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- Parse a type signature and additional definitions in any
programming language as long as parametric polymorphism is
expressible

Any a => total id : a -> a

- Interpret the type siganture as a proposition and attempt to automatically find
a constructive proof 1—1 |—
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- Translate the proof into any programming language

id = intro<a;> trivial<a;>  clear<a;>

id = Aay — ai
id = Aal — al -- Valid Haskell




