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Abstrakt

Rozvrhovací problémy jsou důležitou podtřídou úloh kombinatorické optimalizace s
řadou aplikací ve výrobě a logistice. Většina těchto problémů je NP-úplných (rozhodovací
forma) a NP-těžkých (optimalizační forma), proto se výzkum zaměřuje na návrh efek-
tivních heuristických algoritmů. Dvě hlavní kategorie těchto algoritmů jsou determini-
stické algoritmy a evoluční metaheuristiky. Deterministické algoritmy zahrnují techniky
lokálního prohledávání, například algoritmus k-opt, jejichž cílem je zlepšení existujícího
přípustného řešení problému, dále pak konstruktivní heuristiky, jejichž příkladem je al-
goritmus NEH, které hledané řešení vytvářejí inkrementálně, bez potřeby znalosti vs-
tupního bodu v prohledávaném prostoru řešení. Evoluční metaheuristiky mají za sebou
historii úspěšného vývoje v posledních desetiletích, zejména díky jejich efektivitě a flex-
ibilitě. Jejich inspirací jsou poznatky převzaté z biologie, teorie evoluce a inteligence
hejna. Mezi nejpopulárnějšími z těchto algoritmů jsou, mimo jiné, genetické algoritmy,
diferenciální evoluce, rojení částic (Particle Swarm Optimisation).

Ačkoli tyto heuristiky nalézají ve většině případů řešení blížící se globálnímu op-
timu v přípustném výpočetním čase, pro řadu aplikací mohou být stále ještě nepřijatelně
pomalé. Velké úsilí bylo věnováno zrychlení těchto algoritmů. Protože se vývoj hard-
ware díky dosažení technologických limitů, vzhledem ke zvyšující se spotřebě energie
a tepelnému vyzařování, obrací od zvyšování frekvence jednojádrového procesoru k
vícejádrovým procesorům a paralelnímu zpracování, je tato snaha většinou orientovaná
na paralelizaci existujících algoritmů, aby bylo umožněno využití výpočetní síly vícejá-
drových platforem (multi-core a many-core). Prvním cílem této práce je tudíž akceler-
ace dvou deterministických algoritmů, NEH a 2-opt, přičemž bylo dosaženo zajímavých
výsledků.

Jiný přístup byl zvolen ve druhé části, s hlavní myšlenkou prozkoumání vlivu náhod-
nosti na výkon evolučního algoritmu. Za tímto účelem byl zvolen relativně nový a
slibný algoritmus Discrete Artificial Bee Colony. Generátor pseudonáhodných čísel byl
nahrazen několika různými chaotickými mapami, z nichž některé znatelně zlepšily výsledky
algoritmu.

V příspěvcích [27] a [26] bylo ukázáno, že evoluční algoritmy založené na popu-
laci často formují komplexní sítě, vzato z pohledu výměny informací mezi jednotlivými
řešeními v populaci během jejího vývoje. Závěrečná část práce aplikuje toto pozorování
vložením samo přizpůsobivého mechanismu založeném na analýze komplexní sítě do
algoritmu ABC, který je evolučním algoritmem pro spojitou optimalizaci a zároveň zák-
ladem dříve zmíněného DABC algoritmu. Efektivita několika verzí algoritmu založeném
na této myšlence je dokázána na standardní sadě testovacích funkcí pro spojitou optimal-
izaci. Možnost rozšíření této modifikace na kombinatorické optimalizační problémy je
diskutována v závěru práce.
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Abstract

Scheduling problems form an important subclass of combinatorial optimisation prob-
lems with many applications in manufacturing and logistics. Predominately these prob-
lems are NP-complete (decision based) and NP-hard (optimisation based), hence the
main course of research in solving them concentrates on the design of efficient heuris-
tic algorithms. Two main categories of these algorithms exist: deterministic algorithms
and evolutionary metaheuristics. The deterministic algorithms comprise local improve-
ment techniques, such as k-opt algorithm, which try to improve existing feasible so-
lution, and constructive heuristics, such as NEH, which build a solution starting from
scratch, adding one job at a time. Evolutionary metaheuristics have prospered in the past
decades, owing to their efficiency and flexibility. Drawing inspiration from the theory of
natural evolution or swarm behavioural patterns, the most popular of these algorithms in
practice include for instance Genetic Algorithms, Differential Evolution, Particle Swarm
Optimisation, amongst others.

However, even though these heuristics provide in most cases close to optimal solution
at reasonable execution time, this time is still impractically long for many applications.
Therefore much effort has been dedicated to accelerating these algorithms. Since the de-
velopment of hardware turns away from increasing the clock speed towards the parallel
processing units, owing to reaching the limits of technology due to the increased power
consumption and heat dissipation, this effort goes into parallelisation of the existing al-
gorithms, to enable exploitation of the computing power of multi-core or many-core plat-
forms. This is the goal of the first part of the thesis, accelerating two of the deterministic
algorithms, NEH and 2-opt, with interesting results.

Another approach has been taken in the second part, with the core premise of ex-
ploring the influence of stochasticity on the performance of an evolutionary algorithm,
selecting the relatively recent and promising Discrete Artificial Bee Colony algorithm.
The pseudo-random number generator has been replaced with the different types of dis-
sipative chaos maps, with some of them improving the algorithm significantly.

It has been shown in [27] and [26], that the population based evolutionary algorithms
often form complex networks, taken from the point of view of the information exchange
between individual solutions during the course of population development. The final
part of this thesis puts this observation into practice by embedding the complex network



analysis based self-adaptive mechanism into the ABC algorithm, a continuous optimisa-
tion problems solving evolutionary algorithm, which is however the basis for the afore
mentioned DABC algorithm, and proving the effectiveness for some of the developed
versions, currently on the standard continuous optimisation test functions, with the pos-
sibility to extend this modification to the combinatorial optimisations problems in the
future being discussed in the conclusion.

Keywords: Scheduling, Combinatorial Optimisation, Continuous Optimisation, Heuris-
tics, Evolutionary Algorithms, Deterministic Heuristics, Flowshop, Flowshop with No-
Wait, Lot-Streaming Flowshop, Quadratic Assignment Problem, Capacitated Vehicle Rout-
ing Problem, Artificial Bee Colony, Discrete Artificial Bee Colony, NEH, 2-opt, Chaos,
Chaos maps, Complex Networks, CUDA
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1 Introduction

Scheduling is an everyday term, which infers on the arrangement of some process, task
or resources. These are generally referred to as schedules, which can be defined as a
tangible plan or document. A schedule is this sense can range from a bus timetable to a
flight schedule.

A structured schedule is an integral part of any engineering or manufacturing pro-
cess. The main emphasis therefore from the engineering point of view is knowing the
type and the amount of each resource so that we can determine when the tasks can feasi-
bly be accomplished. The resource in this way define the schedule boundaries, therefore
leading to a bounded solution space. Once the resources have been defined, it becomes
imperative to describe the tasks in terms of resource requirements, duration and start
time.

Scheduling theory deals with mathematical models that relate to the process of schedul-
ing. This is considered a quantitative approach, where the problem structure is converted
into a mathematical form. The main emphasis is then to translate the description of re-
sources and tasks to an explicit objective function [5].

The objective function of any scheduling system relies on three facets; turnaround,
which measures the time required to complete the task, timeliness, which measures the
conformance of a particular task’s completion to a given deadline and throughput, which
measures the amount of work completed during a fixed period of time.

A particular solution to a scheduling problem has to take into consideration two issues
[5]:

1. resource allocation for a particular task

2. allocation of particular task

If the resources are available at the beginning of the task, the schedule is considered
deterministic. If the resources become available over time during the task, the system is
then considered stochastic.

A number of different models exist which solve scheduling problems. These can be
divided into two categories: deterministic and heuristic models.

1.1 Deterministic Algorithms

Deterministic models have been around since the mid 1940’s, when the advent of World
War 2, led to the establishment of the operations research discipline, in order to conserve
and carefully utilise dwindling resources. Some of the most widely used models can be
classified as the following:

1. Linear Programming (LP) model [100]

2. Simplex Model [19]

3. NEH Algorithm [76]
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4. Lin–Kernighan algorithm (k-opt) [104]

The LP model is the most widely used general scale model. Its corresponding discrete
counterpart is the Integer Programming (IP) model or the Integer Linear Programming
(ILP) model. The LP model is constructed using three basic elements:

1. Decision variables: which represents (unknown) decisions to be made, which is in
contrast to the problem data, which is precise.

2. Objective: which has to be linear on the decision variables, implying that it is the
sum of constraints times the decision variables.

3. Constraints: which limit feasible decisions.

Using the above three elements, the final model of a problem can be constructed.
This model can be solved using a number of different approaches, such the algebraic,
graphical or simplex method.

The simplex method is one the most powerful approaches to solve a LP model. Using
the standard form of LP model, a simplex tableaux can be constructed. By generating
a basic feasible solution, repeated iterations can be conducted on the tableaux in order
to find the optimal value of the entering variables. For full description of the simplex
algorithm, the reader is referred to [19]. Many different approaches of simplex exists,
including the revised simplex algorithm.

Whereas, simplex uses a basic feasible solution to start its iterations, the NEH (Nawaz,
Ensore and Ham) algorithm aims to construct a near optimal solution. The NEH model
relies on two preconditions; that the resources are available at the start and the processors
are preemptive. The principle of NEH is quite simple:

1. Compute the completion time of all tasks using the resources.

2. Sort the tasks in ascending order based on the completion time.

3. Take the first two tasks and sort them to satisfy the objective function.

4. Likewise take each subsequent remaining task and sort it with the partial completed
task list until all tasks are hence scheduled.

The NEH algorithm is widely considered the highest performing method in manufac-
turing scheduling and is an inherent component of almost all major scheduling systems
[95].

The Lin–Kernighan algorithm on the other hand tries to exploit the neighbourhood of
a schedule in order to improve it. The precondition of this algorithm is that the schedule
must be complete. The steps can be given as:

1. Take the first task and swap it with the adjacent task.

2. Evaluate the new schedule.
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3. If the objective function is improved, then retain the new schedule.

4. Iterate for all subsequent tasks in the schedule.

A number of variants of this algorithms exists, and are generally identified by their
complexity. A 2-opt algorithm swaps two tasks in the schedule at one time, and is con-
sidered the canonical variant.

1.2 Heuristic Algorithms

Since the advent of computing resources, heuristics have come to dominate many engi-
neering applications. Some of the first constructive heuristics to be successfully applied
to scheduling problems were:

• Tabu Search [16]

• Simulated Annealing [54]

In the late 1990’s however, meta-heuristics based on evolutionary paradigms started
to appear. Algorithms based on naturally occurring phenomena, such as human genetics,
population demographics, swarm behaviour and patterns started to evolve and have
become the most dominant paradigms within the last decade. Some of the most common
ones are:

• Genetic Algorithms [93]

• Differential Evolution [33]

• Particle Swarm Optimisation [112]

• Self-Organising Migrating Algorithm [17]

• Harmony Search Algorithm [86]

• Artificial Bee Algorithm [48]

• Firefly Algorithm [31]

• Bat Algorithm [124]

1.3 Scheduling framework

As scheduling covers such a broad and diverse field of applications, this thesis is concen-
trated on three main classes of manufacturing, routing and assignment problems.

Manufacturing scheduling is concerned with the manufacturing process, where jobs
are generally scheduled to machines in order to reduce the total completion time (makespan)
or to minimise delay (tardiness).

A general manufacturing environment is generally refereed to as a shop and the for-
mulation of the process; the way in which the jobs are completed is referred to as its
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complexity. Generally, all such environments can be contrived as strictly permutative
and are hence therefore as least NP Complete [88].

The three manufacturing problems solved in this thesis are the permutative flow-
shop scheduling (FSS) problem, the flowshop with no wait (FSSNW) problem and the lot
streaming flowshop (FSSLS) problem.

Routing problems have gained importance in fleet scheduling, airport routing and
delivery scheduling amongst others. The capacitated vehicle routing problem (CVPR)
[115] is where a fixed fleet of delivery vehicles of uniform capacity must service known
customer demands for a single commodity from a common depot at minimum transit
cost.

The quadratic assignment problem (QAP) generally deals with two counterparts; fa-
cilities and its locations. As there is a natural flow between these facilities, the objective
is then to assign all facilities to different locations in such a way as to minimize the sum
of the distances multiplied by the corresponding flows.

The main meta-heuristic used in this thesis is the Artificial Bee Colony (ABC) [47]
and its discrete variant Discrete Artificial Bee Colony (DABC) [114]. This algorithm was
selected as it is one of the most recent and promising algorithms, with a wide array of
procedures, which in turn makes it quite versatile in solving scheduling problems. The
main aim has been to modify and improve this heuristic.

To archive this aim, two separate experimentations were conducted, one on chaos
based stochasticity and the other on complex network analysis. In regards to complex
network analysis, the initial development was conducted on the canonical ABC algo-
rithm. In order to test this algorithm and its self adaptive features, unimodal and multi-
modal real-domain problems were tested, and thereby included in this thesis.

The framework consists of three unique aspects.

GPU Acceleration : the first aspect of the thesis is the acceleration of the NEH and 2-Opt
local search algorithms. As both these deterministic algorithms have proven to be
time demanding, CUDA based GPU accelerated variants have been developed and
tested on standard test sets.

Chaos stochasticity : Unique chaotic maps have been added to the DABC algorithm to
gauge its effectiveness and analyse the influence of stochasticity.

Complex Network Analysis : A self-adaptive islands model based ABC algorithm is de-
veloped, where complex network properties, especially centralities are measured
during evolutions. These measures are then used to develop self-adaptive mecha-
nism to steer the population development.

The description of the experimentations is given in Table 1.
The thesis outline is as follows. Chapter 2 gives the theoretical background of dif-

ferent evolutionary algorithms, different chaos maps, description of complex network
analysis, an overall introduction to high performance computing and CUDA and the test
problem formulation.

Chapter 3 gives the detailed description of all the improvements and implementation
of the algorithms. Section 3.1 outlines the CUDA accelerated NEH algorithm and section
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Table 1: Outline

Paradigm Heuristic Problem

CUDA (GPU) NEH FSS[73]
2-Opt FSS

Chaos maps Discrete Artificial Bee Colony FSSNW[74]
FSSLS[71]
QAP[75]
CVRP[75]

Complex Network Artificial Bee Colony Standard test functions[72]

3.2 describes the CUDA based 2-opt local search. The chaos based DABC algorithm is
described in 3.3. The final component of complex network embedded ABC algorithm is
given in section 3.4.

All experimentation and results is given in Chapter 4, with the CUDA accelerated
NEH given in section 4.1 and 2-opt local search in section 4.2. The four experimentations
of chaos induced DABC algorithm is given as follows: FSSLS in section 4.3, FSSNW in
section 4.4, QAP in section 4.5 and CVRP in section 4.6. The results for the complex
network analysis is given in section 4.7.

The analysis of the experimentations is given in Chapter 5 and follows the same trend
as the experimentation section. CUDA accelerated NEH is analysed in section 5.1 and 2-
opt local search in section 5.2. The experiments for the CDABC algorithm is analysed in
section 5.3 for the FSSLS problem, section 5.4 for the FSSNW problem, section 5.5 for the
QAP problem and section 5.6 for the CVRP problem. The analysis of complex network is
given in section 5.7.

The thesis is finally concluded in Chapter 6.
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2 Theory

2.1 Evolutionary Algorithms and Heuristics

In the following sections the overview of heuristics and evolutionary algorithms used
in this research is presented. For the first part of the thesis, which is the acceleration of
the selected heuristics used in scheduling problems, the NEH algorithm is described in
Section 2.2, and the 2-opt algorithm in Section 2.3. The second part concentrates on the
enhancement of an evolutionary algorithm applied to the scheduling problem by em-
ploying chaos pseudo-random number generator in place of standard pseudo-random
number generators. The evolutionary algorithm chosen for this purpose was the efficient
population based metaheuristic specifically developed for the solution of combinatorial
optimisation problems, the DABC algorithm, hence its description is presented in Section
2.5. Finally for the last part, an evolutionary algorithm was enhanced with the complex
network analysis based self-adaptive control. For this research, the original ABC algo-
rithm for continuous optimisation, a basis for the later developed DABC algorithm, was
used. Therefore, the ABC algorithm description is presented in Section 2.4. Because the
DABC was created as a modification to the original continuous optimisation technique
ABC and uses the same basic structure, the description of ABC algorithm precedes the
DABC in the text.

2.2 NEH Algorithm

The NEH algorithm can be described as follows. Assume that pi,j can be considered as
the processing time of job j on machine Mi, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
The objective is to minimise the makespan, which can be represented as the length of a
critical path in an acyclic network.

NEH can be described by the following steps:

Step 1: Arrange the jobs by decreasing sums of their total processing times Tk =
m
i=1

pi,k.

Step 2: Take the first two jobs, find their order with the shorter makespan, and set L = 3.

Step 3: Assume that the current subsequence is (j1, j2, . . . , jL−1). Find the one with the
shortest makespan in (r, j1, j2, . . . , jL−1) , (j1, r, j2, . . . , jL−1) , . . . ,
(j1, j2, . . . , jL−1, r)

Step 4: Set L =: L+ 1. If L = n+ 1, then stop; otherwise return to Step 3.

The general complexity of NEH can be given as O

mn2


[46].

2.3 2-opt Algorithm

The 2-opt algorithm is one of the most famous heuristics developed originally for solving
the TSP problem. It was first proposed by Croes [15]. Along with 3-opt, generalized as k-
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opt [62], these heuristics are based on exchange of up to k edges in a TSP tour (more infor-
mation on application of k-opt local search techniques to TSP and CRP problems can be
obtained from [99]). Together they are called exchange or local improvement heuristics.
The exchange is considered to be a single move, from this point of view, such heuristics
search the neighbourhood of the current solution, i.e. perform a local search and provide
a locally optimal solution (k-optimal) to the problem [45].

The 2-opt procedure requires a starting feasible solution. It then proceeds by replacing
the two non-adjacent edges, (vi, vi+) and (vj , vj+) by (vi, vj) and (vi+, vj+), and reversing
one of the subpaths produced by dropping of edges, in order to maintain the consis-
tent orientation of the tour. For example, the subpath (vi, vi+, . . . , vj , vj+) is replaced by
(vi, vj , . . . , vi+, vj+). The solution cost change produced in this way can be expressed as
∆ij = c(vi, vj) + c(vi+, vj+) − c(vi, vi+) − c(vj , vj+). If ∆ij < 0, the solution produced
by the move improves upon its predecessor. The procedure iterates until no move where
∆ij < 0 (no improving move) can be found [38].

In the scheduling problem, the 2-opt move constitutes of exchanging two jobs of the
schedule.

The 2-opt local search was described by Kim, Shim and Zhang [52] as follows:

Step 1: Let S be the initial solution, f(S) its objective function value. Set S∗ = S, i =
1, j = i+ 1 = 2.

Step 2: Consider exchange result S
′

such that f(S
′
) < f(S∗). Set S∗ = S

′
. if j < n repeat

step 2. Otherwise set i = i + 1 and j = i + 1. if i < n repeat step 2, otherwise go to
step 3.

Step 3: if S ̸= S∗ set S = S∗, i = 1, j = i + 1 and go to step 2. Otherwise output best
solution S and terminate the process

2.4 Artificial Bee Algorithm

The ABC algorithm was originally developed by Karaboga [48], for the purpose of multi-
variable multi-modal continuous functions optimisation. Since then, many variations
to the original ABC algorithm were created and employed in solving different types of
problems (constrained optimisation [49], multi-objective optimisation [60], combinatorial
optimisation ([40], [43], [85], [113])).

In the classification of optimisation heuristics, the Artificial Bee Colony belongs to the
group of population, swarm intelligence based stochastic algorithms. Along with other
algorithms of this category (such as ACO [29], PSO [51], SOMA ([129],[24]) or Artifi-
cial Immune Algorithm (AIA) [4]), ABC searches for optimal solution employing certain
number of intelligent agents, who search independently, but also share the information
on the system, in order to achieve more efficient behaviour. Amongst the advantages of
such approach is inherent parallelism and scalability – it is possible to assign different
subgroups of agents to different computational resources.
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2.4.1 Description

As well as many other population based metaheuristics, ABC takes inspiration from na-
ture. Namely, from the intelligent behaviour of foraging honey bee swarm. From this
inspiration stems also the nomenclature. Several solutions, called food sources, form the
population. These solutions are exploited by employed bees. Each employed bee tries to
improve one solution at a time (which symbolises extracting a nectar from a food source).
Onlooker bees are waiting in the hive to make a decision where to look for a food source.
When employed bee arrives, it performs a specific dance, which points the onlooker bee
to the direction of a food source. The onlooker bee then determines, based on observation
of returning employed bees, where to go. The algorithm emulates this by evaluating the
cost function for each solution generated by employed bee. The onlookers choose a so-
lution to improve, based on probability given by relative amount of nectar (cost function
value relative to sum of all solutions costs). Finally, if the food source has been exhausted,
a scout bee will try to find a new one, unrelated to the previous. Both employed bees and
onlooker bees perform exploitation, whereas scout bees responsibility is the exploration
of solutions space [47].

The overall algorithm therefore consists of initialisation of population, and three phases
performed in succession iteratively, until the predefined terminating criterion is met: em-
ployed bee phase, onlooker bee phase, and eventually scout bee phase, as outlined above.
The top-level pseudocode of ABC is given in Algorithm 1.

1 initialize
2 repeat
3 send employed bees to food sources
4 send onlooker bees to selected food sources
5 send scout bees to search for new food sources
6 memorize best solution
7 until terminating criterion met

Algorithm 1: ABC top-level pseudocode

The solution in continuous space is represented as a numerical vector of dimension
D, whose elements are values of optimised parameters. The population is formed by
FS such solutions. The quantity associated with each solution, before it is considered ex-
hausted (a number of trials for bees to try and improve the solution) is called limit. Limit,
FS and terminating criterion are the only controlling parameters of the ABC algorithm.
Dimension D is given by a definition of optimised function.

2.4.2 Initialisation

Unless some preliminary information on the system is available, the population of solu-
tions is initialised randomly as follows:

xi,j = Lj + (Uj − Lj) · r (1)
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Where xi,j denotes j-th element of i-th vector, j ∈ {1, 2, . . . , D}, i ∈ {1, 2, . . . , FS}. Lj

and Uj is lower, respective upper bound of j-th dimension of the search space (minimal,
respective maximal value allowed for the j-th element of a vector), and r represents a
random number in range [0, 1].

2.4.3 Employed bee phase

In employed bee phase, as mentioned earlier, each employed bee i tries to improve a
single solution xi, by performing an operation on it, according to Equation (2). The newly
created candidate solution ni is evaluated, and greedy selection is applied – if a solution
ni is better than or equal to previous xi, the previous one is replaced in the population.

ni,j = xi,j + (xi,j − xk,j) · ri,j (2)

Where xi is previous solution in the population, ni is the candidate solution, i ∈
{1, 2, . . . , FS}, index j is randomly chosen in range [1, D], index k is randomly selected
from range [1, FS] so that k ̸= i and ri,j is a random number in range [−1, 1].

2.4.4 Onlooker bee phase

In onlooker bee phase, a selection from all the food sources (solutions) {s1, s2, . . . , sFS}
is performed, based on the probability of each solution, pi, i ∈ {1, 2, . . . , FS}, defined
in Equation (3). The selected solution is modified using Equation (2) and the greedy
selection is again performed between the original and the modified solution, to determine
the winning solution to be left in the population, in the same way as described in Section
2.4.3.

pi =
fi

FS
k=1

fk

(3)

In Equation (3), pi represents probability, fi is fitness of i−th solution, i ∈ {1, 2, . . . , FS}.
FS is total number of solutions in the population.

2.4.5 Scout bee phase

As mentioned earlier, each solution has a limit of attempts to improve, associated with it.
It is being incremented in both employed bee and onlooker bee phase, in case the solu-
tion fails to improve (the newly created solution is worse and therefore not selected). If
this limit is exceeded, a scout bee generates new, random solution, according to Equation
(1), which replaces the exhausted one. In each iteration of the original ABC algorithm, at
most one scout bee is released. The increase in the number of scout bees encourages ex-
ploration (escaping from local optima and searching in the global space), but also reduces
the possibility of exploitation of good solutions already found, since these are removed
from the population by this process [48].



17

2.5 Discrete Artificial Bee Algorithm

The DABC algorithm by [113] is a modification to the ABC algorithm for solving combi-
natorial optimisation problems. As opposed to the continuous optimisation, a solution
in combinatorial optimisation is naturally encoded as a permutation of elements. Several
approaches are possible for transforming continuous optimisation algorithm for solving
combinatorial problems, as described for example in [80].

DABC replaces the neighbourhood generation operation of original ABC by a set of
operations which transform one permutation to another, thus completely avoiding gen-
eration of infeasible solutions. These operations (4 operations altogether, described in
section 2.5.2) are based on swapping two random elements, or inserting an element into
permutation.

Each of the operations explores a different type of neighbourhood of a solution, fur-
thermore, each of them is suitable for exploring solution space of different problems. In
order to maximally adapt to given problem and explore the neighbourhood in an efficient
way, all 4 defined operations are used in an adaptive mechanism. This adaptive strategy,
described in section 2.5.3, decides which operation to use, partly depending on the list
of previous successful operations (those which produced improved solution), partly ran-
domly.

To enhance the exploitation of solution space, DABC contains embedded local search,
described in section 2.5.4.

2.5.1 Solution as permutation

As mentioned earlier, a solution is represented as a D-dimensional permutation of ele-
ments, as shown in Equation (4). The objective of optimisation is to find the least cost
permutation. πi represents i-th solution, πi,j the element at j-th position in the permuta-
tion.

πi = {πi,1, πi,2, . . . , πi,D} (4)

2.5.2 Operations

As mentioned earlier, DABC makes use of 4 operations: Insert, Swap, 2× Insert, 2× Swap,
defined as follows:

Insert removes a randomly selected permutation element from it’s position j, reinserts
at different randomly selected position k:

π(i) = (π1, . . . , πj−1, πj , πj+1, . . . , πk−1, πk, πk+1, . . . , πd)

π(i+1) = (π1, . . . , πj−1, πj+1, . . . , πk−1, πk, πj , πk+1, . . . , πd) (5)

Swap exchanges 2 different randomly selected elements j, k:

π(i) = (π1, . . . , πj−1, πj , πj+1, . . . , πk−1, πk, πk+1, . . . , πd)

π(i+1) = (π1, . . . , πj−1, πk, πj+1, . . . , πk−1, πj , πk+1, . . . , πd) (6)
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2× Insert performs 2 successive Insert operations, as defined above. 2× Swap per-
forms 2 successive Swap operations. Which operation is applied to modify given solution
depends on adaptive strategy list.

2.5.3 Adaptive Strategy

Adaptive strategy, as described in [113], maintains two lists of operations, behaving like
stacks – list of available operations NL, and list of previously successful operations WNL.
On the beginning of the optimisation, the NL is filled with randomly selected operations
(4 available operators). Before a solution is modified, operation is taken from the top of
NL. If the solution improves upon the previous one, the operation is inserted into WNL.
If a NL is empty, part of it is refilled from operations stored in WNL, the rest is refilled
again with randomly selected operations. If WNL is empty, the last NL is used again.

2.5.4 Local Search

Local search is embedded within DABC. In employed bee phase, after a new success-
ful solution is generated, the local search is performed with probability PL, in order to
further enhance it. The pseudocode is given in Algorithm 2.

2.5.5 Algorithm structure

DABC has similar structure to original ABC algorithm (pseudocode is shown in Algo-
rithm 3). It consists of initialisation, and several iterations of bee phases performed se-
quentially, until stopping criterion is met. Unless some preliminary information on the
problem solution space is known, the population is initialized as a set of random permu-
tations.

2.5.6 Parameters

There are 7 control parameters of DABC, 2 of which are only for usage in adaptive strat-
egy. FS is a number of solutions or food sources in the population, and also the number
of employed bees and onlooker bees. Limit is a maximum number of unsuccessful trials
to improve the solution, before it is abandoned. Loopmax defines a number of iterations in
local search, PL is a probability of local search to happen. Stopping criterion in this vari-
ant is specified as a number of iterations of DABC algorithm to perform, T . The adaptive
strategy requires two parameters, NLL,WNLL, defining length of NL list and WNL list,
respectively [113]. The range and recommended values of parameters are described in
Table 2.
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Input: π, fitness, last_operation
1 begin select operation:
2 if last_operation ∈ {insert, 2× insert} then
3 operation← swap
4 else
5 operation← insert
6 end
7 end
8 begin
9 π(1) ← π

10 fitness(1) ← fitness
11 for i = 1 to loopmax do
12 πc ← operation(π(i))
13 fitnessc ← evaluate πc
14 if fitnessc better than or equal to fitness(i) then
15 π(i+1) ← πc
16 fitness(i+1) ← fitnessc
17 else
18 π(i+1) ← π(i)

19 fitness(i+1) ← fitness(i)

20 end
21 end
22 π ← π(i)

23 fitness← fitness(i)

24 end
Algorithm 2: Local Search
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1 begin initialize:
2 generate food sources as random permutations
3 evaluate food sources
4 randomly fill NL
5 end
6 repeat
7 begin 1.send employed bees to food sources:
8 foreach food source πi do

/* get operation from Adaptive strategy list: */
9 operation← get_operation(NL)

10 π
(c)
i ← operation(πi)

11 fitness
(c)
i ← evaluate π

(c)
i

12 if fitness
(c)
i better than or equal to fitnessi then

13 local search on π
(c)
i with probability PL

14 πi ← π
(c)
i

15 fitnessi ← fitness
(c)
i

16 update adaptive strategy WNL
17 end
18 update limiti
19 end
20 end
21 begin 2.let onlooker bees select food sources:
22 foreach onlooker bee do
23 randomly pick two food sources πr1 , πr2
24 πs ← better of πr1 , πr2

/* get operation from Adaptive strategy list */
25 operation← get_operation(NL)

26 π
(c)
s ← operation(πs)

27 fitness
(c)
s ← evaluate π

(c)
s

28 if fitness
(c)
s better than or equal to fitnesss then

29 πs ← π
(c)
s

30 fitnesss ← fitness
(c)
s

31 update adaptive strategy WNL
32 end
33 update limits
34 end
35 end
36 begin 3.send the scout to search new food source:

/* select a solution which was not successfully improved given number of
trials: */

37 πs ← πi, where: limiti ≥ Limit
38 πs ← perform 3 insert operations on πbest

39 fitnesss ← evaluate πs

40 limits ← 0

41 end
42 begin 4.memorize best food source:
43 πbest ← πi, where: ∀k, k ̸= i : fitnessi better than or equal to fitnessk
44 fitnessbest ← fitnessi
45 end
46 until stopping criterion met

Algorithm 3: DABC pseudocode
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Table 2: Parameter values

Parameter Recommended
value

Range

FS 30 [5,∞]
Limit 50 [1,∞]
Loopmax 200 [1, n]
PL 0.2 [0, 1]
T 100 [1, n]
NLL 20 [1, n]
WNLL 0.75 NLL [1, n]
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2.6 Chaos Systems

The term chaos describes the complex behaviour of simple dynamical systems. When
casually observed, this behaviour may seem erratic and somewhat random, however,
these systems are deterministic. The precise description of their future behaviour is well
known, given by the trajectory on the map. This aperiodic non-repeating behaviour of
chaotic systems has opened up the possibility to employ the chaotic sequences in place
of pseudo-random sequences, as discussed in Section 2.6.1. Generally, four branches of
chaotic systems exist, which are the dissipative systems, fractals, dissipative and high-
dimensional systems and conservative systems. The systems of interest in this line of
research are the discrete dissipative systems. The ones explored in this thesis are intro-
duced in Section 2.6.2.

