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Abstract

Many areas where facial analysis is used – such as criminal identifi-
cation or authorization software – are nowadays thanks to technolog-
ical advances quickly moving from 2D image representation to 3D.
However, with higher dimensionality of the data, also the challenges
for its visualization increase. How to visualize more than one facial
surface without facing occlusions or loosing track of data adherence?
How to encode the measurements and visualize them to best convey
their meaning? How to easily identify correlations between data? My
aim in this work is to deal with some of these challenges and extend
the visualization possibilities of FIDENTIS Analyst application – ap-
plication for analysis of 3D facial data. I present three different vi-
sualization techniques, each targeted on different issue, in order to
provide complex visualization toolbox which could be used not only
to visualize the results of the analysis but aid the process itself.
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"A picture shows me at a glance what it takes
dozens of pages in a book to expound."

– Ivan Turgenev



Introduction

Visualization plays important role in analyzing, exploring and pre-
senting data. But what exactly is a visualization? There are many def-
initions. One says it is the use of computer-generated, interactive, vi-
sual representations of data to amplify cognition [7]. Another says
it is a transformation of symbolic into geometric [22]. From scien-
tific point of view it is a relatively newly recognized field, although
one may argue, that visualization is as old as humanity, or at least as
old as paintings in the Chauvet Cave. Nevertheless, most definitions
agree upon one thing – the purpose of visualization is to provide
a user a better insight into data.

Even in the short time that visualization has been around as a rec-
ognized scientific field, it has evolved immensely, no doubt driven by
enormous quantities of new data that increase in volume every year.
These data need to be processed and analyzed effectively, otherwise
they may lose their value. However, visualizing large amounts of
data is often challenging, especially for multivariate data spanning
across several dimensions.

In my work I am going to explore the field of 3D facial data com-
parison and analysis. Facial analysis is used in many areas – such as
criminal identification, authorization software and plastic surgery as
well as medical and anthropological research. Until recently, many of
these areas worked only with 2D image representation. However, as
technology evolves, 3D imaging becomes more and more common.
New dimension means new data, but it also poses new challenges
for visualization of these data. How to visualize more than one facial
surface without facing occlusions or loosing track of data adherence?
How to encode the measurements and visualize them to best convey
their meaning? How to easily identify correlations between data?

My aim in this work is to overcome some of these challenges in
order to extend the visualization possibilities of FIDENTIS Analyst
application, which is a part of interdisciplinary collaborative project
FIDENTIS. The project is focused on analysis of 3D facial data and
strives to provide a compact toolbox for this purposes.

In the first chapter I am going to introduce the FIDENTIS project
in closer detail. I will describe its aim and parts dedicated to com-
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parison in order to analyze the needs of the application in terms of
visualization.

The second chapter is dedicated to research of related work in the
field of visualization and visual analysis of 3D surfaces. I will exam-
ine several techniques in order to pick or design the best solution for
my case of study.

In third chapter I am going to present the chosen techniques and
in fourth chapter I will describe their implementation.

In the final fifth chapter I will present the results of my work and
evaluate the contribution of my work based on the user study among
scientist from the field of facial analysis.
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1 Analysis of current state

The aim of my work is to extend the currently used visualization
techniques in FIDENTIS Analyst application, which is a part of FI-
DENTIS project1 dedicated to facial analysis and research. To pro-
vide background for my work I will describe the aim of the project
and the current state of the application. I will also analyze the used
visualizations in order to identify the space for improvement and
I will present the results of discussion with anthropologists on this
topic.

1.1 The FIDENTIS project

FIDENTIS is an interdisciplinary collaboration project between Lab-
oratory of Morphology and Forensic Anthropology at Faculty of Sci-
ence, Masaryk University, and Human Computer Interaction Lab-
oratory at Faculty of Informatics, Masaryk University, targeting re-
search of human face with primary focus on collection and analysis
of 3D data. The project consists of two parts – FIDENTIS Database
and FIDENTIS Analyst.

The FIDENTIS 3D Face Database, originally published in [20],
represents large dataset of 3D facial scans acquired via Vectra M1,
H1 or XT imaging systems. In order to prepare data for research,
the scans are pre-processed (removal of artifacts, reconstruction from
more scans, etc.) by scientists before inclusion in database. The database
also contains basic demographic and morphometric data. It currently
consists of approximately 2,000 specimen. During my work I have
used data from this database to test my results.

FIDENTIS Analyst is an application developed for morphologi-
cal analyses of 3D facial models. It contains several features designed
for forensic purposes, such as 3D facial composite construction, au-
tomated landmark localization and analysis of facial morphologi-
cal variation. To meet various demands of facial analysis, three dif-
ferent modes of model comparison were developed – Pair compar-

1. More information about the FIDENTIS project can be found at http://

fidentis.cz/.
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1. ANALYSIS OF CURRENT STATE

ison, Comparison with database and Batch processing. Moreover,
two comparative techniques were included in each mode – landmark
based variations of Procrustes analysis [17, 15] and surface based
variations of nearest neighbor search [9].

Each of the modes serves different purpose and the comparative
techniques used in the application work with different data struc-
tures. Proper visual representation of comparison results is therefore
crucial for accurate understanding and interpretation. In following
sections I will discuss the modes of application as well as the cur-
rently used visualizations to analyze their purpose and space for pos-
sible improvement.

1.1.1 Pair comparison

The Pair comparison mode serves for comparison of two models
marked as primary and secondary. One of the goals of this method
is to determine whether the two models depict the same person. An-
other use case is analysis of differences between the two models, e.g.
for analysis of facial changes during aging process or facial variations
in siblings. For these purposes it is important that the final visualiza-
tion shows global differences, such as size and overall shape, as well
as local differences, such as varying width of the mouth or shape of
the nose.

As for the used visualization, the superimposition principle was
applied here for both landmark-based and surface-based compari-
son. The comparison process runs in two steps – firstly the secondary
model is aligned to the primary model, then the differences are com-
puted. In case of landmark-based comparison, the models are aligned
using only landmark configurations, whereas the surface-based com-
parison applies Iterative Closest Point algorithm [4] to entire meshes
to register the models. After the registration, the models are drawn
on top of each other with optional transparency, so the user can ver-
ify the alignment. However, rendering transparent intersecting ob-
jects via fixed OpenGL pipeline results in undesired artifacts, as can
be seen in Figure 1.1 (a). On the other hand, rendering them with full
opacity hides important details.

The registration is followed by comparison itself. Here the result-
ing visualization differs based on the comparison method selected.
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1. ANALYSIS OF CURRENT STATE

For landmark-based comparison the two landmark configurations
are overlaid and the landmarks are connected to approximate facial
shape – Figure 1.1 (b). Distance enhancement between correspond-
ing landmarks was implemented to provide means to analyze even
small local differences. Surface-based comparison computes distance
from each vertex of secondary model to the nearest vertex of pri-
mary model. These distances are then mapped on secondary model
in a form of color map – Figure 1.1 (c). This illustrates the differences
between models nicely, however since the result is mapped on the
secondary model, the shape of primary model is not obvious.

Figure 1.1: Pair comparison. (a) Superimposed models after regis-
tration with visible artifacts caused by improperly handled trans-
parency. (b) Landmark configurations after Procrustes analysis.
(c) Color map showing results of surface-based comparison.

1.1.2 Comparison with database

The Comparison with database mode of application serves to iden-
tify the closest match to given model (referred to as primary model)
in specified dataset, e.g. comparing a model of suspect with database
of criminals. It is also used for analyzing the difference between the
primary model and the dataset. The same work-flow as in Pair com-
parison is followed here – first registration, then comparison, how-
ever, there is no visualization for verifying the registration of more
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1. ANALYSIS OF CURRENT STATE

than two models. The landmark-based comparison is displayed as
a mean landmark configuration computed form dataset, with vec-
tors displaying deviation of primary model from this mean – Figure
1.2 (a). The visualization of surface-based comparison is again color
map, however, this time it is mapped on average model computed
from dataset and it shows the minimal distance from the vertices of
average model to the vertices of primary model.

Figure 1.2: (a) Visualization of landmark-based Comparison with
database. (b) Visualization of landmark-based Batch processing.
(c) Color map on average model showing results of surface-based
Batch processing.

1.1.3 Batch processing

The Batch processing is a mode designed for research on large sets
of models. The example of typical use case of this mode is analysis
of facial variations of given population. The work-flow consists of
same steps as in previous modes. For landmark-based comparison
all landmark configurations are displayed with mean configuration
highlighted – Figure 1.2 (b). As for surface-based comparison, aver-
age model is computed and for each vertex of the average model dis-
tances to the nearest vertices of each model in dataset are computed.
The final per-vertex value is then calculated form these distances us-
ing one of the following techniques: Root Mean Square, Arithmetic
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1. ANALYSIS OF CURRENT STATE

Mean, Geometric Mean, Variance, Minimal Distance, Maximal Dis-
tance or 75 Percentile. The resulting values are again displayed as
color map on the average model – Figure 1.2 (c).

