direction of the objective function
(which means the linear program is unbounded). Without knowing the existence of the
equilibrium is inevitable, it is difficult (and perhaps meaningless) to try to analyze its
properties. Fortunately, a SEFCE exists in every extensive game with perfect recall.

Observation 4.5. Existence of SEFCE Every multi-player, perfect-recall extensive game
has a SEFCE, which can be constructed by solving a linear program.
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Proof. In [19], the author proved that EFCE in multi-player games with perfect

recall always exists, which means that the convex polytope which is defined by the
linear program (3.6) and represents the set of EFCE is always non-empty. The concept
of SEFCE is a modification of EFCE created so that one of the players is chosen
to act as a leader, the criterion which maximizes his expected utility is added and the
original linear program describing EFCE is stripped of the constraints related to leader’s
information sets. The optimization is thus done over a convex polytope which is at least
as large as the polytope representing EFCE. The only problem with the existence of
SEFCE might thus be that the linear program for computing SEFCE is unbounded.
However, this cannot happen since the criterion maximizes a convex combination of
leader’s possible outcomes, which are (by the definition of the relevant class of games)
finite, so the maximization is bounded by the maximum utility the leader can obtain
in the game. The leader’s expected utility is therefore finite, the maximum is always
reached and the equilibrium always exists.

�

Note that simply transform an extensive game into its normal-form representation
and then finding the equilibrium is not possible. Similarly to EFCE, also SEFCE is
a sequentially revealing equilibrium, while in SCE the leader recommends the followers
their whole strategy at once, as soon as the game starts.

4.2.2 Computational complexity

As it was shown in section 4.1, in games with only a leader and one follower SEFCE
has a compact description – a linear program with size polynomial in a size of a game.
Unfortunately, the existence of chance moves marks a transition from polynomial class
to NP-hardness, because no compact description can be expected when chance nodes
are added into a game tree. Similarly to EFCE [52], the existence of a compact rep-
resentation would provide a polynomial algorithm for identifying an equilibrium which
maximizes a sum (or any other linear function) of expected payoffs of the players (or
in case of SEFCE – of a leader). This would imply that P = NP.

In EFCE, it holds that the set of the equilibria in games with strictly more than two
players always has a non-compact representation. However, the situation is different
in correlated Stackelberg equilibrium. In this equilibrium the leader is not correlated
with the followers, which means that the NP-hardness of maximum-payoff EFCE with
multiple players does no directly imply that finding SEFCE in games with only two
followers is NP-hard. Conversely, it actually suggests that there might be a polynomial
algorithm for computing it. The intuition is justified by considering previous hardness
results achieved in analysis of SEFCE, which are listed in Table 4.1. Unfortunately,
this section provides an analysis of games with more than three players and shows that
computing SEFCE is NP-hard even in these games.

It is more suitable to begin with less general result for games with at least four
players. One can observe that the situation is similar to that in proof of Theorem 4.3.
The key idea – the structure of the information sets of the follower and the necessary
randomization – is cautiously reformulated for the case of games with four players.

Theorem 4.6. For an imperfect-information perfect-recall extensive game with more
than four players, the problem of finding SEFCE is NP-hard.

The proof is once again based on the reduction from 3-SAT problem. To achieve
the essential assumption of the proof of Theorem 4.3, which means that each clause is
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chosen randomly, the utilities of the follower who replaces the chance node are chosen
so that he has an incentive to randomize. The same idea is used in [52] for proving the
hardness of EFCE.
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Figure 4.3. A reduction from an unsatisfiable 3-SAT instance φ = x∧ (¬x∨y)∧ (¬x∨¬y)
to a four-player imperfect-information game with perfect recall. The first player is the
correlating leader, the other three players act like the followers. Inspired by a reduction

from [52].

Proof. Let φ be a boolean formula in conjunctive normal form with n clauses, such
that every clause contains at most three literals. A four-player game Γ(φ) is constructed
so that in the root state the leader selects his trivial and only possible action. This
simplification is possible because his only role in this game is to correlate the players.
His action leads to the state of the first follower, who picks one of the clauses of φ.
Every choice then leads to a singleton information set of the second follower, who is
acknowledged which clause was chosen. His action is to choose one literal of the clause.
The third follower then decides the boolean value of each variable without knowing if
the second follower picked the positive or negated variant. If he chooses it correctly, the
leader, the second follower and the third follower get utility 1 while the first follower
gets -1. Otherwise, all players gain zero. The first follower acts like an opposing force
in this scenario. Apparently, the number of actions in the game tree is at most 10n + 1
and the number of information sets is at most 4n + 2, so the reduction is linear in the
size of the formula. φ is satisfiable if and only if the expected utility of the leader in
SEFCE of Γ(φ) is 1.

→ If φ is satisfiable, then there exists a truth assignments e which maps each variable
of φ to the boolean truth value so that φ is true in e. If the leader recommends the
actions according to e in the third follower’s information sets and the second follower
is recommended to choose the literal which makes the clause true in e, the leader is
able to ensure himself the maximal expected utility 1. This pure strategy profile is a
SEFCE with expected payoff for the leader and the second and third follower equal
to 1, independently on the strategy of the first follower, who cannot avoid obtaining
the utility -1.

