
Master’s Thesis

Czech
Technical
University
in Prague

F8 Faculty of Information Technology
Department of Theoretical Computer Science

Indexing XML Documents

Bc. Eliška Šestáková
System Programming (Master)

May 2015
Supervisor: doc. Ing. Jan Janoušek, Ph.D.

Acknowledgement / Declaration

I take this opportunity to express grat-
itude to my supervisor doc. Ing. Jan
Janoušek, Ph.D. for his motivation, en-
thusiasm, and immense knowledge. His
guidance helped me in all the time of
research and writing of this thesis. My
sincere thanks also goes to all of the De-
partment faculty members for their help
and support.

Last but not the least, I would like
to thank my parents for the unceasing
encouragement, support and attention.
I am also grateful to my partner who
supported me through this venture.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering to
ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particu-
lar that the Czech Technical University
in Prague has the right to conclude a
license agreement on the utilization of
this thesis as school work under the pro-
visions of Article 60(1) of the Act.

In Prague on 5th May 2015

. .

iii

Abstrakt / Abstract

Výzkum v oblasti indexování řetězců
má již mnoho prezentovaných výsledků,
což však neplatí pro ostatní datové struk-
tury, jakými jsou například stromy. Tato
práce obsahuje v prvé řadě shrnutí metod
pro indexování řetězců a stromů. Dále
se podrobně zabývá rešerší existujících
řešení indexování XML dokumentů.

Představena je zde nová jednoduchá
metoda využívající deterministický
konečný automat, jež umožňuje efek-
tivně zpracovat XPath dotazy skládající
se z libovolné kombinace child (/) a
descendant-or-self (//) os, sloužících
k navigaci v XML dokumentu. Spolu
s touto metodou byly dále navrženy
dva další konečné automaty na podporu
jednodušších dotazů obsahujících vždy
pouze jednu z uvedených os.

Ke konstrukci indexu pro daný XML
dokument D s n elementy je využit odpo-
vídající XML stromový model T . Zpraco-
vání dotazu Q o m elementech proběhne
v čase O(m) nezávislém na n. Výsled-
kem dotazu je poté množina elementů
splňujících dané požadavky.

Ačkoli automat podporující všechny
dotazy s // osou indexuje až O(2n) růz-
ných dotazů, počet stavů vlastního de-
terministického automatu je O(hk), kde
h je výška XML stromového modelu T
a k je počet listů T . Pro běžné XML
dokumenty lze navíc tuto mez triviálně
snížit až na O(h.2k).

Klíčová slova: XML, XPath, strom,
konečný automat, index

Překlad titulu: Indexování XML do-
kumentů

The theory of text indexing is very
well-researched, which does not hold for
theories of indexing other data structures,
such as trees for example. In this thesis
we review existing techniques for index-
ing texts and trees and study state-of-
the-art methods for indexing XML doc-
uments. We show that automata can
be used effectively for the purpose of
indexing XML documents.

A new and simple method for index-
ing XML documents using determinis-
tic finite automaton is introduced. The
presented method supports a significant
fragment of XPath queries which may
use any combination of child (/) and
descendant-or-self (//) axes. We also
propose another two indexing techniques
based on finite automata, aimed to assist
in evaluating paths queries with either /

or // axis only.
Given a subject XML document D

and its corresponding XML tree model
T with n nodes, the tree is preprocessed
and the index is constructed. The search-
ing phase uses the index, reads an input
query Q of size m and computes the list
of positions of all occurrences of target
nodes of Q in T .

All the proposed automata performed
the searching in timeO(m) and do not de-
pend on n. Although the automaton that
supports all linear XPath queries where
just // axis is used evaluates O(2n) dis-
tinct queries, number of states of the
deterministic automaton is O(hk), where
h is the height of T and k is the num-
ber of its leaf nodes. Moreover, we dis-
cuss that in case of indexing a common
XML document the number of state in
the deterministic finite automaton is at
most O(h.2k).

Keywords: XML, XPath, tree, finite
automaton, index

iv

Contents /

1 Introduction .1
1.1 Motivation and Objectives1
1.2 Problem Statement1
1.3 Goals of the Thesis2
1.4 Structure of the Thesis2

2 Theoretical Background3
2.1 Notations .3
2.2 Basic Definitions4

2.2.1 Alphabet4
2.2.2 String .4
2.2.3 Graph, Tree5
2.2.4 Language, Grammar6
2.2.5 Finite and Pushdown

Automaton6
2.3 XML. .7

2.3.1 XML Data Model9
2.4 XPath . 11

2.4.1 Syntax and Semantics . . . 11
2.4.2 Examples 13

3 Arbology and XPath Relation . . . 15
3.1 Classification of XPath

Queries . 17
3.1.1 Query Constructs 17
3.1.2 Query Orientation 17
3.1.3 Query Structure 19
3.1.4 Query Arity 19

4 Indexing Texts and Trees 21
4.1 Text Indexing 21

4.1.1 Data Structures for
Storing the Suffixes 21

4.1.2 Factor Automaton 23
4.1.3 Subsequence Automaton . 24

4.2 Tree Indexing 24
4.2.1 Subtree Pushdown Au-

tomaton 25
4.2.2 Tree Pattern Pushdown

Automaton 27
4.2.3 A Full and Linear Index

of a Tree. 27
5 Indexing XML Data 31
5.1 MTree . 31

5.1.1 MTree Index Structure . . 32
5.1.2 Query Processing 32

5.2 CTree . 34
5.2.1 CTree Index Structure . . . 34
5.2.2 CTree Properties 37

5.2.3 Query Processing 37
5.3 PP-Index . 38

5.3.1 PP-Index Structure 38
5.3.2 Query Processing 40

5.4 PRIX . 44
5.4.1 PRIX Index Structure . . . 44
5.4.2 Prüfer Sequence Prop-

erties . 46
5.4.3 Query Processing 46

6 Automata Approach to Index-
ing XML Data . 49

6.1 XML Data Model 49
6.2 Tree String Paths Automaton . 51

6.2.1 Discussion on Time and
Space Complexities 55

6.3 Tree String Path Subse-
quences Automaton 55
6.3.1 Building the Tree

String Path Subse-
quences Automaton 55

6.3.2 Discussion on Time and
Space Complexities 57

6.4 Tree Paths Automaton 63
6.4.1 Building the Tree Paths

Automaton 63
6.4.2 Discussion on Time and

Space Complexities 65
7 Implementation. 69
7.1 System Architecture 69

7.1.1 JDOM 69
7.1.2 Index Builder 70
7.1.3 XML Data Index 71

7.2 Query Processing 72
8 Experimental Evaluation 73
8.1 Experimental Setup. 73

8.1.1 XML Data Sets 73
8.2 Index Size and Construction

Time . 74
8.3 Performance on Query Pro-

cessing . 75
9 Conclusions . 77
9.1 Summary of the Thesis 77
9.2 Contributions of the Thesis . . . 77
9.3 Future Work 78

References . 81
A Acronyms . 85

v

B User’s Manual for tpalib 87
C Syntax Structure of Complete

XPath 1.0 . 89
D Contents of Enclosed CD 91

vi

Tables / Figures

2.1. XPath expressions in abbrevi-
ated and full syntax 13

4.1. Subtree jump table 29
6.1. Working data structures for

Tree Paths Automaton con-
struction . 64

6.2. Set of occurrences of element
labels in an XML tree model . . 64

8.1. Characteristics of XMark
benchmark files 74

8.2. Experimental results on con-
struction time and size 74

8.3. Ratio of index size to XML
file size . 74

8.4. Set of queries used in perfor-
mance analysis 75

8.5. Numbers of elements satisfy-
ing queries in test data sets. . . . 75

8.6. tpalib experimental evalua-
tion . 76

8.7. Saxon experimental evaluation . 76

2.1. XML tree model. 10
2.2. XPath axes . 12
3.1. Tree model of an XPath query . 15
3.2. Tree model of an XPath query . 15
3.3. Tree model of an XPath query . 15
3.4. Occurrences of an XPath

query in an XML tree model . . 16
3.5. Occurrences of an XPath

query in an XML tree model . . 16
3.6. Occurrences of an XPath

query in an XML tree model . . 16
3.7. An XPath query. 17
3.8. An XPath query. 17
3.9. XPath queries classification. . . . 18
4.1. Data structures for suffixes 22
4.2. Position heap 23
4.3. Nondeterministic factor au-

tomaton. 24
4.4. Nondeterministic subse-

quence automaton with
ε-transitions . 24

4.5. Nondeterministic subse-
quence automaton after
ε-transitions removal 24

4.6. Ranked tree . 25
4.7. Nondeterministic subtree

pushdown automaton 26
4.8. Nondeterministic tree pattern

pushdown automaton 28
4.9. Compact suffix automaton. 29
5.1. f -graph . 33
5.2. p-graph . 33
5.3. a-graph . 33
5.4. d-graph and f -graph 33
5.5. q-graph . 33
5.6. attr-graph . 33
5.7. MTree graph index 35
5.8. Ordered path summary 37
5.9. CTree . 37

5.10. An XPath query. 38
5.11. 1-Index . 40
5.12. Containment index 41
5.13. PP-Index . 42
5.14. Compressed PP-Index 43
5.15. XML tree model. 45
5.16. An XPath query. 46

vii

5.17. An XPath query. 46
6.1. XML tree model. 50
6.2. Prefix automata for a string

path set . 53
6.3. Tree String Paths Automaton . 54
6.4. Subsequence automata 58
6.5. Deterministic subsequence

automata . 59
6.6. Deterministic subsequence

automata . 60
6.7. Tree String Path Subse-

quences Automaton 61
6.8. Nondeterministic Tree Paths

Automaton . 66
6.9. Deterministic Tree Paths Au-

tomaton. 67
7.1. System architecture of tpalib . 69
7.2. DocumentLoader class 70
7.3. AutomatonFactory and Node

class . 70
7.4. EdgeLabel class and Axis

enum . 71
7.5. TreePathsAutomaton class 71
7.6. State class . 72
8.1. Partial schema of XMark data

sets . 73
8.2. Performance comparison of

tpalib and Saxon. 76

viii

Chapter 1
Introduction

1.1 Motivation and Objectives

XML documents [1] are used in many aspects of software development, often to simplify
data storage and sharing. XML data is stored in plain text format. This provides a
software- and hardware-independent way of storing data. Therefore, it reduces the
complexity of data transport between incompatible systems over the Internet, since
XML documents can be read by different incompatible applications.

To be able to retrieve the data from XML documents efficiently, various query
languages, such as XPath [2], XPointer [3] and XLink [4], have been designed. Purpose
of these languages is not only making queries, but also possibility of creating views over
the XML document, data transformation and specification of data subset to be updated.

The query is an expression containing keywords as basic elements. The frequently
used operation in data retrieval systems is selection of documents containing some
keywords of a given query. The subfield of algorithmic research interested in question
whether given keyword is contained in the document is called stringology1).

To achieve fast text searching and efficient processing of queries, we can preprocess
the data subject and construct an index. The size of the index is typically linear to the
size of the preprocessed subject. Therefore it allows us to answer number of queries
with low requirements for both space and time complexity.

An XML document can be simply treated as a stream of plain text, thus stringology
algorithms are applicable in this field. However, we can think of an XML document as
a kind of a linear notion of a tree structure. The algorithmic discipline interested in
processing tree data structures is called arbology2). Arbology solves problems such as
tree pattern matching, tree indexing, finding repeats in trees, etc. For its algorithms,
the arbology uses a standard pushdown automaton as the basic model of computation,
unlike stringology where a finite automaton is used.

1.2 Problem Statement
The XML index problem means to construct an effective XML index structure that is
preferably small in size and is able to efficiently process an XML query language or just
its fragment. For instance, XPath which stands for XML Path Language, is one of the
commonly used XML query languages. It operates on tree structured XML documents
and its primary purpose is to address the nodes (i.e., elements, attributes, etc.) of trees
or specify data subsets to be selected.

1) Stringology (term was for the first time used by Zvi Galil in 1984 [5]) denotes a science on algorithms
on strings and sequences. It solves such problems like exact and approximate pattern matching, searching
for repetitions in various texts, etc.
2) Arbology [6] (from the spanish word arbol, meaning tree) is a new algorithmic discipline. It was officially
introduced at London Stringology Days 2009 conference.

1

1. Introduction .
However, without a structural summary, a query processing can be quite inefficient due
to an exhaustive traversal on XML data. Indexing the structure of XML data is an
effective way to accelerate the query processing, since it can greatly reduce the search
space. Therefore, several XML documents indexes have been proposed.

We can classify the indexes into several categories such as: graph-based methods
constructing a structural path summary that can be used to improve query efficiency,
especially for single path queries. Next category covers sequence-based methods trans-
forming both the source data and query into sequences. Therefore, querying XML
data is equivalent to finding subsequence matches. Node coding methods form the next
category. These methods apply certain coding strategy to design codes for each node,
in order that the relationship among nodes can be evaluated by computation. The last
category includes adaptive methods that can adapt their structure to suit the query
workload by indexing the most frequent queries only.

1.3 Goals of the Thesis
The primary aim of this thesis is summarized as follows:

.Study algorithmic methods for indexing texts and tree data structures..Review current state-of-the-art methods for XML index problem..Propose a new method for the purpose of indexing XML documents that would be
based on suitable formal models from the theory of formal languages and automata..Discuss theoretical and time and space complexities of proposed method, implement
it and perform appropriate testing of the implementation.

1.4 Structure of the Thesis
The rest of the thesis is organised as follows. In Chapter 2, we provide the necessary
theoretical background, i.e., notations used through this thesis, essential definitions
concerning trees and theory of formal languages and automata along with a brief
introduction to XML and XPath. We discuss the relationship between arbology and
XPath in Chapter 3. The Chapter 4 is an overview of the texts and trees indexing
techniques. The state-of-the-art methods for XML index problem are discussed in
Chapter 5 in detail. In Chapter 6 we show that automata can be used effectively for
the purpose of indexing XML documents and introduce three types of such automata.
Chapters 7 and 8 deal with the implementation and the experimental evaluation of the
proposed methods, respectively. The last part of the thesis is a summary of the thesis
results and contributions along with a discussion about future work.

2

Chapter 2
Theoretical Background

In this chapter, all the notations through this thesis are given along with basic definitions.
Next, we present a fairly short introduction to XML and rather illustrate it by means of
an example. In the end, the XPath query language is introduced.

2.1 Notations
Notations used throughout the thesis are given:

.A for an alphabet,.a for an alphabet symbol,.w, x, y, z for strings,.L for a language,.N for a set of nonterminal symbols,.S for a start symbol of a grammar,.p, q for states,. q0 for an initial state,.Q for a set of states,.F for a set of final states,.G as a pushdown store alphabet,.Z0 as an initial pushdown store symbol,. δ for automaton transition function,.M for both a finite and a pushdown automaton,.G for a directed graph and for a grammar,.V for a set of vertices (nodes) in a directed graph,.R for a set of lists of edges in a directed graph,.v, u for a graph vertex (node),.T for an arbitrary tree,.D for an XML document,.T for an XML tree model,.n for a node of both an XML tree model and an arbitrary tree,.r for a root node of both an XML tree model and an arbitrary tree,.E for an XML alphabet,.e for an XML element,.Q for an XML query,.h for a height of both an XML tree model and an arbitrary tree,

3

2. Theoretical Background .
.k for a number of leaves of both an XML tree model and an arbitrary tree,. l for a label of a tree node or an XML element,.P for a string path and for a string or tree pattern,.P for a string paths set and for a set of production rules,.OP (e) for a set of occurrences of an element e in a string path P ,.OT (l) for a set of occurrences of an element label l in an XML tree model T .

2.2 Basic Definitions

2.2.1 Alphabet

Definition 2.1. (Alphabet). An alphabet is a finite nonempty set of symbols. ♣

Definition 2.2. (Ranked alphabet). A ranked alphabet is an alphabet where each symbol
of a set has a unique nonnegative arity (or rank). ♣

Definition 2.3. (Arity of a symbol). Given a ranked alphabet A, the arity of a symbol
a ∈ A is denoted arity(a). As a short declaration of symbols with arity we use
superscripts (for instance, a2 is a short declaration of a symbol a of arity 2). ♣

2.2.2 String

Definition 2.4. (String). A string over a given alphabet A is a finite sequence of symbols
of A. ♣

Definition 2.5. (Length of a string). A length of a string x is the number of its symbols
and is denoted by |x|. ♣

Definition 2.6. (Empty string). An empty string is an empty sequence of symbols
denoted by ε. ♣

Definition 2.7. (Set of all strings). A set of all strings over a given alphabet A is
denoted by A∗. ♣

Definition 2.8. (Set of all nonempty strings). A set of all nonempty strings over a given
alphabet A is denoted A+. ♣

Definition 2.9. (Prefix). A prefix of a string x = x1x2 . . . xn is a string y = x1x2 . . . xm,
where m ≤ n. ♣

Definition 2.10. (Suffix). A suffix of a string x = x1x2 . . . xn is a string y = xixi+1 . . . xn,
where i ≥ 1. ♣

Definition 2.11. (Factor). A factor (substring) of a string x = x1x2 . . . xn is a string
y = xixi+1 . . . xj , where 1 ≤ i ≤ j ≤ n. ♣

Definition 2.12. (Subsequence). A subsequence of a string x = x1x2 . . . xn is a string y
obtained by deleting zero or more symbols from x. ♣

4

. 2.2 Basic Definitions

2.2.3 Graph, Tree

Definition 2.13. (Directed graph). A directed graph G is a pair (N, R), where N is
a set of nodes and R is a set of lists of edges such that each element of R is of the
form ((v, u1), (v, u2), . . . , (v, u3)), where v, u1, u2, . . . , un ∈ N, n ≥ 0. This element will
indicate that, for node v, there are n edges leaving v, entering node u1, node u2, and so
forth. ♣

Definition 2.14. (Path). A sequence of nodes (v0, v1, . . . vn), n ≥ 1 is a path of length n
from node v0 to node vn if there is an edge which leaves node vi−1 and enters node vi

for 1 ≤ i ≤ n. ♣

Definition 2.15. (Cycle). A cycle is a path v0, v1, . . . vn, where v0 = vn. ♣

Definition 2.16. (Directed acyclic graph). A directed acyclic graph is an directed graph
that has no cycle. ♣

Definition 2.17. (Labelling). A labelling of a graph G = (N, R) is a mapping N into a
set of labels. ♣

Definition 2.18. (Out-degree, in-degree). Given a node v, its out-degree is the number
of distinct pairs (v, u) ∈ R, where u ∈ N . By analogy, the in-degree of node v is the
number of distinct pairs (u, v) ∈ R where u ∈ N . ♣

Definition 2.19. (Tree). A tree is an acyclic connected graph. Any node of a tree can
be selected as a root of the tree. A tree with a root is called rooted tree. ♣

Definition 2.20. (Rooted directed tree). A rooted and directed tree T is a directed
acyclic graph T = (N, R) with a special node r ∈ N , called the root, such that

- r has in-degree 0,
- all other nodes of T have in-degree 1,
- there is just one path from the root r to every node n ∈ N , where n 6= r. ♣

Definition 2.21. (Leaf). Let T = (N, R) be a rooted directed tree. Node n ∈ N is
called a leaf if it has out-degree 0. ♣

Definition 2.22. (Labelled tree). A labelled (rooted, directed) tree is a tree having the
following property:

- every node n ∈ N is labelled by a symbol a ∈ A, where A is an alphabet. ♣

Definition 2.23. (Ordered tree). An ordered (labelled, rooted, directed) tree is a tree
where direct descendants n1, n2, . . . , nm of a tree node n with an out-degree m are
ordered. ♣

Definition 2.24. (Ranked tree). A ranked (labelled, rooted, directed) tree is a tree
labelled by symbols from a ranked alphabet and out-degree of a node n labelled by
symbol a ∈ A is arity(a). ♣

Definition 2.25. (Unranked tree). A (labelled, rooted, directed) tree is called unranked
if it is not ranked. ♣

Definition 2.26. (Subtree). Let T = (N, R) be a rooted directed tree. A subtree
T ′ = (N ′, R′) of T is a rooted directed tree, where N ′ ⊆ N ∧R′ ⊆ R. Also, if n is a leaf
in T ′, then n is a leaf in T . ♣

5

2. Theoretical Background .
Definition 2.27. (Tree pattern). To define a tree pattern, we use special symbol S with
arity 0, not in A, which serves as a placeholder for any subtree. A tree pattern is defined
as a labelled ordered ranked tree over ranked alphabet A∪ S. We will assume that the
tree pattern contains at least one node labelled by a symbol from A. ♣

Definition 2.28. (Tree template). A tree template is a tree pattern containing at least
one symbol S. ♣

Definition 2.29. (Prefix notation of a tree). A prefix notation pref(T) of an ordered,
labelled, rooted, directed tree T is defined in this way:

