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Abstract

Image matching is an important intermediate step for computer vision tasks such as
3D reconstruction, image retrieval, and image stitching. We argue that it is important
to consider dynamic scenes with different motions because the real world is dynamic.
We propose a fast greedy approach for detection of multiple homographies and their
subsequent grouping into motion groups. For this purpose, we utilize two properties
valid for two homographies that move together; their composition is a planar homology
and epipolar geometry can be fitted well to their inliers. We show that our approach
performs just as well or better than sequential application of RANSAC. Furthermore,
we propose to fuse the groupings of matches available for every image pair into global
grouping of n-view matches when more than two views are available. Next, we sup-
ply the groups of n-view matches to an incremental structure-from-motion pipeline to
compute sparse 3D reconstructions independently. The pipeline is implemented using
our library which we have designed to be reliable, easy to extend, and efficient. The
approach for reconstruction of dynamic scenes is evaluated on a dataset with three
moving objects.
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Abstrakt

Hledéni korespondenci mezi obrdzky je dulezity krok v zaméfenich pocéitacového vidéni
jako jsou 3D rekonstrukce, hleddni podobnych obrazka a slepovani obrazkia. Vyzd-
vihujeme, Ze je dulezité brat v potaz dynamické scény s ruznymi pohyby, protoze
skuteény svét je dynamicky. Navrhujeme rychlou hladovou metodu pro detekovani
nékolika homografii a jejich ndsledné slucovani do skupin podle pohybu. K tomuto
ucelu vyuzivame dvé vlastnosti dvou spolu se pohybujicich homografii: jejich slozeni je
plandrni homologie a z jejich korespondenci lze dobfe vypocitat epipolarni geometrii.
Ukazujeme, Zze nase metoda funguje stejné dobie nebo 1épe nez sekvencni aplikovani
metody RANSAC. Dale navrhujeme sloucit znalost o skupinach korespondenci, které
mame pro pary obrazki, do globédlnich skupin korespondenci, pokud mame k dispozici
vice nez dva snimky. Tyto globani skupiny déale vlozime do klasického systému na
rekonstrukei poloh kamer a bodu, abychom ziskali #idké rekonstrukce. Rekonstrukéni
systém je implementovan pomoci knihovny, kterou jsme navrhli, aby byla spolehliva,
snadno rozsiritelnd a rychld. Metodu na rekonstrukei ovéfujeme na snimcich zachycujici
t¥i pohybujici se objekty.
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1 Introduction

In computer vision, image matching is an important task which is employed as an
intermediate step in many approaches. To name a few, it is used in 3D reconstruction,
image retrieval or image stitching. Image matching basically finds relations between
images.

A typical approach to image matching works in three steps. First, features (also
called keypoints or regions of interest) such as SIFT [45] and MSER [49] are detected
in every image separately. Features can be any points or regions but they should
be repeatably detectable, i.e. it should be possible to detect them under changing
conditions such as changing illumination, rotation, scale, etc. Second, features of pairs
of images are matched in order to find corresponding ones. This step typically utilizes
nearest neighbor search [55] based on local appearance of features which can result in
a set of matches corrupted by a large number of outliers. Therefore, the third step
aims to geometrically verify the matches in order to filter out outliers. The geometric
verification is often done by estimating a homography or an epipolar geometry with the
largest amount of inliers and discarding all outliers.

Accepting a hypothesis with the largest amount of inliers, however, models only
the largest motion in the scene. That is valid and works very well for static scenes.
Nevertheless, the real world is dynamic and objects often move with different motions.
Consider a city with moving cars, buses, and people, for instance.

In the image retrieval task, it is common to query similar images using the features
of the query image and do query expansion step to get better results. The query
expansion retrieves additional features related to the query image by matching features
of the query image to the features of similar images and again queries for other similar
images. Assuming a static scene in a dynamic one can result in ignoring motions that
have minority of feature matches.

In the 3D reconstruction task, feature matching is applied in order to find camera
parameters. If the goal is to reconstruct a single object, it could prove problematic
when another differently moving object or background would be present in the images.
The object that is not of interest could generate many features and become the major
motion. It could also generate about the same number of features as the object of
interest. Then the two objects would compete for being dominant in different image
pairs. Furthermore, consider a moving robot which needs to understand the 3D scene
in order to navigate. As the real world is dynamic, it needs to avoid differently moving
obstacles such as people or cars and hence has to detect them.

1.1 Contributions

This thesis presents four main contributions.

First, we design a fast greedy approach for detection of multiple homographies in
an image pair. It can be used for detecting different motions which are modellable
by a homography or for detecting multiple planes of one motion, for example. We
use a classical approach for computing tentative matches and focus on homography
estimation. We propose to grow homographies from similarity transformations induced



1 Introduction

Figure 1.1 Feature matches as detected by our approach from Sec. 4.1.2. Different colors
correspond to different motions. The images are from the Hopkinsl55dataset [80].

by feature matches similarly to [81, 63]. Our novelty is twofold. We utilize the algorithm
for the detection of multiple homographies. Furthermore, we speed it up by not trying
all possible hypotheses but robustly refining the best found hypothesis instead, which
gives results of the same quality.

Second, the above described approach is applied to scenes with full rigid motions
which extracts multiple homograhpies where some may belong to the same motion. We
compute a score for every pair of homograhies in order to determine which ones should
be merged into the same group. The score is based on two ideas. First, a composition
of two homographies belonging to the same motion should be a planar homology [31].
Second, fundamental matrix computed from inliers of two homograhies should model
all these inliers and possibly some other matches if the two homograhies arose from a
single motion. The main novelty is the application of the planar-homology property for
dynamic scenes.

Third, we have implemented a new computer vision C++ library intended to be used
for implementing structure-from-motion systems. It is designed to be reliable, easy to
extend, and fast. It is based on the linear algebra library Eigen [28] so that writing
matrix expressions would be easy. Our library implements feature matching, unified
RANSAC framework, several camera pose solvers, two-view and n-view matches han-
dling, 3D points triangulation, current state saving and loading, image similarity com-
putation, and various auxiliary functions. It indirectly supports also feature detection
and non-linear optimization through external libraries.

Four, we use our library to implement an incremental structure-from-motion pipeline
utilizing our geometric verification approach. The contribution is the approach for fus-
ing the information from two-view matching phase which provides grouping of matches
per image pair. We propose to connect two-view matches into n-view matches and
group them based on the two-view groups. Then, we run a classical structure from
motion on the individual n-view match groups independently.



1.2 Thesis structure

1.2 Thesis structure

Chapter 2 first establishes the notation and basic concepts used in the thesis. Chapter 3
then reviews related work in image matching, motion segmentation and 3D reconstruc-
tion. Next, Chapter 4 presets the proposed approaches for feature matching and dy-
namic scene reconstruction. Chapter 5 follows with the description of the implemented
library. Furthermore, Chapter 6 evaluates the performance of the proposed approaches
and Chapter 7 identifies their limitations. Finally, Chapter 8 summarizes the thesis.



2 Notation and Concepts

2.1 Notation

a,b,...,a,3,... scalars

a,b,... column vectors

AB,... matrices

a,b,..., A, B,... functions

A B, ... sets

v function vectorizing a matrix in row-wise order
T x x corresponds to x’

|- number of elements in a set or absolute value of a scalar
-1l Euclidean norm
I identity matrix

2.2 Homography

This section briefly introduces homography and some of its specializations in order
to make the reader acquainted with the concept. A homography [31] is a mapping
represented by a full-rank matrix H € R3*3. Note that its dimensions could be different
but this thesis needs to transform points of the real projective plane only. A homography
is defined up to scale and therefore all matrices yH for v € R\ {0} represent the same
homography. A point € R? is mapped to ' € R? as

Hr = \z'. (2.1)

In case it is required to map image points u,u’ € R?, it is possible to make use of
their homogeoneus representation, 7.e. set the third coordinate to one. A homography
mapping image points between two images can represent two situations. First, all the
image points are modellable by the homography in case that the two images correspond
to the same camera center. Second, if the images correspond to different camera centers,
then the homography maps projections of a single world plane in the first image to
corresponding projections in the second image.

Having a homography H and matching points u, u’, we define an error function which
we use for distinguishing inliers from outliers by thresholding.

ex(u,u' H) = Hu —

a= m . (2.2)

Notice that this error computes the pixel distance of a point projected by a homography
from its corresponding point.

Next, consider a reversed scenario, where image-point matches are known and ho-
mography unknown. Having a match

-1



2.2 Homography

Eq. (2.1) can be rewritten as

u

v 1 00 0 —u —vv —u
0 0 0 u v

S T— —v’} v(H) = [8] (2.4)

where v is a vectorizing function. That makes two constraints for the eight degrees
of freedom (nine numbers in H and minus one for scale). It is hence possible to stack
equations for four points to get an exact solution. More than four would make an
overdetermined system of equations. Both cases can be solved using SVD.

2.2.1 Affinity

An affinity, also called an affine transformation, is a homography specialization. It
represents a non-singular linear transformation followed by a translation and its matrix
form looks like

hi1 hiz has
ho1  hay  hos hi]’ eER € {1, 2},j € {1,2,3}. (2.5)
0 0 1

Similarly to full homography, Eq. (2.1) can be rewritten as

(2.6)

which has the form Az = b and can be solved using least squares. Three matches are
needed to compute an exact transformation (six degrees of freedom for six unknowns)
and more than three to create an overdetermined system.

2.2.2 Similarity

A similarity is a further affinity specialization. It is a combination of translation,
rotation and scaling. Hence, it has the following form

scoso —ssino ty
ssino scoso to s,0,t1,t20 € R (2.7)
0 0 1

where s represents scale, o orientation and ¢ translation. We do not need to compute a
similarity from image matches and thus we do not derive an estimation procedure.

2.2.3 Planar homology

We define the planar homology as in Hartley and Zisserman [31]. It is a homography
that has a line of fixed points (called the azis) and a fixed point not on the line (called the
vertez). A fixed point is a point that is not changed by a transformation. Algebraically,
a planar homology has two equal and one distinct eigenvalues. The axis is the line
through the two eigenvectors corresponding to the same eigenvalues and the vertex is



2 Notation and Concepts

the eigenvector corresponding to the distinct eigenvalue. Assuming that the eigenvalues
are up to a common scale factor {y, 1,1}, then a homology can be parameterized as

T

I+ (p— 1)% (2.8)

where v is the vertex and a is the axis.

2.3 Epipolar geometry

This section introduces epipolar constraint and fundamental matrix [31] in a necessary
depth for understanding this thesis only. The epipolar constraint is valid for all image
points that belong to one motion. Let us define fundamental matrix in order to express
the epipolar constraint. A valid fundamental matrix is a rank-two matrix F € R3*3,
which relates matching points @, ' € R? as

z' Fx = 0. (2.9)

The geometric interpretation is that F maps the point  from the first image to a line in
the second image going through the correspoinding point x’. Notice that multiplying F
by a real number does not change the validity of the constraint. Therefore, fundamental
matrix is, similarly to homography, defined up to scale.

To examine F more deeply, consider the basis vectors of the left null space €’ and the
right null space e. Points e and €’ are called epipoles. They turn out to be projections
of the camera centers in the other images, i.e. e is the projection of the second camera
center in the first image. The epipole €’ has an interesting property; every line mapped
by F goes through it. Additionally, it can be verified that if F represents the relation of
the first and second images, then F' relates the second and the first image, i.e. in the
reverse order.