← Assume φ to be not satisfiable and an equilibrium strategy profile λ with leader’s
expected utility 1. Then λf3 must be pure, otherwise this expected utility could
not be achieved. The action a leader recommends to the second follower in every
information set I ∈ If2 must be semantically same to an action which the third
follower is recommended to pick in the subsequent information set. If not, the first
follower can play an action leading to I and it would yield an expected utility strictly
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less than 1. Similarly to the previous case, the strategy profile λ is an equilibrium,
because no one can get a strictly better utility by deviating. Interestingly, this holds
independently on which action is recommended to the first follower in his information
set, because the expected utility of the leader significantly restricts the recommended
actions in the information sets of other followers. The actions recommended to the
second follower describes the literal in every clause which satisfies it. So λ encodes
an assignment which makes φ true and that is a contradiction.

�

The proof is valid even if only one of the followers has non-singleton information sets.
That means the limited information of the players about their location in the game tree
does not have to significantly differ from the information provided to players in games
with perfect information. The NP-hardness hence affects even games without complex
structure of information sets. Furthermore, note that if instead of the state of the first
follower the chance node was replaced by a state of the leader (which means the game
would have only three players) the logical progression of the proof would fall apart. The
nodes of the followers are placed so that the players has to match the literals satisfying
each clause with their truth assignments. Therefore, the structure can not be altered in
any way. Moreover, the leader would never have an intention to randomize, because he
can always make the followers to play a Nash equilibrium which maximizes his expected
payoff. This equilibrium would hence violate at least one implication of the equivalence
with the condition of satisfiability, independently on whether the leader’s utilities are
positively correlated, negatively correlated or even uncorrelated.

In [52], the authors demonstrated that the signals which the players receive from
a correlation device in EFCE can be inconsistent if the “preceding” relation on the
information sets is not antisymmetric and the game is described using a sequence form.
This can be easily seen to be violated if there are third player or chance nodes in the
game. Therefore, there is no linear program based on the sequence-form representation
which can compute a correlated Stackelberg equilibrium in general extensive game.
However, this result does not directly imply there is no other compact representation
beyond the sequence form, which would permit to find SEFCE effectively.

The key idea for proving that a correlated Stackelberg equilibrium in extensive games
cannot be effectively constructed is revealed by inspection of the proof of NP-hardness
of SEFCE in games with chance or four players. The proof is based on the fact that
each clause of a 3-SAT formula is chosen randomly. Hence, it is necessary to incite the
leader to randomize over this set of clauses. Fortunately, this can be achieved using a
structure called pseudo-chance node, introduced in [30].

Lemma 4.7. [30] In Stackelberg extensive-form game it is possible to simulate a chance
node with uniform distribution over its N descendants by a tree structure with appro-
priate utilities for the leader and one follower.

Proof. Consider a game depicted in Figure 4.4. This game with two players contains
2(N −1) internal nodes and 2N −1 leaves. In an optimal solution, the leader will make
the follower to move right everywhere, because letting him move left would result in
obtaining a payoff 0. In addition, it is in the interest of the leader get to the rightmost
leaf where his utility is maximized. First examine the leader’s optimal commitment at
the bottom internal node of the tree. He needs to commit to placing the probability
at least 0.5 on the left action in order to make the follower move right at the node
above. However, it is not advantageous for the leader to commit to move left with the
probability higher than 0.5. The reason is his utilities are higher up in the tree, whereas

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Multi-player games

the follower always receives a payoff 1. This strategy makes the follower indifferent in
the next higher node and by assumption of SSE, he breaks ties in leader’s favor. By
similar reasoning, the optimal strategy of the leader in the higher node is to move left
with probability 1/3, etc.
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Figure 4.4. A pseudo-chance node used in Lemma 4.7.

Consequently, the optimal strategy β∗ of the leader in his ith node from the bottom
is

β∗ = (
1

i + 1
,

i

i + 1
). (4.7)

Given this behavioral strategy, the probability that the leader will move left exactly at
his ith node from the bottom (and not before) is

1
i + 1

N−1∏

j=i+1

j

j + 1
=

1
N

, (4.8)

and the probability that the follower never moves left is

N−1∏

j=1

j

(j + 1)
=

1
N

. (4.9)

This structure is thus able to substitute a chance node with uniform probability distri-
bution over all possible actions of the leader.

�

The expected utility of the leader in this strong Stackelberg equilibrium is

ul(β
∗) =

1
N

+
1
N

N∑

i=2

i

N2
. (4.10)

The important observation is that the expected utility of the leader is strictly higher
than any utility the player can get without trying to reach the rightmost leaf. Now it
is possible to proceed to formulation of the theorem about hardness of finding SEFCE
in games with more than three players.

Theorem 4.8. For an imperfect-information perfect-recall extensive game with more
than three players, the problem of finding SEFCE is NP-hard.

The reduction from 3-SAT is again used to prove the computational complexity.
Moreover, the pseudo-chance node from Lemma 4.7 is required to incentivize the leader
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to randomize. Recall that the same approach as in Theorems 4.3 and 4.6 is not ap-
plicable in case of three players, because the leader would not be forced to commit to
strategy which guarantees a uniform distribution over the leaves.
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Figure 4.5. A reduction from an unsatisfiable 3-SAT instance φ = x∧ (¬x∨y)∧ (¬x∨¬y)
to a three-player imperfect-information game with perfect recall. The first player is the
correlating leader, while the other two players are the followers. Inspired by a reduction

from [52].