1.2 Shortcomings of currently used visualizations

In preparation for my work I met several times with anthropologists
to discuss the biggest drawbacks of currently used visualizations, as
well as the areas they would like to visualize and explore in greater
detail. There are several tasks they need to perform within the appli-
cation, where various visualization techniques would be beneficial:
aligning the models or verifying the results of automatic alignment,
analyzing shape of the models, analyzing local variability and shape
differences of models, comparing models – pairwise or within a set,
analyzing variability of entire dataset, etc.

When discussing how visualizations could aid these tasks and
what the currently used ones are missing, three most notable points
concerning especially surface-based comparison came up:

• Lack of shape information. The currently used color map map-
ped on one model is suitable for large datasets where average
model is used as basis, however the shapes of the models in
dataset are lost to the observer. Therefore, at least in case of
pair comparison it would be beneficial to preserve and illus-
trate the shape of both models.

• Lack of local information. When processing larger sets of data,
the color map is computed on global level – the final color at
one vertex of average mesh is always dependent on the scale
computed from all the values (scale from minimal to maximal
detected value). There is no possibility to limit the presented
information only to specific area and display it on local scale.

• Limited view of data. There is basically only one type of visu-
alization for each comparative method – color map for surface-
based methods and landmark visualizations for landmark-bas-
ed methods. There isn’t any analysis tool or additional visual-
ization for numerical data as is typical for software dedicated
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1. ANALYSIS OF CURRENT STATE

to data analysis. One must process the numerical data in an
additional software, if one wishes to analyze the relationship
between data in larger dataset more closely.
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2 Related work

Tools dedicated to facial analysis and comparison typically contain
only the visualization techniques similar to these already implemented
in FIDENTIS Analyst application – color maps and landmark-based
visualizations. Therefore, based on the analysis of drawbacks of these
techniques and the typical use cases of the application I conducted a
research in other areas of 3D data visualization, comparative visual-
ization as well as visualization and visual analysis of cohort study
data that could be applicable in these use cases. According to [16],
there are three main approaches to visual data comparison: juxtapo-
sition, superposition and explicit encoding. Juxtaposition is a method,
which positions the objects next to each other and therefore is not
suitable for comparing larger sets of data. The superposition approach
is used to place objects one on top of the other and presenting them in
the same time and space. This approach is also unusable for display-
ing larger sets of 3D objects, but is applicable in case of their subsets
or cross-sections. The explicit encoding depicts the relationships be-
tween objects by encoding them visually and is therefore most suit-
able for large datasets. In following sections I will discuss several ap-
proaches that use both superimposition and explicit encoding prin-
ciples.

2.1 Order Independent Transparency

When using superimposition principle on 3D surfaces, transparen-
cy plays an important role, since full opacity often covers important
details. Unfortunately fixed OpenGL pipeline offers very little con-
trol over transparency and requires sorting the geometry in order to
achieve correct results. With complex and intersecting objects this is
difficult or downright impossible. Therefore several approaches to
achieve so called Order Independent Transparency were introduced
– Depth Peeling, Dual Depth Peeling, Approximative techniques or
Concurrent Linked Lists.

Depth Peeling [13] is technique that works by front-to-back peel-
ing of geometry layers. It is iterative method that requires several
passes over geometry. In each pass a depth-map for the front layer is
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2. RELATED WORK

created so in next iteration anything with lower or equal depth can
be "peeled". The algorithm blends the colors acquired in each layer
with image acquired from previous layers.

Dual Depth Peeling [2] is an extension of original Depth Peeling
algorithm which allows simultaneous peeling of two layers. Since
default OpenGL depth buffer doesn’t allow testing needed for this,
custom depth buffer is necessary for this method and the default
buffer is turned off.

Approximative techniques, such as ones presented in [24, 2, 23],
try to avoid the necessity of sorting fragments by adjusting the com-
positing operator of alpha blending so that it is order independent.

All of the aforementioned techniques are limited in some way,
either requiring multiple passes of geometry or providing only ap-
proximative results. They are also difficult to extend and modify in
order to achieve context dependent results. A solution to this draw-
backs provide Concurrent or Per Pixel Linked Lists (PPLL) that are
constructed on GPU [30]. For each pixel a list of fragments is created,
each fragment pointing to its neighbors along viewing ray. After the
creation of such lists, the task of computing the result by blending in
correct order is trivial.

2.2 Opacity modulations

However, even after solving the problem of correct transparency ren-
dering, the interpretation and understanding of resulting image con-
taining transparent surfaces is often difficult task. Busking et al. [6]
try to solve these issues by introducing a layered rendering pipeline
for image-based rendering of intersecting surfaces. In their work they
describe several techniques that enhance the understandability of
transparently rendered surfaces and distances between them using
glyphs, shadow-casting or fog simulation – see Figure 2.1 for exam-
ples of their results.

Other techniques try to improve the understandability of trans-
parent surfaces purely by modifying transparency values. Here be-
long angle-based transparency [18] – setting the transparency to the
angle between surface normal and viewing direction – or normal
variation transparency [5]. Another technique introduced in [8] uses
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2. RELATED WORK

geodesic fragment neighbors for transparency modulation and con-
tour rendering. For comparison of these techniques see Figure 2.2.

Figure 2.1: Visualization of intersecting surfaces introduced in [6].
(a) Shadow-casting glyphs. (b) Fog simulation. (c) Relevance filter-
ing.

Figure 2.2: Transparency modulations according to [8]. (a) Constant
transparency. (b) Angle-based transparency. (c) Normal variation
transparency. (d) Geodesic fragment neighbors-based transparency.

2.3 Cross-sections and contours

When using superimposition or juxtaposition principles, displaying
big sets of 3D data all at once is ill-advised, because it often causes
occlusions and visual clutter, which defeats the primary purpose of
good visualization. A possible solution to this is cross-sectional view,
an approach widely used in medicinal visualization for volumetric
data, e.g. CT images, where a slice along given plane is projected
into 2D space – see Figure 2.3 for example.
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2. RELATED WORK

Figure 2.3: Example of cross-sectional visualization in YaDiV soft-
ware [14].

A similar approach to this is contouring of specific object features
followed by projection of contour into 2D space. This is often used
when monitoring temporal changes of given feature – such as cell
size or width of molecular tunnel. Contours are also inseparable part
of geospatial data visualization.

2.4 Color coding and textures

According to [3] color is one of the seven basic visual variables. It
is therefore not surprising, that it is often used for explicit encod-
ing of information, especially in case of 3D surfaces, where some of
the other variables (size, shape, etc.) may not be applicable. I have
described in previous chapter how color encoding is used in FIDEN-
TIS Analyst application. Naturally, there are many other applications
which use this principle for encoding data – e.g. YMCA [26] and
CloudCompare [11], both of which are dedicated to mesh compar-
ison.

Another example of color encoding are heat plots and dense pixel
displays. These techniques are typical for displaying multivariate
data, allowing to display large amounts of data at the same time. In
combination with interactive options such as thresholding, filtering
and data reorganization, they are very effective for discovering data
relationships.

12



2. RELATED WORK

Concerning the enhancement of perception of 3D shapes, a com-
mon practice is applying textures. Similarly to color encoding, stroke
textures are frequently used to highlight the surface features such as
curvature [10, 19] – see Figure 2.4. Instead of strokes, various glyphs
marking spots of significance can be mapped on the objects as well,
often in combination with color mapping or opacity modulations.

Figure 2.4: Example of texture indicating principal directions of cur-
vature and color map indicating the curvature values [10].

2.5 Interactive visual analysis

The visualization techniques I have described are often embedded
in large systems as features supporting the numerical or statistical
analysis and results. The growth of acquired data in the past years,
brought on by constantly evolving technology, increases the demand
for effective and efficient data processing tools. In these terms, visual
analysis – an interactive approach combining computational power,
numerical analysis and visualization – has proven to be suitable tech-
nique, especially for multivariate, high-dimensional data. The prob-
lem with such data, often obtained e.g. by medical cohort studies, is
that the data is often defined on domains that only partially overlap.
Still, many toolboxes and applications for visual analysis of scien-
tific data have been developed, each tailored to the specific needs of
given area.

Example of such toolbox directly related to my area of focus is
aforementioned YMCA – Your Mesh Comparison Application [26].
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2. RELATED WORK

The original goal of the application was comparison and analysis of
different point-cloud reconstruction algorithms – detection of prob-
lematic parts and comparison of performance. However the provided
tools are applicable in many areas where mesh comparison is neces-
sary. As is typical for visual analysis tools, it provides several differ-
ent views of data. In this case, the authors try to overcome the issues
of comparing multiple 3D meshes by combining 3D mesh represen-
tation – with color encoding and opacity modulations for displaying
mesh variance and detected variance hot-spots – and 2D view us-
ing parallel coordinates for analysis of performance of algorithms on
different datasets in terms of global error value – see Figure 2.5. The
application also contains tools for detail analysis – so called magic
lens tool, which allows user to analyze the error values in selected
areas – and data summarization tools, which serve for quick data
categorization.

Figure 2.5: Example of tools provided in YMCA [26]. (a) Color map.
(b) Detailed view. (c) Parallel coordinates for comparison of algo-
rithms.