1. pref(T) = n if T has only node n,
2. pref(T) = n pref(n1) . . . pref(nm), where n is the root of the tree T and n1, n2 . . . nm

are direct descendants of n. ♣

Definition 2.30. (Arity checksum). Let x = a1a2 . . . am, m ≥ 1, be a string over a
ranked alphabet A. Then the arity checksum of string x denoted ac(x) can be computed
as follows:

ac(x) =

m
∑

i=1

arity(ai)−m + 1 ♣

2.2.4 Language, Grammar

Definition 2.31. (Language). A language L over an alphabet A is a set of strings
over A. ♣

Definition 2.32. (Grammar). A grammar is a quadruple G = (N ,A,P, S), where

.N is a finite set of nonterminal symbols,.A in an input alphabet,.P is a set of production rules. It is a finite subset of (N ∪A)∗.N .(N ∪A)∗× (N ∪A)∗,.S ∈ N is the start symbol of the grammar. ♣

Definition 2.33. (Regular grammar). A grammar G = (N ,A,P, S) is called regular,
if every rule is of the form A → aB or A → a, where A, B ∈ N , a ∈ A. The single
exception is the rule S → ε in case that S is not present in the right-hand side of any
rule. ♣

Definition 2.34. (Context-free grammar). A grammar G = (N ,A,P, S) is called
context-free, if every rule is of the form A→ α, where A ∈ N , α ∈ (N ∪A)∗. ♣

2.2.5 Finite and Pushdown Automaton

Definition 2.35. (Deterministic finite automaton). A deterministic finite automaton
(DFA) is a quintuple M = (Q,A, δ, q0, F), where

.Q is a finite set of states,.A is a finite input alphabet,. δ is a mapping from Q×A to Q,. q0 is the initial state,.F ⊆ Q is the set of final states. ♣

6

. 2.3 XML

Definition 2.36. (Total DFA). A DFAM = (Q,A, δ, q0, F) is called total if the mapping
δ is defined for all pairs of state q ∈ Q and symbol a ∈ A. ♣

Definition 2.37. (Nondeterministic finite automaton). A nondeterministic finite au-
tomaton (NFA) is a quintuple M = (Q,A, δ, q0, F), where

.Q is a finite set of states,.A is a finite input alphabet,. δ is a mapping from Q×A into the set of subsets Q (denoted by 2Q),. q0 is the initial state,.F ⊆ Q is the set of final states. ♣

Definition 2.38. (d-subset). Let M1 = (Q1,A, δ1, q01, F1) be a nondeterministic
finite automaton. Let M2 = (Q2,A, δ2, q02, F1) be the deterministic finite automaton
equivalent to automaton M1. Automaton M2 is constructed using the standard
determinisation algorithm based on subset construction [7]. Every state q ∈ Q2

corresponds to some subset d of Q1. This subset will be called a d-subset (deterministic
subset). The d-subset is a totally ordered set, the ordering is equal to ordering of states
of M1 considered as natural numbers. ♣

Definition 2.39. (Nondeterminsitic pushdown automaton). A nondeterminsitic push-
down automaton is a seven-tuple M = (Q,A, G, δ, q0, Z0, F), where

.Q is a finite set of states,.A is an input alphabet,.G is a pushdown store alphabet,. δ is a mapping from Q× (A ∪ {ε})×G into a set finite subsets of Q×G∗,. q0 ∈ Q is an initial state,.Z0 ∈ G is the initial pushdown store symbol,.F ⊂ Q is the set of final (accepting) states. ♣

Definition 2.40. (Deterministic pushdown automaton). A pushdown automaton
M = (Q,A, G, δ, q0, Z0, F) is deterministic, if the following holds:

1. |δ(q, a, γ)| ≤ 1, ∀q, a, γ where q ∈ Q, a ∈ (A ∪ {ε}), γ ∈ G∗,
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β, then α is not a suffix of β and β is not a

suffix of α (i.e., γα 6= β, α 6= γβ),
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of α

(i.e., γα 6= β, α 6= γβ). ♣

2.3 XML
Extensible Markup Language [1], abbreviated XML, was defined by the consortium
W3C’s XML 1.0 Specification as a format used for transfer of general documents and
data. XML is a markup language that defines a set of rules for encoding documents in
a format which is both human-readable and machine-readable. The XML specification
defines an XML document as a well-formed text, meaning that it satisfies a list of syntax
rules provided in the specification.

Definition 2.41. (Well-formed XML document). A well-formed XML document is a
document that adheres to the syntax rules specified by the XML 1.0 specification in
that it must satisfy both physical and logical structures. ♣

7

2. Theoretical Background .
Set of marks of an XML document is not fixed and can be defined in various ways for
each document (unlike HTML which uses fixed set of marks to express form of the final
document). Both XML and HTML are restricted forms of SGML1). The key constructs
of an XML document are as follows:

. tag a markup construct that begins with < and ends with >. Tags can be classified
into following categories:

. start-tags,

. end-tags,

. empty-element tags.

.element a logical document component which either begins with a start-tag and ends
with a matching end-tag or consists only of an empty-element tag. The symbols
between the start- and end-tags, if any, are the element’s content..attribute a markup construct consisting of a name-value pair separated by equality
sign that exists within a start-tag or an empty-element tag. The value of an attribute
is always atomic, hence cannot be nested.

We will illustrate the key constructs of an XML document by means of an example.
Consider the XML document in Example 2.42 which displays basic information about
noble houses of the Seven Kingdoms in Westeros2). We can see that HOUSES is the
most outer element. A start-tag of this element is of the form <HOUSES>, whereas the
corresponding end-tag, indicating the end of the element, is </HOUSES>. So, the content
between and including the tags <HOUSES> and </HOUSES>, constitutes a HOUSES element.
Elements can be arbitrarily nested inside other elements. For instance, the HOUSES

element has two HOUSE elements as its subelements. Every HOUSE element includes LORD

and SIGIL as its first and second subelement, respectively and optionally SEAT as its
third subelement. Another key construct of an XML document are attributes. For
instance, <HOUSE name="Stark"> indicates that the value of the name attribute of that
particular HOUSE element is "Stark".

Example 2.42. A sample of a well-formed XML document.

1 <HOUSES>
2 <HOUSE name="Stark">
3 <LORD>Eddard Stark</LORD>
4 <SIGIL>Direwolf</SIGIL>
5 <SEAT>Winterfell</SEAT>
6 </HOUSE>
7 <HOUSE name="Targaryen">
8 <LORD>Daenerys Targaryen</LORD>
9 <SIGIL>Dragon</SIGIL>

10 </HOUSE>
11 </HOUSES>

♠
Usually, we are interested in documents that satisfy some specific constraints, rather
then documents containing arbitrary elements. Such constraints can be defined by means
of Document Type Definitions, abbreviated DTD, describing a schema of corresponding
XML documents.

1) Standard Generalized Markup Language (SGML) is a standard for how to specify a document markup
language or a tag set.
2) Westeros is a fictional continent of an American fantasy drama named Game of Thrones.

8

. 2.3 XML

A DTD describing schema of the XML document from Example 2.42 is shown in
Example 2.43. The DTD specifies that HOUSES is the most outer element and it allows
an unbounded number of HOUSE elements to be nested. Also, we can learn that every
HOUSE element includes at first LORD and then SIGIL as obligatory elements followed by
optional SEAT element. So, *, ? and , denote any number of occurrences, optionality
and concatenation, respectively. #PCDATA indicates that the element has no subelements
but consists of text only. By ATTLIST we determine which attribute belongs to which
element. In this DTD an attribute NAME belongs to HOUSE element and can only have a
single string value.

Example 2.43. A DTD describing a structure of the XML document from Example 2.42.

1 <!DOCTYPE HOUSES [
2 <!ELEMENT HOUSES (HOUSE*)>
3 <!ELEMENT HOUSE (LORD, SIGIL, SEAT?)>
4 <!ELEMENT LORD (#PCDATA)>
5 <!ELEMENT SIGIL (#PCDATA)>
6 <!ELEMENT SEAT (#PCDATA)>
7 <!ATTLIST HOUSE NAME CDATA>
8]>

♠
In case of simple XML documents we get along with the DTD language as a tool
of schema specification. However, complex documents often need complex structure
specification, so DTDs are not sufficient. For this reason, there exists XML Schema
language containing additional constructs with significant power of expression.

2.3.1 XML Data Model

Although an XML document may have complex internal structures, it can be viewed as
a tree in a natural way. Most logical formalism for trees deal with ranked trees (see
formal Definition 2.24). In such trees, all nodes have the same fixed number of children
or a bit more generally, the number of children of a node is determined by the label of
that node [8]. However, XML documents have frequently no restrictions on the number
of children a node can have (e.g., the DTD from Example 2.43 allows an unbounded
number of HOUSE elements and optionality of SEAT element).

Therefore, XML data is typically modelled as labelled unranked trees [9] (see formal
Definition 2.25) over a finite alphabet determined, for instance, by a DTD. There is no
unique best way for how to encode XML documents as trees. One possibility, on the
basis of variety of XML data, is to introduce following different types of tree nodes [10]:. root,. element,. text,.attribute,. comment,.processing instruction,.namespace.

As a root of the XML tree model we can consider the most outer element. Except
for attribute and namespace nodes, the edges represent the parent–child (or element–
subelement) relationship. The attribute and namespace nodes are not actually contained
inside the element as they give only additional information. Hence, they are not
considered to be in a parent–child relationship.

9

2
.

T
h
eo

retica
l

B
a
ck

g
ro

u
n
d......................................

HOUSES1

HOUSE2

name= Stark LORD3

Eddard
Stark

SIGIL4

Direwolf

SEAT5

Winterfell

HOUSE6

name= Targaryen LORD7

Daenerys
Targaryen10

SIGIL8

Dragon

Element node

Attribute node

Text node

Figure 2.1. XML tree model (preorder numbering scheme – element nodes)

1
0

. 2.4 XPath

Example 2.44. Let D be the XML document from Example 2.42. The corresponding
XML tree model T is illustrated in Figure 2.1. ♠

2.4 XPath

XML Path Language (XPath) 1.0 [2] is an XML query language that became a W3C
Recommendation in 1999. The language gets its name from its use of a path notation
for navigating through the hierarchical structure of an XML document and operating
on its tree structure. It is a query language for selecting nodes from an XML document
but can also be used to compute values (e.g., strings, numbers, or Boolean values) from
the content of an XML document. XPath is a major element in the XSLT standard and
both XQuery and XPointer are built on XPath expressions.

2.4.1 Syntax and Semantics

The primary purpose of XPath is to address nodes of an XML tree model using a
compact, non-XML syntax. XPath expressions can be quite simple or very complex.
The syntax structure of simplified version of XPath can be expressed by EBNF1) as
follows (for complete XPath see Appendix C):

1 AbsoluteLocationPath = ’/’ , [LocationPath] ;

2 LocationPath = Step

3 | LocationPath ’/’ Step

4 Step = AxisSpecifier , NodeTest , [Predicate] ;

5 AxisSpecifier = AxisName , ’::’ ;

6 AxisName = ’ancestor’

7 | ’ancestor-or-self’

8 | ’attribute’

9 | ’child’

10 | ’descendant’

11 | ’descendant-or-self’

12 | ’following’

13 | ’following-sibling’

14 | ’parent’

15 | ’preceding’

16 | ’preceding-sibling’

17 | ’self’ ;

18 NodeTest = ’*’

19 | ’ElementName’

20 | NodeType , ’(’ , ’)’ ;

21 NodeType = ’text’

22 | ’node’ ;

23 Predicate = ’[’ , Number , ’]’ ;

24 Number = Digit , { Digit } ;

25 Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;

XPath uses path expressions to select nodes in an XML document. The path expressions
are used to select nodes or node-sets in an XML document. Such nodes are usually
referred to as target nodes. A path consists of a sequence of steps, where each step

1) ISO/IEC 14977 Extended BNF [11] defines a standard syntactic metalanguage based on BNF, which
can be used to express a context-free grammar.

11

2. Theoretical Background .
has following structure: a location path (i.e,. “where to look for”), node tests (i.e.,
identifying a node) and predicates (i.e., additional tests).

axis::node-test[predicate]*

Expression evaluation occurs with respect to a context (the current node in the XML
tree a processor is looking at). An axis specifier such as child or descendant specifies
the direction to navigate from the context node and selects an initial node-set. The
node test and the predicate are used to filter the node-set by specifying desired element
names, type of nodes or by defining some properties a node must have.

.Axis – indicates navigation direction within the tree representation of an XML
document and defines a node-set relative to the current node. There are 13 axes
available (see Figure 2.2):

. ancestor selects all ancestors (parent, grandparent, etc.) of the current node,

. ancestor-or-self selects all ancestors (parent, grandparent, etc.) of the current
node and the current node itself,

. attribute selects all attributes of the current node,

. child selects all direct descendants (children) of the current node,

. descendant selects all descendants (children, grandchildren, etc.) of the current
node,

. descendant-or-self selects all descendants (children, grandchildren, etc.) of the
current node and the current node itself,

. following selects everything in the document after the closing tag of the current
node,

. following-sibling selects all siblings after the current node,

. namespace selects all namespace nodes of the current node,

. parent selects the parent of the current node,

. preceding selects all nodes that appear before the current node in the document,
except ancestors, attribute nodes and namespace nodes,

. preceding-sibling – selects all siblings before the current node,

. self selects the current node.

u

followingpreceding

ancestor

preceding-sibling following-sibling

parent

self

child

descendant

Figure 2.2. XPath axes with respect to a context node u

12

. 2.4 XPath

.Node test may consists of specific node names or more general expressions such as:

. * matches any element node,

. @* matches any attribute node,

. node() matches any node of any kind,

. text() matches any text node,

. comment() matches any comment node.

.Predicate is an expression written in square brackets, that can be used to find specific
nodes or nodes that contain a specific value. There is no limit to the number of
predicates in a step, and they need not be confined to the last step in an XPath.
They can also be nested to any depth.

The XPath syntax comes in two flavours: the abbreviated syntax, is more compact and
allows XPaths to be written and read easily using intuitive and, in many cases, familiar
symbols and constructs. The full syntax is more verbose, but allows for more options
to be specified, and is more descriptive if read carefully. We list some abbreviated
expressions in Table 2.1.

Abbreviated syntax Full syntax

child::

@ attribute::

. self::node()

.. parent::node()

// /descendant-or-self::node()

//X /descendant-or-self::node()/child::X

[number] [position()=number]

Table 2.1. XPath expressions in abbreviated and full syntax

2.4.2 Examples

The following examples of XPath expressions refer to the sample XML document D
described in Figure 2.42 with matching XML tree model T illustrated in Figure 2.1.

Example 2.45. The following XPath expression selects name attributes for all HOUSE

elements.
//HOUSE/@name ♠

Example 2.46. The following XPath expression selects all LORD elements having HOUSES

element as an ancestor.
/HOUSES//LORD ♠

Example 2.47. The following XPath expression selects all text nodes of SIGIL elements
having HOUSE element as parent and SEAT element as sibling.

//HOUSE[SEAT]/SIGIL/text() ♠

Example 2.48. The following XPath expression selects any node having an attribute.

//*[@*] ♠

Example 2.49. The following XPath expression selects all HOUSE elements with at least
one SEAT child element.

//HOUSE[count(SEAT)>=1] ♠

13

2. Theoretical Background .

14

Chapter 3
Arbology and XPath Relation

Arbology [6] (from the spanish word arbol, meaning tree) is a new algorithmic discipline
interested in processing tree data structures. It solves problems such as tree pattern
matching, tree indexing or finding repeats in a tree. The internal structure of an XML
document can be represented as a tree in natural way and an XPath query can be
viewed as a kind of a tree pattern. Thus, we can declare querying or searching XML
document using XPath to be analogous problems of a tree pattern matching.

A tree pattern is a tree whose leaves can be labelled by a special symbol S, which
servers as a placeholder for any subtree. It holds that a tree pattern in a linear notation
corresponds to a substring of the linear notation of the tree, where the symbols S are
replaced with linear notations of subtrees. We propose XPath queries to be a new kind
of a tree pattern that differs, for example, in following:.Although an XPath query can have a fairly complex structure, it is often oriented to

a few target nodes only.

Example 3.1. Consider the XML tree model T in Figure 2.1 and a sample XPath
query Q1 = /HOUSES/HOUSE/SIGIL illustrated in Figure 3.1. The query expects
occurrences of nodes SIGIL that satisfy the nesting property as the answer. Therefore,
the occurrences of elements HOUSES and HOUSE are irrelevant. In a query tree model
we show a target node in red. We illustrate the occurrences of Q1 in Figure 3.4. ♠.An occurrence of a tree pattern in a tree always forms a connected graph. However,
an XPath query might allow nodes skipping and thus, the final mapping of nodes can
result in a disconnected graph.

Example 3.2. Consider the XML tree model T in Figure 2.1 and a sample XPath
query Q2 = /HOUSES//LORD illustrated in Figure 3.2. There are two occurrences of
Q2 in T and both of them form a disconnected graph, since the descendant edge
maps to a path of length two. The occurrences are illustrated in Figure 3.5. In a
query tree model we show the // axis using a twisted line. ♠.Considering types of nodes, XML documents are usually heterogeneous structures.
Hence, XPath query is able to distinguish such nodes using special constructs.

Example 3.3. Consider the XML tree model T in Figure 2.1 and a sample XPath
query Q3 = //SIGIL//text() illustrated in Figure 3.3. The query selects only text
nodes that have a SIGIL element as an ancestor. There are two occurrences of Q3 in
T shown in Figure 3.6. ♠

HOUSES

HOUSE

SIGIL

Figure 3.1. Query Q1

HOUSES

LORD

Figure 3.2. Query Q2

SIGIL

text()

Figure 3.3. Query Q3

15

3. Arbology and XPath Relation .

HOUSES

HOUSE

name=

Stark
LORD

Eddard

Stark

SIGIL

Direwolf

SEAT

Winterfell

HOUSE

name=

Targaryen
LORD

Daenerys

Targaryen

SIGIL

Dragon

Figure 3.4. Occurrences of the XPath query Q1 = /HOUSES/HOUSE/SIGIL

HOUSES

HOUSE

name=

Stark
LORD

Eddard

Stark

SIGIL

Direwolf

SEAT

Winterfell

HOUSE

name=

Targaryen
LORD

Daenerys

Targaryen

SIGIL

Dragon

Figure 3.5. Occurrences of the XPath query Q2 = /HOUSES//LORD

HOUSES

HOUSE

name=

Stark
LORD

Eddard

Stark

SIGIL

Direwolf

SEAT

Winterfell

HOUSE

name=

Targaryen
LORD

Daenerys

Targaryen

SIGIL

Dragon

Figure 3.6. Occurrences of the XPath query Q3 = //SIGIL//text()

16

. 3.1 Classification of XPath Queries

HOUSES

HOUSE

LORD SIGIL

Figure 3.7. Query Q4

HOUSES

HOUSE

SIGIL LORD

Figure 3.8. Query Q4

. In general, an XPath query that contains a branching structure (e.g., predicate) is
viewed as an unordered tree.

Example 3.4. Consider the XML tree model T in Figure 2.1 and a sample XPath
query Q4 = /HOUSES/HOUSE[LORD]/SIGIL. Since, this XPath expression has no
restriction on the order of the sibling nodes LORD and SIGIL, we need to consider
both arrangements illustrated in Figures 3.7 and 3.8. We have also no guarantee that
there are no other child elements of HOUSE element “between” a pair of LORD and
SIGIL or SIGIL and LORD elements. ♠

Speaking in general, it does not hold that an XPath query tree model in a linear notation
corresponds to a substring of the linear notation of the XML tree model. We can rather
think about it as its subsequence. However, more complex XPath queries containing
axes such as: parent, ancestor or preceding are even difficult to represent by tree
models.

3.1 Classification of XPath Queries
Building a universal data structure that is able to efficiently evaluate all the constructs of
XPath query language is really not a simple task. Therefore, structures supporting just
fragments of XPath are the most common subjects of study. To simplify description of
such fragments we propose a classification of XPath queries as illustrated in Figure 3.9.

3.1.1 Query Constructs

We can simply classify XPath queries, by restricting the constructs c (i.e., ∗, //) available
in the query syntax. We denote such class of queries by XP {c1,c2,...,cn}.

Example 3.5. Consider a fragment of XPath which consists of: node name tests,
child axes, descendant axes and wildcards. Isolating the key features of XPath we get
XP {/,//,∗,node−name}. ♠

3.1.2 Query Orientation

We may also group queries according to the orientation used for navigating through the
XML tree structure. Therefore, we get following main categories: down, up, left and
right. Other queries can be denoted by their combination, such as down-right oriented
queries.

.Down orientated queries navigate from the context node only downwards using
following axes:

. child::,

. descendant::,

. descendant-or-self::.

17

3. Arbology and XPath Relation .

XPath

Query
orientation

Down

child::

descen-

dant::

Upparent::

ancestor:: Left

preceding-

sibling::
preced-

ing::

Right

following-

sibling::

following::

Query
structure

Path

Twig

Query
arity

p-ary

. . .

unary
boolean

Query
constructs

. . .

XP{/,//}

XP{/,[]}

Figure 3.9. XPath queries classification

.Up orientated queries navigate from the context node only upwards using following
axes:

. parent::,

. ancestor::,

. ancestor-or-self::.