Proof. Let φ be a boolean formula in conjunctive normal form with n clauses, such
that every clause contains at most three literals. A three-player game Γ(φ) is con-
structed so that in the root is a pseudo-chance node with uniform distribution over
n + 1 nodes. Each of these nodes (except the rightmost one, which stays the same)
represents one of the clauses of φ. The first follower F1 is acknowledged which clause
was chosen and he has to choose one literal of the clause. The second follower F2 then
decides the boolean value of each variable without knowing if the first follower picked
the positive or negated variant. If he chooses it correctly, both followers will obtain the
utility 1 and the leader the appropriate utility i/n2. Otherwise, all players gain zero.
The number of actions in the game tree is at most 13n and the number of information
sets is at most 6n, so the reduction is linear in the size of the formula. φ is satisfi-
able if and only if the expected utility of the leader in SEFCE of Γ(φ) is ul(β∗) of the
pseudo-chance node with n + 1 equally like outcomes.

→ If φ is satisfiable, then there exists a truth assignments e which maps each variable
of φ to the boolean truth value so that φ is true in e. If the leader recommends the
actions according to e in the second follower’s information sets and the first follower
is recommended to choose the literal which makes the clause true in e, the leader
is able to ensure the maximal expected utility 1 for both followers in every subtree
under the pseudo-rchance node. By Lemma 4.7, his optimal strategy is thus the
same as in the pseudo-chance node itself and cannot be any better because the first
follower would otherwise does not want to proceed right in the pseudo-chance node
structure. This distribution over the pure strategies is a SEFCE, because no player
can obtain more by deviating from this strategy.

← Assume that φ is not satisfiable. If the leader is about to obtain the same expected
payoff as in the pseudo-chance node, he has to attempt to reach the rightmost leaf
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with the same probability as in the pseudo-chance node. Otherwise, as noted right
after the proof of Lemma 4.7, his expected utility is strictly lower. The optimal
strategy of the leader is necessarily constructed bottom-up. In every state of the
leader, he has to ensure that the expected payoff of the first follower when he moves
right in the state above is the same as as if he moves left. Otherwise he would
deviate from the recommended move right. Note that his left move leads always
immediately to a leaf. Because φ is not satisfiable and the game tree is designed
so that the followers have to match each clause with the literal which satisfies it in
order to obtain the maximum payoff, there exists a subtree Ti encoding a clause i
in which the leader cannot any longer guarantee this outcome for the first follower.
Denote u(Ti) < 1 the expected payoff of the first follower in this subtree. The leader
considers to move left with the probability pL and right with the probability 1− pL.
In order to make the follower indifferent, it must hold that

u(Ti)pL + (1− pL)
i− 1

i
=

i

i + 1
. (4.11)

The leader hence moves left with probability

pL =
1

(i + 1)(u(Ti)i− i + 1)
, (4.12)

which is either negative (meaning that he is not able to play an optimal strategy even
in the lower nodes) or strictly greater than the probability of going left in the optimal
strategy in the pseudo-chance node – recall that it is 1/(i + 1). The rightmost leaf
is therefore reached less often, which means the expected payoff in SEFCE for the
leader is strictly less than the expected payoff in the pseudo-chance node.

�
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Chapter 5
Experiments

This chapter describes the experiments performed with the linear program for comput-
ing SEFCE. The computation is done using several methods for solving general linear
programs. Note that this chapter focuses on computing an exact equilibrium, while the
design of algorithms for computing an approximated SEFCE is not the aim of this the-
sis. First, the chapter states the conditions under which the experiments were carried
out. It specifies the solving algorithms used for testing and the parameters of individual
instances of games – specifically the structure, size, number of players and the role of
the leading player. Second, the results are given and discussed.

5.1 Settings
The implementation is done in Java in three steps. First, the extensive-form games are
modeled in a domain-independent framework. The game trees have to be represented
in pure strategies. Second, a linear program is constructed on top of the representation.
Finally, a solving algorithm is used to obtain the solution.

For defining games, the implementation uses Game-Theoretic (GT) Library1), a
project of Computational Game Theory group from Artificial Intelligence Center at
Czech Technical University in Prague. Game-Theoretic Library is written in Java and
contains domain-independent implementations of algorithms for solving extensive-form
games. It defines a general modular framework for describing games, which provides
a unified environment for building game trees. The efficient computation of equilibria
requires the games to be described compactly. In Game-Theoretic Library, extensive
games are represented using either behavioral strategies or realization plans based on
sequence form. However, the design of the library focuses mainly on two-player games.
Consequently, as the first step in the implementation of an algorithm which computes
SEFCE with multiple followers, this framework has to be modified to suit the purposes
of games with multiple players, which are represented in pure strategies. For this pur-
pose, the algorithm first transforms the sequence form into an equivalent normal form
of the game. Once the framework was adapted, the linear programs can be generated.
Their formulation omit redundant pure strategies by using only reduced ones.

The linear programs computing SEFCE are solved in the IBM ILOG CPLEX Op-
timization Studio2). Cplex is an optimization software package developed mainly for
solving integer programming problems and very large instances of linear programming
problems using various methods. These methods include either primal or dual variants
of the simplex method, the barrier interior point method and several others. The solver
is also capable to choose the method automatically, using heuristics based on the anal-
ysis of the problem. The algorithm for finding the correlated Stackelberg equilibrium
chooses specifically the primal simplex, the dual simplex or the interior-point method.

