
Insert here your thesis’ task.





Czech Technical University in Prague

Faculty of Information Technology

Department of of software engineering

Master’s thesis

Indexing of patterns in graph DB engine

Neo4j I

Bc. Martin Troup

Supervisor: Ing. Michal Valenta, Ph.D.

29th June 2015





Acknowledgements

I would like to thank everybody that directly or indirectly contributed to
the work introduced in the thesis. My special thanks go to MSc. Michal
Bachman, the creator of GraphAware Framework, who was always willing to
help me with answering questions about the topic. Next I would like to thank
Ing. Michal Valenta, Ph.D., the supervisor of my Master’s thesis, who was
always there when I needed and shared his rich experience not just about the
topic with me. I would like to thank Bc. Jaroslav Ramba, the creator of
parallel Master’s thesis involving similar topic, for sharing his knowledge of
the topic. I would like to thank my parents for their support. I would never
be able to finish the work without them. Finally, I would like to thank all
professors at CTU FIT for providing me with scientific background necessary
for finishing the work.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 29th June 2015 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Martin Troup. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Troup, Martin. Indexing of patterns in graph DB engine Neo4j I. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2015.



Abstrakt

V této práci je představena nová metoda pro indexováńı grafových vzor̊u v gra-
fové databázi. Metoda je navržena a implementována pro grafovou databázi
Neo4j. Metoda umožnuje vytvářeńı, použ́ıváńı a aktualizováńı index̊u, které
jsou použity k urychleńı při vyhledáváńı vzor̊u v databázi. Práce dále nab́ıźı
srovnáńı dotaz̊u bez použit́ı a s použit́ım index̊u. V práci je nav́ıc uvedeno
srovnáńı s konkurenčńı metodou, která je představena v souběžné magisterské
práci.

Kĺıčová slova grafové databáze, Neo4j, GraphAware framework, indexováńı
vzor̊u, teorie graf̊u, grafové vzory

ix



Abstract

This thesis introduces a new method for indexing graph patterns within a
graph database. The new method is analyzed, designed and implemented for
Neo4j graph database engine. It enables to create, use and update indexes
that are used to speed-up the process of matching graph patterns. The thesis
provides a comparison between queries with and without using indexes. It
also provides a comparison of the method with an alternate method that is
presented in a concurrent master’s thesis.

Keywords graph databases, Neo4j, GraphAware framework, indexing pat-
terns, graph theory, graph patterns

x



Contents

Introduction 1

1 State-of-the-art 3

1.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Graph databases . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Analysis and design 19

2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Realisation 39

3.1 Implementation background . . . . . . . . . . . . . . . . . . . . 39
3.2 Implementation of the method of indexing graph patterns . . . 40
3.3 Instalation of the method of indexing graph patterns . . . . . . 53

4 Mearusements 55

4.1 Approaches for querying using an index . . . . . . . . . . . . . 59
4.2 Simple query versus query using index . . . . . . . . . . . . . . 60
4.3 Index implementations comparison . . . . . . . . . . . . . . . . 61

5 Future work 75

Conclusion 77

Bibliography 79

A Acronyms 81

B Contents of enclosed CD 83

xi





List of Figures

1.1 Isomorphic and automorphic graph examples . . . . . . . . . . . . 5

1.2 (a) G1 is vertex, but not edge symmetric (b) G2 is edge symmetric 5

1.3 Traversing order of DFS and BFS algorithms . . . . . . . . . . . . 6

1.4 Labeled Property Graph . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Neo4j high-level architecture . . . . . . . . . . . . . . . . . . . . . 13

1.6 Neo4j data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Traversal Framework API . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 A specific triangle from social graph . . . . . . . . . . . . . . . . . 20

2.2 Tree-like structure with graph pattern variations . . . . . . . . . . 24

2.3 An index for a triangle graph pattern . . . . . . . . . . . . . . . . 29

2.4 The process of updating an index after a relationship gets deleted 33

2.5 The process of updating an index after a relationship is created
(appropriate index unit does not exist yet) . . . . . . . . . . . . . 34

2.6 The process of updating an index after a relationship is created
(appropriate index unit already exists) . . . . . . . . . . . . . . . . 35

3.1 UML class diagram - main classes . . . . . . . . . . . . . . . . . . 41

3.2 UML class diagram - Cypher parsers . . . . . . . . . . . . . . . . . 43

3.3 Cypher validators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 UML class diagram - database operations . . . . . . . . . . . . . . 44

3.5 Automorphism reduction . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Approach no. 1 - a query for a single index unit . . . . . . . . . . 50

3.7 Approach no. 2 - a query for a single index unit . . . . . . . . . . 51

4.1 Triangle graph pattern . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 The structure of Music database . . . . . . . . . . . . . . . . . . . 57

4.3 A graph pattern used for Music database . . . . . . . . . . . . . . 58

4.4 A graph pattern used for Transaction database . . . . . . . . . . . 58

4.5 Measurement - approaches for querying using an index . . . . . . . 59

4.6 Simple query vs. query using index - total DBhits . . . . . . . . . 61

xiii



4.7 Simple query vs. query using index - time . . . . . . . . . . . . . . 62
4.8 Triangle index - query . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 Triangle index - create index . . . . . . . . . . . . . . . . . . . . . 65
4.10 Triangle index - create relationship . . . . . . . . . . . . . . . . . . 66
4.11 Triangle index - delete relationship . . . . . . . . . . . . . . . . . . 66
4.12 Triangle index - delete node with its relationships . . . . . . . . . . 66
4.13 Triangle index - delete node label . . . . . . . . . . . . . . . . . . . 67
4.14 Funnel index - query . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.15 Funnel index - create index . . . . . . . . . . . . . . . . . . . . . . 68
4.16 Funnel index - create relationship . . . . . . . . . . . . . . . . . . . 69
4.17 Funnel index - delete relationship . . . . . . . . . . . . . . . . . . . 69
4.18 Funnel index - delete node with its relationships . . . . . . . . . . 69
4.19 Funnel index - delete node label . . . . . . . . . . . . . . . . . . . 70
4.20 Rhombus index - query . . . . . . . . . . . . . . . . . . . . . . . . 71
4.21 Rhombus index - create index . . . . . . . . . . . . . . . . . . . . . 71
4.22 Rhombus index - create relationship . . . . . . . . . . . . . . . . . 71
4.23 Rhombus index - delete relationship . . . . . . . . . . . . . . . . . 72
4.24 Rhombus index - delete node with its relationships . . . . . . . . . 72
4.25 Rhombus index - delete node label . . . . . . . . . . . . . . . . . . 72

xiv



Introduction

A database system is a collection of programs that run on a computer and
help the user to get information, to update information, to protect informa-
tion, in general to manage information [1]. The most fundamental aspect in
which various database systems differ is the way data or information is rep-
resented. Since 1970 when E.F.Codd presented relational model of data [2],
relational databases using the model have become the most important systems
for storing or retrieving data. The model organizes data into tables (also called
”relations”) that consist of records (rows) and its properties (columns). Each
record can be uniquely identified by its key. Records can be linked between
each other using those keys.

The recent growth of user-driven content has fueled a rapid increase in
the volume and type of data that is generated, manipulated, analyzed and
archived. In parallel to the fast data growth, data is also becoming increasingly
semi-structured and sparse [3]. The fact that relational databases are often
not good enough for handling this new kind of data has led to the emergence
of a class of newer types of databases. These new, so-called NoSQL databases
provide a mechanism for storage and retrieval of data that is no more based
on relational model. Each of these databases can use different data structure
(e.g. key-value, graph or document).

Graph databases are NoSQL representatives that use graph structure to
store and retrieve data. They embrace relationships as a core aspect of its
data model. It is built on the idea that even though there is value in discrete
information about things, there is even more value in relationships between
them. Graph databases proved to be very effective and suitable for many data
handling use cases.

Commercial graph databases started appearing on the market in 2003.
Hence it is still very young technology. From technological point of view,
they are still behind relational databases that are here for much longer time.
They still miss some of features relational database users are used to. On the
other hand fundamental functions of graph databases are being constantly

1



Introduction

developed and optimized. Rapid development of graph databases leads to its
increasing usage in commercial world. Data is being moved from relational
to graph databases within many current applications with promise to reveal
information (mostly from relations) that has been hidden so far. Also new
applications with functionalities based on graph databases are being created.
In other words, with graph databases new possibilities come.

Data is the most valuable asset for many companies. Effective way of
processing it is one of the key aspects of running a successful business. As
mentioned above graph databases are relationships focused. The real world—
unlike the forms-based model behind the relational database—is rich and inter-
related [4]. But besides of discrete information about things and relationships
between them there is even more that can be retrieved from those databases.
Patterns (also called ”shapes”) are more abstract pieces of information that
can be found in the graph. They are composed of elementary information.
Querying those patterns can play a major role in many use cases including
recommendations engines or fraud detection systems. Despite of high per-
formance of graph databases, process of finding those shapes in graph can
be very time-consuming. This thesis focuses on designing a method that can
speed up the process and thus help when retrieving such important data. Such
method is introduced as a process of indexing graph patterns.

Chapter 1 of the thesis introduces background for the research includ-
ing basic information from graph theory and information about graph data-
bases. In this chapter, Neo4j, the most popular representative of graph data-
bases at the time of writing the thesis, is introduced. Also information about
GraphAware framework, a tool that helps with solving some of advanced Neo4j
use cases, is provided. Chapter 2 describes the analysis and design of the new
method of indexing patterns in graph databases. Chapter 3 presents imple-
mentation of designed method using Neo4j graph database engine. Chapter
4 introduces benchmark that compares the method to another method im-
plemented in parallel thesis but also to current Neo4j querying possibilities.
Chapter 5 comments on the evaluation and suggests topics for further research
in this area.

2



Chapter 1

State-of-the-art

1.1 Graph theory

Many real-world situations can conveniently be described by means of a dia-
gram consisting of a set of points together with lines joining certain pairs of
these points. For example, the points could represent people, with lines join-
ing pairs of friends; or the points might be cities and some of them might be
connected by airlines. Notice that in such diagrams one is mainly interested
in whether or not two given points are joined by a line [5]. A mathematical
abstraction of situations of this type gives rise to the concept of a graph.
Graph is the main interest of graph theory. Graph theory is the core content
of Discrete Mathematics, and Discrete Mathematics is the theoretical basis of
Computer Science and Network Information Science [6].

In this section some of the basic definitions from graph theory will be
presented. These are essential when manipulating data within graph struc-
tures. All definitions in this section are taken or adopted from Diestel [7],
unless indicated otherwise.

Graph A graph is a pair G = (V,E) of sets satisfying E ⊆ (V × V ). The
elements of V are vertices (or nodes) of the graph G, the elements of
E are its edges (or relationships) Each e ∈ E(G) is represented as a
pair (v, u, where v, u ∈ V (G). Whereas in graph theory vertices and
edges are used, in computer science, particularly in graph databases
nodes and relationships are used. Note that these terms are handled
interchangeably throughout the thesis.

Order The number of vertices of a graph G is its order, written as | G |; its
number of edges is denoted by || G ||. Graphs are finite and infinite

according to their order. In this thesis we consider all graphs to be
finite.

3



1. State-of-the-art

Incident vertex A vertex v is incident with and edge e if v ∈ e; then e is an
edge at v. Pair of vertices (v, u) that represent edge are both incident
with the edge and are called its ends.

Vertex degree The set of edges vertex v is incident with is denoted E(v).
The degree of a vertex v, denoted as d(v), is the number | E(v) | of edges
incident with vertex v.

Subgraph A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V,E)
if V ′ ⊆ V and E′ ⊆ E. That means that all the vertices of G′ are the
vertices of G and all the edges of G′ are the edges of G. This definition
was adopted from Bin [6].

Path A path is a non-empty graph P = (V,E) of the form V = {v0, v1, . . . , vk},
E = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}, where k is a finite constant. The
number of edges in a path (respectively graph), | E |, is its length. A
cycle is a special case of a path with additional edge (vk, v0) in set E.

Directed graph A directed graph DG = (V,E, init, ter) is a graph G =
(V,E) that has additional maps init and iter. Map init : E → V as-
signs each edge an initial vertex init(e) also called tail or start node
in domain of graph databases. Map ter : E → V assigns each edge a
terminal vertex ter(e) also called head or end node in domain of graph
databases. Note that these terms are handled interchangeably through-
out the thesis. The edge e is set to be directed from init(e) to ter(e).
There may be several edges between the same two vertices. If init(e) =
ter(r), the edge is called loop. This definition was adopted from Bach-
man [8]

Vertex degree revisited When considering directed graphs, vertex degree
d(v) can be formulated as (indegree + outdegree) − loops. Indegree,
denoted din(v), is defined as the number | Ein(v) | of edges incident with
vertex v, where Ein(v) ⊆ E(v) such that ∀ein ⊆ Ein(v), ter(ein) = v.
Similarly, outdegree, denoted dout, is defined as the number | Eout(v) |
of edges incident with vertex v, where Eout(v) ⊆ E(v) such that ∀eout ⊆
Eout(v), init(eout) = v. In case of loop one is added to both, indegree
and outdegree. Then d(v) = din(v)+ dout(v)− | Ein(v)∩Eout(v) |. This
definition was adopted from Bachman [8].

Bijection A function f : A → B is injective if ∀x, y ∈ A, x 6= y ⇒ f(x) 6=
f(y). Thus a function f : A → B is injective if and only if each element
of set B has at most one preimage under f . A function f : A → B is
surjective if for all b ∈ B, there exists at least one a ∈ A such that
f(a) = b. Thus, a function f : A → B is surjective if and only if each
element of set B has at least one preimage under f . Finally a function

4



1.1. Graph theory

Figure 1.1: Isomorphic and automorphic graph examples

Figure 1.2: (a) G1 is vertex, but not edge symmetric (b) G2 is edge symmetric

f : A → B is a bijection if f is both injective and surjective. This
definition was adopted from Gross and Yellen [9].

Isomorpishm, automorphism Let G = (V,E) and G′ = (V ′, E′) be two
graphs. Graphs G and G′ are called isomorphic, denoted G ≃ G′, if there
exists a bijection ϕ : V → V ′ with ∀u, v ∈ V, (u, v) ∈ E ⇔ ϕ(u)ϕ(v) ∈
E′. Such a map ϕ is called an isomorphism; if G = G′, it is called
an automorhism. Figure 1.1 shows three isomorphic graphs. The per-
mutation producing the third graph from the first is an automorphism
of the first graph [10].