Having F, we use the Sampson distance [31] throughout the thesis as an error measure
of matches. The Sampson distance is first-order geometric error approximation and is
defined as

z' Fz
V(Fx)? + (Fo)j + (FTa)} + (FTa')3

The advatage of the Sampson distance is that it includes only parameters of F. Note
that the geometric error would need the 3D point coordinates to be known.

GF(ZU, mla F) =

(2.10)

Moreover, we describe an approach for fundamental matrix estimation. Assuming
that matching image points are known

u u
v| < |V, (2.11)
w w’

the epipolar constraint can be rewritten as

[uv/ v/ wu' w v w ww vw ww']u(F) =0 (2.12)
which gives one constraint on the fundamental matrix. Since fundamental matrix has
seven degrees of freedom (nine numbers in F, minus one for scale, and minus one for
rank two), seven matches are needed to compute an exact solution.



2.3 Epipolar geometry

Having seven matches, Eq. (2.12) for every match can be stacked on top of each other
and two dimensional null space computed using SVD. Let us denote the null space as
F; and Fo. Finding a solution to

det (aF; + (1 — a)Fs) =0, (2.13)

gives up to three real fundamental matrices which have to be further verified by com-
puting their inlier sets. The described estimation process is called the seven-point
algorithm.

Furthermore, we describe the eight-point algorithm for estimating a fundamental
matrix from more than seven matches [31]. It is needed by our matches verification
approach as it needs to fit a fundamental matrix to many matches. The idea of the
eight-point algorithm is stacking Eq. (2.12) for more than seven matches, using SVD
to find a rank-three matrix and then using SVD again but on the found matrix to
find the closest rank-two matrix. In order to make the algorithm numerically more
stable, the points in individual images are first normalized by similarities transforming
them so that the means would be in the origin and the standard deviations one in both
coordinate directions. Hence, the fundamental matrix is estimated from the normalized
points and then multiplied by the similarities so that it would relate the original points
and not the normalized ones. Additionally, we refine the resulting matrix using non-
linear optimization which takes advantage of a non-minimal parameterization of the
fundamental matrix

F = [v]«H (2.14)

where H € R3*3 is of rank tree and v € R3.



3 State of the Art

This chapter first reviews approaches for feature matching including those assuming a
static scene. Secondly, an overview of state of the art in motion segmentation is given.
Finally, a survey of well-known and recent structure-from-motion works follows.

3.1 Feature matching

Most of the existing works, including our feature matching approaches, follow a similar
scheme. Features, such as SIFT [45], MSER [49] or Hessian-Affine [50], are firstly de-
tected in images. Then, given a pair of images, the nearest neighbors to every feature
in the first image are found in the second image in the descriptor space (see Sec. 4.1).
To filter the worst outliers, Lowe ratio [45], i.e. the ratio of the distance to the nearest
neighbor over the distance to the second nearest neighbor, is computed and thresholded.
Only the distance between descriptors would not be discriminative enough. Neverthe-
less, matches are not guaranteed to be correct even after this filter. They have to
be further verified geometrically, which typically consists of fitting a homography for
planar scenes or epipolar geometry for 3D scenes to the matches and keeping only the
inliers. In addition, approaches assuming a dynamic scene fit multiple homographies or
epipolar geometries in order to model all motions.

3.1.1 Tentative matches

Some works aim at improving and enriching tentative matches, i.e. matches not yet ge-
ometrically verified. Note that we focus on geometric verification and all the approaches
in this section could thus be naturally applied to improve our results. RootSIFT [4]
is basically a normalization of a descriptor which ensures that computing Euclidean
distance between two descriptors actually computes Hellinger distance. Fragoso and
Turk [25] employ an alternative score to Lowe ratio.

Recently, [53, 61, 44, 51] presented matching schemes for enriching features. They
generate multiple synthetic views of an input image, which simulate different view-
points, and detect features on them. This approach is able to cope with significant
perspective effects on image patches. Mishkin et al. [51], in addition, introduce a
new ratio score, which takes the distance of the first geometrically inconsistent nearest
neighbor instead of the second one, to deal with the increased number of similar image
features located in the same place.

3.1.2 RANSAC

A lot of geometric verification works is from the RANSAC family. The core idea of
using RANSAC [23] for geometric verification is the computation of homography or
epipolar geometry from random minimal samples and keeping the hypothesis that has
the largest support. This ensures robust estimation.

Raguram et al. [66] give a comprehensive overview of the most interesting variations
to the 'vanilla” RANSAC [23] and themselves propose USAC: Universal Framework for
RANSAC. Their USAC implementation leverages various state-of-the-art algorithms for

10



3.1 Feature matching

the individual modules of the framework. To name a few, USAC, like PROSAC [15],
takes advantage of Lowe ratio to score the quality of every match and prefers to use the
better ones first. Next, it avoids degenerate epipolar geometries following the approach
of DEGENSAC [17]. Moreover, it chooses the best hypothesis using SPRT test [48] to
speed up inlier counting. In addition, it refines the hypotheses computed from minimal
samples using all their inliers as proposed in LO-PROSAC [16].

There are further indirect adaptations to RANSAC. [62, 77] sample non-minimal
samples to reduce the amount of noise in a sample. Chin et al. [13] reorder the matches
based on the residual which enforces minimal samples to be from the same model.
Wong et al. [88] accumulate the residual to different hypotheses to dynamically iden-
tify outliers and bias the sampling towards the discovery of multiple models in the data.
Raguram and Frahm [67] also use residuals but to design a method which does not need
error threshold. BEEM [27], a RANSAC resembling algorithm, focuses on managing
matches with low percentage of inliers and avoiding degenerate epipolar geometries.
Unlike RANSAC, it exploits available prior knowledge and changes the sampling strat-
egy to arrive to better hypotheses. Nonetheless, Brahmachari and Sarkar [9] propose
a Monte Carlo approach for estimating epipolar geometry and they claim to be better
than BEEM.

Transformation from one match

Another group of works related to the RANSAC specializes on generating a hypothesis
from one feature match. Consider that every feature has a location and a shape, an
oriented disc (SIFT) or an ellipse (MSER), for instance. It is possible to compute a
transformation normalizing the image patch to a unit circle in the origin; a similarity
for SIFT and an affine transformation for MSER. Having a matching pair of features,
it is possible to combine the transformations of both features to get a transformation
from one image to the other. Note that the set of all possible samples is very small
since the minimal-sample size is one. This enables to remove the randomness by trying
to generate a hypothesis from every sample.

Philbin et al. [63] compute a hypothesis from a single match, find its inliers, refine
it into an affine transformation using the inliers, and again find inliers. They do this
this for every match and keep the largest set of inliers. Vedaldi and Zisserman [81] take
a similar approach but refine the transformation into a full homography. We build on
[81] and significantly speed up the approach while keeping the same quality of results.
Additionally, we apply the approach on non-planar scenes and propose how to merge
homographies into epipolar geometries. [3, 65] use two pairs of matching elliptical
regions to compute an affine fundamental matrix. Pritts et al. [65], in addition, do a
local optimization step in every step to refine the affine fundamental matrix into a full
fundamental matrix.

3.1.3 Hough transform

In contrast to RANSAC, Hough transform [7] based approaches use all matches to vote
for transformations that are consistent with them and finally select the one with the
highest support. This enables handling higher outlier contamination. Nonetheless, it
has high memory requirements as all possible transformations have to be represented,
which is done by discretizing space of parameters. Hough transform was utilized already
by Lowe [45] to verify SIFT matches. Hough Pyramid Matching [6] uses Hough-like
scheme to recursively group matches into motion groups. Chen et al. [11] first group

11



3 State of the Art

matches to objects using co-segmentation to subsequently compute per-object homo-
graphies using Hough transform.

3.1.4 Multiple models

All the previous works focus on extracting a hypothesis with the largest support. The
following ones consider that there can be multiple models in a scene. That could be
multiple planes or multiple motions. [8, 76] use RANSAC to greedily extract multiple
hypotheses, i.e. find the best hypothesis, remove its inliers from the set of all matches
and repeat until there is enough matches. In addition, Bhat et al. [8] handle degenerate
situations by estimating both homography and fundamental matrix and keeping the
homography if it explains most of the fundamental matrix inliers. On the contrary,
Zuliani et al. [96] formulate the MultiRANSAC algorithm which estimates multiple
transformations in every round.

Isack and Boykov [33] argue that greedily extracting a hypothesis with the most inliers
is not the best strategy and design an energy-based optimal labeling approach called
PEARL. J-linkage [78], an agglomerative clustering method, adresses fitting multiple
models to noisy data with outliers. It does not need the number of clusters to be known
and reports better results than greedy sequential RANSAC application. Fouhey et
al. [24] detect multiple planes in a scene using J-linkage and subsequently jointly re-
fines the estimated models. T-linkage [46] is an improvement of J-linkage that handles
outliers and noise by replacing binary analysis by continuous generalization.

Similarly to [8, 76], our approach for detecting multiple homographies is also greedy.
Nevertheless, to the best of our knowledge, no other work detects multiple homographies
in order to merge them into motion groups. Importantly, note that our approach also
addresses degeneracies since a motion group can be defined either by a homography or
an epipolar geometry.

3.2 Motion segmentation

This section gives an overview of recent motion segmentation approaches. Motion
segmentation is a discipline of grouping matches into motion groups. Even though it
is not called directly image matching, it is related to it. Notice the similarity to fitting
multiple models in Sec. 3.1.4. Nevertheless, motion segmentation methods are different
since they often assume multiple views and segment n-view matches, also called tracks,
(see Sec. 5.3.3). It is typically also assumed that the number of motions is known, there
are no outliers or even that there are no missing data (i.e. all the matches span over
all frames). The following subsections roughly group the motion segmentation methods
based on what approach they rely on, i.e. geometry, matrix factorization, optical flow,
and subspace clustering.

3.2.1 Geometric

Works based on geometry significantly differ in the number of frames they consider. In
general, multi-view approaches are more accurate than two-view ones. However, their
accuracy rapidly decreases as the number of frames gets too low.

The following methods follow different ideas but they all need only two views of a
scene. Vidal et al. [83] generalize epipolar constraint into multibody epipolar constraint,
which they estimate using Generalized Principal Component Analysis (GPCA). Rao et
al. [69] propose to join homography and epipolar constraints into a hybrid perspective
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3.2 Motion segmentation

constraint to handle planar and 3D structures. Given the number of motions K and fea-
ture matches in two-views, they fit a set of 2K-degree polynomials to partition matches
into motion groups. Poling and Lerman [64] present a concept of global dimension,
which they minimize with their fast projected gradient algorithm. Jung et al. [38] in-
troduce a randomized voting scheme, where the grouping is iteratively refined in voting
and labeling steps. The core of the voting step is a process of estimating fundamental
matrices from samples and then giving bigger votes to matches with smaller residuals.
Rubino et al. [71] make use of an object detector to guide the motion segmentation.
Our proposed geometric verification approach compares to the two-view methods as it
needs two views. Importantly, it does not need the number of motions to be known.
Also, it handles both planar and 3D structures.

Vidal and Hartley [82] take one more view of the scene and propose multibody tri-
linear constraint, which is a natural generalization of the trilinear constraint. They
estimate the associated multibody trifocal tensor using GPCA to subsequently run
an iterative refinement algorithm alternating between trifocal tensor computation and
segmentation of matches.