Another example of interactive visual analysis tool presented in
[1] focuses on the problem of analysis of heterogeneous cohort-study
data. The authors present a Data-Cube-Based model for representa-
tion and aggregation of data defined across different, only partially
matching domains. This model serves as basis for interactive selec-
tion, matching and filtering of the data in their prototype application,
which again uses various techniques of data representation (scatter
plots, histograms, atlas view – modified 3D view, etc.) to provide de-
tailed view as well as relevant summarization.
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3 Selected visualization techniques

After conducting a research of related work that I have introduced
in previous chapter, I presented the researched techniques to the an-
thropologists and together we selected several methods that could
serve as a basis for my work. These methods were selected to provide
a solution to the three main drawbacks of the currently employed vi-
sualizations in FIDENTIS Analyst application – the lack of shape in-
formation, the lack of local information and the limited view of data.

3.1 Surface superimposition

The first set of the techniques which were selected addresses the is-
sue of preserving the shape information when comparing two mod-
els. The two main demands for this visualization were that it should
preserve the shape of both models and indicate the differences between mod-
els. The easiest solution to shape preservation would be to use jux-
taposition – to display the models next to each other. However, it
is difficult to judge the correlation between models just from seeing
them rendered side by side. On the other, hand placing them on top
of each other causes occlusions and increases the visual complexity.
Despite this, I have decided to use superimposition principle with
several visual enhancements based on the work of Busking et al. [6]
– see Figure 3.1 for example of proposed visualizations.

3.1.1 Transparency

The problem of occlusions can be solved by using transparency. Un-
fortunately, simply decreasing the opacity of superimposed models
tends to make the final image incomprehensible, especially when
the models are intersecting and their surfaces are very close to each
other. One of the popular techniques for improving the understand-
ability of transparent surfaces is modulation of transparency values
based on the placement of the surface in respect to other surfaces.
A variation of this technique suitable for cases like Pair compari-
son – when we are dealing with two nested models – is splitting
the surfaces into inner parts – parts of one model enclosed within

15



3. SELECTED VISUALIZATION TECHNIQUES

Figure 3.1: Overview of visualization techniques. (a) Models ren-
dered with 50% opacity. (b) Opaque inner surface, transparent outer
surface with shadow casting glyphs and intersection contours. (c)
Simulation of fog between surfaces. (d) Combination of (b) and (c).

the other model – and outer parts and making the inner parts com-
pletely opaque.

Since I am working with facial models which are usually not
closed, it is impossible to define something as lying inside or outside
of such model. The terms inner and outer may thus be a bit confusing.
To clarify the terminology, I will call the surface that is closest to the
camera the outer surface and the surface further from camera the in-
ner surface. This classification of surfaces takes place in image space,
which allows easy handling of special cases such as the one high-
lighted in Figure 3.2 – the solution for such cases will be discussed in
chapter 4.

The technique of turning the inner surfaces opaque reduces the
complexity of final image, as this way the observer, for the most
part, sees only two layers of surfaces nearest to the camera – only
one of which is transparent. Therefore the user should have no prob-
lem with determining the adherence of surfaces to the models. Well-
chosen contrasting colors of the models and interactive adjustment
of opacity values should also help with image interpretation.

3.1.2 Fog simulation

The modulation of transparency helps the user with classification of
order of the surfaces. Unfortunately, it is not very helpful for judg-
ing the distance between these surfaces. As a visual clue for this task
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3. SELECTED VISUALIZATION TECHNIQUES

camera

(a) (b)

Figure 3.2: Surface transparency and fog simulation scheme. The dot-
ted parts of models (a) and (b) are considered outer and are rendered
transparently, while the inner parts (solid line) are rendered opaque.
The intensity of fog (pink color) depends on the distance between
surfaces along the viewing direction. The area highlighted in red
shows special case when the second surface along viewing ray be-
longs to the same model as the first one, and thus is classified as the
outer as well.

I chose two techniques. First of them is fog simulation. The aim of
this technique is to simulate a partially transparent volume – fog –
of color different to the colors of the models and filling the space
between the two surfaces. In reality, the presence of such a volume
would clue the observer in on the distance thanks to the accumu-
lation of opacity. Supposing the outer surface is nearly completely
transparent, in places where surfaces are close to each other the in-
ner surface would be still visible quite well. However, with growing
distance between surfaces the opacity of the fog would accumulate,
so in places with large enough surface distances, the inner surface
would be completely occluded by the fog – see Figure 3.2. It should
be noted here, that the term distance in this case denotes the distance
along viewing ray – the result is therefore view dependent.

The downside of the real case scenario is that the outer layer
needs to be nearly completely transparent, otherwise the mixture of
three colors (two models and fog) would be confusing, or, if the outer
surface was close to opaque, the fog would be hardly visible, which
would defeat the entire purpose of this technique. To deal with this
issue, I have devised three different fog simulation methods based
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3. SELECTED VISUALIZATION TECHNIQUES

Figure 3.3: Fog simulation techniques. (a) Models rendered with full
opacity. (b) Color overlay – notice the illusion that the blue surface
lies behind the red one. (c) Transparency mapping on outer surface.
(d) Color mapping on inner surface.

on the real case scenario (and thus also view dependent). Figure 3.3
shows the comparison of these methods.

• Color overlay. The first method modifies the color of outer
surface based on the distance between surfaces – the distance
serves as ratio between original color of the surface and the
color of the fog. This yields similar result as if the final image
was overlaid with new layer in color of fog with opacity based
on the surface distances. It solves the issue of the transparency
necessity for outer surface, on the other hand it creates mis-
leading illusions about surface adherence to models.

• Transparency mapping on outer surface. With this method
the entire outer surface is colored to the color of the fog. The
distance is then mapped on the opacity values of outer surface
– the bigger the distance, the higher the opacity. This method
yields nice visual results, but the downside of the method is
that the interpretability of surface adherence to models is re-
duced by coloring the entire outer layer to one color.

• Color mapping on inner surface. The last method modifies
the color of the surface much the same as the first method –
mixing the color of model and the fog based on distance – only
this time the color is mapped on the inner layers. It simulates
the real case scenario, which may be the most natural for users,
but it also has the same problem as the real case scenario – the
outer layer needs to be transparent.
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3.1.3 Shadow-casting curvature glyphs

It has been found in several studies [12, 21] that shadows aid the hu-
man perception of depth and shape. Therefore, as the second method
dedicated to improving the interpretability of distances between sur-
faces I have chosen shadow-casting glyphs, a method base on works
[19, 28]. These glyphs are mapped on the outer parts of the surfaces
and cast shadows on the inner surfaces. The light source position is
fixed in respect to models, so when the users rotate the scene, they
can explore the shadows from various angles. The placement of the
glyphs on individual models is chosen is such way that they would
not intersect, but would be evenly distributed across the surface.

The color and shape of glyphs were chosen to provide additional
information. The color of the glyphs matches the color of the surface
so they are only visible when the outer surface is not fully opaque
– this is done intentionally to help with classification of surface ad-
herence to models. As for the shape, directional strokes are often em-
ployed, with length, orientation and density used to convey proper-
ties of surface such as curvature. However, these are more suitable
for single surface shape analysis. The primary aim of my work is to
illustrate the distances between surfaces, therefore I have opted for
the shape presented in [28], a plus sign of constant size elongated in
one direction. The elongated part of the glyph indicates the direc-
tion of maximal principal curvature at the center of the glyph. The
perpendicular direction indicated by the shorter part of the glyph is
then direction of minimal principal curvature.

3.1.4 Intersection contours

The last enhancement technique I have chosen is contouring of in-
tersections. The motivation for this is that, with transparency and
glyphs added to the surface, sometimes the intersection are not very
prominent in the image, or are not visible at all – see Figure 3.4 for
example. On the other hand bump edges and occlusions may be mis-
interpreted as intersections in places where there are none. Explicitly
marking the contours of surface intersections is therefore highly ben-
eficial, especially for comparative studies of models.
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Figure 3.4: Example of case when the small intersection is hidden due
to glyph placement. (a) Case without intersection contours. (b) Case
with intersection contours.

3.2 Cross sections

I have described a set of methods for visualization of two intersecting
facial surfaces. However comparing two models covers but a small
part of the tasks anthropologists perform with the FIDENTIS Analyst
application. One to many and Batch comparison modes are designed
for processing large datasets where displaying all models at once is
impossible. Nevertheless, the information about the shape variation,
especially local shape variation displayed on local scale, is desirable.
But how to deal with the complexity of the data?

Projection, or rather reduction of the 3D data into 2D space is
a popular approach, as 2D images can be in some cases easier to in-
terpret than 3D. The cross section method I proposed for this intent
is inspired by the technique typically used for visualization of volu-
metric data. A slicing plane is taken and intersection of 3D data with
this plane is computed and then displayed in 2D. In my case I as-
sumed that all the models in dataset are aligned and that one facial
model will be selected as primary – this may be the primary face in
One to many comparison mode or average face in Batch processing.
This model serves as a base for visualization and computation. It is
displayed in 3D space along with slicing plane – see Figure 3.5 (a).
The users can move and rotate the slicing plane in the space of pri-
mary model to get the desired intersection. The intersections of the
plane with every model in dataset are then computed, the intersec-
tion with primary model (primary intersection) is sampled and the
variability at each sample point is determined.
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Figure 3.5: Cross sections. (a) Reference picture of average face with
the plane specifying cross-sectional slice. (b) Red – intersection of
plane with the average face. Black – intersections with all faces in
dataset. (c) Distance span in the direction of normal to the primary
intersection curve at sampling points. (d) Vectors indicating aver-
age distance in the normal direction from average face to all faces
in dataset. (e) Same as (d) with enhanced vector sizes.