Graph pattern In the context of this thesis, graph pattern is a graph GP =
(V,E), where ∀v ∈ V (GP ), d(v) > 0. That means that each vertex
v ∈ V (GP ) must be incident with at least a single edge e ∈ E(GP ).

Graph pattern matching LetG = (V,E) be a graph andGP = (VGP , EGP )
be a graph pattern (as it is defined above). In the context of this thesis,
graph pattern matching is a process of finding all matches in a graph G

for a given graph pattern GP . More specifically, it is a process of finding
all subgraphs of G that are isomorphic to GP . Information about graph
pattern matching is partially taken from Fan, Wan and Wu [11].

Graph symmetries Let G = (V,E) be a graph. G is vertex symmetric if
∀u1, u2 ∈ V (G), ∃ automorphism f such that f(u1) = u2. G is edge
symmetric if ∀e1, e2 ∈ E(G), ∃ automorphism f such that f(e1) = e2.

5



1. State-of-the-art

(a) DFS (b) BFS

Figure 1.3: Traversing order of DFS and BFS algorithms

Every edge symmetric graph is vertex symmetric. Cycles are always
edge symmetric. Figure 1.2 shows vertex and edge symmetric graphs.
This definition was adopted from Tvrd́ık [12].

DFS and BFS1

Depth-first search (DFS) and breadth-first search (BFS) are two of the most
useful graph traversal techniques. They allow one to search a graph in linear
time and compile information about the graph. Both of them start from a
root node. The way how such node is chosen from a graph depends on the
purpose one of these algorithms is used for.

The algorithm of depth-first search starts from the root node and explores
as far as possible along each branch before backtracking. It uses a stack
(FIFO) to store visited nodes. Figure 1.3a shows the order in which a graph
is searched.

The algorithm of breadth-first search starts from the root node and ex-
plores the neighbor nodes first, before moving to the next level neighbors. It
uses a queue (LIFO) to store visited nodes. Figure 1.3b shows the order in
which a graph is searched.

Random graphs 2

A random graph is a graph in which some specific set of parameters take fixed
values, but the graph is random in other respects. A graph G = (V,E), as
defined above, is a set of vertices and edges. Thus some values of these two
sets can be taken fixed and some can be randomly generated when creating a
random graph.

There are many ways how random graphs can be generated. For instance
one can create a graph by fixing number of vertices n and the number of edges
m. Then m pairs of vertices are chosen at random from all possible pairs and

1Information in this section was adopted from Kozen [13] and Wikipedia [14], [15].
2Information in this section was adopted from Newman [16].

6



1.2. Graph databases

connected with an edge. Even though this process works well, it is not robust
enough when one wants to fix some specific characteristics of generated graph
such as the average degree of vertex or the fact that the graph should have no
multiedges or self-edges. For such cases random graph models were defined.
To simplify, there are two basic models.

• G = (n,m) is a random graph model that is defined as a probabil-
ity distribution P (G) over all simple graphs G with n vertices and m

edges. The probability distribution is then chosen in respect with re-
quired graph characteristics.

• G = (n, p) is a random graph model in which we have n vertices and we
place an edge between each distinct pair with independent probability
p. In this model, number of edges is not fixed.

There are many specific random graph models based on these basic ones.
Here two of them are introduced.

• Erdős–Rényi model is a G = (n,m) random model, where graph is
chosen uniformly at random from the collection of all simple graphs of
n vertices and m edges. Thus its probability distribution

P (G) =
1

Ω

where Ω is the total number of such simple graphs.

• Barabsi–Albert model is a random model where graph is being construc-
ted iteratively. First a small number of vertices (m0) with edges is
created. Other vertices are being added one at a time. Each new vertex
generates an edge to m ≤ m0 existing vertices. The probability that the
new vertex will be connected to existing vertex i is

pi =
ki∑
j kj

where ki is the degree of vertex i and the sum over kj sums up degrees of
all vertices in the graph. Notice that vertices with higher degree tend to
quickly accumulate even more edges. This definition was adopted from
Albert and Barabási [17].

1.2 Graph databases

Databases are tools for storing and retrieving data. Existing ones can be
basically divided into two categories, SQL and NoSQL.

SQL databases were developed in 1970s when first data storage applica-
tions have appeared. Within these databases individual records are stored as

7



1. State-of-the-art

rows in tables (also called relations) , with each column storing a specific piece
of data about that record. Data across tables can be linked via keys. Each
row has such unique identifier. Structure and data types of these databases
are fixed in advance. Thus to store a new data item the whole table must
be changed. Vertical scaling is supported. In case of horizontal scaling it
is possible to spread SQL databases over many servers, but significant addi-
tional engineering is generally required. SQL databases use SQL language to
manipulate with data.

NoSQL databases are much younger databases with first implementations
in 2000s. They are supposed to deal with limitations of SQL databases, par-
ticularly concerning scale, replication and unstructured data storage. For
instance, horizontal scaling, as the way of adding new server instances, is
very simple within these databases, since they automatically spread data
across servers as necessary. Another advantage of these databases is that
their schema is typically dynamic (also called schema-free). That means that
records can add new information on the fly unlike SQL databases. Data within
these databases are mostly accessed via simple APIs or SQL-like query lan-
guages. Data structure of NoSQL databases is no longer based on relational
model but it varies on database type. We can organize existing NoSQL data-
bases into several subcategories by storage model they use.

• Key-value stores have a single table with key and value columns only
(also called hash map) as a data structure. All data is then stored within
this table. It simplifies relational model as a whole complex of tables.

• Column-oriented stores are set between SQL databases and key-value
stores. Although they use a single table like key-value stores do, it is not
a simple hash map anymore. It consists of several predefined columns
that are shared for all records. Within these columns each record can
store different properties. Thus it expands key-value stores possibilities
but keeps its dynamic schema.

• Document stores are optimized to work with document-oriented inform-
ation also known as semi-structured data. They store whole documents
and are very effective when retrieving partial information from them.

• Graph databases store data in graph. While using knowledge from graph
theory they can provide users with data that could be way more difficult
to retrieve when using SQL databases.

The number of NoSQL databases is rapidly increasing nowadays and new
types are still being developed. Some of these NoSQL databases already have
their own subcategories and some of them are being combined to retrieve even
richer information and achieve the best performance possible when handling

8



1.2. Graph databases

with large volume data. Information in this section was adaped from Tiwari
[3], and MongoDB [18].

As mentioned above, graph databases belong to the category of NoSQL
databases. They are based on knowledge of graph theory since their data
is stored within a graph structure. Once again graph consists of nodes and
relationships between these nodes. Graph databases excel at dealing with
highly interconnected data. These relationship-first oriented databases use
the fact that links between things are at least as important as discrete inform-
ation about these things when mining useful information from data. In such
case graph structure is highly convenient since it enables effective traversing
through nodes by following relationships [19].

There are many real world use cases when using graph structure to store
data seems natural. The entire web for instance. It is defined as a set of hyper-
text documents connected via hyperlinks. In other words it is a huge graph,
where documents are nodes and links are relationships between these nodes.
Another example is a social graph. Social graphs demonstrate personal rela-
tions of internet users within social networks like Facebook or Twitter. There
are many more real life examples of using graphs across all fields including
science, government or business. In fact graphs can be found almost every-
where.

There are many existing graph database engines, some strictly graph ori-
ented and some that combine graph structure with other database types.
Neo4j, Titan and OrientDB are the most popular ones at the moment.

1.2.1 Neo4j

Neo4j is the highest ranked graph database engine according to DB-engines
[20]. In fact it is an open-source NoSQL database implemented in Java and
Scala running on the Java Virtual Machine. It has many features, but most
importantly:

• Database is fully ACID. It means that all of its transactions guarantee:
atomicity - a transaction will be either fully commited or fully reverted,
consistency - a transaction will move database from one valid state to
another, isolation - parallel transactions will run in isolation, durability
- once a transaction was successfully commited all the changes it made
to the system will be permanent.

• Database is provided in embedded or server mode. It means that Neo4j
database can be run as a separated application or within an existing
Java application.

• Database guarantees high performance queries. Neo4j has developed its
own system to store data on disk which provides an effective data ac-
cess. Due to efficient representation of nodes and relationships, database

9



1. State-of-the-art

guarantee constant time traversals for relationships in the graph both in
depth and in breadth [21].

• Database is clustered. It means that several servers can connect and
communicate to a single database. That offers two major advantages:
fault tolerance - if a server fails, there are others to back up, load bal-
ancing - users are automatically allocated to the server with the least
load.

• Database supports Cypher. Cypher is a very powerful graph query lan-
guage for querying and updating data stored in a graph database. Sim-
ilarly to SQL, it is a declarative language. Cypher uses ASCII-Art to
make its queries human readable.

Labeled Property Graph

A graph defined by Diestel [7] is not enough powerful to be used to store all
data possible. Hence, graph databases typically employ extensions of such
data model. Neo4j defines and implements Labeled Property Graph. It is a
graph data model that, again, consists of nodes and relationships but provides
some additional characteristics. First of all, each node can have one or more
labels that indicate in which categories specific nodes belong. If a node does
not have any label assigned it is treated as anonymous. Each relationship must
have exactly one label (also called type) assigned. Each node or relationship
can have arbitrary number of arbitrary attributes. Each attribute consists
of key, uniquely identifying the attribute, and a value [8]. All relationships
must have direction assigned but can be treated as bidirectional when queried.
Figure 1.4, adopted from Neo Technology [21], shows such an instance of
Labeled Property Graph data model. Within this model data about books,
their authors and about people who purchased them are stored.

Architecture 3

Labeled Property Graph, defined in the section above, is a model that is
consistent across graph database implementations but there are many ways
how to encode and represent such graph in the database engines main memory.

Neo4j is a graph database with native graph storage. It, among other
things, means that Neo4j exhibits so-called index-free adjacency. Such prop-
erty corresponds to the way references are stored on a disk. In fact each node
maintains direct references to its adjacent nodes. Thus each node acts as a
micro-index of other nearby nodes. When using index-free adjacency, one tra-
versing step can be O(1) in algorithmic complexity. In other words, traversing
in general is extremely cheap.

3Information about Neo4j architecture was adopted from Bachman [8] and Robinson,
Webber and Eifrem [4]

10



1.2. Graph databases

Figure 1.4: Labeled Property Graph

Figure 1.5 shows the high-level architecture of Neo4j. Database runs in
JVM and exposes Core API to manipulate with data. Also Cypher, discussed
at the beginning of the section describing Neo4j, can be used for such oper-
ations. On top of these basic components a number of other APIs for graph
data storage and manipulation are provided, including a REST API, Tra-
versal API and many others. Also custom APIs can be developed as server
extensions [8]. Neo4j utilizes two types of caches:

• File system cache, also called low level cache, caches the Neo4j data in
the same format as it is represented on the durable storage media. This
cache layer is provided to speed up I/O operations. File system cache
operates on Operating System layer.

• Object cache, also called high level cache, caches individual nodes, rela-
tionships and their properties in a form that is optimized for fast tra-
versal of the graph. Nodes and relationships are stored as Java objects
as soon as they are first accessed. Object cache operates on JVM layer.

Transaction management handles all database transactions. As mentioned
before, Neo4j supports the ACID properties in order to fully maintain data
integrity and ensure good transactional behavior. All transactions are always
durably written to transaction log, which can be used to recover the store files
in the event of a crash.

Data is physically stored in multiple separated record files. As shown in
figure 1.5, each of these files contains the data for a specific part of the graph
such as nodes, relationships, node labels, relationship types and properties for

11



1. State-of-the-art

both nodes and relationships. How exactly nodes and relationships are stored
is shown in figure 1.6 and described below:

• Node store file stores node records. Each node is represented with ex-
actly 15 bytes. Fixed-size records enable searching nodes by ID at cost
O(1). That can be achieved by calculating the offset, simply ID ∗ 15,
and jumping to that position in the node store file. The first byte of a
record is the in-use flag that indicates if the record is currently being
used to store a node. The next four bytes represent the ID of the first
relationship connected to the node. The next four bytes represent the
ID of the first property of the node. The next five bytes represent labels
point to the label store for this node. The final byte is reserved for flags.

• Relationship store file stores relationship records. Again, to achieve
optimal search algorithmic complexity, fixed-size records are used. Each
relationship is represented with exactly 34 bytes. The first byte is the in-
use flag, same as for node records. The next four bytes represent the start
node and other four bytes represent the end node of the relationship.
The next four bytes are reserved for a pointer to the relationship type
stored in relationship type store. Then there are pointers for the next
and previous relationship records for each of the start and end nodes,
each by four bytes. The final byte is used for so-called relationship chain,
that is the key component of Neo4j’s traversal framework.

Data manipulation 4

In Neo4j, there are two basic approaches to query and update data within the
database:

Imperative approach by providing the engine with specific instructions
about how data should be processed. In that case, the engine only
follows these instructions step by step. Data can be manipulated in
such way using Core API. Core API handles graph data as Java objects
and using its methods one can easily do elementary operations including
creating and deleting both nodes and relationships or changing their
properties and labels. Since Core API provides low level data access,
it is not always easy enough to use it for advanced use cases involving
data retrieval operations. For that reason, Traversal Framework API
was developed on top of Core API. Figure 1.7 shows how traversing
works when using Traversal Framework. Its main component, Traversal
Description, defines traversing process by:

4Information about data manipulation within Neo4j database was adopted from Neo4j
manual [22]

12



1.2. Graph databases

Figure 1.5: Neo4j high-level architecture

Figure 1.6: Neo4j data storage

13



1. State-of-the-art

• Order defines that way graph should be explored.

• Evaluator decides what should be done at a specific position in the
graph when traversing.

• Uniqueness declares if nodes or relationships can be revisited when
traversing.

• PathExpander names allowed ways to traverse.

The whole process of traversing is handled by Traverser component that
holds result of traversing.