Motion segmenters capable of utilizing multiple views include [43, 95]. Li et al. [43]
utilize the two-view epipolar constraint and then combine point correspondence infor-
mation across multiple views. Next, they adopt an over-segment and merge approach,
which does not need the number of motions as input. Similarly, we fuse two-view
matches into n-view matches. Nevertheless, we are capable of handling also planar
motions as we do not use only epipolar constraints but homographies too. Zografos
and Nordberg [95] design a motion segmentation method, which, in its core, makes use
of the theory of linear combination of views. In contract, Jacquet et al. [34] analyze
known relative motions between two parts in order to identify the type of articulated
motion.

3.2.2 Matrix factorization

Matrix factorization approaches typically construct a large matrix from n-view matches
and decompose it into a product of two matrices. One of those matrices then reveals
grouping of the data.

Cheriyadat and Radke [12] decompose the data matrix into different motion com-
ponents and their non-negative weights which can be used to segment the data. They
do not require the matches to span all frames. Mo and Draper [52] propose to deal
with missing data using a fast method based on Semi-Nonnegative Matrix Factoriza-
tion. Favaro et al. [21] can cope with noise but not with missing data. They pose
the problem as a rank minimization task and decompose the data matrix into a clean
low-rank dictionary and a matrix of noise/outliers. Vidal et al. [84] project the point
trajectories onto a 5-dimensional subspace using PowerFactorization and fit multiple
linear subspaces representing different motions using GPCA.

3.2.3 Optical flow

Methods based on optical flow can be used for videos captured by a moving camera.
Klappstein et al. [39] estimate optical flow by analyzing motion patterns. They for-
mulate the problem as an energy minimization and solve it via a min-cut-max-flow
algorithm. Ochs et al. [58] exploit long term point trajectories and focus on areas in
the image, where optical flow estimation works best to get reliable tracks. Narayana et
al. [56] address the problem that the motion can produce different optical flow in differ-
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3 State of the Art

ent depths. They propose to use the optical flow orientations, which are independent
of depth.

3.2.4 Subspace clustering

Consider that n-view matches belonging to different motions lie on different subspaces.
Motion segmentation approaches based on subspace clustering group together n-view
matches that belong to similar subspaces.

Elhamifar and Vidal [20] propose a method based on sparse representation to cluster
data drawn from multiple low-dimensional subspaces embedded in a high-dimensional
space. They aim to find the sparsest representation of every n-view match by using
Ll-norm optimization. Rao et al. [68] find the segmentation of the n-view matches
via minimization of coding length that is needed to represent the data by a mixture
of Gaussians. To solve this problem efficiently, they first find a suboptimal solution
by considering every match as a group. Then, they merge the groups to minimize the
coding lenght. Thus, the number of motions does not have to be known. Zhang et
al. [94] introduce the application of correntropy to robustify subspace clustering in
order to take into account real-life corruptions of the data. To solve the proposed
robust subspace clustering, they employ half-quadratic minimization.

3.3 3D reconstruction

3D reconstruction is an active research area and this section provides only a brief survey.
The main body of work assumes that the scene is static. Such approaches would extract
the motion with the highest support and discard the others in dynamic scenes. We first
briefly review the state of the art of approaches for static scenes and then give an
overview of 3D reconstruction for dynamic scenes.

3.3.1 Static

A typical structure-from-motion pipeline would process in two main steps. Firstly,
it would detect n-view matches (see Sec. 3.1 and Sec. 5.3.3), where one n-view match
represents a projection of one 3D point into different images. Next, the pipeline recovers
the coordinates of the 3D points corresponding to the n-view matches and camera
parameters corresponding to the images.

The existing works can be divided in two groups based on the scheme of recovering the
camera parameters and 3D points. There are so called global [18, 5, 10, 37, 54, 87, 75, 19]
and incremental [74, 1, 26, 42, 91, 32] methods.

Incremental The core idea of this technique is the initialization of a 3D model from
a few cameras (typically a pair of cameras) and subsequent iterative addition of other
cameras. A typical scheme would start by using RANSAC to estimate relative pose
of a calibrated pair of images with many matches in common to initialize the recon-
struction. Then the camera seeing the most n-view matches that have been already
reconstructed into 3D points would be added. The adding process finds camera param-
eters via absolute pose solver fed by image-to-scene matches and reconstructs all new
3D points visible by the new camera and another already recovered camera. Bundle
adjustment [79], non-linear optimization of all camera parameters and 3D points, is ran
after every camera addition.
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3.3 3D reconstruction

We propose to use a classical incremental structure from motion on a dynamic scene
by pre-grouping n-view matches and feeding the n-view match groups to the pipeline
independently.

Global Global methods consider all available relative poses between pairs of images to
estimate all camera poses in a single step. The cameras are considered to be calibrated
and hence it is possible to estimate their global orientations [10, 29, 30, 47] and posi-
tions [5, 37, 54, 87] simultaneously by averaging. To refine the model, a final bundle
adjustment [79] step is ran on the whole scene. This contrasts incremental approaches
as they run bundle adjustment of the whole scene in every iteration. Additionally, it is
also rewarding to globally optimize all the relative poses in the beginning [75].

3.3.2 Dynamic

Despite the advances in static 3D reconstruction and motion segmentation, there is not
many 3D reconstruction systems taking into account a dynamic scene. Most of the
researchers in this area consider availability of a video sequence [59, 22, 93, 70, 72]. On
the other hand, our approach can handle unordered images. Ozden et al. [59] address
important issues of dynamic reconstruction mainly theoretically and then propose an
exemplary framework. For instance, they tackle the cases where the number of inde-
pendent motions changes as some objects can leave the field of view or can stop moving
(e.g. a car is parking). Jacquet et al. [35] improve the reconstruction of multiple rigid
bodies by making use of non-intersection constraints which force the rigid bodies not
to intersect at any point in time.

[22, 93, 72, 70] present systems for joint estimation of motion segmentation and 3D
reconstruction. They apply a hill climbing, EM-like, approach and alternate between
fixing and updating certain groups of parameters (e.g. 3D points, group labelling and
motion models [72, 22]). Note that some of the works do not assume a rigid motion.
Fayad et al. [22] put focus on articulated motion and demonstrate how their system
works on full human body motion sequences. Russell et al. [72] go a step further and
make no assumption on the motion, i.e. the motion can be non-rigid. They show
experiments with videos downloaded from the internet.

In contrast to the aforementioned, Wang et al. [86] propose a method, which requires
only two views of the scene. They use SIFT features boosted by synthetic views (see
Sec. 3.1.1) and match them via classic nearest neighbor search. Next, they overestimate
the number of motions by greedily fitting fundamental matrices with RANSAC. Finally,
they run an optimization of the whole problem enforcing neighboring features to belong
to the same motion group and preferring less motion groups.
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4 The Proposed Approach

This chapter firstly introduces our feature matching approach for dynamic scenes. Then,
it presents our incremental structure-from-motion pipeline which utilizes the matching
approach in order to handle dynamic scenes.

4.1 Image matching for dynamic scenes

First, our image matching approach, which assumes that motions can be modelled by
homographies, is detailed in Sec. 4.1.1. It is possible to make the assumption for planar
objects or planar motions. The assumption can be made for matching subsequent frames
of videos if the frame rate is sufficient to make a motion seem planar, for example.
Secondly, we remove the assumption and extend the method for rigid motions that
cannot be modelled by homographies. This extension is described in Sec. 4.1.2.

4.1.1 Growing homographies

Consider the following task we want to solve in this subsection. We are given two
images I, I’ as input with an unknown number of motions p which are all modellable
by a homography. Hence, we are looking for homographies

H € R¥3 e {1,2,...,p} (4.1)

transforming points from I to I’.

To give an overview, our approach detects features, finds tentative matches of features
between images and geometrically verifies them. The geometric verification greedily
grows multiple homographies from individual matches.

Features

We propose to utilize SIFT features [45] which are widely used (e.g. by [8, 53, 76, 86, 1,
74, 5, 18]). A SIFT feature is made of coordinates = € R?, scale s € R and orientation
o € R. Fig. 4.1 visualizes a few SIFT features to enable easier understanding. For
convenience of notation, we write

€T
f=|s| eR% (4.2)
o

and denote a set of features by F.

Tentative matches

Assume that we have detected n features F in I and m features ' in I’. Next,
we compute SIFT descriptors [45] D and D’ corresponding to the features. A SIFT
descriptor d € R'?® is a vector encoding local appearance of an image path. Hence,
descriptors can be used to find similar-looking features. We use this property to find
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Figure 4.1 A visualization of SIFT features [45]. The yellow circles represent individual fea-
tures. The circle centers correspond to feature coordinates, the circle radii to scales and the
lines going from the circle centers to orientations. This example shows only features of a
scale higher than five to enable a nice visualization.

matching features between images by searching nearest neighbor in D’ in descriptor
space for every descriptor in D. More formally, a matching Mg is

ie{l,2,....,n} A j= argmin ||d;—d) (4.3)
7'e{1,2,....,m}

where d; € D and d} € D'. We call the set Mg tentative initial matches.

Unfortunately, My often contains mismatches as the nearest neighbor in descriptor
space does not have to be a true correspondence and some features in I just do not
have a true corresponding feature in I’. To filter out some mismatches, we compute
Lowe ratio [45] for every match and keep only those with smaller ratio than a threshold.
Lowe ratio is defined as the distance to the nearest neighbor over the distance to the
second nearest neighbor, i.e. given match (i, j)

. min ’
J'€{1,2,...m}; j'#j

Mo = {(7’7.7)

r(i,j) = (4.4)

The ratio basically measures how unique is the nearest neighbor. See Fig. 4.2 for
precision-recall curve to compare discriminability of the distance to the nearest neighbor
and Lowe ratio. Finally, we filter the matches

M —{(3,5) | (4,5) € Mo A 7(i,j) <t} (4.5)

where t € R is a threshold.

We employ FLANN library [55] for all the nearest neighbor searches. In more detail,
we utilize structure called randomized kd-tree forest. This structure starts by building
four kd-trees over the target set, i.e. D’ in our case. kd-tree is a binary tree splitting
space in every node in one dimension. The splitting dimension is chosen randomly
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Figure 4.2 The top part of the figure shows an image pair with features detected in both images
as yellow dots. 1953 features were detected in the left image and 1911 features were detected
in the right one. The bottom figure gives precision-recall curves for feature matches of the
image pair. We can see that Lowe ratio is a better score than simple descriptor distance.
The area under curve, which can be used to summarize the quality of a score, is 0.33 for
descriptor distance and 0.71 for Lowe ratio. The ground truth was obtained by manually
labelling the matches.

from top five with highest variance. Thus, every tree in the forest is different. The data
points, i.e. descriptors, are stored in leaves which means that a search procedure has
to traverse a tree to the bottom. All trees are searched simultaneously by a procedure
preferring better branches. Finally, the search is sped up by stopping the search after
checking 32 data points. Note that this makes the algorithm approximate.

Finally, we apply one more filter. Typically, some features from the first image match
the same feature from the second image. We discard all such matches as inconsistent
and keep only unique matches. Hence, the matching becomes

M= {(G,9) | (5,5) e M A [{(g,9) | (¢,5) € M}[=1}. (4.6)

We call the filtered M tentative matches.