1) http://jones.felk.cvut.cz/repo/gtlibrary/
2) http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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The version of software used in the experiments is listed in Table 5.1. The linear
programs were generated in Java from a game representation obtained from Game-
Theoretic Library and subsequently solved using Cplex’s interface called Concert.

Java: version 1.8.0 91
IBM ILOG Cplex: version 12.4

Game-Theoretic Library: version from 10. 4. 2016

Table 5.1. The version of software used in the experiments.

The experiments were performed on a desktop computer with processor Intel(R)
Core(TM) i7 CPU 860 @ 2.80GHz and 16GB RAM.

5.1.1 Game domains

To guarantee the robustness of obtained results, the algorithm was tested on randomly
generated games. The game trees in this domain can be built according to parameters
including number of players, existence of chance nodes, maximum tree depth, fixed
or flexible branching factor (BF), maximal branching factor, correlation of utilities or
random seeds. A random seed initializes a pseudorandom number generator, which
influences the structure of the game tree. It alters the number of actions for each
player, the utility values, or the observations the players obtain, which hence specify
the information sets. This domain is therefore suitable for testing the scalability of the
solving algorithms.

Number of players Chance nodes Max. depth Max. BF

2 No 2 2 – 12
2 Yes 2 2 – 12
2 No 3 2 – 6
2 Yes 3 2 – 6
2 No 4 2 – 4
2 Yes 4 2 – 4
2 No/Yes 5 2
3 No 3 2 – 4
3 Yes 3 2 – 4
3 No 4 2 – 4
3 Yes 4 2 – 4
3 No/Yes 5 2
3 No/Yes 6 2
4 No/Yes 4 2
4 No/Yes 5 2
5 No/Yes 5 2
6 No/Yes 6 2

Table 5.2. The configurations of game trees used for experiments.

The 64 configurations of game trees proposed for the experiments are listed in Table
5.2. The first player was chosen as a leader in all cases. The number of actions for each
player differs across the information sets, hence the generated game trees are assymetric.
The algorithm was tested also in games with only two players, in order to compare the
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computation times in games either with or without chance nodes; or with or without
multiple followers.

The experiments were performed 20 times on each configuration with different ran-
dom seed (and hence a different game tree structure) to guarantee a statistical signif-
icance of the results. The computation was stopped if the running time exceeded 20
minutes. The approximate sizes of selected individual instances are depicted in Figures
5.1 and 5.2.
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Figure 5.1. Number of information sets in two-player games. The configuration of every
instance is encoded as: number of players / branching factor / depth of the tree.
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Figure 5.2. Number of information sets in multiplayer games. The configuration of every
instance is encoded as: number of players / branching factor / depth of the tree

Furthermore, Figures 5.3 and 5.4 compare the measured generation times of individ-
ual game settings. The results indicate that generation times grow exponentially with
increasing size of the game trees. In fact, the generation of an appropriate linear pro-
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gram is a crucial part which affects the time of computation of correlated Stackelberg
equilibrium the most.

Example Consider a configuration with 3 players, branching factor 4 and depth of
the game tree 4 (3/4/4). The corresponding linear program computing SEFCE has
approximately 3.1 · 106 variables and 600 constraints, even if the game tree is relatively
small and shallow. The size of the respective linear program is hence enormous, as the
number of strategies grows exponentially in a number of information sets.
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Figure 5.3. Constraints generation time in two-player games. The configuration of every
instance is encoded as: number of players / branching factor / depth of the tree.
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Figure 5.4. Constraints generation time in multiplayer games. The configuration of every
instance is encoded as: number of players / branching factor / depth of the tree.
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5.2 Results by different solving methods
A number of variables in the formulation of linear program computing SEFCE grows
asymptotically at the same rate as a number of strategy profiles. Unfortunately, the set
of strategies for each player has a size exponential in a number of information sets. On
the other hand, a number of constraints is linear in a number of players and quadratic
in a number of information sets. This means that given two game trees with the same
nodes, edges and an amount of information sets, the tree in which more players act is
expected to have smaller respective linear program computing its SEFCE.

In the primal linear program, the number of variables significantly exceeds the num-
ber of constraints. Furthermore, the corresponding matrix form of the program is very
sparse. In this case the general guides for choosing a solving algorithm1) suggest that
the preferred methods are either primal variant of simplex, which is much more depen-
dent on number of constraints, or any interior point method (also referred to as barrier
methods by Cplex).

Another option might be to solve the dual of the linear program. In contrast to
the primal, the dual has a polynomial number of variables, but exponential number
of constraints. By the duality theorem, its objective value is equal to the objective of
the primal, assuming they both are feasible and bounded. The assumption is valid,
because SEFCE always exists (as proved in Theorem 4.5). Moreover, the slackness is
complementary and hence the product of all primal variables and dual slack variables
is 0, as is the product of all dual variables and primal slack variables. Therefore, the
optimal solution of the dual reduces the size of the original primal problem, which can
be consequently solved faster.

Due to the enormous number of constraints, the formulation of the dual is more suit-
able for techniques like lazy constraint generation. This method starts with the subset
of original constraints and iteratively add those which are violated by the optimal so-
lution so far. Therefore, it enables to solve much larger problems, especially those in
which most constraints are not active. Moreover, the simplex method actually simulta-
neously solves the primal and dual. It means that from an optimal simplex tableau it
is possible to read off both an optimal solution to the primal and an optimal solution
to the dual.