2.6.1 Chaos pseudo-random number generators applied to Evolutionary Algo-
rithms

One of the main pillars of evolutionary algorithms (EA’s) is their reliance on randomness
or stochasticity, which is used to spark a path towards a desired goal. The current norm
is the use of pseudo-random number generators (PRNG); a structured sequence of math-
ematical formulation which tries to yield a generally optimal distribution of numbers
within a specified range. Of these, the Mersenne Twister is the most famous and widely
used [70], [69].

Part of this thesis concentrates on the generation of chaotic sequences, which are then
used as chaos pseudo-random number generators (CPRNG’s) in an EA. The afore intro-
duced properties of the chaotic systems are employed in place of PRNG embedded in an
evolutionary algorithm. The objective is to analyse different chaotic systems, which in
this case are the discrete dissipative systems, and to find out, which of these improve the
application of EA’s.

A mathematical description of the connection between chaotic systems and random
number generators has been given by [41]. In this paper, a strong linkage has been
shown between the Lehmer generator [58] and the simple chaos dynamical system of
Bernoulli shift [82]. The hidden periodicity of chaos system and its dependence on nu-
merical system has been shown by [128]. A chaotic piecewise-linear one dimensional
(PL1D) map has been utilised as a chaotic random number generator in [106]. The con-
struction of the chaos random number system is based on the exploitation of the double
nature of chaos, deterministic in microscopic space and by its defining equations, and
random in macroscopic space. This new system is mathematically proven to overcome
the major drawbacks of classical random number systems, which are its reliance on the
assumed randomness of a physical process, inability to analyse and optimise the random
number generator, inability to compute probabilities and entropy of the random number
generator, and inconclusiveness of statistical tests. A family of enhanced CPRNG’s has
been developed by [65], where the main impetus is the generation of very long series of
pseudo-random numbers. This is accomplished through what is called the ultra weak
coupling of chaotic systems, such as the Tent Map, which is enhanced in order to conceal
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the chaotic genuine function [66]. Recently, the very notion of using CPRNG’s in EA’s
has been explored by [127].

Current literature contains a number of research devoted to certainty, ergodicity and
the stochastic property of chaotic systems. Recently, chaotic sequences have been adopted
instead of random sequences with improved results. The choice of chaotic sequences is
justified theoretically by their unpredictability, i.e. by their spread-spectrum characteris-
tics, non-periodic, complex temporal behaviour, and ergodic properties [81].

A number of EA’s have been improved using chaos systems as random number gen-
erators during the past few years. Genetic Algorithms (GA) have been improved by
chaos to solve multi-objective optimisation problems in [118] and [67] and tourism de-
mand forecasting [42], whereas the Firefly algorithm has been embedded with chaos map
in [50]. Differential Evolution (DE) has been improved with chaos to solve the support
vector regression machine problem [61], dynamic economic dispatch for wind-thermal
power systems [87], loudspeaker design problem [13], optimisation of the batch reactor
[101], hydrothermal scheduling [126] and PID control problem [25].

The largest group of chaos based literature is on Particle Swarm Optimisation (PSO).
Many variants of chaos embedded PSO exist, some of them are novel creations compris-
ing different chaotic approaches in basic PSO design ([123], [92], [102], [90], [1]), acceler-
ated chaos [34] and hybrid approaches [12] amongst others.

Applications of chaos based PSO include pattern synthesis of antenna arrays [119],
image matching [64], power system stabiliser design [30], constrained predictive control
[44], global numerical optimisation [12], optimisation of heat exchangers [68], reactive
power optimisation [59], network intrusion detection [131], PID Controller design [91]
and parameters selection [122].

Some of the other algorithm employing chaos are the Discrete Self-Organising Mi-
grating Algorithm (DSOMA) which has been used to solve the lot-streaming problem
[23] and a new artificial emotion based chaos algorithm [125].

Part of this thesis describes the application of CPRNGs to the Discrete Artificial Bee
Colony algorithm, resulting in chaos driven Discrete Artificial Bee Colony (CDABC) al-
gorithm, introduced in [71], [74] and [75]. This algorithm is described in Section 3.3.

2.6.2 Chaos Maps

The most interesting chaotic systems, which can be utilised as CPRNG are discrete dissi-
pative chaotic maps, as stated earlier in the text. These maps have the general description
of being a linear set of equations, easily formulated, with a fine grain over the solution
landscape. This last attribute allows the parsing of unique values over a period of the
chaotic oscillation. In total, nine unique chaotic systems were considered for this exper-
iment. The following sections describe the different systems. All operating parameters
were obtained from [105].
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Figure 1: Chaotic Burgers map 2D plot

2.6.3 Arnold’s Cat Map

The Arnold’s cat map is a two dimensional discrete chaotic map, which is a torus into
itself. The equations are given in (7). The parameter of k = 2.0.

Xn+1 = Xn + Yn · (mod1)
Yn+1 = Xn + k · Yn · (mod1)

(7)

2.6.4 Burgers Map

The Burgers mapping is a discretisation of a pair of coupled differential equations which
were used by Burgers [10] to illustrate the relevance of the concept of bifurcation to the
study of hydrodynamic flows. It has been numerically shown to produce a much richer
set of dynamic patterns than those observed in continuous case [120]. The equations are
given in Equations (8) and (9).

Xn+1 = aXn − Y 2
n (8)

Yn+1 = bYn +XnYn (9)

The operating parameters are a = 0.75 and b = 1.75 with the initial conditions being
X0 = -0.1 and Y0 = 0.1. As in the previous cases the frequency plot of the real and integer
values is given in Figure 2, whereas the x and y values plots are given in Figure 3.
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Figure 2: Histogram of the distribution of real numbers transferred into the range ⟨0, 1⟩
and integer numbers in the range ⟨1, 25⟩ generated by means of the chaotic Burgers map,
5000 samples.
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Figure 3: Iteration of the Burgers map for the x and y values in point-plot
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2.6.5 Delayed Logistic

The Delayed Logistic map is a dissipative map with a smooth invariant circle inter-
spersed among parameter intervals for which the attractor appears to be strange [3]. This
phenomena has given rise to its application in population growth models. The equations
of the Delayed Logistic are given in Equations (10) and (11).

Xn+1 = AXn (1− Yn) (10)

Yn+1 = Xn (11)

The operating parameters are A = 2.27 and the initial conditions are X0 = 0.001 and
Y0 = 0.001. The real and integer values histogram in given in Figure 5, and the x and y
values plots in Figure 6.
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Figure 4: Chaotic Delayed Logistic map 2D plot
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Figure 5: Histogram of the distribution of real numbers transferred into the range ⟨0, 1⟩
and integer numbers in the range ⟨1, 25⟩ generated by means of the chaotic Delayed Lo-
gistic map, 5000 samples.
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Figure 6: Iteration of the Delayed Logistic map for the x and y values in line-plots
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2.6.6 Dissipative Standard Map

The Dissipative Standard Map is a two-dimensional chaotic system. The equation is
given in (12) and the operating parameters are β = 0.1 and k = 8.8.

Xn+1 = Xn + Yn−1 · (mod2π)
Yn+1 = (β · Yn) + (k · sinXn (mod2π))

(12)

2.6.7 Henon Map

The Henon map is a discrete-time dynamical system, which was introduced as a simpli-
fied model of the Poincare map for the Lorenz system. The equation is given in (13) and
the control parameters are α = 1.4 and β = 0.3.

Xn+1 = α−X2
n + (β · Yn)

Yn+1 = Xn
(13)

2.6.8 Ikeda Map

The Ikeda map is a discrete-time dynamical system derived as a model of light going
around across a nonlinear optical resonator. A 2D real example of the Ikeda map is given
in equation (14). The operating parameters are α = 0.75, β = 1.75, γ = 1 and µ = 0.9.

Xn+1 = γ + µ · ((Xn · cosφ)− (Yn · sinφ))
Yn+1 = µ · ((Xn · sinφ) + (Yn · cosφ))
φ = β − α

(1+X2
n+Y 2

n )

(14)

2.6.9 Lozi Map

The Lozi map is a two-dimensional piecewise linear map whose dynamics are similar to
those of the better known Henon map and it admits strange attractors.

The advantage of the Lozi map is that one can compute every relevant parameter
exactly, due to the linearity of the map, and the successful control can be demonstrated
rigorously.

The Lozi map equations are given in Equations (15) and (16).

Xn+1 = 1− a |Xn|+ bYn (15)

Yn+1 = Xn (16)

The parameters used are a = 1.7 and b = 0.5 as suggested in [105] and the initial
conditions are X0 = -0.1 and Y0 = 0.1. The real number and integer number plots for a
sample iteration is given in Figure 8 and the x and y value 2D plots is given in Figure 9.
The figures presented of the chaotic maps are referenced from [103].
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Figure 7: Chaotic Lozi map 2D plot
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Figure 8: Histogram of the distribution of real numbers transferred into the range ⟨0, 1⟩
and integer numbers in the range ⟨1, 25⟩ generated by means of the chaotic Lozi map,
5000 samples.
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Figure 9: Iteration of the Lozi map for the x and y values in line-plot.
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2.6.10 Sinai Map

The Sinai map is a simple two-dimensional discrete system similar to the Arnold’s Cat
map. The equation is given in (17) and the control parameter is δ = 0.1.

Xn+1 = Xn + Yn + (δ · cos 2π · Yn · (mod1))
Yn+1 = Xn + 2 · Yn · (mod1)

(17)

2.6.11 Tinkerbell Map

The Tinkerbell is yet another Dissipative map, which has been proven to be chaotic [2]
and studied extensively for its unique chaotic attractor. The equations of the Tinkerbell
is given in Equations (18) and (19).

Xn+1 = X2
n − Y 2

n + aXn + bYn (18)

Yn+1 = 2XnYn + cXn + dYn (19)

The usual operating parameters for Tinkerbell are a = 0.9, b = -0.6, c = 2 and d = 0.5.
The initial conditions are X0 = 0 and Y0 = 0.5. The real and integer frequency plots are
given in Figure 11, whereas the x and y values are given in Figure 12.
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Figure 10: Chaotic Tinkerbell map 2D plot

0.2 0.4 0.6 0.8 1.0
Value

200

400

600

800

1000

1200

Frequency

5 10 15 20 25
Value

200

400

600

800

1000

1200

1400

Frequency

Figure 11: Histogram of the distribution of real numbers transferred into the range ⟨0, 1⟩
and integer numbers in the range ⟨1, 25⟩ generated by means of the chaotic Tinkerbell
map, 5000 samples.
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Figure 12: Iteration of the Tinkerbell map for the x and y values in line-plot
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2.7 Complex Networks

Many real world systems, both man-made and natural, form a network. Amongst many
examples are the communication systems (Internet, World-wide web), transportation
systems, neural networks, or protein interaction networks, social interaction structures
(social networks), etc. These networks are often too large to describe completely, hence
the local description is used instead, using probabilistic expression of the local properties
in place of the exact ones, considering the random graphs [8],[116].

2.7.1 Complex Network Analysis

Many evolutionary algorithms based on the population of solutions form a complex net-
work in terms of exchange of information amongst the individuals throughout the search
for the optimum. As an example, SOMA [27] and DE [26] were analysed from this point
of view, and proven to form the complex network in the course of the algorithm itera-
tions. In this work, the information flow amongst the solutions of the population in the
ABC algorithm is explored, and the knowledge of the complex network structure and
properties is subsequently used to moderate the search.

The ABC forms a complex network during the course of the iterations, which was
empirically validated. This complex network was recorded as a weighted adjacency ma-
trix, representing the directed graph, where the vertices represent the individuals, while
oriented edges stand for the information flow between them, with weights representing
the number of successful improvements of the target individual using the information
from the source individual.

The complex network structure can be analysed by many different techniques and
measures. In order to measure the influence and importance of the individual nodes to
the whole network, the centrality of the vertices was chosen as a natural way to accom-
plish this goal.

2.7.2 Centrality

Centrality of vertices is a means of analysis of complex network by identifying the most
important or influential nodes in the graph. Several centrality measures exist, the most
common being the Degree centrality, Closeness and Betweenness, which measure the direct
connections of the node, accessibility of the node and how much the node is intermediary
between other nodes, respectively.

Degree Centrality Degree centrality of the node is the number of the edges incident
with the node. For a directed graph, the number of only incoming (in-degree), outgoing
(out-degree) or both edge types can be considered. In a weighted network, the degree of
the node has been extended as a sum of the incident edges weights. The degree centrality
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measures the local connections of the node. The unweighted degree centrality of node i
is defined as follows:

CD(i) =

n
j=1

aij (20)

Where n is the total number of nodes, aij is 1 if an edge exists between nodes i and j,
0 if it doesn’t exist [117].

Weighted degree centrality (strength) of node i:

CS(i) =

n
j=1

aijwij (21)

The meaning of n and aij is the same as for the unweighted degree, w is weight of the
edge between i and j [8].

Closeness Centrality The closeness of a node measures it’s accessibility - how close
the node is along the shortest path to all the other nodes, on average. It is defined as the
inverse of the average shortest distance from the node to all other nodes. The following
equation defines the closeness centrality of the node i:

CC(i) =
n− 1

j∈{1..N},j ̸=i dij
(22)

Where dij is the shortest path between i and j [117].

Betweenness Centrality The betweenness measures how much the node lies between
other nodes in the network. The nodes with high betweenness centrality are likely to
serve as mediators in information exchange between other nodes, and therefore can be
seen as more important. The betweenness of a node is a ratio of the shortest paths be-
tween other node pairs passing through the node. Betweenness centrality of node i is
given by the following equation:

CB(i) =


k,j∈{1..N},k ̸=j ̸=i

σk,j(i)

σk,j
(23)

Where σk,j is the number of the shortest paths between k and j, and σk,j(i) is the
number of shortest paths between k and j that pass through i [117].
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2.8 CUDA

The GPGPU (general purpose GPU computing) has been in the focus of many researches
ever since the GPUs performance rapid increase, owing to the increasing demand for
powerful hardware capable of rendering ever more demanding game graphics, along
with the increasing programmability of the GPU. However, the first GPU really support-
ing scientific computations was developed several years later in 2006 by NVIDIA, whose
architecture CUDA (Compute Unified Device Architecture) eventually enabled program-
ming GPUs by means of small set of extensions to C/C++ language, as opposed to former
necessity of using graphic programming languages and primitives ([97], [53])

As mentioned earlier, CUDA-enabled GPUs are programmed using extensions to
C/C++ language, CUDA C language. Furthermore, several different languages, APIs
or CUDA accelerated libraries are supported. CUDA programming model is data par-
allel and widely scalable. The computational task is divided between multicore CPU
and manycore GPU with separate memory spaces and different properties, strengths
and weaknesses – so called heterogenous programming. Compute intensive data par-
allel tasks are offloaded to the GPU, while tasks requiring sophisticated flow control are
executed sequentially on the CPU.

At the heart of CUDA programming model are three key abstractions: thread hier-
archy, memory hierarchy and synchronization, providing coarse grained parallelism (blocks
in grid), and fine grained parallelism (threads in block, which can communicate and be
synchronized).

Thread hierarchy The data parallel task is implemented using special function called
kernel, whose code is executed in parallel by threads. Threads are organized into blocks,
blocks of threads are organized into grids. Whereas threads in each block can communi-
cate by means of shared memory and synchronization function, threads between different
blocks are completely independent of one another. Each thread within block, as well as
each block within grid, is distinguishable by threadId, respectively blockId. This enables
each particular thread to operate on different data element in the global memory.

Memory hierarchy CUDA application can make use of different memory types. Mem-
ories differ in size and speed, as well as supported effective access patterns. Some of them
are cached, some are read-only. The design of effective memory usage is one of the key
issues of CUDA program performance. So called global memory is shared by all blocks, as
well as between successive kernel calls, and is relatively slow. Much faster shared memory
is accessible by all threads within one block. The fastest register memory is used to store
local variables for one thread, which are not visible to any other thread. However, for big
data structures or if the total amount of memory needed for local variables by all threads
within block exceeds the registers capacity, the slower local memory must be used. Con-
stant memory can be employed to store data that will not be changed by the kernel code,
especially when all threads access the same data element at a time. The texture memory is
a read-only cache that provides a speed-up for locality in data access by threads [78].
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Synchronization As mentioned earlier, blocks in grid provide for coarse grained paral-
lelism, whereas threads in block provide for fine grained parallelism. Threads in a block
can be synchronized and share data in the scope of a kernel. The number of threads in a
block is however limited both by the CUDA GPU design (max. 1024), and by the mem-
ory resources consumed by each thread. This division permits scalability – the blocks
are scheduled independently of one another, each of them assigned to one of the GPU’s
multiprocessors ([77], [78]).
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2.9 Combinatorial Optimisation and Scheduling Problems

This section gives the overview of the theory and formulation of the problems to which
the combinatorial optimisation methods explored in this thesis have been applied. The
combinatorial optimisation is the subset of optimisation problems, generally formulated,
where an optimal solution from the finite set of feasible solutions is sought after. They
can be defined as seeking a subset S∗ ∈ S, given the collection S ⊆ 2E on some finite
ground set E; and c : S→ R; such that S∗ maximizes or minimizes c on S [28].

The problems of interest from the combinatorial optimisation field are the NP-hard
problems where the exhaustive search methods are infeasible. Of this category, the quadratic
assignment problem and capacitated vehicle routing problem are presented later in the
text, in Sections 2.9.1 and 2.9.2.

The special consideration is given to the scheduling problems. The scheduling as
a process of decision making is used on daily basis in manufacturing and production
systems and service industries. The scheduling problems in general deal with the task
of sequencing a collection of jobs in certain machine environment, subject to given con-
straints, in such a way that one or more performance criteria are optimised. Of the two
broad classes of scheduling models, the deterministic and stochastic scheduling, the de-
terministic model is considered, with the finite collection of jobs to be scheduled, where
the exact job data are known in advance. The following text describes the lot streaming
flow shop with setup times (Section 2.9.5), permutative flow shop and the flow shop with
no-wait constraint (Sections 2.9.3 and 2.9.4) [89].

2.9.1 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a combinatorial optimisation problem stated
for the first time by [55] and is widely regarded as one of the most difficult problems in
this class. The objective is to assign n facilities to n locations in such a way as to minimise
the assignment cost.

The assignment cost is the sum, over all pairs, of the flow between a pair of facilities
multiplied by the distance between their assigned locations.

Let C and D be two n × n matrices such that C = [ci,j ] and D = [di,j ]. Consider the
set of positive integers {1, 2, . . . , n}, and let Sn be the set of permutations of {1, 2, . . . , n}.
Then the quadratic assignment problem can be defined as follows:

min
n

i=1

n
j=1

ci,jdπ(i)π(j) (24)

over all permutations π ∈ Sn. The above formulation is known as the Koopmans-
Beckman QAP [55].

Stated in other words, the objective of the quadratic assignment problem with cost
matrix C and distance matrix D is to find the permutation π0 ∈ Sn that minimises the
double summation over all i, j.

It should be understood that the notation dπ(i)π(j) as used above, refers to permuting
the rows and columns of the matrix D by some permutation π.
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That is, Dπ = [dπi,j ] = dπ(i)π(j), for 1 6 i, j 6 n. In the same manner, given an n-
dimensional vector V = [vi], a permutation of the elements of V by a permutation π will
be denoted as V π = [vπi] = vπ(i).

A number of heuristics have been developed to handle large scale QAP problems;
some notable ones being simulated annealing [14], tabu search [107] and the hybrid
genetic-tabu search [32].

2.9.2 Capacitated Vehicle Routing Problem

The vehicle routing problem is a well known problem in the field of transportation ([18],
[57], [115], [6], [36], [7]). The basics of capacitated vehicle routing problem can be stated
as follows [63]. Each vehicle has the same loading capacity, and starts off from only one
delivery depot and then routes through customers. All customers have known demands
and required service time. Each customer can only be visited by one vehicle, and each
vehicle has to return to the depot. The service time unit can be transformed into the dis-
tance unit. The loading and traveling distance of each vehicle cannot exceed the loading
capacity and the maximum traveling distance of vehicle. The objective of CVRP is to
minimize the traveling cost. The capacitated vehicle routing problem can be modeled as
a mixed integer programming as follows:

min
N
i=0

N
j=0

K
K=1

CijX
k
ij (25)

Subject to:

N
i=0

N
j=0

Xk
ijdi ≤ Qk 1 ≤ k ≤ K, (26)

N
i=0

N
j=0

Xk
ij (Cij + Si) ≤ T k 1 ≤ k ≤ K, (27)

N
j=1

Xijk =
N
j=1

Xjik ≤ 1 for i = 0 and k ∈ {1, . . . , k} , (28)

K
k=1

N
j=1

Xijk ≤ K for i = 0, (29)

where Cij is the cost incurred on customer i to customer j, K the number of vehicles,
N the number of customers, the Si the service time at customer i, Qk the loading capacity
of vehicle k, T k the maximal traveling (route) distance of vehicle k, di the demand at
customer i, Xk

ij ∈ 0 and 1 (i ̸= j; i, j ∈ 0, 1, . . . , N).
Equation 25 is the objective function of the problem. Equation 26 is the constraint of

loading capacity, where XK
ij = 1 if vehicle k travels from customer i to customer j directly,
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and 0 otherwise. Equation 27 is the constraint of maximum traveling distance. Equation
28 makes sure every route starts and ends at the delivery depot. Equation 29 specifies
that there are maximum K routes going out of the delivery depot.

2.9.3 Permutative Flowshop scheduling problem

In many manufacturing facilities, each job has to undergo a number of operations in
given order. The machines which process the jobs are then set up in series and the envi-
ronment is referred to as flowshop. Moreover, if the jobs cannot skip one another in the
queue between machines, i.e. first-in-first-out principle applies, the environment is an
instance of permutative flowshop. The optimal schedule is given by the permutation of
the order of jobs. If the objective is to minimise the makespan, the sheduling problem is
given in the standard notation as:

Fm |prmu |Cmax

where the Cmax denotes the makespan objective, the completion time of the last job
on last machine. This problem is proven to be strongly NP-hard. Being one of the basic
scheduling problems, it has attracted much attention in the research in past years.

The problem is formulated as follows: Given the order of n jobs to be processed on
m machines in series, the processing time pi,j of job j on machine i, and the permutation
schedule j1, . . . , jn, the completion time of a job jk on machine i can be computed by the
set of recursive equations:

Ci,j1 =
i

l=1

pl,j1 i = 1, . . . ,m (30)

C1,jk =
k

l=1

p1,jl k = 1, . . . , n (31)

Ci,jk = max(Ci−1,jk , Ci,jk−1
) + pi,jk i = 2, . . . ,m;k = 2, . . . , n (32)

The makespan of the schedule is given as Cmax = max(C1, . . . , Cn) [89].

2.9.4 Flowshop with Zero Intermediate Storage

One of the most challenging and practical scheduling problem in the flowshop class is the
one with no storage or stoppage between machines [88]. Consider a flow shop with zero
intermediate storage (FSSZIS) subject to different operating procedures. A job, when it
goes through the system, is not allowed to wait at any machine. For this process, all
subsequent machines have to be idle, at the completion of the job on a machine upstream.
Therefore, the jobs are pulled down the line by machines which have become idle. This
constraint can be also refereed to as the no-wait constraint, and minimising the makespan
in such a flow shop is referred to as the

Fm |nwt |Cmax
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Among all types of scheduling problems, FSSZIS owns lots of important applications
in different industries such as chemical processing [96], food processing [39], concrete
ware production [37], and pharmaceutical processing [94] amongst others.

For the computational complexity of the FSSZIS scheduling problem, [35] proves that
it is strongly NP-complete. Therefore, only small size instances of this flowshop problem
can be solved with reasonable computational time by exact algorithms.

The following notations are used to formulate the FSSZIS problem: assume n as num-
ber of jobs to be scheduled, m as the number of machines in the flowshop, ti,j as the
processing time for the ith job on the jth machine, di,k as the minimum delay on the first
machine between the start of job i and job k due to the no-wait constraint, [i] as the job
processed in position i , C[i] as the completion time of the job processed in position. TFT
represents the total flow time, i.e. the sum of flow times of all jobs.

The minimum delay time di,k and completion time C[i] can be calculated as:

di,k = ti,1 + max
2≤j≤m


j

p=2
ti,p −

j−1
p=1

tk,p


C[i] =

m
j=1

t[1],j ,

C[i] =
i

k=2

d[k−1],[k]+
m
j=1

t[1],j , i = 2, 3, . . . , n.

(33)

All jobs are assumed to be available at time zero, the total flow time can then be given
as in (34).

TFT =
n

i=2


i

k=2

d[k−1],[k] +
m
j=1

t[1],j


+

m
j=1

t[1],j =

n
i=2

i
k=2

d[k−1],[k]+
n

i=1

m
j=1

t[i],j =

n
i=2

(n+ 1− i)d[i−1],[i] +
n

i=1

m
j=1

ti,j

(34)

where
n

i=1

m
j=1

ti,j is the sum of the processing time of all jobs in all machines [11].

2.9.5 Lot Streaming Problem

The lot-steaming problem with setup time considered in this paper is a subset of the
generic flowshop scheduling problem. Whereas, in the permutative flowshop problem,
each job n is processed by a single machine m, in a lot-streaming variant, each job is di-
vided into smaller tasks called lots (l) [83]. Once the processing of a sub-lot on its preced-
ing machine is completed, it can be transferred to the downstream machine immediately.
However, all l(j) sub-lots of job j should be processed continuously as no intermingling
or exchanging is allowed. A separable sequence-dependent setup time is necessary for
the first sub-lot of each job j before it can be processed on any machine k [84].
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Two different cases of the problem are available; the idling and the non-idling case.
The idling case is the simpler variant of the problem, where only the schedule of the lots
is taken into consideration. A non-idling case on the other hand is more practical. A non-
idle case arises when the machine is not allowed to be idle. This is beneficial, especially in
the case when a number of machines are in operation, and resources, such as electricity,
are wasted. Another practical example is when expensive machinery is employed. Idling
of such expensive equipment is often not desired. In this paper, only the non-idling case
is considered.

For a detailed description of the lot-streaming problem please refer to [98].

Non-Idling Case The constraint in this case is that at any given time a machine can
process only one sub-lot, and each sub-lot can only be assessed individually. Let the
processing time of each sub-lot of job j on machine m be P (m, j), and the setup time of
job j on machine m, after having processed job j is s(m, j, j), which can also represent
the setup time of job j if it is the first job to be proceeded on the machine. The objective
is to find a sequence with the optimal sub-lot starting and completion times to minimise
the makespan.

The permissible job permutation can be presented as π = {π1, π2, . . . , πn}, and the
earliest start and completion time as S (m, j, r) and C (m, j, r), where r represents the
specific sub-lot on job j being processed on machine m.

For the non-idling case, the earliest start time for the first sub-lot is given in equations
(35) and (36), where the start time is the maximum of the setup time of the job in the
current machine, the completion time of the first sub-lot on the previous machine, and
the difference between the completion time of the whole job on the previous machine
and the total processing time of the whole job on the preceding machine except the last
sub-lot. This ensures that there is no idling time between two adjacent sub-lots. The last
two directives of these equations calculate the completion time for the first job.

The subsequent processing times of the following job sequence are given in equations
(37) and (38).

S (1, π1, 1) = s (1, πi, πi)
C (1, π1, l (π1)) = S (1, π1, 1) + l (π1)× P (1, π1)

(35)

S (w, π1, 1) = max


s (w, π1, π1) , S (w − 1, π1, 1)+

p (w − 1, π1) ,
C (k − 1, π1, l (π1))−

(l (π1)− 1)× P (1, π1)

 ,

C (w, π1, l (π1)) = S (w, π1, 1) + l (π1)× P (w, πi) ,
w = 2, 3, . . . ,m

(36)

S (1, π1, 1) = C (1, πi−1, l (πi−1)) + s (1, πi−1, πi) ,
C (1, π1, l (π1)) = S (1, π1, 1) + l (π1)× P (1, π1) ,

i = 2, 3, . . . , n
(37)
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S (w, π1, 1) = max


S (w − 1, πi, 1) + P (w − 1, π1) ,
C (w − 1, π1, l (π1))−

(l (π1)− 1)× P (1, π1) ,
C (w − 1, πi−1, l (πi−1))+

s (1, πi−1, πi)

 ,

i = 2, 3, . . . , n, w = 2, 3, . . . ,m
C (w, π1, l (π1)) = S (w, π1, 1) + l (π1)× P (w, πi) ,

i = 2, 3, . . . , n, w = 2, 3, . . . ,m

(38)

The makespan for the non-idling case can be then calculated as equation (39).

Cmax (π) = CT (m,πn, l (πn)) (39)

The objective of the lot-streaming flow shop scheduling problem with makespan cri-
terion is to find a permutation π∗ in the set of all permutations


. It can be given as in

the equation (40) [84].

Cmax (π
∗) ≤ Cmax (π) ,∀π ∈ Π (40)
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2.10 Continuous Optimisation Problems

This section gives the brief overview of the selected common test functions used for prov-
ing the properties and efficiency of evolutionary algorithms for continuous optimisation.
For each test function, the equation and the position of global minimum (if known) is
given. The test functions were taken from [130], more information can be found in [121].

2.10.1 Schwefel’s function

f (x1, . . . , xn) =
n

i=1

−xisin

|xi|


(41)

The global minimum value can be obtained by the following equation:

f (x1, . . . , xn) = −418.9829n (42)

for the arguments xi = 420.9687, i = 1, . . . , n.

2.10.2 1st De Jong’s function

f (x1, . . . , xn) =
n

i=1

x2i (43)

The global minimum value of:

f (x1, . . . , xn) = 0 (44)

is at xi = 0, i = 1, . . . , n.

2.10.3 3rd De Jong’s function

f (x1, . . . , xn) =

n
i=1

|xi| (45)

The global minimum value of:

f (x1, . . . , xn) = 0 (46)

is at xi = 0, i = 1, . . . , n.

2.10.4 4th De Jong’s function

f (x1, . . . , xn) =

n
i=1

ix4i (47)

The global minimum value of:

f (x1, . . . , xn) = 0 (48)

is at xi = 0, i = 1, . . . , n.
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2.10.5 Rosenbrock (2nd De Jong’s function)

f (x1, . . . , xn) =

n−1
i=1

100

x2i − xi+1

2
+ (1− xi)

2 (49)

The global minimum value of:

f (x1, . . . , xn) = 0 (50)

is at xi = 1, i = 1, . . . , n.

2.10.6 Rastrigin

f (x1, . . . , xn) = 2n
n

i=1

x2i − 10cos(2πxi) (51)

The global minimum value of:

f (x1, . . . , xn) = −200n (52)

is at xi = 0, i = 1, . . . , n.

2.10.7 Griewangk

f (x1, . . . , xn) = 1 +
n

i=1

x2i
4000

−
n

i=1

cos


xi√
i


(53)

The global minimum value of:

f (x1, . . . , xn) = 0 (54)

is at xi = 0, i = 1, . . . , n.

2.10.8 Sine Envelope Sine Wave

f (x1, . . . , xn) = −
n−1
i=1


0.5 +

sin

x2i + x2i+1 − 0.5

2
1 + 0.001


x2i + x2i+1

2


(55)

The global minimum value of:

f (x1, . . . , xn) = −1.4915(n− 1) (56)
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2.10.9 Stretched V Sine Wave

f (x1, . . . , xn) =
n−1
i=1


4


x2i + x2i+1sin


50 10


x2i + x2i+1

2

+ 1


(57)

The global minimum value of:

f (x1, . . . , xn) = 0 (58)

is at xi = 0, i = 1, . . . , n.