.Left orientated queries navigate from the context node only leftwards using following
axes:

. preceding::,

. preceding-sibling::.

.Right orientated queries navigate from the context node only rightwards using
following axes:

. following::,

. following-sibling::.

Example 3.6. Consider a fragment of XPath which consists of child (/) and descendant-
or-self (//) axes only. We classify such queries as down oriented. ♠

18

. 3.1 Classification of XPath Queries

3.1.3 Query Structure

Considering the query tree structure, there are two elementary classes:

.Path queries are XPath expressions that might be represented by a simple linear tree
model (i.e., no branching)..Twig queries are XPath expressions that might by represented by a tree model with
at least two leaves (i.e., single branching).

Example 3.7. Consider queries Q1, Q2 and Q3 in Figures 3.1, 3.2 and 3.3, respectively
and. We classify all of them as path queries. The query Q4 illustrated in Figure 3.7 is
an example of a twig query. ♠

3.1.4 Query Arity

Every XPath expression is oriented to k target nodes only, for some k ≥ 0. We propose
k to represent a query arity. Queries of arity 0, 1, 2, . . . , p are respectively called boolean,
unary, binary, . . . , p-ary queries.

Example 3.8. Let Q5 = //HOUSE/*[self::LORD or self::SEAT] The query selects
all LORD and SEAT elements that are children of HOUSE element. Therefore, Q5 represents
a binary query. ♠

19

3. Arbology and XPath Relation .

20

Chapter 4
Indexing Texts and Trees

4.1 Text Indexing
Text or string data naturally arises in many contexts including document processing,
information retrieval, natural and computer language processing, and describing molecu-
lar sequences. In broad terms, the goal of text indexing is to design methodologies to
store text data, so that performance of answering queries [12] is improved. The most
classic task in text processing is to find all occurrences of a pattern in a given text.

The theory of text indexing, which is a result of stringology research [13–15], is very
well-researched and uses many sophisticated data structures, such as: suffix trie, suffix
tree, suffix or factor automaton and subsequence automaton. The compacted and
minimized version of both suffix trees and suffix automata is represented by compact
suffix automaton. Recently, another text indexing structure, called position heap, has
been proposed in [16]. This chapter briefly introduces these existing data structures of
text indexing and summarizes their ability.

4.1.1 Data Structures for Storing the Suffixes

Definition 4.1. (Set of all suffixes). Given a string x, its corresponding set Suff(x),
called the set of all suffixes of the string x, is defined as follows:

Suff(x) = {y : x = wy, w, x, y ∈ A∗} ♣

Data structures for storing the suffixes of a text are conceived for providing a direct and
fast access to the factors of the text. As the basic models of computation, standard finite
automata, trees and their compact versions, are used. The representation of the suffixes
of a string by a trie has the advantage to be simple but lead to a quadratic memory
space according to the length of the considered string. The (compact) suffix tree avoids
this drawback and admits a linear space implementation. The minimization (in the
sense of automata) of the suffix trie gives the minimal suffix automaton. Compaction
and minimization together give the compact suffix automaton. [13] Let us summarize
these data structures in the list below:

.Suffix trie [13, 17] of a string x is a deterministic automaton that recognizes Suff(x).
The underlying graph structure of the automaton is a tree whose edges are labelled
by symbols of given alphabet.

. number of states: O(|x|2).

.Suffix tree [13, 17] of a string x is a compact trie accepting Suff(x) obtained from
the suffix trie of a string x by deleting all nodes having outdegree 1 that are not
terminal. Edges are labelled by subwords of x instead of symbols.

. number of states: between (|x|+ 1) and 2|x|.

21

4. Indexing Texts and Trees .
.Suffix automaton [13, 17–18] (DAWG – Directed Acyclic Word Graph) is a minimal

deterministic automaton accepting Suff(x) obtained from the suffix trie of x by
minimization.

. number of states: between (|x|+ 1) and (2|x| − 1),

. number of transitions: between |x| and (3|x| − 4).

.Compact suffix automaton [13, 17] is a compact minimal automaton accepting
Suff(x) obtained either from the suffix tree of x by minimization or from the suffix
automaton of x by compaction.

. number of states: between 2 and (|x|+ 1),

. number of transitions: less or equal to 2(|x| − 1).

Example 4.2. Consider string x = baaba over alphabet A = {a, b} and its corre-
sponding set Suff(x) = {baaba, aaba, aba, ba, a, ε}. The data structures accepting
Suff(x) \ {ε} and the relationships between them, as described above, are illustrated
in Figure 4.1. ♠

Figure 4.1. Efficient data structures accepting the set Suff(baaba)\{ε} and the relation-
ships between them

.Position heap [19] is patterned on a data structure, called a sequence hash tree1) that
adapts to the problem of finding occurrences of a pattern string P (length m) in a
string x (length n). The position heap of a string x is obtained by iteratively inserting
the suffixes (x1, x2, . . . , xn) of x, in ascending order of length into the sequence hash
tree using following insertion operation: xi is inserted by creating a new node that is
the shortest prefix of xi that is not already a node of the tree, and labelling it with
position i.

. trivial construction: O(nh(T)), where h(T) is the length of the longest substring y
of x that is repeated at least |y| times in x,

1) Sequence hash tree is a data structure of Coffman and Eve [20], originally designed for the problem of
implementing hash tables whose keys are strings.

22

. 4.1 Text Indexing

. optimized construction: O(n).

The trivial query algorithm for finding all occurrences of a pattern string P in x
consists of following steps:

1. Index into the position heap to find the longest prefix y of P that is a node of the
position heap. For each ancestor y′ of y (including y), look up the position i stored
in y′. Determine whether this occurrence is followed by P \ y′. If it is, report i as
an occurrence of P .

2. If y = P , also report all positions stored at descendants of y.

. trivial query algorithms: O(min(m2, mh(T)) + occ), where occ is the number of
occurrences of pattern string P in the string x,

. optimized query algorithm: O(m + occ).

Example 4.3. Consider string x = abaababbabbab over an alphabet A = {a, b} and the
set Suff(x) = {b, ab, bab, bbab, abbab, babbab, bbabbab, abbabbab, babbabbab, ababbabbab,
aababbabbab, baababbabbab, abaababbabbab, ε}. The corresponding position heap is
illustrated in Figure 4.2. ♠

13 12 11 10 9 8 7 6 5 4 3 2 1
a b a a b a b b a b b a b

1

2

11

a

5

10

13

a

a

8

b

b

a

3

6

12

a

9

b

a

4

7

a

b

b

Figure 4.2. Position heap of the string x = abaababbabbab from Example 4.3

4.1.2 Factor Automaton

Definition 4.4. (Set of all factors). Given a string x, its corresponding set Fact(x),
called the set of all factors (substrings) of the string x, is defined as follows:

Fact(x) = {y : x = wyz, w, z, x, y ∈ A∗} ♣

A factor automaton [18], in some sources called Directed Acyclic Word Graph (DAWG),
is the minimal deterministic automaton that recognizes the set Fact(x).

Example 4.5. Consider string x = baaba over alphabet A = {a, b} and its corresponding
set Fact(x) = {ε, a, b, ab, ba, aa, aab, aba, baa, aaba, baab, baaba}. The nondeterministic
automaton accepting the set of all factors (substrings) is illustrated in Figure 4.3. ♠

23

4. Indexing Texts and Trees .

start
b

a

a

b

a

a a b a

Figure 4.3. Nondeterministic factor automaton accepting Fact(baaba) from Example 4.5

4.1.3 Subsequence Automaton

Definition 4.6. (Set of all subsequences). Given a string x, its corresponding set Sub(x),
called the set of all subsequences of the string x, is defined as follows:

Sub(x) = {a1a2 . . . am : x = y0a1y1a2 . . . amym, yi ∈ A
∗, i = 0, 1, 2, . . . m, aj ∈ A,

j = 1, 2, 3, . . . m, m ≥ 0} ♣

A subsequence automaton of a string x [18] is the minimal deterministic automaton that
recognizes the set Sub(x).

Example 4.7. Consider string x = abba over alphabet A = {a, b} and its corresponding
set Sub(x) = {ε, a, b, ab, ba, aa, bb, aba, bba, abb, abba}. The nondeterministic automaton
(with ε-transitions) accepting the set of all subsequences is illustrated in Figure 4.4.
After elimination of ε-transitions the nondeterministic subsequence automaton has
transition diagram as described in Figure 4.5. ♠

start

ε

a

ε

b

ε

b

ε

a

Figure 4.4. Nondeterministic subsequence automaton with ε-transitions accepting the set
Sub(abba) from Example 4.7

start
a

b

b

a

b

b

a

b

a

a

Figure 4.5. Nondeterministic subsequence automaton after ε-transitions removal accepting
the set Sub(abba) from Example 4.7

4.2 Tree Indexing
Subtree matching and tree pattern matching are often declared to be analogous problems
of string pattern matching. There is a key property of linear notations of trees:

“The linear notation of a subtree is a substring of the linear notatation of the tree.” [6]

24

. 4.2 Tree Indexing

As a result of arbology research [21, 6], the algorithmic discipline interested in processing
tree data structures, some sophisticated solutions of tree pattern matching and tree
indexing have been proposed. For the algorithms a standard pushdown automaton is
used as the basic model of computation.

We briefly present two kinds of acyclic pushdown automata for trees in prefix notation
in this section. First, subtree pushdown automaton accepts all subtrees of the tree.
Second, tree pattern pushdown automaton accepts all tree patterns which match the tree.
The presented pushdown automata can be determinised. Finally a full and linear index
of a tree for tree patterns consisting of a standard string compact suffix automaton and
a subtree jump table is introduced.

4.2.1 Subtree Pushdown Automaton
A subtree pushdown automaton [21] for a tree recognizes all of its subtrees. The formal
definition follows:

Definition 4.8. (Subtree pushdown automaton). Let T and pref(T) be a tree and its
prefix notation, respectively. A subtree pushdown automaton for pref(T) accepts all
subtrees of T in corresponding prefix notation. ♣

The deterministic subtree pushdown automaton for a tree T can have just states
and transitions which correspond to states and transitions of the deterministic suffix
automaton constructed for pref(T), where the transitions of the subtree pushdown
automaton are extended with pushdown operations.

The pushdown operations compute the arity checksum (see Definition 2.30). For
every substring w of pref(T), it holds that w is the prefix notation of a subtree of T , if
and only if ac(w) = 0, and ac(wi) ≥ 1 for each proper prefix wi of w. The construction
of the deterministic subtree pushdown automaton for trees in prefix notation consists of
following steps:

1. Construction of a nondeterministic subtree pushdown automaton as described by
Algorithm 8.5 in [21],

2. Determinisation of the nondeterministic subtree pushdown automaton constructed in
previous step.

For a tree T with n nodes, the constructed deterministic pushdown automaton has
just one pushdown symbol, N states and E transitions, where N ≤ 2n + 1 and
E ≤ N + n− 1 ≤ 3n.

Example 4.9. Consider a tree T illustrated in Figure 4.6 and its prefix notation
pref(T) = a2a1a0a1a0. The corresponding nondeterministic pushdown automaton
M(T) accepts pref(T) by empty pushdown store with S as an initial pushdown symbol.
The transition diagram ofM(T) is shown in Figure 4.7. In this figure, for each transition
rule δ(p, a, α) = (q, β) the edge leading from state p to state q is labelled by the triple
of the form a|α→ β. ♠

a2

a2

a0 a1

a0

a1

a0

Figure 4.6. Ranked tree T for Examples 4.9, 4.11 and 4.13

25

4
.

In
d
ex

in
g

T
ex

ts
a
n
d

T
rees......................................

start
a2|S → SS

a2|S → SS

a0|S → ε

a1|S → S

a0|S → ε

a1|S → S

a0|S → ε

a2|S → SS a0|S → ε a1|S → S a0|S → ε a1|S → S a0|S → ε

Figure 4.7. Transition diagram of nondeterministic subtree pushdown automaton M for tree T from Example 4.9

2
6

. 4.2 Tree Indexing

4.2.2 Tree Pattern Pushdown Automaton

Tree pattern pushdown automaton [21] is an extension of subtree pushdown automaton,
so that also tree templates (see Definition 2.28) would be accepted. The formal definition
follows:

Definition 4.10. Let T and pref(T) be a tree and its prefix notation, respectively. A
tree pattern pushdown automaton for pref(T) accepts all tree patterns (see Definition
2.27) in prefix notation which match the tree T . ♣

New states and transitions, which are used for processing the special nullary symbols S
in tree templates, are additionaly present in the tree patterns. The pushdown operations
are the same and compute arity checksum. The construction of the deterministic tree
pattern pushdown automaton for trees in prefix notation consists of following steps:

1. Construction of a deterministic pusdown automaton, that accepts all tree patterns
that match the subject tree and contain the root of the subject tree, as described by
Algorithm 8.13 in [21].

2. Extension of the deterministic pushdown automaton from previous step, so that it
accepts also all subtrees of tree T . The resulting automaton is nondeterministic in
general.

3. Determinisation of the nondeterministic tree pattern pushdown automaton constructed
in previous step.

Given a tree T with n nodes, the number of distinct tree patterns which match the
tree T can be at most 2n−1 + n. For a special kind of trees (called trees with periodical
subtrees1)), the deterministic tree pattern pushdown automaton has just one pushdown
symbol, N states and E transitions, where N ≤ 2n + 1 and E ≤ 2N + n− 3 ≤ 5n− 1.
However, in general the deterministic tree pattern pushdown automaton can have more
than linear number of states. [21]

Example 4.11. Consider a tree T illustrated in Figure 4.6 and its prefix notation
pref(T) = a2a1a0a1a0. The corresponding nondeterministic tree pattern pushdown
automaton M(T) accepts all tree patterns in prefix notation which match the tree
T by empty pushdown store with S as an initial pushdown symbol. The transition
diagram of M(T) is described in Figure 4.8. Again, in this figure for each transition
rule δ(p, a, α) = (q, β) the transition leading from state p to state q is labelled by the
triple of the form a|α→ β. ♠

4.2.3 A Full and Linear Index of a Tree

Janoušek, Melichar, Polách, Poliak and Trávníček in [16] presented a full and linear index
of a tree for tree patterns. Given a subject tree T wit n nodes, the tree is preprocessed
and an index, which consists of a standard string compact suffix automaton and a
subtree jump table, is constructed.

The number of distinct tree patterns which match the tree is O(2n), and the size of
the index is O(n). The searching phase uses the index, reads an input tree pattern of
size m and computes the list of positions of all occurrences of the pattern in the tree T .
The index consists of two parts:

1. A compact suffix automaton for pref(T), by which occurrences of all substrings of
pref(T) can be located. We note that not all substrings of pref(T) are subtrees in
the prefix notation.

1) for description of a tree with periodical subtrees see Definition 8.22 in [21]

27

4
.

In
d
ex

in
g

T
ex

ts
a
n
d

T
rees......................................

start
a2|S → SS

a2|S → SS

a0|S → ε

a1|S → S

a0|S → ε

a1|S → S

a0|S → ε

a2|S → SS

S|S → ε

a0|S → ε

S|S → ε

a1|S → S

S|S → ε

a0|S → ε

S|S → ε

a1|S → S

S|S → ε

a0|S → ε

S|S → ε

Figure 4.8. Transition diagram of nondeterministc tree pattern pushdown automaton M for T from Example 4.11

2
8

. 4.2 Tree Indexing

2. A subtree jump table, a linear-size structure needed for finding positions of ends of
subtrees represented by special symbols S.

Definition 4.12. (Subtree jump table) Let T and pref(T) = a1a2 . . . an, n ≥ 1, be a
tree and its prefix notation, respectively. A subtree jump table SJT (T) is defined as
a mapping from set {1, . . . , n} into set {2, . . . , n + 1}. If aiai+1 . . . aj−1 is the prefix
notation of a subtree of tree T , then SJT (T)[i] = j, 1 ≤ i < j ≤ n + 1. ♣

Example 4.13. Consider a tree T illustrated in Figure 4.6 and its prefix notation
pref(T) = a2a1a0a1a0. The corresponding subtree jump table and compact suffix
automaton M(pref(T)) are illustrated in Table 4.1 and Figure 4.9, respectively. ♠

The searching phase uses the index, reads an input pattern of size m and computes
the list of positions of all occurrences of the pattern in the tree T . For an input tree
pattern P in linear prefix notation pref(P) = P1SP2S . . . SPt, t ≥ 1, the searching is
performed in time O(m +

∑t
i+1 |occ(Pi)|), where no substring Pi, 1 ≤ i ≤ t, contains

any symbol S and occ(Pi) is the set of all occurrences of Pi in pref(T).

i 1 2 3 4 5 6 7
SJT [i] 8 6 4 6 6 8 8

Table 4.1. Subtree jump table for tree T from Example 4.13

start
a2

a0

a1a0

a2a0a1a0a1a0

a0a1a0a1a0

a1a0

a1a0

Figure 4.9. Compact suffix automaton for pref(T) from Example 4.13

29

4. Indexing Texts and Trees .

30

Chapter 5
Indexing XML Data

XML is used in many aspects of software development, often to simplify data storage
and sharing. The simplest type of XML data storage is flat file storage, that is, the
main entity is a complete document and the internal structure does not play a role.
This provides a software- and hardware-independent way of storing data. Therefore, it
reduces the complexity of data transport between incompatible systems, since XML
documents can be read by different incompatible applications. [22]

To be able to retrieve the data from XML documents efficiently, various query
languages, such as XPath [2], XPointer [3] and XLink [4], have been designed. These
query languages use label paths to traverse the irregularly structured data. Without
a structural summary, query processing can be quite inefficient due to an exhaustive
traversal on XML data. Indexing the structure of XML data is an effective way to
accelerate XML query processing, since it can greatly reduce the search space. Therefore,
several XML documents indexes have been proposed in the research community. At
present, the methods of XML indexing may be classified into following categories:

.Graph-based methods construct a structural path summary that can be used to
improve query efficiency, especially for single path queries. To this category we can
classify following methods: DataGuides [23], 1-Index [24], PP-Index [25], F&B-Index
[26], MTree [27] or CTree [28]..Sequence-based methods transform both the source data and query into sequences.
Therefore, querying XML data is equivalent to finding subsequence matches. To this
category we can classify following methods: ViST [29], PRIX [30]..Node coding methods apply certain coding strategy to design codes for each node,
in order that the relationship among nodes can be evaluated by computation. To this
category we can classify, for example, XISS [31] method..Adaptive methods can adapt their structure to suit the query workload. Therefore,
adaptive methods index only the frequently used queries. To this category we can
classify following methods: APEX Index [32], AB-Index [33].

Generally speaking, every method has its own advantages, however, shortcomings
do exist: path-based methods often lack of support complex queries, sequence-based
methods are likely to generate approximate solutions, thus requiring a great deal of
validation, node coding method is very difficult to be applied to ever changing data
source and adaptive methods perform low efficiency on non-frequent query. In this
chapter, we will introduce some of the above index structures in detail.

5.1 MTree
Pettrovello and Fotouhi [27] proposed an XML structure index, called MTree, which is
designed to be optimal for traversing all XPath axes. The primary feature of MTree
lies in its ability to provide the next subtree root node in document order, for all axes,

31

5. Indexing XML Data .
to each context node in O(1). The MTree works on the fact, that XPath partitions
an XML document into four primary axes (i.e., ancestor, descendant, following and
preceding). All of the remaining secondary axes can be algebraically derived from the
four primary axes.

5.1.1 MTree Index Structure

MTree is a composite overlay of several graphs. It augments the XML tree data structure
by introducing edges in acyclic XML graph that induces cycles corresponding to the
ancestor, descendant, following and preceding primary axis semantics mandated by the
XPath language specification. The axes graphs contain nodes that are roots of subtrees
of vertices that belong to the respective axis set.

Axis paths are threaded reference chains of subtree root nodes connected in document
order. When an axis path is traversed from a context node to the end of the path, all of
the nodes under the subtree root nodes along the path belong to the requested axis
set for that context node. XPath queries are solved by doing tree traversals on MTree.
MTree is composed by the following graphs:

.f -graph is the set of following axis pointers for some context node..p-graph is the set of preceding axis pointers for some context node..a-graph is the set of ancestor axis pointers for some context node..d-graph is the set of descendant axis pointers for some context node. Since XML
trees support multiple children, the descendant axis retains edges to only the first
child for each node (to ensure the node structure is deterministic in size). Non
first-children are derived by the first obtaining the first child reference, using the
descendant axis, and then subsequently traversing the XPath following-sibling axis
until the parent axis changes..q-graph is the set of directed paths of a sequence of vertices v1, v2, . . . , vn linked in
document order, having the same element name (qname). q-graph improves query
processing by reducing the need to scan the entire tree when seeking specific element
name. Each directed path is rooted in an O(1) lookup structure..attr-graph is the set of directed paths of a sequence of vertices v1, v2, . . . , vn linked
in document order, having the same attribute name. attr-graph improves query
processing by reducing the need to scan the entire tree when seeking specific attribute
name. Each directed path is rooted in an O(1) lookup structure.