There are three main options of what user can display, each op-
tion representing the variability of shapes in a different way.

• Intersections with all faces. Figure 3.5 (b). When the inter-
sections with all faces from dataset are displayed, it is pos-
sible to observe how well the models are aligned, especially
with interactive manipulation of slicing plane, when user can
move across the model and see the local changes. Unfortu-
nately, with increasing number of models the interpretability
of final image with all the intersections displayed decreases.

• Distance span. Figure 3.5 (c). Distance span indicates the in-
terval of distances from given sampling point to the intersec-
tion curves of each model from dataset. The distance is com-
puted in the direction of normal to the primary intersection. It
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is displayed as line segment with endpoints indicating maxi-
mal distances in positive and negative direction of normal at
given point.

• Average distance. Figure 3.5 (d,e). Average distance form given
sampling point to the intersection curves of each model from
dataset, again in the normal direction. This indicates the vari-
ability in dataset at given slice. The shorter the vectors are the
lower is the variability. Naturally, the user can scale the vectors
to better analyze the differences.

3.3 Plots

The last visualization method I have decided to use is dedicated to
displaying numerical results computed during the comparison of
larger datasets – One to many or Batch comparison. A typical ways
of displaying large sets of numerical data are tables and various plots
and charts. Somewhere in between them lies a technique called heat
plot or heat map. The principle of this method lies in displaying the
data in a table-like manner, but instead of numerical values, the data
are encoded as colors of the table cells. By filtering and reordering of
the data correlations may be discovered more easily as with study-
ing the numerical values themselves, as it is usually more intuitive
for users to compare colors than numbers.

I have created two versions of heat maps, one for numerical re-
sults of Batch processing and one for auxiliary results of either Batch
or One to many comparison.

3.3.1 Numerical results

The numerical results in Batch processing consist of table of n × n
values representing the measurement between each pair of models
in the dataset consisting of n faces. These measurements can repre-
sent maximal or minimal distance between the two faces, variance,
geometric mean, etc.

To display the values I have created a heat plot of n× n cells, each
cell representing one measurement – Figure 3.6. The exact numerical
value can by displayed by hovering over the cell. The users can filter
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the lowest or/and highest values on interactive scale. There is also
an option of reordering the values in the plot according to rows and
columns. These options help with easy identification of extrema in
the data and observation of relationships of data in dataset.

As an additional feature a histogram of values may be displayed.
The color scale corresponding to one used in heat plot is used for
drawing the histogram to help with matching the intervals of the
scale with data in the plot. The histogram illustrates the distribution
and variability of the values in the set.

Figure 3.6: Heat plot for visualization of numerical results and the
accompanying histogram.
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3.3.2 Auxiliary results

Auxiliary results are detailed results computed for each model in the
processed dataset. For each vertex of given model they contain the
distances to the closest points on each model in dataset. So the aux-
iliary results for model M from the dataset consisting of n models
would contain number of vertices of M×n values.

Since the models typically contain thousands of vertices it is rather
impractical to display separate cell for each value. Therefore I ad-
justed the heat plot to display each value as a vertical line segment
of 1px width – Figure 3.7. One row of the heat plot then depicts
distances from vertices of model of which the auxiliary results are
displayed (primary model) to the nearest vertices of one model in
dataset. A vertical slice at position x then represents the distances
form xth vertex of the primary model to the nearest vertex of each
model from dataset. In simpler terms, one row corresponds to one
model, and one column correspond to one vertex of primary model.

Figure 3.7: Heat plot for visualization of auxiliary results of average
face computed from dataset of 25 models. Each row depicts distances
of vertices of average face from one model. The pink highlight shows
zooming window and the detailed view of individual values.
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When scaling the cell width to 1px is not enough to fit the plot
into dedicated space, the neighboring entries in vertex dimension
are averaged and displayed as one value. Since this is the typical
case, the zooming window that can be moved along the selected row
has been added. The individual values of the area covered by the
window are than displayed under the heat plot. Again, the values
can be filtered by interactive scale and the histogram of values can
be displayed here as well, either for entire set of results or just for the
selected row.

The intent of this visualization is to provide means for analysis
of variation in the dataset and for comparison of models in dataset
in closer detail. As entries in each row at given horizontal position
correspond to same vertex or vertices of primary face, it is possible
to observe how models in the dataset differ from primary model at
given point.
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4 Implementation

In previous chapter I have presented several methods I have chosen
for visualization of facial data to meet the needs of scientists. In this
chapter I am going to describe the process of implementation and
techniques used for it.

4.1 Surface superimposition

For improvement of shape understandability, when comparing two
models, I introduced method based on superimposition principle
and transparency. Unfortunately, achieving proper, so called Order
Independent Transparency for intersecting geometry is problematic,
because all fragments corresponding to one pixel need to be sorted
and blended in correct order. As I stated in section 2.1 of chapter 2,
there are several common methods for solving this well know prob-
lem.

The Depth Peeling and approximative techniques are limited to
the extensions and modification. However, for the designed visual-
ization techniques I needed access to information such as neighbor-
ing fragments or depth distance between fragments, which is not at-
tainable by these techniques. Therefore as a basis for the implementa-
tion I chose Per Pixel Linked Lists constructed on GPU [30]. I imple-
mented an algorithm for Order Independent Transparency presented
in [27] and modified it, creating a rendering pipeline presented in
Figure 4.1.

Figure 4.1: Rendering pipeline.

26



4. IMPLEMENTATION

The pipeline consists of four basic steps, two of which are op-
tional:

• Depth map creation (optional). Creation of depth map neces-
sary for shadow-casting glyphs, glyph placement.

• Shading. Shading of fragments, creation of linked lists, glyph
placement.

• Rendering. Ordering of the linked lists, color and opacity mod-
ulations for visualization, computation of final color per pixel.

• Contouring (optional). Detection and rendering of the inter-
section contours.

The following sections describe the whole process of rendering
in greater detail. All of the described methods were implemented in
Java using JOGL – the OpenGL wrapper library for Java – and GLSL
– the OpenGL Shading Language.

4.1.1 Data preprocessing

Before the models can be passed to rendering pipeline they need to
be preprocessed. For the visualization of shadow-casting curvature
glyphs the glyph placement and orientation need to be computed.

There are two typical approaches to placement of glyphs on sur-
faces – either points of some significance can be selected (e.g. points
with highest curvature value) or the glyphs can be evenly distributed
over surface. Since the visualization technique should primarily ex-
press the differences between models on entire model surfaces, even
distribution of glyphs is more suitable solution. The even distribu-
tion is approximated by algorithm which constructs a valued graph
over the model mesh with each vertex storing its neighbors and dis-
tances to them. The algorithm iteratively selects a vertex as glyph
center and marks the vertices in neighborhood that don’t satisfy given
distance condition along the graph edges (are closer to the glyph
than glyph radius) as used, so they cannot be selected in following
iterations.
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At the selected vertices the principal curvature directions need
to be determined in order to rotate the glyphs to indicate these di-
rections. For this I used the normal averaging method described in
[19].

Firstly, for each glyph center vertex an orthogonal coordinate sys-
tem (~u,~v,~n) must be selected. Here, vector ~n is the normal of the
given vertex. The other two vectors can be arbitrary as long as the
orthogonality is preserved. All the vectors must be of unit length.
From this system the second fundamental tensor II can be defined:

A =

(

∂~n
∂~u · ~u ∂~n

∂~v · ~u
∂~n
∂~u ·~v ∂~n

∂~v ·~v

)

. (4.1)

The components ∂~n
∂~a ·

~b indicate the rate at which the surface nor-
mal tips in the direction of ~a when we move in the direction of ~b.
This tensor is defined and averaged for the close neighborhood of
the vertex at which the curvature is to be computed. The directions of
principal curvature can be then found by rotation of the orthogonal
system so that the terms ∂~n

∂~v · ~u and ∂~n
∂~u ·~v in the tensor A "disappear"

– see Figure 4.2. This is done by diagonalizing A to obtain:

D =

(

κ1 0
0 κ2

)

and P =

(

wuu wvu

wuv wvv

)

, (4.2)

where |κ1| > |κ2| and A = PDP−1. The columns of P are the eigen-
vectors of A, while κ1, κ2 are the eigenvalues.

u u
v

v

n

Figure 4.2: Curvature. Orthogonal system before rotation (black) and
after rotation (green) indicating principal curvature directions.
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The principal curvature directions are given as:

~u′ = wuu~u + wuv~v,
~v′ = wvu~u + wvv~v.

(4.3)

The vector ~u′ indicates the direction of maximal principal cur-
vature, while vector ~v′ indicates the direction of minimal principal
curvature. The values of the curvature are defined by κ1 and κ2 re-
spectively.

