Behaviour Analysis and Improvement of the Proposed PUF on FPGA

Filip Kodýtek

Supervised by Róbert Lórencz

Faculty of Information Technology, Czech Technical University in Prague

Physical Unclonable Function (PUF)

- Function based on physical system
- Each electronic device has unique physical properties
 - Arise due to random variations in the manufacturing process
 - Source of randomness for PUF
 - Forms a "fingerprint" of the device

PUF's applications

- Device identification

 Authentication

 Device identification

 100 (100100) (101100) (101100) (10100) (
- Cryptographic key generation
 - · Instead of storing the keys in memory

110 70111010

PUF proposal

- Delay-based PUF
 - Random variations in delays of logic gates and their interconnects
 - Affects frequencies of ring oscillators (RO)

- Pair of ROs is measured
- Result: binary counter value

Counter value =
$$\frac{f_2}{f_1} \times 2^n$$

Selection of suitable positions for PUF

Results

Positions	7-8	7 - 9	7-10	8-9
w	2	3	4	2
HD_{intra}	1.37%	1.77%	2.71%	2.63%
HD_{inter}	48.49%	49.06%	49.32%	50%

- Easy to implement PUF design
- Multiple output bits from each RO pair
- Stable and unique PUF responses
- Influence of voltage and temperature on stability is investigated

Publications

- 2 articles in impact journals
- Kodýtek, F.; Lórencz, R.: Proposal and Properties of Ring Oscillator-Based PUF on FPGA.
 In Journal of Circuits, Systems and Computers
- Kodýtek, F.; Lórencz, R.; Buček, J. Improved ring oscillator PUF on FPGA and its properties.
 In Microprocessors and Microsystems
- 3 publications on IEEE conferences
- 5 publications on international workshops