Declarative approach by declaring what should be done with data without
providing the engine with detailed instructions. In that case the engine
itself decides how to achieve these desired results. Data can be ma-
nipulated in such way using Cypher. Cypher, as mentioned above, is
a SQL-inspired graph query language that allows for expressive and ef-
ficient querying and updating data within the graph database. Each
Cypher query is turned into what is called execution plan. Such plan
consists of small pieces called operators. Each operator is responsible
for a small part of the overall query. There are two strategies how a
query can be turned in such plan:

• rule based planner produces execution plans based on hard coded
rules.

• cost based planner uses statistics about graph to assign cost to
alternative plans and picks the cheapest one.

Even though basic Cypher queries are used in this thesis, describing
its syntax is out of its scope. Cypher syntax is described in detail in
Robinson, Webber and Eifrem [4].

Indexes 5

A database index is a data structure that improves speed of retrieving data
by providing the database with quick jump points on where to find the full
references, much like book indexes. Although indexes speed up querying data,
they also bring additional cost in terms of maintaining them and also require
additional storage space. They are mostly valuable in situations when the
number of database read operations is significantly higher than the number of
database write operations.

Three options how to index discrete data (i.e. nodes and relationships)
within the database have been introduced in Neo4j so far:

5Information from this section was adopted from Small [23]

14



1.2. Graph databases

Figure 1.7: Traversal Framework API

• Legacy indexes, also called manual indexes, are powered by Lucene
(open-source search software) outside the graph. These allow nodes and
relationships to be indexed under a key:value pair. To use such index,
one needs to handle all operations such as creating index, adding, de-
leting or updating data within the index manually. Legacy indexes are
generally used as pointers to start nodes for a query but they provide
no automatic ability to speed up queries.

• Auto-indexes are basically legacy indexes that are updated automatic-
ally. They need to be configured before a database is started. Also only
one automatic index for nodes and one for relationships can be con-
figured. That is done by listing the properties that are to be indexed.

• Schema indexes, introduced in Neo4j 2.0, are built around the concept
of node labels. Such indexes can be created over given property for all
nodes that have a given label. They are also automatically managed and
kept up to date by the database whenever the graph is changed. Since
schema indexes use labels, they are only available for nodes. Unlike leg-
acy indexes, these indexes can actually speed up queries. If relationships
indexing or full text indexing (provided by Lucene) is not needed, it is
preferable to use schema indexes.

1.2.2 GraphAware Framework 6

GraphAware is an open-source Neo4j framework. It was first introduced in
Bachman’s MSc Thesis called GraphAware: Towards Online Analytical Pro-

6Information from this section was adopted from GraphAware Git repository [24] and
during personal consultations with Michal Bachman, author of GraphAware framework.

15



1. State-of-the-art

cessing in Graph Databases [8]. The framework aims at speeding up develop-
ment with Neo4j by providing a platform for building useful generic as well
as domain-specific functionality, analytical capabilities, graph algorithms, and
more [25].

GraphAware framework was mainly built to help with solving some of
Neo4j advanced use cases. Among other things, the framework is useful when
dealing with following use cases:

• Custom APIs, also called unmanaged extensions, are pieces of code
implemented and tested in Java. These are deployed with Neo4j in the
same instance with the purpose to somehow extend its functionality.
Using the framework, one can easily implement such API for many dif-
ferent purposes, such as providing functions that are missing in Cypher,
providing custom input/output formats or restricting database access.

• Transaction-Driven Behavior is based on the fact that Neo4j en-
ables to hook into the transaction handling process and inspect these
transactions that are being processed. In other words, one is able to
go through all database changes the transaction would make if it was
successfully commited and perhaps modify the transaction in some way.
Such functionality can be handful when solving many use cases such as
notifications of modified data, additional modifications (e.g. assigning
external IDs to newly created nodes) or schema enforcement (i.e. enfor-
cing schema in the database, that is natively schema-free). GraphAware
framework makes it easy to build, test, and deploy custom Transaction-
Driven functionality by providing an appropriate interface.

• Asynchronous Computation is useful when one wants to run some
background jobs in Neo4j. In that case, GraphAware framework makes
it possible to build such functionally that is executed in the background
during quite periods. Neo4j is primarily OLTP, meaning that requests
drive transactions. That means quite periods are entered when the
main, request driven, transaction process slows down, typically over
night. Asynchronous computation is essential for many use cases in-
cluding precomputing recommendations based on very time-consuming
algorithms or continuously gathering any kind of similarities, centralities
or statistics.

From the high-level point of view, GraphAware framework can be divided
into two main components:

• GraphAware Server is a Neo4j server extension that allows building
custom REST APIs 7 on top of Neo4j using Spring MVC 8. Such custom

7REST APIs are such APIs whose methods can be accessed via HTTP methods.
8Spring MVC is a Java framework that, among other things, implements model-view-

controller pattern.

16



1.2. Graph databases

APIs, as mentioned above, can be easily deployed and used as Neo4j
extensions within the database.

• GraphAware Runtime is a runtime environment for both embedded
and server Neo4j database deployments. This component allows to use
pre-built GraphAware modules or to create custom modules that typic-
ally extend the core functionality of the database by:

– transparently enriching/modifying/preventing ongoing transactions
in real-time (Transaction-Driven Behaviour)

– performing continuous computations on the graph in the back-
ground (Asynchronous Computation)

When using the framework one can easily implement a custom module that
provides similar functionality to ones mentioned in this section and expose
its methods via REST API. Such module can be then deployed within the
database as a Neo4j extension. A number of such modules are already provided
within the framework. Following ones are used in the thesis:

• Algorithms is a library of graph algorithms for Neo4j. It includes two
key functionalities, graph generators and path finding. Graph generat-
ors consist of a number of randomly generated graph implementations.
Erdos-Renyi model and Barabasi-Albert model, mentioned in section
with graph theory, are also included. Randomly generated graphs are
usually used for testing purposes. Path finding, on the other hand, al-
lows to find a given number of shortest paths between two nodes. It
extends the original shortest path finding functionality in Neo4j, so one
can specify the desired number of results. Methods from the library are
also exposed via REST API.

• GraphAware Test is a module that enables to test code that, in some
way, interacts with Neo4j database. It enables to test code on three
different levels:

– GraphUnit enables simple graph unit-testing.

– Integration testing enables integration testing of Neo4j-related
code.

– Performance testing enables to measure performance of Neo4j-
related code or to run experiments with such code. Multiple para-
meters can be set when running these tests, including level of cache
used.

• Improved Transaction Event API provides a convenient way to find
out what data is about to be modified during the transaction that is
about to be committed. To keep data safe, Neo4j requires every mutat-
ing operation on the graph to be run in transaction. Moreover Neo4j

17



1. State-of-the-art

provides an interface with the possibility to react to these mutations
right before they are commited or right after they are commited. That is
useful when one wants to prevent some mutations from happening, to log
changes or to perform additional mutations to the graph. GraphAware
framework extends such functionality so information about mutations
within single transaction can be easily accessed. It is then very easy to
access information about all created, deleted and changed both nodes
and relationships.

Although there are many more modules already implemented and ready
to use in GraphAware framework, they are out of the scope of this thesis.
However, all of them accessible and documented in GraphAware Git repository
[24].

18



Chapter 2

Analysis and design

Labeled Property Graph as a data model enables to store not only discrete
information about things, but also relations between these things. When
retrieving data from a graph database, one may want to query not only single
nodes or relationships, but also more complex units consisting of these basic
elements. Such units, called graph patterns 9, can contain valuable information
for many use cases. The fact that graph can easily express such information
is one of the main benefits of using such data model. Thus graph pattern
matching is one of the key functionalities graph databases usually provide.

Even though Neo4j provides several APIs for data manipulation including
Core API and Traversal API, Cypher is usually used for such operations. Since
Cypher uses ASCII-Art to express queries, it is very easy to use and thus very
popular. Process of graph pattern matching can be also done using Cypher.
One can easily express a graph pattern as a Cypher query that is then turned
into an execution plan that ensures to find all matches for given graph pattern
in the database.

A wide variety of graph patterns can be found across different graph data-
bases. Graph patterns have different information value that is based on type
of data stored within a database and use cases that involve these graph pat-
terns. One of widely used graph patterns, defined as GP = (V,E), where
V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}, is called a triangle. In
Cypher, a triangle can be expressed in a few different ways, but preferably, in
the context of this thesis, as

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n1)

. A triangle is used to demonstrate individual steps during analyzing and
designing a new method of indexing graph patterns.

Figure 2.1 shows a specific triangle that comes from a social graph. It
visualizes people and friendships between them. There are three people, rep-
resented as nodes, with label Person and each with its name property in the

9Graph pattern definition can be found in graph theory section of chapter 1.

19



2. Analysis and design

Figure 2.1: A specific triangle from social graph

triangle. Relationships of type FRIEND are directed, as it is restricted in
Labeled Property Graph, but can be handled as bidirectional. It is very easy
to retrieve such specific triangle using Cypher, since there is already some
information known about it. The problem arises when one wants to retrieve
all such triangles of people with their friendships. If the social graph con-
sists only of Person labeled nodes and relationships of type FRIEND then
Cypher needs to scan the whole graph to retrieve such data. Scanning the
whole graph for the purpose of finding all matches for given graph pattern
is very time-consuming. Thus a new method of indexing graph patterns is
introduced. The main goal of the method is to speed up the process of graph
pattern matching for general graph patterns.

2.1 Requirements

2.1.1 Functional requirements

• the method will provide following index operations:

– create index

– delete index

– query using index

– update index after DML operations

• the method will provide index operations via following REST API:

20



2.1. Requirements

– GET http://.../pattern-index/{indexName}/{cypherQuery}

to execute query using indexName index. The output (i.e. result
of the query) will be in JSON format.

– POST http://.../patern-index/{indexName}/{graphPattern}

to create a new index, further referred as indexName, with given
graph pattern.

– DELETE http://.../pattern-index/{indexName}

to delete indexName index.

– GET http://.../pattern-index/count/{indexName}

* to get the number of indexed graph pattern units in indexName
index.

2.1.2 Non-functional requirements

• The prototype of the method will be implemented in Java.

• The prototype of the method will be implemented as a plugin for Neo4j
graph database engine.

2.1.3 Limitations

• When creating index or querying using index, all nodes and relationships
will be named using identifiers within the MATCH clause of Cypher
used. Such restriction prevents from vague graph pattern definitions.
For example:

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− ()

can be understood as

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n1)

but also as

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n4)

. First one represents a triangle and second one does not (i.e. they
are different graph patterns). One can easily prevent such confusion by
naming all nodes and relationships as suggested.

• When querying using index, following Cypher query format will be ex-
pected:

MATCH <pattern> WHERE <condition> RETURN <expression>

21



2. Analysis and design

• When querying using index, there will be no restrictions involving IDs
of nodes in WHERE clause of the query. If there is any such restriction
applied, it is suggested to query without using index. If Cypher is aware
of any IDs of nodes, it can locate them by these given IDs in O(1) and
look for graph pattern matches only in their neighborhood instead of
scanning the whole graph. Such process is very effective and thus a new
method would not bring any improvement (i.e. the method of graph
pattern matching is to be used for general graph patterns).

2.2 Analysis

2.2.1 Graph pattern index storage

Indexes, as mentioned in the first chapter, are used to speed up querying data
in some specific use cases. Such performance improvement is done by providing
the database with quick jump points on where queried data is. Then the whole
database does not have to be scanned in the purpose of finding them. In the
context of graph pattern matching, matches for given graph pattern within
the database (also called graph pattern units), represent such data. Thus all
these graph pattern units must be found in the database at first and then
index that maps positions of these units within the database must be created.
Since it is created, one can execute queries using such index.

A graph pattern index is basically a data structure that stores pointers
that reference graph pattern units within the database. Indexes can be either
stored in the same database as the actual data or in any external data store.
Also the index data structure itself can vary. In this thesis two of many
different approaches of storing graph pattern indexes are introduced. One
of them is then used when implementing a new method of indexing graph
patterns and the other is used in concurrent master’s thesis.

• Indexes are stored inside the graph database where the actual data is.
Thus they use a graph to store its data. The advantage of this approach
is that graph pattern units can be referred directly from the index. An-
other advantage is that indexes can be queried using Cypher as well as
other data in the database. The main disadvantage of this approach
is that index data (i.e. meta data) can be mixed with the actual data
within the database. That can happen in case the database does not
support meta data. Neo4j, for example, does not support them at the
time of writing the thesis. Although they are not physically separated,
they can, at least, be separated on the logical level by assigning self-
made meta labels to them. This approach is used when implementing
a new method of indexing graph patterns in this thesis. Thus detailed
information concerning advantages and disadvantages of this approach
is provided in following section of this chapter.

22



2.2. Analysis

• Indexes are stored outside of the database where the actual data is. They
are stored in a key-value store that uses a map (i.e. a collection of key-
value pairs) as a data structure. The advantage is that key-value stores
provide high performance read and write operations. Another advantage
is that index data is physically separated from the actual data. The
disadvantage is that indexes cannot directly refer their graph pattern
units. That means they do not keep actual pointers to the database but
they keep identifiers instead. Based on these identifiers, graph pattern
units must be found in the graph database. Another disadvantage is
that transactions must be handled across two different databases. A
two-phase commit protocol must be used to preserve ACID transaction
properties.

2.2.2 Graph pattern variations

It is important to mention that a new index must be created for each different
graph pattern (i.e. index that was created based on a specific graph pattern
cannot be used when querying different graph pattern). Property Labeled
Graph, as already mentioned, extends a graph model by providing nodes with
labels, relationships with types and enables to use properties for both nodes
and relationships. Thanks to these additional graph characteristics, there can
be multiple variations of a single graph pattern expressed. These variations
share the same structure but differ in some of these mentioned characteristics
and thus represent different data. For example,

(n1 : Person)− [r1]− (n2 : Person)− [r2]− (n3 : Person)− [r3]− (n1)

and

(n1 : Dog)− [r1]− (n2 : Dog)− [r2]− (n3 : Dog)− [r3]− (n1)

are two different variations of a triangle expressed in Cypher. Both obviously
share the same graph pattern structure. However, the first one will match
all triangles whose nodes will be Person labeled, whereas the second one will
match those, whose nodes will be Dog labeled. Thus they will match exclusive
sets of triangle units.