4.1.2 Depth map creation

As soon as the computation of glyph centers and orientation is com-
pleted, the models can be passed to rendering pipeline. If the option
of shadow-casting glyphs is enabled, the shadow placement must
be computed. For this I chose basic shadow mapping approach pre-
sented in [29], based on testing the visibility of fragment from the
light position.

The geometry is rendered from the position of light in order to
get depth of fragments nearest to the light. These depth values are
stored in depth map – a texture which is passed along the rendering
pipeline to the point where the geometry is render from normal cam-
era position. Then the depth value in the light space is computed for
each fragment and it is compared with corresponding value in depth
map. If the value in depth map is lower, the fragment lies in shadow.
See Figure 4.3 for example.

camera

light
source

depth map

value in 
depth map

depth of 
the fragment f

fragment f

image 
plane

(a) (b)

Figure 4.3: Shadow mapping. At the location of fragment f, the sur-
face (b) is shadowed by the surface (a).
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In order to create the shadows of the glyphs, it must be tested
at the time of rendering from light position whether the rendered
fragment is part of the glyph or not.

My first idea for determining this was to generate texture coordi-
nates for the vertices around glyph center, based on the vertex nor-
mal, curvature directions and distance from the vertex and map the
glyph texture on the model. However, the algorithm based on this
idea proved to be inefficient – the texture coordinates computation
taking up to several minutes. Therefore, I used the idea presented in
[19] – constructing a 3D representation of glyph around glyph center
and testing whether fragment lies inside it – see Figure 4.4 (a).

(a) (b)

Figure 4.4: (a) 3D representation of glyph placed on the surface.
(b) Cuboid defining planes.

The 3D representation of glyph consists of two crossing cuboids.
Each cuboid can be defined by 6 planes (see Figure 4.4 (b)) and each
of these planes is defined by its distance from glyph center and ei-
ther by normal of the glyph center, or principal curvature direction
vector. Therefore for each rendered triangle the closest glyph centers
for its vertices along with corresponding normals and curvature vec-
tors are passed to the fragment shader. These vectors and values are
computed in object space. In order to operate in the same space, un-
transformed positions of vertices in object space need to be passed
from vertex to fragment shader to obtain the fragment position in
object space.

Once the cuboid planes and the fragment position are defined in
the same space, the test whether fragment lies inside the 3D glyph
is a simple matter of testing the distances from fragment position to
the planes.
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If the rendered fragment lies inside the glyph, it is processed and
its depth value may be written to the depth map, otherwise the frag-
ment is discarded.

4.1.3 Shading

Once the depth map is created, the geometry is rendered from the
camera position. In this phase shading of fragments and creation of
Per Pixel Linked List takes place.

The fragments are shaded using Phong shading model [25]. It is
a shading model based on the interpolation of vertex attributes in
fragment shader, thus achieving visually smooth results. It is there-
fore commonly used model for per pixel lighting. Figure 4.5 shows
the lighting scheme.

For each fragment the color computation consists of three parts
– ambient, diffuse and specular – which are summed to get the fi-
nal color. The ambient component (equation 4.4) serves as rough ap-
proximation of indirect light reflections. It therefore doesn’t depend
on the positions, only on colors of the material and light. The diffuse
component (equation 4.5) is computed according to Lambert’s law,
which says the amount of reflected light is proportional to the cosine
of the angle (a dot product) between normal vector of the surface and
light direction vector. The specular component (equation 4.6) speci-
fies the direct reflections of light. The value depends on the cosine
of the angle between reflection direction and eye (camera) direction
from the surface.

N camera
L R

E
α α β

Figure 4.5: Lighting scheme.
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Coloramb = Lightamb · Materialamb (4.4)

Colordi f f = Lightdi f f · Materialdi f f · cos(α) (4.5)

Colorspec =Lightspec · Materialspec · cos(β)s

s = shininesses
(4.6)

When the fragment is shaded, it is added to a fragment list. To
be able to use the list for Order Independent Transparency, several
things need to be set up.

Firstly, there needs to be a way to access the first fragment list en-
try for each pixel. For this purpose a texture with the size of maximal
expected image size is created. This texture is called Head Pointer
texture and at each position in stores index of the last processed frag-
ment corresponding to the given pixel position.

The shading of fragments and list building is computed on GPU,
therefore several fragments will be processed in parallel. To precede
concurrent modifications of the list, an Atomic Counter needs to be
created. This counter keeps track of number of entries in the list, as it
is increased every time new entry is to be added.

Finally, the list itself is implemented as RGB32UI image buffer.
This means that each fragment entry needs to be of uvec4 format – a
four component vector of uint – unsigned integer.

A first component of each fragment entry will be the pointer to
the index of next fragment at given pixel. As index of uint format,
this is a straightforward operation.

The second component should store the color of the fragment.
However, the color is of vec4 format – four component float vector.
Fortunately, the function packUnorm4x8 defined in GLSL allows to
pack four floating point values into 8-bit integers resulting in 32-bit
unsigned integer. In this format the color can be added as the second
component of the fragment entry.

Third component consists of fragment depth. The depth is the
float value, so it needs to be transformed to uint using floatBitsToUint
function.

The fourth component is unused in original Order Independent
Transparency implementation. However, for the implementation of
the visualization techniques such as fogging, I needed additional in-
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head pointer texture

linked list

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 2

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1

5 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

0 1 2 3 4 5 6 7 8 9 10 11

R GB A
DEPTH

NEXT

MX S -

fragment

Figure 4.6: Scheme of the linked list and structure of the fragment.
Next – the pointer to the next fragment at given pixel, RGBA – color
of the fragment, Depth – depth of the fragment, M – index of model
to which the fragment belongs, X – fragment is/isn’t part of the
glyph, S – fragment is shadowed, – unused

formation about fragment. I therefore used this space to store in-
dex of model to which the fragment belongs (passed to fragment
shader as uniform), information about whether the fragment is part
of the glyph (computed as described in previous section) and infor-
mation about whether fragment lies in shadow. These three compo-
nents with one additional unused zero component are represented
as float values and packed using the packUnorm4x8 function again.

The complete scheme of linked list can be found in Figure 4.6.
Once everything is set up, the process of storing a fragment in the

list looks as follows:

1. Atomic Counter storing the number of fragments in the list is
incremented. The new value is stored in index variable. This is
an atomic operation.

2. The value in Head Pointer texture corresponding to current
pixel position is exchanged, the new value being index. The
old value is stored as old_index. This is an atomic operation as
well.
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3. The fragment is shaded and prepared for storing in the list as
uvec4 – the first component will be old_index, second packed
color, third depth of the fragment and fourth the additional
information for rendering.

4. The fragment information is added to the list at the position of
index.

4.1.4 Rendering

When the list of fragments is complete, it is passed to the next step in
rendering pipeline, where the final color for each pixel is computed.

Prior to the color computation, the values in the Depth buffer af-
ter rendering models are analyzed in order to get their span – this
aids the later computations. Then the Color and Depth buffer are
cleared and a rectangle covering the viewport is rendered, so that
the new color can be computed for each pixel of viewport.

In fragment shader corresponding to this part of rendering pipe-
line, the list of fragments adherent to the pixel processed at given
time needs to be extracted from the list of all fragments – a rever-
sal process to the list building. The index in Head Pointer texture at
given pixel is looked up and an entry from the fragment list at this
index is copied to the temporary list created in the shader. The first
component of the copied entry points to the next fragment entry in
the list corresponding to same pixel, so the next entry is retrieved and
copied to the temporary list as well. The process is repeated as long
as the first component of the newly retrieved entry points to valid
index.

Once the per pixel list is retrieved, it is sorted according to depth
value of each fragment (the third component of each fragment entry),
so the nearest fragment is the first in the list. After this, the compu-
tation of color, based on the selected visualization options (passed to
shader as uniform variables), may take place.

If the option of making the inner surface opaque (see section 3.1.1
of chapter 3) is turned on, the alpha values of fragments need to be
adjusted based on the inner-outer classification. The alpha value of
first fragment is not modified – it is user adjustable – and the frag-
ment is automatically considered outer. For the second fragment the
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test must be performed to decide whether it belongs to the same
model as the first one, or is part of another model. If it is part of
another model, the second fragment is turned opaque (alpha value
set to 1), labeled inner and the fragments behind it may be discarded,
since they will not be visible. If the second fragment belongs to the
same model as the first one, it is usually the case of protuberant sur-
face such as nose. In this case it is desirable to keep the alpha values
unchanged, consider the fragment outer and proceed to process third
fragment as if it was the first one. The process is repeated until one
fragment is declared opaque, or the list of fragments ends. It should
be noted that it will always be the the even (second, fourth, etc.) frag-
ment that will be declared opaque – see Figure 4.7.

camera

(a) (b)

Figure 4.7: Example of case when the viewing ray intersect the sur-
face belonging to same model several times. (a) Schematic view. (b)
Rendered result.

When the surfaces are classified as inner or outer, the solution
for shadow-casting glyphs option is trivial. With each fragment the
information about whether it is part of the glyph and whether it is
shadowed is stored. So for fragments that were declared outer in pre-
vious step it is tested whether they are part of the glyph and if true,
they are turned opaque. For the fragments that were declared inner
it is tested whether they are shadowed, and if true, their brightness
and saturation is decreased.

