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Abstrakt

Ćılém této práce je vytvoř́ıt prototyp silničńıho asistenta s použit́ım vizuálńı
detekce. Video z dopředu orientované kamery je zpracováno algoritmem založeným
na Houghově transformaci a Kalmanově filtru. Prototyp je schopen rozpoznat
pozici silničńıho pruhu a zobrazit varováńı v př́ıpadě, že se řidič bĺıž́ı ke kraji
pruhu. Aplikace pro mobilńı telefony byla dále vytvořena na základě tohoto
prototypu.

Kĺıčová slova Silničńı asistent, Poč́ıtačové viděńı, Rozpoznáńı silničńıho
pruhu.

Abstract

The goal of this thesis is to develop a prototype of the vision-based driver
assistant. The prototype use an image sequence from a front-mounted camera
as the input that is processed via algorithm based on Hough Transform and
Kalman filter. The position of the current lane is determined and warning
is displayed in case of the lane departure. Additionally, an application for
mobile phones is created based on the prototype.

Keywords Vision-based assistent, computer vision, Road lane recognition.
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Introduction

Motivation and objectives

Road lane recognition is a well known problem throughout the Computer
vision. To know the position of the road lane and therefore the cars position
within it can be useful for various types of situations. Whether the information
is used for warning, cruise control or fully autonomous driving the potential for
a car accident is reduced. The problem is also often associated with the traffic
signs recognition, pedestrian recognition and vehicle recognition. Because of
the usefulness of the road lane recognition, subject is quite well studied and
documented. With the recent rise of self-driving cars, there is a great interest
in perfecting the road lane recognition. There is number of papers focusing
on the subject, but there are not many implementations available.

The goal of the thesis is therefore to create a functioning prototype of the
road assistant that will alert the driver when is approaching the lane boundary
in real-time. The assistant can be beneficial when the driver is not giving full
attention to the road or has fallen into a microsleep [1].

The thesis was partially developed at National Taipei University of Tech-
nology in Taiwan under the supervision of Yen-Lin Chen Ph.D.

Problem statements

The problem of the road lane recognition is very complex. The road geometry,
markings quality, weather conditions and light can vary significantly. There
is a large number of papers focusing on various sub-problems and it is not
possible nor intended to cover all of these in this Master Thesis. Instead the
focus is set on one subset of the problem:

• Recognize road markings. Road marking is man-made stripe of paint
that is put onto the road surface in order to convey official information.
It can be either full or dashed.
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Introduction

• Use road markings to recognize current road lane. Road lane is part of
roadway used for single vehicle bounded by road markings on each side.

• Track current lane in consequent frames, even if the road markings are
not always available. E.g. with dashed road marking.

• Develop system to recognize whether the user is approaching the bound-
ary using information from the steps above.

State of the Art

In the recent years car companies were pushing for better active safety features
or even complete autonomy in their vehicles. With the arrival of cameras and
other sensors the research in the area accelerated. Some companies like Google
use in their self-driving car LIDAR1 systems to scan the road. These systems,
however, are expensive and not widely accessible. There is still need for the
visual sensors to recognize markings and traffic signs on the road. According to
another car company Tesla owner Elon Musk the LIDAR system doesn’t make
sense in a car context [2]. In Tesla Autopilot [3] they use unique combination
of cameras, radar, ultrasonic sensors and data to automatically steer down the
highway, change lanes, and adjust speed in response to traffic. It is clear from
the recent development that vision-based systems are taking over functions
previously performed by a radar. For example Forward Collision Detection
and Adaptive Cruise Control2 was previously domain of radar systems.

This means that Computer vision3 is slowly taking dominant role in the
autonomous driving. Of course, there will be always a need for other re-
dundant systems in order to be ensure high level of safety. But for a road
assistant the computer vision is usually sufficient as it does not have to 100%
accurate all the time. Compared to autonomous system, the assistant can
also allow higher level of false positives because it does not trigger potential
live-threatening action (such as braking). There is already a few of com-
mercial vision-based driver assistants available as a standalone system or a
smart-phone application.

In the academic sphere there has been a lot of research invested in different
algorithms used for the road lane recognition. These algorithms range from
very robust but computational demanding to less complex and fast. These
algorithms, however, are rarely implemented as real-time systems in C++ or
other language. This thesis use some of the algorithms with some adjustments.

1Lidar (also written LIDAR, LiDAR or LADAR) is a surveying technology that measures
distance by illuminating a target with a laser light.

2Adaptive cruise control is an optional cruise control system for road vehicles that auto-
matically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.

3Computer vision is a field that includes methods for acquiring, processing, analyzing,
and understanding images and, in general, high-dimensional data from the real world in
order to produce numerical or symbolic information, e.g., in the forms of decisions.
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Chapter 1

Previous implementations

In this part we will discuss previous implementations of visual-based assist-
ants.

1.1 Mobileye

Mobileye [4] is the recognized global pioneer in collision avoidance systems
and according to the Mobileye website one of the largest artificial vision de-
velopment center on the planet. Its standalone system Mobileye 560 consist
of a front-mounted camera and a small display. Mobileye can warn drivers
when the car approach the lane boundary. It can also issue a forward collision
warning, pedestrian collision warning, speed limit warning and safe headway
distance warning.

Mobileye can connect to car internal system to receive information when
the turn signal is turned on. The camera have to be mounted and calibrated
precisely by certified engineers in order for the system to work. This means it
is in no way easy plug-in system.

The advantage of Mobileye is use of their own hardware. This means they
can use their custom designed chips with baked in computer vision algorithms
for better performance [5]. This helps to increase the complexity of the al-
gorithms. The disadvantage of the system is its higher price around $800 plus
additional installation costs.

Mobileye’s lane detection algorithm is not publicly available. It can be
only assumed from a promotional video showing the output of algorithm in
Figure 1.1 that it is using some kind of advanced b-spline 4 algorithm to be
able to fit curved lines.

4In the mathematical subfield of numerical analysis, a B-spline, or basis spline, is a spline
function that has minimal support with respect to a given degree, smoothness, and domain
partition.

3



1. Previous implementations

Figure 1.1: Mobileye algorithm output

1.2 iOnRoad

iOnRoad is an application for iOS and Android. It features lane departure
warning as well as forward collision warning and headway monitoring. It also
adds some useful features like video recording and car locator.

Advantage of the iOnRoad is its low cost. It can also be easily installed
in any car by attaching the smartphone to the windshield, not requiring ad-
ditional configuration. The trade off is a limitation of the smartphone’s com-
putational power. The frame rate is considerably smaller than the mobileyes
even when tested on iPhone 5S.

The algorithms used are also less complex than the ones used in Mobileye.
The road lane recognition algorithm doesn’t fit curved lanes and sometimes
have problems to re-adjust after the lane was changed.

4



1.2. iOnRoad

Figure 1.2: iOnRoad application
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Chapter 2

Analysis and Design

2.1 Requirements

The chosen techniques used in the algorithm are based on the given require-
ments. The main goal is to be able to recognize a lane departure and issue a
warning. In order for it to be possible the algorithm should:

• Recognize lanes on roads with lane markings.

• Be able to recognize both full and dashed lines

• Be able to track the current lane over time

• Switch lane when the driver is changing the lane

2.2 Modules and techniques

There are many approaches to the road lane recognition. Even though they
vary significantly, according to a recent survey [6] the steps common in all al-
gorithms can be described in following diagram 2.1. Even though the modules
described does not have to be all present in the algorithm most of them can
be mapped as its subsystem. The data flows from the low-level algorithms
to the top. There can also be feedback from the higher level modules to the
bottom ones to improve the result. E.g. Image to World module, once it’s
extracted, can be useful in feature extraction process.