All variations of a single graph pattern can be organized into a tree-like
structure, called graph pattern tree of variations 10. Part of such tree for a
triangle is shown in figure 2.2. Nodes represent individual graph pattern vari-
ations. A root node of the tree is reserved for the basic graph pattern vari-
ation with no additional information about nodes and relationships. Children
of each node represent variations that provide some additional information
compared to its parent nodes (i.e. when traversing deeper in the tree, more

10Graph patten tree of variations is a term defined for the purpose of this thesis.

23



2. Analysis and design

Figure 2.2: Tree-like structure with graph pattern variations

information about graph pattern is specified). Leaves of such tree represent
specific graph pattern units (with IDs of nodes and relationships declared)
within the database.

Graph pattern can be represented by a set of its variations. When querying
a graph pattern, one actually queries a specific variation of such graph pattern.
Thus it must be said explicitly which one is queried. If it is not said so, the
basic variation with no additional information about nodes and relationships
is used.

Each graph pattern’s variations can be organized in its graph pattern tree
of variations. Such structure is useful when querying any graph pattern’s
variation using index.

Lemma 1. Index, created for a specific variation of a graph pattern, can be
used to query the variation and also all of its descendants within its graph
pattern tree of variations.

Proof. Let Q = (V,E) be a specific variation of a graph pattern that the index
was created for and DQ = {D1, D2, . . . , Dn} a set of variations that are in the
position of descendant nodes of Q within its graph pattern tree of variations.
Let M(GP ) be a function that for a variation of a graph pattern, given as a
parameter, returns the set of graph pattern units within the database. Each

24



2.2. Analysis

variation in the position of a descendant node within the graph pattern tree of
variations share the structure with its parent node and adds some additional
information about nodes and relationships. It implies ∀D ∈ DQ,M(D) ⊆
M(Q). The index maps all graph pattern units of a variation it was once
created for. Therefore it can be also used for descendants of the variation,
since a set of graph pattern units for each of them is a subset of the variation’s
set of graph pattern units. Then, by filtering units from the variation set based
on additional information of descendant variation, the subset is achieved.

The more Cypher knows about the queried graph pattern, the more it
filters graph space based on such information and thus the more effective it
is. That means if one wants to query the basic graph pattern variation that
represent the root node of its graph pattern tree of variations, it will be faster
to query it using the index instead of using a simple Cypher query. On the
other hand, querying variations that already provide a lot of information about
nodes and relationships (such variations are situated on the lowest levels of the
tree, including its leaves) will be faster when using a simple Cypher query. In
other words, there is a level of the tree, where querying variations on such level
stops being more effective when using the index compared to simple Cypher
queries. The height and the depth of the tree depends on the graph pattern
the index was created for and data within the database.

2.2.3 DML operations affecting index

As mentioned above, a graph patten index maps all graph pattern units that
are matched by a graph pattern the index was created for. Such graph pattern
units exist within the database and so can be manipulated via DML opera-
tions. Thus they can be updated in such way they no longer match the graph
pattern. Also when adding new data to the database, new graph pattern units
can emerge. For that reason, each graph pattern index must always map its
graph pattern units that currently exist within the database. That means each
index must be updated each time a DML operation is applied on the database.
Otherwise, they would not provide reliable information when queried.

First of all, it is necessary to define all elementary DML operations that
can affect an index. Transactions consist of one or more of these elementary
operations. An index is updated after each one of these operations is applied
on a database. The order in which they are applied is not important since
they are not interdependent.

Creating a node

No existing graph pattern units can be destroyed and no new ones can emerge
by creating a node. Since no existing data is affected by creating a new node,
no existing graph pattern units can be destroyed. The index is up to date
when creating a new node which means that the only graph pattern units

25



2. Analysis and design

that could emerge would have to involve such node. Since the node has no
relationships when created, it, by definition, cannot be a part of any graph
pattern unit. Thus no new graph pattern units can emerge when creating a
node.

Creating a relationship

No existing graph pattern units can be destroyed but new ones can emerge
when creating a relationship. For the same reason as when creating a node,
no existing units can be destroyed. The fact that new graph pattern units
can emerge when creating a relationship is proven by an example. Let’s say
a database that contains, among other data, a triangle shown in figure 2.1 is
used. Also an index for a basic variation of a triangle, expressed in Cypher
as:

(n1)−[r1]−(n2)−[r2]−(n3)−[r3]−(n1)

is created. Let’s say a new relationship of BROTHER IN LAW type is created
between nodes representing people with names Ross and Chandler. Then there
are two different triangles that share the same nodes in the database. One of
them is mapped by the index because it existed within the database before
creating a new relationship. The second one is not. Thus a new graph pattern
unit has emerged and the index must be updated.

Deleting a node

No new graph pattern units can emerge and no existing ones can be destroyed
when deleting a node. The index is up to date and no new data is added to
the database during deleting a node. Then no new graph pattern units can
emerge. The fact that no existing graph pattern units can be destroyed while
deleting a node is proven by an example. There are three possible ways how
a database can handle the operation of deleting a node:

1. Only a node with no relationships on it can be deleted. Otherwise it
is not allowed to do so (i.e. deleting a node with some relationships on
it causes an integrity constraint violation). When a database uses such
approach, the only time a node can actually be deleted is when it does
not have any relationships on it. In that case such node, by definition,
cannot be a part of any graph pattern unit. Thus by deleting it, no
graph pattern unit can be destroyed. When deleting a node that has
one or more relationships on it, first its relationships must be deleted.
Such process can be done by using a complex transaction composed
of more elementary DML operations. In other words, the operation of
deleting a node by itself cannot cause a destruction of any graph pattern
units. This approach is used in Neo4j database engine and thus it is the
approach that is handled when designing a new method of indexing
graph patterns.

26



2.2. Analysis

2. If a node gets deleted, all of its relationships get, by default, deleted as
well. This approach is similar to the one above. The only difference
is that by deleting a node, one can also delete its relationships without
knowing it.

3. The relationship remains in the database even though one or both of its
end nodes were deleted. This approach is ignored here, because it is in
a conflict with the fact that a relationship, in the context of this thesis,
is defined by its end nodes.

Deleting a relationship

No new graph pattern units can emerge but some existing ones can be des-
troyed when deleting a relationship. For the same reason as when deleting a
node, no new units can emerge. The fact that existing graph pattern units
can be destroyed when deleting a relationship is proven by an example. Let’s
say a database with a triangle from figure 2.1 is used again. Also an index,
created for a specific variation of a triangle, express in Cypher as:

(n1)−[r1 : Friend]−(n2)−[r2 : Friend]−(n3)−[r3 : Friend]−(n1)

is used. The index maps the position of the triangle from figure 2.1 because
it matches the graph pattern the index was created for. If Ross and Chandler
are not friends anymore, the relationship between them gets deleted. Then
the friendship triangle between them and Joey is broken. In such case, the
index must be updated.

Updating a node

New graph pattern units can emerge and some existing ones can be destroyed
when updating a node 11. Such facts will be proven by an example. Let’s say
a database with a triangle from figure 2.1 is used again. Also two indexes are
created for this database, both for different variations of a triangle. First for
one expressed in Cypher as:

(n1 {name : ′Chandler′})−[r1]−(n2)−[r2]−(n3)−[r3]−(n1)

and second for one expressed as:

(n1 {name : ′Rachel′})−[r1]−(n2)−[r2]−(n3)−[r3]−(n1)

Let’s assume, for the purpose of this example, that there is only one node
with name Chandler and no nodes with name Rachel in the database. In this
scenario, the first index maps only a single graph pattern unit, the one shown

11Updating a node covers operations including changing, creating or deleting a label of a
node or changing, creating or deleting a property of a node.

27



2. Analysis and design

in figure 2.1. The second one does not map any units. If a value of name
property of node representing Chandler gets changed to Rachel, both indexes
must be updated. The first one will map no units and the second one will
map a triangle involving a node with name Rachel.

Updating a relationship

New graph pattern units can emerge and some existing ones can be destroyed
when updating a node 12. The operation of updating a relationship affects the
index the same as the operation of updating a node. Note that changing type
of a relationship is not supported in Neo4j. Such operation can be simulated
by deleting the relationship and creating a new one.

2.3 Design

Designing of a new method of indexing graph patterns involves a few steps.
First of all an index data structure is introduced. Such structure should be
optimized so querying using an index is as much efficient as possible. Then a
process of building a new index is introduced. Finally a process of updating
indexes after DML operations is introduced. It is important to keep in mind
that there can be multiple indexes created for a database (i.e. they all must
handle updates after each DML operation to be consistent).

2.3.1 Graph pattern index structure

Indexes are stored within the graph database together with the actual data.
They use a graph data structure to store its data since it is a native data
structure of graph databases. More specifically they use a restrictive form of
a graph, a tree. Such tree consists of exactly two levels. Indexes also use
extended graph characteristics introduced in Labeled Property Graph.

Figure 2.3 shows a simple index for a triangle. Red colored nodes rep-
resent the actual data, whereas blue colored ones represent the index. Index
data is separated from the actual data on the logical level. This is done
by assigning a special META label to nodes of the index and a special PAT-
TERN INDEX RELATION type to relationships of the index. The root node
on the first level of the tree provides a high level view of the index. Apart from
the META label, it is also labeled with a special PATTERN INDEX ROOT
label. The root node is identified by its properties including a name of the in-
dex and a graph pattern the index is built for. On the second level of the tree,
there is a set of nodes that represent so-called index units. These are labeled
with a META label again, but also with a special PATTERN INDEX UNIT

12Updating a relationship covers operations including changing, creating or deleting a
type of a relationship and changing, creating and deleting a property of a relationship.

28



2.3. Design

Figure 2.3: An index for a triangle graph pattern

label. Index units point to actual matches for the graph pattern within the
database, called graph pattern units.

Note that there is a difference between graph pattern units and index units.
Whereas graph pattern units are formed by actual data, index units belong to
index data and point to actual graph pattern units. Also graph pattern units
are uniquely identified by its relationships, whereas index units are identified
by its nodes. That means a single index unit can point to multiple graph
pattern units since there can be multiple relationships between two nodes.
Thus each index unit has a specificUnits property that holds a list of all graph
pattern units to which it points.

The fact that indexes use a tree data structure and store its data within
the same database where actual data is, brings many advantages but some
disadvantages as well. A brief summary of these is provided.

+ Indexes must be updated each time a DML operation is performed

29



2. Analysis and design

against a database. Thanks to the fact that index data and actual data
is stored within the same database, a single transaction can be used
to perform DML operations and to update indexes at the same time.
In other words, no distributed transactions are needed and thus a two
phase protocol does not have to be used.

+ Index data can be queried in the same way actual data is. For ex-
ample, if one wants to know about all graph pattern indexes that are
created for a database, it is only necessary to find all nodes with PAT-
TERN INDEX ROOT label. Also, one can easily find out how many in-
dex units a single index consists of by counting outgoing relationships of
type PATTERN INDEX RELATION of appropriate root node. Query-
ing index data can be done by using a graph query language or by using
APIs that are provided by a specific graph database engine.

+ Indexes point directly to graph pattern units from index units via re-
lationships of PATTERN INDEX RELATION type. Thus it is easy to
detect if a data node is part of a specific graph pattern unit by checking
incoming index relationships on such node. This is very useful when
handling a process of updating indexes. For example if a data node gets
modified, one can easily detect which graph pattern units involve such
node and thus which index may need to be updated.

− If a database does not support metadata, index data and actual data
is mixed on the physical level. In this case, data is only separated on
the logical level by assigning a special label to index nodes and a special
type to index relationships. For example if one wants to get a total
number of actual data nodes within the database, it is necessary to
explicitly exclude nodes of index data. Also additional index data may
affect database statistics that are used to evaluate execution plans for
queries. Cypher, for instance, uses two types of planners for evaluating
such plans. One of them, cost planner, uses these statistics. Thus it is
sensitive to data in the database when choosing appropriate execution
plan for a query. Moreover additional graph pattern units can be formed
by combining index nodes and actual data nodes. Such phenomenon can
be seen in figure 2.3. There are two additional triangles that are formed
by nodes from 2nd level of the index together with actual data nodes.
Since index data is not to be seen by users of the database, these triangles
cannot be valid graph pattern units. Thus they must be ignored when
creating a new index.

− A tree graph pattern index structure within a graph database require
more storage space compared to, for example, a simple external hash
map that can be used for such purpose as well. Each index is stored
within a two level tree. Exactly u + 1 nodes are used for each index,

30



2.3. Design

where u is the number of index units within such index. Each of these
nodes have some properties. Also u + (u ∗ n) relationships are used,
where n is the number of nodes the indexed graph pattern consists of.

2.3.2 Creating an index

The main goal when creating an index for a specific graph pattern is to build
an index tree structure as it is described above. First of all, a database
must be scanned in order to find all graph pattern units that match given
graph pattern. Then for each group of graph pattern units that share the
same nodes, a single node representing an index unit is created. Also all
nodes within a group of graph pattern units are linked to appropriate index
unit using a PATTERN INDEX RELATION relationship. For each graph
pattern unit an identifier is created. Such identifier is created by concatenating
IDs of relationships that form a graph pattern unit. Before the process of
concatenating, IDs are first sorted in ascending order. The identifier is then
stored within a specificUnits property of appropriate index unit. Finally, the
root node of the index is created. An index name and a graph pattern that
the index is built for are stored as properties within such node. To complete
the tree structure of the index, each index unit is linked to the root node using
a PATTERN INDEX RELATION relationship.

2.3.3 Querying using an index

Since an index is created, it is very easy to use it when querying. As mentioned
above, each graph pattern index is represented by the root node of its index
tree structure. Thus by retrieving all nodes with PATTERN INDEX ROOT
label, one can gain basic knowledge about all graph pattern indexes that exist
within the database. It is necessary to provide a name of the index that should
be used when querying. Based on the name, appropriate root node is chosen
from the set. Index units are reached by traversing outgoing relationships of
type PATTERN INDEX RELATION from chosen root node. These nodes
together hold a complete list of graph pattern units within the database.
Also they have a direct access to nodes that form these units. Based on the
relationship between a queried graph pattern variation and the one the index
was built for, there two ways how matched graph pattern units should be
retrieved.

• The queried graph pattern variation is the same as the one the index is
built for. In this scenario, graph pattern units can be retrieved directly.