2.10.10 Ackley’s function I

f (x1, . . . , xn) =
n−1
i=1


1

e5


x2i + x2i+1 + 3 (cos (2xi) + sin (2xi+1))


(59)

The global minimum value (for n ≥ 3) of:

f (x1, . . . , xn) = −7.54276− 2.91867(n− 3) (60)

2.10.11 Ackley Two

f (x1, . . . , xn) =
n−1
i=1

20 + e− 20

e
0.2


x2
i
+x2

i+1
2

− e0.5(cos(2πxi)+cos(2πxi+1))

 (61)

The global minimum value of:

f (x1, . . . , xn) = 0 (62)

is at xi = 0, i = 1, . . . , n.

2.10.12 Egg Holder

f (x1, . . . , xn) =
n−1
i=1


−xisin


|xi − xi+1 − 47|


− (xi+1 + 47)sin


|xi+1 + 47 +

xi
2
|


(63)

2.10.13 Michalewicz

f (x1, . . . , xn) =

n−1
i=1


−1


sin (xi) sin


x2i
π

20

+ sin (xi+1) sin


2x2i
π

20


(64)

The global minimum value (for n > 2) of:

f (x1, . . . , xn) = 1.00098(n− 2) (65)
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2.10.14 Masters Cosine Wave

f (x1, . . . , xn) =

n−1
i=1


e

−(x2i+x2i+1+0.5xi+1xi)

8 cos


4

x2i + x2i+1 + 0.5xixi+1


(66)

The global minimum value of:

f (x1, . . . , xn) = −1 · n (67)

is at xi = 0, i = 1, . . . , n.

2.10.15 Shekel’s Foxhole

f (x1, . . . , xn) = −1
m
j=1

1

cj +
n

i=1(xi − aj,i)2
(68)

Where recommended value of m = 30, and constants cj ; j = 1, . . . ,m and aj,i; j =
1, . . . ,m; i = 1, . . . , n are constant numbers fixed in advance.
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3 Implementation

This section presents the description of design and implementation of each of the pro-
grams. All programs were developed as independent command line applications. Pa-
rameters are provided through the combination of command line arguments and config-
uration files. All source codes in C/C++ and CUDA C can be found on CD, together with
short manuals and examples of usage (see appendix A).

3.1 CUDA based NEH

In this section, the parallel version of NEH algorithm is presented. As discussed in sec-
tion 2.8, the algorithm uses both the CPU and the GPU. For the most applications, it is
desirable to maximally reduce the amount of data transferred between CPU and GPU,
because PCI Express is relatively slow and excessive transfers can considerably decrease
performance. It is obvious, from the analysis of sequential NEH (Section 2.2), that there
exists data dependency in each step of the main iteration. Whereas the process of ex-
ploring all the variants derived by extending the current subsequence (partial solution)
by the next job consists of generating several alternative solutions and their evaluation,
where each solution is independent from all the others, and hence can be implemented
as parallel, the best partial solution (subsequence) must then be chosen and used as a
basis for the next iteration step (for generating the next set of partial solutions), which
requires synchronization. From these considerations stems the design of CUDA based
NEH algorithm.

The main loop (encompassing step 3 and 4 of the sequential NEH description) runs
on the CPU, due to the afore mentioned data dependency. The algorithm flow inside the
main loop can be divided into four parts, each of which can be run in parallel. The basic
structure of the algorithm can be described as follows:

Main loop: Until full solution found, do:

Step 1: Generate the candidate subsequences (solutions) from the current subsequence.

Step 2: Evaluate candidate subsequences.

Step 3: Find the best (minimal cost) solution amongst all candidates.

Step 4: Update current subsequence.

3.1.1 Generating the candidate subsequences, Evaluation

Evaluating subsequences, i.e. calculating the problem cost function, is parallelized in a
simple way – each solution is evaluated by one thread of one block – therefore all costs
are calculated in parallel, but no further parallelism is exploited inside the calculation
of a single solution cost function, as main objective of this paper is to explore the pos-
sibility of parallelisation of the NEH heuristics itself, rather than that of FSS problem,
which was done in [16]. To speed up the calculation, shared memory was used. Full
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machines × jobs completion time matrix of FSS makespan problem would have con-
sumed too much memory space, therefore it was reduced to only 2 × jobs (only 1 last
machine completion times for all jobs are remembered in each step, the completion time
for subsequent machine is stored into 2nd table row, the rows are then swapped before
the next step).

Generation of candidate solutions is fully parallel – each block of threads is respon-
sible for generating a single candidate solution, which means performing a single insert
on current sequence. The position into which the next job is inserted in the candidate
solution corresponds to blockId. Each thread in a block shifts subset of solution elements
(jobs), using shared memory. The generated candidate solution could then be stored into
global memory and then read again and evaluated in a separate kernel. However, as the
kernel for generating the solution was relatively small, it was merged with the kernel per-
forming the evaluation to avoid this delay caused by additional write/read operation on
the global memory. In the merged kernel, the solution is first generated, then written into
global memory. All the threads in a block apart from the first thread are terminated, the
remaining thread performs the evaluation of the solution (while it is still in shared mem-
ory), taking advantage of a memory with lower latency, finally storing the calculated cost
into global memory.

3.1.2 Find the minimal cost solution

The search for the index of the minimal cost in the array of solutions costs is done using a
parallel reduction pattern, employing shared memory to store the data being processed.
In the beginning, the data is loaded from global into shared memory. In each step, each
active thread compares two costs, and stores the smaller of the two costs on the place of
the first cost, along with its original index (cost is represented as a structure containing
two elements: cost value, and cost index). After each step, the number of active threads
is reduced by half. In the end, the first element of the costs array contains the minimal
cost found, along with its respective solution index. This pair is then written into global
memory.

3.1.3 Update current subsequence, device synchronization

Finally a simple kernel copies the best solution, based on its stored index, into the current
solution buffer, and the next step of the main loop can be performed. However, before it
can be started, a global CUDA device synchronization is necessary for a big data (for a job
schedule size/number of threads in a block of size more than approximately 100, as was
empirically confirmed). As each of the kernels consumes some of the GPU resources,
it is necessary to wait, until the pending kernels completely finish the execution, and
release their resources, otherwise the GPU freezes and unsuccessful kernel launches start
to appear. This is done by calling cudaDeviceSynchronize() function from the host
code, after the Update kernel is launched.

The following figure (13) depicts the memory layout of the afore described code (with-
out FSS input data, for the current subsequence size 2, full schedule size 4. The data fields
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not used in the current step are grayed out). The candidate solutions are stored in one
global memory 1D array, which conceptually represents 2D array, wherein each row con-
tains one candidate schedule. The respective costs are stored in a separate array. The
FSS problem input data (processing times of each job on each machine) are stored in the
similar fashion in global memory (because of its large size).

Figure 13: CUDA based NEH memory layout

This implementation is expected to provide in each step the speedup proportional to
the number of solutions generated.
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3.2 CUDA based 2-opt algorithm

This section presents the parallel CUDA based version of 2-opt algorithm for permuta-
tive flowshop with makespan criterion problem. Before coming to the parallel imple-
mentation description however, the more detailed pseudocode of sequential version is
provided in Algorithm 4, in order to enable better understanding of the CUDA version
design.

Input:
S : initial solution

1

// number of jobs
2 N← Size(S)
// objective function value of S

3 fS← f(S)
// temporary solution memory

4 T← S
5 while ImprovementFound do
6 ImprovementFound← False
7 for i=1 to N-1 do
8 for j=i+1 to N do
9 T← Swap(T,i,j)

10 fT← f(T)
11 if fT < fS then
12 S← T
13 fS ← fT
14 ImprovementFound← True
15 break(2)
16 end
17 T← Swap(T,j,i)
18 end
19 end
20 end
21 return S
Algorithm 4: 2-opt sequential version. The Swap(T,j,i) procedure swaps j−th and i−th
job of schedule T

As can be seen already from the analysis of description of 2-opt presented in Section
2.3, the task that can be done in parallel is the exploration of neighbourhood of the current
solution. This is divided between individual CUDA blocks. Each block explores approx-
imately the same amount of possible neighbours to the current solution (in the worst
case, when no improving solution is found), including the cost evaluation. However, if
it finds an improving solution, that solution is stored into the global memory allocated
for each block, and the block terminates. If at least one of the blocks found an improving



51

solution, the minimal cost solution amongst all blocks is found and stored into memory
as the current solution for the next iteration. Otherwise, the current solution is returned.
The cost function evaluation itself was not parallelized, in each block only a single thread
performs this task.

The outline of the parallel algorithm can be given as follows:

Step 1: Set current solution S = Initial solution

Step 2: Explore the neighbourhood of S by G blocks in parallel. In each block b:

Step 1.1: Determine initial index i for b

Step 1.2: Explore all neighbours of S created by swapping of i and j, j ∈ {1, . . . , N}.
If improving neighbour T found, go to step 1.4.

Step 1.3: Determine next index i for b. If i ≥ N , terminate. Otherwise go to step 1.2.

Step 1.4: Store T and its objective function value fT into global memory and termi-
nate.

Step 3: If no improving solution found, exit procedure and return S as the best solution
found. Otherwise determine the best solution amongst those found by blocks in
parallel.

Step 4: Store best solution as S. Go to step 2

Where N is the number of jobs in the schedule and i is the outer loop index (see
pseudocode 4 for sequential version of 2-opt).

3.2.1 Exploration and Evaluation of neighbouring solutions

In this kernel, the neighbours of the solution are generated and evaluated. It is obvious
from the sequential version pseudocode (Algorithm 4), that the tasks of generating in-
dividual neighbours by swapping every possible pair of jobs (i, j) for i = 1, . . . , N and
j = i + 1, . . . , N can be considered independent and executed in parallel. The shared
memory is used to store the neighbouring solution which is being created and evaluated,
as well as 2 rows of completion times matrix necessary for the flowshop makespan eval-
uation. If the new solution is better than the current one, it is stored into global memory
allocated for each block, to avoid data races between blocks (this is illustrated in Figure
14 depicting memory layout for six jobs and four blocks). The improvements counter
in global memory is incremented using atomic operation, to reflect this. This counter is
compared against zero after the kernel termination, to determine if the stopping criterion
of the algorithm was reached. The cost function itself is evaluated by a single thread only;
the other threads of a block process the elements of the solution when transferring data
between memory locations.

It is however impractical to allocate full number of (N − 1)2/2 blocks on the GPU
for the most cases, as this number can be very large, whereas the number of SMs and
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Figure 14: CUDA based 2-opt memory layout

the number of resident blocks on SM is limited by various factors (discussed in Section
2.8), such as the number of threads in a block and a registers/shared memory usage.
The roughly optimal number of threads in a block maximizing the number of resident
blocks, as well as GPU occupancy, is therefore determined based on the calculations per-
formed in the CUDA occupancy calculator tool [79], as a function of the number of jobs
in a schedule (which determines the size of shared memory used). This maximizes the
utilization of the GPU, reduces the total global memory size required by grid, as well as
the workload done by the search for minimal cost solution in the next kernel, however
the mapping of the blocks to the tasks becomes more complicated.

Under the assumption that the number of blocks will be nearly always smaller than
the aforementioned function of the number of actual jobs for the problem instances of
interest (problems with schedules longer than 30), only the outer loop of the sequential
2-opt algorithm was parallelized. The inner loop is performed by each block sequen-
tially. This reduces the data transfers between global and shared memory, and doesn’t
eliminate the advantage of the low complexity of the swap operation at the same time. If
the solution created by swapping jobs i and j is worse than the current one, it is easy to
reverse this change by swapping again j and i, with constant complexity. Therefore max-
imally N − 1 blocks are needed. The mapping of blocks to tasks is illustrated in Figure
15.
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Figure 15: CUDA based 2-opt, mapping of blocks to tasks

3.2.2 Finding minimal cost index in parallel

This procedure is described in detail in the NEH implementation description, 3.1. The
only difference here is, that the smaller number of blocks was used, therefore the searched
array size is given by the size of the grid. The best solution’s index and cost are stored
for the later call to the kernel, which copies the solution at index into the current best
solution memory, also described in the NEH Section.
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3.3 Chaos driven DABC

All of the original variants of DABC, as well as the ABC algorithms (described in Sec-
tions 2.5 and 2.4), pay very little attention to stochasticity, despite making heavy use of
randomness in their workflow. The stock DABC doesn’t suggest any particular pseudo
random number generator, and presumes the usage of one of the standard ones. The
most commonly used PRNG in evolutionary algorithms is Mersenne Twister, owing to
its good stochastic properties and speed [70]. This thesis presents the possibility to im-
prove the standard DABC algorithm by exchanging the PRNG for a chaos based PRNG.

In the first part of research, nine unique chaotic systems have been included as CPRNG
for the DABC: Arnold’s cat map, Burgers map, Delayed Logistic, Dissipative Standard
map, Henon, Ikeda, Lozi, Sinai and Tinkerbell maps. These new chaos embedded algo-
rithms (hereafter referred to as variants) can be collectively labelled as CDABC. The basic
premise of this work was to ascertain if any improvement can be achieved in DABC by
using chaotic systems in place of PRNG. The experimental results for this with applica-
tion to FSSLS with setup time and the FSSNW problem are presented in Sections 4.3 and
4.4.

The second part of research concentrates on the CPRNGs that have proven to be the
best performing ones, i.e. four of the original nine CDABC variants: CDABCL using Lozi
map, CDABCDL using Delayed Logistic map, CDABCB with Burgers map and CDABCT

with Tinkerbell map. The experimentation for these algorithms applied to solving QAP
and CVRP problems is described in Section 4.5.

3.3.1 Chaotic pseudo random number generator

There are two options how to utilize the chaos maps to implement the CPRNG. Either
the large sequence of numbers – the inception of chaos map – is stored in a file, and used
iteratively. This approach, however, consumes large amount of memory. The second
option is to use random starting point on the map, and a mathematical equation to get
the next points. This concept is similar to the PRNG seed. In this way, it is no longer
necessary to store and read large data. For CDABC variants, the latter approach was
used. The pseudocode describing this concept is given in Algorithm 5. Values on X-axis
are used as the output sequence, whereas values on Y-axis are merely internal memory
of the map.

The DABC algorithm structure remains almost the same (as described in pseudocode
3), the only alteration lies in replacement of calls to get next pseudo-random number from
PRNG for calls to CPRNG. The detailed CDABC pseudocode is presented in Algorithms
6 to 16, emphasising the lines which lead to the calls to the pseudo-random number gen-
erator that were replaced by the chaos-based one by the red color. These parts are further
described in the text and the analysis of the quantity of random numbers generated is
provided.
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1 begin CPRNG_init:
Input: seed
/* set initial point on map: */

2 X ← seed (mod 0.1)
3 Y ← X

4 end
5 begin CPRNG_get_next:

/* compute next X and Y according to given chaotic map
equation: */

6 X(n+1) ← fx(X
(n), Y (n), Y (n+1))

7 Y (n+1) ← fy(X
(n), Y (n), X(n+1))

8 return X(n+1) (mod 1)
9 end

Algorithm 5: CPRNG pseudocode

3.3.2 DABC and CDABC randomness

It has been stated before that DABC heavily relies on stochasticity. Here, the verification
of this claim is attempted at, and the quantification of the random numbers (RN) required
during the course of algorithm flow is specified. Starting from the pseudocode 6, it can
be observed that the random number generation is involved during the main iteration
in employed bee, onlooker bee, as well as scout bee phase (lines 11-13), as well as in the
initialization phase in population and the list of operations initialization (lines 3 and 8).
The list of operations NL is part of the implementation of adaptive strategy described in
Section 2.5.

To initialize NL, constant number of NLL RN is needed (where NLL is length of
NL, specified as parameter of DABC), as can be seen in Algorithm 16. To initialize the
population according to Algorithm 13, at least FS × n RN numbers are needed, where n
is number of jobs in a schedule. However, in reality, this number will be certainly much
higher. An experiment has been conducted to obtain the average number of RN need in
this algorithm with Mersenne Twister for 30 solutions and number of jobs from 10 to 50.
The excerpt from results is shown in table 3, where only every 10-th row was selected.
Mean gives the average quantity of random numbers needed for the initialization of all
solutions in the population, Mean/Element column gives the average number of RN
needed for an element in the population (Mean / (FS · n), where FS is number of food
sources and n number of jobs). With the correlation coefficient of 0.976, there is linear
dependency of RN needed on the number of jobs, which can be formulated, using the
results of linear regression, as follows: RNE = 0.037 · n + 2.804, where n is number
of jobs and RNE is the average number of RN/element of population. In total in the
initialization phase, average RN = FS ·n·RNE+NLL = FS ·n·(0.037·n+2.804)+NLL.

In the employed bee phase, presented in Algorithm 7, for each food source, RN
needed are between 2 and 4 + 1 + (Loopmax · 2) + (NLL −WNLL). The minimal quan-
tity of RN is needed when the operation is simple insert or simple swap (12), and the
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Input:
FS : number of food sources
Limit : limit of improvements trial at a food source
Loopmax : maximal number of iterations in local search
PL : probability of local search
T : number of iterations of algorithm
NLL : length of NL list
WNLL : length of WNL list

1 begin initialize:
/* read in problem data */

2 problem← read_problem()
/* generate FS food sources as random permutations of sequence 1 to

number_of_jobs(problem) */
3 P.π ← random_init( FS, 1, number_of_jobs(problem))

/* evaluate food sources */
4 P.fitness← evaluate( P.π )

/* initialize limits */
5 P.limit← array(FS)

/* initialize WNL and NL, randomly fill NL */
6 WNL← array(WNLL)
7 NL← array(NLL)
8 refill(NL,WNL)
9 end

10 for t = 1 to T do
/* 1.send employed bees to food sources: */

11 employed_bee( P , PL, Loopmax, NL, WNL )
/* 2.let onlooker bees select food sources: */

12 onlooker_bee( P , NL, WNL )
/* 3.send the scout to search new food source: */

13 scout_bee( P ,Limit )
/* 4.memorize best food source: */

14 memorize_best( P )
15 end
16 begin memorize_best

Data: population P
Result: modified population P

17 P.πbest ← P.πi, where: ∀k, k ̸= i : P.fitnessi ≤ P.fitnessk
18 P.fitnessbest ← P.fitnessi
19 end

Algorithm 6: CDABC pseudocode
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1 begin employed_bee
Data: population P , PL, Loopmax, NL, WNL
Result: modified population P
/* for each food source: */

2 foreach πi in P.π do
/* get operation from Adaptive strategy list: */

3 operation← get_operation(NL,WNL)
/* perform operation on πi: */

4 π
(c)
i ← operation(πi)

5 fitness
(c)
i ← evaluate( π(c)

i )
6 if fitness

(c)
i ≤ P.fitnessi then

/* local search on π
(c)
i with probability PL */

7 if CPRNG_get_next() < PL then
8 π

(c)
i , fitness

(c)
i ← local_search( π(c)

i , fitness
(c)
i , Loopmax, last_operation(NL) )

9 end
10 P.πi ← π

(c)
i

11 P.fitnessi ← fitness
(c)
i

12 P.limiti ← 0
/* update adaptive strategy WNL */

13 update_WNL(WNL,operation)
14 else
15 P.limiti ← P.limiti + 1
16 end
17 end
18 end

Algorithm 7: CDABC pseudocode, employed bee
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1 begin onlooker_bee
Data: population P , NL, WNL
Result: modified population P
/* for each onlooker bee (using FS onlooker bees): */

2 for i = 1 to FS do
/* randomly pick two food sources πr1 , πr2 */

3 r1, r2 ← get_unique_rand2( 1, FS )
/* select better of πr1 , πr2 */

4 if P.fitnessr1 ≤ P.fitnessr2 then
5 s← r1
6 else
7 s← r2
8 end

/* get operation from Adaptive strategy list */
9 operation← get_operation(NL,WNL)

/* perform operation on πs: */

10 π
(c)
s ← operation(P.πs)

11 fitness
(c)
s ← evaluate( π(c)

s )
12 if fitness

(c)
s ≤ P.fitnesss then

13 P.πs ← π
(c)
s

14 P.fitnesss ← fitness
(c)
s

15 P.limits ← 0
/* update adaptive strategy WNL */

16 update_WNL(WNL,operation)
17 else
18 P.limits ← limits + 1
19 end
20 end
21 end

Algorithm 8: CDABC pseudocode, onlooker bee

1 begin scout_bee
Data: population P , Limit
Result: modified population P
/* select a solution which was not successfully improved given number

of trials: */
2 s← i, where: P.limiti ≥ Limit
3 if s ∈ [1, FS] then // if such solution exists
4

/* perform 3 insert operations on P.πbest */
5 P.πs ← insert( P.πbest )
6 P.πs ← insert2( P.πs )
7 P.fitnesss ← evaluate( P.πs )
8 P.limits ← 0

9 end
10 end

Algorithm 9: CDABC pseudocode, scout bee
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Input: π, fitness, Loopmax, last_operation
1 begin select_operation:
2 if last_operation ∈ {insert, insert2} then
3 operation← swap
4 else
5 operation← insert
6 end
7 end
8 begin
9 π(a) ← π

10 fitness(a) ← fitness
11 for i = 1 to Loopmax do
12 π(c) ← operation(π(a))

13 fitness(c) ← evaluate( π(c) )
14 if fitness(c) ≤ fitness(a) then
15 π(a) ← π(c)

16 fitness(a) ← fitness(c)

17 end
18 end
19 return π(a), fitness(a)

20 end
Algorithm 10: CDABC pseudocode, local search

1 begin get_unique_rand2:
Input: L, U
/* get 2 unique random integers from range [L,U ] */

2 r1 ← value_to_range( CPRNG_get_next() * MAX_INT, L, U )
3 r2 ← value_to_range( CPRNG_get_next() * MAX_INT, L, U )
4 if r2 = r1 then

/* advance r2 to the next position in [L,U ] */
5 r2 ← next_in_range(r2,L,U )
6 end
7 return r1, r2
8 end
9 begin value_to_range:

Input: v, L, U
10 return v (mod (U − L+ 1)) + L

11 end
12 begin next_in_range:

Input: v, L, U
13 return (v − L+ 1) (mod (U − L+ 1)) + L

14 end
Algorithm 11: CDABC get two unique random integers in range [L,U ]
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1 begin swap:
Input: solution
/* select 2 random non-identical positions in the schedule: */

2 r1, r2 ← get_unique_rand2( 1, length(Solution) )
/* swap jobs in the solution */

3 solutionn ← swap_jobs(solution, r1, r2)
4 return solutionn

5 end
6 begin insert:

Input: solution
/* select 2 random non-identical positions in the schedule: */

7 r1, r2 ← get_unique_rand2( 1,length(Solution) )
/* insert */

8 if r1 < r2 then
9 solutionn ← left_shift_jobs(solution, r1, r2)

10 else
11 solutionn ← right_shift_jobs(solution, r1, r2)
12 end
13 return solutionn

14 end
15 begin insert2:

Input: solution
16 solutionn ← insert( solution )
17 solutionn ← insert( solutionn )
18 return solutionn

19 end
20 begin swap2:

Input: solution
21 solutionn ← swap( solution )
22 solutionn ← swap( solutionn )
23 return solutionn

24 end
Algorithm 12: CDABC Operation
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1 begin random_init:
Input: FS,L,U

2 π ← []
3 for i = 1 to FS do
4 πi ← []
5 for j = 1 to U − L+ 1 do
6 while πi,j not set do

/* get random job from range [L,U ] */
7 πi,j ← value_to_range( CPRNG_get_next() * MAX_INT, L, U )

/* verify if job not present in πi */
8 for t = 1 to j − 1 do
9 if πi,t = πi,j then

10 unset( πi,j )
11 break
12 end
13 end
14 end
15 end
16 end
17 return π

18 end
Algorithm 13: CDABC pseudocode, random initialisation

1 begin get_operation :
Data: list of operations NL, list of successful operations WNL
Result: modified NL, selected operation

2 if is_empty(NL) then
3 refill(NL,WNL)
4 end
5 operation← pop(NL)
6 return operation

7 end
Algorithm 14: CDABC get operation from list of operations NL

1 begin update_WNL :
Data: list of successful operations WNL, operation
Result: modified WNL
/* insert operation into WNL at next position */

2 i← top_pointer(WNL) mod length(WNL) + 1
3 WNLi ← operation

4 end
Algorithm 15: CDABC update WNL
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1 begin refill:
Data: list of operations NL, list of successful operations WNL
Result: modified NL and WNL

2 Operations← [insert, insert2, swap, swap2]
3 if not empty(WNL) then
4 for i=1 to length( NL ) do
5 if i ≤ length(WNL) then

/* Fill first length(WNL) operations using all operations
present in WNL */

6 w ← i mod top_pointer(WNL) + 1
7 NLi ←WNLw

8 else
/* Fill the rest using randomly selected operations from 4

available */
9 o← value_to_range( CPRNG_get_next() * MAX_INT, 1, 4)

10 NLi ← Operationso
11 end
12 end

/* empty WNL */
13 clear(WNL)
14 else

/* Fill entirely using randomly selected operations */
15 for i=1 to length( NL ) do
16 o← value_to_range( CPRNG_get_next() * MAX_INT, 1, 4)
17 NLi ← Operationso
18 end
19 end
20 end

Algorithm 16: CDABC refill list of operations NL
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new solution found doesn’t improve upon the previous one. Insert and swap require
both only 2 random numbers. However, the operation used for the generation of the
new solution can be one of the composed operations: insert2, swap2. In such case, 4
random numbers are needed. If the solution does improve upon its predecessor, another
RN is needed to determine if the local search should happen. Inside the local search,
only simple insert and simple swap operations are needed, which happen in every lo-
cal search iteration, fixed number of times, Loopmax, hence Loopmax · 2 random numbers
are needed inside local search. If the NL list is empty and has to be refilled, another
(NLL −WNLL) random numbers are needed (where NLL is length of NL list, WNLL

length of WNL list). Therefore in employed bee phase, RN is in the range from FS · 2 to
FS · (5 + (2Loopmax) + (NLL −WNLL)).

In the onlooker bee phase, shown in Algorithm 8, the number of RNs is between
2 + 2 = 4 and 2 + 4 + (NLL − WNLL) for a solution. Explanation is similar as in
the employed bee phase. Two randomly selected solutions are always needed. On the
better one, an operation is performed, requiring either two or four randomly selected jobs
positions. This makes up the total of FS · 4−FS · 6+ (NLL−WNLL) random numbers.

The scout bee phase, presented in Algorithm 9, is the simplest, requiring between 0
and 6 random numbers in total. If no solution crosses the Limit, no operation is per-
formed. If a solution with exceeded limit exists, exactly 6 random numbers are needed to
perform 3 insert operations.

In the main iteration, number of random numbers used is between FS · 6 and FS ·
(2Loopmax+2(NLL−WNLL)+17) per iteration, T ·FS ·6 and T ·FS ·(2Loopmax+2(NLL−
WNLL) + 17) in total. Total quantity of random numbers needed in the algorithm is
therefore between RNinit + T ·RNiter = (FS · n · (0.037 · n+2.804) +NLL) + T · (FS · 6)
and RNinit + T · RNiter = (FS · n · (0.037 · n + 2.804) + NLL) + T · FS · (2Loopmax +
2(NLL −WNLL) + 17). As an example, with the default parameter settings described
in 2.5, where FS = 30, Loopmax = 200, T = 100, NLL = 20 and WNLL = 15, for the
number of jobs n = 100, this gives the lower bound of 37.5 · 103, and the upper bound
of 1.3 · 106 random numbers. This analysis gives only the coarse lower, respective upper
bound of the quantity of random numbers needed, as the dependencies are neglected for
the sake of simplification. Nevertheless, it can be seen that these values are very large,
and the use of stochasticity in the algorithm is intensive.
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Table 3: Random numbers required in random initialization of population

Jobs Elements Mean Std Mean/Element
10 300 878.200 53.156 2.927
15 450 1,515.900 82.313 3.369
20 600 2,142.100 114.319 3.570
25 750 2,895.867 181.762 3.861
30 900 3,607.433 218.697 4.008
35 1050 4,309.767 147.940 4.105
40 1200 5,144.633 279.140 4.287
45 1350 5,859.933 220.570 4.341
50 1500 6,786.667 306.522 4.524



65

3.4 Centralities Based ABC

In the Adaptive ABC algorithm, the complex network analysis was used for adaptive
control of the population. The structure of the algorithm is as follows: firstly, the weighted
adjacency matrix is being created throughout the algorithm iterations, for some fixed
number of iterations, a fraction of the total expected number of iterations before algo-
rithm termination. The complex network recorded this way is then analysed, and this
information is subsequently used to identify the nodes (solutions) that don’t play a sig-
nificant role in the population dynamics. In this algorithm, such nodes are replaced by
the new randomly generated ones, although different schemas of the replacements gen-
eration could also be used.

The measures used to identify the nodes that do not contribute significantly to the
population improvement were chosen to be the three types of vertex centrality, the weighted
degree centrality (strength), closeness and betweenness centrality, as described in section
2.7.2.

The vertices representing solutions are ranked according to these measures, and the
fixed ratio of the solutions corresponding to the lowest ranking nodes is removed and re-
generated. The adjacency matrix is then reset. The entire procedure of network recording
and the nodes ranking and replacement is repeated until the algorithm terminates. This
concept is illustrated in figures 16 - 19.
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Figure 16: The network with labelled nodes ranked by centrality. The larger centrality
nodes are marked in bigger size and different colors. The smallest blue nodes have the
lowest centrality, the largest red node has the highest centrality value.
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Figure 17: The nodes sorted according to their centrality score in ascending order. The
first Cutoff × NS nodes will be removed.
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Figure 18: The nodes marked in gray will be removed from the network.
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Figure 19: The network after the low centrality nodes removal. The most important nodes
are preserved.

Employing these three distinct vertex influence measures, two variants of the Adap-
tive ABC algorithm were created, both combining the usage of all three of them: the 1st
variant (Adaptive ABC 1, Algorithm 17) in the phase of network analysis conceptually
splits the population into three parts. Each of them is evaluated using different centrality
measure type on the same network. As described in the pseudocode, in the network anal-
ysis and nodes pruning phase of the algorithm, first NS

3 nodes are sorted, according to the
first centrality measure (weighted degree centrality). NS

3 × Cutoff lowest ranking nodes
are recreated, and the same procedure is repeated for the second third of the population
using closeness, and for the last third of the population using betweenness.

The 2nd variant (Adaptive ABC 2, Algorithm 18) uses three fully separated sub-
populations, each with their own network. Each of them is evaluated using different cen-
trality measure type. After the less influential nodes are pruned and the networks reset,
the tournament selection of size two is performed to select every next-generation solution
of every sub-population, choosing the better of two solutions randomly selected from all
three sub-populations. In this way the information sharing between sub-populations is
ensured.

In order to explore the influence of distinct centralities on the speed of convergence,
a simpler version of Adaptive ABC was created. This version, named Adaptive ABC 3,
takes the centrality measure to be used for network analysis and nodes evaluation as a
parameter. The algorithm is described by pseudocode given in 19.