As for the fog, it is always function of depth difference between
two fragments – outer and inner, or, in special cases such as in Figure
4.7, first and second, third and fourth fragment, etc. The zratio which
is used as depth parameter in computations is defined as following:

zratio = k ·
|za − zb|

|zmax − zmin|
, (4.7)
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where zmax and zmin are the maximum and minimum depth values
detected when rendering geometry, za and zb are the depth values of
two fragments between which the fog is to be simulated and k is a
parameter for fog density.

There are three different fog implementations (see section 3.1.2 of
chapter 3 for description):

• Color overlay. The first method highlights the distances by
modifying the color of outer fragment – the fragment nearer
to the camera. It interpolates between fog color and surface
color, using zratio as interpolation parameter:

Colornew = Color f ragment · (1 − zratio) + Color f og · zratio (4.8)

• Transparency mapping on outer surface. With this method
each outer fragment is colored to the color of the fog by chang-
ing the hue component of the HSV fragment color represen-
tation to hue of the fog. The saturation and value are thus
preserved. The distance is then mapped on the alpha values
(opacity) of outer fragment:

Alphanew = 0, 2 · Alpha f ragment + zratio, (4.9)

• Color mapping on inner surface. The last method modifies the
color of inner fragments in the same way as the first method
modifies the color of outer fragments – see equation 4.8.

After the aforementioned modifications to fragments are done,
the final per pixel color may be computed. The variable Color f inal is
first initialized to the color of the background. Then the sorted per
pixel list of fragments is traversed, starting with the fragment fur-
thest from camera and with each fragment the final color is modified
in following way:

Color f inal =Color f inal · (1 − Alpha f ragment)+

+ Color f ragment · Alpha f ragment.
(4.10)

At the end of the computation the pointers in original list of frag-
ments are modified to represent the sorted version of per pixel lists.
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4.1.5 Contouring

After the Rendering phase, the final image is nearly complete. The
only remaining part is highlighting the model intersections. If this
option is selected, one additional layer – again a rectangle covering
viewport – is rendered over the image result from previous steps. In
this layer only the pixels detected at the intersection points will be
modified, the rest of them will be discarded and thus not interfering
with the already rendered image.

To compute the intersection, the sorted list of fragments acquired
in previous step is passed to the fragment shader. There, for the pixel
corresponding to processed fragment the neighborhood of 3 × 3 pix-
els is searched. For each pixel within the neighborhood the first two
fragments closest to the camera are looked up in the sorted list of
fragments. Two conditions must be satisfied in order for the frag-
ment to be declared as intersection point:

1. At least one of the first fragments in the neighborhood must
belong to different model then the first fragment at the current
pixel position.

2. The depth difference between first two fragments at given pix-
els must be lower than experimentally chosen threshold, to
prevent false detections of intersections.

If the fragment is identified as intersection point, it will be ren-
dered, otherwise it will be discarded.

4.2 Cross sections

The technique I have designed for visualization of local shape vari-
ability shows the variability in a set of models at the place of their
intersection with 3D plane. It was again implemented using JOGL
library.

The base of this technique lies in computing the intersection of
facial model with 3D plane. Since the meshes used in FIDENTIS An-
alyst application are triangulated, this problem reduces to comput-
ing an intersection of triangle with plane and this in turn reduces
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Figure 4.8: Line-plane intersection scheme.

to intersection of line segment (triangle edge) with the plane. For a
plane given by point P and normal ~n and the line segment given by
two points A and B – see Figure 4.8, it can be solved using following
equations:

~u = B − A ~v = A − P (4.11)

D = cos(α) = ~n · ~u N = −cos(β) = −~n ·~v (4.12)

If cos(α) is equal to zero, the segment is parallel to the plane. In that
case if cos(β) is equal to zero as well, the segment lies in the plane,
otherwise there is no intersection. If segment is not parallel to the
plane, the intersection point of line (given by the segment) with the
plane must be computed and tested whether it lies within segment.
The line corresponding to the segment AB may be represented as:

l = A + t · ~u, (4.13)

and the t parameter for line-plane intersection point is given as:

t =
N

D
. (4.14)

If t ∈< 0, 1 >, then the segment intersects with the plane.
The described test is done for each edge of each triangle. The

detected plane-triangle intersections – points and line segments are
stored in a list. When each triangle is processed, the intersecting line
segments are connected at the points with same or very close coordi-
nates to create polyline paths – see Figure 4.9 (a). Depending on the
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model and plane orientation, there may be one or more intersection
paths per model.

These paths are then rotated to XY plane to be displayed in 2D
view. As all the paths lie in same plane, the rotation corresponds to
rotation of the plane normal to z-axis. The angle between the nor-
mal and z-axis can be computed from their dot product, while the
rotation axis is given by their cross product:

cos(θ) = ~n ·~z ~u = ~n ×~z (4.15)

The rotation of each point to the XY plane is then done by following
matrix for rotation around arbitrary axis u:

R=









cosθ+u2
x(1−cosθ) uxuy(1−cosθ)−uzsinθ uxuz(1−cosθ)+uysinθ

uyux(1−cosθ)+uzsinθ cosθ+u2
y(1−cosθ) uyuz(1−cosθ)−uxsin

uzux(1−cosθ)−uysin uzuy(1−cosθ)+uxsin cosθ+u2
z(1−cosθ)









(4.16)

Once in 2D, the intersection paths belonging to the model marked
as primary (further referred to as primary paths) are sampled at equal
distances and at each sample point a normal to the path is computed
– a trivial task, since the path consist of line segments. For each sam-
pling point a ray given by the point and the normal to the primary
path at that point is defined – Figure 4.9 (b). Then the intersections
between these rays and paths of models from dataset are computed
– if there is more than one intersection for the model, the closest one
is taken – Figure 4.9 (c).

Finally, between each sampling point and intersections adherent
to it (intersections of the line passing through the sampling point) a
vector is computed. The vectors adherent to one sampling point are
summed, the final vector providing information about variability at
given sampling point – Figure 4.9 (d).

4.3 Plots

The last visualization technique I chose, consists of 2D plots for nu-
merical data. The implementation of this technique was done using
Java 2D API.

For displaying the numerical results of Batch processing, the table-
like plot is drawn. Numerical value is mapped on each cell of the ta-
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n
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(a) (b) (c) (d)

Figure 4.9: (a) Example of detected intersection path on triangular
mesh. (b) Example of sampled intersection path. The point I on sec-
ondary model illustrates its intersection with the ray given by sam-
pling point and normal to the primary path at that point. (c) Inter-
sections with entire dataset. (d) Vectors indicating variability (scaled
for illustration).

ble in a form of color. For computing of colors I operate in HSV color
space, mapping the values onto hue component.

To compute the color which should represent given value, firstly
the minimal and maximal values in the numerical results must be
found. These values are then mapped onto boundary color values,
which are by default red (hue = 0) for minimum and blue (hue = 240)
for maximum. The hue color component is then computed according
to following equation:

h = hmin +
(v − vmin)

(vmax − vmin)
· (hmax − hmin), (4.17)

where h denotes hue and v denotes numerical values.
The same color picking principle is also applied when display-

ing auxiliary results. The only additional calculations that needs to
be done concern clustering the neighboring values to fit the whole
dataset into plot area – as there may be thousands of entries per
model – and reversal process for zooming and displaying the origi-
nal values.
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Both plots are drawn using Java 2D functions for drawing lines
and rectangles and all interactivity must be achieved by tracking the
mouse motion and computing its position in relation to interactive
objects.
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5 Results and evaluation

I chose and implemented three different approaches of visualization
for 3D facial data. For scenarios where two models are processed and
compared, I chose superposition principle with several adjustments
and cues to improve the shape and distance perceptibility – intersec-
tion contours highlight, surface opacity modulation, shadow-casting
glyphs indicating surface curvature, and simulation of fog based on
the distance between surfaces.

Second method I designed is based on cross-sectional slices. Its
purpose is to visualize local variability and shape. This technique
transfers the local data from 3D to 2D view, which reduces visual
complexity and allows the observer to focus on important details.

The third and final tool I created employs heat maps for visual-
ization of numerical data exported from the FIDENTIS Analyst ap-
plication. The purpose of this tool is to reduce the need for further
data post-processing in other applications and provide yet another
outlook on data.

Examples of this techniques may be found in attachment A as
a part of evaluation questionnaire.

I created a standalone application in which all the described vi-
sualization techniques are implemented, compatible with data used
in FIDENTIS Analyst application and ready to be integrated there as
well.

To evaluate my visualization techniques I conducted a user study
among anthropologists working on FIDENTIS project. The techniques
were evaluated by four scientists working in a field of facial mor-
phometry and analysis. The users were first introduced to the visu-
alization principles and the test application, in which they could try
the visualizations. They were then asked to fill out a questionnaire in
which they evaluated the selected techniques. The questionnaire can
be found in full extent in attachment A.