Similar matching schemes are also employed by [74, 1, 18, 8], for instance. However,
note that tentative matches are still contaminated by mismatches and need to be further
verified geometrically.
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4.1 Image matching for dynamic scenes

Figure 4.3 The illustration of an acquisition of a transformation from one image to the other
using one match of SIFT features. The top circles represent two different features f € F
and f’ € F'. The bottom ones are unit-scale circles with zero orientation. Note that the
illustration does not take into account translation which is also part of the transformations
(the centers of both unit circles are in the origin).

Growing a homography from one match

We adopt the strategy of Vedaldi and Zisserman [81] for growing a homography from
one match. Given a pair of matching features f € F and f' € F', we want to find a
homography H € R3*3 with as many inliers as possible. Briefly, the strategy to reach
this goal is to initialize the homography from the feature match alone and then iterate
between finding inliers and using them to refine the homography.

Consider that a SIFT feature f = [u v oS 0] " can be used to compute a similarity
transforming a unit circle to the feature image patch. Such a transformation is defined

as
scoso —ssino u

S(f) = |ssino scoso v|. (4.7)
0 0 1

Therefore, from a pair of matching features, we can initialize the wanted homography
with
K= S(£)S(f) (4.8)

See Fig. 4.3 for a visualization of this composition.

Having H initialized as a similarity transformation, we are able to perform iterative
refinement by alternating between inlier identification and hypothesis update using
inliers. Following [81], we do four iterations of refining H into an affine transformation
and then three iterations of refining H into a full homography. The hypothesis updates
are detailed in Sec. 2.2. An affine transformation is estimated using least squares and
a full homography via SVD.

See Alg. 1 for a pseudocode of the algorithm for growing one homography from one
match. Note that different thresholds are used for different types of transformations.
For similarity, affine transformation and full homography, it is 20, 10 and 5 pixels,
respectively. This is justified as the transformations get less and less restrictive.
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Algorithm 1: Growing a homography from one match
Input: F, F' M, (i,j) € M
Output: H, M;

for iter € {1,2,...,8} do
if iter = 1 then
‘ H <+ S(fJ{)S(fi)*1
else if iter <5 then
| H <« fit_affinity (M, F, F')
else
‘ H <« fit_homography (M, F, F')
end
M + find_inliers(H, M, F, F')
if |[M;| < 4 then // min matches to fit a homography
‘ break
end

end

Growing multiple homographies

Finally, given tentative matches M and features F, F/, we geometrically verify M and
simultaneously detect motion groups present in M. For this purpose, we propose to
extract homography with the largest support, remove its inliers from M and repeat
while there are some reliable homographies. The individual homographies then rep-
resent motions. Our method modifies the method of Vedaldi and Zisserman [81] and
extends it to dynamic scenes. They focus on finding only one homography with the
largest support.

[81] use an algorithm related to RANSAC [23] and LO-RANSAC [16]. Similarly, they
use a minimal sample to generate a hypothesis, refine it using inliers and return the
hypothesis with the largest support. The difference is that the size of a minimal sample
is fixed to be one which allows to remove randomness by using all matches as minimal
samples. The hypothesis generation and refinement process, growing a homography
from one match, is described above.

Such an algorithm has, however, quadratic time complexity in the number of tentative
matches |[M|. We introduce three modifications to speed up the algorithm and keep
the same precision and recall. First, we argue that it is not necessary to grow from
every match since matches from the same true homography group tend to grow into
homographies with identical or similar inlier sets. Therefore, we propose to use a set
of so called visited matches M,,. It is initialized as an empty set. As the algorithm
proceeds, i.e. grows homographies and finds their inliers, every match that becomes
inlier is added to M,. The algorithm then does not use matches that are in M, for
growing a homography. Even though this modification alone significantly speeds up the
algorithm, it delivers inferior results in terms of recall compared to [81].

Second, consider that the first modification makes the algorithm dependent on the
order of matches. Hence, another modification improves recall by ordering the matches.
Basically, any score could be beneficial compared to random ordering. We suggest to use
Lowe ratio which is readily available from the tentative-matching phase. Importantly,
the sorting does not incur any significant slowdown.

Third, we propose to further improve recall by applying robust non-linear optimiza-
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Figure 4.4 The figure displays error robustifier function, i.e. Eq. (4.9).

tion on all matches after the selection of the best homography by the above-described
algorithm. More concretely, we initialize the optimization with the best homography,
run the optimization and then identify the final inliers. The optimization is carried
out by Ceres Solver [2]. It is ran with default settings except the maximum number of
iterations which is set to ten in order to keep the algorithm fast. The used minimizer is
trust region and linear solver sparse cholesky. The error function we use is the standard
pixel distance of projected and matching point (see Sec. 2.2). We robustify the error
by a function inspired by the simplified robust error function from [73], i.e.

ETT2
b(err) = —log (e_%2 + q> +log(g+1) (4.9)

where ¢ and o are hyperparameters. We set them according to [73], i.e.

t
¢=02 o=-— (4.10)

/—Tlog ¢2

where ¢ is inlier/outlier threshold which, as mentioned above, is five pixels. Fig. 4.4
visualizes the shape of b. Such a robustifier gives almost constant penalty to points
with too large error. Hence, the optimization effectively takes into account points with
error close to the threshold and does not care about high-error ones. We compute all
the derivatives using inbuilt automatic differentiation tool of Ceres Solver [2] in order
to obtain exact derivatives.

See a pseudocode of the full geometric verification method in Alg. 2.

4.1.2 Extension for non-planar motions

This section details how the proposed approach for detecting planar motions, described
in Sec. 4.1.1, can be extended for rigid motions. Let us assume that we have detected
homographies

B e R¥ e {1,2,...,p}. (4.11)

We propose to group the homographies based on pairwise scores, i.e. we take pairs of
homographies and decide if they belong to one rigid motion. We first introduce a score
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Algorithm 2: Growing multiple homographies
Input: 7, F', M
Output: H,G

H, G+ 2,0
for iH € {1,2,...,7} do // find max 7 homographies
My~ o
m < 0
for (i,j) € M do // in the order based on Lowe ratio
if (i,j) € M, then
‘ continue
end
H;j, M < grow_homography(F, F', M, (i, )) // Alg. 1
My — M, UM
if | My| > m then
m <— ‘M[‘
H <+ Hij
end

end

H «+ robust_refine(H, M, F, F/)
M « find_inliers(H, M, F, F’)
M +— M\ Mg

H + HU{H}

G+ Ggu{M;}

end

for determining if a pair belongs to one motion. Next, we examine degenerate situations
and finally present a procedure for merging multiple homographies using the pairwise
scores.

Homography-pair score

Let us assume that we have homographies H; and Hs and we are to decide if they belong
to the same motion. Consider the parameterization [60] of a general homography H
induced by a plane in the scene

1
MH = A'A™! (I + c’nT) (4.12)
z

where A is an unknown scale factor, first and second cameras are respectively

—I —T
P=A|I |-y P=AN|1 |-¢|]|, (4.13)
-z -2

c is the projection of the second camera center by the first camera and m is the normal
of the plane in the first camera coordinate system. Importantly, the basis of the world
coordinate system is chosen so that the first two basis vectors span the plane and third
is the plane normal. Therefore, z and 2’ are orthogonal distances of the camera centers
to the plane in the world.

We use this parameterization to prove the following theorem.
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4.1 Image matching for dynamic scenes

Theorem 1. Assuming that homographies Hy and Hy are induced by two planes which
mowve together, then H = H2_1H1 s a planar homology, i.e. has a line of fixed points and
a fized point not on the line. See Sec. 2.2.3 for planar homology.

Proof. The homographies can be expressed in the above mentioned parameterization
as

1
AHp = AfATt (I + c’21n1T> (4.14)
/I a—1 / 1 T
Z2

Note that the world coordinate system is different for both planes. Nevertheless, the
calibration matrices K and K’ are shared

A; =KR; Ay =KRy A} =KR] A,=KR). (4.16)
The composition of the homographies becomes

A 1 ! _ 1
Zluywy = <I + c’n§> KRoR, K 'K'RIR] K (I + c’nT> . (4.17)
A2 22 z1

Next, consider that changing the world coordinate system does not change relative
rotations and thus

R/R] =RHRg (4.18)

which simplifies the homographies composition

Al 1o - 1T
)\—ZH2 H = I—Fcz—zn2 I+cz—1n . (4.19)
This can be further rewritten using
1 1
V1= —N1 V2= —Ny (420)
Z1 ]
as
b —1
A—ng_lHl = (I + c’v;) (I + c’vf) (4.21)
2
vy
— (- &% (I + c’uT) 4.22
(1-1¢ vgc,) ] (4.22)
dvy +c (vyc)v]
=1+ cv — 4.23
! 14+ v, (4.23)
14+wv)c) v —cv) — (v) ) v
=T+ ( 2 ) 1 T2 ( 2 ) 1 (424)
1+vyc

c ((1 —i—’UTC' vT _ ,UT _ UTC/ UT

— I+ (( 2 ) 1 T2 (2 ) 1) (425)
1+wvyc
1

=I+~c (vT — UT> = —. 4.26
1! (o] — v, /7= TreTe (1.26)
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Such a matrix has a fixed point ¢’ which is proved as

A

H, 'Hic = )\—? (c' +c (vir - U;) c’) (4.27)
A

= )\—2 (1 + (vlT — vJ) c’) c (4.28)
1

= sc (4.29)

where s is a scalar. Furthermore, the composition matrix has a line of fixed points

(v{ — v, ). Having a point & on the line, i.e. (v{ — v )& = 0, we see that
-1 Ao / T T
H, 'Hix = o™ (m + e (Ul — Uy ) w) (4.30)
1
A2
= —x. 4.31
—= (4.31)
O

Corollary 1. The matriz H= H2_1H1 has two equal and one distinct eigenvalues.
Proof. Follows directly from Theorem 1 and Sec. 2.2.3. O

Corollary 2. The eigenvector of the matriz H = H2_1H1 corresponding to the distinct
etgenvalue is the projection of the second camera center to the first image, i.e. the
epipole.

Proof. Follows directly from Theorem 1, its proof and definition of eigenvectors. O

Observation 1. The line of fized points under H = H2_1H1 is the intersection of the
planes.

Proof. Intuitively follows from geometric interpretation of the problem. The points on
the intersection are transformed to the same points by both homographies. O

Assuming that two eigenvalues should be equal, we propose to compute eigenvalues
of H=H, 'H, and measure how far they are from that situation. Let the eigenvalues
of Hbe X € C3. We distinguish two cases that can happen. Either all eigenvalues are
real or there are two complex ones (a complex conjugate pair). In the first case, we
compute how close are to each other all pairs to determine the pair of eigenvalues that
should be equal. The closeness of the pair (\;, A;) is measured by normalizing the pair
close to one and computing the difference from one, i.e.

Y )\j
L 5o |+ |1 - 5 (4.32)
2
which can be rewritten for all pairs into
A= Ae | (A= As | [ A2 — A
A)=2 . 4.33
e1(d) mm{‘xwxg "Alﬂg ")\2—1-)\3} (4.33)
As for the second case, assume that
Ai=a+bi Nj=a—bi A\ =c+0i. (4.34)
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4.1 Image matching for dynamic scenes

We argue that A\; and \; correspond to the same eigenvalues if the homographies orig-
inated from the same motion and they have non-zero imaginary part only because the
homographies were not detected exactly due to noise. In this case, the imaginary part
should be small relative to the real part. We propose to compute

ea(X) =2 (4.35)

a

where we multiply by 2 to take into account both of the eigenvalues that should be
equal. The final scoring function is then a composition of the two previously defined as

e(A) = (4.36)

e2(A) otherwise.