• The queried graph pattern variation is descendant of the one the index
is built for. In this scenario, graph pattern units must be further filtered

31



2. Analysis and design

based on additional information provided by queried graph pattern vari-
ation 13.

• If the relationship between these two is any other, the index cannot be
used when querying given graph pattern variation.

2.3.4 Updating indexes

There are only a few operations that, if executed individually within single
transactions, can affect graph pattern indexes. These operations, including
creating and deleting a relationship and updating either a node of a relation-
ship, are introduced in the analytical part of this chapter. This section further
focuses on the way indexes are updated after one of these operations is applied
to a database.

The process of updating indexes is explained for each of mentioned DML
operations. It is demonstrated using a triangle index, but the process is
identical for any other graph pattern. It is also important to mention that all
existing indexes must be updated when each of mentioned DML operations is
applied to a database. It is done so within the same transaction that executed
a DML operation. If a transaction is successfully commited, indexes will be
updated. If a transaction is rollbacked, indexes will remain in the same state
as they were the transaction was initialized.

Deleting a relationship

Figure 2.4 shows the process of updating a triangle index after a relationship
is deleted. The process is described in a few steps.

1. The relationship with ID 5 is set to be deleted.

2. Before deleting the relationship, its end nodes are checked.

• At least one of these end nodes does not have any relationships of
type PATTERN INDEX RELATION on it. Then the relationship
set to be deleted cannot be a part of any graph pattern unit. To
be a part of a graph pattern unit, both of its end nodes would
have to be involved in such unit as well. Thus both of them
would have to have at least a single relationship of type PAT-
TERN INDEX RELATION on them. In this case, the relationship
can be deleted without the chance of affecting any of graph pattern
units.

• Both of its end nodes have some relationships of type PATTERN IN-
DEX RELATION on them, but no pair of these relationships share

13Detailed information about variations of a graph pattern is provided in Graph pattern
variations section of this chapter.

32



2.3. Design

Figure 2.4: The process of updating an index after a relationship gets deleted

the same start node. It means that both of end nodes of the rela-
tionship that is set to be deleted are part of mutually exclusive sets
of graph pattern units. In this case, the relationship is not part of
any graph pattern units. Thus it can be deleted without the chance
of affecting any of graph pattern units.

• Both of its end nodes have some relationships of type PATTERN IN-
DEX RELATION on them and some pairs of these relationships
share the same start nodes. In this case, both end nodes together
are part of some graph pattern units. That means the relationship
set to be deleted may or may not be a part of some of these units.
For this reason common start nodes, representing index units, must
be further inspected.

3. Index units that have relationships to both of end nodes of the rela-
tionship that is set to be deleted must be inspected. Note that these
units do not necessarily belong to the same index. Each of these units
has a specificUnits property that holds a list of graph pattern units that
belong to it. Graph pattern units are represented within such lists by
their relationships in a form of string identifiers 14. All identifiers that

14Graph pattern identifiers are introduced in the analytical part of this thesis.

33



2. Analysis and design

Figure 2.5: The process of updating an index after a relationship is created
(appropriate index unit does not exist yet)

involve the relationship that is set to be deleted must be removed from
appropriate lists. All index units that remain with empty lists within
their specificUnits property after such operation must be deleted. They
no longer map any graph pattern units.

4. Index units that no longer map any graph pattern units after step 3 must
be deleted. However, they still have some relationships on them. Thus
these must be deleted first. Each of index units has one or more outgoing
relationships and exactly one incoming relationship on it. Outgoing
relationships link an index unit to nodes that form its graph pattern
units. Whereas the only incoming relationship links an index unit to
the tree node of the index tree structure. All such relationships are
deleted for each of these index units.

5. Index units whose relationships were deleted in step 4 are deleted them-
selves. After that, all indexes are successfully updated and the relation-
ship that is set to be deleted can actually be deleted.

34



2.3. Design

Figure 2.6: The process of updating an index after a relationship is created
(appropriate index unit already exists)

Creating a relationship

Figures 2.5 and 2.6 show the process of updating a triangle index after a
relationship is created. The process is described in a few steps.

1. The relationship with ID 5 is created (let’s assume it did not exist within
the database before).

2. Since this step, the whole process is done separately for each index within
the database.

It is necessary to find out if any new graph pattern units for an index
emerged by creating the relationship. One of end nodes of newly created
relationship is chosen randomly 15 in order to find all graph pattern units

15The intention of doing such operation is to find newly emerged graph pattern units.
These must unconditionally involve the relationship whose creation started this process,
otherwise they would already exist within the database before. Obviously they must also
involve both of its end nodes and thus it does not matter which one is chosen in order to
find newly emerged graph pattern units.

35



2. Analysis and design

that involve such node for an index within a database. A set of found
graph pattern units may be divided into three groups.

(a) A group of graph pattern units that already existed within the
database before the operation of creating a relationship was ap-
plied. An index already map these, thus they further do not need
to be handled in order to update it.

(b) A group of newly emerged graph pattern units whose nodes not yet
form a different graph pattern unit within an index. These graph
pattern units are handled separately, as it is shown in figure 2.5.

(c) A group of newly emerged graph pattern units whose nodes already
form one or more different graph pattern units within an index.
These graph pattern units are handled separately, as it is shown in
figure 2.6.

3. This step vary for groups defined at step 2.

(b) Graph pattern units, as described at step 2(b), are grouped by their
nodes (i.e. if two graph pattern units share the same nodes, they
belong to the same group). For each of these groups a new index
unit is created. Such index unit is then linked to the root node of an
index via a relationship of PATTERN INDEX RELATION type.
The index unit is also linked, using the same type of relationship, to
each of nodes that form appropriate group of graph pattern units.

(c) Appropriate index units already exist for graph pattern units de-
scribed at step 2(c). These must be found in order to be updated.

4. An identifier must be created for each of graph pattern units defined at
step 2(b) and 2(c). Such identifier is then stored within a specificUnits
property of appropriate index unit. At this moment an index is updated.

Updating nodes and relationships

It is important to remind that by updating nodes or relationships, new graph
pattern units can emerge and some existing ones can be destroyed. It is not
important if it is a node or a relationship that gets updated. The process
of updating indexes is the same for both cases. It can be described in a few
steps.

1. A node or a relationship gets updated. Such operation involves changing,
creating or deleting a label of a node, a type of a relationship or a specific
property of a node or a relationship.

2. Since this step, the whole process is done separately for each index within
the database.

36



2.3. Design

First of all the node of interest is set. It is either the node that gets
updated or one of randomly chosen end nodes of the relationship that
gets updated during the DML operation that started this process. Next
all graph pattern units that involve the node of interest are found for an
index within a database. It is the same operation as described in step 2
of the process of updating indexes after a relationship is created.

3. This step is identical to step 3 of the process of updating indexes after
a relationship is created.

4. This step is identical to step 4 of the process of updating indexes after
a relationship is created. After this step, an index is updated to newly
emerged graph pattern units.

5. The node of interest can be part of one or more graph pattern units.
Updating such node or its incident relationship can cause a destruction
of some of these graph pattern units. Thus all graph pattern units that
involve the node of interest and existed within the database before the
update operation was applied must be checked. Those that get destroyed
by the update operation must be removed from an index. That is done
by deleting their identifiers from specificUnits property of appropriate
index units.

6. Those index units that remain, after step 5, with empty list of graph pat-
tern units within their specificUnits property must be deleted together
with their relationships. Such operation is similar to steps 4 and 5 of
the process of updating indexes after a relationship is deleted. After this
step, an index is updated to graph pattern units that are destroyed by
the update operation.

37





Chapter 3

Realisation

Implementation of a new method of indexing graph patterns includes a few
operations, as it described in the analytical part of this thesis. First of all, the
method provides the ability to create a new index for any given graph pattern.
Such operation includes building a tree index structure within the same graph
database, where actual data is. Next it enables to use any of created indexes
in order to speed up queries involving appropriate graph patterns. Finally
the method ensures that all existing indexes within the database are updated
each time a DML operation is applied to the database.

3.1 Implementation background

The method of indexing graph patterns is implemented for Neo4j graph data-
base engine. It is written in Java, since Neo4j itself is mostly written in Java.
Neo4j provides Core API. While working with indexes, such API is used to
communicate with a graph database.

GraphDatabaseService interface, the key part of Core API, is used as the
main access point to a running Neo4j instace. It provides many methods for
querying and updating data, including operations to create nodes, get nodes
by id, traverse a graph and many more. Each of such operations must be
executed within a transaction to ensure ACID properties. More than one
operation can be applied to a database within a single transaction. For this
purpose the interface also provides a method to create a new transaction.
Neo4j then enables to use Transaction interface to build transactions in a
very easy way. When using this interface, all operations within a transaction
are enclosed in try-catch block. An example of a transaction encapsulation in
Java:

39



3. Realisation

GraphDatabaseService graphDb ;
. . .
try ( Transact ion tx = graphDb . beginTx ( ) )
{

// opera t i ons on the graph
tx . s u c c e s s ( ) ;

}

Node and Relationship are other two important interfaces provided by
Core API. Node interface provides methods that cover all possible operations
with a single node, including manipulation with its properties, labels and
relationships. Relationship interface, on the other hand, provides methods
to mostly access information about such relationship, including its end nodes
or type. Note that it is not possible to change a type of a relationship in Neo4j.
Such operation must be simulated by deleting and re-creating a relationship.
It is also important to mention that Neo4j supports only primitive data types
when storing properties of nodes and relationships. Thus more complex data
types must be converted to string values before storing within their properties.

Since Neo4j 2.2, GraphDatabaseService interface enables to execute quer-
ies using Cypher. For this purpose a method execute is provided. Cypher
query is passed as a string parameter to this method . Result of such query
is organized in a table and returned as an instance of Result class. It is not
necessary to enclose such operation in transaction try-catch block since it is,
by default, executed within a transaction.

3.2 Implementation of the method of indexing

graph patterns

The implementation of the method of indexing graph patterns involves sev-
eral classes. PatternIndexModel class is the core class of the method. Figure
3.1 shows the class and its relationships with other classes of the method.
A single instance of PatternIndexModel class is created for a Neo4j data-
base. It handles all operations that involve manipulation with graph pattern
indexes. PatternIndexModel uses a Singleton pattern, thus its instance can
be obtained by calling getInstance method of the class. Instance of Neo4j
database is passed as a parameter to this method. The class further provides
methods to create a new index, query using an existing index, delete an ex-
isting index and to handle updating of all existing indexes at once.

Instance of PatternIndexModel manages all indexes that are created for a
database. Each of these indexes is represented as an instance of PatternIndex
class. Such instance holds basic information about an index including its
name, graph pattern that the index was created for and other information
that is necessary for its functionality. It also holds a root node of its in-
dex tree structure. All existing indexes are accessible within the instance of

40



3.2. Implementation of the method of indexing graph patterns

Figure 3.1: UML class diagram - main classes

41



3. Realisation

PatternIndexModel class via a single map. Such map consists of key-value
pairs, such that a key represents a name of an index and a value represents
appropriate instance of PatternIndex.

As mentioned in the analytical part of this thesis, each index tree consists
of a single root node and index units that map actual graph pattern units
within a database. Instances of PatternIndexUnit class are used to represent
specific index units. An index unit is identified by a group of nodes that form
graph pattern units mapped by such index unit. Each index unit can map one
or more graph pattern units. Thus each instance of PatternIndexUnit holds
a set of nodes that identify it and a set of string identifiers that represent
specific graph pattern units that belong to it. Identifiers of graph pattern
units are persisted within a specificUnits property of appropriate index units
in a database. As mentioned above, Neo4j supports only primitive data types
for properties. For this case, PatternIndexUnit class provides methods that
enable to convert a list of identifiers representing graph pattern units to a
single string and vice versa.

Next a few classes for parsing Cypher queries are introduced. Original
Cypher parsers are written in Scala within Neo4j to maximize their perform-
ance. In the context of the method of indexing graph patterns, some additional
parsing functionalities are needed. Thus three classes are introduced for such
purpose, including the abstract QueryParser class and two other classes that
inherit from such class, PatternQuery and CypherQuery. These are shown
in figure 3.2. PattenQuery parses a MATCH clause of a Cypher query that
represents a graph pattern. A user provides such graph pattern in order to
create a new index. CypherQuery, on the other hand, parses a whole Cypher
query. A user provides such query when querying using appropriate index.
These two classes are implemented to provide mostly two functionalities that
are essential for the method of indexing graph patterns.

• Validating a Cypher query, either a whole query or just its MATCH
clause that is used to express graph patterns. The process of validation
for both alternatives is shown in figure 3.3. First of all, original Neo4j
parsers are used to validate the structure of Cypher. Then it is checked
that all nodes and relationships within a MATCH clause are named
using identifiers. Such validation is required due to limitations of the
method. These are set in chapter 2. Finally, in case of a whole Cypher
query, one more additional validation is needed. Such validation makes
sure that there are no node ID restrictions in a WHERE clause of a
Cypher query. Such limitation is also described further in chapter 2.

• Parsing out identifiers of nodes and relationships from a MATCH clause
of a Cypher query. When one wants to create a new index for a spe-
cific graph pattern, the graph pattern must be provided in a form of a
MATCH clause of a Cypher query. During this process, identifiers of

42



3.2. Implementation of the method of indexing graph patterns

Figure 3.2: UML class diagram - Cypher parsers

nodes and relationships named by a user when providing a graph pat-
tern are parsed out. Then they are set as nodeNames and relNames

attributes of appropriate PatternIndex instance and further stored as
properties of its root node within a database. Such data is needed when
querying using an index and also when updating indexes after a DML
operation is applied to a database.

DatabaseHandler is a class that handles most of database operations that
involve querying and manipulating data. It consists only of static methods
as it is shown in figure 3.4. These are used within methods of the main
PatternIndexModel class that handle index operations. For example when
building a new index tree, it is necessary to create a root node and some index
units within a database. For this purpose, createNewPatternIndexRoot and
createNewPatternIndexUnit methods are provided by the class.