The interpretation of the primal system is clear, as its formulation is directly derived
from the definition of SEFCE. Moreover, the dual also provides a game-theoretic mean-
ing. The interpretation follows from the constructive proof of EFCE in [19], where the
dual variable are assumed to characterize a player’s “deviation plan”. The constraints
then encodes a rationality concept called “joint coherence” [39]. This concept claims
that the choices with uncertain outcomes should be coherent so that they do not pro-
vide opportunities for arbitrage (also called “Dutch books”) to an external observer
who acts like a betting opponent. Equivalently, the strategies of rational players should
not be easily exploitable.

In the following sections are compared the experimental results achieved with dif-
ferent solving methods; with the a priori assumptions about the linear program for
computing correlated Stackelberg equilibrium in extensive games.

1) http://www.ibm.com/support/knowledgecenter/#!/SSSA5P 12.2.0/ilog.odms.cplex.help/

Content/Optimization/Documentation/CPLEX/ pubskel/CPLEX412.html
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5.2.1 Simplex method

The method most frequently used to solve LP problems is the simplex method. The
simplex method is known to be very efficient in practice, even if its formulation by
Dantzig was proved to have a worst-case computational complexity of exponential time
[26]. In the following figures are presented the solving times of simplex method in two-
player games, as well as in multi-player games. Note that the results are approximately
an order of magnitude lower than the respective generation times.
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Figure 5.5. Solving time of linear programs in two-player games. The configuration of
every instance is encoded as: number of players / branching factor / depth of the tree.
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Figure 5.6. Solving time of linear programs in multiplayer games. The configuration of
every instance is encoded as: number of players / branching factor / depth of the tree.

However, it still can be seen that the solving times grow exponentially in size of the
tree, which is caused by the sizes of the linear programs.
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5.2.2 Interior point method

In contrast to the simplex method, interior point method reaches an optimal solution
of a linear program by traversing the interior of the feasible polytope. Interior point
method is suitable for large-scale, sparse problems, which might be beyond the capa-
bilities of the simplex method. Moreover, the method runs in polynomial time. The
following figures depict the solution times of interior point method in two-player and
multi-player games.
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Figure 5.7. Solving time of linear programs in two-player games. The configuration of
every instance is encoded as number of players / branching factor / depth of the tree.
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Figure 5.8. Solving time of linear programs in multiplayer games. The configuration of
every instance is encoded as number of players / branching factor / depth of the tree.

The results show the same exponential increase in solving time with growing size of
the tree.
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5.2.3 Lazy constraint generation

Rather than a method, lazy constrain generation is a technique often used to solve
linear programs with a large number of constraints. The original formulation is first
relaxed so that only a program with a subset of the constraints is solved. The separation
procedure adds to the relaxation any constraint which is violated by a current solution.
The process is iterated until all constraints are satisfied. The technique works best if
it is possible to identify a set of difficult constraints, while the others are most likely
to be fulfilled. Lazy constraint generation is used to solve a dual of the program for
computing SEFCE, because the dual has an exponential number of constraints. At the
beginning, all constrains are relaxed. The obtained results are shown in the following
figures.
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Figure 5.9. Solving time of linear programs in two-player games. The configuration of
every instance is encoded as number of players / branching factor / depth of the tree.
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Figure 5.10. Solving time of linear programs in multiplayer games. The configuration of
every instance is encoded as number of players / branching factor / depth of the tree.
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The presented results confirm that the computation takes a time exponential in a

size of the game instance.

5.2.4 Discussion

Finally, the following figure compares the medians of solving times of each instance by
different solving methods.
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Figure 5.11. Comparison of solving time medians of different solving methods. The con-
figuration of every instance is encoded as: number of players / branching factor / depth of

the tree.

It can be seen that the simplex method outperforms both the interior points method
and the constraint generation. This finding complies with the assumptions, which ex-
pected the simplex method to be suitable for computing SEFCE. However, a poor
performance of constraint generation, especially in larger instances of games, is surpris-
ing.

Beyond the presented methods, the performance of the solving algorithms can be
improved using a domain-dependent knowledge about the structure of the problem.
One of the examples might be the delayed column generation (Dantzig decomposition)
and delayed row generation. Both these methods require the linear program to be
manually decomposed into a master problem and smaller subproblems. Therefore, they
are not automatically implemented in solvers like Cplex. The decomposition can not be
generally applied to the linear program computing SEFCE, because this system does
not comply with the required structure for the decomposition.

Another possibility is to introduce a game-theory related technique. This might
include either a restriction to specific subclasses of games which can be represented
compactly, so that the resulting linear program for SEFCE does not have an exponential
size; or an incremental strategy generation algorithms like the Oracle method [35].
However, even though the original formulation of the Oracle algorithm is based on
pure strategies, applying it directly to compute SEFCE is not possible, given that
the recommendations are generated sequentially. Nor the reformulation of the Oracle
method with the compact sequence-form representation [5] can be used, because it
is restricted to two-player games. The implementation would require to extend it to
multiple players, which is beyond the scope of this thesis.
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Chapter 6
Conclusion

This thesis introduces the solution concept called Stackelberg extensive-form correlated
equilibrium in games with multiple followers. In this scenario, one of the players has
a commitment power to publicly declare his strategy ahead of the rest of the players.
Moreover, he is able to coordinate the course of the game throughout a series of signals
sent to his opponents. However, each signal is assumed to be in a sealed envelope and is
only revealed to a player when he reaches the point where he can act according to this
signal. The applications of this concept can be found frequently in economics, politics
or national security. For example, the ongoing NATO’s Baltic mission is a situation
which can be profoundly modeled as SEFCE.