All of the previously discussed Adaptive ABC variants determine the nodes to be
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Input:
NS : number of solutions in the population
NGenNumber : number of generations for network creation
CutoffRatio : ratio of low centrality ranking nodes to be recreated

1

2 Generate initial population Population of NS solutions
3 Initialise the network Network
4 initialise generation counter GenCounter
5 initialise network generation counter NGenCounter
6 SubPopulationSize← 1

3× NS
7 while max generation not reached do
8 send Employed bees and update the Network
9 send Onlooker bees and update the Network

10 send Scout bees
11 memorize the best solution
12 if NGenCounter == NGenNumber then
13 for i=1 to 3 do
14 for nodes in range i-1 × SubPopulationSize + 1 to i × SubPopulationSize do
15 calculate centrality i of nodes
16 sort nodes by the centrality ranking in ascending order
17 replace the solutions belonging to the first SubPopulationSize ×

CutoffRatio nodes by new ones
18 end
19 end
20 reset Network and NGenCounter
21 end
22 increase GenCounter
23 increase NGenCounter
24 end

Algorithm 17: Adaptive ABC 1
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Input:
NS : number of solutions in the population
NGenNumber : number of generations for network creation
CutoffRatio : ratio of low centrality ranking nodes to be recreated

1

2 Generate 3 initial sub-populations SubPopulation(1), SubPopulation(2), SubPopulation(3) of
NS/3 solutions

3 foreach SubPopulation(i) do
4 Initialise the Network(i)
5 end
6 initialise generation counter GenCounter
7 initialise network generation counter NGenCounter
8 while max generation not reached do
9 foreach SubPopulation(i) do

10 send Employed bees and update the Network(i)
11 send Onlooker bees and update the Network(i)
12 send Scout bees
13 memorize the best solution
14 end
15 memorize the subpopulation with the best solution
16 if NGenCounter == NGenNumber then
17 foreach SubPopulation(i) do
18 calculate centrality of all NS nodes
19 sort nodes by the centrality ranking in ascending order
20 replace the solutions belonging to the first NS × CutoffRatio nodes by new ones
21 reset Network(i)
22 end
23 Population← join(SubPopulation(1), Subpopulation(2), Subpopulation(3))
24 foreach SubPopulation(i) do
25 foreach Solution(s), s ∈ {1, .., NS/3} do
26 Tournament selection size 2 from Population
27 end
28 end
29 reset NGenCounter
30 end
31 increase GenCounter
32 increase NGenCounter
33 end

Algorithm 18: Adaptive ABC 2
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Input:
NS : number of solutions in the population
NGenNumber : number of generations for network creation
CutoffRatio : ratio of low centrality ranking nodes to be recreated
MeasureType : centrality measure type to be used

1

2 Generate initial population Population of NS solutions
3 Initialise the network Network
4 initialise generation counter GenCounter
5 initialise network generation counter NGenCounter
6 while max generation not reached do
7 send Employed bees and update the Network
8 send Onlooker bees and update the Network
9 send Scout bees

10 memorize the best solution
11 if NGenCounter == NGenNumber then
12 calculate centrality MeasureType of all NS nodes
13 sort nodes by the centrality ranking in ascending order
14 replace the solutions belonging to the first NS × CutoffRatio nodes by new

ones
15 reset Network and NGenCounter
16 end
17 increase GenCounter
18 increase NGenCounter
19 end

Algorithm 19: Adaptive ABC 3
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removed from the population merely by their vertex centrality ranking, in accordance
with the main premise of this research. The quality of the solutions themselves is not
taken into consideration. This, however, can lead to the removal of the good quality
solutions from the population, in case they haven’t contributed to the other solutions for
given number of generations, therefore somewhat more randomizing the search. The
convergence could be faster if some of the good solutions were maintained, i.e. if the
quality of the solution was also considered when determining which nodes to remove.
From this idea stem two more variants, based on the Adaptive ABC 3: Adaptive ABC
3.b, described in 20, and the Adaptive ABC 3.c, described in 21.

Both algorithms work in the similar fashion: two sorted lists of nodes are created.
One of them sorts nodes by the centrality ranking, using the centrality measure type pro-
vided as parameter. The other one sorts nodes by the solution costs or fitness, so that the
nodes belonging to the solutions with the best fitness come first. Certain number of solu-
tions with the best fitness values is always preserved, regardless of the centrality ranking
of the respective vertices in the network. This number is determined by the parameter
EliteRatio, giving the ratio of the best solutions from entire population to always maintain
during the nodes pruning.

In case of the Adaptive ABC 3.b, the first Cutoff × NS nodes are considered for the
removal in the same way as in the previously described algorithm variants. However, if
any of these nodes belongs to the first EliteRatio × NS best solutions, it is skipped in the
pruning process. Hence this algorithm recreates Cutoff ×NS nodes or less in the network
analysis and nodes pruning phase.

The Adaptive ABC 3.c, on the other hand, in the most cases recreates the full number
of Cutoff × NS nodes. It goes through the entire list of the nodes sorted by centrality
ranking. The removed solutions are counted during the procedure of the nodes pruning.
If the low ranking node is amongst the first EliteRatio × NS best solutions, it is again
skipped. In the opposite case, it is replaced by the new solution, and the removed solu-
tions counter is increased. The procedure does not end before the counter reaches value
of Cutoff × NS, or the end of the nodes list is reached.
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Input:
NS : number of solutions in the population
NGenNumber : number of generations for network creation
CutoffRatio : ratio of low centrality ranking nodes to be recreated
MeasureType : centrality measure type to be used EliteRatio : ratio of the best cost
solutions to always keep in the population

1

2 Generate initial population Population of NS solutions
3 Initialise the network Network
4 initialise generation counter GenCounter
5 initialise network generation counter NGenCounter
6 while max generation not reached do
7 send Employed bees and update the Network
8 send Onlooker bees and update the Network
9 send Scout bees

10 memorize the best solution
11 if NGenCounter == NGenNumber then
12 calculate centrality MeasureType of all NS nodes
13 nodesByCentrality← sort nodes by the centrality ranking in ascending order
14 nodesByCost← sort nodes by corresponding solutions’ fitness value in

ascending order
15 for i=1 to NS × CutoffRatio do
16 node← nodesByCentrality[i]
17 if node not in nodesByCost[1 to NS × EliteRatio] then
18 replace the solution belonging to the node by new one
19 end

// else skip node

20 end
21 reset Network and NGenCounter
22 end
23 increase GenCounter
24 increase NGenCounter
25 end

Algorithm 20: Adaptive ABC 3.b
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Input:
NS : number of solutions in the population
NGenNumber : number of generations for network creation
CutoffRatio : ratio of low centrality ranking nodes to be recreated
MeasureType : centrality measure type to be used EliteRatio : ratio of the best cost
solutions to always keep in the population

1

2 Generate initial population Population of NS solutions
3 Initialise the network Network
4 initialise generation counter GenCounter
5 initialise network generation counter NGenCounter
6 while max generation not reached do
7 send Employed bees and update the Network
8 send Onlooker bees and update the Network
9 send Scout bees

10 memorize the best solution
11 if NGenCounter == NGenNumber then
12 calculate centrality MeasureType of all NS nodes
13 nodesByCentrality← sort nodes by the centrality ranking in ascending order
14 nodesByCost← sort nodes by corresponding solutions’ fitness value in

ascending order
15 removed← 0
16 for i=1 to NS do
17 node← nodesByCentrality[i]
18 if node not in nodesByCost[1 to NS × EliteRatio] then
19 replace the solution belonging to the node by new one
20 removed← removed + 1
21 end
22 if removed ≥ NS × CutoffRatio then
23 break
24 end
25 end
26 reset Network and NGenCounter
27 end
28 increase GenCounter
29 increase NGenCounter
30 end

Algorithm 21: Adaptive ABC 3.c
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4 Experimentation

The following text describes the experimentation performed for the implemented algo-
rithms solving selected optimisation problems. It provides the information on the prob-
lem instances solved, as well as parameter setting and the hardware used for testing. First
five parts, the NEH, 2-opt algorithm, CDABC for FSSLS, FSSNW, QAP and CVRP belong
to the combinatorial optimisation domain, the last part, Centralities Based ABC, solves
the standard continuous optimisation test functions. Experiment outputs are provided
on CD (see appendix, A). Statistical analysis of this data of each experiment is found in
Section 5.

4.1 NEH

This section presents the experimentation performed on the standard and CUDA acceler-
ated implementation of NEH heuristic, comparing execution times. NEH is used to solve
the problem of minimising the makespan of permutative flowshop scheduling problem.
In order to obtain the input data, which would be large enough, Taillard Data Sets were
extended with the new larger problem instances. The experimental data are described in
the following text parts. The analysis of results is discussed in Section 5.1.

4.1.1 Extended Taillard Data Sets

The entire experimentation is conducted on the Taillard flowshop data sets. The original
data sets comprise of twelve data sizes (indexed hereafter as (jobs x machines)); 20 x 5, 20
x 10, 20 x 20, 50 x 5, 50 x 10, 50 x 20, 100 x 5, 100 x 10, 100 x 20, 200 x 10, 200 x 20 and 500
x 20. The formulation of these data sets is given in [108].

One of the core premises of the GPU approach is the ability to set up massive parallel
computation array to speed up the execution. Therefore, the original Taillard flowshop
data sets (OTS) were extended to include new higher dimensional problems. Using the
code snippet posted on the OR Library [111] by J. Beasley [9] detailing the Taillard code
generation, four new higher dimensional data sets were generated, hereafter termed as
the extended Taillard data sets (ETS). The sizes of the new data sets are 500 x 50, 700
x 20, 700 x 50 and 1000 x 20. Each data set contains ten unique instances. Using the
Taillard code template, each new seed instance was uniquely generated within the range
224,


231 − 1


using a uniform distribution. Using this seed, the new instance was gen-

erated. The full C code including all the new instances can be obtained from the reposi-
tory at [22].

4.1.2 Experiment setup

The experimentation was conducted on the server housed at the Media Research Lab
(MRL) at the VSB-Technical University of Ostrava. The specifications for the CUDA GPU
are: Kepler generation, production line Tesla K20k, 4.8GB global memory, GPU Clock rate
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of 706MHz with 2494 CUDA cores; CUDA Driver Version 5.5. The CPU specifications are:
Intel Xeon CPU E5-2640 v2 with 2.00GHz processor and 8 CPU cores.

The experiments on all the afore mentioned problem instances of varying size (16
unique instance sizes, 10 instances of each size) were performed for both the CPU and
the GPU based implementation. The resulting times in milliseconds were recorded and
statistically analysed and compared. The excerpts from the results are given in the Ta-
bles 4 and 5 (both tables contain execution times and best schedules costs for first three
problem instances of each size. Entire experimentation data were too large to fit the pub-
lication scope, but can be found on CD (appendix A). The statistical summary is given in
the results analysis of NEH, in the afore mentioned Section 5.1.
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Table 4: NEH on CPU, raw data excerpt.

Instance Dimension Time[ms] Cost
ta001 5 x 20 0 725.85
ta002 5 x 20 0 782.5
ta003 5 x 20 0 705.45
ta011 10 x 20 0 1097.95
ta012 10 x 20 0 1179.6
ta013 10 x 20 0 1034.75
ta021 20 x 20 0 1711.4
ta022 20 x 20 0 1600.3
ta023 20 x 20 0 1721.8
ta031 5 x 50 10 1373.9
ta032 5 x 50 0 1468.84
ta033 5 x 50 0 1340.06
ta041 10 x 50 20 1838.26
ta042 10 x 50 0 1773.48
ta043 10 x 50 10 1691.98
ta051 20 x 50 20 2610
ta052 20 x 50 20 2473.04
ta053 20 x 50 20 2454.22
ta061 5 x 100 40 2683.96
ta062 5 x 100 40 2651.39
ta063 5 x 100 40 2547.08
ta071 10 x 100 80 3168.97
ta072 10 x 100 70 2914.06
ta073 10 x 100 90 3050.38
ta081 20 x 100 220 3856.11
ta082 20 x 100 170 3911.82
ta083 20 x 100 170 3886.27
ta091 10 x 200 640 5534.27
ta092 10 x 200 740 5459.82
ta093 10 x 200 810 5490955
ta101 20 x 200 1330 6380.72
ta102 20 x 200 1340 6506805
ta103 20 x 200 1340 6614165
ta111 20 x 500 19760 13904804
ta112 20 x 500 19540 14152622
ta113 20 x 500 19820 14018.59
ta121 50 x 500 51680 17313.26
ta122 50 x 500 52310 17456355
ta123 50 x 500 56570 17406168
ta131 20 x 700 52930 18998219
ta132 20 x 700 53180 18945346
ta133 20 x 700 53730 18938916
ta141 50 x 700 140330 22599326
ta142 50 x 700 141910 22717443
ta143 50 x 700 138580 22593352
ta151 20 x 1000 153180 26357402
ta152 20 x 1000 156180 26503836
ta153 20 x 1000 152210 26332857
ta161 50 x 1000 409729969 30324771
ta162 50 x 1000 403270031 30462154
ta163 50 x 1000 400140 30231104
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Table 5: NEH on GPU, raw data excerpt.

Instance Dimension Time[ms] Cost
ta001 5 x 20 1.08 725.85
ta002 5 x 20 1.074 782.5
ta003 5 x 20 1.069 705.45
ta011 10 x 20 1.644 1097.95
ta012 10 x 20 1.643 1179.6
ta013 10 x 20 1.637 1026.75
ta021 20 x 20 2.775 1711.4
ta022 20 x 20 2.783 1600.3
ta023 20 x 20 2.804 1721.8
ta031 5 x 50 4.798 1381.44
ta032 5 x 50 4.761 1468.84
ta033 5 x 50 4.774 1340.06
ta041 10 x 50 8.191 1838.92
ta042 10 x 50 8.23 1773.48
ta043 10 x 50 8.194 1691.98
ta051 20 x 50 15.118 2623.64
ta052 20 x 50 15.077 2473.04
ta053 20 x 50 15.085 2454.22
ta061 5 x 100 16.694 2683.96
ta062 5 x 100 16.686 2651.39
ta063 5 x 100 16.821 2547.08
ta071 10 x 100 30.171 3170.92
ta072 10 x 100 30.24 2914.06
ta073 10 x 100 30.215 3050.38
ta081 20 x 100 57.282 3853.99
ta082 20 x 100 57.326 3911.82
ta083 20 x 100 57.311 3886.27
ta091 10 x 200 112.925 5534.27
ta092 10 x 200 113.063 5459.82
ta093 10 x 200 112.84 5490.955
ta101 20 x 200 216.288 6380.72
ta102 20 x 200 215.998 6526.98
ta103 20 x 200 216.051 6614.165
ta111 20 x 500 4746.499 13833.76
ta112 20 x 500 4749.154 14152.622
ta113 20 x 500 4749.458 13991.408
ta121 50 x 500 11666.221 17313.26
ta122 50 x 500 11666.494 17456.355
ta123 50 x 500 11669.276 17501.094
ta131 20 x 700 19687.812 19113.73
ta132 20 x 700 19695.082 19011.922
ta133 20 x 700 19704.531 19038.971
ta141 50 x 700 48438.355 22660.654
ta142 50 x 700 48452.395 22834.645
ta143 50 x 700 48448.176 22681.174
ta151 20 x 1000 71390.695 26609.447
ta152 20 x 1000 71422.367 26785.055
ta153 20 x 1000 71299.961 26604.393
ta161 50 x 1000 175719.016 30651.863
ta162 50 x 1000 175845.5 30744.207
ta163 50 x 1000 175729.656 30450.488
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4.2 2-opt algorithm

In this section, the experimentation performed on CUDA accelerated 2-opt and the se-
quential implementation of 2-opt for permutative flowshop with makespan criterion is
described, comparing primarily the execution times, but also the solutions costs. The
subset of standard Taillard data set was used (described in Section 4.4), with the problem
instance size given in machines × jobs(m × n) varying from 5 × 20 to 20 × 200. Eleven
different sizes were used. Of each size, three different instances were evaluated. The
description of the experiment setup follows, with the analysis of results given in 5.2.

4.2.1 Experiment setup

The experimentation was conducted on the server at the Media Research Lab (MRL) at
the VSB-Technical University of Ostrava. The specification of the platform is given in 4.1.

The 2-opt algorithm requires an initial solution. In order to make simple and valid
comparison between sequential and accelerated version, both were in each experiments
started on the same solution defined by the jobs indices sorted in ascending order from
1 to n, where n is total number of jobs. The solution found slightly differs between se-
quential and parallel implementation, moreover, in parallel version the solution found is
dependent on the number of blocks in the grid, however the semantics of the algorithm
is similar. It could be expected that the accelerated version would produce better solu-
tions on average, as the selection of the best solution from the solutions found by several
blocks is incorporated in the algorithm. Because of this asymmetry, the analysis contains
also the comparison of the solutions costs.

As stated before, the analysis of the experiments is presented in Section 5.2. The full
experiment results are not included due to the space limitations, but can be found on CD
(appendix A). The excerpt from the experiment results is presented in Tables 6 for the
sequential version, and 7 for the parallel version. Only the solution costs and execution
times are included.
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Table 6: 2-opt algorithm on CPU, raw data excerpt.

Instance Dimension Time[ms] Cost
ta001 20 x 5 10.000 719.650
ta002 20 x 5 20.000 773.750
ta003 20 x 5 0.000 686.100
ta011 20 x 10 10.000 1135.150
ta012 20 x 10 10.000 1188.600
ta013 20 x 10 0.000 1036.150
ta021 20 x 20 40.000 1732.700
ta022 20 x 20 40.000 1653.550
ta023 20 x 20 30.000 1710.400
ta031 50 x 5 1020.000 1337.020
ta032 50 x 5 720.000 1407.260
ta033 50 x 5 360.000 1331.560
ta041 50 x 10 840.000 1860.680
ta042 50 x 10 920.000 1773.200
ta043 50 x 10 1070.000 1690.080
ta051 50 x 20 1920.000 2644.400
ta052 50 x 20 1860.000 2493.760
ta053 50 x 20 1410.000 2500.960
ta061 100 x 5 20700.000 2599.780
ta062 100 x 5 19940.000 2517.350
ta063 100 x 5 26140.000 2442.560
ta071 100 x 10 27000.000 3118.270
ta072 100 x 10 31550.000 2859.560
ta073 100 x 10 31580.000 3003.790
ta081 100 x 20 36650.000 3888.720
ta082 100 x 20 27820.000 3948.160
ta083 100 x 20 32540.000 3973.800
ta091 200 x 10 736830.000 5419.690
ta092 200 x 10 887660.062 5374.070
ta093 200 x 10 852780.000 5391.405
ta101 200 x 20 1031000.000 6408.830
ta102 200 x 20 858579.938 6507.830
ta103 200 x 20 1028030.000 6571.595
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Table 7: 2-opt algorithm on GPU, raw data excerpt.

Instance Dimension Time[ms] Cost
ta001 20 x 5 23.215 727.400
ta002 20 x 5 21.931 779.000
ta003 20 x 5 25.332 693.800
ta011 20 x 10 22.705 1133.400
ta012 20 x 10 40.095 1182.500
ta013 20 x 10 37.502 1016.200
ta021 20 x 20 65.291 1738.300
ta022 20 x 20 69.687 1621.850
ta023 20 x 20 61.437 1771.850
ta031 50 x 5 666.402 1345.500
ta032 50 x 5 509.422 1413.320
ta033 50 x 5 363.188 1311.100
ta041 50 x 10 855.166 1826.540
ta042 50 x 10 903.844 1711.680
ta043 50 x 10 570.023 1697.600
ta051 50 x 20 1030.254 2685.180
ta052 50 x 20 1257.727 2563.140
ta053 50 x 20 1232.024 2459.820
ta061 100 x 5 4529.776 2615.760
ta062 100 x 5 5291.183 2537.040
ta063 100 x 5 5956.760 2447.880
ta071 100 x 10 6764.501 3104.000
ta072 100 x 10 4912.090 2897.560
ta073 100 x 10 5275.224 3091.010
ta081 100 x 20 9502.793 3862.780
ta082 100 x 20 7281.413 3943.160
ta083 100 x 20 9851.810 3869.120
ta091 200 x 10 61722.469 5392.215
ta092 200 x 10 59540.703 5404.975
ta093 200 x 10 61247.547 5432.610
ta101 200 x 20 62891.551 6459.505
ta102 200 x 20 68402.836 6522.060
ta103 200 x 20 72442.133 6592.815
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4.3 Chaos driven DABC for FSSLS

The experiments performed on Chaos driven DABC for the lot-streaming flowshop schedul-
ing problem with setup time, no-idle case, as well as chaos generated data sets used for
testing, are described in the following text.

4.3.1 Chaotic maps generated data sets

In keeping with the theme of utilising the chaotic maps in lieu of PRNG, the data sets have
been generated using two unique chaotic maps; the Lozi and the Dissipative map. Five
unique sizes of data sets have been generated. They are from 10 jobs x 5 machines, 20 jobs
x 10 machines, 50 jobs x 25 machines, 75 jobs x 30 machines and 100 jobs x 50 machines.
There are 5 instances for each data set size, therefore, in total 25 data set instances for
each of the Lozi and Dissipative data sets.

In order to have unique data sets, each instance was initialised from a unique start
position of the respective chaotic system. Additionally, the map was not allowed to be
reinitialised. Two different maps were used in order to gain more diversity, due to their
different maps in the data sets, and to remove any particular bias when using any one
system.

The datasets are available at [21] for download.

4.3.2 Experiment setup

The operating parameters of CDABC are given in Table 8. All parameters were kept con-
stant for all the experimentation, in order not to introduce a bias. All experiments were
conducted on the machine having Intel i7-3610QM CPU processor running at 2.3GHz
with 8GB of RAM. All codes were written in the C programming language, compiled
with the gcc 4.6.2.

Table 8: DABC Operating parameters, FSSLS

Parameter Value
Food Source (FS) 30
Limit (food source) 50
Loopmax (Local Search) 200
Local search probability (PL) 0.2
Neighbourhood List (NL) 20
Winning Neighbourhood List (WNL) 0.75 x NL
Iterations 100

For each instance, fifteen (15) repeated experimentations were conducted in order to
obtain statistical variance. Therefore, 375 individual experiments were conducted on the
Lozi and Dissipative data sets, a total of 750 experimentations. The excerpts from the
results for both data sets are given in Tables 9 and 10. Only cost values and execution
times are shown for a selected subset of instances, for every instance and every CPRNG,
only 3 experiments are shown out of actually conducted 15. The averaged results together
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with analysis is given in Section 5.3. The full experiment results with schedules can be
found on CD (appendix A).
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Table 9: CDABC for FSSLS, Lozi data set, raw data excerpt.

Instance PRNG Time[s] Cost
1 MT 0.195 541
1 MT 0.196 541
1 MT 0.185 541
1 AC 0.243 541
1 AC 0.236 541
1 AC 0.243 541
1 B 0.549 541
1 B 0.559 541
1 B 0.545 541
1 DL 0.748 541
1 DL 0.754 541
1 DL 0.749 541
1 Dis 0.357 541
1 Dis 0.419 541
1 Dis 0.344 541
1 Hen 0.232 541
1 Hen 0.226 541
1 Hen 0.218 541
1 I 0.421 541
1 I 0.424 541
1 I 0.41 541
1 Lozi 0.371 541
1 Lozi 0.385 541
1 Lozi 0.381 541
1 S 0.282 541
1 S 0.269 541
1 S 0.273 541
1 T 0.697 541
1 T 0.702 541
1 T 1.166 541
2 MT 0.19 430
2 MT 0.21 430
2 MT 0.205 430
2 AC 0.254 430
2 AC 0.254 430
2 AC 0.254 430
2 B 0.57 430
2 B 0.549 430
2 B 0.561 430
2 DL 0.763 430
2 DL 1.557 430
2 DL 0.774 430
2 Dis 0.343 430
2 Dis 0.341 430
2 Dis 0.358 430
2 Hen 0.211 430
2 Hen 0.198 430
2 Hen 0.217 430
2 I 0.453 430
2 I 0.449 430
2 I 0.435 430
2 Lozi 0.388 430
2 Lozi 0.37 430
2 Lozi 0.365 430
2 S 0.251 430
2 S 0.257 430
2 S 0.259 430
2 T 0.708 430
2 T 0.705 430
2 T 0.692 430

Instance PRNG Time[s] Cost
24 MT 22.089 12312
24 MT 26.279 12281
24 MT 22.67 12373
24 AC 19.793 12449
24 AC 25.293 12544
24 AC 21.909 12525
24 B 59.571 12231
24 B 59.94 12237
24 B 70.411 12231
24 DL 87.717 12233
24 DL 92.298 12190
24 DL 77.252 12099
24 Dis 24.479 12430
24 Dis 25.735 12411
24 Dis 38.597 12351
24 Hen 21.482 12448
24 Hen 20.887 12603
24 Hen 21.238 12543
24 I 33.047 12393
24 I 33.887 12399
24 I 31.579 12337
24 Lozi 43.571 12250
24 Lozi 38.08 12273
24 Lozi 39.243 12454
24 S 20.58 12513
24 S 21.266 12612
24 S 22.278 12464
24 T 72.793 12198
24 T 78.809 12193
24 T 75.34 12177
25 MT 25.049 13103
25 MT 22.368 13130
25 MT 21.203 13038
25 AC 22.902 13105
25 AC 20.997 13237
25 AC 22.293 13231
25 B 56.682 12922
25 B 56.498 12955
25 B 60.393 12959
25 DL 89.408 13042
25 DL 80.929 12851
25 DL 83.357 13014
25 Dis 22.938 13193
25 Dis 32.031 13215
25 Dis 35.441 13118
25 Hen 21.512 13168
25 Hen 22.097 13161
25 Hen 51.677 13226
25 I 81.007 13100
25 I 80.896 13147
25 I 74.162 13113
25 Lozi 89.444 13079
25 Lozi 87.481 13075
25 Lozi 88.124 13007
25 S 48.567 13153
25 S 45.368 13221
25 S 24.819 13278
25 T 79.53 12960
25 T 72.315 12966
25 T 71.877 12901
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Table 10: CDABC for FSSLS, Dissipative data set, raw data excerpt.

Instance PRNG Time[s] Cost
1 MT 0.196 701
1 MT 0.203 701
1 MT 0.192 701
1 AC 0.25 701
1 AC 0.252 701
1 AC 0.25 701
1 B 0.564 701
1 B 0.57 701
1 B 0.559 701
1 DL 0.755 701
1 DL 0.752 701
1 DL 1.595 701
1 Dis 0.659 701
1 Dis 0.553 701
1 Dis 0.342 701
1 Hen 0.215 701
1 Hen 0.237 701
1 Hen 0.227 701
1 I 0.445 701
1 I 0.412 701
1 I 0.413 701
1 Lozi 0.373 701
1 Lozi 0.383 701
1 Lozi 0.377 701
1 S 0.256 701
1 S 0.267 701
1 S 0.275 701
1 T 0.705 701
1 T 0.705 701
1 T 0.703 701
2 MT 0.203 621
2 MT 0.215 621
2 MT 0.19 621
2 AC 0.246 621
2 AC 0.265 621
2 AC 0.266 621
2 B 0.56 621
2 B 0.586 621
2 B 0.562 621
2 DL 0.782 621
2 DL 0.774 621
2 DL 0.77 621
2 Dis 0.334 621
2 Dis 0.334 621
2 Dis 0.573 621
2 Hen 0.339 621
2 Hen 0.339 621
2 Hen 0.443 621
2 I 0.817 621
2 I 0.778 621
2 I 0.423 621
2 Lozi 0.385 621
2 Lozi 0.386 621
2 Lozi 0.388 621
2 S 0.274 621
2 S 0.265 621
2 S 0.282 621
2 T 0.706 621
2 T 0.709 621
2 T 0.716 621

Instance PRNG Time[s] Cost
24 MT 26.136 34085
24 MT 23.431 33839
24 MT 23.236 33971
24 AC 22.519 33949
24 AC 23.561 34145
24 AC 23.479 34043
24 B 69.266 33654
24 B 70.231 33856
24 B 65.999 33774
24 DL 105.283 33682
24 DL 85.099 33571
24 DL 80.458 33685
24 Dis 24.646 34169
24 Dis 25.706 34223
24 Dis 25.704 34303
24 Hen 25.103 34158
24 Hen 22.915 34297
24 Hen 25.997 34326
24 I 32.312 34017
24 I 30.587 34266
24 I 32.903 33832
24 Lozi 39.479 34098
24 Lozi 40.567 34047
24 Lozi 49.592 33910
24 S 23.175 34528
24 S 18.975 34421
24 S 19.713 34215
24 T 84.954 33795
24 T 80.616 33731
24 T 77.767 33636
25 MT 26.873 31587
25 MT 29.769 31617
25 MT 22.38 31484
25 AC 32.748 31658
25 AC 30.435 31849
25 AC 25.84 31757
25 B 91.647 31336
25 B 67.751 31169
25 B 56.953 31254
25 DL 78.94 31306
25 DL 79.416 31220
25 DL 81.774 31238
25 Dis 27.239 31562
25 Dis 28.064 31626
25 Dis 24.69 31673
25 Hen 22.016 31795
25 Hen 21.887 32205
25 Hen 21.431 31798
25 I 32.862 31586
25 I 41.377 31394
25 I 32.28 31618
25 Lozi 37.742 31515
25 Lozi 39.537 31433
25 Lozi 46.143 31444
25 S 20.038 31966
25 S 23.717 31672
25 S 18.898 31940
25 T 72.454 31142
25 T 80.864 31172
25 T 77.846 31214
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4.4 Chaos based DABC for FSSNW

The experimentation conducted on CDABC for Flowshop with no wait constraint is pre-
sented in the following text. The entire experimentation was conducted on the Taillard
data sets [109], which is a set of 12 data classes of different sizes, each of which contains
ten unique instances; therefore a total of 120 data instances.

4.4.1 Experiment setup

The operating parameters of CDABC are given in Table 11. All parameters were kept con-
stant for all the experimentation, in order not to introduce a bias. All experiments were
conducted on the machine having Intel i7-3610QM CPU processor running at 2.3GHz
with 8GB of RAM. All codes were written in the C programming language.

Table 11: DABC Operating parameters, FSSNW

Parameter Value
Food Source (FS) 30
Limit (food source) 50
Loop (Local Search) 200
Local search probability (PL) 0.2
Neighbourhood List (NL) 20
Winning Neighbourhood List (WNL) 0.75 x NL
Iterations 100

For each instance, fourteen (14) repeated experimentations were conducted by each
variant of CDABC in order to obtain statistical variance. Therefore, 1680 individual ex-
periments were conducted by each variant, leading to a sum total of 16800 experimen-
tations for all ten variants. The summarized results are presented in Section 5.4. The
excerpt from the raw experiment results is given in Table 12. The full experiment results
with the schedules can be found on CD (appendix A).
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Table 12: CDABC for FSSNW, raw data excerpt.

Instance PRNG Time[s] Cost
1 MT 0.499 15698.000
1 MT 0.452 15674.000
1 MT 0.390 15674.000
1 AC 0.468 15770.000
1 AC 0.406 15901.000
1 AC 0.374 15947.000
1 B 1.154 15674.000
1 B 1.295 15674.000
1 B 1.154 15674.000
1 DL 1.700 15674.000
1 DL 1.779 15674.000
1 DL 1.794 15674.000
1 Dis 0.733 15735.000
1 Dis 0.718 15747.000
1 Dis 0.858 15877.000
1 Hen 0.562 15887.000
1 Hen 0.483 15904.000
1 Hen 0.468 15919.000
1 I 1.030 15745.000
1 I 0.920 15698.000
1 I 0.827 15712.000
1 Lozi 0.562 15712.000
1 Lozi 0.546 15788.000
1 Lozi 0.421 15698.000
1 S 0.266 15832.000
1 S 0.234 15821.000
1 S 0.249 15774.000
1 T 0.655 15674.000
1 T 0.655 15674.000
1 T 0.671 15692.000
2 MT 0.187 17334.000
2 MT 0.203 17349.000
2 MT 0.187 17314.000
2 AC 0.234 17391.000
2 AC 0.265 17541.000
2 AC 0.250 17317.000
2 B 0.561 17300.000
2 B 0.546 17323.000
2 B 0.531 17270.000
2 DL 0.765 17270.000
2 DL 0.733 17253.000
2 DL 0.749 17270.000
2 Dis 0.328 17454.000
2 Dis 0.327 17441.000
2 Dis 0.312 17284.000

Instance PRNG Time[s] Cost
2 Hen 0.218 17487.000
2 Hen 0.219 17560.000
2 Hen 0.218 17557.000
2 I 0.421 17278.000
2 I 0.406 17348.000
2 I 0.421 17376.000
2 Lozi 0.359 17250.000
2 Lozi 0.374 17426.000
2 Lozi 0.390 17345.000
2 S 0.265 17432.000
2 S 0.250 17427.000
2 S 0.249 17423.000
2 T 0.686 17253.000
2 T 0.687 17270.000
2 T 0.702 17250.000

120 MT 22.854 15576118.000
120 MT 20.826 15666154.000
120 MT 31.013 15557789.000
120 AC 23.072 16236131.000
120 AC 21.310 16077374.000
120 AC 20.732 15835144.000
120 B 62.088 15090556.000
120 B 57.018 14997325.000
120 B 54.694 15075423.000
120 DL 75.863 14766976.000
120 DL 73.819 14692441.000
120 DL 80.684 14802511.000
120 Dis 23.883 15668987.000
120 Dis 28.221 15728190.000
120 Dis 28.096 15749201.000
120 Hen 20.811 16201379.000
120 Hen 22.042 15908671.000
120 Hen 21.248 15738736.000
120 I 31.122 15675062.000
120 I 33.447 15525855.000
120 I 41.683 15505109.000
120 Lozi 38.439 15367175.000
120 Lozi 37.846 15404853.000
120 Lozi 46.504 15415979.000
120 S 18.299 16211489.000
120 S 18.548 16114351.000
120 S 25.600 16026086.000
120 T 77.064 14766974.000
120 T 73.055 14941783.000
120 T 78.968 14816968.000



88

4.5 Chaos based DABC for QAP

The experimentation with CDABC solving quadratic assignment problem is presented in
this section. The QAP problem dataset used for the experimentation was obtained from
the OR Library [9].

