Road Following For Hexapod Walking Robot

Ing. Martin Stejskal

Supervisor: doc. Ing. Jan Faigl, Ph.D.

We propose robust road following method for hexapod walking robot. The method combines two complementary approaches - tactile and vision based. The proposed combined solution compensates drawbacks of individual approaches while it is as minimalistic as possible.

Terrain classification based road following

- Adaptive motion gait based on position error feedback from servo drives
- Position error differs in particular gait phases during crawlng various terrains, which is utilized in terrain classification
- Four classes of terrain are considered:
 - road, offroad, left and right road border
- Terrain type history is utilized to steer the robot motion to keep the robot on the road and avoid offroad terrain

Vision based road following

- Shadow removal technique is utilized to improve robustness
- The input RGB image is converted to log-chromaticity space
- The image is then thresholded and filtered
- Self-calibration method for estimation of camera parameters

Fusion of the road following methods

- At each moment only one controller (terrain classification or vision based) steers the robot
- The controllers are switched according to proposed criteria: image quality criteria and terrain classification reliability criteria
- Autonomous terrain learning method has been proposed
- The method was experimentaly validated in outdoor environments and also during the mobile robot competition
- The proposed strategy with two motion steering methods improve the overall robustness of the autonomous road following for hexapod crawling robot

Publications

M. Stejskal, J. Mrva and J. Faigl, "Road following with blind crawling robot", IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3612-3617