2.3 Image Pre-processing

The purpose of image pre-processing is to get rid of the noise in the image.
It can also correct exposure in case of bad illumination, so the image can be
prepared for a next step which is the feature extraction.

7



2. Analysis and Design

Figure 2.1: Road Lane algorithm diagram

Because the goal is to extract lane markings there need to be a way of
separating them in the image. There are few assumptions that can be used
for such purpose. The lane markings usually have a contrast color compared to
the road. They also have distinct width and lengthy shape. The result of the
image pre-processing module is a binary image that should ideally highlight
markings in white pixels and discard the road and other features in black.

2.3.1 Color threshold

The assumption that the markings are of a distinct color can be applied. The
pixels that are similar to the color within a given ǫ range are used and the rest
is discarded. This can produce good results if the threshold color is chosen
well.This is, however, naive solution as the illumination condition can change
the color of the markings. The markings in many countries can also vary in
color (e.g. white and orange).

2.3.2 Fixed intensity threshold

The image can be converted into the gray scale and then compared by its pixel
intensity (usually 0-255) with a fixed threshold. Again as in Color threshold-
ing the result depends on the choice of the constant. This method is also
vulnerable to illumination changes.

2.3.3 Adaptive Intensity threshold

The method is different from the Fixed intensity thresholding in the choice of
the thresholding parameter. Instead of fixed value, it is computed as a mean
of neighbouring pixels. This partially solves the illumination change problem
but create a lot of false positive pixels. That can be solved by additional noise

8



2.4. Feature extraction

removal. The Erosion, Gaussian filter or Median filter can be used to remove
the false positive pixels.

2.3.4 Marking width threshold

The method is based on the Marking Detector in [7]. The idea is to use the
low-high-low intensity profile of the row in the image to make the threshold
more precise and to get rid of the false positives. Each pixel can be described
by a formula that is shown in Figure 2.3.4.

yi = 2xi − (xi−τ + xi+τ )− |xi−τ − xi+τ |

Figure 2.2: Marking width formula

where xi is the pixel intensity and τ is the presumed marking width. The
last term in the function is used to lower intensity of the pixel that has big
difference between intensity of the left and right pixels. This way the marking
of certain width will be highlighted.

To counter the illumination effects the row is normalized by the rows max-
imum intensity.

2.3.5 Conclusion

The Marking width threshold was selected as the image pre-processing al-
gorithm. The main reason was high reliability and low number of false pos-
itive pixels. The width of the lane is in perspective changing with increasing
distance which can be solved by implementing feedback from Image to World
module.

2.4 Feature extraction

In the context of the feature extraction there are two terms often mentioned.
Road boundary recognition and lane recognition. These might seem like a
similar problems but are considerably different. Road boundaries does not
have to be always man-made and can vary significantly. From curbs in cities,
grass in the country to the snow in the north teritories. The road also doesn’t
necessarily have to be paved. This makes the problem much more wide than
the lane marking recognition. For that reason this thesis focus solely on the
marked roads.

There are many different methods to extract lane markings from the image.
Some of them are listed below.
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2. Analysis and Design

2.4.1 Prerequisites

2.4.1.1 Inverse Perspective Mapping

Some of the papers introduce the Inverse Perspective Mapping (IPM)[8] as
the first step. Given the Image to World model it can transform input image
to a bird-eye view. The points on screen are translated into the real world
coordinates and then projected back into x,z space. That can be simplified
by creating an affine transformation that will convert a pixel from original
image to newly created top image. The cars will be distorted in the image but
the road would be as seen from the air when the model is set correctly. This
technique can make it easier for some of the algorithms to find the markings
as they don’t have to deal with the perspective distortion effect.

This technique has however certain trade-offs. If the model is not com-
puted properly, the image will become distorted and detecting of the lines
more problematic. It can be caused by wrong installment of the camera that
have adjusted pitch or yaw. It is also expected for the road to be flat. In
case there is a slope with higher angle (e.g. when car is approaching a hill)
the inverse perspective will produce distorted result. This can be, however,
mitigated by advanced method for Image to World calibration and 3D recon-
struction. IPM also come with increased computational cost and partial loss
of resolution. An example of inverse mapped image is shown in Figure 2.3.

Figure 2.3: Inverse perspective mapping

10



2.4. Feature extraction

2.4.1.2 Canny edge detector

Some of the mentioned algorithms need a binary image that describes the
edges in the original image as the input. The most used method is the Canny
edge detector. It was developed by John F. Canny in 1986 [9]. The process
consists of following steps.

Noise reduction Use the Gaussian filter5 to remove the noise in the image.
The kernel size should be carefully selected so the edges are still detectable.

Intensity gradient The intensity gradient need to be computed for every
pixel in the image. The image is first converted to a gray-scale image. The
Sobel operator [10] is often used in relation with the Canny edge detector. The
operator uses 3x3 kernel which is applied on every pixel of the image by mul-
tiplying locally similar entries and summing (operation known as convolution).
It is done once in the vertical and once in the horizontal direction as seen in
Figure 2.4 and 2.5. The Gx and Gy returns higher value for neighbouring
pixels that differ in their intensities. This way the edges can be highlighted.

Gx =
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∣

−1 0 1
−2 0 2
−1 0 1

∣

∣

∣

∣

∣

∣

∗A

Figure 2.4: Horizontal kernel convolution
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Figure 2.5: Vertical kernel convultion

At each point of the image an approximation of the gradient can be calcu-
lated by combining both horizontal and vertical gradients in Figure 2.6. The
direction of each pixel can be also computed as shown in Figure 2.7

G =
√

G2
x +G2

y

Figure 2.6: Sobel gradient

Θ = atan2 (Gy,Gx)

Figure 2.7: Sobel direction

5Gaussian filter is a filter whose impulse response is a Gaussian function (or an approx-
imation to it). Gaussian filters have the properties of having no overshoot to a step function
input while minimizing the rise and fall time.
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2. Analysis and Design

Edge thinning The output of the Sobel is a gradient image with different
values marking the edge strength. The desired image would, however, have
single pixel line in the place of real edges. This way the edge detecting also
become resolution independent because high resolution image would display
thicker edges. Non-maximum edge suppression is applied to thin the edges.
In principle it compares the edge strength of a pixel with its negative and
positive gradient neighbour. If the value is largest in the pixel’s direction it
is preserved. Otherwise it is suppressed. In some implementations more of
discrete directions (0◦, 90◦, 135◦, 45◦) are used to be able to detect diagonal
edges better.

Threshold Hysteresis Instead of a single threshold a double threshold is
used. The high threshold and low threshold can be chosen as a parameter of
the algorithm. Every value above the high threshold is considered an edge,
everything below low threshold is discarded. The rest of values is either pre-
served or discarded based on their connection to the pixels already classified
as edges. This can be achieved by a blob analysis 6 that is exploring its
8-connected neighborhood pixels.

The resulting edges can be seen in Figure 2.9.

Figure 2.8: Original road image Figure 2.9: Canny Edges

2.4.2 Particle filtering

The Particle filter also known as or Sequential Monte Carlo (SMC) can be
used as the feature extraction algorithm. The term ”particle filters” was first
coined in 1996 by Del Moral [11]. The filtering is often used for estimate of the
internal state of system based on partial observations. The algorithm consists
of three steps:

Initialisation The algorithm distributes given number of samples (particles)
based on a given proposal distribution q(x).

6Blob analysis is an algorithmic application of graph theory where subsets of connected
components are uniquely labeled based on a given heuristic.
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2.4. Feature extraction

Importance sampling In importance sampling, the target distribution
p(x) is approximated, using samples drawn from a proposal distribution q(x).
For each particle the weight is calculated based on importance weight formula.
The crucial idea is to update the particles so they will approximate the distri-
bution in the next time step. The update is given by a process model. After
that, weights are normalised to sum up to one. The process is then repeated
in every iteration.