The thesis first presented related concepts and explained the differences on concrete
examples. The algorithms were shown to contain significant similarities with the con-
cept of SEFCE. The analysis of the already existing algorithm for computing correlated
Stackelberg equilibrium in games of two players proved the following first main result.

Theorem 4.3. For a two-player, perfect-recall extensive game with imperfect infor-
mation and with chance moves, the problem of finding SEFCE is NP-hard.

The thesis subsequently introduced the linear program for computing correlated
Stackelberg equilibrium in games with multiple followers and showed that this con-
cept always exists in every extensive game with perfect recall. The investigation of the
computational complexity led to the second main result.

Theorem 4.8. For an imperfect-information perfect-recall extensive game with more
than three players and without chance moves, the problem of finding SEFCE is NP-hard.

The implementation is able to generate a linear program describing the set of SE-
FCE for every extensive game with perfect recall. The experiments were performed
on randomly generated game tress with simplex method, interior point method and
lazy constrain generation as solving algorithms for general linear programs. The results
confirmed that the computation takes a time exponential in a size of a game instance.
However, solving is still approximately an order of magnitude faster than a generation
of a respective linear program.

6.1 Future work
Unless P = NP, the correlated Stackleberg equilibrium can not be expected to a have
a compact and efficiently (polynomial-time) generated description. Even so, solving
larger sequential games can be achieved by either strengthening the solving algorithm
with domain-specific knowledge or decomposing the generation of linear program into
multiple smaller sets of constraints.

First, the Oracle algorithms might be used to iteratively find the correlated Stack-
elberg in games with restricted set of strategies, until the equilibrium in the restricted
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game is equal to SEFCE in the original game. This would require to find an algorithm
for computing best response of the follower, with respect to the fact that the recom-
mendations are revealed sequentially. The formulation of [5] would have to be modified
for the case of multiple players. Second, the lazy constraint generation might generate
the constraints on the fly and stop when a current solution is guaranteed to be opti-
mal, which would bypassed to necessity to enumerate all the constraints. The method
is dependent on the oracle which would decide whether the current solution is truly
an equilibrium. Third, the algorithm might be restricted to a class of extensive-form
games with compact representation, so that the resulting linear program does not have
an exponential size.

Moreover, the most demanding part of the computation – the generation of con-
straints – can be done in parallel; e.g., for each player separately. Hence, it would take
much shorter amount of time to generate the constraints. Finally, the approximate al-
gorithmic approaches into computing SEFCE would provide a possibility to solve much
larger games while maintaining a bounded error.
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Appendix B
Real-World Applications of SEFCE

The range of potential applications of SEFCE is wide. The coordination is required
on many levels of human society and its effectiveness is crucial. Even if the parent
organization is fully in change, constructing concrete plans and schedules for individual
members is completely unthinkable in every large structure. The correlated Stackelberg
equilibrium naturally implements the abstraction of complex control on several levels,
hence modeling the situation more realistically.

This chapter presents several examples in two straightforward fields of application –
economy and military. It discusses the interaction in these systems and shows concrete
examples where the coordination might help.

B.1 Economy
Economic cooperation is a concept that is commonly used as a simile for industrial,
financial or productive cooperation. The coordination is required in every large orga-
nization, which structure often consists of various departments that contribute to the
corporation’s desired goals. The individual subgoals are distributed across departments
like Marketing, Finance, Accounting, Human Resource, or IT. Moreover, there are of-
ten smaller divisions within autonomous companies. The diversity in the structure of
corporations is great, as the enterprises may range from single firm to multi-corporate
conglomerate. Every individual part of the corporation has to comply with the overall
strategy, even though it also follows its own goals.

Consider the following several examples of economic cooperation.. Airline alliances. [56] The airline alliances form an aviation industry arrangement
between several airlines. The individual companies agree to cooperate on a more
or less substantial level. For example, some alliances provide marketing branding
to help travelers make inter-airline connections easier. The branding may include
unified aircraft liveries of member aircraft. The alliance might agree on a common
strategy, while the individual members still strive to maximize their own profit.. Franchises. [45] Franchising is a practice when the franchiser grants a permission
to the franchisee to use his firm’s business model and brand for a given period of
time. The franchiser often obtains three important payments – a royalty for the
trademark; a compensation for the training and advisory services; and a percentage
of the franchisee’s sales. Both the franchiser and the franchisee have different inter-
ests to protect. The franchiser has to secure the protection of his trademark, while
still controlling the overall business model and securing know-how. The franchisee
must ensure that the services of the trademark meet the standards. In contrast to
retailing, the franchisee is hence not fully able to make business decisions. However,
he is still seen as an independent merchant. Franchising is common for restaurants,
convenience stores, hotels, hair salons, etc.. Auction systems. [29] By definition, an auction is a market institution with an
explicit set of rules determining resource allocation and prices on the basis of bids
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from the market participants [34]. Participants in auctions bid against one another
in order to acquire a desired good. The common assumption is that each subsequent
bid is required to be higher than the previous bid. An auctioneer announces the rules
under which he commits to sell the goods, while the individual participants will not
bid if the price exceeds the price they are willing to accept. For the auctioneer it
might hence be profitable to coordinate the participants so that all goods are sold
while none of the bidders exceeds their budget.

