Spatiotemporal Saliency Model of Human Attention in Video Sequences

STU FIIT Patrik Polatsek, Supervisor: Dr. Vanda Benešová

Visual attention

- brain receives from the environment huge amount of sensorial data
- attention provides mechanisms of selecting important information
- saliency = stimulus standing out relatively from its neighbours
- saliency map = topographic representation of visual saliency

Applications:

robotics, surveillance systems, image processing, video compression, medical imaging, advertisement, software design, ...

Results Spatial model Toronto dataset

Model			GBVS [2]					SPX
sAUC	.61	.66	.64	.68	.69	.68	.69	.65

- [1] ITTI, L., et al. (1998). A model of saliency-based visual attention for rapid scene analysis.
- [2] HAREL, J., et al. (2006). Graph-based visual saliency.
- [3] BRUCE, N., TSOTSOS, J. (2005). Saliency based on information maximization.
- [4] JUDD, T., et al. (2009). Learning to predict where humans look
- [5] LI, J., et al. (2013). Visual saliency based on scale-space analysis in the frequency domain.
- [6] GOFERMAN, S., et al. (2012). Context-aware saliency detection.
- * improved version of Itti's model by [2]

flow map

Feature maps

- 1. intensity
- grayscale image
- SPX comparison: correlation
- 2. colour
- opponent colour theory
- SPX comparison: mean colour
- 3. orientation
- oriented gradients
- SPX comparison: correlation

Motion saliency

Orientation

- processing of dense optical flow maps
- moving object -> local optical flow
- 1. temporal saliency map
- superpixel-based approach
- histogram of flow orientations and magnitudes

Spatiotemporal

saliency map

- 2. motion innovation map
- temporal changes in a video sequence
- motion memory