Definition 5.1. (MTree). An XPath XML graph index MTree is a composite graph:
MTree = f -graph ∪ p-graph ∪ a-graph ∪ d-graph ∪ q-graph ∪ attr-graph. ♣

Example 5.2. Consider the XML tree in Figure 2.1. The individual graphs f -graph,
p-graph, a-graph, d-graph, q-graph and attr-graph are illustrated in Figures 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, respectively. The corresponding MTree (showing an overlay of previous
graphs) is illustrated in Figure 5.7. ♠

5.1.2 Query Processing

XPath queries are managed by twig cursors that execute the location step query against
the index for each node in the input sequence using tree traversal algorithms. Each
location step query receives as input, a location step and a set of twig root nodes
enqueued in tree order, and returns as output, a results set of unique twig root nodes in
document order. The final set of twig root nodes obtained from the last location step
query is used to constructs the results projection, by traversing the subtree vertices

32

. 5.1 MTree

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.1. f -graph

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.2. p-graph

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.3. a-graph

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.4. d-graph (orange) and f -graph (blue)

HOUSES

HOUSE

SEAT

SIGIL

LORD

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.5. q-graph

name
HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.6. attr-graph

33

5. Indexing XML Data .
attached to the subtree root vertex using DFS1) tree traversal. By using only subtree
root nodes in intermediate steps, where feasible to do so, significant performance
improvements can be achieved.

Example 5.3. Let D and T be the sample XML document described in Example 2.42
and its XML tree model illustrated in Figure 2.1, respectively. Suppose we want to
execute a query Q = //LORD/ancestor::*.

The query begins by using q-graph to get LORD element nodes. The next step query
follows the ancestor axis for both occurrences of LORD element. This will result in a set
containing HOUSES element and both of HOUSE elements. ♠

Example 5.4. Let D and T be the sample XML document from Example 2.42 and
its XML tree model illustrated in Figure 2.1, respectively. Consider a query Q =
/HOUSES/HOUSE[1]/LORD/following::*. The query begins by evaluating the first
node in the path, node HOUSES. Since node HOUSES exists, its child axis is queried for the
HOUSE element. This will result in the set containing both of HOUSE elements, however
the predicate selects only the first one (in document order).

The next step, the child axis of HOUSE element is queried for LORD element. Finally,
we are interested in following axis of LORD element. By traversing the f -path, the
following axis query for context node LORD returns the set of f -subtree root vertexes:
(first) SIGIL element, SEAT and (second) HOUSE element in three steps. Eventually we
searched the subtrees under SIGIL, SEAT and HOUSE get the final answer containing
both SIGIL elements, SEAT and (second) LORD and HOUSE elements. ♠

5.2 CTree
Zou, Liu and Chu in [28] proposed a compact tree (CTree) for XML indexing, which
provides not only concise path summaries at the group level but also detailed child–
parent links at the element level. Group level mapping allows efficient pruning of a
large search space while element level mapping provides fast access to the parent of an
element. Therefore, CTree is efficient for processing both single-path and branching
queries with various value predicates.

5.2.1 CTree Index Structure
CTree is a two-level tree which provides a concise structure summary of the XML
document at its group level and detailed child–parent links at its element level which can
provide fast access to elements’ parents. CTree also uses group-based element reference
instead of standard global element IDs. First, we introduce the definitions of a label
path and equivalent nodes, which are useful for describing a path summary and a CTree.

Definition 5.5. (Label path). Let T be an XML tree model. A label path for a node n

in T , denoted by L(n), is a sequence of dot-separated labels of the nodes on the path
from root to node n. ♣

Example 5.6. Consider the XML tree in Figure 2.1. Node SEAT can be reached from
the root node HOUSES through path: HOUSES → HOUSE → SEAT. Therefore the label
path for the SEAT node is HOUSES.HOUSE.SEAT. ♠

Definition 5.7. (Equivalent nodes). Nodes n1 and n2 in an XML tree model T are
equivalent if they have the same label path. ♣

1) Depth-first search (DFS) is an algorithm for traversing tree data structures. One starts at the root and
explores as far as possible along each branch before backtracking.

34

...
5
.2

C
T

ree

HOUSES

HOUSE

LORD

SIGIL

SEAT

name

HOUSES

HOUSE

LORD SIGIL SEAT

HOUSE

LORD SIGIL

Figure 5.7. MTree for the XML tree model T illustrated in Figure 2.1 showing an overlay of f -graph, p-graph, a-graph, d-graph, q-graph and
attr-graph

3
5

5. Indexing XML Data .
Example 5.8. The two SIGIL nodes in the XML tree model illustrated in Figure 2.1
are equivalent since their label paths are the same HOUSES.HOUSE.SIGIL. The parent
nodes of SIGIL elements are HOUSE elements, which are equivalent (their label paths are
HOUSES.HOUSE). Note, that parents of equivalents nodes are always equivalent as they
also share the same label path. ♠

For an XML tree T , a path summary is a tree on which each node is called group and
corresponds to exactly one label in T . The group contains all the equivalent nodes
in T sharing the label path. We call a path summary an ordered path summary if the
equivalent nodes in every group are sorted by their pre-order identifiers.

Example 5.9. An ordered path summary for the XML tree model in Figure 2.1 is shown
in Figure 5.8. Each dotted box represents a group and the numbers in the box are the
pre-order identifiers of equivalent data nodes. Each group has a label and an identifier
listed below the group. For instance, nodes 3, 7 are in group 2 since their label paths
are the same: HOUSES.HOUSE.LORD. ♠

A path summary greatly facilities the evaluation of path queries. For example, consider
a query Q = HOUSES/HOUSE/LORD, the answers are nodes 3, 7 because their label paths
satisfy the query. However, the path summary does not preserve the hierarchical
relationships among individual nodes. Therefore, the path summary is unable to answer
twig queries.

Note, that in Figure 5.8, there is, for instance, no information to indicate which node
in group 1 is the parent of node 3 in group 2. Such node-level relationships are important
for answering twig queries. For instance, for a query Q = /HOUSES/HOUSE[SEAT], the
path summary indicates that elements in group 1 are candidate answers but does not
provide information about which elements in the group actually have SEAT sub-element.

Informally, CTree is a bi-level tree containing a group level and an element level. At
the group level, CTree provides a summarized view of hierarchical structure of the XML
document. At the element level, CTree preservers detailed child–parent links. Each
group in CTree has an array mapping elements to their parents.

Definition 5.10. (CTree). CTree is a rooted tree where each node g, called group,
contains an array of elements denoted as g.pid[] such that:

.Each group g is associated with an identifier and a name, denoted by g.id and g.name
respectively..Edge directions are from the root to the leaves. If there is an edge from g1 to g2,
then g1 is called parent of g2 and g2 is called child of g1. If there is path from g1 to
g3, then g1 is called an ancestor of g3 and g3 is called a descendant of g1..An array index e of g.pid[] represents an element in g, denoted by g : e. The value of
g.pid[e] points to an element in g’s parent gp, and gp : g.pid[e] is called the parent
element of g : e..For any two elements g : e1 and g : e2, if e1 < e2, then g.pid[e1] ≤ g.pid[k2]. ♣

Definition 5.11. (Ordered CTree). An ordered CTree is CTree where siblings groups
are ordered. ♣

Definition 5.12. (Absolute and relative element reference). For referring an element e
in group g, g : e is called an absolute reference and e is called a relative reference. ♣

Example 5.13. Consider the XML tree in Figure 2.1. The corresponding CTree is
illustrated in Figure 5.9. Again as for the path summary, each dotted box represents
a group and the numbers in the box are the pre-order identifiers of equivalent nodes.

36

. 5.2 CTree

1

2, 6

3, 7 4, 8 5

2:LORD 3:SIGIL 4:SEAT

1:HOUSE

0:HOUSES

Figure 5.8. Ordered path summary

1 [-1]

2, 6 [0,0]

3, 7 [0,1] 4, 8 [0,1] 5 [0]

2:LORD 3:SIGIL 4:SEAT

1:HOUSE

0:HOUSES

Figure 5.9. CTree

Moreover, there is an array in each group. The array contains the values which are
relative reference for parent elements. The two elements in group 2 are referred to by
absolute reference 2 : 0 and 2 : 1, whose values are 0 and 1 which are relative references
for elements 1 : 0 and 1 : 1. ♠

5.2.2 CTree Properties

Definition 5.14. (Regular and irregular group). Let g be a group and gc be one of its
child groups. If every element in g has the same number of children in gc, then gc is
called a regular group. Otherwise, gc, is called an irregular group. ♣

The information about group regularity is useful for query optimization. For instance,
for a query Q = //HOUSES[LORD and SIGIL], the CTree directly returns all elements
in group 1 as answers without further checking the element-level links since groups 2
and 3 are regular groups. Note, that the array in a regular group can be even removed
since the content of the array can be inferred from number of elements in groups.

Definition 5.15. (Monotonic property). The values of a group’s array are arranged in
increasing order. That is, if i < j, then g.pid[i] ≤ g.pid[j]. ♣

This property enables us to use a binary search to locate the child elements of a given
element.

5.2.3 Query Processing

To take full advantages of CTree characteristics a CTree-based query processing method
has been proposed. We use a tree model to represent an XPath query Q. It is assumed
that each query has only one target node, which is emphasized in red. After a query is
transformed into a tree TQ, it can be evaluated using CTree index T in following steps:

1. Evaluate group level structure constraints.
2. For each frame, do:

(i) Evaluate value constraints on the frame,
(ii) Evaluate element level structure constraints,
(iii) Output the list of elements.

Example 5.16. Let D and T be the sample XML document from Example 2.42 and
its XML tree model illustrated in Figure 2.1, respectively. Consider a query Q1 =
//HOUSE[LORD=Eddard Stark]/SIGIL. Figure 5.10 illustrates a tree model representation
of Q1.

37

5. Indexing XML Data .

HOUSE

LORD

Eddard Stark

SIGIL

Figure 5.10. XPath query Q1

First, it locates a set of frames matching Q’s tree structure, where each frame is an
assignment of CTree groups to the query nodes in Q that satisfy the structure of Q at
the group-level. There is one frame consisting of groups (1, 2, 3) in the CTree (Figure
5.9) for Q1, which match query nodes (HOUSE, LORD, SIGIL), respectively.

By assigning gid 1 to the query node HOUSE, we exclude the other elements which
also have the tag name HOUSE (i.e., we would exclude potential group labelled HOUSE

under a SEAT group) and thus reduce search space. The frames are found in a top-down
fashion starting from candidate groups for the root of the query tree down to the leaves.

Second, for each frame, it evaluates value predicates. There is one value predicate in
Q1: [LORD=Eddard Stark]. We search group 2, since the query node LORD is mapped to
group 2 in step 1, and element 2 : 0 is returned (i.e., the first LORD element).

Finally, it evaluates element level structure constraints and returns the query results
to the user. For the frame (1, 2, 3) for Q1, the second step of the query processor
determines that element {2 : 0} satisfies value constraint. Now the last step is to
determine which elements in the target group 3 can answer Q1. The answers can be
determined by projecting relevant elements from other nodes to the target node.

The projecting direction for a query node can be either downward or upward depending
on its position in the query tree. If a query node is an ancestor of the target node, its
projecting direction is downward. Otherwise, it is upward (i.e., the projecting directions
for HOUSE is downward, while for LORD is upward). Since CTree stores detailed child-to-
parent relationships, upward projecting is straight forward. Downward projecting can
be done similar to upward projecting by keeping track of children.

In this example we, at first, use upward projection of {2 : 0} element getting {1 : 0},
followed by downward projection of {1 : 0} to get the final answer {2 : 0}, (i.e., first
SIGIL element). ♠

5.3 PP-Index
Nan Tang, Jeffrey Xu Yu, M. Tamer Ozsu, Kam-Fai Wong in [25] proposed a hierarchical
index of an XML document, called PP-index and its compressed version, to process
a fragment of XPath queries denoted by XP {/,//,∗,name−test}. The hierarchical index
consists of index entries that are pairs of queries and their (full/partial) answers (called
extends). With such an index, XPath queries can be processed to extract the results if
they match the queries maintained in those index entries.

5.3.1 PP-Index Structure

The PP-Index has a set of entries of the form (Q, X(Q)), where Q is an XPath query,
and X(Q) is the extent (full/partial result) of Q. Let C be a class XP {/,//,∗,name−test}.
We can split C into three following subsets:

38

. 5.3 PP-Index

.Cc = XP {/,∗,name−test} represents queries with child (/) axis only,.Cd = XP {//,∗,name−test} represents queries with descendant-or-self (//) axis only,.Cx includes the remaining queries.

There are two interrelated but different relationships among C queries to construct a
hierarchical index for C queries. They are prefix and path-containment. The former
provides a mechanism to find the requested entry for a C query. The latter provides a
way to identify the requested extends to answer such a query.

Let Q = α1l1α2l2 . . . αmlm and Q′ = α′
1l′

1α′
2l′

2 . . . α′
nl′

n be two C queries where m < n,
αi is an axis and li is a label.

Definition 5.17. (Prefix relationship). Q is a prefix of Q′ iff αi = α′
i and li = l′

i

(1 ≤ i ≤ m). Q is the maximal prefix of Q′ iff Q is a prefix of Q′ and n = m + 1 ♣

Example 5.18. Let Q = /HOUSES/HOUSE/LORD, Q′ =/HOUSES and Q′′ =/HOUSES/HOUSE.
Therefore, Q′ is a prefix of Q and Q′′ is a maximal prefix of Q. ♠

Definition 5.19. (Path-containment relationship). Q′ is contained in Q, denoted as
Q′ ⊑ Q, if the labels in Q match the labels in Q′ in order, and the last labels match (i.e.,
lm = l′

n). Furthermore, for two matched labels (e.g., li and l′
j), the corresponding axes

have that: child axis / maps to child axis / (i.e., α′
j = / if αi = /) and descendant-or-self

axis // maps to rightward path (i.e., αi = //). ♣

Example 5.20. //LORD ⊑ //HOUSES//LORD ⊑ //HOUSES//HOUSE//LORD. ♠

Definition 5.21. (1-Index). 1-Index is a hierarchical index for Cc-queries using prefix
relationship. In 1-Index, there is an edge from an entry (Q1, X(Q1)) to another entry
(Q2, X(Q2)) if Q1 is the maximal prefix of Q2. ♣

Example 5.22. Consider the XML tree model in Figure 2.1. Corresponding 1-Index is
shown in Figure 5.11 with five entries: /HOUSES, /HOUSES/HOUSE, /HOUSES/HOUSE/LORD,
/HOUSES/HOUSE/SIGIL, /HOUSES/HOUSE/SEAT. Each entry Q maintains an extent X(Q),
indicated by 〈〉 containing the pre-order identifiers of nodes forming the extent. For
instance, the extent of /HOUSES/HOUSE for the XML tree model has two tree nodes 2, 6
(i.e., two HOUSE elements). ♠

Note, that 1-Index defines very similar structure as the Path summary in Figure 5.8.
However, we will continue with 1-Index terminology to preserve the definitions of
following Containment index and PP-Index.

1-Index is able to support Cc queries by finding a corresponding entry and extracting
its extend. Note that for two index entries, (Q1, X(Q1)) and (Q2, X(Q2)), in 1-Index,
there is X(Q1) ∩X(Q2) = ∅ if Q1 6= Q2. However, 1-Index cannot handle all C-queries.
If we build an index for C-queries using prefix relationship, the number of entries is
exponential (because of the combination of child and descendant-or-self axis) and the
overlapping between two extends is high. Therefore, a large storage is required and the
duplications require to be removed during query processing.

Definition 5.23. (Containment index). Containment index is a hierarchical index for
Cd-queries. There is an edge from an entry (Q1, X(Q1)) to another entry (Q2, X(Q2))
if Q2 ⊑ Q1 and there does not exist an entry (Q3, X(Q3)) where Q2 ⊑ Q3 ⊑ Q1. ♣

Example 5.24. Consider the XML tree in Figure 2.1. Corresponding Containment
index is shown in Figure 5.12. The entry (Q, X(Q)) does not need to maintain its extent
X(Q) if X(Q) can be identified by searching its descendants in the index. For instance,
consider Cd-queries: Q1 = //LORD, Q2 = //HOUSES//LORD, Q3 = //HOUSE//LORD and

39

5. Indexing XML Data .

/HOUSES 〈1〉

/HOUSES/HOUSE 〈2,6〉

/HOUSES/HOUSE/LORD 〈3,7〉 /HOUSES/HOUSE/SIGIL 〈4,8〉 /HOUSES/HOUSE/SEAT 〈5〉

Figure 5.11. 1-Index

Q4 = HOUSES//HOUSE//LORD. The results for them are the same. There is no need to
maintain the same extend four times. The same extent for the four queries can be
maintained at X(//HOUSES//HOUSE//LORD) only. ♠

The Containment index can efficiently support path-containment relationship, but
it cannot support prefix relationship as 1-Index, e.g., it cannot easily identify Q =
//HOUSES//HOUSE from Q′ = //HOUSES. To be able to support all C-queries the index
needs to maintain both prefix and path-containment relationship. To define such an
index, called PP -Index, we need to first introduce the notion of weak extend and
functions single(Q) and double(Q).

Definition 5.25. (Weak extend). Weak extent, denoted as X̂(Q), is such an extent that
X̂(Q) ⊆ X(Q). Hence, a query Q may need to be answered by several entries. ♣

Definition 5.26. (Functions single(Q) and double(Q)). double(Q) is a function replacing
all child axes / in Q by descendant-or-self axis //. Similarly, single(Q) is a function
replacing all descendant-or-self axes // in Q by child axes /. ♣

Definition 5.27. (PP-Index). PP-Index is an index for C-queries. Index entries
are Cd-queries, since any C-query Q has a unique corresponding Cd-query, Qd =
DOUBLE(Q). The weak extend maintained for (Qd, X̂(Qd)) is X̂(Q) = X(Qc) where
Qc = SINGLE(Qd). ♣

Definition 5.28. (Real and virtual nodes). If the weak extent of the node v is non-empty
then v is called real node, otherwise it is called virtual node. ♣

Definition 5.29. (Removable virutal node). A virtual node v in a PP-Index is removable
if all nodes vi, which have p-edges from vi to v, are virtual nodes. ♣

All removable nodes and the incoming/outgoing edges around them can be removed,
which results in a compressed graph. Since number of virtual nodes is large, the
compression greatly reduces the entry size from O(2h) to O(h2), where h is the height
of an XML tree model. The compressed PP-Index is illustrated in Figure 5.14.

5.3.2 Query Processing

First, a Cc-query (Qc) can be processed to find its corresponding entry (Qd, X̂(Qd))
where Qd = DOUBLE(Qc) and return X̂(Qd) since X̂(Qd) = X(Qc). Second, a Cd-
query (Qd) can be processed to find the entry (Qd, X̂(Qd)), and combine X̂(Qd) and all
the weak extends X̂(Q′

d) if (Q′
d, X̂(Q′

d)) is a descendant of (Qd, X̂(Qd)) in the index
and both Qd and Q′

d have the same last label (path-containment). Finally, any other
C-queries (i.e., Cx-queries) can be processed by combining the techniques mentioned
above.

40

..
5
.3

P
P

-In
d
ex

root

//HOUSES 〈1〉 //HOUSE

//HOUSES

//HOUSE 〈2,6〉

//LORD

//HOUSES

//LORD

//HOUSES

//HOUSE

//LORD 〈3,7〉

//HOUSE

//LORD

//SIGIL

//HOUSES

//SIGIL

//HOUSES

//HOUSE

//SIGIL 〈4,8〉

//HOUSE

//SIGIL

//SEAT

//HOUSES

//SEAT

//HOUSES

//HOUSE

//SEAT 〈5〉

//HOUSE

//SEAT

Figure 5.12. Containment index

4
1

5
.

In
d
ex

in
g

X
M

L
D

a
ta..

root

//HOUSES 〈1〉 //HOUSE

//HOUSES

//HOUSE 〈2,6〉

//LORD

//HOUSES

//LORD

//HOUSES

//HOUSE

//LORD 〈3,7〉

//HOUSE

//LORD

//SIGIL

//HOUSES

//SIGIL

//HOUSES

//HOUSE

//SIGIL 〈4,8〉

//HOUSE

//SIGIL

//SEAT

//HOUSES

//SEAT

//HOUSES

//HOUSE

//SEAT 〈5〉

//HOUSE

//SEAT

Figure 5.13. PP-Index

4
2

..
5
.3

P
P

-In
d
ex

root

//HOUSES 〈1〉

//HOUSES

//HOUSE 〈2,6〉
//HOUSES

//LORD

//HOUSES

//HOUSE

//LORD 〈3,7〉

//HOUSES

//SIGIL

//HOUSES

//HOUSE

//SIGIL 〈4,8〉

//HOUSES

//SEAT

//HOUSES

//HOUSE

//SEAT 〈5〉

Figure 5.14. Compressed PP-Index

4
3

5. Indexing XML Data .
Example 5.30. Consider query Q = /HOUSES/HOUSE/LORD. We need to find its corre-
sponding entry (Qd, X̂(Qd)) where Qd = double(Q) = //HOUSES//HOUSE//LORD. There
we just return the extend 3, 7. ♠

Example 5.31. Consider query Q = //LORD. We need to find its corresponding entry
(Qd, X̂(Qd)) where Qd = Q = //LORD. Then we combine the result with descendants
as follows: X(//LORD) = X̂(//LORD) ∪ X̂(//HOUSES//LORD) ∪ X̂(//HOUSE//LORD) ∪
X̂(//HOUSES//HOUSE//LORD). The weak extends for the first three entries are empty.
Therefore, we have X(//LORD) = X̂(//HOUSES//HOUSE//LORD) = 3, 7. ♠

5.4 PRIX
Rao and Moon in [33] proposed sequence-based indexing method called PRIX (PRüfer
sequences for Indexing XML) which is, as indicated by the name, based on Prüfer
sequences. In the PRIX system, an XML document is transformed into a sequence of
labels by Prüfer’s method that constructs one-to-one correspondence between trees and
sequences. During query processing, a query tree model is also transformed into its
Prüfer sequence.