4.5.1 Experiment setup

The experimentation were conducted on the Tesla server with the following specifica-
tions: Intel Xeon, CPU E5-2640 v2 running at 2GHz with 8 cores and 2GB of cache, hosted
at the Media Research Lab [56].

The operating CDABC parameters are given in Table 13. All the parameters were kept
fixed for all the simulations in order not to introduce any bias into the experimentations.

Table 13: Operating parameters of CDABC algorithm

Parameter Value
Food Source (FS) 30
Limit (food source) 50
Loop (Local Search) 200
Local search probability (PL) 0.2
Neighbourhood List (NLL) 20
Winning Neighbourhood List (WNLL) 0.75 x NLL

Iterations 100

QAP problem dataset on which the experimentation was conducted comprises sev-
enteen different problem instances, with different flow dominance. For each problem in-
stance, fifteen experiments were conducted. Therefore, 255 experiments were conducted
for each CDABC variant, leading to a total of 1275 experiments. The example of the raw
experiment output data is given in Table 14. The full experiment results with schedules
can be found on CD (appendix A). The summary and analysis of results is presented in
Section 5.5.
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Table 14: CDABC for QAP, raw data excerpt.

Instance PRNG Time[s] Cost
bur26a B 1.250 5434708.000
bur26a B 1.240 5434266.000
bur26a B 1.250 5433411.000
bur26a DL 1.430 5434761.000
bur26a DL 1.450 5432106.000
bur26a DL 1.450 5428840.000
bur26a Lozi 0.760 5432456.000
bur26a Lozi 0.780 5435114.000
bur26a Lozi 0.750 5438253.000
bur26a MT 0.500 5432953.000
bur26a MT 0.530 5442118.000
bur26a MT 0.540 5435803.000
bur26a T 1.700 5434274.000
bur26a T 1.710 5433864.000
bur26a T 1.670 5433795.000
bur26b B 1.220 3822118.000
bur26b B 1.280 3825837.000
bur26b B 1.250 3818177.000
bur26b DL 1.410 3819110.000
bur26b DL 1.490 3825036.000
bur26b DL 1.450 3820506.000
bur26b Lozi 0.790 3820225.000
bur26b Lozi 0.750 3821108.000
bur26b Lozi 0.800 3826437.000
bur26b MT 0.520 3826062.000
bur26b MT 0.490 3828199.000
bur26b MT 0.500 3825380.000
bur26b T 1.710 3819869.000
bur26b T 1.730 3820521.000
bur26b T 1.690 3825028.000
bur26c B 1.260 5429416.000
bur26c B 1.210 5429545.000
bur26c B 1.220 5430086.000
bur26c DL 1.460 5429579.000
bur26c DL 1.470 5429456.000
bur26c DL 1.450 5427731.000
bur26c Lozi 0.800 5430488.000
bur26c Lozi 0.810 5434209.000
bur26c Lozi 0.810 5431637.000
bur26c MT 0.480 5434833.000
bur26c MT 0.480 5435117.000
bur26c MT 0.480 5433763.000
bur26c T 1.740 5427797.000
bur26c T 1.700 5426955.000
bur26c T 1.770 5429140.000
bur26d B 1.250 3822178.000
bur26d B 1.230 3821827.000
bur26d B 1.250 3822446.000
bur26d DL 1.490 3822461.000
bur26d DL 1.450 3822061.000
bur26d DL 1.420 3821885.000
bur26d Lozi 0.750 3823662.000
bur26d Lozi 0.760 3821687.000
bur26d Lozi 0.820 3822553.000
bur26d MT 0.640 3822211.000
bur26d MT 0.580 3824521.000
bur26d MT 0.520 3822869.000
bur26d T 1.720 3822003.000
bur26d T 1.730 3821645.000
bur26d T 1.700 3821847.000

Instance PRNG Time[s] Cost
bur26e B 1.260 5388099.000
bur26e B 1.230 5389227.000
bur26e B 1.270 5389258.000
bur26e DL 1.440 5389361.000
bur26e DL 1.430 5388735.000
bur26e DL 1.450 5388682.000
bur26e Lozi 0.780 5389194.000
bur26e Lozi 0.800 5389457.000
bur26e Lozi 0.770 5388229.000
bur26e MT 0.480 5390077.000
bur26e MT 0.490 5387722.000
bur26e MT 0.480 5390558.000
bur26e T 1.730 5388683.000
bur26e T 1.720 5389581.000
bur26e T 1.730 5387929.000
bur26f B 1.400 3782665.000
bur26f B 1.240 3782582.000
bur26f B 1.240 3783125.000
bur26f DL 1.430 3782740.000
bur26f DL 1.450 3782694.000
bur26f DL 1.440 3782779.000
bur26f Lozi 0.790 3782642.000
bur26f Lozi 0.800 3783427.000
bur26f Lozi 0.770 3783120.000
bur26f MT 0.500 3783248.000
bur26f MT 0.520 3782993.000
bur26f MT 0.540 3783454.000
bur26f T 1.700 3782527.000
bur26f T 1.710 3782703.000
bur26f T 1.660 3782480.000
bur26g B 1.250 10120994.000
bur26g B 1.220 10120678.000
bur26g B 1.230 10120623.000
bur26g DL 1.440 10119051.000
bur26g DL 1.460 10120600.000
bur26g DL 1.430 10120772.000
bur26g Lozi 0.780 10121481.000
bur26g Lozi 0.790 10125382.000
bur26g Lozi 0.790 10123368.000
bur26g MT 0.500 10122060.000
bur26g MT 0.480 10123729.000
bur26g MT 0.510 10123012.000
bur26g T 1.710 10121225.000
bur26g T 1.720 10122125.000
bur26g T 1.710 10121358.000
bur26h B 1.290 7098658.000
bur26h B 1.250 7100978.000
bur26h B 1.260 7099509.000
bur26h DL 1.530 7100807.000
bur26h DL 1.510 7100115.000
bur26h DL 1.490 7099216.000
bur26h Lozi 0.760 7100957.000
bur26h Lozi 0.780 7100443.000
bur26h Lozi 0.770 7101166.000
bur26h MT 0.500 7112147.000
bur26h MT 0.550 7099421.000
bur26h MT 0.480 7101725.000
bur26h T 1.680 7098905.000
bur26h T 1.690 7099750.000
bur26h T 1.710 7100418.000



90

Table 15: CDABC for QAP, raw data excerpt, part 2.

Instance PRNG Time[s] Cost
chr25a B 1.140 5572.000
chr25a B 1.140 5202.000
chr25a B 1.180 5824.000
chr25a DL 1.320 5452.000
chr25a DL 1.340 4998.000
chr25a DL 1.330 5238.000
chr25a Lozi 0.720 5206.000
chr25a Lozi 0.710 5114.000
chr25a Lozi 0.720 5288.000
chr25a MT 0.490 5896.000
chr25a MT 0.460 5872.000
chr25a MT 0.430 5588.000
chr25a T 1.580 5282.000
chr25a T 1.530 5494.000
chr25a T 1.580 5462.000
kra30a B 1.650 94900.000
kra30a B 1.650 92420.000
kra30a B 1.630 93590.000
kra30a DL 1.880 92770.000
kra30a DL 1.920 93930.000
kra30a DL 1.900 93720.000
kra30a Lozi 1.010 94320.000
kra30a Lozi 1.010 93670.000
kra30a Lozi 1.020 94650.000
kra30a MT 0.640 94480.000
kra30a MT 0.670 96080.000
kra30a MT 0.690 95180.000
kra30a T 2.260 93530.000
kra30a T 2.230 94250.000
kra30a T 2.230 93400.000
kra30b B 1.600 94590.000
kra30b B 1.580 95670.000
kra30b B 1.610 93920.000
kra30b DL 1.930 95410.000
kra30b DL 1.910 93940.000
kra30b DL 1.900 93790.000
kra30b Lozi 1.010 94740.000
kra30b Lozi 1.060 93610.000
kra30b Lozi 1.030 96460.000
kra30b MT 0.670 96490.000
kra30b MT 0.650 96540.000
kra30b MT 0.710 97270.000
kra30b T 2.280 94640.000
kra30b T 2.240 93240.000
kra30b T 2.270 94980.000
tai20b B 0.780 122887368.000
tai20b B 0.740 123130616.000
tai20b B 0.780 123479352.000
tai20b DL 0.880 122516280.000
tai20b DL 0.900 123362968.000
tai20b DL 0.900 123778912.000
tai20b Lozi 0.460 124190568.000
tai20b Lozi 0.460 123314376.000
tai20b Lozi 0.470 123340648.000
tai20b MT 0.310 123573184.000
tai20b MT 0.320 123737144.000
tai20b MT 0.300 123975176.000
tai20b T 1.040 122695464.000
tai20b T 1.040 122684136.000
tai20b T 1.040 122941640.000

Instance PRNG Time[s] Cost
tai25b B 1.140 349144384.000
tai25b B 1.130 351333952.000
tai25b B 1.130 348650016.000
tai25b DL 1.360 347545376.000
tai25b DL 1.360 349100576.000
tai25b DL 1.350 349108448.000
tai25b Lozi 0.740 351248192.000
tai25b Lozi 0.740 348984448.000
tai25b Lozi 0.730 350668064.000
tai25b MT 0.460 349597824.000
tai25b MT 0.470 357016320.000
tai25b MT 0.450 350177024.000
tai25b T 1.550 346665792.000
tai25b T 1.580 347447328.000
tai25b T 1.560 345230656.000
tai30b B 1.690 646048064.000
tai30b B 1.640 644814976.000
tai30b B 1.640 642084544.000
tai30b DL 1.890 644693120.000
tai30b DL 1.890 652857472.000
tai30b DL 1.910 642384896.000
tai30b Lozi 1.030 651466944.000
tai30b Lozi 1.070 643570240.000
tai30b Lozi 1.020 644374656.000
tai30b MT 0.630 645105152.000
tai30b MT 0.650 645856832.000
tai30b MT 0.690 644553408.000
tai30b T 2.250 644099968.000
tai30b T 2.250 642299264.000
tai30b T 2.230 639882304.000
tai35b B 2.280 287764576.000
tai35b B 2.320 288945440.000
tai35b B 2.330 286918496.000
tai35b DL 2.800 287914720.000
tai35b DL 2.740 286455392.000
tai35b DL 2.740 287806496.000
tai35b Lozi 1.480 291141024.000
tai35b Lozi 1.470 289470624.000
tai35b Lozi 1.490 294444480.000
tai35b MT 1.000 291282944.000
tai35b MT 0.990 293113600.000
tai35b MT 0.990 292140704.000
tai35b T 3.130 288337664.000
tai35b T 3.160 288305600.000
tai35b T 3.190 286219584.000
tai40b B 2.900 683002240.000
tai40b B 3.000 659806912.000
tai40b B 2.950 677257536.000
tai40b DL 3.530 663156928.000
tai40b DL 3.580 667944576.000
tai40b DL 3.570 645325184.000
tai40b Lozi 1.880 664733120.000
tai40b Lozi 1.880 673773056.000
tai40b Lozi 1.990 657746560.000
tai40b MT 1.280 663268672.000
tai40b MT 1.240 650451968.000
tai40b MT 1.260 686733824.000
tai40b T 4.120 664290112.000
tai40b T 4.160 647138304.000
tai40b T 4.150 665227776.000
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Table 16: CDABC for QAP, raw data excerpt, part 3.

Instance PRNG Time[s] Cost
tai50b B 4.540 471272768.000
tai50b B 4.590 472595072.000
tai50b B 4.520 472204672.000
tai50b DL 5.360 476478656.000
tai50b DL 5.390 476339168.000
tai50b DL 5.370 471390400.000
tai50b Lozi 2.950 482963584.000
tai50b Lozi 2.870 481309376.000

Instance PRNG Time[s] Cost
tai50b Lozi 2.950 477692928.000
tai50b MT 1.830 484745568.000
tai50b MT 1.950 477929120.000
tai50b MT 1.940 483437856.000
tai50b T 6.210 476373440.000
tai50b T 6.180 476028288.000
tai50b T 6.360 473094144.000

4.6 Chaos based DABC for CVRP

The experimentation on CDABC for the CVRP problem was conducted under the same
setup as the one for QAP. CVRP problem dataset, consisting of twelve different instances,
was obtained from [110], with the range from 75 to 385 customers. Fifteen experiments
were conducted on each instance, each variant having 195 simulations, leading to a total
of 975 experiments.

The hardware configuration and CDABC operating parameters are described in the
CDABC for QAP experimentation, Section 4.5. The analysis of results is presented in
Section 5.6. The example from the experiment output is given in Table 17. The table
contains first 3 results out of total 15 experiments conducted for each problem instance an
each pseudo-random generator. Only costs and execution times of the problem solutions
are shown. The full experiment results with schedules can be found on CD (appendix A).

Table 17: CDABC for CVRP, raw data excerpt.

Instance PRNG Time[s] Cost
tai100a B 2.130 3036.258
tai100a B 2.140 3063.774
tai100a B 2.170 3129.280
tai100a DL 2.570 3157.669
tai100a DL 2.630 3163.348
tai100a DL 2.620 3207.618
tai100a Lozi 1.520 3452.867
tai100a Lozi 1.430 3493.153
tai100a Lozi 1.430 3407.510
tai100a MT 0.830 3635.807
tai100a MT 0.950 3510.925
tai100a MT 0.980 3595.376
tai100a T 3.020 3077.968
tai100a T 3.080 2922.230
tai100a T 3.030 3052.822
tai100b B 2.190 2930.631
tai100b B 2.190 3026.870
tai100b B 2.090 3147.590

Instance PRNG Time[s] Cost
tai100b DL 2.670 3122.648
tai100b DL 2.610 3037.660
tai100b DL 2.620 2985.854
tai100b Lozi 1.420 3242.182
tai100b Lozi 1.400 3290.250
tai100b Lozi 1.370 3259.391
tai100b MT 0.920 3332.140
tai100b MT 0.900 3417.404
tai100b MT 0.870 3459.588
tai100b T 3.000 2937.629
tai100b T 3.080 2714.647
tai100b T 3.050 2978.178
tai100c B 2.170 2204.639
tai100c B 2.150 2180.118
tai100c B 2.180 2224.191
tai100c DL 2.610 2231.104
tai100c DL 2.620 2125.710
tai100c DL 2.630 2150.054
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Table 18: CDABC for CVRP, raw data excerpt, part 2.

Instance PRNG Time[s] Cost
tai100c Lozi 1.380 2413.912
tai100c Lozi 1.360 2378.772
tai100c Lozi 1.400 2394.359
tai100c MT 0.920 2461.691
tai100c MT 0.900 2497.000
tai100c MT 0.920 2546.055
tai100c T 3.140 1986.135
tai100c T 3.030 2101.921
tai100c T 3.050 1925.270
tai100d B 2.120 2482.153
tai100d B 2.160 2531.926
tai100d B 2.150 2488.516
tai100d DL 2.700 2441.306
tai100d DL 2.670 2454.727
tai100d DL 2.670 2446.918
tai100d Lozi 1.420 2641.425
tai100d Lozi 1.400 2724.867
tai100d Lozi 1.460 2661.619
tai100d MT 0.930 2820.969
tai100d MT 0.970 2640.192
tai100d MT 0.950 2711.797
tai100d T 3.160 2435.865
tai100d T 3.080 2380.239
tai100d T 3.150 2383.848
tai150a B 3.100 5458.163
tai150a B 3.140 5022.197
tai150a B 3.110 5447.435
tai150a DL 3.830 5437.270
tai150a DL 3.910 5697.197
tai150a DL 3.820 5543.035
tai150a Lozi 2.050 6217.642
tai150a Lozi 1.990 6220.327
tai150a Lozi 2.010 5966.238
tai150a MT 1.320 6444.245
tai150a MT 1.390 6348.214
tai150a MT 1.380 6221.090
tai150a T 4.500 5540.755
tai150a T 4.500 5464.627
tai150a T 4.430 5389.713
tai150b B 3.130 5180.753
tai150b B 3.130 5439.010
tai150b B 3.100 5006.230
tai150b DL 3.810 5063.437
tai150b DL 3.750 4827.841
tai150b DL 3.820 5080.392
tai150b Lozi 2.090 5641.168
tai150b Lozi 2.080 5821.550
tai150b Lozi 2.080 5662.979
tai150b MT 1.340 6202.055
tai150b MT 1.330 5932.041
tai150b MT 1.270 5942.922
tai150b T 4.480 4946.197
tai150b T 4.410 5142.101
tai150b T 4.420 5054.248
tai150c B 3.180 4469.299
tai150c B 3.200 4494.129
tai150c B 3.120 4788.574
tai150c DL 3.870 4285.029
tai150c DL 3.800 4108.254
tai150c DL 3.790 4493.352

Instance PRNG Time[s] Cost
tai150c Lozi 2.100 4973.259
tai150c Lozi 2.090 5196.848
tai150c Lozi 2.010 4963.071
tai150c MT 1.380 5336.271
tai150c MT 1.310 5487.854
tai150c MT 1.320 5591.835
tai150c T 4.540 4121.433
tai150c T 4.510 4165.498
tai150c T 4.450 4103.235
tai150d B 3.160 4944.467
tai150d B 3.090 5007.555
tai150d B 3.140 5008.102
tai150d DL 3.840 5092.319
tai150d DL 3.730 5161.389
tai150d DL 3.860 4834.228
tai150d Lozi 2.040 5460.960
tai150d Lozi 2.060 5225.324
tai150d Lozi 2.080 5510.790
tai150d MT 1.350 5807.081
tai150d MT 1.350 5718.907
tai150d MT 1.350 5856.792
tai150d T 4.410 4801.818
tai150d T 4.430 4763.122
tai150d T 4.530 4819.787
tai385 B 8.840 50970.082
tai385 B 8.730 53868.105
tai385 B 8.830 53655.703
tai385 DL 10.480 54007.609
tai385 DL 10.440 54082.902
tai385 DL 10.400 53675.328
tai385 Lozi 5.870 59026.758
tai385 Lozi 5.730 61179.621
tai385 Lozi 5.540 61782.418
tai385 MT 3.690 64552.980
tai385 MT 3.570 66458.000
tai385 MT 3.550 64911.215
tai385 T 12.240 51441.602
tai385 T 12.220 51118.766
tai385 T 12.020 51220.199
tai75a B 1.680 2146.866
tai75a B 1.720 2215.826
tai75a B 1.700 2141.800
tai75a DL 2.000 2067.634
tai75a DL 2.050 2167.237
tai75a DL 2.040 2122.669
tai75a Lozi 1.080 2171.114
tai75a Lozi 1.080 2255.785
tai75a Lozi 1.090 2315.647
tai75a MT 0.710 2380.950
tai75a MT 0.740 2363.137
tai75a MT 0.700 2355.405
tai75a T 2.380 2108.802
tai75a T 2.380 2118.359
tai75a T 2.420 2046.926
tai75b B 1.660 1755.918
tai75b B 1.740 1760.224
tai75b B 1.690 1744.971
tai75b DL 2.040 1720.482
tai75b DL 2.040 1736.641
tai75b DL 2.040 1743.031
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Table 19: CDABC for CVRP, raw data excerpt, part 3.

Instance PRNG Time[s] Cost
tai75b Lozi 1.120 1806.191
tai75b Lozi 1.120 1819.417
tai75b Lozi 1.100 1810.348
tai75b MT 0.740 1870.131
tai75b MT 0.720 1909.485
tai75b MT 0.730 1857.421
tai75b T 2.430 1662.084
tai75b T 2.370 1668.737
tai75b T 2.410 1644.342
tai75c B 1.650 1786.257
tai75c B 1.670 1739.125
tai75c B 1.650 1774.615
tai75c DL 2.090 1711.402
tai75c DL 2.020 1770.101
tai75c DL 2.020 1767.942
tai75c Lozi 1.010 1843.797
tai75c Lozi 1.080 1878.654
tai75c Lozi 1.020 1822.863
tai75c MT 0.720 1920.342
tai75c MT 0.720 1977.484

Instance PRNG Time[s] Cost
tai75c MT 0.690 1931.137
tai75c T 2.430 1648.094
tai75c T 2.420 1705.667
tai75c T 2.420 1717.407
tai75d B 1.660 1885.371
tai75d B 1.680 1877.672
tai75d B 1.670 1842.354
tai75d DL 2.020 1853.000
tai75d DL 2.000 1813.701
tai75d DL 2.010 1790.526
tai75d Lozi 1.030 2029.151
tai75d Lozi 1.100 2015.536
tai75d Lozi 1.080 2017.102
tai75d MT 0.700 2071.202
tai75d MT 0.720 2085.977
tai75d MT 0.730 2114.971
tai75d T 2.440 1785.311
tai75d T 2.410 1740.977
tai75d T 2.400 1825.728

4.7 Centralities Based ABC

The following section describes the experimentation conducted for two implementations
of the centralities Based ABC, Adaptive ABC 1 and Adaptive ABC 2. The standard test
functions for continuous domain optimisation were used as a benchmark. Two sets of ex-
periments were performed: First set of tests was run on small to medium scale problems
with the parameter setting described in Section 4.7.2. The second set of tests improves
upon the first one, fine tuning the parameters, running on medium to large scale prob-
lems as well. It is described in Section 4.7.4.

4.7.1 Experiment set 1: small and medium scale problems

The performances of Adaptive ABC 1 and Adaptive ABC 2 were compared against the
performance of the original ABC on small to medium scale problems, optimising the
functions of the standard test set: Schwefel, De Jong 1, De Jong 3, De Jong 4, Rosenbrock’s
Saddle, Rastrigin, Griewangk, Sine Envelope Sine Wave, Ackley One, Ackley Two, Egg
Holder, Michalewicz, Master’s Cosine Wave, and Schekel’s Foxhole, testing for 10, 20 and
30 dimensions.

4.7.2 Experiment set 1 setup

The experiments were conducted again on the server at Media Research Lab (MRL) at the
VSB-Technical University of Ostrava, with the following CPU specifications: Intel Xeon
CPU E5-2640 v2 with 2.00GHz frequency.
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For each of the algorithms, the experiments with population of 15, 30, 45 and 60 solu-
tions were made. The rest of the parameters were set as follows: the termination criterion
was 100 generations. The network was evaluated after every 5th generation, with 40%
lowest ranking solutions being recreated.

For every algorithm, problem, dimension and every tested value of the number of
solutions (15, 30, 45 and 60), 30 experiments were done to obtain the statistically valid
sample. This makes up the total amount of 3 × 168 × 30 = 15120 experiments. The
statistical analysis of results is described in Section 5.7.1

4.7.3 Experiment set 2: small and medium scale problems

In this experiment set, the Adaptive ABC 1 and Adaptive ABC 2 are again compared to
ABC, this time also on medium to large scale problems, optimising the functions of the
same test set: Schwefel, De Jong 1, De Jong 3, De Jong 4, Rosenbrock’s Saddle, Rastrigin,
Griewangk, Sine Envelope Sine Wave, Stretch V Sine Wave, Ackley One, Ackley Two,
Egg Holder, Michalewicz, Master’s Cosine Wave, and Schekel’s Foxhole, testing for 30,
40, 50, 75 and 100 dimensions, in the allowed range of values between -100 to 100 for each
dimension, with 15 repetitions for each problem and dimension.

Moreover, the experiments on Adaptive ABC 3, as well as Adaptive ABC 3.b and 3.c
were performed, to compare the effect of different centrality measure choice, as well as
the effect of elitism incorporated in the pruning of the nodes logic. Five different versions
of the complex network analysis incorporating modifications to the ABC algorithm are
compared against the canonical variant.

4.7.4 Experiment set 2 setup

The platform used for testing is the same as in the first test set, described in 4.7.2, how-
ever, the parameter settings are changed. Extensive experimentation was performed to
find the best parameter values of each algorithm. The resulting optimal parameter set-
tings used for each algorithm are given in Table 20.

The excerpt from the raw experiment data comparing the results of ABC, Adaptive
ABC 1, Adaptive ABC 2 and Adaptive ABC 3, 3.b and 3.c is shown in the Tables 22, 23,
24, 25, 26 and 27. Due to the space limitations, only selected problems (Schwefel, De Jong
1, Masters Cosine Wave, Shekel’s Foxhhole) are included in the tables; for each of these
problems and each dimension, the first 3 outputs of 15 repeated experiments are shown.
The solutions as well as full experiment results can be found on CD (appendix A). The
statistically analysed data is presented in Section 5.7.2.

The next part of the experiment set compares the centrality measures employed in
the ABC: Degree centrality, Closeness and Betweenness. The parameter settings used to
compare effects of different vertex centrality choice on Adaptive ABC 3, Adaptive ABC
3.b, as well as Adaptive ABC 3.c, are given in Table 21.

The results for different centrality options are compared for each of the three algo-
rithms separately. The conclusions are discussed in the analysis Section 5.7.2. The full
output data for this experiment can be found on CD (appendix A).
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Table 20: Parameters setting of ABC, Adaptive ABC 1, Adaptive ABC 2, Adaptive ABC
3, 3.b, and 3.c

ABC Adaptive ABC 1 Adaptive ABC 2
Parameter Value Parameter Value Parameter Value
Number of Solutions 30 Number of Solutions 30 Number of Solutions 30
Number of Generations 1000 Number of Generations 1000 Number of Generations 1000
Limit 50 Limit - Limit -
CN Gen.Number - CN Gen.Number 30 CN Gen.Number 50
CN Cutoff - CN Cutoff 0,1 CN Cutoff 0,3
CN Measure - CN Measure - CN Measure -
CN Elitism - CN Elitism - CN Elitism -

Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
Parameter Value Parameter Value Parameter Value
Number of Solutions 30 Number of Solutions 30 Number of Solutions 30
Number of Generations 1000 Number of Generations 1000 Number of Generations 1000
Limit - Limit - Limit -
CN Gen.Number 30 CN Gen.Number 15 CN Gen.Number 15
CN Cutoff 0,1 CN Cutoff 0,1 CN Cutoff 0,3
CN Measure 22 CN Measure 11 CN Measure 22

CN Elitism - CN Elitism 0,6 CN Elitism 0,6
*1: Closeness

*2: Betweenness

Table 21: Parameters setting of Adaptive ABC 3, 3.b, 3.c

Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
Parameter Value Parameter Value Parameter Value
Number of Solutions 30 Number of Solutions 30 Number of Solutions 30
Number of Generations 750 Number of Generations 750 Number of Generations 750
Limit - Limit - Limit -
CN Gen.Number1 30 CN Gen.Number1 15 CN Gen.Number1 15
CN Cutoff2 0.1 CN Cutoff2 0.1 CN Cutoff2 0.3

CN Elitism3 0,6 CN Elitism3 0,6
*1: Number of generations before the complex network is evaluated

*2: Ratio of solutions to remove on centrality ranking evaluation
*3: Ratio of best solutions to always keep when pruning nodes
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Table 22: ABC, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.14
1 10 -636.350 0.15
1 10 -636.350 0.14
1 20 -1272.700 0.17
1 20 -1263.467 0.18
1 20 -1272.700 0.17
1 30 -1899.817 0.21
1 30 -1898.642 0.22
1 30 -1899.817 0.21
1 40 -2517.699 0.26
1 40 -2526.929 0.24
1 40 -2517.682 0.24
1 50 -3133.489 0.30
1 50 -3153.679 0.30
1 50 -3117.643 0.30
1 100 -6099.227 0.49
1 100 -6089.252 0.51
1 100 -6129.309 0.49
2 10 0.000 0.11
2 10 0.000 0.11
2 10 0.000 0.11
2 20 0.000 0.15
2 20 0.000 0.19
2 20 0.000 0.20
2 30 0.000 0.13
2 30 0.000 0.11
2 30 0.000 0.13
2 40 0.000 0.16
2 40 0.000 0.16
2 40 0.000 0.16
2 75 0.001 0.15
2 75 0.002 0.14
2 75 0.000 0.16
2 100 0.031 0.16
2 100 0.436 0.17
2 100 0.006 0.15

Problem Dimension Cost Time[s]
15 10 -8.336 0.21
15 10 -8.337 0.21
15 10 -8.337 0.21
15 20 -17.479 0.32
15 20 -16.738 0.34
15 20 -13.808 0.32
15 30 -21.317 0.48
15 30 -18.878 0.47
15 30 -15.595 0.48
15 40 -26.797 0.58
15 40 -19.435 0.58
15 40 -21.681 0.58
15 50 -21.701 0.69
15 50 -25.087 0.70
15 50 -23.898 0.70
15 100 -17.513 1.31
15 100 -11.510 1.31
15 100 -8.597 1.32
16 10 -1.333 0.55
16 10 -0.448 0.54
16 10 -1.371 0.54
16 20 -0.247 0.93
16 20 -0.247 0.95
16 20 -0.247 0.92
16 30 -0.538 1.34
16 30 -0.538 1.34
16 30 -0.538 1.35
16 40 -0.213 1.76
16 40 -0.214 1.76
16 40 -0.214 1.76
16 75 -0.081 3.14
16 75 -0.075 3.17
16 75 -0.069 3.14
16 100 -0.025 4.16
16 100 -0.025 4.16
16 100 -0.024 4.19
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Table 23: Adaptive ABC 1, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.06
1 10 -636.350 0.06
1 10 -636.350 0.07
1 20 -1272.700 0.10
1 20 -1272.700 0.11
1 20 -1272.700 0.10
1 30 -1899.809 0.14
1 30 -1889.194 0.14
1 30 -1890.452 0.15
1 40 -2498.385 0.18
1 40 -2508.294 0.18
1 40 -2515.889 0.18
1 50 -3065.721 0.22
1 50 -3100.432 0.23
1 50 -3112.273 0.23
1 100 -5740.985 0.44
1 100 -5823.000 0.45
1 100 -5665.651 0.45
2 10 0.000 0.03
2 10 0.000 0.03
2 10 0.000 0.04
2 20 0.000 0.04
2 20 0.000 0.04
2 20 0.000 0.04
2 30 0.000 0.06
2 30 0.000 0.04
2 30 0.000 0.05
2 40 0.000 0.05
2 40 0.000 0.06
2 40 0.000 0.06
2 75 0.682 0.07
2 75 0.780 0.08
2 75 0.067 0.08
2 100 3.300 0.09
2 100 2.564 0.09
2 100 0.970 0.09