5.1 Surface superimposition

The questionnaire consisted of four parts, the first one concerning
evaluation of visualizations for pair comparison based on surface su-
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perimposition method. In this part eight selected combinations of
techniques were presented to scientists (see Figure 5.1), including
the visualization technique currently employed in FIDENTIS Ana-
lyst application.

Figure 5.1: Visualizations presented for evaluation.

For each of these techniques the users were asked to rank the fol-
lowing questions:

1. How well does this visualization convey shapes of individual
models?

2. How well does this visualization convey differences between
models?

The scale from very well through well, neutral, poorly to very poorly was
provided for evaluation. The averaged results of their evaluation can
be seen in Figure 5.2. The detailed answers are included in attach-
ment B.

It can be seen from these results, that while the visualization cur-
rently employed in the application – visualization (a) – ranks high
on the second question (imparting differences), it ranks low on con-
veying shapes in comparison with other methods. In fact, out of the
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Figure 5.2: Averaged evaluation of surface superimposition visual-
ization techniques.

presented methods, this one ranked highest for the second question,
but lowest for the first one.

Concerning the newly proposed methods, evaluated as the best
suited for conveying the shapes of models were: visualization with
shadow-casting glyphs (b), color overlay (c), color mapping on in-
ner surface (e) and combination of shadow-casting glyphs and color
mapping on inner surface (h). It is notable that for conveying the
shapes all new methods were ranked higher than the one currently
used.

For conveying the differences between models, the best ranked of
the new methods was visualization with shadow-casting glyphs (b),
closely followed by transparency mapping on outer surface (d) and
combination of shadow-casting glyphs and color mapping on inner
surface (h).

The visualizations (b) – shadow-casting glyphs and (h) – combi-
nation of shadow-casting glyphs and color mapping on inner surface
rank high in both questions, balancing both – need for illustration of
the shape and imparting the differences between models.

During the evaluation some remarks were made concerning the
visualizations. The scientists appreciated that when using glyphs,
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the shape of outer surfaces is indicated even when the surface is al-
most transparent. However, it was suggested that the light position
should not be fixed in respect to orientation of the models in order
to achieve moving shadows when the models are rotated. This idea
was prompted by occurrence of shadow distortion on surfaces that
were almost parallel to light direction.

Regarding the fog simulation, users found it less straightforward
and understandable than the glyphs. The main concern was the view
dependent intensity of fog. Due to the fact that the intensity is based
on distance between surfaces in viewing direction, with model rota-
tion the intensity may change at certain locations. It was suggested
that the technique should be made view independent.

It was further noted that the intersection contours are very ben-
eficial for intersection detection and suggested that option of high-
lighting them should be added also to the currently employed color
map visualization.

The scientists further appreciated the interactivity of the appli-
cation, the option of combining and adjusting the techniques. For
example, using these interactive adjustments they designed a visu-
alization of only the volume between two surfaces by setting both
surfaces transparent and adding Color overlay fog simulation – Fig-
ure 5.3. I did not considered such an option prior to the evaluation,
but they found the visualization contributory to their work.

Figure 5.3: Visualization of volume between surfaces.
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5.2 Cross sections

The second part of questionnaire was dedicated to evaluation of local
variability visualization based on cross sections. The scientists were
asked to evaluate this technique by three questions:

1. How well does this visualization convey variability in a set of
models at specific (sampling) points? (again on a scale from
very well to very poorly)

2. Does this visualization convey local variability better or worse
than color map on surface? (better, I don’t know, worse)

3. Is this visualization contributory to variability perception and
analysis? (yes, I don’t know, no)

In the first question all respondents answered very well or well,
proclaiming the visualization fairly demonstrative for local variabil-
ity.

In the second question, the scientists deemed this visualization
better that the one used in FIDENTIS Analyst application in terms of
conveying local variability, appreciating possibility to focus on one
place and scale the visual results.

All respondents marked the technique as contributory to variabil-
ity perception and analysis in third question.

The scientists liked the option of showing cross sections of en-
tire dataset versus vectors indicating variability. There was only one
remark – it was suggested to add the option of displaying absolute
variability values (as opposed to currently used relative, which take
into account orientation of vectors).

5.3 Plots

In third part of the questionnaire I asked for the evaluation of heat
plots I created for numerical and auxiliary results. For both parts I
prepared two questions:

1. How well does this visualization convey variability in a set of
models? (on a scale from very well to very poorly )
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2. Is this visualization contributory to analysis of facial dataset?
(yes, I don’t know, no)

For visualization of numerical results, the respondents claimed
the visualization convey variability in a set of models mostly very
well. All respondents marked this visualization as contributory to the
analysis, especially appreciating the color-coded histogram.

As for visualization of auxiliary results, the scientists found it less
demonstrative of variability, marking it well or neutral in first ques-
tion and only two respondents found it contributory to the analy-
sis of dataset. It was remarked that when performing facial analysis
the scientists are most interested in facial location with greatest vari-
ability. Therefore it was suggested to improve this visualization by
displaying the location of selected vertices on facial model.

5.4 Summary

In the last part of the questionnaire I asked the respondents to choose
the best suited visualization method for specific tasks to see if and
where my methods were usable. Based on the discussions with sci-
entists prior and during the development of my work, I have listed
the tasks they typically perform with FIDENTIS Analyst application:

• Verifying the alignment of models.

• Analyzing the shape of models.

• Comparing two models.

• Analyzing local variability of models.

• Analyzing a set of models (comparison, variability, etc.).

For each of these tasks the scientist were asked to choose up to
three techniques they found suitable for it.

For verifying the alignment of models the two selected visualizations
were surface superimposition method with shadow-casting glyphs
and cross-sectional slices with option of showing slices of all models
in dataset. It was also suggested that for verification of alignment of
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two models the superimposition method with fully opaque models
and only intersection contours (no glyphs) would be suitable, since
glyphs increase image complexity, which was considered unneces-
sary for this task.

In order to analyze the shape of models the scientist selected as most
suitable again the cross-sectional slices and shadow-casting glyphs
visualization.

For comparing two models, the color map on model was found as
most suitable by two respondents. Their other choices consisted of
combinations of fog simulations and glyphs, but not showing any
significant preference for one particular method.

For the task of analyzing local variability the preferred methods
were color map on model, cross-sectional slices and heat plot for nu-
merical results.

Finally, in case of analyzing a set of models all scientists uniquely
settled on heat plot for numerical results and some of them also
found cross-sectional slices beneficial for the task.

In conclusion, the most useful visualizations were found to be
color map on model (currently employed in application), shadow-
casting glyphs without fog, cross-sectional slices and heat plot for
numerical results. The fog simulations were often found confusing,
with scientists stating that although visually nice-looking, the inter-
pretation "takes some getting used to". As for visualization of auxil-
iary results, the lack of information about location of displayed val-
ues made it less preferable to other techniques.
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Conclusion

The aim of my work was to design and implement visualization
methods for facial comparison in order to extend the visualization
techniques currently provided in FIDENTIS Analyst application – an
application for facial analysis used by anthropology scientists.

In order to do so, I first analyzed the visualizations currently pro-
vided in the application and discussed with scientists the needs of
the applications, the areas they would like to explore in greater de-
tail and their expectations for the new visualizations. With the help
of scientists I put together the list of issues I then attempted to solve
when designing the visualizations.

Based on this list I conducted a research of related work in area of
3D data visualization, comparative visualization and visual analysis
of cohort study data. I looked for principles that could by applicable
for facial data and provide solution to the issues at hand.

I then presented the results of my research to anthropologists. To-
gether we selected several techniques that served as bases for my
work. I adjusted them to meet the needs of input data and better
address the problems. I chose and implemented three different ap-
proaches of visualization.

For scenarios where two models are processed and compared, I
chose superposition principle – placing the two models on top of
each other – and implemented several adjustments and cues to im-
prove the shape and distance perceptibility. Namely I implemented
intersection contours detection and highlight, surface opacity mod-
ulation based on its position in regards to viewer, shadow-casting
glyphs indicating surface curvature and simulation of fog based on
the distance between surfaces.

Another method I designed in order to visualize local variability
and shape is based on cross-sectional slices. This technique transfers
the local data from 3D to 2D view, which reduces visual complexity
and allows the observer to focus on important details.

The third and final tool I created employs heat maps for visual-
ization of numerical data exported from the application. The purpose
of this tool is to reduce the need for further data post-processing in
other applications and provide yet another outlook on data.
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CONCLUSION

After implementing these techniques I conducted a user study
with scientists working in the area of facial analysis to evaluate the
contribution of my visualizations to the area. The results showed
the scientists found most of the presented visualization techniques
contributory, three of them – surface superimposition method with
shadow-casting glyphs, cross-sectional slices and heat plot for nu-
merical data – particularly so, marking them as visualization of choice
for several tasks they usually perform during their work.

The standalone application with the visualization tools I created
is already used by the scientists. In the nearest future I am going to
integrate the visualization techniques into FIDENTIS Analyst appli-
cation, where they could aid the process of facial analysis as well
as communicate the results. I would also like to implement the sug-
gestions for improvement and extensions made by scientists during
evaluation process – mainly the view independent fog simulation
and the auxiliary results heat plot extension for displaying the loca-
tion of the data on the model.
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A Questionnaire

PART I - Visualization of intersecting surfaces

This part of the questionnaire is dedicated to visualization of two intersecting facial surfaces with 

aim to convey the shapes and differences of the shape. 