All supportive classes are introduced now so it is time to finally describe
main index operations. These are provided through main methods of the core

43



3. Realisation

Figure 3.3: Cypher validators

Figure 3.4: UML class diagram - database operations

PatternIndexModel class. Methods to create a new index, query using an
existing one, delete an existing one, or to get the size of an existing index are
also exposed via REST API. The API is provided within PatternIndexAPI

class. Thus these operations can be either used directly by calling appropriate
methods of PatternIndexModel or by HTTP requests when using the API.
Other methods for updating indexes are called automatically each time a DML
operation is applied to a database.

Before main methods of PatternIndex class for manipulation with indexes
are introduced, it is important to remind the problem of mixing index data
with the actual data. The problem is introduced in the analytical part of this
thesis. Neo4j does not support meta data. Thus index data are assigned with
special META label for nodes and special PATTERN INDEX RELATION

44



3.2. Implementation of the method of indexing graph patterns

for relationships to separate them from the actual data on the logical level.
Index data together with the actual data can actually form additional graph
patterns within a database. These are not valid since index data is not to be
seen by a user. To avoid them when operating with graph pattern indexes, it
is necessary to explicitly exclude them based on their meta tags (i.e. label for
nodes and type for relationships) from all Cypher queries. This is done within
a WHERE clause of a Cypher query.

Now it is time to describe main four operations of the method of indexing
graph patterns in detail.

Creating an index

To create a new index, buildNewIndexmethod is provided within PatternIn-

dexModel class. When calling such method, a user must provide a name of the
index and also a graph pattern that the index should be created for. Cypher,
more specifically its MATCH clause, is used to express such graph pattern.
First of all, the process of graph pattern validation is applied to given graph
pattern.

If the graph pattern is valid, all graph pattern units that match given
graph pattern are found within a database. This is done by executing a
simple Cypher query. The process of matching graph pattern units using
a simple Cypher query is very time consuming. From each node within a
database depth-first search or breath-first search (it is based on Neo4j settings)
is applied in order to find matches for a graph pattern starting from such node.
By applying such process a group of matched graph pattern units is retrieved.
Some of them might be mutually automorphic. This is caused because of the
fact that searching is done from each node individually. Then such group can
be also referred to as a group of automorphism groups of graph pattern units.
Figure 3.5 shows a result for a query. In this case a database consists only of
a single triangle. There should be a single triangle matched but instead there
are six records (i.e. graph pattern units represented in rows) in the result.
Note that all of them belong to a single automorphism group. It is necessary
to reduce automorphism in a group of matched graph pattern units such that
each automorphism group consists of only a single graph pattern unit. For this
purpose records are sorted by IDs of nodes and IDs of relationships separately
and then only different records (i.e. graph patterns) are filtered.

After a group of graph pattern units is found within a database and auto-
morphism is reduced, an index tree structure is built. Its index units will map
these graph pattern units. Identifiers are created for specific graph pattern
units and then stored within specificUnits property of appropriate index units.
Also basic information about an index, including its name and graph pattern
with parsed identifiers, is stored within properties of its root node. After
that, a new index is stored under its name within patternIndexes attribute
of PatternIndexModel instance.

45



3. Realisation

Figure 3.5: Automorphism reduction

Deleting an index

To delete an index, removePatternIndexByName method is provided within
PatternIndexModel. It is necessary to provide the name of an index to be de-
leted. An instance of PatternIndexModel provides a complete set of existing
indexes within its graphIndexes attribute. It is a map that holds indexes as
PatternIndex instances under their names. Thus appropriate PatternIndex
instance representing the index to be deleted can be found using its name
within the map. Such instance then provides a direct access to the root node
of appropriate index tree. All index units within the tree are collected by tra-
versing outgoing relationships of the root node. Then, all of them are deleted
together with their relationships. The root node is the last one to be deleted.
Finally the instance of PatternIndex is removed from the graphIndexesmap.

Querying using an index

To query using an index, getResultFromIndex method is provided within
PatternIndexModel class. A user must provide an index to be used and also
a query to be executed within an index when calling this method. The first
step of the whole process of querying using an index is to find the root node

46



3.2. Implementation of the method of indexing graph patterns

of appropriate index. For this purpose an instance of PatternIndexModel is
loaded into memory each time an instance of Neo4j is started up. It means
that all existing graph pattern indexes, accessible via their root nodes, are
loaded just once, right after a Neo4j instance is started up. Thus an instance
of PatternIndexModel lives and dies with Neo4j. It speeds up querying using
an index, since a database does not have to be searched first in order to find
appropriate root node. Instead, it is directly retrieved from memory.

After the root node is retrieved directly from memory, all index units that
belong to appropriate index must be collected. This is done by traversing
outgoing relationships of the root node that head to these units. All indexed
graph pattern units are then accessible within specificUnits property of nodes
that represent index units. Thus they could be directly retrieved. Although
the problem arises when one wants to additionally filter the set of graph
pattern units to be retrieved. There are two options how to filter them16.

• Projection as a process of filtering is used when one does not want to
retrieve complete information about graph pattern units consisting of
nodes and relationships, but some particular information instead. Let’s
say a database that consists of people and their friendships is used and
an index for a triangle is created. Figure 2.1 shows one of graph pattern
units that could be mapped by such index. Now when querying using
this index, one might be interested, for example, only in names of people
that form such friendship triangles. In other words, only values of name
property of nodes that form triangles should be retrieved instead of
complete list of nodes and relationships. Particular information to be
retrieved from indexed graph pattern units can be expressed within a
RETURN clause of Cypher query that is given by a user.

• Selection as a process of filtering is used when one wants to retrieve only
a subset of the complete set of indexed graph pattern units within an
index. As it is mentioned in the analytical part of this thesis, an index is
not necessarily used just for a graph pattern variation that it was created
for. It can also be used when querying its descendant variations. Let’s
say the same database as above is used and the same graph pattern is
created as well. Then one may want to retrieve, for example, a subset
of indexed triangles from a database, where at least one of people has
name Chandler. Such filtering can be done by querying using an index,
such that queried graph pattern variation in a MATCH clause of Cypher
query is a descendant of the one the index was created for.

Filtering can be done by one of mentioned options or by their combination
as well. For this purpose, a user provides not only an index to be used,
but also a Cypher query to declare what should be retrieved from indexed

16These options are defined for the purpose of this thesis.

47



3. Realisation

graph pattern units when querying using an index. From a user point of view,
the only difference compared to simple Cypher query is that an index that
should be used is provided together with a query. Note that a graph pattern
variation, expressed in a MATCH clause of such query, must be either the
same or descendant of the variation for which the index, used for the query,
was created. Otherwise the index cannot be used for such query.

In fact, there is a significant difference between the way a simple Cypher
query and a query using an index are executed. A query without using an
index has to be executed on top of a whole database. A query that uses an
index can be executed just on top of graph pattern units that are mapped by
such index. All matches for given query will be found within a database even
if only these units are searched. This is guaranteed thanks to the relationship
between a graph pattern variation expressed in a MATCH clause of given
query and the variation for which the index was created.

The process of querying using an index can be split into executing given
query on top of each graph pattern unit that is mapped by appropriate index.
Results of these queries are then merged to present the final result for given
query. That is indeed a lot of queries to be executed. Thus it is better to
execute the query not on top of each single graph pattern unit but perhaps on
each group of nodes that together with their relationships form one or possibly
more graph pattern units. Such groups of nodes are also referred to as index
units. Each of such index unit is defined by a different set of nodes that form
one or more graph pattern units. Index units are subgraphs within a graph
database. Unfortunately querying on top of subgraphs is not supported in
Neo4j at the moment of writing the thesis. Thus several approaches in order
to execute queries on top of index units are introduced in this thesis. That is,
as mentioned above, necessary to get final result for given query.

• Approach no. 1

Following process is applied for each of index units of appropriate index.
One of nodes that together form an index unit is chosen to represent such
index unit. The node will be further referred to as a representative node.
Then all matches for given query that involve such node are found within
a database. This is done by executing multiple similar queries, where a
representative node is put on every node position within a graph pattern
expressed in a MATCH clause of the query. Results of these queries are
then merged. In Cypher, this can be solved by using a single composed
query. Figure 3.6 shows such composed query for a single index unit,
that is represented by a node with ID 53. In general a single composed
query consists of s subqueries, where s is the number of nodes within
a graph pattern expressed in a MATCH clause of given query. Note
that a graph pattern for which appropriate index is created consists of
the same amount of nodes. As said at the beginning, this whole process
is done for each index unit of appropriate index. Thus it is necessary

48



3.2. Implementation of the method of indexing graph patterns

to execute n such composed queries, where n is the number of index
units of appropriate index. Finally, results of these queries are merged
to present the final result for given query. This approach is used when
implementing the method of indexing graph patterns.

There are some strategies how to choose a representative node for an
index unit. Since only one node is chosen for this purpose, there can
be multiple index units that are represented by the same node. For
example, figure 2.3 shows two index units that share one of nodes that
form them. Thus they can be represented by different nodes but also
by the same node. In case they are represented by the same node,
only one composed query, as described above, is executed instead of
two. Otherwise two same queries would be executed. In other words,
the number of representative nodes does not have to correspond to the
number of index units of appropriate index since a single representative
node can be shared between multiple index units. Also the smaller set
of nodes that represent all index units, the smaller number of composed
queries to be executed. These are some possible strategies of choosing a
representative node for an index unit.

– A representative node is chosen randomly for each index unit. This
is the easiest strategy but a random size of total set of representative
nodes is produced.

– A representative node for each index unit is the one with the smal-
lest internal Neo4j ID. The smallest set of representative nodes is
not guaranteed, but it is in average smaller than when chosen ran-
domly.

– A representative node for each index unit is the one with the biggest
number of incoming relationships of PATTERN INDEX RELATION
type. This strategy does not necessarily produces the smallest
set of representative nodes, but in average produces smaller set
than strategies above. The strategy is used when implementing
the method of indexing graph patterns.

– A representative node for each index unit is the one with biggest
number of incoming relationships of PATTERN INDEX RELATION
type that are linked strictly to index units that belong to appro-
priate index. Although this strategy produces the smallest set of
representative nodes, it is very time consuming.

• Approach no. 2

This approach is similar to the first one. A composed query must be,
again, executed for each of index units. Although the structure of a
single composed query varies from the first approach. Instead of a single
node that represents an index unit, all nodes that form such unit are

49



3. Realisation

Figure 3.6: Approach no. 1 - a query for a single index unit

used for this purpose. Then all permutations of different mappings from
nodes that form an index unit to node positions within a graph pat-
tern expressed in a MATCH clause of the query must be applied when
querying. Thus a composed query consists of s! subqueries, where s is
the number of nodes within a queried graph pattern. Figure 3.7 shows
how such composed query with all permutations for a single index unit
is created. Results of all subqueries are merged to present a result for
such index unit. This approach is not applicable since the number of
subqueries within a query for a single index unit grows exponentially
with the number of nodes within a queried graph pattern.

• Approach no. 3

When using this approach an extra Neo4j instance is needed. It is started
up first with an empty database. Following process is done for each
index unit of appropriate index. Nodes with relationships that form
graph pattern units mapped by an index unit are copied together with
their properties to the extra database. The intention is to separate data
to be queried form the rest. Then a Cypher query given by a user is
executed on top of such database. After this is done, all data within
the extra database are deleted and the whole process starts again with
next index unit. The problem is that copied nodes and relationships
have different internal Neo4j IDs in both databases. Also it requires

50



3.2. Implementation of the method of indexing graph patterns

Figure 3.7: Approach no. 2 - a query for a single index unit

additional space and additional costs to run an extra Neo4j instance.
Moreover the process of copying nodes and relationships, together with
their labels, types and properties between two databases is expensive.
Especially when it has to be done as many times, as the number of index
units within appropriate index. These are many reasons not to use this
approach for the purpose.

• Approach no. 4

This approach is similar to the third approach. It also uses an extra
Neo4j instance. The different is that index units are not copied to the
extra database one by one. Instead there are all copied there at once.
Then only a single Cypher query, given by a user, is executed on top of
this data. This approach is slightly better than third approach, since
there is only a single Cypher query executed against the extra database.
Although, again, the extra Neo4j instance must be run and the same
amount of data must be copied between databases. Thus this approach
is not recommended to use for the purpose as well.

51



3. Realisation

Updating indexes 17

Indexes are updated automatically each time a DML operation is applied to a
database. For this purpose handleDML method is provided within PatternIn-

dexModel class. This method is called inside beforeCommit method provided
within GraphAware framework. Such method is called each time a transac-
tion is about to be executed. It also provides its users with an instance of
ImprovedTransactionData that holds all nodes and relationships that are
being created, deleted and updated by currently running transaction. Such
instance is passed to handleDML method as a parameter.

In the context of beforeCommit method it is possible to traverse a graph
in the state as it was before a transaction was executed. Let’s say a user
deletes a relationship within a transaction. Then beforeCommit method is
called. Instance of ImprovedTransactionData holds the relationship within
a list of deleted relationships. At this moment, one can, for example, explore
end nodes of such deleted relationship. When executing Cypher queries using
execute method in this context, a database is always in the state as it would
be if the transaction was successfully commited. These are key functionalities
used when implementing methods for updating indexes.

handleDML method performs some additional operations to update indexes
before currently running transaction is actually commited. If the transaction
fails and it is to be rollbacked, all these additional operations are reverted as
well. handleDML method calls other methods based on data that is being mod-
ified by the transaction. All of them update indexes based on specific DML
operations. The process of updating indexes is described in the analytical part
of this thesis.

• handleRelationshipDelete method to update indexes after some rela-
tionships are deleted within the transaction.

• handleNodeDelete method to optimize the process of updating indexes
after delete operations. As already mentioned, deleting a node by itself
does not affect indexes. Although additional operations can be per-
formed with deleted nodes to optimize the process of updating indexes.
It is mainly used during transactions with more than one DML opera-
tions.

• handleCreate method to update indexes after some nodes or relation-
ships (or both) are created within the transaction.

• handleUpdate method to update indexes after some nodes or relation-
ships (or both) are updated within the transaction.

17Detailed description of these methods is out of scope of this thesis. For this purpose
documentation is included within the code.