By performing subsequence matching and a series of refinement phases, all the
occurrences of a query tree are found. This approach returns correct answers without
false alarms and false dismissals. The PRIX system is able to support both path and
twig queries efficiently. Additionally, this tree-to-sequence transformation guarantees a
worst-case bound on the index that is linear in the total number of nodes in the XML
document tree.

5.4.1 PRIX Index Structure
Prüfer (1918) proposed a method that constructed a one-to-one correspondence between
a labelled tree and a sequence by removing nodes from the tree one at a time.

Definition 5.32. (Prüfer sequence). Let T be a tree with n nodes labelled from 1 to n.
From T , delete a leaf with the smallest label to form a smaller tree T with n− 1 nodes.
Let l1 denote the label of the node that was the parent of the deleted node. Repeat
this process on T with n− 1 nodes to determine l2 (the parent of the next node to be
deleted), and continue until only two nodes joined by an edge are left. The sequence
(l1, l2, l3, . . . , ln−2) is called the Prüfer sequence of tree T . The length of Prüfer sequence
of tree T is n − 2. From the sequence (l1, l2, l3, . . . , ln−2), the original tree T can be
reconstructed. ♣

In PRIX approach a Prüfer sequence of length n− 1 is constructed by continuing the
deletion of nodes till only one node is left. To uniquely label an XML document tree,
the postorder numbering scheme has been chosen. Figure 5.15 illustrates an XML
tree model T of the XML document D from example 2.42 using postorder numbering
scheme.

Definition 5.33. (Numbered Prüfer sequence). Numbered Prüfer sequence (NPS) is a
sequence consisting entirely of postorder numbers. ♣

Definition 5.34. (Labelled Prüfer sequence). Labelled Prüfer sequence (LPS) is the
NPS where each number is replaced by its corresponding tag. ♣

Example 5.35. Consider the XML tree T in Figure 5.15. LPS(T) = HOUSE LORD

HOUSE SIGIL HOUSE SEAT HOUSE HOUSES HOUSE LORD HOUSE SIGIL HOUSE HOUSES, and
NPS(T) = 8 3 8 5 8 7 8 15 14 11 14 13 14 15. ♠

44

...
5
.4

P
R

IX

HOUSES15

HOUSE8

name= Stark1 LORD3

Eddard
Stark2

SIGIL5

Direwolf 4

SEAT7

Winterfell6

HOUSE14

name= Targaryen9 LORD11

Daenerys
Targaryen10

SIGIL13

Dragon12

Element node

Attribute node

Text node

Figure 5.15. XML tree model (postorder numbering scheme)

4
5

5. Indexing XML Data .

HOUSES

LORD

Figure 5.16. Query Q2

HOUSES

HOUSE

SIGIL

Figure 5.17. Query Q1

In the PRIX system, Prüfer sequence is constructed for an XML tree model (with nodes
numbered in postorder) using the method described above. In order to support fast
subsequence matching during query processing, the Labeled Prüfer sequence is indexed
using B+-trees.

5.4.2 Prüfer Sequence Properties

.Given a tree T with n nodes, numbered from 1 to n in postorder, the node deleted
the ith time during Prüfer sequence construction is the node numbered i..The ith element in the NPS denotes the postorder number of the parent of node i..The number of times a number n occurs in an NPS indicates the number of child
nodes of n in the tree, and the positions that n occurs in the NPS depend on the
subtrees rooted at node n.

5.4.3 Query Processing

A query tree is transformed into its Prüfer sequence like XML documents. Finding the
matches involves a series of filtering and refinement phases, namely

.filtering by subsequence matching,. refinement by connectedness,. refinement by structure,. refinement by leaf nodes.

The filtering phase involves subsequence matching. In this phase, given a query Q, all
the subsequences in LPS(T) that match LPS(Q) are found. If tree Q is a subgraph of
tree T , then LPS(Q) is a subsequence of LPS(T), so there is guaranteed to have no
false dismissals.

Example 5.36. Consider the XML tree model T in Figure 5.15 and the tree model of
Q1 = /HOUSES/HOUSE/LORD in Figure 5.17.

- NPS(T) = 8 3 8 5 8 7 8 15 14 11 14 13 14 15,
- LPS(T) = HOUSE LORD HOUSE SIGIL HOUSE SEAT HOUSE HOUSES HOUSE LORD HOUSE

SIGIL HOUSE HOUSES,
- NPS(Q) = 2 3,
- LPS(Q) = HOUSE HOUSES.

Q is a subgraph of T , and LPS(Q) matches a subsequence S of LPS(T) at positions
(1, 8) (for example). The postorder number sequence of subsequence S is 8 15. ♠

The subsequences matched during the filtering phase are further examined for the
property of connectedness. This is because, only for some of the subsequences, all the
labels in the subsequence correspond to nodes that are connected in the tree. The
sequences that satisfy the connectedness property are called tree sequences.

46

. 5.4 PRIX

Definition 5.37. (Connectedness). Given a tree T , let NT = NPS(T). Let S be a
subsequence of LPS(T) and let N be the postorder number sequence of S and Ni its
ith element. Then the tree nodes in T corresponding to the labels of S are connected
only if:

∀Ni : (Ni 6= max(N1, N2, . . . , N|S|)) ∧ (¬∃(j > i) : Nj = Ni)⇒ Ni+1 = NT [Ni] ♣

The intuition for the definition above is as follows. Let i be the index of the last
occurrence of a postorder number n in an NPS. This last occurrence is a result of
deletion of the last child of n during Prüfer sequence construction. Hence the next child
to be deleted is the node n itself. Hence the number at the (i + 1)th index in the NPS,
say m, is the postorder number of the parent of node n. Thus n followed by m indicates
that there is and edge between node m and node n.

Example 5.38. Consider the XML tree model T in Figure 5.15 and two subsequences
SA and SB of LPS(T).

- NPS(T) = 8 3 8 5 8 7 8 15 14 11 14 13 14 15,
- LPS(T) = HOUSE LORD HOUSE SIGIL HOUSE SEAT HOUSE HOUSES HOUSE LORD HOUSE

SIGIL HOUSE HOUSES,
- SA = SIGIL HOUSE HOUSES whose postorder number sequence NA = 5 14 15,
- SB = HOUSE HOUSES whose postorder number sequence NB = 8 15.

The nodes represented by labels of SA form a disconnected graph. In this case
max(NA1, NA2, NA3) = max(5, 14, 15) = 15. The last occurence of postorder num-
ber 5 in NA is at the 1st position since there is no index j > 1 such that NAj = 5.
However NA1 is not followed by NT [5], i.e., NA2 6= 8. Hence, the necessary connectedness
condition is not satisfied. The nodes represented by of SB represents a tree because the
necessary connectedness condition is satisfied. ♠

The tree sequences are further refined based on the query structure. In this phase it
is determined if the structure of the tree represented by a tree sequence matches the
query structure.

Definition 5.39. (Gap). The gap between two nodes n1 and n2 in a tree is defined as
the difference between the postorder numbers of the nodes n1 and n2. ♣

Definition 5.40. (Gap consistency). Tree sequence A is said to be gap consistent with
respect to tree sequence B if

.A and B have the same length..For every pair of adjacent elements in A and the corresponding adjacent elements in
B, their gaps, gA and gB have the same sign, and if |gA| > 0 then |gA| ≤ |gB |, else
gA = gB = 0. ♣

Intuitively, the gap between two nodes in a tree gives an idea of how many nodes are
encountered during postorder traversal between two nodes. If more nodes are traversed
in the query tree as compared to the XML tree, then this indicates that there is a
structural difference between the XML tree and query tree.

Definition 5.41. (Frequency consistency). Tree sequences A and B are frequency
consistent if

.A and B have the same length n..Let NA and NB be the postorder number sequences of A and B respectively. Let
nAi and nBi be the ith element in NA and NB respectively. For every i from 1, . . . , n,

47

5. Indexing XML Data .
nAi occurs k times in NA at positions p1, p2, . . . , pk, iff nBi occurs k times in NB at
positions p1, p2, . . . , pk. ♣

It should be noted that the LPS of a tree contains only the non-leaf node labels.
Therefore, filtering by subsequence matching followed by refinement by connectedness
and structure can only find matches in the data tree whose tree structure is the same as
query tree and whose non-leaf node labels match the non-leaf node labels of the query
twig. Such matches are called partial matches.

Definition 5.42. (Partial match). Tree model of Q has a partial match in XML tree
model T iff

.LPS(Q) matches a subsequence S of LPS(T) such that S is a tree sequence, and.LPS(Q) is gap consistent and frequency consistent with subsequence S. ♣

In the final refinement phase, the leaf node labels of the query are tested with the leaf
node labels of partially matched queries in the data to find complete query matches.

Example 5.43. Consider the XML tree T in Figure 5.15 and the tree model of
Q = /HOUSES/HOUSE[SIGIL=Direwolf] in Figure 5.17.

- NPS(T) = 8 3 8 5 8 7 8 15 14 11 14 13 14 15, LPS(T) = HOUSE LORD HOUSE SIGIL HOUSE

SEAT HOUSE HOUSES HOUSE LORD HOUSE SIGIL HOUSE HOUSES,
- Leaves(T) = 1 2 4 6 9 10 12,
- NPS(Q) = 2 3 4, LPS(Q) = HOUSE HOUSES SIGIL.

LPS(Q) matches a subsequence S of LPS(T) at positions (4, 7, 8). The postorder
number sequence of subsequence S is N = 5 8 15. LPS(Q) is gap consistent and
frequency consistent with S. We can match leaf Direwolf 1 in Q as follows. Since the
leaf has postorder number 1, its parent node matches the node numbered 5 (i.e., the
1st element of N) in the data tree. Also since the node numbered 5 occurs at the 4th

position in LPS(T), it may have a leaf Direwolf 4. And indeed, we have Direwolf 4 in
the leaf node list of T . ♠

However, this refinement phase can be eliminated by special treatment of leaf nodes
in the query tree and data trees. The key idea is to make the leaf nodes of the query
tree and the data trees appear in their LPS, so that all the nodes are examined during
subsequence matching and refinement by connectedness and structure phases. To
handle descendant-or-self axis and wildcards a simple modification to the refinement-by-
connectedness phase is needed.

48

Chapter 6
Automata Approach to Indexing XML Data

This chapter shows that automata can be used effectively for the purpose of indexing
XML documents. Although we attempt to support paths queries only, the techniques
described here are relevant to the general XPath processing problem, for two reasons.

First, processing linear expressions is a subproblem in processing more complex
queries as we can decompose them into linear fragments. Second, this can be seen as
a building block for more powerful processor, such as pushdown automaton, able to
process twig queries.

We start with introduction of Tree String Paths Automaton representing an index for
XP {/,name−test} queries, i.e., paths queries using child-axis (/) only. Second, Tree String
Path Subsequences Automaton indexing XP {//,name−test} queries, i.e., paths queries
using descendant-or-self axis (//) only, is presented. Finally, we introduce a full XML
index for XP {/,//,name−test} queries, i.e., paths queries which may use any combination
of / and // called Tree Paths Automaton.

For the XML document of size n, the search phase of all elements satisfying the query
of size m is performed in time linear in m and not depending on n. The major issue is
the size of the deterministic automaton, which, in theory, can be exponential in the size
of the XML document being indexed.

However, we provide a series of experiments in following chapter to show that the
determinisation will result in a small number of states although the number of queries
accepted by the Tree Paths Automaton is exponential in n (e.g., O(2.62n) [34] for a
linear XML tree model with n nodes).

6.1 XML Data Model
We model an XML document as an ordered labelled tree where nodes correspond to
XML elements, and edges represent element inclusion relationships. Hence, we only
consider the structure of XML documents, and, therefore, will ignore attributes and
text in leaf nodes.

A node in an XML tree model is represented by a pair (label, id), where id and label
represents its identifier and tag name, respectively. Without loss of generality, we have
chosen to use a preorder numbering scheme to uniquely assign an identifier to each of
the tree nodes.

It is obvious that only for well-formed XML documents there exists an XML tree
model. Therefore, we will assume that only well-formed documents are presented as
inputs for our indexing methods. We now introduce the term XML alphabet, which we
need to refer to in algorithms presented later.

Definition 6.1. (XML alphabet). Let D be an XML document. An XML alphabet E
of D denoted E(D) is a an alphabet where each symbol represents a label of an XML
element. ♣

49

6
.

A
u
to

m
a
ta

A
p
p
ro

a
ch

to
In

d
ex

in
g

X
M

L
D

a
ta..............................

HOUSES,1

HOUSE,2

LORD,3 SIGIL,4 SEAT,5 VASSALS,6

HOUSE,7

LORD,8 SEAT,9

HOUSE,10

LORD,11 SIGIL,12

Figure 6.1. XML tree model of the XML document from Example 6.2

5
0

. 6.2 Tree String Paths Automaton

Example 6.2. Consider following sample of an XML document D that is an extended
version of the XML document presented in Example 2.42. Figure 6.1 shows its cor-
responding XML tree model T . The XML alphabet E(D) = {HOUSES, HOUSE, LORD,
SIGIL, SEAT, VASSALS}.

1 <HOUSES>
2 <HOUSE name="Stark">
3 <LORD>Eddard Stark</LORD>
4 <SIGIL>Direwolf</SIGIL>
5 <SEAT>Winterfell</SEAT>
6 <VASSALS>
7 <HOUSE name="Karstark">
8 <LORD>Rickard Karstark</LORD>
9 <SEAT>Karhold</SEAT>

10 </HOUSE>
11 </VASSALS>
12 </HOUSE>
13 <HOUSE name="Targaryen">
14 <LORD>Daenerys Targaryen</LORD>
15 <SIGIL>Dragon</SIGIL>
16 </HOUSE>
17 </HOUSES>

♠

6.2 Tree String Paths Automaton

Definition 6.3. (Tree String Paths Automaton). Let D be an XML document. A Tree
String Paths Automaton accepts all XP {/,name−test} queries of D. ♣

A Tree String Paths Automaton (TSPA) speeds up the evaluation of linear XPath
queries using only child-axis (/) (i.e., XP {/,name−test}). The most similar approaches
from XML indexing techniques are graph-based methods constructing a structural path
summary [28, 23, 25].

However, we build our index as a composition of finite automata accepting parts of
paths queries. Hence, the index is simple and well understandable for anyone who is
familiar with the automata theory. As we attempt to index paths queries only, we can
omit the branching structure and describe the XML tree model by means of its linear
fragments, called string paths.

Definition 6.4. (String path). Let T be an XML tree model with height h. A string
path P = n1n2 . . . nt of length t, where t ≤ h, of T is a linear path leading from a root
r = n1 to a leaf nt. Each element ni of the path is associated with an identifier and
label, denoted id(ni) and label(ni), respectively. The identifier corresponds to a preorder
number of the element. ♣

Definition 6.5. (String paths set). Let D and T be an XML document and its XML tree
model, respectively. A set of all string paths over T is called string paths set, denoted
by PT = {P1, P2 . . . Pk}, where k is the number of leaves in T . ♣

Example 6.6. Consider the XML tree model T illustrated in Figure 6.1. We show its
corresponding string paths set PT below. We represent each node n in T by its label
(i.e., label(n)) and show its identifier (i.e., id(n)) in parenthesis.

51

6. Automata Approach to Indexing XML Data .
PT = {

HOUSES(1) HOUSE(2) LORD(3),
HOUSES(1) HOUSE(2) SIGIL(4),
HOUSES(1) HOUSE(2) SEAT(5),
HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8),
HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) SEAT(9),
HOUSES(1) HOUSE(10) LORD(11),
HOUSES(1) HOUSE(10) SIGIL(12)

}

♠
TSPA is basically a prefix automaton for a set of strings [18], where the strings are
the string paths of the XML tree model that corresponds to the XML document
being indexed. To construct TSPA, we at first start with a finite automaton that
accepts all non-empty prefixes of a single string path whose construction is described by
Algorithm 6.7. The constructed finite automaton is deterministic.

Algorithm 6.7. Construction of a prefix automaton for a single string path.
Input: A string path P = n1n2 . . . nt.
Output: A deterministic finite automaton M = (Q,A, δ, 0, F) accepting all non-empty
prefixes of P .
Method:.Q ← {0, id(n1), id(n2), . . . , id(nt)},.A is the set of all different node labels in P ,. δ(0, /label(n1))← id(n1) and

δ(id(ni), /label(ni+1))← id(ni+1) for all i = 1, 2, . . . , t− 1,.F ← {id(n1), id(n2), . . . , id(nt)}. ♦

Example 6.8. Consider the XML tree model T illustrated in Figure 6.1 and its
corresponding string paths set PT described in Example 6.6. Transition diagrams of
prefix automata constructed by Algorithm 6.7 for each string path contained in PT are
shown in Figure 6.2. ♠

To build TSPA, we can run all the prefix automata (constructed by Algorithm 6.7 for
all string paths Pi in PT) “in parallel”, by remembering the states of all automata while
reading the input. This is achieved by the product construction. This way we construct
the Tree String Paths Automaton M for T .

Algorithm 6.9. Construction of Tree String Paths Automaton for an XML document D
and its corresponding XML tree model T .
Input: A string paths set PT = {P1, P2, . . . Pk}.
Output: A deterministic finite automaton M = (Q, E(D), δ, 0, F) accepting all
XP {/,name−test} queries of D.
Method:

1. Construct finite automata Mi = (Qi,Ai, δi, 0, Fi) accepting a set of non-empty
prefixes of Pi using Algorithm 6.7.

2. Construct deterministic Tree String Paths Automaton M = (Q, E(D), δ, 0, F) accept-
ing a set of all non-empty prefixes of each Pi using product construction. ♦

Example 6.10. Let D and T be the XML document and tree model from Example
6.2 and Figure 6.1, respectively. The corresponding Tree String Paths Automaton,
constructed by Algorithm 6.9, is shown in Figure 6.3. ♠

52

...................................
6
.2

T
ree

S
trin

g
P

a
th

s
A

u
to

m
a
to

n

0start 1 2 3
/HOUSES /HOUSE /LORD

0start 1 2 4
/HOUSES /HOUSE /SIGIL

0start 1 2 5
/HOUSES /HOUSE /SEAT

0start 1 2 6 7 8
/HOUSES /HOUSE /VASSALS /HOUSE /LORD

0start 1 2 6 7 9
/HOUSES /HOUSE /VASSALS /HOUSE /SEAT

0start 1 10 11
/HOUSES /HOUSE /LORD

0start 1 10 12
/HOUSES /HOUSE /SIGIL

Figure 6.2. Prefix automata for each of string paths contained in PT from Example 6.6

5
3

6
.

A
u
to

m
a
ta

A
p
p
ro

a
ch

to
In

d
ex

in
g

X
M

L
D

a
ta..............................

0start 1 2, 10 3, 11

4, 12

5

6 7 8

9

/HOUSES /HOUSE /LORD

/SIGIL

/SEAT

/VASSALS

/HOUSE /LORD

/SEAT

Figure 6.3. Tree String Paths Automaton

5
4

. 6.3 Tree String Path Subsequences Automaton

6.2.1 Discussion on Time and Space Complexities

A Tree String Paths Automaton effectively supports the evaluation of all XP {/,name−test}

queries of an XML document. For example, for a query Q = /HOUSES/HOUSE/LORD, the
result set of element nodes is contained in the d-subset {3, 11}.

Given a subject XML document D and its corresponding XML tree model T with n
nodes, the tree is preprocessed and the index is constructed. The searching phase uses
the index, reads an input query Q of size m and computes the list of positions of all
occurrences of target nodes of Q in T .

TSPA performed the searching in time O(m) and does not depend on n. Number
of states of deterministic TSPA is linear in number of nodes in T , i.e., O(n) (proof is
trivial).

6.3 Tree String Path Subsequences Automaton

Definition 6.11. Let D be an XML document. A Tree String Path Subsequences
Automaton accepts all XP {//,name−test} queries of D. ♣

A Tree String Path Subsequences Automaton (TSPSA) efficiently evaluates all linear
XPath queries where just descendant-or-self axis (//) is used (i.e., XP {//,name−test}).
For an XML document of size n, the automaton processes a query of size m in time
linear in m and not depending on n. The structural path summaries [28, 23, 25] usually
need further tree traversal to support queries containing // axis. Furthermore, the
proposed index is again based on the idea of automata composing, that makes it well
understandable for anyone familiar with automata theory.