{61()\) if A € R3,

Degenerate situations for the homography-pair score

Having established Theorem 1, we need to examine what happens in images of dynamic
scenes. We first state which situations are degenerate in the following theorem and then
go from the general case of dynamic scenes to the degenerate situations.

Theorem 2. Assuming that homographies Hy and Hy are induced by two parallel planes
which rotate equally, then H = H;lHl 1 a planar homology, i.e. has a line of fized points
and a fized point not on the line. See Sec. 2.2.3 for planar homology.

Proof. We start from the general case of dynamic scenes in order to find degeneracies.
The two homographies are now induced by different motions, which can be thought of
as if we had two second cameras and expressed as

1

AH; = AjAT? <I + c’Zln1T> (4.37)
1

AoHy = AJA! (I + c”n§> (4.38)
22

The world coordinate system is again different for both planes and the calibration
matrices K and K’ are shared

A; =KR; Ay =KRy A} =KR| Aj=KR]. (4.39)

The composition of the homographies becomes

A 1 \7' - 1
/\—11{2—11{1 = (1 + c”n;> KRoR) K 'K'R/R[K! (I + c’an) (4.40)
2 z2 21
nl T - nT ol pTe—1 1T
=|I+c"—n, KRoRy RiR{K " |I4+c—mny |. (4.41)
22 z1

Such a matrix is generally not a planar homology.
Next, lets assume that relative rotations of the motions are the same, i.e.

RiR{ =RRg (4.42)

which simplifies the homographies composition

Al nl T - 1T
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4 The Proposed Approach

This can be further rewritten using

1 1
V= —MN1 V= —"N9 (4.44)
Z1 Z9
as
Al no T\ T
)\—2H2 H = (I + c'vy ) (I + c'vy ) (4.45)
C//'U;
(1) (e el s
(1-1 v;C,,) ] (4.46)
1
=I1+cv] —~ (c"v2T +c’ (ch’) vlT) /v= TroTe (4.47)
2
1
=I+7y <7c'vlT — vy — (de) c”'v1T> . (4.48)

Such a matrix is still generally not a planar homology.
Assume further that the normals of the planes are the same, i.e. n = nq = ny. That
simplifies the form of the composition matrix

A 1,1 1 1
2 =I44(=d=n' —¢'=n' - (v;—c') d'=n'T (4.49)
A2 7oA 22 z1
1 1 1
=I+7 <c’ -—c' - (ch’) c”) n' (4.50)
Yz1 z22 <1
1 1 1
=I+y (c’ - ( + (v;c’) ) " |n' (4.51)
Yz1 22 <1
=1+ ('d—n")n’ (4.52)
where 7' = % and 7" =~ (i + Z11z2 (nTc’)). In this case, the composition matrix
becomes a planar homology. O

Considering that our homography-pair score is vulnerable to the above described
degeneracies, we propose to change the scoring function e. We argue that fitting an
epipolar geometry to inliers of the homographies should result in an epipolar geometry
valid for all the homography inliers and possibly some other matches. Assume that
we have available tentative matches M and groups Gi,Gs € M which correspond to
H; and Hs respectively. We take matches of both groups as if they were all members
of one motion and use them to estimate a fundamental matrix. We use least squares
to compute rank three matrix, SVD to make it rank two and non-linearly refine it.
The algorithm is detailed in Sec. 2.3. The optimization is ran with 10 iterations at
maximum to keep the algortihm fast. Then, we find inliers M; amongst all matches,
1.e. My C M. A match is considered to be an inlier if its Sampson distance is less than
three pixels. The inliers are used to compute an alternative score to the first one

M
f(gl,QQ,M[) = ’9'1‘|—|—I||QQ (453)

In short, function f computes relative number of inliers. In ideal case, it should be
always at least one as all the matches belonging to both groups should be inliers. In
addition, actual 3D objects often have matches which were not covered by the two
homographies.
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4.2 Structure from motion

Finally, we present a score combining the eigenvalue function e and epipolar geometry
function f

f(G1,G2, M)

e(A)
This final score outperforms the eigenvalue score e not only in the degenerate situations.
We have empirically found that noise and inaccurate homographies can corrupt the
eigenvalue score. Such corruptions are effectively compensated by epipolar geometry
score f. See experiments for the evaluation.

S(A,gl,gg,/\/l[) = (4.54)

Merging multiple homographies

Let us return to the situation, where we have p homography groups and want to merge
them to p true rigid motion groups. We propose to build a graph where nodes are the
homography groups. Having the score s readily available for thresholding, we utilize it
to create edges between nodes. A pair of homography groups has an edge between them
if their score s falls below a certain threshold. In our experiments, we have empirically
found a threshold of 5.5 to work well.

We define the new rigid motion groups as the connected components of the graph
described above. We further use the rigid motion groups that arose from more than
one homography to estimate epipolar geometry (see Sec. 2.3) and enrich the group with
new inliers that were not used before in any of the existing groups. The new inliers
have to have the Sampson distance smaller than three pixels. The optimization refining
the epipolar geometry is ran with 30 iterations at maximum.

4.2 Structure from motion

This section presents a classical incremental structure-from-motion pipeline which takes
advantage of our feature matching approach in order to handle dynamic scenes. We
are inspired by popular incremental structure-from-motion systems Bundler [74] and
VisualSFM [91, 92]. The input to the pipeline are only images and the output are
camera parameters and sparse 3D reconstruction, ¢.e. a point cloud.

We proceed in several steps. First, we run feature matching for all pairs of images,
construct n-view matches, and group the n-view matches into motion groups. Second,
we select one image pair to initialize the reconstruction for every motion. Finally, we
run an iterative procedure adding cameras and points to the reconstruction and refining
all the parameters for every motion independently.

4.2.1 Matches

In order to be able to reconstruct 3D points, we need to know their projections in
images. A set of projections of a single point in multiple images is called a n-view
match (or a track in some works). We first detect two-view matches between all pairs
of images in order to be able to connect them to n-view matches. We propose to apply
the method detailed in Sec. 4.1 for the detection of two-view matches.

Next, we connect two-view matches across images to create n-view matches. We
discard all n-view matches having more than one projection in a single image as they
are deemed to be inconsistent.

Furthermore, we group the n-view matches into individual motions. Consider that
k-th n-view match arose from multiple two-view detections. Let us denote the set of
all the two-view detections as t(k). Elements of the set ¢(k) are pairs of indices of

27



4 The Proposed Approach

images. Let us assume that (¢, j) € t(k). Let us denote a function assigning an index of
a group detected by two-view matching to a n-view match and a pair of image indices
as g((i, ), k).

We propose to merge n-view matches to motion groups starting by the most similar
ones. We define the similarity as the number of pairs in which the matches are detected
together. This problem can be formulated as agglomerative clustering. We initialize
the algorithm with a cluster for every n-view match with ¢ and g. Let us use the same
notation for clusters as for n-view matches, i.e. k-th cluster has corresponding ¢(k) and
g((i,7), k). We start by merging all clusters k, k' such that

t(k) =t(K') A V(i,j) € t(k) : g((i, 5), k) = g((i, 5), k') (4.55)

which merges all n-view matches which are detected exactly in the same pairs of images
and always move with the same motion. Next, we agglomeratively merge the remaining
clusters. The distance of clusters k and &’ is measured by

[t(k) Nt(K")| (4.56)
and the clusters can be merged only if

(i,4) € tk) Nt(K') = g((i, 7). k) = 9((i,4), k). (4.57)
This approach merges groups of the most similar n-view matches until there are only
unmergeable clusters. It is able to distinguish objects which move together in some
image pairs and independently in others. As a result, the final groups will contain
n-view matches which consistently move together in all observations.
Next, we apply a classical incremental reconstruction pipeline for every n-view match
group independently.

4.2.2 Camera model

We use the camera model from Bundler [74]. Camera parameters include rotation in
the angle-axis representation r € R3, camera center ¢ € R3, focal lenght f € R, and
radial distortion x € R?. Let us denote all the camera parameters as C. A 3D point
x € R3 is projected as

y=z—c (4.58)
6= [|r]] (4.59)
r

ae T 4.60
el o0
z=ycosh+ (axy)sinf + ala'y)(1— cosh) (4.61)

Z1.2
=== 4.62
0=t (1.62)
u=v(1+ k1||v])? + Kal|v||}) (4.63)
p(C,x) =uf + xo (4.64)

where xg is the principal point which is fixed to be in the middle of the image.

In case that EXIF tags of an image contain information about focal lenght in mil-
limeters and CCD width in millimeters, we use them to compute focal length in pixels
which is a camera parameter. We also use a database of CCD widths from Bundler [74]
which is used to find CCD widths of cameras that do not have it in EXIF tags. The
focal length in pixels is then computed as

focal in mm
CCD width in mm"

focal in px = max (image width, image height) (4.65)
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4.2 Structure from motion

4.2.3 Reconstruction initialization

We initialize the reconstruction with a pair of cameras which is selected as the one
with the most matches. The initial cameras are calibrated with zero radial distortion
parameters. In case that the focal length could not be computed from EXIF tags, we
compute it by assuming the angle of view 55 degrees.

Having both initial cameras calibrated, we estimate their relative pose using five-
point algorithm [41] in RANSAC [23]. The first camera is set to zero rotation and put
into the origin while the pose of the second camera is computed from the relative pose.
Finally, 3D points corresponding to matches that are seen by both of the cameras are
triangulated.

4.2.4 Incremental reconstruction

In the following, let us assume that the reconstruction has been initialized and thus
there is a set of reconstructed cameras and a set of reconstructed 3D points. All steps
in the following are repeated until there are no cameras to be reconstructed.

First, we find camera-to-scene matches, matches between features and 3D points.
They are easily obtained as every reconstructed 3D point has an associated n-view
match which defines in which cameras it is seen and to which features it corresponds.

Second, we select the camera with the most camera-to-scene matches. Assuming
that it has n matches, we also select all cameras that have at least 0.75n matches. In
addition, no cameras that have less than 16 matches are selected as they are deemed
to be unreliable. If there is no camera satisfying the conditions, the reconstruction is
terminated.

Third, having selected the most reliably connected cameras to the reconstruction, we
estimate their parameters. The estimation is done for every camera independently by
computing a full projection matrix using a RANSAC [23]. The RANSAC is used with
a non-minimal least squares solver taking six camera-to-scene matches [31]. The best
projection matrix is then decomposed using RQ decomposition [31] into a calibration
matrix K, rotation matrix, and camera center. The rotation matrix is converted to the
angle-axis representation and the calibration is used to initialize the focal length as

1
§(K11 + Kaz). (4.66)

The parameters of the newly added cameras are then refined using non-linear optimiza-
tion [2].

Furthermore, unreconstructed 3D points, i.e. n-view matches without an associated
3D point, which are visible by at least two reconstructed cameras are triangulated
and added to the point cloud. The triangulation is done using numerically conditioned
homogeneous method (DLT) [31]. The recovered points that have too high reprojection
error are removed.

Next, bundle adjustment [79, 2], a simultaneous optimization of all camera param-
eters and 3D points, is ran and points with too high reprojection error are removed.
These two steps are repeated until there are some points to be removed.