Problem Dimension Cost Time[s]
15 10 -8.341 0.12
15 10 -8.341 0.13
15 10 -8.342 0.12
15 20 -17.563 0.25
15 20 -17.537 0.25
15 20 -16.745 0.25
15 30 -24.100 0.36
15 30 -24.706 0.37
15 30 -23.120 0.36
15 40 -18.266 0.48
15 40 -23.558 0.50
15 40 -33.905 0.49
15 50 -21.106 0.62
15 50 -17.432 0.62
15 50 -21.512 0.61
15 100 -19.811 1.22
15 100 -10.746 1.22
15 100 -17.157 1.23
16 10 -0.425 0.46
16 10 -1.200 0.48
16 10 -0.577 0.48
16 20 -0.369 0.86
16 20 -0.247 0.86
16 20 -0.248 0.87
16 30 -0.535 1.26
16 30 -0.536 1.26
16 30 -0.526 1.27
16 40 -0.212 1.67
16 40 -0.198 1.68
16 40 -0.204 1.66
16 75 -0.083 3.09
16 75 -0.067 3.08
16 75 -0.073 3.07
16 100 -0.020 4.09
16 100 -0.021 4.08
16 100 -0.023 4.09
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Table 24: Adaptive ABC 2, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.05
1 10 -636.350 0.04
1 10 -636.350 0.05
1 20 -1272.697 0.08
1 20 -1272.700 0.08
1 20 -1272.700 0.08
1 30 -1880.831 0.12
1 30 -1890.584 0.12
1 30 -1868.900 0.12
1 40 -2499.198 0.16
1 40 -2489.000 0.16
1 40 -2526.917 0.15
1 50 -3060.772 0.19
1 50 -3081.652 0.19
1 50 -3122.825 0.19
1 100 -5705.364 0.38
1 100 -5978.479 0.38
1 100 -5997.569 0.39
2 10 0.000 0.01
2 10 0.000 0.02
2 10 0.000 0.01
2 20 0.000 0.02
2 20 0.000 0.02
2 20 0.000 0.02
2 30 0.000 0.02
2 30 0.000 0.03
2 30 0.000 0.02
2 40 0.000 0.03
2 40 0.000 0.04
2 40 0.000 0.03
2 75 0.111 0.05
2 75 0.037 0.05
2 75 0.043 0.05
2 100 36.260 0.06
2 100 16.531 0.07
2 100 31.340 0.07

Problem Dimension Cost Time[s]
15 10 -8.342 0.11
15 10 -8.342 0.11
15 10 -8.342 0.11
15 20 -14.510 0.23
15 20 -16.203 0.22
15 20 -13.039 0.22
15 30 -16.944 0.34
15 30 -20.882 0.34
15 30 -19.358 0.34
15 40 -16.250 0.46
15 40 -13.354 0.47
15 40 -14.147 0.45
15 50 -16.821 0.58
15 50 -15.285 0.57
15 50 -17.497 0.58
15 100 -10.962 1.17
15 100 -9.738 1.17
15 100 -10.880 1.16
16 10 -1.251 0.44
16 10 -0.591 0.44
16 10 -0.586 0.45
16 20 -0.411 0.85
16 20 -0.709 0.84
16 20 -0.286 0.85
16 30 -0.525 1.25
16 30 -0.529 1.25
16 30 -0.536 1.24
16 40 -0.214 1.64
16 40 -0.214 1.66
16 40 -0.214 1.65
16 75 -0.092 3.09
16 75 -0.077 3.08
16 75 -0.075 3.09
16 100 -0.047 4.06
16 100 -0.039 4.07
16 100 -0.048 4.07
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Table 25: Adaptive ABC 3, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.05
1 10 -636.350 0.05
1 10 -636.350 0.06
1 20 -1272.700 0.09
1 20 -1272.700 0.09
1 20 -1272.700 0.09
1 30 -1899.523 0.13
1 30 -1898.931 0.13
1 30 -1899.811 0.13
1 40 -2515.410 0.17
1 40 -2488.747 0.16
1 40 -2507.744 0.18
1 50 -3122.912 0.21
1 50 -3090.737 0.21
1 50 -3134.273 0.21
1 100 -5803.864 0.44
1 100 -5625.739 0.43
1 100 -5774.195 0.43
2 10 0.000 0.03
2 10 0.000 0.02
2 10 0.000 0.02
2 20 0.000 0.03
2 20 0.000 0.03
2 20 0.000 0.03
2 30 0.000 0.04
2 30 0.000 0.03
2 30 0.000 0.04
2 40 0.000 0.04
2 40 0.001 0.05
2 40 0.000 0.04
2 75 0.079 0.06
2 75 0.197 0.07
2 75 0.171 0.06
2 100 1.398 0.07
2 100 2.461 0.08
2 100 2.691 0.08

Problem Dimension Cost Time[s]
15 10 -8.341 0.13
15 10 -8.341 0.12
15 10 -8.338 0.12
15 20 -17.373 0.23
15 20 -17.489 0.24
15 20 -17.535 0.23
15 30 -22.087 0.36
15 30 -19.845 0.36
15 30 -25.051 0.36
15 40 -23.885 0.49
15 40 -19.289 0.47
15 40 -24.562 0.47
15 50 -17.451 0.60
15 50 -22.724 0.61
15 50 -18.390 0.60
15 100 -11.461 1.22
15 100 -14.225 1.20
15 100 -9.046 1.19
16 10 -0.470 0.45
16 10 -0.468 0.45
16 10 -1.410 0.45
16 20 -0.266 0.85
16 20 -0.295 0.86
16 20 -0.247 0.84
16 30 -0.534 1.26
16 30 -0.527 1.27
16 30 -0.534 1.26
16 40 -0.205 1.67
16 40 -0.210 1.68
16 40 -0.213 1.66
16 75 -0.070 3.09
16 75 -0.059 3.09
16 75 -0.066 3.09
16 100 -0.021 4.10
16 100 -0.023 4.09
16 100 -0.019 4.10
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Table 26: Adaptive ABC 3.b, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.06
1 10 -636.350 0.06
1 10 -636.350 0.06
1 20 -1272.700 0.10
1 20 -1272.700 0.10
1 20 -1272.700 0.09
1 30 -1899.817 0.14
1 30 -1899.803 0.13
1 30 -1909.040 0.13
1 40 -2518.081 0.18
1 40 -2537.567 0.17
1 40 -2517.688 0.17
1 50 -3138.874 0.21
1 50 -3106.865 0.22
1 50 -3140.961 0.21
1 100 -6078.180 0.44
1 100 -6043.177 0.44
1 100 -5967.345 0.44
2 10 0.000 0.03
2 10 0.000 0.03
2 10 0.000 0.02
2 20 0.000 0.03
2 20 0.000 0.04
2 20 0.000 0.03
2 30 0.000 0.04
2 30 0.000 0.04
2 30 0.000 0.04
2 40 0.000 0.05
2 40 0.000 0.05
2 40 0.000 0.05
2 75 0.002 0.07
2 75 0.002 0.07
2 75 0.002 0.07
2 100 0.353 0.09
2 100 0.026 0.08
2 100 0.299 0.08

Problem Dimension Cost Time[s]
15 10 -8.342 0.12
15 10 -8.342 0.12
15 10 -8.341 0.12
15 20 -17.500 0.25
15 20 -17.474 0.24
15 20 -17.565 0.24
15 30 -23.930 0.37
15 30 -22.540 0.35
15 30 -21.381 0.36
15 40 -20.873 0.48
15 40 -20.496 0.49
15 40 -31.634 0.49
15 50 -16.415 0.60
15 50 -18.478 0.61
15 50 -18.329 0.61
15 100 -18.053 1.19
15 100 -12.298 1.19
15 100 -19.700 1.23
16 10 -0.470 0.45
16 10 -0.356 0.46
16 10 -0.788 0.44
16 20 -0.250 0.87
16 20 -0.250 0.86
16 20 -0.250 0.87
16 30 -0.530 1.27
16 30 -0.535 1.27
16 30 -0.531 1.26
16 40 -0.214 1.68
16 40 -0.214 1.68
16 40 -0.214 1.68
16 75 -0.092 3.10
16 75 -0.077 3.08
16 75 -0.077 3.10
16 100 -0.024 4.09
16 100 -0.025 4.12
16 100 -0.024 4.12
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Table 27: Adaptive ABC 3.c, raw data excerpt

Problem Dimension Cost Time[s]
1 10 -636.350 0.06
1 10 -636.350 0.06
1 10 -636.350 0.06
1 20 -1272.700 0.10
1 20 -1272.700 0.10
1 20 -1272.700 0.10
1 30 -1899.814 0.14
1 30 -1890.584 0.14
1 30 -1890.450 0.14
1 40 -2517.565 0.18
1 40 -2526.927 0.18
1 40 -2499.226 0.19
1 50 -3133.113 0.22
1 50 -3126.973 0.22
1 50 -3133.988 0.22
1 100 -6085.681 0.48
1 100 -6063.059 0.48
1 100 -6061.427 0.48
2 10 0.000 0.03
2 10 0.000 0.02
2 10 0.000 0.03
2 20 0.000 0.04
2 20 0.000 0.03
2 20 0.000 0.04
2 30 0.000 0.04
2 30 0.000 0.04
2 30 0.000 0.05
2 40 0.000 0.05
2 40 0.000 0.05
2 40 0.000 0.05
2 75 0.006 0.07
2 75 0.006 0.07
2 75 0.002 0.08
2 100 0.114 0.08
2 100 0.104 0.09
2 100 0.180 0.09

Problem Dimension Cost Time[s]
15 10 -8.341 0.12
15 10 -8.342 0.12
15 10 -8.341 0.13
15 20 -17.546 0.24
15 20 -17.528 0.24
15 20 -17.399 0.24
15 30 -23.178 0.36
15 30 -21.467 0.35
15 30 -22.856 0.36
15 40 -17.957 0.48
15 40 -19.895 0.50
15 40 -24.203 0.47
15 50 -21.026 0.66
15 50 -20.584 0.65
15 50 -16.330 0.64
15 100 -8.966 1.22
15 100 -21.422 1.22
15 100 -9.054 1.22
16 10 -1.007 0.45
16 10 -0.469 0.46
16 10 -23.667 0.46
16 20 -0.434 0.86
16 20 -0.440 0.87
16 20 -0.343 0.86
16 30 -0.537 1.27
16 30 -0.515 1.27
16 30 -0.527 1.28
16 40 -0.214 1.68
16 40 -0.214 1.68
16 40 -0.214 1.68
16 75 -0.091 3.12
16 75 -0.075 3.11
16 75 -0.075 3.13
16 100 -0.024 4.14
16 100 -0.024 4.15
16 100 -0.025 4.15
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5 Analysis of Results

5.1 NEH

The summarised results of the execution time in milliseconds of the ten instances on both
platforms are given in Table 28. The first column gives the instance size, the second
column is the average time for all ten instances of that particular instance size, the third
column is the GPU computation time and the final column is the percentage relative
difference (PRD) between the CPU and GPU based times computed as in Equation (69).
These results were published in [73].

PRD =
100× (CPU −GPU)

CPU
(69)

For the smaller sized instances of 20 x 5, 20 x 10 and 20 x 20, the CPU version is faster.
This is due to the overhead of the data transfer using the PCI Express bus between the
CPU and GPU. However, from the medium sized problems (50 x 5) onwards, the GPU
variant is faster for all instances. When analysing the PRD values, it becomes obvious
that the relative difference is over 100 for all instances over 50 x 20, peaking at 518.75 for
the 200 x 10 instance.

Analysing the OTS, the average CPU value is 6215.33 and 1406.68 for the GPU. This
gives the average PRD for the twelve sets of 166.46.

For the ETS, the CPU average value is 186949 and 78808 for the GPU. The average
PRD is 150.698 for the four data sets of the ETS.

Overall, the average value is 51398.8 for the CPU and 20757 for the GPU with the
cumulative average PRD value of 162.52.

Therefore, for all the instance sizes barring the first three, GPU has faster execution
times. However, statistical tests are needed to verify if there is significant improvement
when utilising the GPU in respect to the execution times.

5.1.1 t-test analysis

Paired t-test comparison was done on the raw time values for each of the data instances.
Therefore, the execution time for the ten instances in each set was compared pairwise
for the CPU and GPU. The confidence level is 95% for these tests. The t-test results for
each set are given in Table 29. Column one gives the instance size, column two is the t-
value (the absolute value is shown), column three gives the p-value and the final column
outlines the hypothesis. As the confidence level is 95%, we check for p values of less that
0.05 for a not equal hypothesis to hold true.

For the first three instances, the p values are all negligible (p < 0.05), therefore the
CPU is significantly faster than the GPU. For the 50 x 5 and 50 x 10 instances, the p
values are 0.067 and 0.152 (p > 0.05), therefore the hypothesis that the CPU and GPU
implementations performances are not significantly different holds.

For all the remaining data sets the p values are all negligible (p < 0.05), signifying
that the GPU variant is significantly faster than the CPU. As this accounts for all the
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Table 28: NEH results

Instances CPU GPU PRD
20 x 5 0 1.64 -100
20 x 10 0 2.79 -100
20 x 20 2 4.77 -58.07
50 x 5 11 8.19 34.26
50 x 10 20 15.09 32.52
50 x 20 39 16.72 133.29
100 x 5 81 30.21 168.11
100 x 10 180 57.25 214.42
100 x 20 665 112.96 488.73
200 x 10 1337 216.08 518.75
200 x 20 19719 4748.25 315.29
500 x 20 52530 11666.16 350.28
500 x 50 53394 19693.05 171.13
700 x 20 140090 48446.88 189.16
700 x 50 152692 71369.74 113.95

1000 x 20 401620 175722.3 128.55
Mean 51398.8 20757 162.52

larger problem dimensions, it verifies the hypothesis of this research. The final row of
Table 29 gives the cumulative values for all the data sets, which again supports the claim
that the GPU implementation is significantly faster than the CPU.
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Table 29: NEH t-test results

Instances t-value p-value Hypothesis
20 x 5 416.979 0.000 CPU

20 x 10 960.667 0.000 CPU
20 x 20 1196.56 0.000 CPU
50 x 5 2.079 0.067 Equal

50 x 10 1.56 0.152 Equal
50 x 20 660.52 0.000 GPU
100 x 5 12.39 0.000 GPU
100 x 10 28.26 0.000 GPU
100 x 20 18.41 0.000 GPU
200 x 10 28.71 0.000 GPU
200 x 20 235.73 0.000 GPU
500 x 20 486.79 0.000 GPU
500 x 50 90.01 0.000 GPU
700 x 20 150.77 0.000 GPU
700 x 50 337.32 0.000 GPU
1000 x 20 171.23 0.000 GPU

All 7.125 0.000 GPU

5.2 2-opt algorithm

The results of 2-opt CUDA implementation compared to the sequential version are pre-
sented in Table 30. The first column is the instance size, the second column gives the av-
erage CPU execution time in milliseconds for the three instances of given size, the third
column is the average GPU version execution time, the last column is the average PRD
for the given dimension, defined in the equation 69 in the NEH results analysis section.

As the Table 30 shows, the PRD value is negative, i.e. in favour of the CPU implemen-
tation, for the first three dimensions. For the problems with more than 50 jobs, the PRD
value is positive, in favour of the GPU, with the results improving with the dimension
of the problem instance, especially for the problems with 100 jobs and more, where the
improvement is always greater than 72%, 200 jobs sized problems have the improvement
of 92%. It can be therefore stated that the GPU accelerated version is on average faster
than the CPU version. However, the t-test is needed to prove whether this difference is
statistically significant.

Because both algorithms return slightly different results, the analysis of the cost of
solutions found by both of them is also included. It could be expected that the results for
the GPU accelerated implementation would provide slightly improved results, however
the Table 31 shows that this assumption was false. The relative difference is small in all
cases, and it doesn’t show any increasing or decreasing trend with the change of problem
instance dimensions, it is closer to random oscillations.

To find out whether the difference of execution times is significant, the paired t-test
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Table 30: 2-opt execution time

Instances CPU GPU PRD
20 x 5 15.000 23.493 -70.228

20 x 10 10.000 33.434 -234.340
20 x 20 36.667 65.472 -80.745
50 x 5 700.000 513.004 21.009

50 x 10 943.333 776.344 15.559
50 x 20 1730.000 1173.335 30.448
100 x 5 22260.000 5259.240 76.265
100 x 10 30043.333 5650.605 80.891
100 x 20 32336.667 8878.672 72.541
200 x 10 825756.687 60836.906 92.578
200 x 20 972536.646 67912.173 92.962

Table 31: 2-opt solution cost

Instances CPU GPU PRD
20 x 5 726.500 733.400 -0.959
20 x 10 1119.967 1110.700 0.864
20 x 20 1698.883 1710.667 -0.666
50 x 5 1358.613 1356.640 0.157
50 x 10 1774.653 1745.273 1.620
50 x 20 2546.373 2569.380 -0.893
100 x 5 2519.897 2533.560 -0.538
100 x 10 2993.873 3030.857 -1.258
100 x 20 3936.893 3891.687 1.143
200 x 10 5395.055 5409.933 -0.277
200 x 20 6496.085 6524.793 -0.444
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was performed at 95% confidence level. Its results are presented in Table 32. The first
column gives again the instance size, the second and third columns present the resulting
t-value and p-value of the t-test, last column is the conclusion drawn from the t-test, with
three possible values: CPU where the sequential version is better for given instance size,
GPU where the parallel version performs better, or Equal, if there is no significant differ-
ence between the performances. For the problems smaller than 20 jobs, both algorithms
perform at comparatively same speed for 5 machines, however the sequential implemen-
tation is significantly better for problems with 10 and 20 machines. Both sequential and
parallel version are performing similarly for the problems with 50 jobs, however for prob-
lems with schedules greater than 100 jobs, GPU version performs significantly better than
the CPU. The assumption taken from the PRD values is therefore confirmed, the parallel
version is significantly faster than the sequential one.

Table 32: 2-opt t-test results

Instances t-value p-value Hypothesis
20 x 5 2.5091 0.1288 Equal

20 x 10 4.3264 0.0495 CPU
20 x 20 15.756 0.0040 CPU
50 x 5 1.8038 0.2130 Equal

50 x 10 1.0015 0.4221 Equal
50 x 20 2.6927 0.1147 Equal
100 x 5 10.298 0.0093 GPU
100 x 10 11.7225 0.0072 GPU
100 x 20 12.053 0.0068 GPU
200 x 10 16.581 0.0036 GPU
200 x 20 15.777 0.0040 GPU

All 2.7695 0.0093 GPU

5.3 Chaos based DABC for FSSLS

The experiment results summary for CDABC applied to the FSSLS is presented in this
section. The average results obtained by the fifteen experiments are given in Table 33 for
the Lozi data sets and Table 34 for the Dissipative data sets. The results were published
in [71].

From the average results for the Lozi data sets, Tinkerbell has the lowest average val-
ues for 18 data instances. It also has the lowest collective average value of 10241.89. The
second best performing variant is the Delayed Logistic with 10252.36 for the collective
average value. Mersenne twister is the fifth best performing variant with 10359.71.

As in the Lozi case, Tinkerbell and Delayed Logistic are the two best performing vari-
ants in the Dissipative data sets. Tinkerbell obtains 12 best results, whereas Delayed
Logistic obtains seven. For the collective average results, Tinkerbell has 14058.66 com-
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Table 35: Lozi t-test results

Tinkerbell DL Burgers Lozi
t p t p t p t p

DL 2.15 0.032 - - - - - -
Burgers 7.21 0.00 5.07 0.00 - - - -

Lozi 16.85 0.00 15.42 0.00 12.9 0.00 - -
MT 14.38 0.00 13.98 0.00 11.87 0.00 1.47 0.141

Table 36: Dissipative t-test results

Tinkerbell DL Burgers Lozi
t p t p t p t p

DL 2.02 0.044 - - - - - -
Burgers 21.76 0.00 6.64 0.00 - - - -

Lozi 8.71 0.00 20.67 0.00 15.14 0.00 - -
MT 22.77 0.00 21.69 0.00 17.14 0.00 1.41 0.157

pared to 14067.54 for the Delayed Logistic. Once again Mersenne Twister is the fifth best
performing variant with the average of 14184.32.

5.3.1 t-test analysis

From the experimentations, the top four performing chaotic systems of Tinkerbell, De-
layed Logistics, Burgers and Lozi together with the Mersenne Twister are compared pair-
wise for their performance. From the results it is obvious that the significant divergence
of the results occurs from the medium to large data sets, therefore a comprehensive t-
test analysis is conducted from the results of data set of instance 11 to instance 25. As
mentioned, 15 experiments have been conducted for each instance by each variant of the
algorithm.

The t-test takes all the 15 results for each problem instance by the selected variant
and conducts a pairwise comparison. The t and p values for the paired t-test are given in
Table 35 for the Lozi test instances and Table 36 for the Dissipative test instances.

The t-tests were conducted at a 95% confidence level, so all pairwise compared vari-
ants, which have a value of p of less than 0.05 can be interpreted as being significantly
different from each other. From the obtained t-test results (Table 37) all the variants are
significantly different from each other apart from Mersenne Twister and Lozi Map. Based
on these results, it can be inferred that the hierarchy of the five best performing vari-
ants based on average performance are Tinkerbell, Delayed Logistic, Burgers, Lozi and
Mersenne Twister for the Lozi data sets. For the Dissipative data sets the best five variants
are Tinkerbell, Delayed Logistic, Lozi, Burgers and Mersenne Twister.

The basic premise of this research is therefore achieved as it has been shown that a
number of different chaotic systems improves DABC, under the same operating param-
eters.



111

Table 37: CDABC, Combined t-test results

Tinkerbell DL Burgers Lozi
D L D L D L D L

DL ̸= ̸= - - - - - -
Burgers ̸= ̸= ̸= ̸= - - - -

Lozi ̸= ̸= ̸= ̸= ̸= ̸= - -
MT ̸= ̸= ̸= ̸= ̸= ̸= = =

D = Dissipative data sets
L = Lozi data sets

Table 38: Comparison of CDABC with EDEC for Lozi Non-Idling results

EDEC CDABCT
Instance Min Max Average Time (sec) Min Max Average Time (sec)

10 x 5 425 554 510.92 0.89 511 511 511 0.88
20 x 10 2017 2230 2139.68 38.78 2099 2102.2 2100.62 3.12
50 x 25 27603 30066 28837.28 494.40 27847.4 28274 28102.08 22.11
75 x 30 7912 8584 8297.76 773.70 11484.5 11631.83 11561.49 32.2

100 x 50 12039 13191 12393.0 3309.70 12226.6 12387.40 12314.46 67.81
Average 9999.20 10925.00 10435.73 923.49 10833.7 10981.29 10917.93 25.23

5.3.2 Comparison with Enhanced Differential Evolution

An algorithm comparison is done with the chaos driven Enhanced Differential Evolution
(EDEC) algorithm of [20]. EDE algorithm is an extension of the canonical DE algorithm,
with backward/forward transformation structure and embedded local search. EDEC has
been shown to significantly improve upon EDE. The comparison between EDEC and
CDABC for the Lozi data sets is given in Table 38. In this case, the Tinkerbell variant
of CDABC (CDABCT) is chosen as it is the best performing.

Four different parameters are presented; minimum, maximum, average and execu-
tion time for each instance class. The instance class here refers to the grouping of the
problems according to size; 10 x 5, 20 x 10, 50 x 25, 75 x 30 and 100 x 50.

The parameter of most interest is the average, as it presents the overall performance
of the algorithm. CDABCT has three better class averages of size 20 x 10, 50 x 25 and
100 x 50, whereas EDEC performs better for the 10 x 5 and 75 x 30. Also, EDEC has
the better cumulative average of 10435.73 compared to 10917.93. However, it is quite
obvious that the bias of the 75 x 30 (8297.76 against 11561.49) data class greatly influences
the cumulative average in EDEC favour.

The comparison results between EDEC and CDABCT for the Dissipative data sets are
given in Table 39. Apart from the 10 x 5 data class, CDABCT obtains better results for
all the remaining data classes, in addition to the cumulative average value of 14058.74
against 14152.97.

Therefore, it can be stated that CDABCT is a better performing algorithm compared
to EDEC for the non-idling problem.
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Table 39: Comparison of CDABC with EDEC for Dissipative Non-Idling results

EDEC CDABCT
Instance Min Max Average Time (sec) Min Max Average Time (sec)

10 x 5 613 762 700.60 0.20 705 705 705 0.72
20 x 10 2145 2494 2276.27 40.32 2228.8 2237.2 2232.49 2.62
50 x 25 12897 15936 14517.47 514.40 14181.6 14355.2 14281.97 17.36
75 x 30 20437 21958 20931.2 772.3 20686.4 20938 20811.04 32.87
100 x 50 30904 33984 32339.33 3401.40 32092 32411 32263.2 80
Average 13399.20 15026.80 14152.97 945.62 13978.76 14129.28 14058.74 26.71

5.4 Chaos based DABC for FSSNW

The average results obtained by the 140 experiments of each problem data class are given
in Tables 40 and 41. From the results, it can be concluded that the two most promising
results are from the Tinkerbell and Delayed Logistic map systems. Tinkerbell has the best
average results for the 20 x 5, 20 x 10, 100 x 5, 100 x 10, 100 x 20, 200 x 10, 200 x 20 and
500 x 20 data sets. Delayed Logistic obtains the best results for the remaining data sets
of 20 x 20, 50 x 5, 50 x 10 and 50 x 20 data sets. Additionally, it obtains better cumulative
average value and standard deviation. The results were published in [74].

5.4.1 t-test analysis

The paired t-test is conducted pairwise on all the different variants of CDABC. All the
raw results were used for the computations, implying that for each variant, all 1680 re-
sults were pairwise compared. The results comprising of the t and p values is given
in Table 42. For all the t-test comparisons, the p value is compared to a 95% confidence
level. In terms of significance, it can be postulated from the results that all variants of CD-
ABC are significantly different. Therefore, it becomes obvious that the order of the best
performing variants is given as Delayed Logistic, Tinkerbell, Burgers, Lozi, Mersenne
Twister, Ikeda, Dissipative, Arnold Cat, Sinai and Henon Map.
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Table 40: Summarised results for Mersenne Twister, Arnold Cat, Burgers, Delayed Logis-
tic and Dissipative Maps

MT Arnold Cat Burgers Delayed Logistic Dissipative
20 x 5 16211.94 16333.94 16188.50 16183.76 16315.27

20 x 10 23560.44 23787.04 23525.30 23520.45 23756.47
20 x 20 38593.95 38857.17 38551.00 38537.12 38842.35
50 x 5 84813.39 86367.90 83775.64 83207.16 85919.88

50 x 10 119748.21 122404.80 118449.56 117580.99 121999.04
50 x 20 175302.27 178829.33 173224.56 171925.68 178313.36
100 x 5 332715.06 344226.62 326877.84 324506.33 341968.45
100 x 10 458246.87 475807.93 450901.06 447582.99 472777.88
100 x 20 637540.68 661497.84 628598.67 623943.67 657132.23
200 x 10 1821165.26 1912745.61 1786033.84 1770658.18 1895025.71
200 x 20 2463227.25 2591044.94 2420490.61 2398351.19 2571131.01
500 x 20 15572075.59 16013990.10 15067932.90 14815045.71 15870479.40
Average 1811933.41 1872157.77 1761212.46 1735920.27 1856138.42
StdDev 4403079.05 4528691.58 4260041.78 4188289.04 4487960.06

Time 5.76 5.60 13.99 19.58 6.47

Table 41: Summarised results for Henon, Ikeda, Lozi, Sinai and Tinkerbell Maps

Henon Ikeda Lozi Sinai Tinkerbell
20 x 5 16432.11 16241.76 16233.55 16378.60 16182.42
20 x 10 23911.16 23641.86 23622.57 23826.85 23516.82
20 x 20 39085.52 38667.38 38646.44 38959.71 38546.31
50 x 5 86881.14 85028.39 84597.73 86821.97 83370.07
50 x 10 123106.13 120354.07 119831.39 122926.35 117754.74
50 x 20 180033.85 175847.83 175407.02 179771.59 172261.97
100 x 5 347755.44 334855.24 333891.74 346144.03 323948.20

100 x 10 480264.36 462990.53 460947.43 478851.04 447040.17
100 x 20 668043.29 645101.83 641935.18 665638.75 622663.85
200 x 10 1933300.76 1847125.13 1837010.47 1929469.41 1764057.10
200 x 20 2623881.93 2504658.01 2492349.47 2614873.97 2391550.34
500 x 20 16042336.93 15575355.41 15441420.64 16147232.41 14890741.87
Average 1880419.38 1819155.62 1805491.14 1887574.56 1740969.49
StdDev 4536745.05 4404156.64 4366160.60 4566556.19 4209720.31

Time 5.67 8.35 9.70 5.15 18.28

Table 42: Paired t-test results: t and p values

MT Arnold Cat Burgers DL Disspative Henon Ikeda Lozi Sinai
t p t p t p t p t p t p t p t p t p

MT - - - - - - - - - - - - - - - - - -
Arnold Cat 19.58 0.00 - - - - - - - - - - - - - - - -

Burgers 15.2 0.00 18.1 0.00 - - - - - - - - - - - - - -
DL 15.42 0.00 17.61 0.00 14.69 0.00 - - - - - - - - - - - -

Dissipative 20.49 0.00 11.23 0.00 11.205 0.00 17.61 0.00 - - - - - - - - - -
Henon 21.16 0.00 6.67 0.00 18.84 0.00 18.25 0.00 15.54 0.00 - - - - - - - -
Ikeda 7.43 0.00 17.71 0.00 17.37 0.00 16.92 0.00 17.45 0.00 19.33 0.00 - - - - - -
Lozi 5.17 0.00 17.52 0.00 17.79 0.00 17.13 0.00 17.49 0.00 18.79 0.00 11.82 0.00 - - - -
Sinai 19.47 0.00 9.95 0.00 18.08 0.00 17.65 0.00 14.82 0.00 4.64 0.00 17.9 0.00 17.68 0.00 - -

Tinkerbell 15.97 0.00 18.06 0.00 15.93 0.00 6.84 0.00 18.21 0.00 18.72 0.00 17.57 0.00 17.98 0.00 18.07 0.00
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5.5 Chaos based DABC for QAP

The following text presents the statistical analysis of experiment results. Three differ-
ent statistical measures of importance; cumulative average, standard deviation of the
results and average time, were calculated for each problem instance. These measures
for the DABC with Mersenne Twister (DABCMT), CDABCB, CDABCDL, CDABCL and
CDABCT are given in Table 44. Results of QAP experiment were published as part of
[75].

According to the results, the CDABCT is the best performing variant of the CDABC
algorithm. Of the seventeen instances, it has the better average for thirteen instances.
These are spread over the different problem instances of bur, kra, tai and chr instance
types in the dataset. CDABCB map has one better average for the bur26e instance, while
CDABCDL has three better average instances of kra30a, bur26b and tai40b.

In terms of cumulative average values of all the seventeen instances, CDABCT has
better cumulative average of 151351762.78 and the smallest cumulative standard devia-
tion of 1.08E+06. In terms of execution time, DABCMT has the lowest execution time of
0.67 seconds compared to 2.241 seconds for the CDABCT.

5.5.1 t-test analysis

Paired t-test analysis was conducted on the raw data for the different variants in order
to analyse if there is any significant difference between them. All 255 instances for the
different variants were pairwise compared and the respective t-value and p-value was
calculated. The t-test results are given in Table 43.

The variants were tested at 95% confidence level, and from the results only the CDABCB,
CDABCDL and CDABCDL, CDABCT variants are not significantly different. All the other
variants are significantly different pairwise.