B.2 Military
During the last century, organizations like NATO developed a global network of part-
ners facing security threats like terrorism, piracy, cyber warfare or even large-scale
conflicts. Another examples of the international coordination include the United Na-
tions, the European Union, the Organization for Security and Cooperation in Europe
(OSCE) or the African Union. These alliances participate in missions in Afghanistan
(14 countries) or Kosovo (10 countries). The scale of the missions is wide and demands
long-term planning in order to coordinate the forces of several partner countries. The
partnerships and cooperation further proliferate through institutions and multilateral
forums including the Euro-Atlantic Partnerships Council, the Mediterranean Dialogue
and the Istanbul Cooperation Initiative.

The coordination is managed in alliance’s commands structures which adopts a global
(Stackelberg) strategy. Afterwards, the military units of participating countries take
positions consistent with the leading strategy. The cooperation is sequential, as the
commands are not delivered all at once. One of the reasons might be the security, the
second is to guarantee a faster response to altering conditions. The modeling as SEFCE
is hence eligible.

Now consider several short descriptions of past or ongoing international military
operations, where the coordination was more or less succesfully used and which might
have also ended differently in case the cooperation was more effective. The examples
emphasize the scope of coordination required to manage all the forces.

. Baltic Air Policing. [36] Within the Alliance, the integrity of airspace of Baltic states
is secured as a collective task of individual members. Estonia has on its territory
several NATO bases, which assist the Estonian armed forces with the protection of
maritime and land borders. Moreover, the Allies completely secure the protection
of Estonian airspace. Also the other two Baltic states – Latvia and Lithuania – do
not have their own army aviation units and their airspace is covered by Baltic Air
Policing mission in the context of Quick Reaction Alert (QRA). The policing of the
airspace of the Baltic States is managed on a three-month rotation by the members of
Alliance, including the Czech JAS-39 Gripen. NATO also coordinates other region’s
states, even if Finland and Sweden are not members of the Alliance and hence not
a part of NATO’s collective defence clause. The partnership includes the exchange
of information or coordinated training and exercises in order to develop better joint
situational awareness. The Baltic policing mission is under command of NATO HQ
Aircom.. Iceland Air Policing. [49] Another mission in the Alliance’s QRA is Iceland Air
Policing. The range of tasks is similar to Baltic Air Policing, however, the presence
of NATO aircraft in Iceland is not permanent, as in the case of the Baltic countries.
The mission is conducted jointly and collectively with Icelandic Coast Guard, which
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is equipped with ships and helicopters. The former US air base serves mainly the
Coast Guard and occasionally the fighter aircraft of the Allies. The deployment is
again conducted on a two-week or three-week rotation by NATO members. The
mission falls under the NATO HQ Aircom.

Figure B.1. A map of military bases involved in Baltic Air Policing mission..Somalia Civil War. [1] The operation of the United Nations in Somalia started in 1992
as a peacekeeping mission UNOSOM I/II and its goal was to stabilize the country
which was already in a civil war. The joint forces of UNITAF (United Task Force)
were under US command and contained military units from more than 17 countries
(for example Great Britain, France, but also Ethiopia, Saudi Arabia or Pakistan). At
the beginning the humanitarian aid was successfully distributed across the country,
but due to the increasing number of casualties and the continued unwillingness to
participate in the inconclusive conflict the forces withdrew at spring 1995. Nowadays,
Somalia is torn into many autonomous parts and the central government does not
fully control even the capital Mogadishu.. Yom Kippur War. [16] In October 1973, the coalition of Arab states led by Egypt and
Syria declared war on Israel. Egypt started attacking Sinai, Syria stared attacking
Golan Heights both commanding their military operations alone but coordinating
with each other. They were also commanding expeditionary forces from six other
Arab countries. The war began when the Arab coalition launched a joint surprise
attack on Israeli positions. The invasion was conducted during Yom Kippur holiday,
the most important holiday of the Jewish year. The Goal of the coalition was retaking
lands lost during Six Day War. Unlike previously Israel failed to launch a preemptive
attack because Prime Minister of Israel Golda Meir concluded that war was not a
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certainty. The war began with a massive and successful Egyptian crossing of the
Suez Canal. After crossing the cease-fire lines, Egyptian forces advanced virtually
unopposed into the Sinai Peninsula. After three days, Israel had mobilized most of its
forces and halted the Egyptian offensive, resulting in a military stalemate. Israel had
encountered military difficulties on both fronts. It became clear by October 9 that
no quick reversal in Israel’s favor would occur and that IDF losses were unexpectedly
high.

The war had far-reaching implications. The Arab World, felt vindicated by early
successes in the conflict. In Israel, despite impressive operational and tactical achieve-
ments on the battlefield, the war led to recognition that there was no guarantee that
Israel would always dominate the Arab states militarily.. Libya Civil War. [55] War in Libya had several phases. In January 2011, upset at
delays in the building of housing units and over political corruption, protesters in
major Lybian cities broke into, and occupied, housing that the government had been
building. Protesters also clashed with police and attacked government offices. A civil
war broke out during the Arab Spring. After a number of atrocities were committed
by the government, multinational coalition led by NATO forces intervened in late
March 2011 with the aim to protect civilians against attacks by the government’s
forces. NATO ambassadors agreed that NATO would take command of the no-
fly zone enforcement. The initial coalition of France Canada, Denmark, UK, Italy,
Norway, Qatar, Spain and US grew to nineteen states, with newer states mostly
enforcing the no-fly zone and naval blockade.