Finally, ill-conditioned points are removed. Ill-conditioned points are those for which
the maximum angle between rays from different camera centers to the 3D point is
too small. Even though these points have small reprojection error, they are not well
reconstructed as the depth is not estimated accurately.
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5 Implementation

We have developed a brand new C++ library called yasfm (Yet Another Structure from
Motion). yasfm is intended to be reliable, easy to extend and fast. It is meant to be
further used for research.

Features of yasfm include feature detection, feature matching, geometric verification
of matches, n-view matches handling, triangulation of 3D points, bundle adjustment,
image similarity, current state storing and loading, unified RANSAC framework (see
Sec. 5.2) designed for, but not limited to, various relative pose and absolute pose prob-
lems, and various auxiliary functions.

The goal of this chapter is not to fully document yasfm but rather to get the reader
acquainted with the main principles and concepts. It is a sufficient documentation for
developers who want to use yasfm and a good starting point for developers wishing to
extend it.

We first describe which third-party libraries are used and for what in Sec. 5.1. Second,
we describe the RANSAC framework and how to create a new estimator in Sec. 5.2.
Lastly, we point out the main classes and structures in Sec. 5.3.

5.1 Third-party libraries

yasfm utilizes third-party libraries for several complex tasks. Some dependencies are
less important than others and the following clarifies why exactly are individual libraries
included.

5.1.1 Linear algebra

First and foremost, yasfm makes heavy use of linear algebra library Eigen [28]. It
implements matrices, vectors, raw data interface, various decompositions (e.g. SVD),
geometry specializations (e.g. quaternions or angle-axis rotation parameterization), to
name a few of its features. Therefore, we are able to elegantly and quickly write
matrix operations. In addition, Eigen is fast as it makes use of expression templates,
vectorization via SIMD instructions, loop unrolling and cache friendliness principles.

5.1.2 Image loading

Image loading capabilities necessary for our needs are covered by one larger and one
lightweight library. We employ DevIL [89], a powerful image library, for two purposes.
First, for reading image dimensions to set principal points of cameras to the middle of
the image. Second, for reading colors of reconstructed 3D points to get nicer visualisa-
tion. Importantly, DevIL is required also indirectly by Sift GPU (see Sec. 5.1.3).

Furthermore, the second direct image-handling dependency of yasfm is jhead [85],
a lightweight library for reading EXIF tags of JPEG images. We read the following
entries of EXIF tags if they are in an image: focal length in millimeters, CCD width in
millimeters, camera make, and camera model. These information are, if available, used
for initialization and constraining of focal lengths of cameras (see Sec. 4.2.2).
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5.2 RANSAC framework

5.1.3 Feature detection and description

Detection and description of SIFT features is handled by Sift GPU [90]. We have chosen
it because it is capable of utilizing GPU and is therefore fast. Importantly, we run its
GLSL version which can run on all GPUs (even laptop integrated ones) so that we
would not be restricted to individual makes. Note that SiftGPU has two dependencies
which in turn have to be included in yasfm. One is DevIL, which yasfm needs anyway
and the other is The OpenGL Extension Wrangler Library (glew).

5.1.4 Feature matching

Feature matching requires an algorithm to search for nearest neighbors in 128 dimen-
sional space. See Sec. 4.1.1 for explanation why. For this purpose, we employ Fast
Library for Approximate Nearest Neighbor (FLANN) [55]. It is a library containing
several structures for performing fast approximate nearest neighbor search in high di-
mensional spaces. Note that we make use of randomized kd-tree forest structure only.

5.1.5 Optimization

It is critical for yasfm to have support for non-linear optimization. It is needed to
refine parameters in relative and absolute pose estimators. Such optimization problems
typically consist of small constant number of parameters and many residuals (one or two
for every point correspondence). Non-linear optimization is also necessary for bundle
adjustment, which is simultaneous optimization of all cameras and 3D points.

We choose to use popular Ceres Solver [2], a library designed for solving bundle
adjustment and other computer vision optimization problems. It even offers an in-
built automatic differentiation tool, which computes exact derivatives automatically
given only a templated objective function. Note that other alternatives to automatic
differentiation would be finite differences which give an approximation, symbolic dif-
ferentiation which might not handle large problems, and differentiation by hand which
is tedious and error prone. Ceres Solver depends on Eigen which is already included
in yasfm and SuiteSparse for solving large sparse problems such as bundle adjustment.
SuiteSparse in turn depends on Basic Linear Algebra Subprograms (BLAS) and Linear
Algebra Package (LAPACK).

5.1.6 Other

Only two other third-party libraries are required. First, the implementation of Li and
Hartley of the 5-point algorithm [41] is used for solving relative pose problem from
five feature matches. Second, compression library zlib [40] enables storing features and
descriptors in compressed files.

5.2 RANSAC framework

Having in mind ease of extension, we notice reoccurring pattern for various camera pose
estimators. Both relative and absolute pose estimators are often put in an algorithm
from the RANSAC family (see Sec. 3.1.2). The estimators differ in parameters to be
estimated, minimal-sample size needed to compute a hypothesis, a way how an error is
computed and what kinds of points are in correspondence.
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5 Implementation

5.2.1 RANSAC mediators

We propose to unify the estimator differences in classes we call RANSAC mediators. All
the mediators are derived from a base abstract class MediatorRANSAC shown below.

Listing 5.1 Abstract base class for problem-specific features of estimators. Classes deriv-
ing from MediatorRANSAC can be plugged in RANSAC-family algorithms implemented
in yasfm. Note our convention of passing a pointer of a variable to a function to emphasize
that the function modifies the variable.

template<typename T>

class MediatorRANSAC

{

public:
/// Total number of matches.
virtual int numMatches () const

I
o

/// Minimal -sample size.
virtual int minMatches () const

0;

/// Is a sample valid valid for hypothesis computation?
virtual bool isPermittedSelection (

const std::vector<int>& indices) const
{ return true; }

/// Compute hypotheses from a minimal sample.
virtual void computeTransformation (
const std::vector<int>& indices,
std::vector<T> xhypotheses) const = 0;

/// Compute squared error for a hypothesis and a match.
virtual double computeSquaredError (

const T& hypothesis,

int matchIdx) const = 0;

/// Optimize an initialized hypothesis on its inlier set.
virtual void refine(
double tolerance,
const std::vector<int>& inliers,
T *hypothesis) const = 0;
g
This design effectively makes adding new estimators only a problem of implementing a
minimal solver, an error function, and optionally a refinement procedure for which one
can use Ceres Solver [2].

5.2.2 Implemented solutions

At the moment, yasfm offers frameworks for ”vanilla” RANSAC [23], PROSAC [15], and
their variants with local optimization [16]. As for the individual camera pose problems,
there are already implemented the following mediators:

e Fundamental matrix mediator for uncalibrated camera pair (using seven-point
minimal solver [73]).

e Essential matrix mediator for calibrated camera pair (using five-point minimal
solver [57, 41]).
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e Homography mediator for uncalibrated camera pair (using four-point minimal
solver [31]).

e Projection matrix mediator for camera resection (using six-point least squares
solver [31]).

5.3 Main classes

This section presents main classes and structures of yasfm, i.e. Camera and NView-
Match classes, CameraPair and Point structures, and container class Dataset. Note
that all these classes are capable of serialization. It is therefore possible to save and
load the current state.

5.3.1 Camera

Camera is the most complex class. It has two main purposes: image related and
camera related. First, Camera stores image filename, image dimensions, features, and
descriptors. Noteworthy trait is an optimization for memory. Consider that one SIFT
descriptor is stored as an array of 128 single precision floats and there are typically
around 10k features in average per camera. That makes up 5.12 MB. Hence, for bigger
problem instances with more than a thousand cameras, there could be memory issues
(depending on memory size). We propose to use a static variable counting the number
of descriptors in memory and another one keeping track of cameras that have their
descriptors in memory.

class Camera

{

private:
/// The number of descriptors in memory.
static size_t nDescrInMemoryTotal_;
/// Cameras which have their descriptors in memory.
static std::list<Camera *> camsWithLoadedDescr_;

};

Further assume that the descriptors of individual cameras are stored on the disc. Hence,
a camera is able to read its descriptor from the disc every time it receives a request for
its descriptor and it is not currently in the memory. Finally, every time a camera reads
its descriptors from the disc, the longest living set of descriptors gets released in case
that the maximum number of descriptors in memory was exceeded.

Secondly, Camera serves as the base class for different camera types. Camera class
itself does not have any specific parameters such as focal length, rotation or camera
center. As far as the camera parameters are concerned, it has only pure virtual functions
which are meant to be overloaded by derived classes. This architecture enables us to
use and experiment with different camera models. It is even possible to use multiple
different camera models in one scene.

5.3.2 CameraPair

CameraPair is a simple structure meant to hold pairwise information. It stores feature
matches, their scores (i.e. Lowe ratio), and fundamental or homography matrix.
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5.3.3 NViewMatch and Point

A n-view match is a set of projections of a 3D point in multiple images. N-view matches
are sometimes also called tracks or point views. We represent them by NViewMatch
class. This class is simply a hash map, where keys are camera indices and values are
indices of features of respective cameras.

A 3D point is basically a n-view match with known 3D coordinates. We, however,
define Point structure which contains coordinates and two NViewMatch objects. One
with entries only with cameras which were already reconstructed as those point views
are valid in the current scene and the other object for cameras that are not yet recovered.

5.3.4 Dataset

The Dataset class serves as a container for the current state. It holds a std::vector
of pointers to Camera objects, CameraPair objects for matched camera pairs, and a
std::vector of Point objects, for example.

Important trait of Dataset is the ability of writing the current state in a file and then
reading it back. The file contains all information except features and descriptors which
are stored separately in compressed binary files. In addition, the output file is a text
file and is meant to be easy to read by a human. This proves useful when an immediate
inspection is preferred over running additional tools. The ability to save and load the
current state turns out to be very valuable for research. For instance, one can save
the current state in every iteration of an incremental structure-from-motion algorithm
in order to be able to start from any iteration again in case of any crashes or other
problems.
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6 Experiments

In this chapter, we evaluate the proposed image matching and structure-from-motion
approaches detailed in Sec. 4.1 and Sec. 4.2. In the first section, we focus on image
matching for scenes with planar motions only and then also on rigid-object motions.
Second, we assess the performance of our structure-from-motion pipeline on a dynamic
scene.

A single laptop with Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz processor, 8GB
memory, NVIDIA GeForce GT 750M GPU, and OS Windows 10 64-bit was used for
all the experiments.

6.1 Image matching for dynamic scenes

Considering that the method we use for obtaining tentative matches is widely used [74,
1, 18, 8], we evaluate only our geometric verification approach which is responsible for
detecting motions and discarding mismatches. Hence, assume that we have tentative
initial matches Mo C {1,2,...,n} x {1,2,...,m} where n and m are numbers of
features detected in images I and I’ respectively.

For the purpose of measuring quality of the matches verification, we use

true positive

recision = 6.1
P true positive + false positive (6.1)
t iti

recall = .r'ue posr e : (6.2)

true positive + false negative

which in our case becomes
correct matches}| N |[{matches labelled as correct

precision = [tcorr HON rrect}| (6.3)

|[{matches labelled as correct}|
recall — |[{correct matches}| N [{matches labelled as correct}| (6.4)

|{correct matches}|

Precision therefore measures how correct is the set of matches we have labelled as
correct and recall how many correct matches is obtained from all correct ones there
are.