Based on these results, we can confidently state that chaos maps significantly improve
on the Mersenne Twister PRNG in DABC algorithm. In terms of hierarchy obtained
from the cumulative average values, the order can be given as CDABCT, CDABCDL,
CDABCB, CDABCL and DABCMT.

Table 43: t-test results for the QAP problem instances

DABCMT CDABCB CDABCDL CDABCL
t-value p-value t-value p-value t-value p-value t-value p-value

CDABCB 5.432 1.298e−7

CDABCDL 5.6864 3.555e−8 1.667 0.0967
CDABCL 2.711 0.0072 2.903 0.0040 4.4266 1.0e−5

CDABCT 7.298 3.727e−12 2.4407 0.0153 0.994 0.3207 4.6278 5.8973e−6
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5.6 Chaos based DABC for CVRP

The analysis of experiment results for CDABC solving CVRP problem was performed in
the same manner as that of QAP, found in Section 5.5. The same three attributes; average,
standard deviation and execution time, were obtained for each problem instance. The
tabulated results are given in Table 46. These results were published as part of [75]. For
the CVPR problem, CDABCT is the best performing variant for all the problem instances,
with CDABCB the second best performing.

In terms of cumulative average values, CDABCT has the best cumulative average
value of 6826.437 and standard deviation of 112.973. DABCMT once again has the lowest
execution time of 1.1195 seconds.

5.6.1 t-test analysis

Paired t-test was again applied to the different algorithms in order to ascertain if there
was significant difference between each two of the variants. The t-test results are given
in Table 45. At 95% confidence level, only the CDABCB, CDABCDL maps are not sig-
nificantly different, whereas all the other variants are significantly different pairwise.
Through the analysis of the cumulative values in Table 46, we can state that the order
of best performing variants is CDABCT, CDABCB, CDABCDL, CDABCL and DABCMT.

Table 45: t-test results for the CVRP problem instances

DABCMT CDABCB CDABCDL CDABCL
t-value p-value t-value p-value t-value p-value t-value p-value

CDABCB 6.023 8.403e−9

CDABCDL 6.399 1.145e−9 1.4114 0.159
CDABCL 6.043 7.603e−9 5.759 3.268e−8 6.408 1.09e−9

CDABCT 6.476 7.515e−10 5.63614 6.061e−8 5.604 7.112e−8 6.523 5.858e−10
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5.7 Centralities Based ABC

This part presents the statistical analysis of the results of experiments conducted on the
Centralities Based ABC, described in Section 4.7. The first part contains the analysis
performed on the first test set (described in Section 4.7.1), with mean, standard deviation
and execution time for each problem and dimension. These results are published in [72].
The second part consists of results of the second test set (presented in Section 4.7.3), with
the same statistical summary for each problem and its selected dimension, together with
the t-test analysis of differences between algorithms. Finally the results of three selected
vertex centrality measures are statistically compared.

5.7.1 Analysis of experiment set 1

The experiment results are shown in Tables 47, 48 and 49. Each table contains data for
one problem dimension setting (10, 20 and 30 variables). Each table row contains exper-
iment data for ABC, Adaptive ABC 1 and Adaptive ABC 2: mean of the best solution
values found for the problem of given dimension, average standard deviation of the best
solution costs, and the average time needed by the algorithm, calculated over the results
with different number of solutions settings (15, 30, 45 and 60 number of solutions). The
best value of each experiment is marked in bold for visual comparison of the algorithm
results.

For problems of size 10, ABC has found best values for 5 problems, Adaptive ABC
1 has better results for 6 problems, Adaptive ABC 2 has found only 3 best values. The
average of standard deviation for all problems is better for ABC, with the value of 718.210,
the second best for Adaptive ABC 1, with the value of 1123.011, and worst for Adaptive
ABC 2, 1574.011.

With the problems size 20, ABC has 4 best values, Adaptive ABC 1 has 6 best values
again, while Adaptive ABC 2 has 4 best values. The total average of standard deviations
is best for Adaptive ABC 1, with the value of 1539920.718, ABC has second best aver-

Table 47: Experiments results, problems with 10 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
10 Mean STD Time Mean STD Time Mean STD Time

Schwefel -3880.080 116.334 0.025 -3907.749 106.029 0.006 -3891.357 106.473 0.006
De Jong One 0.014 0.205 0.019 0.028 0.137 0.002 0.018 0.624 0.002

De Jong Three 0.317 0.381 0.019 0.299 0.323 0.002 0.321 0.874 0.002
De Jong Four 0.003 521.083 0.027 0.001 0.676 0.011 0.000 16.199 0.010
Rosenbrock 1928.039 9.138E+03 0.022 1276.045 1.533E+04 0.005 1260.884 2.164E+04 0.005

Rastrigin -1859.894 88.054 0.024 -1863.108 79.435 0.007 -1868.017 95.773 0.007
Griewangk 0.119 0.071 0.025 0.125 0.073 0.008 0.116 0.086 0.008

Sine Envelope Sine Wave -12.172 0.382 0.032 -12.269 0.395 0.017 -12.212 0.403 0.018
Ackley One -35.943 0.950 0.031 -35.854 0.961 0.011 -35.776 0.856 0.012
Ackley Two 158.680 8.515 0.035 158.636 8.593 0.016 161.207 10.592 0.016
Egg Holder -3721.439 179.570 0.030 -3698.499 196.476 0.011 -3658.960 161.040 0.011
Michalewicz -13.657 0.589 0.053 -14.020 0.544 0.033 -13.906 0.665 0.036

Masters Cosine Wave -0.297 0.280 0.034 -0.273 0.288 0.015 -0.229 0.214 0.015
Shekels Foxhole -0.844 0.243 0.079 -0.809 0.272 0.060 -0.584 0.191 0.060



119

Table 48: Experiments results, problems with 20 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
20 Mean STD Time Mean STD Time Mean STD Time

Schwefel -6888.910 206.794 0.028 -6920.429 186.889 0.011 -6903.745 210.672 0.011
De Jong One 95.523 459.192 0.020 56.656 996.295 0.003 110.205 1648.798 0.002

De Jong Three 58.780 47.833 0.020 72.478 46.505 0.002 80.503 48.015 0.002
De Jong Four 1.189E+04 3.938E+07 0.036 7.688E+03 2.099E+07 0.020 4.169E+03 6.209E+07 0.019
Rosenbrock 8.467E+04 5.550E+05 0.025 1.581E+05 5.347E+05 0.009 9.392E+04 4.046E+06 0.010

Rastrigin -1.149E+03 2.830E+04 0.030 4.502E+02 2.850E+04 0.014 1.884E+03 4.568E+04 0.013
Griewangk 1.019 0.272 0.032 0.979 0.340 0.016 1.027 0.415 0.016

Sine Envelope Sine Wave -18.008 1.138 0.050 -17.753 1.096 0.033 -18.070 1.088 0.033
Ackley One -64.300 3.311 0.043 -64.007 3.526 0.026 -64.740 2.997 0.024
Ackley Two 365.382 7.028 0.051 363.916 7.529 0.033 364.175 7.255 0.033
Egg Holder -6581.499 276.558 0.042 -6589.035 268.476 0.023 -6628.405 285.912 0.023
Michalewicz -24.753 0.964 0.090 -24.887 1.014 0.070 -24.640 1.044 0.073

Masters Cosine Wave -0.192 0.203 0.049 -0.272 0.284 0.030 -0.257 0.198 0.030
Shekels Foxhole -0.161 0.014 0.133 -0.159 0.015 0.119 -0.215 0.095 0.115

Table 49: Experiments results, problems with 30 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
30 Mean STD Time Mean STD Time Mean STD Time

Schwefel -9355.025 316.083 0.033 -9136.969 332.937 0.017 -9103.915 340.394 0.017
De Jong One 1.785E+04 2.675E+04 0.020 1.706E+04 2.015E+04 0.004 1.642E+04 2.802E+04 0.003

De Jong Three 547.536 207.305 0.020 568.659 179.005 0.004 546.905 178.496 0.003
De Jong Four 6.894E+07 5.083E+09 0.045 1.114E+08 2.997E+09 0.029 1.433E+08 7.780E+09 0.028
Rosenbrock 9.752E+05 3.222E+06 0.029 1.238E+06 1.167E+07 0.013 1.123E+06 6.189E+07 0.013

Rastrigin 8.485E+05 1.337E+06 0.037 1.122E+06 1.699E+06 0.020 6.427E+05 1.349E+06 0.020
Griewangk 5.665 7.051 0.040 4.393 5.106 0.024 4.736 5.163 0.024

Sine Envelope Sine Wave -21.167 1.003 0.067 -20.961 1.170 0.050 -21.277 1.178 0.050
Ackley One -87.692 5.600 0.056 -86.643 6.379 0.037 -86.256 5.472 0.036
Ackley Two 567.736 6.181 0.068 563.594 6.892 0.051 561.884 7.050 0.050
Egg Holder -9141.888 397.819 0.055 -8704.746 352.142 0.036 -8704.871 366.210 0.035
Michalewicz -33.760 1.535 0.127 -33.591 1.565 0.110 -33.326 1.477 0.108

Masters Cosine Wave -0.246 0.259 0.066 -0.479 0.294 0.047 -0.527 0.312 0.053
Shekels Foxhole -0.294 0.134 0.189 -0.421 0.022 0.170 -0.423 0.018 0.181
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age standard deviation value of 2854647.978, Adaptive ABC 2 has the largest standard
deviation of 4727753.998.

For the problems size 30, ABC has 5 best values, Adaptive ABC 1 has only 1 best
value, while Adaptive ABC 2 has 7 best values. Average standard deviation of Adaptive
ABC 1 has the lowest value of the three algorithms, with the value of 215051695.164, the
second best is ABC again, with the value of 363408745.264, and the worst value holds
Adaptive ABC 2, with 560248294.495.

For the overall analysis, on the 10 and 20 sized problem, Adaptive ABC 1 has better
performance than both ABC and Adaptive ABC 2. However, for the larger 30 dimen-
sion problem, Adaptive ABC 2 has a marked better performance than Adaptive ABC 1.
We can conclude that the ensemble population is more efficient for higher dimensional
problems.

5.7.2 Analysis of experiment set 2

The results for the second experiment set, are presented in Tables 50 - 58. Each table con-
tains results for one problem dimension (10, 20, 30, 40, 50, 75, 100) reached by ABC and
five centralities based ABC modifications: Adaptive ABC 1, 2, 3, 3.b and 3.c. Each row
contains data for one of the test functions, the last row contains summary: the average for
the dimension. The mean of the costs of best solutions found, the standard deviation of
costs, and the average execution time are presented for every algorithm. Table 59 shows
the average values across all dimensions for each problem, with the last row showing
total mean of each algorithm.

From these results, it can be observed that the Adaptive ABC 3.b has the best overall
average. The 2nd best average was achieved by the Adaptive ABC 3.c. The Adaptive
ABC 3, Adaptive ABC 1 as well as Adaptive ABC 2 have all worse average than the orig-
inal ABC. Comparing by the individual testing problems, The Adaptive ABC 3.b is better
than the original ABC in ten out of total 15 problems. The Adaptive ABC 3.c is better in
nine problems, Adaptive ABC 3 in three problems. The Adaptive ABC 1 improves upon
ABC in only two of the problems, whereas Adaptive ABC 2 gives four better results than
ABC. The results suggest that the algorithms are capable of finding the solutions of differ-
ent quality. This hypothesis is confirmed by the pairwise comparison of the algorithms
using t-test, presented in Table 61. Accordingly, all the algorithms results are statisti-
cally significantly different at 95% confidence level, apart from the Adaptive ABC 1 and
Adaptive ABC 3. Considering this analysis, it can be stated that the Adaptive ABC 3.b
and Adaptive ABC 3.c both significantly improve upon the original ABC algorithm, as
well as the other centralities based ABC versions, showing the necessity to incorporate
the elitism in the low centrality nodes removal logic.
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Table 50: Experiments results, experiment set 2, problems with 10 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
10 Mean STD Time Mean STD Time Mean STD Time

Schwefel -636.350 0.000 0.145 -636.350 0.000 0.065 -636.350 0.000 0.044
De Jong One 0.000 0.000 0.110 0.000 0.000 0.033 0.000 0.000 0.013

De Jong Three 0.000 0.000 0.108 0.000 0.000 0.035 0.000 0.000 0.015
De Jong Four 0.000 0.000 0.177 0.000 0.000 0.098 0.000 0.000 0.084
Rosenbrock 2.133 1.899 0.130 1.017 0.961 0.058 17.487 20.802 0.037

Rastrigin -2000.000 0.000 0.139 -2000.000 0.000 0.065 -2000.000 0.000 0.041
Griewangk 0.003 0.005 0.151 0.001 0.003 0.078 0.005 0.007 0.049

Sine Envelope Sine Wave -13.398 0.028 0.213 -13.430 0.020 0.135 -13.460 0.004 0.109
Stretch V Sine Wave 9.037 0.026 0.302 9.013 0.008 0.215 9.013 0.012 0.203

Ackley One -39.350 0.156 0.178 -39.650 0.077 0.103 -39.734 0.071 0.081
Ackley Two 0.000 0.000 0.194 0.000 0.000 0.121 0.000 0.000 0.091
Egg Holder -1117.474 82.880 0.175 -1151.976 96.639 0.097 -1010.963 106.928 0.078
Michalewicz -14.790 0.448 0.375 -16.236 0.400 0.264 -16.944 0.387 0.233

Masters Cosine Wave -8.338 0.003 0.209 -8.341 0.001 0.125 -8.342 0.000 0.109
Shekels Foxhole -0.641 0.386 0.539 -3.048 9.656 0.471 -0.733 0.242 0.444

Total -254.611 560.401 0.210 -257.267 563.997 0.131 -246.668 550.642 0.109

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
10 Mean STD Time Mean STD Time Mean STD Time

Schwefel -636.350 0.000 0.053 -636.350 0.000 0.058 -636.350 0.000 0.059
De Jong One 0.000 0.000 0.023 0.000 0.000 0.027 0.000 0.000 0.025

De Jong Three 0.000 0.000 0.022 0.000 0.000 0.029 0.000 0.000 0.027
De Jong Four 0.000 0.000 0.085 0.000 0.000 0.089 0.000 0.000 0.087
Rosenbrock 0.784 0.782 0.045 0.291 0.426 0.050 1.059 1.044 0.051

Rastrigin -2000.000 0.000 0.053 -2000.000 0.000 0.058 -2000.000 0.000 0.059
Griewangk 0.001 0.003 0.065 0.001 0.003 0.068 0.004 0.006 0.070

Sine Envelope Sine Wave -13.430 0.018 0.121 -13.460 0.002 0.121 -13.456 0.006 0.123
Stretch V Sine Wave 9.010 0.007 0.204 9.005 0.003 0.209 9.009 0.010 0.209

Ackley One -39.739 0.059 0.091 -39.813 0.015 0.095 -39.811 0.020 0.097
Ackley Two 0.000 0.000 0.110 0.000 0.000 0.119 0.000 0.000 0.120
Egg Holder -1126.979 101.240 0.089 -1201.023 92.494 0.088 -1298.046 58.198 0.090
Michalewicz -16.149 0.385 0.245 -16.884 0.338 0.250 -16.960 0.293 0.254

Masters Cosine Wave -8.340 0.002 0.123 -8.341 0.000 0.120 -8.341 0.001 0.124
Shekels Foxhole -0.615 0.307 0.449 -0.620 0.305 0.453 -3.252 6.550 0.455

Total -255.454 561.482 0.119 -260.480 569.295 0.122 -267.076 580.102 0.123

Table 51: Experiments results, experiment set 2, problems with 20 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
20 Mean STD Time Mean STD Time Mean STD Time

Schwefel -1272.084 2.384 0.176 -1272.700 0.000 0.103 -1271.682 2.821 0.081
De Jong One 0.000 0.000 0.177 0.000 0.000 0.042 0.000 0.000 0.020

De Jong Three 0.000 0.000 0.114 0.000 0.000 0.043 0.000 0.000 0.021
De Jong Four 0.000 0.000 0.271 0.000 0.000 0.187 0.000 0.000 0.167
Rosenbrock 6.082 7.982 0.161 11.130 8.301 0.089 44.236 42.362 0.066

Rastrigin -8000.000 0.000 0.175 -7994.610 14.051 0.107 -7977.992 24.626 0.077
Griewangk 0.001 0.003 0.194 0.001 0.003 0.125 0.009 0.014 0.095

Sine Envelope Sine Wave -27.853 0.147 0.337 -27.872 0.189 0.264 -28.140 0.171 0.229
Stretch V Sine Wave 19.526 0.223 0.522 19.264 0.136 0.444 19.125 0.089 0.420

Ackley One -79.492 0.528 0.266 -80.250 0.402 0.190 -81.023 0.318 0.164
Ackley Two 0.000 0.000 0.317 0.000 0.000 0.266 1.334 5.165 0.207
Egg Holder -1879.144 160.573 0.259 -1899.041 186.893 0.181 -1788.733 171.041 0.153
Michalewicz -26.649 0.799 0.613 -29.323 1.067 0.550 -32.498 1.342 0.485

Masters Cosine Wave -16.975 0.931 0.329 -17.165 0.536 0.251 -15.814 2.351 0.222
Shekels Foxhole -0.247 - 0.936 -0.410 0.202 0.862 -0.479 0.186 0.845

Total -751.789 2016.188 0.323 -752.732 2015.828 0.247 -742.111 2008.543 0.217
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Table 52: Experiments results, experiment set 2, problems with 20 variables, part 2

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
20 Mean STD Time Mean STD Time Mean STD Time

Schwefel -1272.699 0.003 0.091 -1272.643 0.218 0.097 -1272.699 0.001 0.101
De Jong One 0.000 0.000 0.029 0.000 0.000 0.036 0.000 0.000 0.035

De Jong Three 0.000 0.000 0.029 0.000 0.000 0.035 0.000 0.000 0.035
De Jong Four 0.000 0.000 0.163 0.000 0.000 0.161 0.000 0.000 0.231
Rosenbrock 9.571 11.037 0.077 5.444 7.987 0.081 7.301 6.968 0.082

Rastrigin -7999.851 0.245 0.096 -8000.000 - 0.099 -7998.501 5.714 0.103
Griewangk 0.002 0.006 0.110 0.001 0.005 0.114 0.001 0.003 0.119

Sine Envelope Sine Wave -27.854 0.158 0.242 -28.275 0.067 0.243 -28.245 0.072 0.245
Stretch V Sine Wave 19.245 0.106 0.423 19.094 0.045 0.423 19.140 0.061 0.433

Ackley One -80.467 0.424 0.184 -81.528 0.190 0.182 -81.553 0.141 0.191
Ackley Two 0.000 0.001 0.256 0.000 0.000 0.242 0.000 0.000 0.271
Egg Holder -1934.294 98.779 0.175 -2084.353 151.101 0.173 -2034.980 182.218 0.185
Michalewicz -29.364 0.667 0.510 -32.765 0.654 0.519 -32.888 1.026 0.533

Masters Cosine Wave -17.478 0.138 0.235 -17.347 0.424 0.241 -17.472 0.118 0.239
Shekels Foxhole -0.424 0.206 0.852 -0.313 0.137 0.861 -0.458 0.190 0.863

Total -755.574 2018.004 0.231 -766.179 2024.227 0.234 -762.690 2021.952 0.244

Table 53: Experiments results, experiment set 2, problems with 30 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
30 Mean STD Time Mean STD Time Mean STD Time

Schwefel -1899.829 5.823 0.213 -1891.821 8.886 0.141 -1895.748 12.000 0.117
De Jong One 0.000 0.000 0.119 0.000 0.000 0.049 0.000 0.000 0.026

De Jong Three 0.000 0.000 0.123 0.000 0.000 0.049 0.000 0.000 0.027
De Jong Four 0.000 0.000 0.313 0.000 0.000 0.255 0.000 0.000 0.328
Rosenbrock 7.091 6.130 0.192 56.020 27.892 0.120 891.509 2414.158 0.097

Rastrigin -17918.654 42.112 0.219 -17838.674 90.979 0.160 -17706.274 148.238 0.119
Griewangk 0.001 0.003 0.239 0.000 0.000 0.173 0.010 0.014 0.142

Sine Envelope Sine Wave -41.855 0.398 0.462 -41.469 0.395 0.386 -42.395 0.259 0.351
Stretch V Sine Wave 30.532 0.545 0.740 30.168 0.437 0.669 29.550 0.377 0.641

Ackley One -118.513 0.716 0.360 -119.038 0.930 0.283 -121.172 0.687 0.245
Ackley Two 0.008 0.009 0.438 0.091 0.071 0.382 0.060 0.160 0.325
Egg Holder -2578.375 149.720 0.351 -2583.173 161.748 0.273 -2492.603 244.105 0.232
Michalewicz -38.473 1.059 0.869 -40.707 1.210 0.802 -45.407 1.182 0.760

Masters Cosine Wave -20.540 2.717 0.479 -22.755 2.031 0.365 -18.478 3.682 0.339
Shekels Foxhole -0.538 0.000 1.340 -0.531 0.004 1.264 -0.529 0.004 1.247

Total -1505.276 4462.560 0.430 -1496.793 4443.991 0.358 -1426.765 4475.488 0.333

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
30 Mean STD Time Mean STD Time Mean STD Time

Schwefel -1894.065 8.524 0.129 -1902.369 4.256 0.133 -1897.410 7.584 0.140
De Jong One 0.000 0.000 0.035 0.000 0.000 0.042 0.000 0.000 0.043

De Jong Three 0.001 0.002 0.035 0.000 0.000 0.042 0.000 0.000 0.042
De Jong Four 0.000 0.000 0.225 0.000 0.000 0.251 0.000 0.000 0.241
Rosenbrock 49.613 33.469 0.106 16.246 15.356 0.112 25.853 18.293 0.115

Rastrigin -17814.239 84.260 0.142 -17896.761 63.903 0.144 -17846.948 59.390 0.151
Griewangk 0.001 0.004 0.157 0.002 0.004 0.162 0.001 0.003 0.168

Sine Envelope Sine Wave -41.693 0.437 0.363 -42.806 0.168 0.361 -42.666 0.130 0.370
Stretch V Sine Wave 30.103 0.398 0.644 29.474 0.199 0.643 29.376 0.106 0.654

Ackley One -119.623 0.691 0.272 -122.196 0.371 0.276 -122.348 0.259 0.285
Ackley Two 0.175 0.175 0.370 0.015 0.011 0.379 0.019 0.013 0.386
Egg Holder -2592.100 186.541 0.263 -2843.781 193.088 0.259 -2749.223 175.292 0.267
Michalewicz -40.836 1.031 0.776 -46.402 1.074 0.787 -46.531 1.094 0.808

Masters Cosine Wave -22.527 2.311 0.359 -22.570 1.575 0.360 -22.862 1.983 0.359
Shekels Foxhole -0.530 0.004 1.265 -0.532 0.003 1.267 -0.526 0.007 1.271

Total -1496.381 4438.026 0.343 -1522.112 4461.946 0.348 -1511.551 4448.014 0.353
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Table 54: Experiments results, experiment set 2, problems with 40 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
40 Mean STD Time Mean STD Time Mean STD Time

Schwefel -2517.117 9.747 0.250 -2503.965 10.151 0.183 -2500.462 19.317 0.155
De Jong One 0.000 0.000 0.151 0.000 0.000 0.057 0.000 0.000 0.033

De Jong Three 0.000 0.000 0.127 0.009 0.004 0.056 0.000 0.000 0.033
De Jong Four 0.000 0.000 0.391 0.000 0.000 0.309 0.000 0.000 0.291
Rosenbrock 39.843 26.153 0.221 218.971 173.120 0.151 494.042 1366.079 0.127

Rastrigin -31525.824 154.295 0.299 -31181.696 423.923 0.207 -30982.978 347.975 0.161
Griewangk 0.000 0.001 0.282 0.002 0.006 0.221 0.019 0.026 0.191

Sine Envelope Sine Wave -55.809 0.347 0.583 -54.010 0.757 0.515 -56.341 0.389 0.470
Stretch V Sine Wave 42.491 1.076 0.960 41.787 0.697 0.893 40.281 0.500 0.864

Ackley One -157.886 1.228 0.459 -156.374 1.203 0.383 -160.301 0.690 0.334
Ackley Two 0.677 1.432 0.576 18.608 29.257 0.518 10.940 16.145 0.455
Egg Holder -3318.308 225.714 0.437 -3145.190 180.445 0.367 -3134.971 381.104 0.317
Michalewicz -49.489 1.634 1.181 -51.854 2.046 1.085 -57.625 1.516 1.007

Masters Cosine Wave -21.497 4.397 0.582 -24.676 4.111 0.488 -16.535 2.551 0.459
Shekels Foxhole -0.214 0.000 1.763 -0.205 0.009 1.669 -0.214 0.000 1.654

Total -2504.209 7837.340 0.551 -2455.906 7755.884 0.473 -2424.276 7720.585 0.437

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
40 Mean STD Time Mean STD Time Mean STD Time

Schwefel -2495.867 10.913 0.169 -2521.670 10.573 0.173 -2516.884 9.947 0.179
De Jong One 0.000 0.000 0.043 0.000 0.000 0.048 0.000 0.000 0.050

De Jong Three 0.020 0.017 0.041 0.003 0.001 0.048 0.006 0.002 0.049
De Jong Four 0.000 0.000 0.312 0.000 0.000 0.299 0.000 0.000 0.305
Rosenbrock 232.207 293.744 0.139 64.557 41.240 0.145 93.681 40.516 0.144

Rastrigin -31161.675 182.743 0.191 -31575.427 202.676 0.192 -31379.175 210.523 0.200
Griewangk 0.003 0.009 0.209 0.001 0.002 0.209 0.000 0.000 0.217

Sine Envelope Sine Wave -54.387 0.703 0.487 -56.990 0.276 0.482 -56.752 0.271 0.489
Stretch V Sine Wave 41.514 0.600 0.871 39.983 0.261 0.872 39.861 0.208 0.873

Ackley One -157.120 1.271 0.365 -162.161 0.523 0.365 -162.621 0.448 0.377
Ackley Two 13.165 12.467 0.500 1.011 2.134 0.501 2.075 2.745 0.528
Egg Holder -3210.244 242.317 0.357 -3560.113 261.769 0.351 -3395.376 226.408 0.361
Michalewicz -51.179 1.919 1.051 -59.052 1.202 1.076 -58.881 1.342 1.157

Masters Cosine Wave -22.050 2.673 0.477 -24.214 3.143 0.484 -22.413 2.908 0.486
Shekels Foxhole -0.209 0.003 1.667 -0.214 0.000 1.680 -0.214 0.000 1.681

Total -2457.721 7751.292 0.459 -2523.619 7851.813 0.462 -2497.113 7802.460 0.473

Table 55: Experiments results, experiment set 2, problems with 50 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
50 Mean STD Time Mean STD Time Mean STD Time

Schwefel -3123.266 14.246 0.299 -3095.192 17.098 0.225 -3097.403 21.520 0.190
De Jong One 0.000 0.000 0.133 0.002 0.002 0.063 0.000 0.001 0.039

De Jong Three 0.005 0.002 0.133 0.086 0.056 0.063 0.012 0.007 0.039
De Jong Four 0.000 0.000 0.463 0.000 0.000 0.378 0.000 0.000 0.417
Rosenbrock 100.526 31.196 0.252 297.664 76.785 0.183 2806.078 3958.395 0.155

Rastrigin -48832.261 421.571 0.318 -47927.307 603.606 0.258 -47483.690 603.225 0.204
Griewangk 0.000 0.001 0.329 0.001 0.002 0.282 0.017 0.028 0.234

Sine Envelope Sine Wave -69.333 0.707 0.713 -65.727 1.432 0.636 -69.513 0.954 0.589
Stretch V Sine Wave 54.373 1.412 1.179 53.532 1.654 1.120 51.191 0.972 1.084

Ackley One -194.727 1.755 0.550 -194.109 1.847 0.481 -197.792 1.927 0.420
Ackley Two 21.957 21.054 0.709 111.246 69.892 0.645 104.373 72.654 0.577
Egg Holder -4012.241 184.559 0.533 -3798.274 219.280 0.541 -3746.387 299.382 0.404
Michalewicz -59.872 1.466 1.426 -60.770 2.040 1.371 -66.490 2.236 1.300

Masters Cosine Wave -21.297 4.711 0.697 -22.271 3.577 0.612 -15.985 1.707 0.573
Shekels Foxhole -0.152 0.002 2.157 -0.145 0.005 2.074 -0.154 0.001 2.075

Total -3742.419 12139.305 0.659 -3646.751 11920.769 0.595 -3447.716 11923.355 0.553
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Table 56: Experiments results, experiment set 2, problems with 50 variables, part 2

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
50 Mean STD Time Mean STD Time Mean STD Time

Schwefel -3101.361 21.389 0.211 -3133.884 13.132 0.214 -3127.692 10.627 0.221
De Jong One 0.004 0.005 0.049 0.000 0.000 0.055 0.000 0.000 0.057

De Jong Three 0.103 0.049 0.047 0.020 0.008 0.055 0.028 0.013 0.056
De Jong Four 0.000 0.000 0.364 0.000 0.000 0.385 0.000 0.000 0.389
Rosenbrock 284.579 61.605 0.171 191.262 92.129 0.173 261.840 260.836 0.176

Rastrigin -47380.703 1100.680 0.244 -48949.783 305.220 0.240 -48832.091 283.851 0.249
Griewangk 0.004 0.006 0.259 0.003 0.007 0.261 0.004 0.006 0.270

Sine Envelope Sine Wave -66.334 0.801 0.601 -70.865 0.348 0.605 -70.358 0.319 0.612
Stretch V Sine Wave 53.720 1.309 1.089 50.951 0.400 1.089 50.850 0.469 1.091

Ackley One -194.352 2.140 0.471 -201.279 1.144 0.459 -201.654 0.515 0.471
Ackley Two 134.501 67.664 0.701 36.158 24.927 0.680 33.897 22.297 0.657
Egg Holder -3804.238 152.934 0.451 -4233.409 199.861 0.446 -4127.928 233.697 0.453
Michalewicz -61.221 2.668 1.373 -70.632 1.457 1.335 -71.102 1.224 1.369

Masters Cosine Wave -22.202 5.374 0.603 -22.121 3.672 0.603 -20.920 3.536 0.649
Shekels Foxhole -0.143 0.005 2.065 -0.154 0.000 2.082 -0.154 0.001 2.105

Total -3610.509 11787.159 0.580 -3760.249 12170.542 0.579 -3740.352 12142.721 0.588

Table 57: Experiments results, experiment set 2, problems with 75 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
75 Mean STD Time Mean STD Time Mean STD Time

Schwefel -4620.687 21.731 0.397 -4508.942 62.615 0.335 -4556.735 45.743 0.285
De Jong One 0.004 0.008 0.147 0.315 0.266 0.077 0.101 0.164 0.052

De Jong Three 0.100 0.031 0.148 0.917 0.320 0.079 1.810 0.662 0.053
De Jong Four 0.000 0.000 0.631 1.179 1.288 0.550 0.009 0.022 0.525
Rosenbrock 742.134 1088.059 0.326 1922.262 2012.711 0.257 3023.516 3252.994 0.231

Rastrigin -105471.576 2360.415 0.458 -99711.179 4407.692 0.387 -99264.805 2439.901 0.319
Griewangk 0.012 0.018 0.460 0.032 0.022 0.405 0.036 0.030 0.355

Sine Envelope Sine Wave -102.096 0.872 1.026 -92.573 3.088 0.947 -99.291 1.407 0.893
Stretch V Sine Wave 85.238 2.410 1.734 87.972 2.278 1.681 80.588 1.831 1.665