Resampling In practice, every update iteration leads to the degeneracy
problem. Only small part of the weights have significant weight and rest have
very small weights. This can be solved by resampling the particles from the
set in accordance to the weights.

Particle filter for feature extraction In [12] updated version of the al-
gorithm is used. First, the IPM is applied to mitigate effects of the perspective
distortion. In initiation phase the particles are uniformly distributed in the
bottom of the image. The particles are weighted according to a given weight-
ing function which takes in account multiple hypotheses. This is needed as
there can be more than one lane marking present in the image.

Figure 2.10: Initiation Figure 2.11: Progress
Figure 2.12: Low cer-
tainty

The particle filter is updated in relation to time axis which is replaced
with the y axis. That is, particles are not being observed in time but in the
bottom-up progress in one frame. The process model is set to define how the
lanes move between updates in the image. Using defined Markov model the
algorithm describes likelihood of the line to go straight, turn left or right. This
allows to track curved markings in the image.

Additional observation model can be applied to improve robustness of the
algorithm. This can use edge strength as well as color of the marking. The
uncertainty of the estimates can be derived from the variance in the sample
set. If the samples spread over a larger area the uncertainty rises. The result
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2. Analysis and Design

of the algorithm can be seen in figure 2.12. Red color highlights the particles,
green are the estimates and yellow shows the level of uncertainty.

The advantage of the algorithm is ability to detect non-straight markings
and its robustness. The use of inverse perspective mapping for the first step
of the algorithm makes assumption about the position and rotation of the
mounted camera. In addition laser was used to correct for uneven road surface
and the changing pitch of the vehicle. That is, in order for algorithm to work
without the careful installation and additional laser sensor changes would have
to be made.

2.4.3 Recursive Bayesian segmentation

In [7] a robust algorithm to determine whether any pixel is a road, lane mark-
ing or an object (car) is used. It is based on Bayesian model that assigns
likelihood models for each class. Likelihood models are described as para-
metric functions, according to the expected properties of the considered im-
age features with respect to the defined classes. The pavement is described
as monolithic surface with low intensity variance, markings as near-vertical
bright stripes and objects as dark regions with lower intensity than the road.

The parameters for the likelihood function are estimated using Expectation
Maximization algorithm [13]. This allows for the model to change based on
the illumination. This however causes problems when abrupt changes occur
e.g. when the vehicle is entering a tunel. A control mechanism that disable
updating of parameters is implemented to mitigate these problems.

The method uses a robust algorithm which, apart from lane markings,
can also detect road boundaries and other vehicles. The complexity of its
implementation is quite high as it, apart from the Bayesian framework, also
needs additional line (or curve) fitting to produce actual marking lines. It also
uses IPM with all its advantages and disadvantages.

IPM Pavement Markings Objects

Figure 2.13: Output of Bayesian segmentation

2.4.4 Hough transform

Hough transform is based on 1962 patent of Paul Hough [14]. The algorithm
takes binary image indicating the edges as an input. The Canny Edge Detector
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2.4. Feature extraction

is most commonly used. The original version of the algorithm is used to
identify lines in the image. Later there has been improvements in order to
be able recognize other shapes like circles or ellipses. The originally proposed
method used the equation in Figure 2.14 to describe a line where m is the
slope of the line and b is the y-intercept.

y = mx+ b

Figure 2.14: Original Hough line representation

This however allowed for unbounded space for vertical lines and change
was proposed [15] to the equation that can be seen in Figure 2.15.

ρ = x cos θ + y sin θ

Figure 2.15: Hough line representation

Where θ is the angle of the line and ρ is the perpendicular distance from
the origin. A line with ρ = 10 and θ = 45◦ is displayed on 2.16
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Figure 2.16: ρ and θ line representation

For each point a number of lines can be plotted going through it with
diffent θ. A ρ is then computed using equation in 2.14. This is repeated for
each point. The resulting graph is called a Hough graph. Example of the
graph with two points can be seen in 2.17. The red is a ρ function of a point
[2,2] and the blue of the a point [3,3]. Their intersection marks the θ and ρ of
their connecting line.

A two-dimensional array called accumulator is used for collecting the res-
ults for each point. Every point votes on a different line as they intersect with
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Figure 2.17: Hough space graph

each other in Hough space. After the process the accumulator is thresholded
and local maximum is extracted. This matrix of (ρ, θ) are the found lines.

Probabilistic Hough Transform Probabilistic Hough Transform is just a
variant of Standard Hough Transform. Instead of transforming all M points it
selects only a subset of m points to be transformed to the Hough space where
m < M . This will reduce the complexity of the voting stage. The value of m
has to be carefully selected to be able detect all features. It usually depends
on what minimum length lines we want to be able to detect. In the Figure
2.18 result of Probabilistic Hough Transform is displayed for high and low
threshold.

Hough with threshold 20 Hough with threshold 100

Figure 2.18: Output of Hough transform
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2.5. Model fitting

2.4.5 Conclusion

The Hough Transform has been chosen as the Feature Extraction algorithm.
It does not require IPM and works reliably in the scenario of the road with
marked lines. It does not detect curved lines in the distance. However, the
markings close to the vehicle are almost straight even when the road is sig-
nificantly curved. For Lane Departure Warning only the close distance lane
marking position is necessary to determine car’s position within the lane.
Hough transform also produces line segments. Even though additional model
fitting is necessary, it is less complex than in other methods described. At last,
the Hough Transform is well known and used algorithm and there is plenty of
optimized implementations available as well as of the Canny Edge Detector.

2.5 Model fitting

The module responsible for converting the features obtained from the feature
extraction module into actual lanes is called the Model fitting module. The
choice of the module heavily depends on the output of the feature extraction
module. Since the Hough Transform was selected as the feature extraction
module, a model should be fitted using set of line segments that have been
extracted from the image.

2.5.1 Line filtering

The obtained lines have to be filtered to avoid false positives. There is a
number of different methods that can be used for the filtering.

2.5.1.1 Direction

Lines can be filtered based on their direction. An assumption that the vehicle
is moving parallel to the lane markings can be used. The lines can be filtered
by given range (a, b) = {x ∈ R | a, b > 0◦}, a, b < 180◦. In the Figure 2.19 the
example of the filter can be seen. The lines that are within range are shown
in green color. Notice that the far left and far right markings have not been
included.

2.5.1.2 Vanishing point

In perspective, vanishing point (vx, vy) is a point where set of parallel lines
intersect.It is a point of much interest in computer vision field as it corresponds
to a 3-dimensional point in space. If it is correctly detected it should be located
on the horizon in the middle of the road. The lines could then be compared by
the distance at the intersection with the y = vy line. The vanishing point can
be set statically in the center of the image or detected. The reliable detection
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Figure 2.19: Direction line filtering

Figure 2.20: Vanishing point

of the vanishing point is however not a trivial problem. The example of the
vanishing point is shown in 2.20.

2.5.1.3 Direction in the real world

The lane angle changes with the distance to the car in the x axis because of
the perspective distortion. To mitigate this effect an Image To World model
can be used to transform lanes to real-world space. With the real world model
the lanes can be filtered to the ones that are parallel to the z-axis within given
deviation. In the Figure 2.21 an image where all four lane markings are filtered
is shown.
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2.5. Model fitting

Figure 2.21: Real world direction line filtering

Figure 2.22: Marking with multiple lines

2.5.2 Line merging

There are often multiple lines found for single marking. Example of such
marking can be seen in 2.22. It can be due to the marking bad quality,
special type (such as double markings) or other causes. To simplify the model
and lower further computational cost the most similar markings are merged
together. The similarity of lines is computed based on the formula in Figure
2.1.

