From Proofs of Formal Propositions
to Executable Implementations

Author: Frantisek Silvasi

_ __ o Supervisor: doc. Ing. Martin Tomasek, PhD.
Technical University of KoSice
Faculty of Electrical Engineering and Informatics, Department of Computers and Informatics

- Parse a type signature and additional definitions in any
programming language as long as parametric polymorphism is
expressible

Any a => total id : a -> a

- Interpret the type siganture as a proposition and attempt to automatically find
a constructive proof 1—1 |—

clear<a1>‘
agiza; I - —

trivial<a;>
aj sa; L' —é -

intro<a;>

I'Fa—a

- Translate the proof into any programming language

id = intro<a;> trivial<a;> clear<a;>

id = Aay — ai
id = Aal — al -- Valid Haskell