52



3.3. Instalation of the method of indexing graph patterns

3.3 Instalation of the method of indexing graph

patterns

Neo4j can be either embedded in a custom application or run as a standalone
server. When using embedded mode, Neo4j can be used within an application
by simply including appropriate Java libraries. In this case the method of
indexing graph patterns can be used in the same way. Thus it can be included
as an extra library. When using a standalone mode, Neo4j is accessed either
directly through a REST interface or through a language-specific driver. For
this case, a custom API, provided by PatternIndexAPI class, is exposed to
access all operations of the method of indexing graph patterns. In this case,
the method must be built first. After it it built, it is necessary to drop built
jar file into the plugins directory of appropriate Neo4j installation. In other
words, the method is used as a Neo4j plugin. Note that the method uses
GraphAware framework libraries, so these must be included as well when
installing the method.

53





Chapter 4

Mearusements

This part of the thesis is focused on proving theoretical characteristics of graph
pattern indexes. Matching general graph patterns is a very time consuming
process. Thus graph pattern indexes are introduced to speed it up. Obviously
an index must be created before it can be used when querying. Such operation
involves building an index data structure with redundant information that
provides quick jump points on where to find the full references of matched
graph pattern units. It brings additional cost and requires additional space
since an index structure must be built and stored for each graph pattern. It
also brings additional cost since these indexes must be updated each time a
DML operation is applied to a database.

The method for indexing graph patterns, including operations to create
an index, query using an index and update an index, introduced in this thesis
is implemented for Neo4j graph database engine. In Neo4j the process of
matching graph patterns can be done by using provided APIs including Core
API or Traversal API, but mostly Cypher is used for this purpose. Cypher is
also an important part of the method for matching pattern indexes. From the
user point of view, a simple query and a query using an index does not vary
so much. When querying using an index, a user expresses a query in Cypher
and additionally provides an index to be used for the query. When creating a
new index, a user specifies a graph pattern that the index should be created
for by using Cypher’s MATCH clause.

All results in this chapter are achieved by measuring within a test envir-
onment provided by GraphAware framework. Following configuration is used
when performing measurements: 2.5GHz dual-core Intel Core i5, 8GB

1600MHz memory DDR3, Intel Iris 1024 MB, 256 GB SSD, OS X 10.9.4.
Graphs in this chapter are used to visualize differences between measured ele-
ments. Unfortunately tables with actual numbers are too large for the thesis
and thus they are provided within enclosed CD. To achieve the most accurate
results, measurements are always performed multiple times and their results
are averaged. Measuring is done for all cache types provided by Neo4j includ-

55



4. Mearusements

Figure 4.1: Triangle graph pattern

ing No-cache (Neo4j instance with no caching), Low-level cache and High-level
cache. These are described in chapter 1. Because there are extreme perform-
ance differences between these cache types, the exponential scale is used for
measured metrics within graphs. There are two metrics used to measure per-
formance:

• time: Time in microseconds (µs).

• DBHits: A database hit is an abstract unit representing a single opera-
tion within Neo4j storage engine that does some work such as retrieving
or updating data. Then DBHits is a total number of such database hits
that a measured process needs to perform.

Three graph databases are used for measuring. For each of them appro-
priate graph pattern to be indexed is devised 18.

Social graph with Triangle index

Social graph is a database that consists of people and friendships between
them. People, represented by nodes, have names and are distinguished to
males and females by appropriate labels. Friendships between them are rep-
resented by relationships of FRIEND OF type. Such database of changeable
size is generated by Erdős–Rényi model for generating random graphs. The
model is described in chapter 1.

Triangle index is used for this database. Such index is built for a triangle
graph pattern shown in figure 4.1 and expressed in Cypher as:

((n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n1)

18Names of indexes are made up for the purpose of this thesis. They are inspired by
shapes of appropriate graph patterns.

56



Figure 4.2: The structure of Music database

Music database with Funnel index

Music database stores data about artists, detailed information about tracks
they recorded and labels that released these records. The database has a fixed
size of 12 000 nodes and 50 000 relationships. It is one of example data sets
that Neo4j provides on their website [26]. Figure 4.2, taken from Tremberth
[27], shows the structure of data within this database.

Funnel index is used for this database. Such index is built for a specific
graph pattern shown in figure 4.3 and expressed in Cypher as:

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n1)− [r4]− (n4)

Transaction database with Rhombus index

Transaction database stores data about transactions between bank accounts
in a simplified way. Bank accounts, represented by nodes, are identified by
account numbers. Transactions between bank accounts are represented by
relationships. They have no properties on them since it is not crucial for
the measurements. If used in a real database, they would probably hold
some specific characteristics about them, for example a date of transaction
execution or the amount of transferred money within a transaction. Such
database of changeable size is generated by a Cypher script that is created

57



4. Mearusements

Figure 4.3: A graph pattern used for Music database

Figure 4.4: A graph pattern used for Transaction database

especially for this purpose. Such simple script creates bank accounts at first
and then generates a transaction relationship for each pair of these accounts
with given probability.

Rhombus index is used for this database. Such index is built for a specific
graph pattern shown in figure 4.4 and expressed in Cypher as:

(n1)− [r1]− (n2)− [r2]− (n3)− [r3]− (n1)− [r4]− (n4)− [r5]− (n2)

This chapter is divided into three separated sections. First section com-
pares specific approaches for querying using an index as they are described in
chapter 3. Second section presents a comparison of the process of matching
graph patterns between a simple Cypher query and a query using appropriate
index. Third and final section is focused on comparing two different imple-
mentations of graph pattern indexes. First one, introduced in this thesis, uses
a tree structure and stores its index data within the same database where the
actual data is. Second one, introduced in a concurrent master’s thesis, uses
a hash map structure and stores its index data within an external key-value
store.

58



4.1. Approaches for querying using an index

4.1 Approaches for querying using an index

Four approaches for querying using an index are introduced and described in
chapter 3. To choose appropriate one for implementing the method of index-
ing graph patterns all of these were simulated to estimate their performance.
Social graph of 10 000 nodes and 50 000 relationships with Triangle index is
used for the measurement.

Figure 4.5 shows a graph with results of the measurement. Approach no.
3 and approach no. 4 are very time consuming compared to two other ap-
proaches. It is caused by additional costs that the extra instance of Neo4j
brings. These additional costs mostly relate to the fact that data must be
copied between two databases. Also no speed improvement is noticeable when
increasing caching levels. The extra database is always empty before appro-
priate data is copied there from the main database. It means that every single
Cypher query is executed on top of a database with fresh data. Thus at the
time of executing a Cypher query there is no data cached yet and then no
speed improvement is to be expected when enabling caching.

Approach no. 2 is the fastest approach due to results for this specific use
case. However the number of subqueries within a query for each index unit
grows exponentially with the number of nodes within queried graph pattern.
It is the bottleneck of the approach. If indexed graph pattern consists of more
then three nodes, querying using this approach will be significantly slower
compared to other approaches.

Approach no. 1 proves to be enough efficient, especially if a database uses
High-level caching (mostly used in practice). During measuring the approach
uses random strategy to find representative nodes for appropriate index units.
Some additional improvement can be expected if more efficient strategy is
used. All such strategies are described in chapter 3.

Figure 4.5: Measurement - approaches for querying using an index

59



4. Mearusements

4.2 Simple query versus query using index

The measurement is very important since it compares the process of matching
graph patterns between a simple Cypher query and a query using appropriate
index. Here it is meant to prove qualities of the new method of indexing graph
patterns. As mentioned many times before, the method aims to speed up
matching of general graph patterns at additional cost of creating and updating
indexes.

The main intention of this measurement is to observe how effective both
approaches are with growing size of a database. Social graphs of different sizes
with Triangle index are used for the measurement. The size of a database
scales from 50 nodes and 100 relationships to 100 000 nodes and 500 000
relationships. Matching triangle graph pattern using a simple query is nearly
impossible for larger databases of this type.

There are two main graphs provided for the measurement. Graph in figure
4.6 shows measured DBhits metric for both approaches. On the other hand
figure 4.7 shows graphs for the second measured metric, time. The first graph
in this figure shows comparison of both approaches for all cache types together,
whereas other graphs in the figure show the comparison for each cache type
individually. The progression in complexity with growing size of a database
is very similar for both metrics (i.e. in both main graphs). This is caused by
the fact that time and DBhits are mutually dependent variables. Obviously
the more operations a database must perform the more time is needed for the
whole process and vice versa.

The behavior of approaches on both main graphs proves theoretical as-
sumptions about indexes. They are most effective when used for large data-
bases where there is a small number of appropriate graph pattern units. If a
database is of a smaller size a simple query can be effective enough. Also if
there are too many graph pattern units within a database and perhaps they
are evenly distributed, it may be better just to scan the whole database in-
stead of using appropriate index. There is a certain size of a database for
which the usage of an index becomes to be beneficial. This specific size varies
for each database and each index and it is influenced by many factors. Type
of data stored within a database, a graph pattern the index is created for and
also a number and distribution of appropriate graph pattern units rank among
these factors. For this particular case, the usage of triangle index is beneficial
for larger databases than the one with 1 000 nodes and 5 000 relationships.

There is a big difference between a simple query and a query using an
index. The complexity of a simple query grows exponentially with the size of a
database whereas the complexity of a query using an index grows linearly with
the number of appropriate graph pattern units within a database. The process
of querying using an index is almost independent of the size of a database.
This can be observed on both graphs. For the largest database of 100 000
nodes and 500 000 relationships a query using an index is approximately 170

60



4.3. Index implementations comparison

times faster and performs approximately 180 times less database operations
than a simple query. In other words using indexes may cause a huge difference
in many use cases. Also some queries that could not be otherwise processed
due to its high complexity can be possibly processed if appropriate indexes
are used.

Figure 4.6: Simple query vs. query using index - total DBhits

4.3 Index implementations comparison

The last measurement is the most complex one of all. It consists of more
individual measurements and covers comparison of simple Cypher and two
different methods of indexing graph patterns. First index implementation,
introduced in this thesis, uses a tree structure to store index data. Index
created by this method will be further referred to as tree index. Second index
implementation, presented in a concurrent master’s thesis, uses a hash map
to store index data. Index created by this method will be further referred to
as hash index. The main difference between these implementations is the fact
that tree index is stored within the same database where the actual data is
whereas hash index is stored within a separate key-value store. Note that for
each graph pattern a new index must be created.

Both methods of indexing graph patterns use the same approach when
querying. It is the approach no. 1, as it is described in chapter 3. The
approach chooses a representative node for each index unit and performs a
query that involves such node for each index unit separately. Finally, results
of these queries are merged to present the final result for the query given by a
user. A strategy of choosing representative nodes for appropriate index units
varies for both index implementations. Hash index chooses the node with
the smallest internal Neo4j ID, whereas tree index chooses the node with the

61



4. Mearusements

Figure 4.7: Simple query vs. query using index - time

62



4.3. Index implementations comparison

biggest number of incoming relationships from index units 19. The strategy
that is used by tree index should be more effective since it provides, in average,
a smaller set of representative nodes that cover all index units of appropriate
index. Thus less queries must be performed in order to get the final result
for given query. Such strategy cannot be used by hash index since key-value
structure does not provide necessary information about incoming relationships
from index units 20.

All three databases, as they are introduced together with appropriate in-
dexes above, are used when measuring. There are 6 graphs for each of these
databases that visualize database operations that are crucial for index imple-
mentations 21. All of them use time as measured metric since it is what really
matters in practice.

1. Querying refers to the process of matching a graph pattern. A simple
query is compared to queries that use indexes provided by both methods
of indexing graph patterns.

2. Creating an index is the process of building a new index before it can
be actually used. Comparison between both methods of indexing graph
patterns is provided for the process.

3. Creating a relationship is a DML operation that may affect some
graph pattern units. Thus all indexes must be updated after such oper-
ation is applied to a database. Delete operation and subsequent process
of updating indexes is done within the same transaction. Thus time
that is needed to successfully commit such transaction is measured for a
database instance with no indexes and also for database instances with
tree index respectively hash index.

4. Deleting a relationship is a DML operation that may, again, affect
some graph pattern units. Thus time needed to successfully commit
a transaction with such operation is measured in the same way as de-
scribed for the previous operation.

5. Deleting a node is a DML operation that, by itself, cannot affect any
graph pattern units. However in this case it is applied to a database as
a part of more complex transaction. Such transaction consists of oper-
ations to delete relationships of a node together with an operation to
delete the node itself. Such complex transaction can affect some graph
pattern units. It is used to find out how effectively index implementa-
tions handle updating indexes within more complex transactions. It is
measured in the same way as described for previous operations.

19Strategies for choosing representative nodes are described in chapter 3.
20Detailed structure of hash index is described in concurrent master’s thesis.
21Elementary DML operations that may affect a graph pattern index are described in

chapter 2.

63



4. Mearusements

6. Deleting a label of a node is a DML operation that belongs to a
group of operations that in some way update nodes or relationships.
Any operation of such group may affect some graph pattern units. The
operation of deleting a label of a node is chosen to represent the group
since all operations within such group are handled in the same way when
updating indexes. The method of indexing graph patterns presented in
concurrent master’s thesis does not support updating of its indexes after
any of operations within such group is applied to a database at the time
of writing this thesis. Thus time that is needed to commit a transaction
with the operation of deleting a label of a node is measured only for a
database instance with no indexes and for an instance with tree index.

Measurement no. 1: Social graph with Triangle index

• Social graph of 10 000 nodes and 50 000 relationships is used.

• An index is created for a triangle graph pattern.

• Triangle index maps 183 graph pattern units.

• Figure 4.8 shows the process of querying in a graph. Figure 4.9 shows the
process of creating a new index in a graph. Figures 4.10, 4.11, 4.12 and
4.13 show graphs for individual DML operations as they are mentioned
above.

There is a noticeable difference between a simple Cypher query and both
index implementations. Query using tree index is, in average across different
cache types, 15 times faster than a simple Cypher query. Query using hash
index is slightly faster than tree index, but both are very competitive. For 183
graph pattern units there are 179 representative nodes to cover all appropriate
index units chosen during querying using hash map and 166 representative
nodes chosen during querying using tree map. Thus the strategy of choosing
representative nodes based on the number of incoming relationships from index
units proves to be better than the one that chooses them based on their
internal Neo4j IDs. However key-value stores are in general faster than graph
databases in performing read and write operations. Thus it is slightly faster
to use hash index when querying in this case even though there must be more
queries performed in order to get the final result.