We want to extract (as shown in Alg. 2) mutually exclusive motion groups

G={Gr |G CM A k#K: GNGy =0} . (6.5)
The ground truth groups are similarly denoted by
G={Gr |G CM A k#K: GiNGy =2} . (6.6)

Note that the number of estimated groups |G| can be different from the number of
ground truth groups ‘Q‘ as the ground truth number of motions is not required on
input by our approaches. Hence, we propose to find a mapping which determines the
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Figure 6.1 The precision-recall curve for the image pair F for varying Lowe ratio in [0,1] with
step 0.025. The set of all matches are all tentative initial matches M. Matches are labelled
as correct if they pass Lowe-ratio and unique-matches filters described in Sec. 4.1. The large
cross corresponds to Lowe ratio 0.8.

most similar estimated group for every ground truth group. We require the mapping
to map one estimated group to every ground truth group at maximum. The mapping
is more formally written as

h:G—=(Gu{a}l) st |{G |G eGAMG) =Cr}| <1VGrw G (6.7)
such that, the following is maximized
Gk N 1(Gk)| VGK € G. (6.8)

Subsequently, we use the mapping h to compute precision and recall for every group
individually, i.e. correct matches for a group, as denoted in Eq. (6.3) and Eq. (6.4), rep-
resent inliers that belong to the group. That makes correct matches which successfully
passed geometric verification, but were assigned to the wrong group, to be handled as
mismatches.

To evaluate our approaches for geometric verification, we use three publicly avail-
able datasets. First, we use the dataset of Cho et al. [14] designed for object-level
matching. It features six image pairs of multiple objects (toys, posters, books) moving
independently. In addition, all images have different unrelated backgrounds. Second,
the dataset of Wang et al. [86] contains seven image pairs of various objects moving
independently. [86] detects the motions and does 3D reconstruction in order to find
scene changes.

Third dataset is called Hopkins155 [80]. It is primarily meant to be used for mo-
tion segmentation from multiple views and contains 155416 short videos. 104 videos
show objects covered with checkerboard pattern and were captured under controlled
conditions. We discard those videos and consider only the other ones since they model
real world conditions. Most of them capture cars on the road. Since our method needs
just a pair of images, we follow [69, 64] and use first and last frames only. Further, we
do not use tracked points that are shipped with the dataset and instead detect SIFT
features as detailed in Sec. 4.1.
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6.1 Image matching for dynamic scenes

’ Id ‘ Name \ | Mo \ M| \ D \ Group sizes \ Motion types
A | HoPKInsISS | gy | 7ag |5 | (341,150,20) planar
cars10
Hopkins155
B | b 22| oso | 208 | 2 (231,12) planar
¢ | HoPKIns1SS | oana 1469 | 5 | (53,49,63,120,59) planar
books
Cho et al.
D | oo | 4223 | 485 | 3| (147,54,51) planar
g | Choelal b oea logr | 4| (2844125 planar
Jigsaws
Ours . .
Fl guliboe | 1953 | 425 |1 (297) rigid
Ours . .
G| oo | 10595 | 948 | 1 (398) rigid
H Wangl ebal- | g6s | 375 | 3 (288,51,1) rigid
I Wang;t a1 g3 [ 250 |3 (142,5822) rigid
J Wang;t ol | o162 | 577 | 2 (465,49) rigid
Hopkins155
K| i o] 633 | 110 | 2 (37,33) planar

Table 6.1 The image pairs for which we create ground truth. Id is given by us whereas name
column presents dataset and image pair names as given by their authors. M are tentative
initial matches and M those matches with Lowe ratio smaller than 0.8. We also provide the
number of groups p, their sizes in M, and motion type. The pairs A-E are used to evaluate
the homography growing approach and F-J the rigid motion approach.

In order to evaluate the proposed approaches using precision and recall, we need
ground truth data. We therefore select several image pairs (see Tab. 6.1) and compute
tentative initial matches My on them. Next, we manually label the matches. To
ease up the process of labelling, we assume matches with Lowe ratio higher than 0.8
to be mismatches. Values larger than 0.8 empirically proved to be too permissive as
majority of matches with larger Lowe ratio are mismatches. This is justified on an
example in Fig. 6.1. The image pairs for manual labelling are selected so that there are
representatives of different types of scenes (e.g. cars, posters) and different numbers of
motions. We also take into account how easy it is for a human to determine correctness
of amatch (e.g. a scene consisting of sand and rocks would be difficult to label correctly).

6.1.1 Growing homographies

We compare our approach from Sec. 4.1.1 with two others. First one is well-known
RANSAC [23]. We run it with the same inlier threshold as in our approach, i.e. five
pixels. In addition, we limit the RANSAC to run for 4096 rounds at maximum to
speed it up. Similar limitation was used in [74], for instance. After the RANSAC
finishes, we refine the hypothesis by fitting a homography to inliers as in Sec. 2.2 and
then find inliers to the new homography. To extract multiple motions, the RANSAC is
applied sequentially. Such a scheme was applied also in [8, 76], for example. The second
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6 Experiments

L

\ Sequential RANSAC \ Sequential VGG-P \ Ours (Sec. 4.1.1)

|

P 3 3 3
# inliers (280,118,12) (280,118,13) (281,118,13)

A | precision (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)
recall (0.82,0.77,0.60) (0.82,0.77,0.65) (0.82,0.77,0.65)
time 0.181 0.437 0.016
p 1 2 2
# inliers (191,0) (191,10) (192,10)

B [ precision (0.98,1.00) (0.98,0.90) (0.98,0.90)
recall (0.81,0.00) (0.81,0.75) (0.81,0.75)
time 0.003 0.152 0.006
P 5 5 5
# inliers | (56,28,35,97,40) (56,36,36,97,41) (56,36,36,97,40)

. (0.89,1.00,1.00, (0.89,1.00,1.00, (0.89,1.00,1.00,
¢ | precion 1.00,0.83) 1.00,0.98) 1.00,1.00)
recall (0.89,0.57,0.56, (0.89,0.74,0.57, (0.89,0.74,0.57,
0.81,0.56) 0.81,0.68) 0.81,0.68)
time 0.206 0.201 0.030
P 4 3 3
# inliers (130,41,35) (130,41,35) (130,41,36)

D | precision | (1.00,0.98,1.00) (1.00,0.98,1.00) (1.00,0.98,0.98)
recall (0.88,0.74,0.69) (0.88,0.74,0.69) (0.88,0.74,0.69)
time 0.130 0.052 0.009
P 2 2 2
# inliers (10,23,0,0) (11,30,0,0) (11,29,0,0)

E [ precision | (1.00,0.96,1.00,1.00) | (1.00,0.97,1.00,1.00) | (1.00,1.00,1.00,1.00)
recall | (0.36,0.50,0.00,0.00) | (0.39,0.66,0.00,0.00) | (0.39,0.66,0.00,0.00)
time 0.130 0.006 0.003

Table 6.2 The number of motions p is written in bold if it was correctly estimated. The number
of inliers, precision, and recall are given for ground truth groups as mapped by Eq. (6.7) and
colored red when a motion was not successfully detected. Time is measured in seconds and
is averaged over 100 runs.

approach is sequential application of VGG practical [81] which we denote VGG-P. Note
that VGG-P’s homography-growing core is used in our approach too and is described
in Alg. 1. In contrast to our method, VGG-P grows a homography from every match
and is thus expected to be slower. A hypothesis is accepted by all methods if it has at
least ten inliers.

Tab. 6.2 gives the results for image pairs A-E. The methods were supplied with
tentative matches filtered with Lowe ratio set to 0.7. We observe that our approach
performs just as well or better than sequential RANSAC and just as well as sequential
VGG. Additionally, our approach is significantly more efficient as it is in most cases the
fastest one. In some cases, it performs faster by an order of magnitude. The matches
verified by our approach are visualized in Fig. 6.2.

Moreover, we have empirically observed that Lowe ratio threshold greatly influences
the subsequent geometric verification. Lowe-ratio filtering predominantly changes the
proportion of mismatches in the set of matches fed to the geometric verification al-
gorithms. Nevertheless, in case the threshold is set too low, it could easily become
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6.1 Image matching for dynamic scenes

e) Image pair E.

Figure 6.2 Matches verified by our homography growing method corresponding to the right
column of Tab. 6.2. The colors green, magenta, blue, red, and yellow represent matches of
different groups. This order of colors is consistent with the order of groups across all image
pairs and corresponds to the groups ordering in tables.

impossible for geometric verification to find motions which are supported by only a few
matches scoring too high. Therefore, we deem important to show precision-recall curves
for varying Lowe ratio threshold. We visualize them for threshold varying in interval
[0,0.8] for image pairs A and D in Fig. 6.3.

Fig. 6.3 confirms that setting Lowe ratio threshold too low can result in discarding
too many correct matches for a group to be detected. For example, setting the thresh-
old as high as 0.6 would be still too strict for the third group in the image pair A.
Nevertheless, all the approaches perform similarly on all the groups with two minor
exceptions. One exception is Fig. 6.3c where our approach has slightly worse recall
with the most permissive threshold and sequential RANSAC has slightly worse recall
and in one case also slightly worse precision. The other exception is Fig. 6.3f where our
approach has slightly worse precision for threshold values larger than 0.7 and sequential
RANSAC which has slightly worse precision for threshold 0.8. Note that we call the
differences slight because they are induced by accepting one wrong or discarding one
correct match only.

We conclude that our homography growing approach is successful in dynamic-scene
matching task for planar motions. It is capable of finding multiple motion groups among
a set of matches corrupted by outliers. Our approach is just as good or better than
other compared approaches. It is also generally faster.

6.1.2 Rigid motions

Let us now consider general rigid motions. Such motions cannot be modelled by a single
homography anymore. Fig. 6.4 shows what happens if we run our approach for growing
multiple homographies on a scene featuring non-planar motions. Notice that in scenes
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Figure 6.3 Precision-recall curves for varying Lowe ratio in interval [0,0.8] with step 0.025.
Individual curves have different line width and marker size to enable a nice visualization.
Additionally, every curve has three larger markers. The larger crosses represent from left to
right values of the ratio 0.6, 0.7, and 0.8.
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6.1 Image matching for dynamic scenes

Figure 6.4 The approach for growing multiple homographies applied to rigid motions. Different
colors represent different homography groups. The left image pair is F and the right one is
H. F has six detected groups and H four. Note that F has only one motion and is supposed
to illustrate what homographies can get detected. However, also note that all the matches
on F are correct. The only problem is that the detected homographies correspond to some
”virtual” planes.

o

o
=)

°
N

true positive rate (recall)
o
(9]

°
w

0 0.2 0.4 0.6 0.8 1
false positive rate

Figure 6.5 ROC curve for homography merging score s. Array under curve, which represents
the quality of the score, is 0.93. Positive hypothesis is that a homography pair belongs to
one motion.

with no dominant plane, our greedy approach can draw a homography which does not
respect any real world plane. That is not a problem for our extended approach (see
Sec. 4.1.2).

To evaluate the homography merging score presented in Sec. 4.1.2, we run our ho-
mography growing method on 38 image pairs. There are 12 pairs from Hopkins155 [80],
six from Cho et al. [14], seven from Wang et al. [86] and we have added 13 of our own
single motion image pairs. The multiple motion image pairs show scenes with moving
cars on the road, books, posters, and toys. The single motion image pairs capture a
paper castle model, Notre Dame, a statue, indoor scenes, and Mars landscape. After
running the homography growing, there are 160 homography pairs that could be possi-
bly merged. We manually create ground truth to enable quantitative evaluation of the
merge score.