δ = |f(s1, ~na, pb)− f(s1, ~nb, pa)|+ |f(s2, ~na, pb)− f(s2, ~nb, pa)|, (2.1)

f(y, ~n, p) = ( ~nx ∗ px + ~ny ∗ py − ~ny ∗ y)/ ~nx (2.2)

Where ~na, ~nb being lines normal vectors, papb points lying on the lines and
s1, s2 a segment range for which the similarity should be measured. The lines
with δ lower than certain threshold are then merged together.
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2.5.3 Marking center detection

To be sure that the found line is a lane marking, additional step is needed.
Otherwise road barriers, sideline of cars, shadows and other objects could be
mistaken for the markings [16]. Additionally center of each lane marking can
be obtained. This is useful as either the left or right edge of the same marking
is often detected and creates noise in line measurements.

Lines are first sampled at given points from the top to the bottom along
them. An one-dimensional array of pixel intensities is extracted from the
gray-scale image where Threshold filter was previously applied. The pixels
in the left and right direction from the line at sample point are saved to the
array. Close up image of single sample can be seen in 2.23. In Figure 2.24 a
graph of extracted intensities is shown. The width of the marking at a given
point is then obtained using Image to World model. This will make sure that
the width of more distant markings will be appropriately adjusted. New 1-D
vector of intensities is then constructed. The graph represent and ideal profile
of a lane marking and is called a template graph or data set. The 1-D vector
is given a width of the lane marking lw and margin on both sides lw/2 wide .
The resulting profile is illustrated in Figure 2.25.

Figure 2.23: Lane marking 1-D sample

Cross correlation In signal processing, cross-correlation is a measure of
similarity of two series as a function of the lag of one relative to the other.
This is also known as a sliding dot product or sliding inner-product.

The formula defining the cross-correlation [17] is shown in Figure 2.3 where
T is the smaller template data-set and I is the source data-set. The result
is stored in the result matrix R. In this case a normalized version is more
beneficial as the actual intensities can differ in various illumination. The
formula used is shown in 2.4.
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Figure 2.24: Marking intensities
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Figure 2.25: Marking profile

R(x, y) =
∑

x′,y′

(T (x′, y′) · I(x+ x′, y + y′)) (2.3)

R(x, y) =

∑

x′,y′(T (x
′, y′) · I(x+ x′, y + y′))

√

∑

x′,y′ T (x
′, y′)2 ·

∑

x′,y′ I(x+ x′, y + y′)2
(2.4)

Matching To identify the matching area, the template is compared against
the source. For every pixel cross-correlation with the template image is com-
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puted. This will produce a matrix of correlation coefficients for each pixel.
The maximum cmax, cx for maximum coefficient and its location is then found.
Finally the center of the line can be computed by cx + lw/2. The result can
be seen in Figure 2.26
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Figure 2.26: Result of cross-correlation

Thresholding By applying threshold on the maximum coefficient it is pos-
sible to eliminate false positives. This will help determine whether the line is
genuine lane marking or different kind of object

Line fitting In the previous step a list of line centers is created for each line
as illustrated in Figure 2.5.3.

Figure 2.27: Markings center points

A line needs to be fitted through the points. If the points would be connec-
ted directly the line would have jagged shape. A typical solution for a given
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problem - fitting a line through set of points - is the Least square estimator
[18]. Consider over-determined system in Figure 2.28.

n
∑

j=1

Xijβj = yi, (i = 1, 2, . . . ,m),

Xβ = y,

Figure 2.28: Linear least squares

Such systems usually do not have a solution (only when the points are in
a perfect line) but the resulting line can be estimated using linear regression.
The goal is to find the coefficients β which fit the equations ”best,” in the sense
of solving the minimization problem as seen in Figure 2.5. S basically defines
the problem as a square of the vertical distance from a data point to the given
line function. Example of a line fitted with vertical distance (displayed as a
blue line) is shown in 2.29. There are more ways how to calculate the minimum
distance. An example of a line fitted based the perpendicular distance can be
seen in Figure 2.30.

β̂ = argmin
β

S(β), (2.5)

S(β) =

m
∑

i=1

∣

∣yi −

n
∑

j=1

Xijβj
∣

∣

2
=

∥

∥y −Xβ
∥

∥

2
. (2.6)
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Figure 2.29: Example of a line fitted using vertical distance
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Figure 2.30: Example of a line fitted using perpendicular distance

The solution is unique given that the rows of matrix are linearly independ-
ent. Finally the coefficient vector is created in Figure 2.31

β̂ = (XTX)−1XTy.

Figure 2.31: Coefficient vector for Least Squares

In a typical implementation, the algorithm iteratively fits the line using
the weighted least-squares algorithm. After each iteration the weights wi are
adjusted to be inversely proportional to distance function [19]. In Figure 2.5.3
a line fitted through the sample points using Least squares is shown. After all
the lines are fitted it is given a confidence measure which is a simple division
of successfully sampled points and total number of points sampled for each
line. This can give serve as base for recognizing dashed markings or rejecting
lines with low confidence.

Figure 2.32: Markings fitted line
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2.6. Time integration

2.5.4 Current lane fitting

From the set of lines that have been found for a marking the current lane can
be constructed. The image can be split in half and closest lines from left and
right can be set as lane boundary. This works well for set of continuous full
lines. For dashed lines, the features are not extracted in every frame and the
detection would become erratic. In the multi-lane scenario lane would switch
from the next lane to the current one back and forward.

Time integration module described in 2.6 is very helpful in keeping track
of the lane width. This allows the algorithm to reject lines in case there
is a large discrepancy between the line predicted from the Time Integration
module. The lines that are closer to the predicted line are also scored higher
so there is higher probability they will be selected. If there is only one line
detected, the other side can be extrapolated based on the known lane width
from the previous state.

Some of the algorithms [20] use a strong assumptions about the lane width
to detect them. This algorithm does not make such assumption. It allows for
the width to be changed slowly, but abrupt changes that could be caused by
erroneous detection are discarded.

2.6 Time integration

To improve accuracy of the detection, to reject erroneous detections and to
possibly reduce computational cost an information obtained from previous
frames can be used. Detection accuracy is improved by predicting the detec-
tion and smoothing the result over time. By supplying good initialization of
the model parameters the result can be also improved.

2.6.1 Particle Filter

A Particle filter (described in 2.4.2) can be used for lane tracking. In [21]
the lane is represented as a sequence of points along its left and right bound-
ary. Efficient lane tracking algorithm uses previously detected lane boundary
points, adjusts them according to the vehicle’s motion model, and then offsets
them according to values obtained from the image.

2.6.2 Kalman Filter

Kalman filter [22] is an optimal estimator. It can be used to infer parameters
of interest from indirect, inaccurate and uncertain observations. Because of its
recursive nature, measurements can be processed as they arrive. Compared
to the Particle Filter it is relatively simple and comes with low computational
cost. The Kalman filter is a best estimator for linear systems and the motion
model of the car can be in this case described as a linear system.
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The formula in Figure 2.33 describes how current state xk derives from the
previous state xk−1. The Fk is the state transition matrix, Bk is the control
matrix, uk is the control vector and wk is the process noise.

xk = Fkxk−1 +Bkuk +wk

Figure 2.33: Current state in Kalman filter

State vector The current state of the system is saved in a vector called the
state vector. There are more ways to track a state of the current lane. The
left and right lines can be tracked in the image space using the state vector
xk = (ρl, θl, ρr, θr)

T where ρ is the distance from the origin and θ is the line
angle. This would, however, lead to a tracking lines individually so the lane
geometry could not be compelled. Additionally, tracking in the image space
does not deal well with perspective distortion.

More beneficial representation of the state vector is xk = (ck, wk, ċk, ẇk)
T

[7]. Where xk is the lane center and wk is the lane width in real space. ċk, ẇk

are the relative velocities. This allows the filter to track width of the lane
which should remain mostly constant and its relative position to car. The
lane can also be tracked even when only one marking is recognized as the ck
can be extrapolated based on previously measured width.