Building of hash index is a little faster then building of tree index especially
in a database that uses no caching. To build a tree structure within a graph
database is more complex process than storing index data within a key-value
store. The size of hash index is 86 kB whereas the size of tree index is 0,1
MB. Data stored within a graph database typically require more memory
space than key-value pairs within a key-value store.

64



4.3. Index implementations comparison

DML operations, including deleting and creating a relationship and mainly
an operation of deleting node with its relationships, seem to be processed faster
by the method of indexing graph patterns introduced in this thesis compared
to the method from concurrent master’s thesis. Tree index structure within
the database where the actual data is provides direct links to indexed data.
Also tree structure in general provides richer information then a hash map.
These facts are useful when optimizing the whole process of updating indexes
especially when multiple DML operations are applied at once 22.

The process of updating indexes after one or more DML operations are
applied to a database brings additional costs. Fortunately there is no signific-
ant slowdown when applying DML operations compared to a database with
no indexes.

Figure 4.8: Triangle index - query

Figure 4.9: Triangle index - create index

22The whole process of updating indexes is described in documentation of index imple-
mentation.

65



4. Mearusements

Figure 4.10: Triangle index - create relationship

Figure 4.11: Triangle index - delete relationship

Figure 4.12: Triangle index - delete node with its relationships

66



4.3. Index implementations comparison

Figure 4.13: Triangle index - delete node label

Measurement no. 2: Music database with Funnel index

• Music database of 12 000 nodes and 50 000 relationships is used.

• An index is created for a funnel graph pattern.

• Funnel index maps 86 graph pattern units.

• Figure 4.14 shows the process of querying in a graph. Figure 4.15 shows
the process of creating a new index in a graph. Figures 4.16, 4.17,
4.18 and 4.19 show graphs for individual DML operations as they are
mentioned above.

There is a huge difference between a simple Cypher query and both index
implementations. Query using tree index is, in average across different cache
types, 190 times faster than a simple Cypher query. Query using hash index is
slower than tree index this time. For 86 graph pattern units there are only 6
representative nodes to cover all appropriate index units chosen during query-
ing using hash index and only 3 representative nodes chosen during querying
using tree index. The are just few representative nodes to cover all index units
because of the fact that appropriate graph pattern units within the database
are not evenly distributed but rather organized around a few ”central” nodes .
The strategy of choosing representative nodes used by the method introduced
in this thesis is very effective. It leads to the fact that querying using tree
index is faster than querying using hash index. Using index in this case is
extremely helpful.

Index implementations are very competitive when handling the process of
creating indexes and also when handling updates after DML operations. The
method introduced in this thesis seems to be a little faster in all of them in
this case. Bigger difference in performance is noticeable for the operation of
deleting a node together with its relationships. Index implementation from

67



4. Mearusements

this thesis again proves to be more effective when handling such operation.
Additional costs associated with the process of updating indexes do not cause
significant slowdowns in this case.

The size of hash index is 86 kB whereas the size of tree index is 0,1 MB.
This is again caused by the fact that graph databases require more memory
space to store data than key-value stores.

Figure 4.14: Funnel index - query

Figure 4.15: Funnel index - create index

Measurement no. 3: Transaction graph with Rhombus index

• Transaction database of 10 000 nodes and 100 000 relationships is used.

• An index is created for a rhombus graph pattern.

• The index maps 70 graph pattern units.

68



4.3. Index implementations comparison

Figure 4.16: Funnel index - create relationship

Figure 4.17: Funnel index - delete relationship

Figure 4.18: Funnel index - delete node with its relationships

69



4. Mearusements

Figure 4.19: Funnel index - delete node label

• Figure 4.20 shows the process of querying in a graph. Figure 4.21 shows
the process of creating a new index in a graph. Figures 4.22, 4.23,
4.24 and 4.25 show graphs of individual DML operations as they are
mentioned above.

There is again a big difference between a simple Cypher query and both
index implementations, mostly for a database with High-level and Low-level
caches in this case. Also there is a noticeable difference between queries using
both indexes. Query using tree index is in average more than 30 times faster
than a simple Cypher query while query using hash index is ”only” 25 times
faster. For 70 graph pattern units there are 66 representative nodes to cover
all appropriate index units chosen during querying using hash index and 64
representative nodes chosen during querying using tree index. The strategy
of choosing representative nodes used by the method introduced in this thesis
proves to be better again.

Again, both implementations are very competitive when handling DML
operations. As it can be already observed from measurements for other two
databases, the method introduced in this thesis updates indexes after a node
gets deleted together with its relationships faster then the method from con-
current master’s thesis.

The size of hash index is 70 kB whereas the size of tree index is 3 MB.
Size difference is more significant here than within two other databases. It
is probably caused by the fact that indexed graph pattern consists of more
nodes than graph patterns within previous databases. Thus there are many
relationships between nodes that form specific graph pattern units and ap-
propriate index units within a tree index structure. Thus more data must be
stored. However additional space of 3 MB for a database of 10 000 nodes and
100 000 relationships is still not significant if the index is used in practice.

70



4.3. Index implementations comparison

Figure 4.20: Rhombus index - query

Figure 4.21: Rhombus index - create index

Figure 4.22: Rhombus index - create relationship

71



4. Mearusements

Figure 4.23: Rhombus index - delete relationship

Figure 4.24: Rhombus index - delete node with its relationships

Figure 4.25: Rhombus index - delete node label

72



4.3. Index implementations comparison

Overall evaluation

The measurement proves that both methods for indexing graph patterns can
speed up the process of matching graph patterns. The effectiveness of these
methods depends on many factors including a choice of graph pattern to be
indexed, the size of a database, the number of graph pattern units of ap-
propriate index and also a distribution of these graph pattern units within a
database.

Creating an index is very complex process especially for complicated graph
patterns and large databases. However it needs to be done only once before
the index can be used. Additional costs caused by the process of updating
indexes after DML operations are, on the other hand, considered not to be very
significant. Both index implementations are very competitive when handling
such operations.

The method for indexing graph patterns introduced in this thesis proves to
have slightly better results than the method from concurrent master’s thesis.
The main advantage of the method is that a tree structure with direct links
to the actual data provides richer information than a hash map. Such inform-
ation that cannot be obtained if hash map is used is useful when choosing
representative nodes of index units during the process of querying or when
optimizing the process of updating indexes. The main disadvantage of the
method is the fact that tree index stores its data within the same database
where the actual data is. Querying using such index can be too slow if there
are too many matched graph pattern units within a database or if an indexed
graph pattern is too large. In both cases tree index requires to store much
index data. Too much additional data within a database may seriously affect
statistics that are used when evaluating execution plans of Cypher queries
which may further cause slowdowns if executing them 23.

23Such information was achieved during personal consultation with Cypher team in Lon-
don.

73





Chapter 5

Future work

Even though the implementation of the method for indexing graph patterns
introduced in this thesis works pretty well for many graph patterns there is still
space for possible improvements. There are some advantages and disadvant-
ages of using proposed tree structure of index. Some other possible structures
that could be used to store index data would be worth exploring. An index
structure plays an important role in the process of speeding-up querying graph
patterns.

Unfortunately Neo4j does not support meta data at the time of writing
the thesis. Index data, as introduced in this thesis, is stored within the same
database where the actual data is. Thus index data is mixed with the actual
data. Adding such additional data to a database may affect statistics that
are used to evaluate execution plans for queries. Also it may slowdown these
queries. Such problem can be solved by coming up with the way of separating
index data and the actual data on the physical level.

The method of indexing graph patterns currently works with Cypher.
Cypher is a high-level tool that brings some additional costs since it must
be parsed before required operations are performed. Thus the method can be
further optimized by replacing Cypher with low-level API such as Core API,
or possibly Traversal API.

An important component of the method is the process of checking if given
index can be used for given query. As it is mentioned in the thesis, there
are specific rules defining which index can be used for which query. Such
validation is not implemented within the method at the time of writing the
thesis and would be certainly necessary if the method is used in practice.

Also the method can be tested for more different databases with more
different indexes. There is for sure a space for possible optimizations of the
method. By testing it with multiple different databases one can find out
weaknesses of the method and react on them in order to improve the method.

75





Conclusion

Graph databases are, at the time of writing the thesis, one of very fast grow-
ing categories of database management systems. They are also very young
and thus still provide space for possible improvements. The process of match-
ing graph patterns is one of their main features. A graph pattern can be
referred to as a subgraph of a database graph. Then the process of matching
graph patterns can be referred to as the process of finding appearances of such
subgraph within a database graph.

Neo4j, the world’s leading graph database at the moment of writing the
thesis, uses mostly Cypher for matching graph patterns. It is a graph query
language that enables among other things to express a graph pattern whose
matches are then found within a database. The complexity of finding matches
for appropriate graph pattern depends on the size of a database, the shape of
given graph pattern but mostly on how much information is provided about
such graph pattern. If a user provides some detailed information about nodes
or relationships that form queried graph pattern, it is not difficult to find its
matches within a database. But if only structure of queried graph pattern
is known, the whole process of matching graph patterns is very complex. It
involves scanning of the whole database in order to find matches for such
graph pattern. For this reason graph pattern indexes are introduced.

A database index is a data structure that improves speed of retrieving
data by providing the database with quick jump points on where to find the
full references, much like book indexes. Indexes already exist for nodes within
graph databases. Although no indexes were yet introduced for graph patterns.
In this thesis a new method for indexing graph patterns was analyzed, designed
and implemented for Neo4j graph database engine in order to speed-up the
process of matching graph patterns. The method enables to create, use and
update multiple indexes, each created for a different graph pattern. Index
data is organized in a tree structure and stored within the same database
where the actual data is.

The new method for indexing graph patterns is tested by using multiple

77



Conclusion

different databases with multiple different graph patterns. It is also compared
to competitive method that is introduced in a concurrent master’s thesis. It is
proved that using indexes which are created by the method introduced in this
thesis is beneficial for the process of matching graph patterns. In some cases
queries using such indexes are extremely faster than simple Cypher queries.

The thesis aims to introduce the topic of indexing graph patterns and
provides one of possible ways how to speed-up the process of matching graph
patterns within a graph database.

78



Bibliography

[1] Jan Paredaens, Paul De Bra, Marc Gyssens, Dirk van Gucht. The Struc-
ture of the Relational Database Model. Springer, 1989, ISBN 3540137149.

[2] Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks.
Technical report, IBM Research Laboratory, 1970.

[3] Shashank Tiwari. Professional NoSQL. Wrox, 2011, ISBN 047094224X.

[4] Ian Robinson, Jim Webber, Emil Eifrem. Graph Databases. O’Reilly Me-
dia, 2013, ISBN 1449356265.

[5] John Adrian Bondy, U.S.R. Murty. Graph Theory With Applications.
Elsevier Science Ltd/North-Holland, 1976, ISBN 0444194517.

[6] Bin Xiong. Graph Theory. World Scientific Publishing Company, 2010,
ISBN 9814271128.

[7] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer, 2000, ISBN 0387989765.

[8] Michal Bachman. GraphAware: Towards Online Analytical Processing in
Graph Databases. Master’s thesis, Imperial College London, 2013.

[9] Jonathan L. Gross, Jay Yellen. Graph Theory and Its Applications. CRC
Press, 1998, ISBN 0849339820.

[10] Nathan W Lemons, Bin Hu, William S Hlavacek. Hierarchical graphs for
rule-based modeling of biochemical systems. BMC Bioinformatics, 2011.

[11] Wenfei Fan, Xin Wang, Yinghui Wu. Incremental Graph Pattern Match-
ing. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, ACM, 2011, ISBN 978-1-4503-0661-4.

79



Bibliography

[12] Prof. Ing. Pavel Tvrd́ık, C. Parallel algorithms and computing. ČVUT,
2005.

[13] Dexter C. Kozen. The Design and Analysis of Algorithms (Monographs
in Computer Science). Springer, 2011, ISBN 146128757X.

[14] Wikipedia. Depth-first search. https://en.wikipedia.org/wiki/Depth-
first_search, 2015.

[15] Wikipedia. Breadth-first search. https://en.wikipedia.org/wiki/

Breadth-first_search, 2015.

[16] Mark Newman. Networks: An Introduction. Oxford University Press,
2010, ISBN 0199206651.

[17] Réka Albert, Albert-László Barabási. Statistical mechanics of complex
networks. Technical report, Department of Physics, University of Notre
Dame, 2002.

[18] MongoDB. NoSQL Databases explained. http://www.mongodb.com/

nosql-explained, 2015.

[19] Eric Redmond, Jim R. Wilson. Seven Databases in Seven Weeks: A Guide
to Modern Databases and the NoSQL Movement. Pragmatic Bookshelf,
2012, ISBN 1934356921.

[20] solid IT. DB-Engines Ranking of Graph DBMS. http://db-

engines.com/en/ranking/graph+dbms, 2015.

[21] Neo Technology. What is a Graph Database? http://neo4j.com/

developer/graph-database, 2015.

[22] Neo Technology. The Neo4j Manual v2.2.1. http://neo4j.com/docs/

2.2.1/, 2015.

[23] Nigel Small. Neo4j Index Confusion. http://nigelsmall.com/neo4j/

index-confusion, 2015.

[24] GraphAware. GraphAware Neo4j Framework. https://github.com/

graphaware/neo4j-framework, 2014.

[25] Michal Bachman. Introducing GraphAware Neo4j Framework.
http://graphaware.com/neo4j/2014/05/28/graph-aware-neo4j-

framework.html, 2014.

[26] Neo Technology. Example Dataset. http://neo4j.com/developer/

example-data/, 2015.

[27] Paul Tremberth. Musicbrainz in Neo4j. http://neo4j.com/blog/

musicbrainz-in-neo4j-part-1/, 2015.

80



Appendix A

Acronyms

ASCII American Standard Code for Information Interchange

SQL Structured Query Language

ACID atomicity, consistency, isolation, durability

REST Representational State Transfer

API Application Programming Interface

HTTP Hypertext Transfer Protocol

MVC model view controller

OLTP Online Transaction Processing

DML Data Manipulation Language

LIFO last in first out

FIFO first in first out

BFS breadth-first search

DFS depth-first search

81





Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
measurements............................results in tables for chapter 4
src.......................................the directory of source codes

impl........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format

83