In August, rebel forces launched an offensive on the government-held coast of
Libya, taking back territory lost months before and ultimately capturing the capi-
tal city of Tripoli. In the aftermath of the civil war, insurgency by former Gaddafi
loyalists continued. There have been various disagreements and strife between lo-
cal militia and tribes, including fighting on 23 January 2012 in the former Gaddafi
stronghold of Bani Walid. Some have refused to disarm and cooperation with the
transitional Lybian government has been strained, leading to demonstrations against
militias and government action to disband such groups or integrate them into the
Libyan military. Continuous struggle to stabilize Lybia led directly to a second civil
war in Libya.. Kosovo War. [12] The Kosovo War was an armed conflict in Kosovo in 1998. It
was fought by the forces of the Yugoslavia, which controlled Kosovo before the war,
and the Kosovo Albanian rebel group known as the Kosovo Liberation Army (KLA),
with air support from the NATO. KLA sought the separation of Kosovo from the
Yugoslavia. Yugoslav security forces killed many Albanian civilians during the war;
there were also attacks on Yugoslav security forces and moderate Serb-friendly Al-
banians by the KLA. According to Human Rights Watch, the vast majority of the
violations from January 1998 to April 1999 were attributable to Serbian Police or
the Yugoslav Army.

In October 1998, the North Atlantic Council issued activation orders for the ex-
ecution of air campaign in Yugoslavia. The goal was strategic bombardment of
Yugoslavian targets. NATO over the course of the war deployed and coordinated
over one thousand aircrafts. Making it the largest military air operation since the
World War 2 in europe. The war ended with the Kumanovo Treaty, with Yugoslav
forces agreeing to withdraw from Kosovo to make way for an international presence.
The NATO bombing campaign has remained controversial, as it did not gain the
approval of the UN Security Council.
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Appendix C
Abbreviations, Functions and Symbols

C.1 Abbreviations

AAAI Association for the Advancement of Artificial Intelligence.
AI Artificial intelligence.

CE Correlated Equilibrium.
EFCE Extensive-form Correlated Equilibrium.

LP Linear program.
NATO North Atlantic Treaty Organization.

NE Nash equilibrium.
SAT Boolean satisfiability problem.
SCE Stackelberg correlated Equilibrium.

SE Stackelberg Equilibrium.
SEFCE Stackelberg Extensive-form Correlated Equilibrium.

SSE Strong Stackelberg Equilibrium.
UN United Nations.
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C.2 Functions and symbols

⊑ A prefix relation on sequences.
−i A set of opponents of player i.
β A behavioral strategy.
δ A mixed strategy.

∆ A set of mixed strategies.
π A pure strategy.
Π A set of pure strategies.

Π∗ A set of reduced pure strategies.
σ A sequence in a sequence-form game representation.
Σ A set of sequences in a sequence-form game representation.

ρ(h) A player function for node h.
A A set of sets of actions for each player.

A(h) A set of actions in node h.
agr(σ) A set of agreeing strategies for sequence σ.
agr(h) A set of (possibly partial) agreeing strategy profiles for node h.

B A set of behavioral strategies.
C(a) A probability function for performing a chance action a.
C(h) A probability of reaching node h due to chance.

Ext(σi) A set of extensions of a sequence σi.
gi(σ1, ..., σn) An extended utility function for player i.

H A set of nodes in a game tree.
infi(σi) An information set in which the last action of σi is taken.

N A set of players.
p(σ1, ..., σn) A correlation plan of sequences σ1, ..., σn.

ri(σi) A realization plan of sequence σi for player i.
rel(σi) A set of sequences of −i which form a relevant pair with σi.
seqi(h) A set of sequences leading to node h for player i.
seqi(I) A set of sequences leading to information set I for player i.

ui(a1, ..., an) A utility function for player i.
Z A set of terminal nodes in a game tree.
IR A set of real numbers.
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Appendix D
CD Content

At the CD are located several files which require a third party software to be executed.
Specifically, this includes the source code of algorithm for computing SEFCE, the text
of this thesis and numerous figures and schemata. All necessary programs can be
downloaded for free (or at least in an academic license) from the websites in footnotes:

.Java In version at least 1.71). IBM ILOG Cplex In version at least 2.42).TEX Both LATEX and plainTEX3)

This document was typeset in PlainTEX using CSplain4) in order to print a few Czech
characters and the CTUstyle5) template by Petr Olšák, to whom I’m really grateful for
that. The images of game trees and payoff matrices were programmed manually using
Tikz.

The enclosed CD contains following files and directories:

. cernyj49.pdf – the text of this thesis

. doc – directory with the TEX source files of this document

. figs – contains all figures

. specification – contains the specification of this thesis

. text – contains text source files

. trees – contains game tree structures in Tikz

. source – directory with the implementation in Java

1) http://www.oracle.com/technetwork/java/javase/downloads/index.html
2) https://developer.ibm.com/academic/
3) https://www.tug.org/texlive/
4) http://petr.olsak.net/csplain.html
5) http://petr.olsak.net/ctustyle.html
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