To this end, we have been using precision-recall curves but we find ROC curves more
suitable in this case. Note that precision-recall curves do not visualize how good the set
of negative labels is which is in the homography merging just as important as how the
set of positive labels is. ROC on the other hand shows recall, also called true positive
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L

\ Sequential RANSAC \ Ours (Sec. 4.1.2) ‘

P 1 1
# inliers (200) (203)

F | precision (0.98) (0.97)
recall (0.66) (0.66)
time 0.042 0.055
P 1 1
# inliers (273) (276)

G | precision (1.00) (1.00)
recall (0.69) (0.69)
time 0.175 0.045
p 3 2
# inliers (220,43,28) (233,45,0)

H | precision (0.98,0.93,0.00) (1.00,1.00,1.00)
recall (0.75,0.78,0.00) (0.81,0.88,0.00)
time 0.015 0.036
P 2 2
Z liers (120,30,0) (117,30,0)

I | precision (0.98,0.87,1.00) (1.00,1.00,1.00)
rocall (0.83,0.45,0.00) | (0.82,0.52,0.00)
time 0.034 0.014
P 2 2
# inliers (421,42) (418,27)

J | precision (1.00,0.98) (1.00,1.00)
recall (0.90,0.84) (0.90,0.55)
time 0.042 0.051
P 1 2
# inliers (63,0) (36,26)

K | precision (0.53,1.00) (1.00,1.00)
recall (0.87,0.00) (0.87,0.76)
time 0.001 0.003

Table 6.3 The number of motions p is written in bold if it was correctly estimated. The number
of inliers, precision, and recall are given for ground truth groups as mapped by Eq. (6.7) and
colored red when a motion was not successfully detected. Time is measured in seconds and
is averaged over 100 runs.

rate, on one axis and false negative rate on the other. The rates are in our case

|{labelled as one motion}| N |{is one motion}|

true positive rate = (6.9)

|{is one motion}|

[{labelled as one motion}| N [{is different motion}|

false positive rate = (6.10)

|{is different motion}|
The resulting curve for our score s is shown in Fig. 6.5.

In order to evaluate the final matching method for rigid motions, as detailed in
Sec. 4.1.2, we propose to compare it to a sequential RANSAC. The RANSAC estimates
fundamental matrices using seven-point algortihm (see Sec. 2.3) unlike the previous
section, where it estimated homographies. A hypothesis is accepted if it is supported
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6.1 Image matching for dynamic scenes

Sequential RANSAC Ours (Sec. 4.1.2)

Figure 6.6 The figure shows image pairs F-K from top to bottom and visualizes matches cor-
responding to Tab. 6.3. The colors green, magenta, and blue represent matches of different
groups. This order of colors is consistent with the order of groups across all image pairs and
corresponds to the groups ordering in tables.

by at least 16 inliers and a match is considered to be an inlier if its Sampson distance
is below three pixels. The results are given in Tab. 6.3 and visualized in Fig. 6.6. The
tentative matches fed to the verification are again generated with Lowe ratio 0.7.

To summarize, our approach is in comparison to the RANSAC better for H, I, and
K, just as good for F and G and slightly worse for J. Importantly, our approach avoids
generating too many groups for H and too few groups for K. The results for J are worse
only in terms of the number of found matches and not in the number of detected groups.
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Figure 6.7 Several image pairs with geometrically verified matches visualized as green, ma-
genta, and blue dots. The bottom right image pair shows a failure example where a repetitive
pattern on the ground was incorrectly matched.

Figure 6.8 Several image pairs with visualized n-view matches which are seen by both images
in a pair. Note that the groups are consistent on different image pairs as opposed to Fig. 6.7.
The color green corresponds to the ground, blue to the paper statue, magenta and yellow
to the two sides of the shoe, and cyan to the toothpaste box. In addition, the colors red,
black, brown, and white symbolize matches of the ground which were not merged to the green

group.

6.2 Structure from motion

This section evaluates the proposed structure-from-motion approach for dynamic scenes.
We have captured a dataset where three objects move independently, i.e. there are four
motions including the background. The dataset consists of 24 images with known focal
length. The objects are a shoe, a paper Statue of Liberty, and a toothpaste box.

We run the approach as described in Sec. 4.2 and hence start by running feature
matching for all image pairs. Fig. 6.7 visualizes several results of two-view matching,
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6.2 Structure from motion

a) The green group, i.e. the floor. b) The black group, i.e. part of the floor.

c) The blue group, i.e. the paper statue. d) The magenta group, i.e. half of the shoe.

Figure 6.9 A visualization of sparse reconstructions computed by our structure-from-motion
system. The pyramids symbolize reconstructed cameras and their viewing directions.

i.e. geometrically verified feature matches. These examples cover various situations that
can happen when matching dynamic scenes with our approach for rigid motions. In
case that all objects move sufficiently differently and have enough tentative matches, we
are able to group matches correctly. On the other hand, matches of two objects can be
grouped together if they move together (with respect to one image pair). Nevertheless,
note that our approach for connecting two-view matches into n-view matches fuses the
grouping information available from all image pairs and aims at distinguishing different
motions even if some are not distinguishable on the image-pair level. Furthermore,
Fig. 6.7 illustrates a failure where a repetitive pattern on the floor was incorrectly
matched. Note that similar failures can possibly confuse the fusing step.

Fig. 6.8 takes the same image pairs as in Fig. 6.7 and visualizes n-view matches that
are seen by both images in a pair. The figure gives an idea of how the final grouping
ended up. It is clear that the largest group is the ground one. Then there is a group
for the paper statue and a group for the toothpaste box. The figure also reveals that
the shoe was split in two groups which correspond to the two sides of it. Furthermore,
there are five other groups which are mostly on the ground. We reason that they were
induced by the incorrect matches of repetitive patterns and then could not be merged
to the main ground group as it would be contradicting based on Sec. 4.2.1.

Finally, the reconstructed sparse point clouds with recovered cameras are displayed
in Fig. 6.9. Only the groups which resulted in point clouds which allow for a nice
visualization are shown. In order to further verify the results of our algorithm, we
supply the camera parameters to CMPMVS [36] to obtain dense reconstructions (see
Fig. 6.10). Note that correctly estimated camera parameters are needed to obtain good
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’ Group \ # matches | Avg. match size \ # points \ # cams ‘ Avg. error

Green 8261 6.65 3018 24 0.623
Blue 812 3.62 466 14 0.888
Magenta 752 3.18 253 7 0.746
Yellow 176 2.03 101 2 0.432
Cyan 745 3.61 60 7 1.746
Red 752 2.31 135 2 0.444
Black 416 3.24 194 11 0.600
Brown 1345 3.54 260 10 1.146
White 31 2.19 18 2 0.287

Table 6.4 The table gives the number of n-view matches and their average size. A size of a
n-view match is the number of images in which it is seen. Then, there is the number of
reconstructed 3D points, cameras and average reprojection error. The colors correspond to
Fig. 6.8 and Fig. 6.9.

dense reconstructions.

Quantitative results are given in Tab. 6.4. The table gives the number of n-view
matches and their size. The higher these quantities are, the better as we want many
possible 3D points which are seen in many images. Next, there are the number of recov-
ered 3D points, cameras and average reprojection error. The groups that correspond
to the objects and ground were reconstructed successfully with one exception. Despite
the number of matches the toothpaste box has it did not reconstruct well. We reason
that the structure-from-motion system did not manage to initialize the reconstruction
from matches of a single small plane as it is using five-point algorithm (see Sec. 4.2.3).

To summarize, our feature matching approach for rigid motions coarsely grouped
two-view matches which were then fused into n-view matches with better grouping.
Even though a few redundant groups appeared, there were major groups representing
different objects and the background. Our structure-from-motion pipeline was then
able to reconstruct the groups individually.
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6.2 Structure from motion

a) The green group, i.e. the floor.

c) The magenta group, i.e. the shoe.

Figure 6.10 Dense reconstructions obtained by CMPMVS [36] when supplied with the camera
parameters found by our approach. Note that this proves the correctness of the found camera
parameters. The artifacts around the objects of interest in (b) and (c) are caused by the fact
that the objects are not observed from the other side.
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7 Open Problems and Future Work

This chapter covers limitations of the proposed approaches and future work. We identify
two problematic situations related to the homography-growing approach. First, note
that there have to be a sufficient number of tentative matches for every motion in order
to detect all motions. Consider Fig. 6.2e, for example, where our approach detected
two motions out of four. A possible solution could utilize generation of synthetic views
to increase the number of tentative matches (see Sec. 3.1.1). Second, the greedy nature
of our approach could make one motion take over some matches of another motion. For
instance, see the green and blue groups in Fig. 6.2c. There are matches which should be
part of the blue group but are not. The green group was detected before the blue one
and it greedily extracted all its inliers including a few of the blue-group object matches.
Note, however, that both of the problems also arise for the other compared methods.

Furthermore, we have noticed a limitation of the proposed approach for rigid motions.
Even though we aim at identification of degeneracies, there are still some that elude
us. One such degeneracy is the image pair A. We detect three homographies as shown
in Fig. 6.2a corresponding to the background, the bus and the car. Then, we compute
pairwise scores for all three pairs of homographies to determine which ones belong to
the same motion. Next, two pairs of the homographies are incorrectly labelled, i.e. all
three homographies are a connected component and they all get merged (see Fig. 7.1).
This should not happen since it is impossible to fit an epipolar geometry to all three
homography groups in this case even though it is possible to fit it to two pairs of
homographies. A question arises how to determine which homography groups should
be merged in similar situations, if any. We plan to address this issue in the future.

Finally, the approach for grouping n-view matches can have problems when some
of the two-view groups are incorrect. In this case, two groups of matches can remain
separate even though they should be merged.

Figure 7.1 A degenerate situation not handled by the approach for rigid motions. All the
matches have been grouped into one group.
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8 Conclusion

This work first established the notation, basic concepts and reviewed the related state
of the art. Then, the proposed approaches were introduced and subsequently, the
implementation described. Furthermore, the proposed approaches were evaluated and
their limitations identified.

We propose a two-view feature matching approach suitable for dynamic scenes. It is
important to consider dynamic scenes with differently moving objects if one wants to
handle uncontrolled conditions since the real world is dynamic. We take a classical ten-
tative feature matching scheme which is widely used and design a method for geometric
verification of the matches. We propose to grow homographies from feature correspon-
dences which readily provide similarity transformations. Importantly, our contribution
is the application of the homography growing scheme to extract multiple homographies
and speed improvement of the scheme.

Furthermore, we propose to apply the scheme for growing multiple homographies to
scenes with rigid motions which returns multiple homographies where some may belong
to the same motion. We compute a score to measure how far a pair of homographies
is from the situation of being from one motion. The score is then used to merge
homographies into motion groups. The score utilizes a property that a composition
of two homographies should be a planar homology if they belong to the same motion.
Also, the score takes advantage of an observation that a fundamental matrix fitted to
inliers of two homographies should model the inliers and possibly some other matches.

Moreover, we present a C++ library intended for building and experimenting with
structure-from-motion systems. It is designed to be reliable, easy to extend and fast as
it is meant to be further used for research.

Finally, we propose how our feature matching approach can be used to match pairs of
images and then fuse the information about pairwise groups into global groups. Every
global group then consists of a set of n-view matches. Hence, we are able to run a
classical incremental structure-from-motion system, implemented using our library, for
every group independently.
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