Once more, we use the idea to describe an XML tree model by means of its linear
fragments called string paths. However, to satisfy queries with // axes we are in this
case interested in (non-empty) subsequences of string paths, rather than its prefixes.

Definition 6.12. (Subsequence of a string path). Let D be an XML document and
P = n1n2 . . . nt be one of its string paths. A subsequence of P is any sequence of elements
ni obtainable by deleting zero or more elements from P . ♣

Example 6.13. Let T be an XML tree model in Figure 6.1 and P = HOUSES HOUSE LORD

be one of its string paths (we represent individual XML element nodes by their
labels). There are 7 non-empty subsequences of P : HOUSES HOUSE LORD, HOUSES HOUSE,
HOUSES LORD, HOUSE LORD, HOUSES, HOUSE, LORD. ♠

6.3.1 Building the Tree String Path Subsequences Automaton

TSPSA is in fact a subsequence automaton [18] for a set of strings where the strings are
string paths of the XML tree model that represents the XML document being indexed.
The automaton solving the problem of subsequences for both single and multiple strings
is also referred as Directed Acyclic Subsequence Graph (DASG), first introduced by
Baeza-Yates in [35] and further studied in [36–39]. Therefore, we propose an XML index
problem to be another application area of DASG.

There are three building algorithms for DASG for a set of strings available: right-
to-left [35], left-to-right [37] and on-line [38]. However, none of them is based on a
standard subset construction, that is crucial for answering queries. Therefore, we propose
a construction of TSPSA consisting of two steps. First, deterministic subsequence
automata accepting a set of non-empty subsequences for each of string paths contained

55

6. Automata Approach to Indexing XML Data .
in PT are constructed using subset construction. Second, a TSPSA is built using
product construction.

To build the deterministic subsequence automaton, we propose two following algo-
rithms: Algorithm 6.14 (slightly modified method described in [18]) and Algorithm
6.18 (direct subset construction of deterministic subsequence automaton). Resulting
automata are used to build TSPSA by Algorithm 6.20.

Algorithm 6.14. Construction of a subsequence automaton for a single string path.
Input: A String Path P = n1n2 . . . nt.
Output: A deterministic finite automaton M = (Q,A, δ, 0, F) accepting all non-empty
subsequences of P .
Method:

1. Construct a deterministic finite automaton M1 = (Q1,A, δ1, 0, F1) accepting all
prefixes of P :

a) Q1 ← {0, id(n1), id(n2), . . . , id(nt)},
b) A is the set of all different node labels in P ,
c) δ1(0, //label(n1))← id(n1) and

δ1(id(ni), //label(ni+1))← id(ni+1), ∀i = 1, 2, . . . , t− 1,
d) F1 ← {id(n1), id(n2), . . . , id(nt)}.

2. Insert ε-transitions into the automaton M1 leading from each state to its next state.
Resulting automaton M2 = (Q2,A, δ2, 0, F2), where

a) Q2 ← Q1, F2 ← F1,
b) δ2 ← δ1 ∪ δ′ and δ′(0, ε)← id(n1), δ′(id(ni), ε)← id(ni+1), ∀i← 1, 2, . . . , t− 1 .

3. Eliminate all ε-transitions. The resulting automaton is M3.
4. Construct a deterministic finite automaton M equivalent to M3 using standard

determinisation algorithm based on a subset construction. ♦

Example 6.15. Consider the XML tree model T illustrated in Figure 6.1 and its
corresponding string paths set PT described in Example 6.6. Transition diagrams of
subsequence automata with ε-transitions constructed for each string path contained in
PT are shown in Figure 6.4. Resulting deterministic automata are illustrated in Figures
6.5 and 6.6. ♠

In order to speed up the subsequence automaton construction, we simplify the previous
algorithm and propose a direct subset construction of a deterministic subsequence
automaton for a single string path described by Algorithm 6.18.

Definition 6.16. (Set of occurences of an element in a string path). Let P = n1n2 . . . nt

be a string path and e be an element node with label occurring at several positions in
P (i.e., label(ni) = label(e) for some i). A set of occurrences of the element e in P is a
totally ordered set OP (e) = {o | o = id(ni) ∧ label(ni) = label(e), i = 1, 2, . . . , t}. The
ordering is equal to ordering of element prefix identifiers as natural numbers. ♣

Definition 6.17. (ButFirst). Let P and OP (e) = {o1, o2, . . . , ot} be a string path and a
set of occurrences of an element e in a string path P , respectively. Then we define a
function ButF irst(OP (e)) = {o2, . . . , ot}. ♣

Algorithm 6.18. A direct subset construction of a subsequence automaton for a single
string path.
Input: A string path P = n1n2 . . . nt.

56

. 6.3 Tree String Path Subsequences Automaton

Output: A deterministic finite automaton M = (Q,A, δ, q0, F) accepting all non-empty
subsequences of P .
Method:

1. Let A′ be the set of all different node labels in P .
2. ∀ni ∈ P compute OP (ni).
3. Construct finite automaton M = (Q,A, δ, q0, F) accepting all prefixes of a string P :

a) Q ← {q0, q1, . . . , qt},
b) A ← {//}.A′,
c) q0 ← {0} and
∀ni, where i← 1, 2, . . . , t:

(i) set state qi ← OP (ni)
(ii) add δ(qi−1, //label(ni))← qi

(iii) OP (ni)← ButF irst(OP (ni))

d) F ← {q1, q2, . . . , qt}.

4. Insert additional transitions into the automaton M:

a) ∀i ∈ {0, 1, . . . , t− 1} ∀l ∈ A′:

(i) add δ(qi, //l)← qs, if there exists such s > i where
δ(qs−1, //l) = qs ∧ ¬∃r < s : δ(qr−1, //l) = qr

(ii) δ(qi, //l)← ∅ otherwise. ♦

Example 6.19. Consider the XML tree model T illustrated in Figure 6.1 and its
corresponding string paths set PT described in Example 6.6. Transition diagrams of
deterministic subsequence automata for each string path contained in PT constructed
by Algorithm 6.18 are evidently the same as resulting deterministic automata built by
Algorithm 6.14. We illustrate the automata in Figures 6.5 and 6.6. ♠

Algorithm 6.20. Construction of a Tree String Path Subsequences Automaton for an
XML document D and its corresponding XML tree model T .
Input: A string paths set PT = {P1, P2, . . . Pk}.
Output: A deterministic finite automaton M = (Q, E(D), δ, 0, F) accepting all
XP {//,name−test} queries of D.
Method:

1. Construct finite automata Mi = (Qi,Ai, δi, 0, Fi) accepting a set of non-empty
subsequences of Pi using Algorithm 6.18.

2. Construct deterministic Tree String Path Subsequences Automaton M =
(Q, E(D), δ, 0, F) accepting a set of all non-empty subsequences of each Pi us-
ing product construction. ♦

Example 6.21. Let D and T be an XML document and XML tree model from Exam-
ple 6.2 and Figure 6.1, respectively. The corresponding Tree String Path Subsequences
Automaton accepting all XP {//,name−test} queries of D, constructed by Algorithm 6.20,
is illustrated in Figure 6.7. ♠

6.3.2 Discussion on Time and Space Complexities
TSPSA effectively supports the evaluation of all XP {//,name−test} queries of an XML
document D. The number of such queries is exponential in the number of nodes of the
XML tree model T of D.

57

6
.

A
u
to

m
a
ta

A
p
p
ro

a
ch

to
In

d
ex

in
g

X
M

L
D

a
ta..............................

0start 1 2 3
//HOUSES

ε

//HOUSE

ε

//LORD

ε

0start 1 2 4
//HOUSES

ε

//HOUSE

ε

//SIGIL

ε

0start 1 2 5
//HOUSES

ε

//HOUSE

ε

//SEAT

ε

0start 1 2 6 7 8
//HOUSES

ε

//HOUSE

ε

//VASSALS

ε

//HOUSE

ε

//LORD

ε

0start 1 2 6 7 9
//HOUSES

ε

//HOUSE

ε

//VASSALS

ε

//HOUSE

ε

//SEAT

ε

0start 1 10 11
//HOUSES

ε

//HOUSE

ε

//LORD

ε

0start 1 10 12
//HOUSES

ε

//HOUSE

ε

//SIGIL

ε

Figure 6.4. Subsequence automata

5
8

..............................
6
.3

T
ree

S
trin

g
P

a
th

S
u
b
seq

u
en

ces
A

u
to

m
a
to

n

0start 1 2 3
//HOUSES

//HOUSE

//LORD

//HOUSE

//LORD

//LORD

0start 1 2 4
//HOUSES

//HOUSE

//SIGIL

//HOUSE

//SIGIL

//SIGIL

0start 1 2 5
//HOUSES

//HOUSE

//SEAT

//HOUSE

//SEAT

//SEAT

0start 1 10 11
//HOUSES

//HOUSE

//LORD

//HOUSE

//LORD

//LORD

0start 1 10 12
//HOUSES

//HOUSE

//SIGIL

//HOUSE

//SIGIL

//SIGIL

Figure 6.5. Deterministic subsequence automata

5
9

6
.

A
u
to

m
a
ta

A
p
p
ro

a
ch

to
In

d
ex

in
g

X
M

L
D

a
ta..............................

0start 1 2, 7 6 7 8
//HOUSES

//HOUSE

//VASSALS

//LORD

//HOUSE

//VASSALS

//LORD

//VASSALS

//HOUSE

//LORD

//HOUSE

//LORD

//LORD

0start 1 2, 7 6 7 9
//HOUSES

//HOUSE

//VASSALS

//SEAT

//HOUSE

//VASSALS

//SEAT

//VASSALS

//HOUSE

//SEAT

//HOUSE

//SEAT

//SEAT

Figure 6.6. Deterministic subsequence automata

6
0

..............................
6
.3

T
ree

S
trin

g
P

a
th

S
u
b
seq

u
en

ces
A

u
to

m
a
to

n

0start 1 2, 7, 10

3, 8, 11

5, 9

4, 12

6 7 8

9

//HOUSES

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//VASSALS

//LORD

//SEAT

//SIGIL

//VASSALS

//LORD

//SEAT

//SIGIL

//HOUSE

//HOUSE

//LORD

//SEAT

//LORD

//SEAT

Figure 6.7. Tree String Path Subsequences Automaton

6
1

6. Automata Approach to Indexing XML Data .
For example, consider a linear XML tree model T with n nodes. The number of
XP {//,name−test} queries is O(2n), which is determined by the following deduction:
There are

(

n
i

)

combinations of i elements (1 ≤ i ≤ n). Therefore, the exact number of

all XP {//,name−test} queries of D is given by following formula:

(

n

1

)

+

(

n

2

)

+ . . . +

(

n

n

)

=

n
∑

j=1

(

n

j

)

= 2n − 1

.

Basically, each state of TSPSA corresponds to an answer of a single query or a
collection of queries. Although the number of different queries accepted by TSPSA is
exponential, for most of XML documents a lot of the queries is equivalent (i.e., their
result sets of elements are equal).

Therefore, the equivalence problem of queries is closely related to the problem of
determination the number of states of TSPSA. That is, if we know the number of unique
query answers, we can construct a deterministic automaton answering all queries using
exactly this number of states. On the other hand, we can obviously use the TSPSA to
decide equivalence of two queries and even determine equivalence classes.

The containment and equivalence problems for a fragment of XPath query language
was studied in [40–41]. For XP {//,name−test} a PTIME containment algorithm was
provided by Buneman et al. in [42].

From another point of view, we can examine the number of states of a TSPSA as
a size of DASG for a set of strings. For k strings of length h, the number of states
can be trivially bounded by O(hk) (size of a product of k automata with O(h) states).
The running time for a query of length m becomes O(m). The lower bound for k > 2
strings in not known, while Crochemore and Troníček in [39] showed that Ω(h2) states
are required for k = 2 at the worst case. Considering an XML index problem, k is a
number of leaves in an XML tree model T and h is its height. The construction of the
TSPSA may be characterised as follows:

.Standard subset construction is needed, in case we want to return the answers of
queries. Otherwise, we are just able to decide, whether given query has a non-empty
result set of elements..The set of strings is rather specific. Thanks to the branching tree structure, we can
expect common prefixes in the set of strings, i.e., less number of states in resulting
automaton.

When space is more crucial, we can construct subsequence automata for each string path
in PT . Given a query of length m, we have to only traverse all subsequence automata
simultaneously, an return the union of resulting subsets of automata that accept the
query as the answer. It obviously runs in O(km).

Definition 6.22. (Tree level). Let T be a rooted tree. Tree level L is a set of nodes
such that ∀n ∈ L the number of edges from n to the root node r is equal. ♣

Definition 6.23. (State level). Let M = (Q,A, δ, q0, F) be a total deterministic
subsequence automaton. State level s of state q is a maximal number of transitions
from the initial state q0 to q. ♣

Definition 6.24. (Level property). Let T be a rooted tree and n1, n2 be two nodes of T
with labels l1, l2, respectively. Level property (l-property): If l1 = l2 then n1, n2 must be
in the same tree level. ♣

62

. 6.4 Tree Paths Automaton

Theorem 6.25. Maximal number of states of the deterministic Tree String Path
Subsequences Automaton constructed for an XML tree model T that satisfies the
l-property is O(h · 2k). ♥

Proof. Let T be an XML tree model of height h and k leaves. Therefore, there is k
string paths in T , for which we construct a set S of k total deterministic subsequence
automata of no more than h states each. We can run all automata “in parallel”, by
remembering the states of all automata by constructing k-tuples q while reading the
input. This is achieved by the product construction. This way we construct the Tree
String Path Subsequences Automaton M for T .

Due to l-property of T it holds that: Target state of transition labelled with l is either
a sink state or its state level is the same in each automaton in S. Hence, the k-tuples
(q1, q2, . . . , qk) are restricted as follows: If state level of q1 is s, then each of q2, . . . , qk is
either a sink state or of state level s. If q1 is a sink state, then q2 is arbitrary, but each
of q3, . . . , qk is either a sink state or the same state level as q2. In addition, the k-tuples
of levels 0 and 1 are always (01, 02, . . . , 0k) and (11, 12, . . . , 1k), respectively. Therefore,
the maximum number of states of M is 2 + 2k−1 · (h− 1) + 2k−2 · (h− 2). �

6.4 Tree Paths Automaton

Definition 6.26. Let D be an XML document. A Tree Paths Automaton accepts all
XP {/,//,name−test} queries of D. ♣

A Tree Paths Automaton (TPA) is designed to process a significant fragment of XPath
queries, which may use any combination of child (/) and descendant-or-self (//) axis
(i.e., XP {/,//,name−test}). The proposed index combines principles of the formerly
introduced automata (i.e., TSPA and TSPSA). Note, that both XP {/,name−test} and
XP {//,name−test} queries are subsets of XP {/,//,name−test} queries. Hence, both of them
are naturally supported by TPA.

6.4.1 Building the Tree Paths Automaton

Unfortunately, no standard automata composition operations allow us to easily combine
TSPA and TSPSA to construct TPA. Therefore, one approach is to reuse the idea of
string paths. First, define appropriate automaton and construct it for each string path.
Second, compose the constructed automata and finally determinise the result.

Another applicable approach is to build a nondeterministic Tree Paths Automaton
without need of describing an XML tree model by means of its linear fragments (i.e.,
string paths). Then a standard determinisation algorithm based on subset construction
is available to produce desired deterministic Tree Paths Automaton.

Before we delve into details of the construction algorithm, we shall first introduce
some working data structures called Arity array, Label array and Set of occurrences of
an element label in an XML tree model. We also need a structure for finding positions
of ends of subtrees called Subtree jump table proposed in [16] (for ranked trees).

Definition 6.27. (Label array). Let T be an XML tree model with n nodes. Then
LabelT is a Label array of T , where ∀i ∈ {1, 2, . . . , n}, LabelT [i] contains the label of
node i (i.e., id(n) = i). ♣

Definition 6.28. (Arity array). Let T be an XML tree model with n nodes. Then
ArityT is an Arity array for T , where ∀i ∈ {1, 2, . . . , n}, ArityT [i] contains the number
of children of node i (i.e., id(n) = i). ♣

63

6. Automata Approach to Indexing XML Data .
Definition 6.29. (Subtree jump table for an XML tree model). Let T be an XML tree
model with n nodes, where each node is assigned an identifier i according to preorder
numbering scheme. A Subtree jump table for T , denoted SJTT , is defined as a mapping
from set {1, . . . , n} into set {2, . . . , n + 1}. SJTT [i] = j, 1 ≤ i < j ≤ n + 1 if there exists
a subtree of T rooted at node i with j − 1 as the rightmost leaf. ♣

Definition 6.30. (Set of occurences of an element label in an XML tree model).
Let T and LabelT be and XML tree model with n nodes and relevant Label array,
respectively. A set of occurrences of an element label l in T is a totally ordered set
OT (l) = {i |Label[i] = l, i = 1, 2, . . . , n}. The ordering is equal to ordering of the array
indexes (i.e., prefix identifiers) as natural numbers. ♣

Example 6.31. Let D and T be an XML document and XML tree model from Example
6.2 and Figure 6.1, respectively. Table 6.1 shows corresponding structures LabelT ,
ArityT and SJTT . Table 6.2 describes sets of occurrences of all element labels in E(D).

i 1 2 3 4 5 6 7 8 9 10 11 12
LabelT [i] HOUSES HOUSE LORD SIGIL SEAT VASSALS HOUSE LORD SEAT HOUSE LORD SIGIL

ArityT [i] 2 4 0 0 0 1 2 0 0 2 0 0
SJTT [i] 13 10 4 5 6 10 10 9 10 13 12 13

Table 6.1. Working data structures for Tree Paths Automaton construction

l HOUSES HOUSE LORD SIGIL SEAT VASSALS

OT (l) {1} {2, 7, 10} {3, 8, 11} {4, 12} {5, 9} {6}

Table 6.2. Set of occurrences of all element labels l ∈ E(D) of XML document D from
Example 2.42

♠

The working structures need to be set only once during the preprocessing phase. When
the Tree Paths Automaton is built, other data structures are no longer needed. Since
construction of Arity and Label array together with computing the Set of occurrences
of all element labels in an XML alphabet is trivial, we include a building method for
Subtree jump table only described by Algorithm 6.32.

Algorithm 6.32. Construction of a Subtree jump table for an XML tree model T .
Input: ArityT - array of nodes arity, rootIndex - index of current node, SJTT - reference
to an empty Subtree jump table
Output: exitIndex - exit index, SJTT - Subtree jump table
Method:

1. index← rootIndex + 1
2. ∀i, i← 1, . . . ArityT [rootIndex]

(i) index← exitIndex of Algorithm 6.32 where rootIndex← index

3. SJT [rootIndex]← index
4. exitIndex← index ♦

Algorithm 6.33. Construction of a Tree Paths Automaton for an XML document D.
Input: XML data tree T for D with n nodes, ArityT , LabelT , SJTT and OT (l), ∀l ∈
E(D).

64

. 6.4 Tree Paths Automaton

Output: A deterministic finite automaton M = (Q,A, δ, 0, F) accepting all
XP {/,//,name−test} queries of D.
Method:

1. Construct a finite automaton M = (Q,A, δ, 0, F) as follows:

a) Q ← {0, 1, 2, . . . , n},
b) A ← {/, //}.E(D),
c) δ(0, /LabelT [1])← {1},
d) ∀q, where q ← 1, 2, . . . , n− 1,

(i) i← q + 1
(ii) repeat ArityT [q] times:

(i) δ(q, /LabelT [i])← δ(q, /LabelT [i]) ∪ {i},
(ii) i← SJTT [i].

e) F ← {1, 2, . . . , n}.

2. Insert additional transitions into the automaton M:

a) ∀q ∈ {0, 1, . . . , n− 1} ∀l ∈ E(D):

(i) δ(q, //LabelT [j])← {j | j ∈ OT (l) ∧ q < j < SJTT [q]}.

3. Use standard determinisation algorithm based on subset construction to get determin-
istic automaton M. ♦

Example 6.34. Let D and T be an XML document and XML tree model from
Example 6.2 and Figure 6.1, respectively. The transition diagram of nondeterministic
Tree Paths Automaton is illustrated in Figure 6.8. Figure 6.9 shows transition diagram
of corresponding deterministic Tree Paths Automaton. In these figures, the transition
rule δ(p,/[/]LABEL) = q represents two transitions leading from state p to state q:
δ(p,/LABEL) = q and δ(p,//LABEL) = q. ♠

6.4.2 Discussion on Time and Space Complexities

A Tree Paths Automaton is designed to effectively process all XP {/,//,name−test} queries
of D. The major issue is the size of the deterministic automaton, which, in theory, can
be exponential in the size of the XML document being indexed. Despite our effort, the
problem of a tight upper bound on the number of states of TPA remains open.

However, we provide a series of experiments in following chapter to show that the
determinisation will result in a small number of states although the number of queries
accepted by the Tree Paths Automaton is exponential in n (e.g., O(2.62n) [34] for a
linear XML tree with n nodes).