1. Color map - visualization currently used in application

Distances or variability between two or more faces are mapped on one model in a form of color.

Minimal distance (negative) Maximal distance (positive)

How well does this visualization convey shapes of individual models?

very well well neutral poorly very poorly

How well does this visualization convey differences between models?

very well well neutral poorly very poorly
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2. Transparency + glyphs 

Two models are rendered over each other, intersections of surfaces are contoured and outer 

layer (layer closer to viewer) is rendered transparently with opaque shadow-casting glyphs. The 

orientation of glyphs indicates principal curvature directions of surface at given points. 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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3. Overlay fog 

Two models are rendered over each other with adjustable transparency. Additional layer in color 

different to colors of the models is rendered over the image indicating the distances between 

surfaces - the bigger the distance between surface, the more opaque the layer is. 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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4. Outer surface fog 

The entire outer layer (layer closer to viewer) of intersecting models is colored to color different 

to colors of the models. The distances between surfaces are mapped to transparency - the 

bigger the distance between surfaces, the more opaque the color is. 

 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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5. Inner surface fog 

The distance between model surfaces is mapped onto inner layers (layer further from viewer) in 

a form of color. Outer layers are rendered at least partially transparently in order for the inner 

surfaces to be visible. 

 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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6. Overlay fog + glyphs 

Two models are rendered over each other with adjustable transparency. Additional layer in color 

different to colors of the models is rendered over the image indicating the distances between 

surfaces - the bigger the distance between surface, the more opaque the layer is. In addition the 

shadow-casting curvature glyphs are mapped on outer surface. 

 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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7. Outer surface fog + glyphs 

The entire outer layer (layer closer to viewer) of intersecting models is colored to color different 

to colors of the models. The distances between surfaces are mapped to transparency - the 

bigger the distance between surfaces, the less transparent the color is. In addition the shadow-

casting curvature glyphs are mapped on outer surface. 

 

 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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8.  Inner surface fog + glyphs 

The distance between model surfaces is mapped onto inner layers (layer further from viewer). 

Outer layers are rendered at least partially transparently. In addition the shadow-casting 

curvature glyphs are mapped on outer surface. 

 

 
 

How well does this visualization convey shapes of individual models? 

 

very well well neutral poorly very poorly 

 

How well does this visualization convey differences between models? 

 

very well well neutral poorly very poorly 
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PART II - Visualization of surface cross-sections 

This part of the questionnaire is dedicated to visualization of two or more intersecting surfaces 

via cross-sectional slices.  

 
 

 1    2      3         4   5 

 

1 - reference picture of average face with the plane specifying cross-sectional slice. 
2 - red - intersection of plane with the average face, black - intersections with all faces in dataset 
3 - black - variability at sampling points in the direction of normal to the intersection with average face, red 

- vectors indicating average distance in this direction from average face to all faces in dataset 
4 - same as (3 - red) 

5 - same as 4 with enhanced vector sizes  

 

How well does this visualization convey variability in a set of models at specific (sampling) 

points? 

 

very well well neutral poorly very poorly 

 

Does this visualization convey local variability better or worse than color map on surface (see 

#1)?  

 

better I don’t know worse 

 

Is this visualization contributory to variability perception and analysis?  

 

yes I don’t know no 
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PART III - Visualization of numerical results for whole dataset 

 

1. Numerical results 

Pairwise numerical results for set of facial models mapped on color in interactive heat plot. The 

visualization allows selection, sorting and filtering of values. Complementary histogram shows 

distribution of values in given set. 

 
 

 

How well does this visualization convey variability in a set of models? 

 

very well well neutral poorly very poorly 

 

Is this visualization contributory to analysis of facial dataset? 

 

yes I don’t know no 
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2. Auxiliary results 

Distances from one model (e.g. average model) to each model in set. Each vertical line in the 

heat plot represents distance from one vertex of selected model to the nearest vertex in another 

model in a set. Complementary histogram shows distribution of values either in entire set or in 

respect to one selected face. 

 
 

How well does this visualization convey variability in a set of models? 

 

very well well neutral poorly very poorly 

 

Is this visualization contributory to analysis of facial dataset? 

 

yes I don’t know no 

 

 

 

66



 

Summary 

 

    

1. 2. 3. 4. 

 
  

 

5. 6. 7. 8. 

 
 

 

none 

9. 10. 11. 12. 
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Of the afore mentioned visualizations, select a visualization which would be in your opinion best 

suited for: 

1. verifying the alignment of the models:  

2. analyzing shape of the models: 

3. comparing two models: 

4. analyzing local variability of models:  

5. analyzing a set of models (comparison, variability, etc.):  

 

Comments & suggestions: 
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B Questionnaire results

Part I – Visualization of intersecting surfaces

• How well does the visualization convey shapes of individual
models?

• How well does the visualization convey differences between
models?

For visualizations corresponding to Visualization # please refer to
page 67.
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Part II – Visualization of surface cross sections

• How well does this visualization convey variability in a set of
models at specific (sampling) points?

• Does this visualization convey local variability better or worse
than color map on surface?

• Is this visualization contributory to variability perception and
analysis?

70



Part III – Visualization of numerical results for whole dataset

• How well does the visualization convey variability in a set of
models?

• Is the visualization contributory to analysis of facial dataset?
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Summary

• Select a visualization which would be in your opinion best
suited for:

1. Verifying the alignment of the models.

2. Analyzing shape of the models.

3. Comparing two models.

4. Analyzing local variability of models.

5. Analyzing a set of models (comparison, variability, etc.).

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

#
 o

f 
v

o
te

s

Visualization #

verifying the alignment of the models analyzing shape of the models

comparing two modes analyzing local variability of models

analyzing a set of models (comparison, variability, etc.)

For visualizations corresponding to Visualization # please refer to
page 67.
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C User guide

To present the results of my work I created an executable standalone
application, where the visualization methods described in this thesis
are implemented.

Main menu

The main window of the application is split into two parts – Edi-
tor window (on the left) and Properties window (on the right). After
the start of the application, main menu is displayed in the Editor
window. The menu consists of three buttons – Surfaces, Slices and
Plots – see Figure 6.1. Surfaces button leads to surface superimposi-
tion visualization techniques, Slices leads to visualizations based on
cross-sectional slices and Plots leads to heat plot visualizations for
numerical and auxiliary results.

Figure 6.1: Main menu of the application.

Surfaces

In Surfaces mode (Figure 6.2), the Editor window serves for display-
ing two nested 3D models. The models can be rotated and zoomed
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either by embedded buttons or by mouse – left mouse button press
& drag for rotation, right mouse button press & drag for movement
and wheel for zooming.

The two models can be loaded using Load. . . buttons in Properties
window. Using other controls in this window visualization proper-
ties, such as colors or transparency can be adjusted. Controls for turn-
ing on and off the visualization features – glyphs, fog simulation and
intersection contours – are also situated here.

The displayed image can be exported into high resolution PNG
file by Export visual results. . . button, which opens new window for
name and location selection. This functionality can be found in other
parts of the application as well.

Figure 6.2: Surface superimposition visualization in the application.
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Slices

In Slices mode (Figure 6.3), the Editor window is split into two parts.
In the left part of the window the average model with intersection
plane is displayed. The plane can be adjusted by dragging the ar-
row gizmo – left mouse button for rotation of the plane, right mouse
button for adjusting the position.

Right part of the Editor window is dedicated to 2D view of model
intersections with the plane. This view can again be zoomed (mouse
wheel) and moved (left mouse button).

The buttons for loading average (primary) model and the rest of
the models from dataset are situated in Properties window, along
with controls for plane position and visualization features. The users
can quickly set plane orientation along one of the world axis or man-
ually enter normal of the plane.

Figure 6.3: Visualization based on cross sections in the application.
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Plots

The heat plot visualization differs based on the loaded data. In both
cases the heat plot is situated in Editor window and the values can
be filtered using interactive scale displayed on the right side of the
plot.

Additionally, in case of numerical results, the heat plot values
can be sorted by invoking pop-up menu over the plot entry (right
mouse button click) and selecting one of the options – see Figure 6.4.
The exact values of heat plot cells can be displayed by hovering over
the cell. The histogram, which can be displayed in separate window,
shows the distribution of values in the dataset.

Figure 6.4: Visualization for numerical results in the application.

In case of auxiliary results, the zoomed area can be adjusted by
dragging the zooming window (purple rectangle) along the selected
row of heat plot – see Figure 6.5. Concerning the histogram, it shows
the distribution of values in selected row or in entire dataset if noth-
ing is selected.
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Figure 6.5: Visualization for auxiliary results in the application.
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D Thesis Archive in IS MU

This appendix contains a list of files that accompany this text in the
thesis archive in the Masaryk University Information System 1.

• Text of the this thesis in PDF.

• LaTeX source files and figures used in this thesis.

• Executable application containing the visualization techniques
described in this work.

• Source files of the application.

• Test data for the application.

1. The archive is accessible at http://is.muni.cz/th/374538/fi_m/.
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