Transition matrix The state transition matrix applies each parameter at
the time k − 1 on the system state at the time k. It basically describes how
should the system transition from one state to another. In the context of the
lane tracking the Constant Velocity Model is assumed. The Constant Velocity
Model [23] is calculated from the dynamics of the Ego-motion [24].

ck+1 = ck + ċk.δt (2.7)

wk+1 = wk + ẇk.δt

˙ck+1 = ċk

˙wk+1 = ẇk

where δt is the time step between the filter steps. The set of equations
yields the transition matrix in Figure 2.34.

Control vector and control matrix The control vector contains any con-
trol inputs (steering angle, throttle setting, braking force) and control matrix
is used to apply the effect of each control input parameter in the vector on
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Figure 2.34: Transition matrix

the state vector. There is no information about car control currently avail-
able. The control matrix can be, however, used to alter estimation in case of
the lane change. When the car approaches the edge of the lane ck is altered
to transition the prediction for the destination lane. The control matrix is
applied on the ck as can be seen in Figure 2.35.
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
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



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Figure 2.35: Control matrix

The control vector is supplied based on condition in Figure 2.36.

uk =











wk if x < −wk

2

−wk if x > wk

2

0, otherwise

Figure 2.36: Control vector condition

Measurement The measurement vector ck, wk is the lane center position
and its width. The measurement is made according to the formula in Figure
2.37 where Hk is a matrix mapping the state vector parameters into the meas-
urement domain. The vk is then a measurement noise and it is similar in its
structure to the process noise. In this case the Hk is an identity matrix.

zk = Hkxk + vk

Figure 2.37: Measurement

The Kalman filter calculation consists of two stages: prediction and meas-
urement update.
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Prediction The priory state is predicted in the Figure 2.8 based on the
transition and control matrix and the previous state. Its covariance matrix
Pk|k−1 is predicted in Figure 2.9 where Qk is the covariance matrix of process
noise. The priory state can be used to focus feature extraction algorithm to a
certain part of the image and thus save computational cost.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (2.8)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2.9)

Measurement update In the update step the current measurement is com-
bined with the priory state to refine the state estimate. The innovation resid-
ual yk and covariance Sk is described in 2.10 and 2.11 where Rk is observational
noise covariance matrix. The Kalman gain Kk described in 2.12 is a function
of the relative certainty of the measurements and current state estimate. With
a high gain, the filter places more weight on the measurements and with low
gain the filter places more weight on its predictions. This way the estimation
changes based on how much they were successful in the past. In 2.13 and 2.14
the updated (posteriori) state estimate and covariance Pk|k is described.

ỹk = zk −Hkx̂k|k−1 (2.10)

Sk = HkPk|k−1H
T
k +Rk (2.11)

Kk = Pk|k−1H
T
k S

−1
k (2.12)

x̂k|k = x̂k|k−1 +Kkỹk (2.13)

Pk|k = (I −KkHk)Pk|k−1 (2.14)

2.7 Image to World Correspondence

The understanding of the geometrical relation between the image and the road
is very useful in many parts of the Road Lane Recognition algorithm. In IPM
it is used to transform the original image to a bird-eye view of the road. It
can also be used to track the lanes in real world coordinates instead of the
image coordinates. Another use of the real-world model is for ROI estimation
as the horizon can be derived from it.

2.7.1 Homogeneous coordinates

For the representation of the point in the real-world space homogeneous co-
ordinates are used. The homogeneous coordinates use R

n+1 vector to repres-
ent a point in R

n space. The conversion between homogeneous and euclidean
coordinates is given in Figure 2.38.
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Figure 2.38: Homogeneous coordinates

where ↔ symbol indicates that both vectors occupy the same point in
space. The homogeneous coordinate vector is unaffected in scale if multiplied
by a non-zero constant. The coordinates become useful when used with affine
transformations. The homogeneous coordinates can be transformed by left
multiplying with the transformation matrix.

2.7.2 Affine transformation

Affine transformation is a function which preserves points, straight lines and
planes. The set of parallel lines will be still parallel after an affine transform-
ation. It is defined as composition of two functions linear transformation and
translation in Figure 2.39. That can be simplified by using the Augmented
matrix in Figure 2.40.

~y = f(~x) = A~x+~b.

Figure 2.39: Affine transformation

[

~y
1

]

=

[

A ~b
0 . . . 0 1

] [

~x
1

]

Figure 2.40: Augmented matrix

For the the real-world model we will be using translation, scale and rotation
transformations. Examples of such transformations in R

2 are in Figures 2.41,
2.42 and 2.43.





1 0 tx
0 1 ty
0 0 1





Figure 2.41: Translation
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



w 0 1
0 h 1
0 0 1





Figure 2.42: Scale





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





Figure 2.43: Rotation

2.7.3 3D Projection

The goal of 3D projection is to transform a 3D point in from R
3 to the 2D

space R
2 that represents the image screen. In the context of lane recognition

the road and its lanes are the objects that need to projected. In Figures 2.44,
2.45 a road in 3D space and its projection is illustrated.

Figure 2.44: Road in 3D space
Figure 2.45: Projected road

2.7.3.1 Orthographic projection

Orthographic projection ignores the fact that the objects appear smaller as the
distance grows bigger. It is a projection of a single view onto a drawing surface
in which the lines of projection are perpendicular to the drawing surface. It
can be used for birds-eye view, profile or cross section. But because we work
with camera input we need to be able to describe the road as it would be
recorded photographically.
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2.7.3.2 Weak perspective projection

Weak perspective projection is based on orthographic projection. It has, how-
ever, a scaling factor defined to scale the objects that are closer to appear
bigger. This approximation is performing reasonably well when the field of
view is small and the depth of the object is small compared to distance to the
camera. This is however not the case of the markings that will be long and
stretching from the front of the camera to the horizon.

2.7.3.3 Perspective projection

To accommodate the true perspective in the scene a Perspective projection can
be used. The projection converts 3D point (dx, dy, dz) to a 2D point (px, py).
The x and y coordinates are divided by its z component and multiplied by a
focal length f of the camera in 2.46. The objects that are closer to the origin
will also appear bigger in the projected image. This can also be achieved by
multiplying the homogeneous coordinates with a projection matrix described
in Figure 2.47. To normalise resulting coordinates px, py they have to be
divided by the w component.

px = dx/dz ∗ f

py = dy/dz ∗ f

Figure 2.46: Perspective projection
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Figure 2.47: Perspective projection matrix

2.7.4 Pinhole camera model

The simple perspective projection would be sufficient if the camera would
be located at the origin with zero rotation in relation to all axes. In reality
the camera would be typically positioned about a meter above the road and
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could be rotated along the y and x axis. The pinhole model can be used for
mathematical description of the camera in space. The model is used in various
scenarios in computer graphics where camera needs to be manipulated. The
model can be broken down into the extrinsic and intrinsic part.

Extrinsic The extrinsic part describes camera’s position and rotation. In
Figure 2.48, 2.49 a top and side view of the camera on the road is illustrated.
(xc, yc, zc) describes the camera position in space. The rotation of the camera
is described by yaw (γ) and pitch (θ). In Figure 2.50 an extrinsic matrix of
the camera is shown. It is a multiplication of camera translation, yaw-rotation
and pitch-rotation matrices.

zc
z

γ

xc

x

z

x

Figure 2.48: Camera top view

zc

θ

yc

z

y

Figure 2.49: Camera side view
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T =
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E = T.R

Figure 2.50: Extrinsic matrix

Intrinsic The intrinsic model describes the geometry of the inside of the
camera. It is illustrated in Figure 2.51. The image plane is the 2D image we
would see as the projection of the 3D world. The point P is projected as point
Q on the image plane. The origin O is where the camera aperture is located.
The aperture is imagined as an infinitely small point. That is, the pinhole
camera model does not take in account any lenses used or any distortion in
the image. The 3D plane that intersects the x and y axis is called a principal
plane or front of a camera. The focal length f is a distance between the image
plane and the principal plane. The world is projected through the origin O.
The projection line illustrated in blue color connects 3D point P and projected
point Q. The projection line always comes through the origin. The resulting
image is therefore inverted and have to be rotated by 180◦ which corresponds
to how the real-world pinhole camera works.