65

6
.

A
u
to

m
a
ta

A
p
p
ro

a
ch

to
In

d
ex

in
g

X
M

L
D

a
ta..............................

0

start

1 2 3 4 5 6 7 8 9 10 11 12

/[/]HOUSES

//HOUSE

//HOUSE

//LORD

//SIGIL

//SEAT

//VASSALS

//HOUSE

//LORD

//SEAT

//LORD

//SIGIL

/[/]HOUSE

/[/]HOUSE

//LORD

//SIGIL

//SEAT

//VASSALS

//HOUSE

//LORD

//SEAT

//LORD

//SIGIL

/[/]LORD

/[/]SIGIL

/[/]SEAT

/[/]VASSALS

/[/]HOUSE

//LORD

//SEAT

/[/]HOUSE

//LORD

//SEAT

/[/]LORD

/[/]SEAT

/[/]LORD

/[/]SIGIL

Figure 6.8. Nondeterministic Tree Paths Automaton

6
6

......................................
6
.4

T
ree

P
a
th

s
A

u
to

m
a
to

n

0start 1 2, 7, 10 2, 10 3, 11 3, 8, 11 4, 12 5, 9 5

6 7 8 9

/HOUSES

//HOUSES

//VASSALS

//HOUSE

//LORD

//SIGIL

//SEAT

//VASSALS

/HOUSE

//HOUSE

//LORD

//SIGIL

//SEAT

/[/]VASSALS

//HOUSE

/[/]LORD

/[/]SIGIL

/[/]SEAT

/LORD

//LORD

/[/]SIGIL

/SEAT

//SEAT

/[/]VASSALS

//HOUSE

/HOUSE

//HOUSE

//LORD

//SEAT

/LORD

//LORD

/[/]SEAT

Figure 6.9. Deterministic Tree Paths Automaton

6
7

6. Automata Approach to Indexing XML Data .

68

Chapter 7
Implementation

In this chapter we deal with the implementation of one of the proposed methods for
indexing XML documents introduced in previous chapter. Since a Tree Paths Automaton
is designed to process the largest fragment of XPath queries and covers the power of
both Tree String Paths and Tree String Path Subsequences Automaton, we focus on its
realization only.

7.1 System Architecture

The XML index software is developed using Java SE, JDK 8u45 in the NetBeans IDE
8.0.2 [43] and is designed as Java Class Library called tpalib. The system architecture
of the tpalib is illustrated in Figure 7.1. The library consists of three virtual parts
called JDOM, Index Builder and XML Data Index.

Figure 7.1. System architecture of tpalib

7.1.1 JDOM

An XML document is processed using the first main part of the system architecture
called JDOM [44], an open source Java-based document object model for XML that
was designed specifically for the Java platform so that it can take advantage of its
language features. The tpalib proposes a DocumentLoader class (see Figure 7.2) with
load method accepting as an argument a path to the XML document represented as
String. The method reads and parses the XML document using SAXBuilder class
(SAX stands for Simple API for XML) and builds a JDOM Document that returns to a
user. The Document object is further processed in the next part of the system, where
the XML Data Index is being constructed.

69

7. Implementation .

Figure 7.2. DocumentLoader class

7.1.2 Index Builder

The Index Builder comes as the second main part of the system architecture. As
the name indicates, the Index Builder is responsible for a construction of the XML
Data Index. It disposes of AutomatonFactory class (see Figure 7.3) that presents a
build method accepting the JDOM Document object, built in previous step, as its
argument. The method constructs the XML Data Index and returns it as an instance
of TreePathsAutomaton class to a user. The construction process can be divided into
three following phases:

1. working structures initialization,
2. NFA construction,
3. NFA determinisation.

At first, a preorder traversal of the JDOM Document object is used to initialize the
working structures (see section 6.4.1) needed for nondeterministic finite automaton
construction. We realize Arity and Label arrays and SJT as a single array of objects.
The objects are accessible by their array index that corresponds to a preorder identifier
of the XML element they represent.

We implement the objects as instances of Node class (see Figure 7.3) defined within
AutomatonFactory class. The inner class stores information about label, arity and
subtree jump table value of an element in its attributes. The sets of occurrences of all
element labels in XML alphabet are implemented as a mapping from each of element
labels to a set containing preorder identifiers of XML elements sharing the label.

Based on the information included in the working structures, second phase of the
construction process deals with building a nondeterministic Tree Paths Automaton as
described in steps 2 and 3 in Algorithm 6.33. We represent the transition function of
the finite automaton as a mapping from each of states to a collection of its transitions
implemented as a mapping from edge labels to their corresponding set of target states
(i.e., HashMap<Integer, HashMap<EdgeLabel, TreeSet<Integer>>>).

Figure 7.3. AutomatonFactory and Node class

70

. 7.1 System Architecture

Figure 7.4. EdgeLabel class and Axis enum

Transition labels are modelled as instances of EdgeLabel class (see Figure 7.4) containing
information about axis and label used. Other information about automaton such as set
of states, alphabet, initial state or a set of final states are either directly given by the
definition of the Tree Paths Automaton or insignificant for our purpose.

Eventually, a standard determinisation algorithm based on subset construction is
applied to the constructed NFA to get a final XML Data Index that is returned as an
instance of TreePathsAutomaton class to a user.

7.1.3 XML Data Index

The XML Data Index stands for the third main part of the system architecture. We
realize the deterministic Tree Paths Automaton as an instance of TreePathsAutomaton

class (see Figure 7.5) constructed by AutomatonFactory in previous step.

Since the index construction is fairly a time-consuming process, shorthand methods
for object serialization and deserialization are available to a user once an instance
of TreePathsAutomaton class is built. Therefore, next time the index of the XML
document is needed, the TreePathAutomaton object can be read from the file and
deserialized that is, the type information and bytes that represent the object and its
data can be used to recreate the object in memory.

Information about deterministic Tree Paths Automaton are stored similarly as in the
case of its nondeterministic version. Again, the transition function is implemented as
a mapping, however, in this case from State (see Figure 7.6) objects to collections of
transitions. Individual transitions are realized as a mapping from transition labels to
State objects. Transition labels are once more modelled as instances of EdgeLabel class.
The State class represents a state of deterministic finite automaton and encapsulates a
content of its d-subset. Other information about finite automaton such as alphabet,
initial state or a set of final states are again either directly given by the definition of the
Tree Paths Automaton or insignificant for our purpose.

Figure 7.5. TreePathsAutomaton class

71

7. Implementation .

Figure 7.6. State class

7.2 Query Processing
As a query processor, a user uses directly the TreePathsAutomaton object that accepts
and evaluates queries represented as String (e.g., "/site//regions"). There are three
methods provided by the TreePathsAutomaton regarding the query processing:

.TreeSet<Integer> getDSubset(String query) – parses the query and returns an
ordered set of preorder identifiers of elements in an XML document satisfying the
query,.LinkedList<Element> evaluate(String query) – parses the query and returns
list of elements, or more precisely Element objects, in an XML document satisfying
the query,.LinkedList<Element> evaluate(TreeSet<Integer> dsubset) – gets d-subset and
maps it to appropriate elements (Element objects) in the XML document and returns
them in a list.

The parsing process split a query into a sequence of automaton inputs (i.e., tokens
starting with either / or // where an element label follows). Eventually, the query is
evaluated by running the deterministic automaton and the required result is returned.

72

Chapter 8
Experimental Evaluation

This chapter explores the performance of one of the proposed methods for indexing XML
documents based on a finite automaton construction. Since a Tree Paths Automaton
is designed to process the largest fragment of XPath queries and covers the power of
both Tree String Paths and Tree String Path Subsequences Automaton, we focus on its
experimental evaluation only. The Tree Paths Automaton is introduced in Section 6.4
and its implementation details are described in previous chapter.

We first present a testing environment for our experiments and characteristics of
selected XML data sets. Then we study the space requirements by measuring a size
of file with serialized TreePathsAutomaton object and the time it takes to build such
deterministic automaton. Finally, we go on to a performance study over XPath queries
that are supported by our index.

8.1 Experimental Setup
The XML index software is developed using Java SE, JDK 8u45 and its implementation
is described in previous chapter in details. Our experiments are conducted under the
environment of Intel Core i7 CPU @ 2.00 GHz, 8.0 GB RAM and 240 GB SSD disk
with Windows 8.1 Pro operation system running.

8.1.1 XML Data Sets

site

regions

africa

item

· · ·

· · ·

asia

· · ·

· · ·

people

person

profile

· · ·

· · ·

open auctions

open auction

bidder

· · ·

· · ·

closed auctions

closed auction

price · · ·

categories

category

name description

· · ·

Figure 8.1. Partial schema of XMark data sets

For our experimental evaluation, we selected XML benchmark XMark data sets generated
by xmlgen [45]. The XMark data set is a single record with a very large and fairly
complicated tree structure with a maximal depth of 11 and average depth of 4.5. The
XML data models an on-line auction site. The main element relationships are illustrated
for convenience in Figure 8.1. The tag names are largely self-explanatory.

73

8. Experimental Evaluation .
Table 8.1 describes relevant characteristics of generated data sets. First column define
keys of data sets. Second column shows names of generated XML files. The next column
are XMark xmlgen scaling factors [46] of the document, float value, where 0 produces
the “minimal document”. The fourth column contains numbers of element nodes in the
XML file and finally, the last column shows the size of files in megabytes.

Key XML File Xmark xmlgen Scaling Factor # Elements File size [MB]

D1 XMark-f0 0 382 0.03
D2 XMark-f0.001 0.001 1, 729 0.10
D3 XMark-f0.005 0.005 8, 518 0.60
D4 XMark-f0.01 0.01 17, 132 1.20
D5 XMark-f0.5 0.5 832, 911 58.00

Table 8.1. Characteristics of XMark benchmark files

8.2 Index Size and Construction Time
In this section we study the space requirements of the index structure by measuring
the size of the file with serialized TreePathsAutomaton object and the time it takes to
build such deterministic automaton. Table 8.2 shows the experimental results on both
index construction time and size for generated XMark data sets.

The time of index creating is insignificant when we consider just files with less
than 100, 000 elements. However, the time cost on 60 MB data set with over 800, 000
elements is more than an hour. We detected that the most time-consuming phase is the
construction of nondeterministic Tree Paths Automaton. Therefore, it could be the
crucial part for our future software optimization.

As for the index size, it should be noted that even though the index occupies a great
deal of space, the ratio of index size to original XML data size stays linear. Table 8.3
shows that the index data of Tree Paths Automaton is about 2.5 times of the original
document size.

Key Index Construction Time [sec] Index Size [MB]

D1 0.3 0.08
D2 0.5 0.30
D3 2.8 1.35
D4 6.1 2.68
D5 6, 780.0 129.00

Table 8.2. Experimental results on construction time and size

Key Index Size / XML File Size

D1 2.60
D2 3.00
D3 2.25
D4 2.23
D5 2.22

Table 8.3. Ratio of index size to XML file size

74

. 8.3 Performance on Query Processing

8.3 Performance on Query Processing
In this section we report experimental results conducted on Tree Paths Automaton in
comparison with well-known reference implementation called Saxon [47]. The Saxon
package is a collection of Java tools for processing XML documents. One of the main
components is an XPath processor accessible to applications via a supplied API. This
supports both XPath 2.0 and XPath 3.0, and it can be used in backwards-compatibility
mode to evaluate XPath 1.0 expressions.

Measurements reflect query processing time only, equivalent to the evaluate()

method in both Saxon and tpalib. Hence, document loading cost and query parsing
cost (compile() method in Saxon) have been excluded from the measurements.

Table 8.4 lists 9 sample queries we use for the experimental evaluation. We split
them into categories made up of three queries each, depend on type of axes used. First
Q1–Q3 queries contain child axis only, Q4–Q6 are created of descendant-or-self axis only
and last Q7–Q9 queries use combination of both axes. Each of categories lists its queries
with ascending length. Numbers of elements satisfying individual queries in each of
data sets are shown in Table 8.5.

Key XPath Query

Q1 /site/open auctions

Q2 /site/people/person/name

Q3 /site/regions/europe/item/description/parlist/listitem/text/emph

Q4 //person//watch

Q5 //regions//mail//date

Q6 //site//regions//europe//description//listitem//text//emph

Q7 /site//open auction

Q8 //people/person//watch

Q9 //regions/europe//item//parlist/listitem//text/emph

Table 8.4. Set of queries used in performance analysis

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

D1 1 1 2 1 5 2 1 1 2
D2 1 25 2 50 20 4 12 50 2
D3 1 127 5 247 124 6 60 247 5
D4 1 255 17 488 205 50 120 488 43
D5 1 12, 750 1, 235 25, 414 10, 455 2, 357 6, 000 2, 5414 2, 099

Table 8.5. Numbers of elements satisfying queries in test data sets

Tables 8.6 and 8.7 summarize the experimental results of tpalib and Saxon, respectively.
Each of cells in row r and column c contains a time score in milliseconds for running a
query Qc on data set Dr.

In Figure 8.2, the elapsed time for processing the queries in Table 8.4 on individual
data sets in Table 8.2, using both tpalib and Saxon are plotted using logarithmic
scale. The x-axis represents the data sets, while the y-axis shows the response time in
milliseconds. We use light blue dashed lines to display Saxon results, whereas tpalib

score is depicted as dark blue solid lines.
As for Saxon, there appears to be a clear upward pattern in query processing time with

growing size of data sets. We can also see that queries Q1 – Q3 that use only child axis

75

8. Experimental Evaluation .
are easier to evaluate than more complex queries including also descendant-or-self axis.
However, tpalib results remain stable with processing time around 1 to 3 milliseconds.
That is since the search phase of all elements satisfying the query depends only on size
of the query and not depend on size of data set. Overall, the sample queries achieve
better response time using our proposed indexing method.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

D1 2.08 1.45 1.74 1.98 2.02 1.98 1.35 1.51 1.64
D2 1.88 1.46 1.55 1.52 1.99 1.89 2.20 1.99 1.66
D3 1.39 2.12 2.04 1.58 1.36 1.36 1.28 1.58 1.62
D4 1.25 1.41 1.47 1.52 1.37 1.51 1.40 1.45 1.45
D5 1.54 2.33 1.24 2.76 2.14 1.03 1.25 2.35 1.27

Table 8.6. tpalib experimental evaluation in milliseconds

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

D1 4.08 4.03 4.12 4.72 6.33 7.57 4.68 5.45 7.70
D2 3.75 7.09 5.83 10.92 7.91 8.44 9.76 10.43 8.83
D3 4.20 7.75 5.97 15.44 15.26 13.78 9.76 12.56 14.39
D4 4.02 9.54 8.40 20.07 20.31 23.46 14.24 12.56 16.15
D5 3.27 20.76 16.82 76.72 84.62 59.26 28.34 82.36 53.88

Table 8.7. Saxon experimental evaluation in milliseconds

1,00

10,00

100,00

D1 D2 D3 D4 D5

T
im

e
[m

s]

Data Key

Q1 (tpalib)

Q2 (tpalib)

Q3 (tpalib)

Q5 (tpalib)

Q6 (tpalib)

Q7 (tpalib)

Q8 (tpalib)

Q9 (tpalib)

Q4 (tpalib)

Q1 (Saxon)

Q2 (Saxon)

Q3 (Saxon)

Q4 (Saxon)

Q5 (Saxon)

Q6 (Saxon)

Q7 (Saxon)

Q8 (Saxon)

Q9 (Saxon)

Figure 8.2. Performance comparison of tpalib and Saxon (logarithmic scale)

76

Chapter 9
Conclusions

In this chapter we summarize this thesis and conclude its results and contributions.
We also present a list of open problems and propose future research directions and
recommendations for future work to extend the research presented in this thesis.

9.1 Summary of the Thesis
In the introductory Chapter 1, the XML index problem is stated along with motivation
and objectives. In Chapter 2, we provide the necessary theoretical background, i.e.,
notations used through this thesis along with essential definitions concerning trees
and theory of formal languages and automata. At the end of this chapter, a brief
introduction to XML and XPath is also given. We illustrate relevant XML and XPath
features by means of examples rather than using an exhaustive detailed description. We
discuss the relationship between arbology and XPath in Chapter 3.

In the next two Chapters 4 and 5, we review existing techniques for indexing texts
and trees and most importantly we study the state-of-the-art methods for indexing
XML documents. We can classify the XML indexes into several categories such as:
graph-based methods, sequence-based methods, node coding or adaptive methods. We
have introduced some of the index structures in detail.

The following chapters present a new and simple method of indexing XML documents
for processing linear XPath expressions (i.e., XP {/,//,name−test}) using deterministic
finite automaton called Tree Paths Automaton. We also proposed another two indexing
techniques based on finite automata (i.e., Tree String Paths Automaton and Tree String
Path Subsequences Automaton), aimed to assist in evaluating paths queries with either
child (/) or descendant-or-self (//) axis only. The implementation details of Tree Paths
Automaton are given in Chapter 7. We also provide experimental results to demonstrate
the efficient processing of path queries by Tree Paths Automaton in Chapter 8.

9.2 Contributions of the Thesis
Contributions of this thesis are as follows:

.Chapter 3. This chapter discusses the relationship between arbology and XPath.
Since the internal structure of an XML document can be represented as a labelled
unranked tree, searching XML documents becomes a relevant field of study for
arbology that is interested in processing tree data structures. We can also view an
XPath query as a kind of a tree pattern. Thus, we may declare querying or searching
XML document using XPath to be analogous problem of a tree pattern matching.

We have also proposed a classification of XPath to be able to describe fragments
of XPath queries with elegance. First, we can simply classify XPath queries by
restricting the constructs available in query syntax (e.g., XP {/,//,∗}). Next, grouping
queries according to orientation used for navigating through the XML tree structure

77

9. Conclusions .
is possible (e.g., down oriented queries). Considering the query tree structure, path
and twig queries are other potential classes. Finally, we propose queries of arity
0, 1, 2, . . . , p to be respectively called boolean, unary, binary, . . . , p-ary, where arity is
the number of target nodes of an XPath query.

.Chapter 6. This chapter shows that automata can be used effectively for the purpose
of indexing XML documents. A new and simple method of indexing XML documents
for processing linear XPath expressions (i.e., XP {/,//,name−test}) using deterministic
finite automaton called Tree Paths Automaton is presented. We also proposed another
two indexing techniques based on finite automata (i.e., Tree String Paths Automaton
and Tree String Path Subsequences Automaton), aimed to assist in evaluating paths
queries with either child (/) or descendant-or-self (//) axis only.

Given a subject XML document D and its corresponding XML tree model T with
n nodes, the tree is preprocessed and the index is constructed. The searching phase
uses the index, reads an input query Q of size m and computes the list of positions of
all occurrences of target nodes of Q in T .

All the proposed automata performed the searching in time O(m) and do not
depend on n. Although the Tree String Path Subsequences Automaton supporting
XP {//,∗} fragment of XPath queries supports O(2n) distinct queries, the number of
states of deterministic automaton is O(hk), where h is the height of the T and k is
the number of its leaves. Moreover, we discuss that in case of indexing a common
XML document the number of states of the deterministic finite automaton is at
most O(h.2l)

.Chapter 7. This chapter deals with the implementation one of the proposed indexing
method using Tree Paths Automaton. The XML index software is developed using
Java SE and is designed as Java Class Library called tpalib.

.Chapter 8. This chapter explores the performance of the Tree Paths Automaton and
provides experimental results to demonstrate the efficient processing of path queries.
We report the results conducted on Tree Paths Automaton in comparison with Saxon
as reference implementation. Measurements show that our method achieve better
response time for all sample queries.

9.3 Future Work
There is a number of interesting open problems that we hope to explore in future work.
For example:

.determine the tight upper bound on number of states and transitions for Tree Paths
Automaton,.develop incremental building algorithm for Tree Paths Automaton to efficiently adapt
its structure to ever changing XML data source,.propose an indexing method able to support multiple XML documents,. study simulation techniques of nondeterministic finite automata and develop effi-
cient simulation of Tree Paths Automaton or its implementation using dynamic
programming,.extend our method to support more complex queries (e.g., including attributes,
wildcards, branching etc.),

78

. 9.3 Future Work

.adjust our method to solve general tree index problem,. study possibilities of combination the pushdown automata, which is a result of
arbology, with the proposed methods,.develop an indexing techniques for abstract syntax trees (AST) used in practical
applications.

79

9. Conclusions .

80

References
[1] al, Bray T. Paoli J. Sperberg-McQueen C. et. Extensible Markup Language (XML)

1.0 .
http://www.w3.org/XML.

[2] Clark, J.; and S. DeRose. XML Path Language (XPath) Version 1.0 [online].
[cit. 2015-02-03].
http://www.w3.org/TR/xpath.

[3] DeRose, S.. XML Pointer Language (XPointer) [online]. [cit. 2015-03-04].
http://www.w3.org/TR/xptr.

[4] DeRose, S.. XML Linking Language (XLink) Version 1.0 [online]. [cit. 2015-03-04].
http://www.w3.org/TR/xlink.