Ackley One -290.211 1.681 0.791 -281.130 1.704 0.729 -290.058 2.223 0.641
Ackley Two 361.269 72.932 1.025 825.968 162.436 1.003 543.344 71.133 0.913
Egg Holder -5556.169 280.671 0.758 -5094.241 162.544 0.692 -5305.720 394.125 0.621
Michalewicz -86.173 2.223 2.112 -83.218 1.555 2.053 -92.659 3.526 1.947

Masters Cosine Wave -14.811 5.104 1.012 -16.225 2.815 0.916 -12.114 2.687 0.888
Shekels Foxhole -0.073 0.003 3.155 -0.070 0.005 3.096 -0.078 0.004 3.086

Total -7663.536 26266.198 0.945 -7129.929 24891.518 0.881 -7064.804 24792.273 0.832

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
75 Mean STD Time Mean STD Time Mean STD Time

Schwefel -4493.870 46.963 0.321 -4623.439 21.427 0.319 -4631.283 17.215 0.327
De Jong One 0.139 0.116 0.062 0.003 0.002 0.069 0.005 0.003 0.072

De Jong Three 1.379 0.429 0.061 0.444 0.276 0.069 0.666 0.421 0.071
De Jong Four 0.969 1.748 0.537 0.000 0.000 0.544 0.000 0.000 0.549
Rosenbrock 2712.752 3141.650 0.239 1143.278 2616.116 0.247 2286.333 3204.940 0.249

Rastrigin -99718.991 3063.781 0.370 -108019.527 955.871 0.364 -106741.358 1164.227 0.375
Griewangk 0.039 0.030 0.391 0.027 0.018 0.392 0.074 0.045 0.401

Sine Envelope Sine Wave -94.543 1.874 0.907 -103.493 0.737 0.907 -102.766 0.520 0.927
Stretch V Sine Wave 85.853 3.053 1.635 79.857 1.049 1.613 79.219 1.315 1.637

Ackley One -282.736 4.719 0.726 -296.128 1.011 0.703 -296.779 0.819 0.709
Ackley Two 735.518 118.994 0.954 412.803 91.171 1.023 393.818 88.343 1.003
Egg Holder -5274.513 324.605 0.685 -5795.373 299.128 0.672 -5821.754 270.313 0.688
Michalewicz -83.692 2.655 2.008 -97.675 1.952 2.003 -98.104 1.592 2.028

Masters Cosine Wave -14.509 3.665 0.894 -18.474 3.120 0.957 -17.008 5.094 0.909
Shekels Foxhole -0.066 0.005 3.088 -0.077 0.004 3.093 -0.077 0.004 3.120

Total -7095.085 24905.463 0.858 -7821.185 26910.742 0.865 -7663.268 26623.112 0.871
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Table 58: Experiments results, experiment set 2, problems with 100 variables

Problem ABC Adaptive ABC 1 Adaptive ABC 2
100 Mean STD Time Mean STD Time Mean STD Time

Schwefel -6065.883 39.698 0.497 -5808.159 148.183 0.449 -5939.358 107.243 0.383
De Jong One 0.114 0.183 0.163 1.552 1.026 0.091 19.829 14.768 0.066

De Jong Three 2.003 0.953 0.164 7.761 3.418 0.091 25.018 8.291 0.069
De Jong Four 0.238 0.588 0.811 323.571 777.647 0.724 20.940 43.492 0.699
Rosenbrock 3253.219 3488.047 0.400 5473.917 9315.859 0.333 42471.642 36667.925 0.307

Rastrigin -181320.642 4378.645 0.566 -157050.500 7863.902 0.515 -152976.188 6953.837 0.444
Griewangk 0.112 0.074 0.592 0.200 0.086 0.568 0.568 0.165 0.487

Sine Envelope Sine Wave -133.137 1.605 1.357 -113.243 5.503 1.261 -126.302 2.128 1.188
Stretch V Sine Wave 121.535 3.696 2.289 127.227 4.127 2.244 114.610 3.283 2.211

Ackley One -381.091 3.416 1.036 -366.874 5.340 0.980 -380.029 4.423 0.883
Ackley Two 912.167 91.084 1.347 1493.455 132.331 1.309 1154.430 64.877 1.212
Egg Holder -7336.796 327.040 0.991 -6617.322 315.740 0.927 -6958.360 454.621 0.837
Michalewicz -110.275 2.348 2.773 -102.574 2.869 2.835 -115.436 4.243 2.689

Masters Cosine Wave -12.145 3.625 1.315 -12.990 3.091 1.225 -10.130 1.779 1.161
Shekels Foxhole -0.024 0.000 4.173 -0.021 0.001 4.085 -0.049 0.005 4.123

Total -12738.040 45248.494 1.232 -10842.933 39373.495 1.176 -8179.921 41393.700 1.117

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
100 Mean STD Time Mean STD Time Mean STD Time

Schwefel -5814.047 123.322 0.431 -6070.419 44.113 0.439 -6079.374 22.168 0.481
De Jong One 3.691 3.920 0.077 0.116 0.092 0.083 0.319 0.596 0.087

De Jong Three 9.600 2.188 0.076 6.813 3.112 0.085 6.742 3.363 0.084
De Jong Four 87.816 105.746 0.705 0.064 0.100 0.713 0.330 0.503 0.740
Rosenbrock 8337.907 5181.084 0.313 4100.912 4831.517 0.321 1833.999 2289.607 0.325

Rastrigin -160669.949 9153.976 0.493 -188552.947 2120.697 0.492 -184303.983 3245.157 0.503
Griewangk 0.205 0.101 0.534 0.198 0.145 0.527 0.309 0.128 0.541

Sine Envelope Sine Wave -118.613 5.267 1.201 -132.984 1.217 1.210 -131.547 0.858 1.223
Stretch V Sine Wave 123.901 5.530 2.182 109.350 1.624 2.184 110.000 1.992 2.200

Ackley One -368.154 4.474 0.969 -388.725 2.084 0.955 -389.758 1.287 0.964
Ackley Two 1453.792 108.445 1.287 914.010 104.068 1.367 879.744 88.211 1.336
Egg Holder -6673.646 332.578 0.917 -7233.107 251.396 0.908 -7347.405 240.981 0.927
Michalewicz -105.765 3.983 2.694 -122.046 2.801 2.755 -123.740 2.471 2.722

Masters Cosine Wave -11.144 3.460 1.204 -13.491 3.240 1.208 -13.034 4.569 1.223
Shekels Foxhole -0.022 0.001 4.099 -0.024 0.000 4.107 -0.024 0.000 4.163

Total -10916.295 40323.118 1.146 -13158.819 47071.352 1.157 -13037.162 45948.709 1.168

Table 59: Experiments results, experiment set 2, summary

Problem ABC Adaptive ABC 1 Adaptive ABC 2
Mean STD Time Mean STD Time Mean STD Time

Schwefel -2876.459 1779.407 0.282 -2816.733 1698.659 0.214 -2842.534 1738.518 0.179
De Jong One 0.017 0.078 0.143 0.267 0.664 0.059 2.847 8.825 0.036

De Jong Three 0.301 0.781 0.131 1.253 2.968 0.059 3.834 9.231 0.037
De Jong Four 0.034 0.231 0.437 46.393 307.139 0.357 2.993 17.574 0.359
Rosenbrock 593.004 1746.413 0.240 1140.140 3974.329 0.170 7106.930 19933.507 0.146

Rastrigin -56438.422 60639.845 0.311 -51957.709 52953.777 0.243 -51198.847 51729.135 0.195
Griewangk 0.018 0.048 0.321 0.034 0.076 0.265 0.095 0.204 0.222

Sine Envelope Sine Wave -63.354 39.258 0.670 -58.332 32.954 0.592 -62.206 37.031 0.547
Stretch V Sine Wave 51.819 36.857 1.104 52.709 38.872 1.038 49.194 34.531 1.013

Ackley One -180.181 112.001 0.520 -176.775 106.901 0.450 -181.444 111.226 0.396
Ackley Two 185.154 325.856 0.658 349.910 552.262 0.606 259.212 412.973 0.540
Egg Holder -3685.501 2026.048 0.500 -3469.888 1766.817 0.440 -3491.105 1944.057 0.377
Michalewicz -55.103 31.296 1.335 -54.954 28.138 1.280 -61.008 31.869 1.203

Masters Cosine Wave -16.515 5.834 0.661 -17.775 6.070 0.569 -13.914 4.169 0.536
Shekels Foxhole -0.270 0.259 2.009 -0.633 3.683 1.932 -0.319 0.268 1.925

Total -4165.697 4449.614 0.621 -3797.473 4098.221 0.552 -3361.752 5067.541 0.514
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Table 60: Experiments results, experiment set 2, summary, part 2

Problem Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
Mean STD Time Mean STD Time Mean STD Time

Schwefel -2815.466 1697.860 0.201 -2880.111 1780.789 0.205 -2880.242 1784.551 0.215
De Jong One 0.548 1.933 0.045 0.017 0.053 0.051 0.046 0.246 0.053

De Jong Three 1.586 3.420 0.045 1.040 2.635 0.052 1.063 2.650 0.052
De Jong Four 12.684 49.555 0.342 0.009 0.043 0.349 0.047 0.218 0.363
Rosenbrock 1661.059 3643.777 0.156 788.856 2461.075 0.161 644.295 1711.451 0.163

Rastrigin -52392.201 54021.330 0.227 -57856.349 63065.321 0.227 -57014.579 61676.072 0.234
Griewangk 0.037 0.080 0.246 0.033 0.087 0.248 0.056 0.118 0.255

Sine Envelope Sine Wave -59.551 34.530 0.560 -64.125 39.278 0.561 -63.684 38.817 0.570
Stretch V Sine Wave 51.907 37.727 1.007 48.245 33.009 1.005 48.208 33.105 1.014

Ackley One -177.456 107.358 0.440 -184.547 114.170 0.434 -184.932 114.506 0.442
Ackley Two 333.879 526.378 0.597 194.857 331.038 0.616 187.079 317.795 0.614
Egg Holder -3516.573 1806.711 0.420 -3850.166 1970.302 0.414 -3824.959 1998.860 0.424
Michalewicz -55.458 29.053 1.237 -63.637 34.163 1.246 -64.029 34.616 1.267

Masters Cosine Wave -16.893 6.136 0.556 -18.080 5.808 0.568 -17.436 5.829 0.570
Shekels Foxhole -0.287 0.257 1.926 -0.277 0.244 1.935 -0.672 2.633 1.951

Total -3798.146 4131.074 0.534 -4258.949 4655.868 0.538 -4211.316 4514.764 0.546

Table 61: Centralities Based ABC, experiment set 2, t-test results

ABC Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c Adaptive ABC 1
p different p different p different p different p different

ABC - - - - -
Adaptive ABC 3 0.00000 T - - - -

Adaptive ABC 3.b 0.00062 T 0.00000 T - - -
Adaptive ABC 3.c 0.01396 T 0.00000 T 0.02133 T - -
Adaptive ABC 1 0.00000 T 0.49274 F 0.00000 T 0.00000 T -
Adaptive ABC 2 0.00000 T 0.00027 T 0.00000 T 0.00000 T 0.00055 T
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Comparing the standard deviations of results, the least varied outcomes are provided
by Adaptive ABC 1. The 2nd is Adaptive ABC 3, followed by ABC, Adaptive ABC 3.c,
3.b with Adaptive ABC 2 coming last. This is nearly the reversed order with respect to
the overall best mean values. However, comparing by problem, none of the algorithms
improves upon the original ABC standard deviation in more than 50% of the problems,
nor is it worse in more than 60% of the problems.

The execution times comparison shows that the fastest running algorithm was the
Adaptive ABC 2, followed by Adaptive ABC 3, 3.b, 3.c and 1, with the ABC being the
slowest. This is however probably heavily influenced by the settings, such as the number
of generations between complex network analysis and subsequent nodes removal and
recreation, the cut-off ratio parameter, defining how many nodes are removed, as well as
the original ABC parameter limit, defining how many attempts are made to improve the
solution, before it is removed from the population and randomly reinitialized.

The statistical analysis of the results for different centrality measures (degree, close-
ness and betweenness) is presented in the following text. The Tables 62 - 64 show the
overall averaged results across all the dimensions for each problem in the row, the differ-
ent vertex centralities are arranged in the columns. Each Table contains data for one of
the algorithms of Adaptive ABC 3, Adaptive ABC 3.b and Adaptive ABC 3.c separately.
Again the average best solution cost, standard deviation and the average execution time
are presented.

For the Adaptive ABC 3, the overall best average value is achieved by the closeness
centrality. For the Adaptive ABC 3.b, the best average value is obtained by degree cen-
trality, in the case of Adaptive ABC 3.c, the closeness centrality achieves the best average
result again. The second best was the degree, closeness and betweenness for the dis-
cussed algorithms, respectively. Comparing the differences by the problem, the closeness
centrality holds the best average results in seven out of 15 problems, the degree centrality
in five and the betweenness in three problems. For the Adaptive ABC 3.b, the degree cen-
trality has six best values, while the closeness reaches only three bests, with betweenness
achieving six bests. In the case of Adaptive ABC 3.c, the closeness finds eight best values,
the degree four and the betweenness only three best values. Neither these results, nor
the comparison by the problem dimension, suggest significant difference, which is again
confirmed by the t-tests, presented in Table 65 (separately for each algorithm). None of
the centrality measures shows statistically significant difference compared to the other.
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Table 62: Experiments results, Centrality Comparison, Adaptive ABC 3

Problem 0 (Degree) 1 (Closeness) 2 (Betweenness)
Mean STD Time Mean STD Time Mean STD Time

Schwefel -2790.246 1664.502 0.144 -2809.482 1693.009 0.154 -2804.769 1687.863 0.152
De Jong One 0.590 2.007 0.027 0.893 2.896 0.035 1.312 3.481 0.035

De Jong Three 4.304 9.901 0.026 4.446 10.036 0.034 4.233 9.469 0.034
De Jong Four 133.600 905.509 0.251 135.665 894.607 0.258 329.602 2755.210 0.256
Rosenbrock 2372.851 5100.782 0.108 2380.672 7002.190 0.116 2801.224 7185.797 0.117

Rastrigin -51659.233 53055.774 0.162 -52031.825 53673.736 0.170 -51274.297 52365.238 0.171
Griewangk 0.128 0.261 0.178 0.147 0.295 0.187 0.142 0.285 0.188

Sine Envelope Sine Wave -58.655 33.739 0.421 -59.577 34.581 0.420 -58.593 33.460 0.420
Stretch V Sine Wave 53.502 39.930 0.744 53.010 39.077 0.752 53.373 39.675 0.754

Ackley One -175.577 105.882 0.321 -176.614 107.074 0.328 -176.380 106.518 0.328
Ackley Two 386.034 560.437 0.446 384.246 547.581 0.447 376.987 540.080 0.441
Egg Holder -3404.949 1723.898 0.306 -3412.709 1742.880 0.313 -3427.275 1749.004 0.315
Michalewicz -53.967 27.600 0.924 -54.974 28.770 0.912 -54.595 28.397 0.939

Masters Cosine Wave -13.348 4.560 0.419 -13.200 4.624 0.419 -12.629 4.954 0.457
Shekels Foxhole -0.281 0.242 1.438 -0.355 0.724 1.442 -0.312 0.311 1.439

Total -3680.350 4215.668 0.394 -3706.644 4385.472 0.399 -3616.132 4433.983 0.403

Table 63: Experiments results, Centrality Comparison, Adaptive ABC 3.b

Problem 0 (Degree) 1 (Closeness) 2 (Betweenness)
Mean STD Time Mean STD Time Mean STD Time

Schwefel -2849.868 1745.241 0.144 -2848.316 1748.593 0.154 -2850.962 1747.104 0.156
De Jong One 0.698 2.806 0.028 0.774 2.684 0.040 0.526 1.756 0.041

De Jong Three 4.766 11.289 0.027 4.133 9.666 0.039 4.591 12.547 0.040
De Jong Four 1.670 8.007 0.249 4.622 24.404 0.269 3.105 11.437 0.261
Rosenbrock 1176.996 3190.986 0.110 1311.549 3815.466 0.121 2623.685 14424.012 0.123

Rastrigin -54967.182 57940.332 0.163 -54945.678 57881.489 0.175 -55338.811 58732.955 0.175
Griewangk 0.151 0.298 0.180 0.151 0.302 0.192 0.156 0.308 0.197

Sine Envelope Sine Wave -62.248 37.059 0.419 -62.226 36.967 0.424 -62.185 36.995 0.426
Stretch V Sine Wave 49.557 34.768 0.747 49.654 34.874 0.757 49.509 34.557 0.749

Ackley One -181.870 111.737 0.318 -181.781 111.527 0.328 -181.714 111.322 0.329
Ackley Two 299.957 447.506 0.438 290.355 437.018 0.448 290.733 429.886 0.450
Egg Holder -3694.459 1902.999 0.303 -3704.719 1861.701 0.311 -3730.288 1941.187 0.312
Michalewicz -60.330 32.176 0.911 -60.171 32.016 0.936 -60.237 32.142 0.924

Masters Cosine Wave -13.469 4.529 0.420 -13.105 5.053 0.424 -13.144 4.588 0.420
Shekels Foxhole -0.271 0.231 1.436 -0.331 0.773 1.447 -0.394 1.044 1.445

Total -4019.727 4364.664 0.393 -4010.339 4400.169 0.404 -3951.029 5168.123 0.403
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Table 64: Experiments results, Centrality Comparison, Adaptive ABC 3.c

Problem 0 (Degree) 1 (Closeness) 2 (Betweenness)
Mean STD Time Mean STD Time Mean STD Time

Schwefel -2851.353 1745.876 0.145 -2852.574 1751.344 0.156 -2849.086 1748.295 0.157
De Jong One 1.192 4.126 0.028 1.237 4.226 0.039 0.990 3.044 0.040

De Jong Three 5.526 12.420 0.028 6.046 13.721 0.039 5.660 13.298 0.040
De Jong Four 5.212 22.210 0.261 28.654 179.495 0.269 15.367 104.223 0.264
Rosenbrock 3742.319 24154.197 0.113 1694.053 4819.157 0.123 2220.658 7746.102 0.124

Rastrigin -53971.929 56350.917 0.167 -54100.916 56657.816 0.179 -54133.571 56721.115 0.181
Griewangk 0.155 0.292 0.185 0.164 0.295 0.197 0.156 0.295 0.197

Sine Envelope Sine Wave -61.821 36.670 0.416 -61.835 36.664 0.428 -61.923 36.823 0.429
Stretch V Sine Wave 49.523 34.814 0.753 49.310 34.431 0.762 49.473 34.677 0.771

Ackley One -182.309 112.028 0.324 -182.569 112.322 0.332 -182.474 112.088 0.333
Ackley Two 296.006 440.482 0.453 303.366 443.322 0.472 308.344 452.719 0.466
Egg Holder -3724.222 1896.295 0.309 -3755.579 1950.235 0.322 -3710.892 1918.440 0.321
Michalewicz -61.013 32.632 0.928 -61.038 32.931 0.951 -60.694 32.447 0.937

Masters Cosine Wave -12.990 4.584 0.427 -13.274 4.658 0.432 -12.810 4.315 0.429
Shekels Foxhole -0.328 0.329 1.449 -0.342 0.328 1.457 -0.298 0.262 1.456

Total -3784.402 5656.525 0.399 -3929.686 4402.730 0.411 -3894.073 4595.210 0.410

Table 65: Centralities Based ABC, Centralities comparison, t-test results

Adaptive ABC 3 Adaptive ABC 3.b Adaptive ABC 3.c
0 1

p different p different
0 - -
1 0.30621 F -
2 0.11774 F 0.09045 F

0 1
p different p different

0 - -
1 0.38245 F -
2 0.23515 F 0.26862 F

0 1
p different p different

0 - -
1 0.17363 F -
2 0.25100 F 0.23476 F
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6 Conclusion

At the centre of interest of this thesis were the heuristics employed in solving the com-
binatorial optimisation problems, with the emphasis on scheduling problems. The core
objective was to improve the performance of state-of-the art existing algorithms. This
was attempted in several ways.

In the first part, deterministic heuristics were considered: NEH algorithm as one of
the most popular constructive heuristics and the 2-opt algorithm as an improvement
heuristic for permutative flowshop scheduling problem. The parallel implementation
using the CUDA platform was developed for each of them.

Wide scale experimentation was performed for NEH solving permutative flowshop
with makespan criterion, using the newly created data set based on the original Taillard
data sets, which became a standard benchmark problem instances for the optimisation
algorithms performance assessment, termed the extended Taillard data sets. The problem
instances of size varying from 20 x 5, 20 x 10, 20 x 20, 50 x 5, 50 x 10, 50 x 20, 100 x 5, 100
x 10, 100 x 20, 200 x 10, 200 x 20 to 500 x 20 (the original Taillard data set) and 500 x 50,
700 x 20, 700 x 50 up to 1000 x 20 (the extended Taillard data set), 10 instances for each
size, which makes up total of 16 × 10 = 160 unique instances, were evaluated by the
original sequential and the newly developed parallel version of NEH, and the execution
times compared. The statistical analysis of results using PRD as a measure has shown
that the parallel implementation of NEH achieved the statistically significant speed-up
over the sequential version for all instances greater than 50 × 10, with the best results of
6.18× speed-up for the instance size 200× 10, and the average speed-up of 2.62×. It can
be therefore stated that there is a potential for speed-up.

Further development of this algorithm is two fold: the parallel implementation can
be further optimised by fine-tuning the CUDA settings (launch configuration), as well
as improved memory mapping using better suited cache types, supporting wider range
of CUDA enabled GPU generations. The naive implementation of flow shop makespan
evaluation could be also parallelised, achieving further acceleration. As the second as-
pect, the NEH heuristic would be used to provide the initial solution for the selected
evolutionary algorithm (its CUDA based implementation), thus increasing the chance of
finding better quality optima in addition to reducing the overall time required for the
search.

The experimentation of somewhat reduced extent was performed for the 2-opt al-
gorithm, solving again permutative FSS with makespan criterion, using only subset of
standard Taillard data sets, the problem instances from 5× 20 to 20× 200, evaluating the
three instances for each of the sizes, hence performing 33 experiments in total. Both the
execution times and the optimal solutions found were compared between sequential and
parallel version. No significant difference was proved between the quality of solutions,
on the other hand, the execution time was again significantly reduced, starting from the
instances of the size 100×5, with the best speed-up achieved for the instances size 200×10
and 200× 20, yielding 1.92× acceleration over the sequential version.

For the future goals, most of the same approaches as for the NEH can be employed.
Further optimisation of the launch configuration and the improved memory mapping
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could be used to achieve better results, together with the parallel flowshop evaluation.
The broader support of compute capabilities could also be included. The accelerated
version of 2-opt can then be also used to support the parallel implementation of an evo-
lutionary algorithm, as it is the standard practice of embedding the local search into EA’s
to further improve the solutions generated by EA’s search mechanisms.

In the second part, the effects of stochasticity on the selected combinatorial optimi-
sation problems solving EA, the DABC algorithm, were explored. The standard PRNG,
Mersenne Twister, was replaced by the PRNG based on the outputs of nine different
chaotic piecewise linear one-dimensional maps. These nine unique chaos-based PRNGs
then formed nine different modified versions of DABC; CDABC, whose performances
were empirically assessed and compared against one another.

In the first stage of research, all of these algorithms performances were evaluated
on the lot-streaming flowshop scheduling problem with setup times and no-idle con-
straint, using DABC with Mersenne Twister as a reference. Two unique CPRNG gener-
ated datasets, the Lozi data set using Lozi chaotic map, and the Dissipative data set using
Dissipative chaotic map as CPRNG, were used for the experimentation. Each of them
contained problem instances of 10 jobs × 5 machines, 20 jobs × 10 machines, 50 jobs ×
25 machines, 75 jobs × 30 machines and 100 jobs × 50 machines, 5 instances of each size,
making up the total of 25 unique instances in each of the two data sets. For both data
sets, 15 repeated experiments were performed, forming the total of 2 × 25 × 15 = 750
experiments for each algorithm variant, 10 × 750 = 7500 experiments in total. It was
shown that the Tinkerbell, Delayed Logistic, Burgers and Lozi map yielded significantly
better results than the original DABC with Mersenne Twister both for Lozi data sets and
Dissipative data sets. To sum up the results, the five best performing PRNGs for Lozi
data sets were: Tinkerbell, Delayed Logistic, Burgers, Lozi map and Mersenne Twister.
For the Dissipative data sets, the ordering by performance was as follows: Tinkerbell,
Delayed Logistic, Lozi, Burgers map and Mersenne Twister.

In the second stage, the CDABC variants were employed to solve the flowshop with
no-wait constraint (zero-intermediate storage), using standard Taillard data set as a bench-
mark. For each of the 12 instance sizes, 10 instances per size, 14 repeated experiments
were performed to obtain statistically valid sample, making the total of 12×10×14 = 1680
experiments per variant, 10 × 1680 = 16800 experiments altogether. Again, statistically
significant improvements were achieved. The order of the five best performing variants
was as follows: Delayed Logistic, Tinkerbell, Burgers, Lozi, Mersenne Twister. This has
shown that that the top four CDABC variants outperform Mersenne Twister on yet an-
other problem, furthermore using the data sets generated using the standard PRNG as
well, hence the previous results achieved in solving FSSLS instances generated by chaos-
based PRNGs were not entirely problem and stochasticity specific.

Finally, the four best performing chaotic maps from previous experiments were used
to solve the problems other than those in the manufacturing field, the capacitated vehicle
routing problem and the quadratic assignment problem, solving the problem instances
from the OR Library and the Taillard CVRP problem instances, respectively.

The QAP data set contains 17 problem instances. For each of them, 15 experiments
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were performed, providing the total of 17× 15 = 255 experiments per algorithm variant,
5× 255 = 1275 experiments in total. CVRP range from 75 to 385 customers, consisting of
13 problem instances. For each of them, 15 experiments were performed, giving the total
of 13× 15 = 195 experiments per algorithm variant, 5× 195 = 975 experiments in total.

In both cases the statistically significant improvement was obtained. The order of the
best performing algorithms is as follows: Tinkerbell, Delayed Logistic, Burgers map, Lozi
map, Mersenne Twister for QAP problem instances; Tinkerbell, Burgers map, Delayed
Logistic, Lozi map, Mersenne Twister for the CVRP problems. This comes at a cost of
slightly decreased speed of CDABC variants, compared to the DABC with Mersenne
Twister.

The future development plans include the exploration of different types of chaotic
systems used as the CPRNGs, for instance the coupled maps, as well as further appli-
cations of CPRNGs in solving difficult combinatorial optimisation problems, since the
superiority was empirically proven.

For the last part of the thesis, the complex networks properties, namely vertex cen-
trality measures were used to modify the ABC algorithm, providing the basis of self-
adaptive mechanism, which replaces the solutions that don’t contribute to the population
development with the new ones. Three different centralities: weighted degree, closeness,
betweenness were implemented inside five different approaches to the design of such
algorithm: Adaptive ABC 1, Adaptive ABC 2, Adaptive ABC 3, Adaptive ABC 3.b and
Adaptive ABC 3.c. Both Adaptive ABC 1 and 2 were implemented using all three cen-
trality measures - Adaptive ABC 1 splitting the population conceptually into three parts
for the purpose of vertex centrality evaluation only, Adaptive ABC 2 using ensemble
approach creating three separated populations, each with its own network and assigned
centrality measure. Adaptive ABC 3 used centrality measure type provided as parameter,
enabling the assessment of the effect of different centrality measures. This was extended
by incorporation of elitism, always keeping certain ratio of best quality solutions in the
population, in the algorithms Adaptive ABC 3.b and Adaptive ABC 3.c.

The functions of the standard test set for continuous optimisation were used for ex-
perimentation: Schwefel, De Jong 1, De Jong 3, De Jong 4, Rosenbrock’s Saddle, Ras-
trigin, Griewangk, Sine Envelope Sine Wave, Ackley One, Ackley Two, Egg Holder,
Michalewicz, Master’s Cosine Wave, and Schekel’s Foxhole, with the dimensions of 10,
20, 30 for the first experiments set; the same functions plus Stretch V Sine Wave for the
second experiments set with the dimensions of 10, 20, 30, 40, 50, 75, 100.

The first experiment set was conducted to compare the ABC, Adaptive ABC 1 and
Adaptive ABC 2. Thirty experiments were performed for each problem and dimension,
trying the different number of solutions in the population: 15, 30, 45 and 60. This makes
up together 14 problems × 3 dimensions × 4 number of solutions settings × 30 = 5040
experiments for each algorithm, 3× 5040 = 15120 experiments in total.

The second experiment set was extended with the Adaptive ABC 3, Adaptive ABC
3.b and Adaptive ABC 3.c. All five algorithms were compared against the standard ABC.
Fifteen repetitions were done for each problem and each dimension, resulting in 15 prob-
lems × 7 dimensions × 15 = 1575 experiments for each algorithm. Another experimen-
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tation on this set was conducted to compare the effects of different centrality measures
against one another, using the same setting described above for degree, closeness and
betweenness, in each of Adaptive ABC 3, Adaptive ABC 3.b and Adaptive ABC 3.c, com-
paring the results separately. This makes up 1575 × 3 = 4725 experiments for each of the
latter algorithms, hence 14175 experiments in total.

For the first experiment set, the Adaptive ABC 2 tends to be better for the problems
with 30 variables, reaching the best values (in comparison with both ABC and Adaptive
ABC 1) in 7 out of 14 problems. On the other hand, the Adaptive ABC 1 tends to be better
than Adaptive ABC 2 for the dimensions 10 and 20, however, the results are comparable
with the standard ABC algorithm in all cases.

In the second experiment set, where the parameters were tuned, the statistically sig-
nificant difference was proven for all of the six tested algorithms pairwise, except for the
Adaptive ABC 1 and Adaptive ABC 3. The order of the algorithms sorted by the aver-
age performances is following: Adaptive ABC 3.b has the best overall average. The 2nd
best average was achieved by the Adaptive ABC 3.c. The standard ABC follows with the
Adaptive ABC 3, Adaptive ABC 1 and Adaptive ABC 2 having the worst overall aver-
age. Comparing by the individual problems separately, The Adaptive ABC 3.b is better
than the original ABC in ten out of total 15 problems. The Adaptive ABC 3.c is better in
nine problems, Adaptive ABC 3 in three problems. The Adaptive ABC 1 improves upon
ABC in only two of the problems, whereas Adaptive ABC 2 gives four better results than
ABC. It can be therefore concluded, that the versions with elitism perform significantly
better on average, and that in accordance with no free lunch theorem, each of the algo-
rithms can be potentially useful at least in subset of problem classes. The comparison of
measure types didn’t find any significant differences, the performance of all of the three
centralities was similar.

For the future path, since the selected centralities performed similarly well for all of
the algorithm variants, it would be sufficient to retain only one of them. Different modi-
fications to the existing algorithms could be produced, incorporating more sophisticated
complex network properties and different centrality measures (Katz Centrality for exam-
ple) to asses the nodes influence in the network. It is obviously necessary to incorporate
the elitism into such algorithms, in order to retain the good quality solutions in the pop-
ulation and not to randomize the search to a large extent. Different schema of the least
influential solutions replacement could also be used, for instance creating the new solu-
tions in the proximity of the already found good ones, thus accelerating the convergence.
Finally, this approach would be implemented in a discrete evolutionary algorithm which
also forms complex networks through the course of its iterations, to support solving of
the combinatorial optimisation problems.
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A CD with experiment data and source codes

The accompanying CD contains the electronic form of this document, experiment outputs
and the source codes with short manuals for each of the programs. The structure of CD
is following:

• Code :

Source codes of each of the programs in separate folder.

• ExperimentData :

Experiment outputs in separate folders.

• Manuals :

Manuals, readmes and examples of usage.

• Text :

Electronic form of this thesis, thesis.pdf.
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