The intrinsic matrix is described in 2.7.4. The W , H is the size of the
screen in pixels and w, h is the size of the sensor in millimeters. The origin is
translated to the center of the screen because that is where the real aperture
is located. The image have to be flipped along the y-axis because in most of
computer image formats the Y position is counted from the top to the bottom.
The image is also scaled so it will correspond to the real-world coordinates.

Projection with camera pinhole model It can be noticed that the in-
trinsic and extrinsic matrix have different dimensions. That is because the
extrinsic matrix is applied pre-projection and intrinsic post-projection. The
projected 3D point in homogeneous coordinates is first multiplied by the ex-
trinsic matrix E and projection matrix P . The resulting 2D point is then
multiplied by the intrinsic matrix I.
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Image plane

Q

P

O

f

Figure 2.51: Intrinsic pinhole camera model

I =





W/w 0 W/2
0 −H/h H/2
0 0 1





Figure 2.52: Intrinsic matrix

2.7.5 Inverse perspective projection

For the actual application the inverse of the projection is needed. In the
original perspective projection (in our case the camera capture of the road)
there is an information lost about the z-coordinate of captured objects.

We can use an assumption that the objects lie on the road plane. That
is true for the lane markings. The way to do it is to imagine projection line
and road plane at y = 0. The point where they intersect is the projected
point in space. The plane can be defined by a normal vector ~n = (0, 1, 0), a
point lying on it r = (0, 0, 0) and equation in Figure 2.15. The projection line
can be defined in parametric form in Figure 2.16. It comes through the origin
(0, 0, 0) and the projected point pi. Finally intersection is found in Figure 2.17
and can be further substituted to the form in Figure 2.18
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~n · (po − r) = 0 (2.15)

pit = 0 (2.16)

~n · (pit− r) = 0 (2.17)

po =
n · r

n · pi
pi (2.18)

This can be translated in linear transformation as the inverse projection
matrix. The matrix is multiplied by (px, py) with f as its z coordinate.
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Because the plane should not be moving with the camera its position and
rotation should be adjusted. It is done by adjusting planes normal vector ~n
and point r as described in Figure 2.7.5. The extrinsic rotational matrix R
and extrinsic translation matrix T is used for the adjustment.

~n = R.(0, 1, 0)

r = T.(0, 0, 0)

Figure 2.53: Plane translation and rotation
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Chapter 3

Implementation and testing

As part of the thesis I developed a prototype of the Vision-based driver as-
sistant. The goal was to implement a reliable lane recognition and tracking
algorithm and on top of that a simple interface that will display current lane
and issue warning when driver approaches the lane boundary. The implement-
ation detail of the prototype are discussed in the next section.

3.1 Computer vision framework

Computer vision is a growing field of computer science and there are multiple
libraries to choose from. It is possible to develop the prototype without a
CV framework. It would give a developer more control over the algorithms
used. However, CV frameworks usually offer highly optimized versions of
the algorithms. To write a comparably fast algorithms on my own would be
very time consuming. Thus, a CV framework have been selected. There are
multiple parameters that are desired:

• To have vast array of algorithms already implemented that are com-
monly used in image processing such as Edge detection, Hough Trans-
form, filtering, template matching etc.

• To contain functions to manipulate video from different sources (file,
video-camera).

• To be able to display higher GUI such as text, lines and polygons on top
of the video and controls such track-bars, buttons etc..

• To provide basic mathematical entities and operators such as matrices,
vectors, normalization, matrix multiplication etc..

• To be highly optimized
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• To run on number of devices and platforms including Windows and
UNIX based systems, mobile platforms and possibly embedded systems7.

3.1.1 VXL

VXL (the Vision-something-Libraries) is a collection of C++ libraries designed
for computer vision research and implementation [25]. The library provides
support for numerics, imaging, geometry, streaming, basic templates and util-
ities. It provides a good base for further development of own algorithms.
There isn’t, however, much of higher algorithms available or are not well doc-
umented. The library is implemented in C++.

3.1.2 ccv

The ccv is minimalist and well organised Computer vision library [26]. It
offers a handful of useful algorithms such as the Real-Time Object Detec-
tion, Face detection, Pedestrian detection and many more. Each algorithm is
mostly based on a single paper. It solves some specific problems but does not
provide the basic building blocks for own implementations. It does perform
well in the context of mobile applications by caching potentially redundant
operations such as matrix multiplications, image pyramid generation, color
space conversion etc.. while maintaining a clean function interface.

3.1.3 libCVD

libCVD is C++ library designed to be easy to use and portable for fast video
saving, loading and display [27]. The library is designed in a loosely-coupled
manner, so that parts can be used easily in isolation if the whole library is not
required. It offers compatibility with a wide array of platforms. There is also
number of algorithms implemented but it is lower compared to OpenCV. For
example, there is an implementation of Canny Edge Detector, but no Hough
Transform. The library is still actively developed. Compared to OpenCV
which currently has 563 contributors the team behind libCVD is just 5 people.

3.1.4 OpenCV

OpenCV is an open source library for a computer vision [28]. It contains
vast array of algorithms related to CV from preprocessing algorithms (Canny,
Hough) to more advanced object detection, structure from motion algorithms,
filters and many more.

OpenCV was designed for computational efficiency and with a strong focus
on real-time applications. According to the website it has more than 2500

7An embedded system is a computer system with a dedicated function within a larger
mechanical or electrical system, often with real-time computing constraints
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optimized algorithms, 47 thousand people of user community and estimated
number of downloads exceeding 9 million. It is by far the most popular library
in the CV field and it is used by majority of CV researchers. It is written in
C++ and has API’s for multiple languages.

3.1.5 Conclusion

OpenCV was selected as the CV framework. The main reason was its wide
adoption and number of algorithms for image processing and also other al-
gorithms that might become useful when new features are added in future.

3.2 Implementation

There are several choices of languages in which it is possible to write code with
OpenCV. There is the C++ which is a language the OpenCV is written in, but
also less comprehensive C API. There are also bindings for Python and Java
plus number of wrappers in other minor languages. Especially python is very
popular in the field of computer vision. It provides simple API and is used to
quickly implement new algorithms and adjust them. The performance is not
much an issue as the OpenCV-Python provides simply a wrapper to C++.
But when a custom method is implemented in python the performance can be
lowered. The python code is also not simply portable to mobile devices. For
that reasons the prototype is written in C++. The OpenCV 2.4.9 is used.

The typical implementation in OpenCV C++ is a single function algorithm
divided to function blocks by comments. That can be beneficial for perform-
ance reasons, but I found it very hard to orient in. Instead, the code is divided
into classes based on single responsibility principle [29]. Dependency injection
pattern is used for managing dependencies. In following subsections parts of
the prototype are described.

3.2.1 The Basic Image Container

In C++ version of the OpenCV, a structure cv::Mat is used for storing the
data of single frame from the input video. The advantage of the cv::Mat is
that there is no need for the developer to manage the memory. Mat consist
of two data parts: the matrix header (containing the information about the
size of the matrix, the type of the matrix, address, etc...) and a pointer to
the matrix containing the pixel values. The types cv::Mat and cv::Mat&

can be then used almost interchangeably. The structure can also be used for
simple cropping without copying the actual pixel values. The copying should
be avoided as it is an expensive operation.
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3.2.2 Image capture

cv::VideoCapture module is used for handling the video input. It can re-
ceive video from number of resources including source files of various formats,
web-cameras or phone video-camera. Additionally I wrote a wrapper class
VideoInput.h that resizes the image to a bounding rect and provides other
useful functions. The output is in form of matrix cv::Mat, with rows and
columns representing the position of pixels in the original image counted from
the top left corner.

