Introduction

Imagine a biology student who needs to analyze and evaluate data measured. in a lab. For her, as a domain expert in her field, the business and the data understanding phases of the data mining process are not a problem. The main **challenge** for her is to preprocess and analyze the data and gain useful knowledge from it.

Our work is aimed at **helping people** to analyze their data in a simple and user friendly way with no previous knowledge of data analysis nor **data**mining.

Problem

How to guide a **non-technical** user through the whole datamining process?

The solution should be:

- user friendly
- easy to use
- fast (no long waitings for results)
- accurate

ac	curate	bigm®	<pre> openML beta </pre>	WEKA The University of Waikato
	No installation	\checkmark	\checkmark	
	Easy-to-use	++++	+++	+
	No technical skills required	\checkmark	√*	
	Accurate results			\checkmark
	Free		\checkmark	\checkmark

[†] Pros and Cons of existing solutions applicable to this problem

Web based data-mining assistant Štefan Bocko, Tomáš Horváth Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice

What do these data **say**?

WEKA ()) rapidminer

Our approach

We **designed** and **implemented** a web based application which significantly simplifies data-mining processes.

Discovered challenges:

- Data understanding
- How to automatically find out the character of data?
- Data preparation
- How to find out which attributes are important and which are not?
- Modelling
- How to choose the correct data-mining model?
- How to choose the best hyperparameters for that model?
- or days?

Our proposal:

- Hundreds of differently preprocessed data files using computational cluster for fast and reliable results.
- Custom Meta-learning algorithm with Landmarking features speeds up the combined model and hyperparameter selection.

52 datasets (183 484 models total).

• How to get these results within a few seconds instead of hours

• Automatic **conversational system** pre-processes the input data and generates questions for user to determine the further steps.

	\geq \Box \bigtriangleup \Box \Box	localhost:80
Wins	ton My datasets	
Iri	S	
E Ho	ome 🔍 Analyze 🛛 🗹 Edit 🗶 Delete	ĺ
	Title	Iris
	Data File	iris.csv
	Number Of Instances	150
	Description	Iris dataset from UCI
#	Title	
1	sepal length in cm	
2	sepal width in cm	
1	and the second second	
3	petal length in cm	
	petal length in cm	
3		
3 4 5 Top	petal width in cm class analyzes	
3 4 5 Top	petal width in cm class analyzes Data File	Number Of A
3 4 5 Top # 1	petal width in cm class analyzes Data File Iris-analysis_1058.arff	5
3 4 5 Top # 1 2	petal width in cm class analyzes Data File Iris-analysis_1058.arff Iris-analysis_1014.arff	5
3 4 5 Top # 1 2 3	petal width in cm class analyzes Data File Iris-analysis_1058.arff Iris-analysis_1014.arff Iris-analysis_1050.arff	5 5 5
3 4 5 Top # 1 2	petal width in cm class analyzes Data File Iris-analysis_1058.arff Iris-analysis_1014.arff	5

prototype.

We will support **regression** and **pattern mining** techniques soon. Planned public release of this software is on 1st. of August 2015. Using the **Meta-learning** we were able to speed up the model recommendation time. For this purpose we combined our Landmarking approach with statistical characteristic approach presented by R. Neruda et al.

- 80-200-1062-9.

	Marc	e Results						
	TIOLE							
080/winston/dataset/show/2	25 Č 仓 司		localhost:8080/winston/svm	nResult/show/6048	Ċ			
	About Log ou	Marine Marine				About Log out		
		Model detail						
		< Back						
		Analysis	Car custom analysis					
		Model type	Support vector machines					
		Kernel	RBFKernel					
		Complexity Constant	1					
repository.		Gamma	0.1					
		Rmse	0.764					
		Mean Absolute Error	0.583					
	Туре	Correctly classified instances	5					
	numeric	Incorrectly classified instances	7					
	numeric	Summary	Correctly Classified Instances5Incorrectly Classified Instances7Kappa statistic-0.3125Mean absolute error0.5833Root mean squared error0.7638		41.6667 % 58.3333 %			
	numeric							
numeric			Relative absolute error Root relative squared error	118.4615 % 153.6993 % 12				
	categorical		Total Number of Instances	12				
Attributes	Best rmse	1 Model de	tail overviev	w for	- SVM	algorithm		
	0.115973054487532							
	0.115973054487532							
	0.126970225698421							
	0.133129641241098							
	0.146936258710236							

We focused on **classification** problems in our current working

DEMO: <u>http://s.ics.upjs.sk/~sbocko/winston</u>

References

Kazík, O., Pešková, K., Pilát, M., Neruda, R. Combining parameter space search and metalearning for data-dependent computational agent recommendation. I I th International Conference on Machine Learning and Applications (ICMLA 2012): Boca Raton, Florida, USA, 12-15 December 2012. 2 volumes. ISBN 9781467346511 2. Berka, P. Dobývání znalostí z databází. Vyd. I. Praha: Academia, 2003, 366 s. ISBN

3. Vilalta, R., Giruard-CARRIER, C., BRAZDIL, P. SOARES, C. Using Meta-Learning to Support Data Mining. International Journal of Computer Science & Applications, Vol. I, No. I, p. 31–45. 2004.

