
● As a trade-off, abstraction
overaproximates state-
space

● Necessary to refine
abstraction backward run

● More precise abstraction -
predicate abstraction

● Abstraction over forest automata
enables representation of infinite
state space

● Abstraction gives analysis
chance to terminate and
accelerates computation

TACAS’15 - Attendance at prestigious
international conference

Verification of Pointer Programs Based on Forest
Automata Martin Hruška

ihruska@fit.vutbr.cz

● Improve software quality
● Find all bugs in progam
● Formal proof of correctnes of program
● Undecidable problems, or problems with high

computational complexity

● Formal methods, particularly forest automata
● Automata represent reachable states of program
● Local reasoning (as in separation logic)
● Implementation in Forester tool as GCC plug-in

Why?
How?

● Programs in C
● Complex dynamic data structures (e.g., skip-list of the 2nd and 3rd level)
● Bugs related to pointer manipulation or reachability of an error label

What?

struct Tree {
 struct Tree* left;
 struct Tree* right;
 int data;
};

Verification Based on Forest Automata

Set of heap
graphs

Abstraction

Concretization

Concrete

domain

Set of forest
automata

Abstract

domain

Contribution
Backward run

Forester & VATA
● Forest automata are

tuples of tree automata
● VATA is an efficient

library for tree automata

● Using VATA in
Forester brings:
○ Modularity
○ Maintability
○ Efficiency

SV-COMP’15 - Software verification
competition

● Abstraction over forest
automata using predicates
represented also by forest
automata

● It is more precise and more
suitable for refinement than the
used height abstraction

Predicate abstraction
● Precise enough to analyse

data structures never analysed
before Red-black list - verified for the first time ever

More complex data structures coming soon