3.2.3 Image pre-processing

The video is first converted to grayscale matrix using cvtColor. The Marking
width filter 2.3.4 is then applied to highlight the markings in MarkingWidthFilter.h.

3.2.4 Feature Extraction and Model Fitting

The feature extraction and model fitting is provided by the class FeatureExtraction.h.
First a cv::Canny is used for edge detection. The mean value µ of the gray-
scale image is calculated and the upper and lower threshold are set according
to:

thigh = α ∗ µ; tlow = β ∗ µ;α > β

where α and β are constants based on empirical observation. This way the
canny edge detector can adjust to the illumination changes.

On the output of the Canny a Probabilistic Hough Transform cv::HoughLinesP

is applied. ρ is set to 1 and θ to 1◦. The output of the algorithm are line seg-
ments. Next step is to transform them to the real space using ImageToWorld.h
module. The resulting lines are then filtered and lines that are not near-
perpendicular to the x-axis are rejected. The lines are also filtered based on
their similarity to neighbouring lines. This way there is a smaller number of
lines sampled in the next step and computational cost is lowered. Even if the
proper edge of the marking was merged with a non-edge, the sampling process
will find the center of the marking anyway.

The sampling first divides the line to a number of samples along its y-axis
and fills a small Mat with one dimensional array of the sample point neigh-
bouring pixels. The template Mat is also created with presumed width of the
lane at the sample point. The cv::matchTemplate algorithm is then called
on the one dimensional array with a template Mat. The CV TM CCORR NORMED

method is selected to compute cross-correlation. The result is a matrix of cor-
relation coefficients. cv::minMaxLoc is used to find the maximum coefficient
which is saved to a vector of center points.

The center points are then fitted to a line with cv::fitLine algorithm
using least squares distance method. The sampled lines are collected and
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again filtered based on their confidence and angle. The current lane is fitted
from them according to the lane fitting algorithm described in 2.5.4 and saved
as a structure from Lane.h.

3.2.5 Lane Tracking

The cv::KalmanFilter is used for tracking the current lane. The state Mat

holds lane center position xk, width wk and is initially set to arbitrary ini-
tiation value (e.g. (0, 3m)). Additionally information whether the left and
line markings are dashed are saved in the state. Transition matrix and control
matrix are set according to 2.6.2. Before the feature extraction step a predict
method is called to obtain a lane prediction. Additionally a control vector is
supplied in the predict step to update estimate in case the lane was changed.
The prediction is used to better estimate lane position. After the current lane
has been extracted correct method is called to do a measurement update.

3.2.6 Image to world

The image to world is perhaps the most complex module. An OpenCV im-
plementation exists for a projection matrix cv::sfm::projectionFromKRt in
Structure from Motion module. There is, however, no inverse perspective im-
plementation that would fit scenario of the road plane and I found it would
be better to implement the whole model myself. To be sure that the model is
correct I first prototyped it in Mathematica8 and then used the matrices for
the C++ implementation. The ImageToWorld.h is given a camera position,
yaw, pitch ,cameras screen size, sensor size and focal length. The matrices
are generated and cached. They are only re-cached if one of the parameters
change. The point translation is then a simple matrix multiplication of the
point homogeneous coordinates. The toWorld method first multiply the co-
ordinates of 2D Point extracted from the image by the inverted intrinsic mat-
rix, inverted perspective projection matrix and then inverted extrinsic matrix.
The toImage first multiply 3D point of real space coordinates by the extrinsic
matrix, perspective projection matrix and intrinsic matrix.

3.2.7 Inverse Perspective Mapping

The IPM is implemented as a part of the prototype. Simple library [30] has
been used to compute the affine transformation needed to translate the original
video to birds-eye view based on the ImageToWorld module. The code is
included in InversePerspectiveMapping.h. The IPM itself was not actually
used as input for the Feature extraction module, because the ImageToWorld

8Mathematica is a symbolic mathematical computation program, sometimes called a
computer algebra program, used in many scientific, engineering, mathematical, and com-
puting fields.
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was developed later and previously developed Feature extraction algorithm
would have to be significantly changed. But the IPM was added to the project
anyway as it may become useful in future development.

3.2.8 Renderer

To debug outputs of algorithms and display the result on screen a class
Renderer.h is used. The instance can be passed to any of the modules. Lines,
points or text can be projected on top of the original image. For that purpose
OpenCV drawing functions are used. The interface is designed to be simplistic
and not to distract user from driving. The current lane is represented by a
single dashed green line with a text information about the car’s deviation from
the center of the lane. The prototype also features a debug mode where a grid
representing a road plane is displayed for easier configuration.

3.2.9 Settings

The SettingsWindow.h is used to update algorithm presets in real time. This
is especially useful for calibrating the ImageToWorld module. The debug
mode can be also turned on and off using the controls. The OpenCV highgui
trackbars were used to provide a simple slider interface to the user.

3.2.10 Lane departure warning

The output of the lane recognition algorithm is used to determine width wk

and center of the lane xk in relation to the car position. The lane center
deviation in percent can be calculated as

dk = |xk/wk ∗ 100|

The lane departure warning is issued once it exceeds given threshold. The
warning is visual and auditory to make sure the driver will notice it.

3.2.11 Mobile application

The RoadAssistant application in iOS was created to explore uses of the
algorithm in the context of mobile applications. OpenCV provides frame-
work that can be linked natively to the iOS Xcode9. project. The camera
of the smartphone can be accessed using CvVideoCamera from the OpenCV
cap ios.h module. The Mat of the current frame is extracted and used by
the Lane Recognition Algorithm.

The main issue of scaling down the application to the smartphone is the
performance. There are several ways to optimize the algorithm.

9Xcode is Integrated development environment for the iOS and MacOS development
provided by Apple
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Region of Interest Based on the Image to World module, a specific region
of interest, from front of the car to distance about 10m is selected as the
Region of Interest. The detection algorithm is then applied only on parts
of the image within this distance. Anything further is also not very reliable
source of lane markings as it can be obstructed by passing cars.

Frame rate reduction Typical smartphone video frame rate is 29.97 frames
per second. The algorithm can reliably work with less than that. The OpenCV
camera input make it easier as the algorithm is not fed a captured video but
takes new frame from camera as soon as the last one was processed. This way
the FPS is reduced automatically.

Hough transform The Hough transform is the most time-consuming step
of the algorithm. Once the first estimation of the lane is made by the Hough
transform, the Line sampling algorithm can be used along the lane prediction
made by Kalman filter instead. This optimization, however, lead to signi-
ficant decrease in the algorithm accuracy and wasn’t used in the end as the
application performed well even without it (see 3.3).

3.3 Results

The prototype have been tested on various footage taken either on highway
or country roads both in Czech Republic and Taiwan. The tested scenarios
are mostly roads with visible lane marking on both sides. The evaluation
of the algorithm is problematic, due to the lack of accepted test protocols,
performance metrics as there is no ground truth10 information available. Most
of papers in the field of road lane recognition field then choose their own metric
[6].

Because the lane departure feature depends solely on the proper lane de-
tection, the error of the detected center-line xk, and width wk was selected as
the measure in this thesis. The current lane is first manually found and saved
every 30 frames (or 1 second). A measuring program was created on top of
the road assistant that takes a mouse as an input. By setting up the Image to
World model the program allows to measure the lanes in the same domain as
the algorithm. Left and right lane boundary is then marked by mouse-clicking
on the line position. The process takes a lot of time and can hardly be applied
on a larger scale test. It is, however, currently the only available way to found
a ground truth.

