
An Executable Formal Semantics of Agda
Andrej Tokarčík, supervised by Mgr. Jan Obdržálek, PhD.

Faculty of Informatics, Masaryk University, Brno

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
Agda

Agda is an actively developed dependently typed programming language. Its types

can directly depend on values: it is, for instance, possible to define a function

returning the n-th element of a list so that the typechecker itself guarantees the list to

have at least n elements.

data Vec (A : Set) : N → Set where

nil : Vec A zero

cons : {n : N} → A → Vec A n → Vec A (succ n)

data Fin : N → Set where

fzero : {n : N} → Fin (succ n)

fsucc : {n : N} → Fin n → Fin (succ n)

[] : {A : Set} {n : N} →

Vec A n →

Fin n → A

<> [()]

(x , _) [fzero] = x

(_ , xs) [fsucc i] = xs [i]

Thanks to its rich and expressive type system, Agda can also serve as an interactive

theorem prover. Types correspond to logical formulæ whereas values represent

formal proofs of their type/formula.

K Framework

K is a semantic framework in which formal semantics of programming languages can

be specified in terms of rewriting rules and data configurations.

It provides a variety of generic, practical tools that can be used with any language

defined in K, such as parsers, interpreters, symbolic execution engines, semantic

debuggers, test-case generators, state-space explorers and model checkers.

Immediate availability of these tools makes K specifications genuinely executable.

Several real-world languages have been already defined in K, including C, Java,

Python and Javascript.

The Thesis

We successfully specified a formal semantics of Agda using the K semantic

framework.

Challenges

Until this work, no dependently typed language has been formalised in K, and

Agda had no proper semantic description.

How should the essential typechecking and type inference algorithms be

implemented?

How should declarations of parametrised datatypes, inductively defined families

and dependent functions be processed and stored?

How should metavariables (implicit arguments) be inferred and inserted?

How should pattern matching with inductive families be realised?

◮ We created an executable K semantics of Agda that addresses these questions.

Our Contribution

◮ We provided a discussion of issues related to formalisation of Agda.

◮ We implemented the first formal semantics of (a substantive portion of) Agda.

◮ We created the first K semantics of a dependently typed language.

The work demonstrates the ability to provide operational semantics of dependently

typed programming languages without disregarding those hard-to-formalise aspects

that make their use practical.

Γ ⊢ e1 ↓ S1 T1

S1 →whnf Setα

Γ, x : T1 ⊢ e2 ↓ S2 T2

S2 →whnf Setβ

Γ ⊢ (x : e1) → e2 ↓ Setα⊔β (x : T1) → T2