[5] The Prague Stringology Club [online]. [cit. 2015-02-07].
http://www.stringology.org.

[6] Melichar, Bořivoj; Jan Janoušek; and Tomáš Flouri. Introduction to Arbology
[online]. [cit. 2015-05-01].
https://edux.fit.cvut.cz/oppa/PI-ARB/prednasky/arbology.pdf.

[7] Rabin, ”Michael O; and Dana Scott”. ”Finite automata and their decision problems”.
IBM journal of research and development. IBM, 1959, Vol. 3, No. 2, pp. 114–125.

[8] Neven, Frank. Automata, Logic, and XML. In: Julian Bradfield, ed. Computer
Science Logic. Springer Berlin Heidelberg, 2002. pp. 2–26. Lecture Notes in
Computer Science. ISBN 978-3-540-44240-0.

[9] Libkin, Leonid. Logics for Unranked Trees: An Overview. In: Luís Caires; Giuseppe
Italiano; Luís Monteiro; Catuscia Palamidessi; and Moti Yung, eds. Automata,
Languages and Programming. Springer Berlin Heidelberg, 2005. pp. 35–50. Lecture
Notes in Computer Science. ISBN 978-3-540-27580-0.

[10] Pokorný, Jaroslav. XML Technologie – Principy a aplikace v praxi. Praha: Grada
Publishing, a.s., 2008. ISBN 978-80-247-2725-7.

[11] ”BSI (British Standards Institution)”. BS 6154:1981 Method of defining – syntactic
metalanguage.

[12] Aluru, Srinivas. Text Indexing. In: Ming-Yang Kao, ed. Encyclopedia of Algorithms.
Springer US, 2008. pp. 1-99. ISBN 978-0-387-30770-1.
http://dx.doi.org/10.1007/978-0-387-30162-4_422.

[13] Crochemore, M.; Ch. Hancart; and T. Locroq. Algorithms on Strings. Oxford
University Press, 2002.

[14] Crochemore, Maxime; and W. Rytter. Jewels of stringology. World Scientific,
2002.

[15] Crochemore, M.; and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[16] Janoušek, Jan; Bořivoj Melichar; Radomír Polách; Martin Poliak; and Jan
Trávníček. A Full and Linear Index of a Tree for Tree Patterns. In: Helmut Jür-
gensen; Juhani Karhumäki; and Alexander Okhotin, eds. Descriptional Complexity

81

http://www.w3.org/XML
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xlink
http://www.stringology.org
https://edux.fit.cvut.cz/oppa/PI-ARB/prednasky/arbology.pdf
http://dx.doi.org/10.1007/978-0-387-30162-4_422

References .
of Formal Systems. Springer International Publishing, 2014. pp. 198–209. Lecture
Notes in Computer Science. ISBN 978-3-319-09703-9.
http://dx.doi.org/10.1007/978-3-319-09704-6_18.

[17] Lecroq, T.. Structure for indexing texts. In: International PhD School in Formal
Languages and Applications, Tarragona, 2006.

[18] Melichar, B.; J. Holub; and T. Polcar. Text Searching Algorithms [online]. Prague,
2005 [cit. 2015-05-01].
http://www.stringology.org/athens/TextSearchingAlgorithms.

[19] Ehrenfeucht, Andrzej; Ross M. McConnell; Nissa Osheim; and Sung-Whan
Woo. Position Heaps: A Simple and Dynamic Text Indexing Data Structure. J.
of Discrete Algorithms. Amsterdam, The Netherlands, The Netherlands: Elsevier
Science Publishers B. V., mar, 2011, Vol. 9, No. 1, pp. 100–121. ISSN 1570-8667.
Available from DOI 10.1016/j.jda.2010.12.001.

[20] Coffman, E. G., Jr.; and J. Eve. File Structures Using Hashing Functions. Commun.
ACM . New York, NY, USA: ACM, jul, 1970, Vol. 13, No. 7, pp. 427–432. ISSN 0001-
0782. Available from DOI 10.1145/362686.362693.

[21] Janoušek, J.. Arbology: Algorithms on Trees and Pushdown Automata.

[22] Lu, Jiaheng. Introduction. In: An Introduction to XML Query Processing and
Keyword Search. Springer Berlin Heidelberg, 2013. pp. 1–8. ISBN 978-3-642-34554-
8.
http://dx.doi.org/10.1007/978-3-642-34555-5_1.

[23] Goldman, Roy; and Jennifer Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. In: Proceedings of the 23rd International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. pp. 436–445. VLDB ’97. ISBN 1-55860-470-7.
http://dl.acm.org/citation.cfm?id=645923.671008.

[24] Milo, Tova; and Dan Suciu. Index Structures for Path Expressions. In: Catriel
Beeri; and Peter Buneman, eds. Database Theory – ICDT’99 . Springer Berlin
Heidelberg, 1999. pp. 277–295. Lecture Notes in Computer Science. ISBN 978-3-
540-65452-0.
http://dx.doi.org/10.1007/3-540-49257-7_18.

[25] Tang, Nan; J.X. Yu; M.T. Ozsu; and Kam-Fai Wong. Hierarchical Indexing
Approach to Support XPath Queries. In: Data Engineering, 2008. On ICDE 2008,
IEEE 24th International Conference. 2008. pp. 1510–1512. Available from DOI
10.1109/ICDE.2008.4497606.

[26] Kaushik, Raghav; Philip Bohannon; Jeffrey F Naughton; and Henry F Korth.
Covering Indexes for Branching Path Queries. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data. New York, NY, USA:
ACM, 2002. pp. 133–144. SIGMOD ’02. ISBN 1-58113-497-5. Available from DOI
10.1145/564691.564707.

[27] Pettovello, P. Mark; and Farshad Fotouhi. MTree: An XML XPath Graph Index.
In: Proceedings of the 2006 ACM Symposium on Applied Computing. New York,
NY, USA: ACM, 2006. pp. 474–481. SAC ’06. ISBN 1-59593-108-2. Available from
DOI 10.1145/1141277.1141389.

[28] Zou, Qinghua; Shaorong Liu; and Wesley W. Chu. Ctree: a compact tree for
indexing XML data. In: Web Information and Data Management. 2004. pp. 39–46.
Available from DOI 10.1145/1031453.1031462.

82

http://dx.doi.org/10.1007/978-3-319-09704-6_18
http://www.stringology.org/athens/TextSearchingAlgorithms
http://dx.doi.org/10.1016/j.jda.2010.12.001
http://dx.doi.org/10.1145/362686.362693
http://dx.doi.org/10.1007/978-3-642-34555-5_1
http://dl.acm.org/citation.cfm?id=645923.671008
http://dx.doi.org/10.1007/3-540-49257-7_18
http://dx.doi.org/10.1109/ICDE.2008.4497606
http://dx.doi.org/10.1145/564691.564707
http://dx.doi.org/10.1145/1141277.1141389
http://dx.doi.org/10.1145/1031453.1031462

. .
[29] Wang, Haixun; Sanghyun Park; Wei Fan; and Philip S. Yu. ViST: A Dynamic

Index Method for Querying XML Data by Tree Structures. In: Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data. New
York, NY, USA: ACM, 2003. pp. 110–121. SIGMOD ’03. ISBN 1-58113-634-X.
Available from DOI 10.1145/872757.872774.

[30] Rao, P.; and B. Moon. PRIX: indexing and querying XML using prufer sequences.
In: Data Engineering, 2004. Proceedings. 20th International Conference on. 2004.
pp. 288–299. ISSN 1063-6382. Available from DOI 10.1109/ICDE.2004.1320005.

[31] Li, Quanzhong; and Bongki Moon. Indexing and Querying XML Data for Regular
Path Expressions. In: Proceedings of the 27th International Conference on Very
Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2001. pp. 361–370. VLDB ’01. ISBN 1-55860-804-4.
http://dl.acm.org/citation.cfm?id=645927.672035.

[32] Chung, Chin-Wan; Jun-Ki Min; and Kyuseok Shim. APEX: An Adaptive Path In-
dex for XML Data. In: Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data. New York, NY, USA: ACM, 2002. pp. 121–132.
SIGMOD ’02. ISBN 1-58113-497-5. Available from DOI 10.1145/564691.564706.

[33] Zhang, Bo; Wei Wang; Xiaoling Wang; and Aoying Zhou. AB-Index: An Efficient
Adaptive Index for Branching XML Queries. In: Ramamohanarao Kotagiri; P.
Radha Krishna; Mukesh Mohania; and Ekawit Nantajeewarawat, eds. Advances
in Databases: Concepts, Systems and Applications. Springer Berlin Heidelberg,
2007. pp. 988–993. Lecture Notes in Computer Science. ISBN 978-3-540-71702-7.
http://dx.doi.org/10.1007/978-3-540-71703-4_90.

[34] Mandhani, Bhushan; and Dan Suciu. Query Caching and View Selection for XML
Databases. In: Proceedings of the 31st International Conference on Very Large
Data Bases. VLDB Endowment, 2005. pp. 469–480. VLDB ’05. ISBN 1-59593-
154-6.
http://dl.acm.org/citation.cfm?id=1083592.1083648.

[35] Baeza-Yates, Ricardo A.. Searching subsequences. Theoretical Computer Sci-
ence. 1991, Vol. 78, No. 2, pp. 363–376. ISSN 0304-3975. Available from DOI
http://dx.doi.org/10.1016/0304-3975(91)90358-9.
http://www.sciencedirect.com/science/article/pii/0304397591903589.

[36] Troníček, Zdeněk; and Ayumi Shinohara. The size of subsequence automaton.
Theoretical Computer Science. 2005, Vol. 341, No. 1-3, pp. 379–384. ISSN 0304-
3975. Available from DOI http://dx.doi.org/10.1016/j.tcs.2005.03.027.
http://www.sciencedirect.com/science/article/pii/S030439750500157X.

[37] Crochemore, Maxime; Bořivoj Melichar; and Zdeněk Troníček. Directed acyclic
subsequence graph – Overview. Journal of Discrete Algorithms. 2003, Vol. 1,
No. 3-4, pp. 255–280. ISSN 1570-8667.
http://www.sciencedirect.com/science/article/pii/S1570866703000297.

[38] Hoshino, H.; A. Shinohara; M. Takeda; and S. Arikawa. Online construction of
subsequence automata for multiple texts. In: String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium on.
2000. pp. 146–152. Available from DOI 10.1109/SPIRE.2000.878190.

[39] Crochemore, Maxime; and Zdeněk Troníček. On the Size of DASG for Multiple
Texts.
http://dx.doi.org/10.1007/3-540-45735-6_6.

83

http://dx.doi.org/10.1145/872757.872774
http://dx.doi.org/10.1109/ICDE.2004.1320005
http://dl.acm.org/citation.cfm?id=645927.672035
http://dx.doi.org/10.1145/564691.564706
http://dx.doi.org/10.1007/978-3-540-71703-4_90
http://dl.acm.org/citation.cfm?id=1083592.1083648
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(91)90358-9
http://www.sciencedirect.com/science/article/pii/0304397591903589
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2005.03.027
http://www.sciencedirect.com/science/article/pii/S030439750500157X
http://www.sciencedirect.com/science/article/pii/S1570866703000297
http://dx.doi.org/10.1109/SPIRE.2000.878190
http://dx.doi.org/10.1007/3-540-45735-6_6

References .
[40] Miklau, Gerome; and Dan Suciu. Containment and Equivalence for an

XPath Fragment. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. New York, NY, USA:
ACM, 2002. pp. 65–76. PODS ’02. ISBN 1-58113-507-6. Available from DOI
10.1145/543613.543623.

[41] Miklau, Gerome; and Dan Suciu. Containment and Equivalence for a Fragment
of XPath. J. ACM . New York, NY, USA: ACM, 2004, Vol. 51, No. 1, pp. 2–45.
ISSN 0004-5411. Available from DOI 10.1145/962446.962448.

[42] Buneman, Peter; Susan Davidson; Wenfei Fan; Carmem Hara; and Wang-Chiew
Tan. Reasoning about Keys for XML. In: Giorgio Ghelli; and Gösta Grahne, eds.
Database Programming Languages. Springer Berlin Heidelberg, 2002. pp. 133–148.
Lecture Notes in Computer Science. ISBN 978-3-540-44080-2.
http://dx.doi.org/10.1007/3-540-46093-4_8.

[43] NetBeans IDE [online]. [cit. 2015-04-23].
http://www.netbeans.org/.

[44] JDOM [online]. [cit. 2015-04-22].
http://www.jdom.org/.

[45] Schimdt, et al. XMark – An XML Benchmark Project [online]. [cit. 2015-04-27].
http://www.xml-benchmark.org/.

[46] Waas, Florian. xmlgen – faq [online]. [cit. 2015-04-27].
http://www.xml-benchmark.org/faq.txt.

[47] SAXONICA. SAXON – The XSLT and XQuery Processor [online]. [cit. 2015-04-
28].
http://saxon.sourceforge.net/.

84

http://dx.doi.org/10.1145/543613.543623
http://dx.doi.org/10.1145/962446.962448
http://dx.doi.org/10.1007/3-540-46093-4_8
http://www.netbeans.org/
http://www.jdom.org/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/faq.txt
http://saxon.sourceforge.net/

Appendix A
Acronyms

.DFA Deterministic finite automaton

.FA Finite automaton

.LPS Labelled Prüfer sequence

.NFA Nondeterministic finite automaton

.NPS Numberef Prüfer sequence

.TPA Tree Paths Automaton

.TSPA Tree String Paths Automaton

.TSPSA Tree String Paths Subsequences Automaton

.XML Extensible markup language

.XPath XML Path Language

.XSLT eXtensible Stylesheet Language Transformations

.W3C World Wide Web Consortium

85

A Acronyms .

86

Appendix B
User’s Manual for tpalib

The XML index software is developed using Java SE 8 and is designed as Java Class
Library called tpalib. Example programmes using tpalib can be found on enclosed
CD in src/examples directory. Possible use of tpalib is also shown in the following
code snippet:

1 import org.jdom2.Document;
2 import org.jdom2.Element;
3 import xml.index.tpa.*;
4

5 ...
6

7 TreePathsAutomaton automaton;
8 String query = "//HOUSE/LORD";
9 String path = "GoT.xml";

10 Document document = (new DocumentLoader()).load(path);
11

12 //if the automaton was built before
13 if (new File(path + ".ser").isFile()) {
14 //use it
15 automaton = (new AutomatonFactory()).deserealize(path + ".ser");
16 } else {
17 //build it and save it
18 automaton = (new AutomatonFactory()).build(document);
19 automaton.serialize(path + ".ser");
20 }
21

22 //get the list of XML elements satisfying the query
23 LinkedList<Element> result1 = automaton.evaluate(query);
24

25 //or
26

27 //get the occurrences
28 TreeSet<Integer> dsubset = automaton.getDSubset(query);
29 //maps the content of dsubset to individual XML elements
30 LinkedList<Element> result2 = automaton.evaluate(dsubset);

87

B User’s Manual for tpalib .

88

Appendix C
Syntax Structure of Complete XPath 1.0

LocationPath = RelativeLocationPath
| AbsoluteLocationPath ;

AbsoluteLocationPath = ’/’ , [RelativeLocationPath]
| AbbreviatedAbsoluteLocationPath ;

AbbreviatedAbsoluteLocationPath = ’//’ , RelativeLocationPath ;
RelativeLocationPath = Step

| RelativeLocationPath ’/’ Step
| AbbreviatedRelativeLocationPath ;

AbbreviatedRelativeLocationPath = RelativeLocationPath , ’//’ , Step;
Step = AxisSpecifier , NodeTest , { Predicate }

| AbbreviatedStep ;
AbbreviatedStep = ’.’ | ’..’ ;
AxisSpecifier = AxisName , ’::’

| AbbreviatedAxisSpecifier ;
AbbreviatedAxisSpecifier = [’@’]
AxisName = ’ancestor’

| ’ancestor-or-self’
| ’attribute’
| ’child’
| ’descendant’
| ’descendant-or-self’
| ’following’
| ’following-sibling’
| ’namespace’
| ’parent’
| ’preceding’
| ’preceding-sibling’
| ’self’ ;

NodeTest = NameTest
| NodeType , ’(’ , ’)’
| ’processing-instruction’ , ’(’ Literal ’)’ ;

NodeType = ’text’
| ’node’ ;

Predicate = ’[’ , PredicateExpr , ’]’ ;
PredicateExpr = Expr;
Expr = OrExpr ;
PrimaryExpr = VariableReference

| ’(’ , Expr ’)’
| Literal
| Number
| FunctionCall

FunctionCall = FunctionName , ’(’ , [Argument {, Argument }] , ’)’;
Argument = Expr;
UnionExpr = PathExpr

89

C Syntax Structure of Complete XPath 1.0 .
| UnionExpr ’|’ PathExpr ;

PathExpr = LocationPath
| FilterExpr
| FilterExpr , ’/’ , RelativeLocationPath
| FilterExpr , ’//’ , RelativeLocationPath ;

FilterExpr = PrimaryExpr
| FilterExpr , Predicate ;

OrExpr = AndExpr
| OrExpr ’or’ AndExpr ;

AndExpr = EqualityExpr
| AndExpr ’and’ EqualityExpr ;

EqualityExpr = RelationalExpr
| EqualityExpr ’=’ RelationalExpr
| EqualityExpr ’!=’ RelationalExpr ;

RelationalExpr = AdditiveExpr
| RelationalExpr ’<’ AdditiveExpr
| RelationalExpr ’>’ AdditiveExpr
| RelationalExpr ’<=’ AdditiveExpr
| RelationalExpr ’>=’ AdditiveExpr ;

AdditiveExpr = MultiplicativeExpr
| AdditiveExpr , ’+’ , MultiplicativeExpr
| AdditiveExpr , ’-’ , MultiplicativeExpr

MultiplicativeExpr = UnaryExpr
| MultiplicativeExpr , MultiplyOperator ,

UnaryExpr
| MultiplicativeExpr , ’div’ , UnaryExpr
| MultiplicativeExpr , ’mod’ , UnaryExpr

UnaryExpr = UnionExpr
| ’-’ UnaryExpr

ExprToken = ’(’ | ’)’ | ’[’ | ’]’ | ’.’ | ’..’ | ’@’ | ’,’ | ’::’
| NameTest
| NodeType
| Operator
| FunctionName
| AxisName
| Literal
| Number
| VariableReference

Literal =
Number = Digits , [’.’ , [Digits]]

| ’.’ , Digits
Digits = Digit , { Digit }
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;
Operator = OperatorName

| MultiplyOperator
| ’/’ | ’//’ | ’|’ | ’+’ | ’-’ | ’=’ | ’!=’ | ’<’ | ’<=’
| ’>’ | ’>=’

OperatorName =

90

Appendix D
Contents of Enclosed CD

readme.txt .the file with CD contents description
exe . the directory with compiled tpalib library
lib . dependencies
javadoc . tpalib API documentation
datasets . experimental XML documents
src .the directory of source codes

tpalib . implementation sources of tpalib

examples implementation sources of example programmes using tpalib

thesis the directory of CSplainTEX source codes of the thesis
images .the directory of images of the thesis
tikz . the directory of TikZ source codes of the thesis

text . the thesis text directory
DP Sestakova Eliska 2015.pdfthe thesis text in PDF format

91

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Motivation and Objectives
	Problem Statement
	Goals of the Thesis
	Structure of the Thesis

	Theoretical Background
	Notations
	Basic Definitions
	Alphabet
	String
	Graph, Tree
	Language, Grammar
	Finite and Pushdown Automaton

	XML
	XML Data Model

	XPath
	Syntax and Semantics
	Examples

	Arbology and XPath Relation
	Classification of XPath Queries
	Query Constructs
	Query Orientation
	Query Structure
	Query Arity

	Indexing Texts and Trees
	Text Indexing
	Data Structures for Storing the Suffixes
	Factor Automaton
	Subsequence Automaton

	Tree Indexing
	Subtree Pushdown Automaton
	Tree Pattern Pushdown Automaton
	A Full and Linear Index of a Tree

	Indexing XML Data
	MTree
	MTree Index Structure
	Query Processing

	CTree
	CTree Index Structure
	CTree Properties
	Query Processing

	PP-Index
	PP-Index Structure
	Query Processing

	PRIX
	PRIX Index Structure
	Prufer Sequence Properties
	Query Processing

	Automata Approach to Indexing XML Data
	XML Data Model
	Tree String Paths Automaton
	Discussion on Time and Space Complexities

	Tree String Path Subsequences Automaton
	Building the Tree String Path Subsequences Automaton
	Discussion on Time and Space Complexities

	Tree Paths Automaton
	Building the Tree Paths Automaton
	Discussion on Time and Space Complexities

	Implementation
	System Architecture
	JDOM
	Index Builder
	XML Data Index

	Query Processing

	Experimental Evaluation
	Experimental Setup
	XML Data Sets

	Index Size and Construction Time
	Performance on Query Processing

	Conclusions
	Summary of the Thesis
	Contributions of the Thesis
	Future Work

	References
	Acronyms
	User's Manual for tpalib
	Syntax Structure of Complete XPath 1.0
	Contents of Enclosed CD