The xk and wk is compared to the algorithm output and from the difference
is computed the error. The resulting figure is an average of the errors found
in each frame. The scenarios consist of various footage taken at different time

10Ground truth is a term used in various fields to refer to information provided by direct
observation as opposed to information provided by inference
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with different cameras. Part of them were taken by the author of the thesis
with an iPhone 5S camera and part were provided by NTUT Department of
Computer Science with unspecified camera. The Figure 3.1 shows the errors
in highway and country road scenario.

Parameter 640x480 320x240

xk average error 18,0 cm 23,4 cm
wk average error 12,4 cm 16,2 cm
Frames sampled 171
Time sampled 5130 s

Table 3.1: Error in the highway and country scenario

In more complex urban environment (villages, urban roads) the detection
is more difficult because one or both of the markings are often missing. Al-
though the algorithm was not designed for this scenario, as long as at least
one marking is present, it performs reasonably well. The error of detection is
higher and is shown in the Figure 3.2.

Parameter 640x480 320x240

xk average error 45,7 cm 48,3 cm
wk average error 48,3 cm 54,2 cm
Frames sampled 82
Time sampled 2460 s

Table 3.2: Error in the urban scenario

The performance of the prototype differs with the desktop and mobile
version and also resolution that is used for capturing the video. In the table
3.3 the average FPS per device is shown for a sample video. The performance
drops rapidly with increasing resolution, especially in the mobile phone. But
for the resolution of 352x288 the application recognize lane in near-real time.
The tests have shown that the accuracy has decreased with input in smaller
resolution. However, the difference is minimal and the lane departure warning
is still issued accurately.

Device Resolution FPS

MacBook Pro 2.6 GHz Intel Core i5 640x360 15.4
320x240 29.3

iPhone 5S 640x480 8.1
352x288 25.6

Table 3.3: The performance in FPS
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Figure 3.1: Example of successfully detected lane in the country road

Figure 3.2: Lane departure warning

Figure 3.3: Detection in highway multi-lane scenario
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Figure 3.4: Detection of curved marking

Figure 3.5: Example of erroneous detection caused by faded left marking
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Chapter 4

Conclusion

The goal of this thesis was to create a prototype of a vision-based assistant.
The underlying task of developing reliable road lane recognition algorithm
turned out to be the main portion of the thesis. Even though the problem is
well known, there is still small number of actual implementations that work
in real-time available. The usual practice is to test the algorithm in higher
languages such as Matlab 11 where efficiency is not a primary concern.

When I chose this problem to be my thesis I didn’t have any background
in the computer vision. The study of the different methods and algorithms
took most of the time when I was working on the thesis. There were many
times when I tried other techniques that are not even mentioned in the text
because they didn’t perform sufficiently well.

The prototype created works very well in the highway scenario and on the
country road with clearly marked lane markings. The measured center-line
accuracy is well under 25 cm. In the curves algorithm detects lane with good
accuracy even though it is based on detection of straight lines. The dashed
marking detection was also challenging as the markings are not detectable in
every frame and time integration have to be used. The Kalman filter was
effectively used for such situations and also to smoothen the lane output. Its
control matrix was used to handle change of the lane in simple but effective
way. The lane departure warning is reliable once the lane is detected and
displays the information for the driver in a simple interface.

A mobile application was created based on the prototype. Using lower
resolution it performs well even in real-time. That allows for the algorithm to
be used on various portable devices. Because it is developed in C++ it is not
only limited for iOS but can be used on nearly any other mobile platform and
even some embedded systems.

At last, the prototype provides good base platform for another practical
application in the field. For example the key part of the prototype - Image To

11MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment
and fourth-generation programming language
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World model have many uses in the road-related scenarios. The information
about creating the model is scarce and to create the Inverse Perspective Pro-
jection was surprisingly complicated. The hope is, this thesis could be used
in future works where similar problems could be avoided.

4.1 Possible future work

There is a large number of possible improvements that are equal to the large
scale of the problem. In the following sections some of the features that could
be added are described.

4.1.1 Car and pedestrian detection

The typical feature in other assistants is the car and pedestrian detection.
The system can issue a warning once the car is too close to the obstacle. It
can be done by detecting Haar-like features of the obstacle and tracking it
in time. The IPM and Image To World that is already implemented would
significantly simplify the problem.

4.1.2 Traffic sign detection

Similarly a traffic sign detector can be added to e.g. warn the driver about
exceeding the speed limit. The detector is usually based on a cascade of
support vector machine (SVM) classifiers that had been trained for specific
traffic sign classes.

4.1.3 Vanishing point detection

There is a number of applications that can take advantage of the vanishing
point position. For example, it can be used for the Image To World Model
calibration. So far, the model has to be manually re-calibrated every time the
camera position, yaw or pitch changes. Based on the vanishing point position
the parameters can be computed. The detection itself is based on the output
of the Hough Transform. Each two line segments are combined and their
intersection is found. Some version of the RANSAC12 algorithm can be then
used to determine the vanishing point of the whole road.

4.1.4 Dashed line detection

So far the dashed line detection is based on the Marking center detection
algorithm that gives certain confidence for a given line. In future it would be
good if the lane departure warning was issued only when a full line was crossed.

12Random sample consensus (RANSAC) is an iterative method to estimate parameters
of a mathematical model from a set of observed data which contains outliers.
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4.1. Possible future work

That would mean to make the dashed line detection algorithm more reliable.
More advanced method based on pattern matching could be developed.

4.1.5 Road boundary detection

Another algorithm for the current lane recognition could be developed. This
would allow for the algorithm to work in the urban scenarios where the lane
markings are not clearly visible. There are equally large number of possible
algorithms in existence: based on Bayesian segmentation, curb detection, road
color detection and extraction etc...

4.1.6 Curved line fitting

The lines are now fitted with a simple parametric equation of a line as it is
sufficient for the lane departure recognition. It could be improved by fitting
a B-spline instead. That way the lane could be estimated more accurately on
curvy roads.
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Appendix A

Installation

A.0.1 Desktop

• Download and install OpenCV library. The process differ with the op-
eration system used. For more information about how to install the
library visit the OpenCV website.

• Install latest version of cmake

• In the code directory call cmake . and make

• Run ./build/RoadAssistant -v VIDEO PATH

• The camera settings can be adjusted via the settings window or by
providing executable with additional parameters. See ./RoadAssistant
-h for more info

A.0.2 iOS Mobile Application

Computer running the OS X operation system is required for the iOS Mobile
Application installation. Additionally, a device with iOS 9.3+ is needed.

• Install XCode IDE

• Open RoadAssistant iOS.xcodeproj

• Add your Apple ID to the XCode in preferences. The account does not
have be a developer account.

• In the project editor set your account (Personal Team) as a team for
the target. If the Xcode displays an error, click Fix issues to create new
provisioning profile.

• Run the project with your device connected and selected.
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A. Installation

• The application starts in a setup mode where the user is required to
align the displayed grid with the road plane. The camera’s position,
yaw and pitch can be set using a slider in the top of the screen.

• Once the grid is aligned, tap the start button.
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Appendix B

Contents of CD

readme.txt ....................... the file with CD contents description
measurements............the measurement data from the results section
code ............................................ code of the prototype

build...................................................executable
src................................................... source codes
library...................................................libraries
desktop ..........................Xcode project for desktop version
iOS...................................Xcode project for iOS version

src.............................the LATEX source code files of the thesis
text..........................................the thesis text directory

DP Kohout Tomas 2016.pdf ....... the Diploma thesis in PDF format
DP Kohout Tomas 2016.ps .......... the Diploma thesis in PS format
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